
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an
advanced degree from Emory University, I hereby grant to Emory University and its agents
the non-exclusive license to archive, make accessible, and display my thesis or dissertation
in whole or in part in all forms of media, now or hereafter known, including display on the
world wide web. I understand that I may select some access restrictions as part of the online
submission of this thesis or dissertation. I retain all ownership rights to the copyright of
the thesis or dissertation. I also retain the right to use in future works (such as articles or
books) all or part of this thesis or dissertation.

Signature:

Sarah M. Knepper Date

Large-Scale Inverse Problems in Imaging: Two Case Studies

By

Sarah M. Knepper
Doctor of Philosophy

Mathematics and Computer Science

James G. Nagy, Ph.D.
Advisor

Michele Benzi, Ph.D.
Committee Member

Vaidy Sunderam, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

Large-Scale Inverse Problems in Imaging: Two Case Studies

By

Sarah M. Knepper
B.A., College of Saint Benedict, 2006

Advisor: James G. Nagy, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Mathematics and Computer Science

2011

Abstract

Large-Scale Inverse Problems in Imaging: Two Case Studies
By Sarah M. Knepper

Solving inverse problems is an important part of scientific computing. As computers be-
come more powerful, solutions to increasingly larger problems are sought, allowing for more
accurate representations of real-world applications. We consider solving large-scale inverse
problems, ranging from linear to fully nonlinear. We look at aspects common to inverse
problems, such as their ill-posedness, and see how regularization can help produce mean-
ingful results. We discuss a number of different methods for solving while providing regu-
larization. One such technique is to solve using an iterative method but stop the iterations
early, before convergence is fully achieved.

Iterative solvers are particularly useful for large-scale inverse problems as computations
can be done in parallel. Trilinos is a mathematical software library for solving problems
coming from many fields of scientific computing. One particular package, Belos, provides
both an abstract framework and concrete implementations of various iterative solvers. We
have implemented two additional solvers within the Belos framework, LSQR and MRNSD,
which can be used to solve linear inverse problems.

We then consider two different case studies, where we wish to solve a large-scale linear
inverse problem. In the first study, we want to remove patient motion blur from positron
emission tomography (PET) images when motion information is tracked and recorded dur-
ing the scan. We describe how this problem can be formulated as a linear equation, then
we solve it using the solvers we implemented. We also look at a number of results, seeing
how the reconstruction improves as more motion information is included in our model.

The second case study comes from the field of adaptive optics. Here we wish to determine
the distortion caused by the atmosphere when imaging using ground-based telescopes. Sen-
sors are able to obtain noisy estimates of the gradients of the distortion, resulting in a Kro-
necker product-structured linear least squares problem. We describe a solving method that
employs Tikhonov-type regularization by exploiting properties of the Kronecker product
and utilizing the generalized singular value decomposition (GSVD). Our approach includes
constructing a preconditioner off-line and then applying a few iterations of preconditioned
LSQR.

Large-Scale Inverse Problems in Imaging: Two Case Studies

By

Sarah M. Knepper
B.A., College of Saint Benedict, 2006

Advisor: James G. Nagy, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Mathematics and Computer Science
2011

Acknowledgments

I am indebted to quite a number of people to reach this point in my scholastic journey,
but for reasons of brevity, I shall try to limit myself here. Even though a name may not be
specifically mentioned, know that I am grateful for your impact on my life.

First, I would be nowhere if it were not for my teachers, so thank you to all of the
professors I have had the fortune of meeting, for passing on your knowledge to me and my
fellow students.

Prof. Michael Heroux, my undergrad advisor, thank you for allowing me to do research
for (and with) you. I am particularly grateful for my first Sandia internship – that is what
put me on the road to graduate school – and your suggestion to consider Emory was a great
one.

Profs. Michele Benzi and Vaidy Sunderam: thank you both for further research expe-
rience, for serving on my committee, and especially for your helpful comments to improve
this manuscript.

Thank you to Prof. James Nagy, my advisor, for passing on your love of inverse problems
to me. You have given me so many opportunities – writing a book chapter, traveling to
international conferences, co-teaching a Computational Methods in Imaging course. Thank
you, also, for supporting me and allowing me to complete my last year long distance. I
cannot imagine being where I am without you, nor would I want to.

Thank you, also, to my collaborators on various publications; some of that work has
helped make up this manuscript. The staff at Emory have been such a great support to me;
thank you for all your hard work. To my fellow students – thanks for a great five years!

To one student in particular, Jake, I am so glad our paths crossed at grad school. You
have been such a great support, keeping me grounded after I have had my head in the
clouds with research all day.

Finally, I would like to acknowledge my family, without which I would not be here
today. Thank you for all your support throughout my entire life, always letting me spread
my wings and fly, as I find my place in the world.

S.D.G.

Contents

1 Introduction 1
1.1 Background . 2

1.1.1 Model Problems . 2
1.2 Mathematical Modelling and Analysis . 4

1.2.1 Linear Inverse Problems . 4
1.2.2 Separable Nonlinear Inverse Problems 16
1.2.3 Nonlinear Inverse Problems . 20

1.3 Outline of Work . 23
1.4 Contributions . 23

2 Large-Scale Software for Inverse Problems 25
2.1 Motivation . 25
2.2 Previous Work . 25
2.3 Overview of Trilinos . 26

2.3.1 Petra Model . 27
2.3.2 Teuchos Toolkit . 28
2.3.3 Belos Framework . 28

2.4 LSQR . 29
2.4.1 Implementation Details of LSQR . 33

2.5 MRNSD . 33
2.5.1 Implementation Details of MRNSD 34

2.6 Least Error Convergence Test . 35
2.7 Remarks and Future Directions . 36

3 Case Study 1: Positron Emission Tomography Application 37
3.1 Motivation . 37
3.2 Previous Work . 38
3.3 Methodology of Our Approach . 39

3.3.1 Motion Detection . 39
3.3.2 Construction of the Matrix . 40
3.3.3 Iterative Deblurring . 42

3.4 Implementation Details . 43
3.4.1 Memory Requirements . 43
3.4.2 Scalability Analysis . 46
3.4.3 Testbed . 49

3.5 Results . 49

3.5.1 Effect of Scalar Precision . 50
3.5.2 Effect of Interval Choice . 53
3.5.3 Effect of Patient Motion . 55

3.6 Remarks and Future Directions . 58

4 Case Study 2: Adaptive Optics Application 61
4.1 Motivation . 61
4.2 Previous Work . 63
4.3 Methodology of Our Approach . 63

4.3.1 Mathematical Background . 64
4.3.2 Wavefront Reconstruction Using TSVD-Type Regularization 66
4.3.3 Wavefront Reconstruction Using Tikhonov-Type Regularization . . . 68

4.4 Implementation Details . 73
4.5 Results . 73

4.5.1 Effect of Differing α Values . 75
4.5.2 Using Square-Aperture Preconditioner on Masked Problems 75

4.6 Remarks and Future Directions . 79

5 Concluding Remarks 80

A Trilinos Code 82
A.1 Code for LSQR . 82

A.1.1 LSQRSolMgr.hpp Code . 82
A.1.2 LSQRIter.hpp Code . 96
A.1.3 LSQRStatusTest.hpp Code . 107

A.2 Code for MRNSD . 112
A.2.1 MRNSDSolMgr.hpp Code . 112
A.2.2 MRNSDIter.hpp Code . 124
A.2.3 MRNSDStatusTest.hpp Code . 133

A.3 Code for Least Error Status Test . 137
A.3.1 LeastErrorStatusTest.hpp Code . 137

A.4 Code for PET Application . 141
A.4.1 HRRT.hpp Code . 141
A.4.2 HRRTmain.cpp Code . 160
A.4.3 Example XML File . 160

A.5 Code for AO Application . 161
A.5.1 AOOperator.hpp . 161
A.5.2 AOPreconditioner.hpp . 166
A.5.3 AOmain.hpp . 169
A.5.4 AOmain.cpp . 176
A.5.5 Example XML File . 176

List of Figures

1.1 The singular values of A and their relative spread. 12
1.2 Top Row: The singular values of A and Bk, for k = 10, 20, 50. Bottom Row:

The relative difference. 13

2.1 Brief diagram of key classes from Belos and Tpetra. 30

3.1 Illustration of two interpolation schemes to approximate the value of x(ŝi, t̂j). 41
3.2 Timings for varying numbers of matrix-vector multiplications on varying

numbers of processors when the matrix is composed from 560 intervals. . . 48
3.3 Timings for varying numbers of intervals on varying numbers of processors

when 2500 matrix-vector multiplications are performed. 49
3.4 Motion-blurred phantom image. 50
3.5 Comparison of relative error to number of intervals used when scalar precision

varies. 51
3.6 Comparison of iterations to number of intervals used when scalar precision

varies. 51
3.7 Comparison of reconstructions when scalar precision and solver type varies. 52
3.8 Comparison of two segmentations of patient motion. 53
3.9 Comparison of relative error to number of intervals used when segmentation

process varies. 54
3.10 Comparison of relative error to number of intervals used when level of patient

motion varies. 56
3.11 Comparison of relative error to number of intervals used when level of patient

motion varies, per solver type. 56
3.12 Comparison of iterations to number of intervals used when level of patient

motion varies. 57
3.13 Comparison of iterations to number of intervals used when level of patient

motion varies, per solver type. 57
3.14 Comparison of number of intervals used to reduction in error when level of

patient motion varies. 59

4.1 Grid representations of the Hudgin Laplacian (left) and the Fried Laplacian (right). 66
4.2 Visualization of nonzeros in Σ matrix for the case n = 6. 67
4.3 Singular values for one non-preconditioned and six preconditioned systems. 72
4.4 Example noisy gradients for n = 256 with 10% noise. 74
4.5 Comparison of reconstructions for two types of regularization. 74
4.6 Comparison of iterations to α value for 1000 realizations of noise. 76

4.7 Count of number of preconditioned LSQR iterations required for 1000 real-
izations of noise. 76

4.8 Illustration of masks used. 78
4.9 Comparison of iterations to tolerance level with and without a preconditioner. 78
4.10 Comparison of masked relative error to tolerance level with and without a

preconditioner. 79

List of Tables

3.1 Approximate storage requirements in gigabytes for various numbers of inter-
vals and processors with double and int datatypes, using nearest neighbor
interpolation. The storage per processor is given in parentheses following the
total storage requirements. 45

3.2 Approximate storage requirements in gigabytes for various numbers of inter-
vals and processors with float and int datatypes, using nearest neighbor
interpolation. The storage per processor is given in parentheses following the
total storage requirements. 46

3.3 Time (in seconds) for varying numbers of matrix-vector multiplications to be
performed for problem size 32× 32× 12 when number of intervals is fixed. . 47

3.4 Time (in seconds) for varying numbers of matrix-vector multiplications to be
performed for problem size 64× 64× 24 when number of intervals is fixed. . 47

3.5 Time (in seconds) for 2500 matrix-vector multiplications to be performed for
problem size 32× 32× 12 when number of intervals varies. 48

3.6 Time (in seconds) for 2500 matrix-vector multiplications to be performed for
problem size 64× 64× 24 when number of intervals varies. 48

3.7 Initial relative error for each motion level. 57

4.1 Number of LSQR iterations required, on average, for n = 256 with four
different amounts of noise for various tolerance levels. 77

1

Chapter 1

Introduction

Large-scale inverse problems arise in a variety of significant applications in image pro-

cessing, and efficient regularization methods are needed to compute meaningful solu-

tions. This chapter surveys three common mathematical models including a linear,

a separable nonlinear, and a general nonlinear model. Techniques for regularization

and large-scale implementations are considered, with particular focus given to algo-

rithms and computations that can exploit structure in the problem. Much progress

has been made in the field of large-scale inverse problems, but many challenges still

remain for future research.

Powerful imaging technologies, including very large telescopes, synthetic aperture

radar, medical imaging scanners, and modern microscopes, typically combine a device

that collects electromagnetic energy (e.g., photons) with a computer that assembles

the collected data into images that can be viewed by practitioners, such as scientists

and doctors. The “assembling” process typically involves solving an inverse problem;

that is, the image is reconstructed from indirect measurements of the corresponding

object. Many inverse problems are also ill-posed, meaning that small changes in the

measured data can lead to large changes in the solution, and special tools or techniques

are needed to deal with this instability. In fact, because real data will not be exact (it

will contain at least some small amount of noise or other errors from the data collection

device), it is not possible to find the exact solution. Instead, a physically realistic

approximation is sought. This is done by formulating an appropriate regularized (i.e.,

stabilized) problem, from which a good approximate solution can be computed.

Inverse problems are ubiquitous in imaging applications, including deconvolution

(or, more generally, deblurring) [1, 67], super-resolution (or image fusion) [28, 33],

image registration [92], image reconstruction [96, 97], seismic imaging [38], inverse

scattering [25], and radar imaging [27]. These problems are referred to as large-scale

2

because they typically require processing a large amount of data (the number of pixels

or voxels in the discretized image) and systems with a large (e.g., 109 for a three-

dimensional image reconstruction problem) number of equations. Mathematicians

began to rigorously study inverse problems in the 1960s, and this interest has contin-

ued to grow over the past few decades due to applications in fields such as biomedical,

seismic, and radar imaging; see, for example, [22, 35, 62, 64, 128] and the references

therein.

This chapter discusses computational approaches to compute approximate solu-

tions of large-scale inverse problems. Mathematical models and some applications

are presented in Section 1.1. Three basic models are considered: a general nonlinear

model, a linear model, and a mixed linear/nonlinear model. Several regularization

approaches are described in Section 1.2. For an extended example problem of each

model type, see [29].

We will then use some of these approaches to solve two different inverse problems.

First, however, we will consider the large-scale software library Trilinos [69] and de-

scribe two iterative solvers we have implemented within the Trilinos framework in

Chapter 2. Next, we will consider a problem in Chapter 3 that deals with removing

motion blur from positron emission tomography brain scans. The other inverse prob-

lem comes from the field of adaptive optics; here we wish to reconstruct a wavefront

given noisy gradient information. More details are in Chapter 4.

1.1 Background

A mathematical framework for inverse problems is presented in this chapter. The

model problems, which range from linear to nonlinear, are fairly general and can be

used to describe many other applications. For more complete treatments of inverse

problems and regularization, see [22, 35, 62, 64, 66, 128].

1.1.1 Model Problems

An inverse problem involves the estimation of certain quantities using information

obtained from indirect measurements. A general mathematical model to describe

this process is given by

bexact = F (xexact) , (1.1)

where xexact denotes the exact (or ideal) quantities that need to be estimated, and

bexact is used to represent perfectly measured (error-free) data. The function F is

3

defined by the data collection process and is assumed known. Typically it is assumed

that F is defined on Hilbert spaces and that it is continuous and weakly sequentially

closed [36].

Unfortunately, in any real application, it is impossible to collect error-free data,

so a more realistic model of the data collection process is given by

b = F (xexact) + η , (1.2)

where η represents noise and other errors in the measured data. The precise form of

F depends on the application; the following three general situations are considered

in this chapter:

• For linear problems F (x) = Ax, where A is a linear operator. In this case the

data collection process is modeled as

b = Axexact + η ,

and the inverse problem is: given b and A, compute an approximation of xexact.

• In some cases, x can be separated into two distinct components, x(`) and x(n`),

with F (x) = F (x(`),x(n`)) = A(x(n`))x(`), where A is a linear operator defined

by x(n`). That is, the data b depends linearly on x(`) and nonlinearly on x(n`).

In this case the data collection process is modeled as

b = A(x
(n`)
exact)x

(`)
exact + η ,

and the inverse problem is: given b and the parametric form of A, compute

approximations of x
(n`)
exact and x

(`)
exact.

• If the problem is not linear or separable, as described above, then the general

nonlinear model,

b = F (xexact) + η ,

will be considered. In this case the inverse problem is: given b and F , compute

an approximation of xexact.

In most of what follows, it is assumed that the problem has been discretized, so x,

b and η are vectors, and A is a matrix. Depending on the constraints assumed and

the complexity of the model used, problems may range from linear to fully nonlinear.

4

1.2 Mathematical Modelling and Analysis

A significant challenge when attempting to compute approximate solutions of inverse

problems is that they are typically ill-posed. To be precise, in 1902 Hadamard defined

a well-posed problem as one that satisfies the following requirements:

1. The solution is unique;

2. The solution exists for arbitrary data; and

3. The solution depends continuously on the data.

Ill-posed problems, and hence most inverse problems, typically fail to satisfy at least

one of these criteria. It is worth mentioning that this definition of an ill-posed problem

applies to continuous mathematical models, and not precisely to the discrete approx-

imations used in computational methods. However, the properties of the continuous

ill-posed problem are often carried over to the discrete problem in the form of a par-

ticular kind of ill-conditioning, making certain (usually-high frequency) components

of the solution very sensitive to errors in the measured data. Of course this may

depend on the level of discretization; a coarsely discretized problem may not be very

ill-conditioned, but it also may not bear much similarity to the underlying continuous

problem.

Regularization is a term used to refer to various techniques that modify the inverse

problem in an attempt to overcome the instability caused by ill-posedness. Regular-

ization seeks to incorporate a priori knowledge into the solution process. Such knowl-

edge may include information about the amount or type of noise, the smoothness or

sparsity of the solution, or restrictions on the values the solution may obtain. Each

regularization method also requires choosing one or more regularization parameters.

A variety of approaches are discussed in this section.

The theory for regularizing linear problems is much more developed than it is

for nonlinear problems. This is due, in large part, to the fact that the numerical

treatment of nonlinear inverse problems is often highly dependent on the particular

application. However, good intuition can be gained by first studying linear inverse

problems.

1.2.1 Linear Inverse Problems

Consider the linear inverse problem

b = Axexact + η ,

5

where b and A are known, and the aim is to compute an approximation of xexact. The

linear problem is a good place to illustrate the challenges that arise when attempting

to solve large-scale inverse problems. In addition, some of the regularization methods

and iterative algorithms discussed here can be used in, or generalized for, nonlinear

inverse problems.

1.2.1.1 SVD Analysis

A useful tool in studying linear inverse problems is the singular value decomposition

(SVD). Any m× n matrix A can be written as

A = UΣV T (1.3)

where U is an m×m orthogonal matrix, V is an n×n orthogonal matrix, and Σ is an

m × n diagonal matrix containing the singular values σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0.

If A is nonsingular, then an approximation of xexact is given by the inverse solution

xinv = A−1b =
n∑
i=1

uTi b

σi
vi =

n∑
i=1

uTi bexact

σi
vi︸ ︷︷ ︸

xexact

+
n∑
i=1

uTi η

σi
vi︸ ︷︷ ︸

error

where ui and vi are the singular vectors of A (that is, the columns of U and V , re-

spectively). As indicated above, the inverse solution is comprised of two components:

xexact and an error term. Before discussing algorithms to compute approximations of

xexact it is useful to study the error term.

For matrices arising from ill-posed inverse problems, the following properties hold:

P1. The matrix A is severely ill-conditioned, with the singular values σi decaying to

zero without a significant gap to indicate numerical rank.

P2. The singular vectors corresponding to the small singular values tend to oscillate

more (i.e., have higher frequency) than singular vectors corresponding to large

singular values.

P3. The components |uTi bexact| decay on average faster than the singular values σi.

This is referred to as the discrete Picard condition [64].

The first two properties imply that the high frequency components of the error term

are highly magnified by division of small singular values. The computed inverse

solution is dominated by these high frequency components and is in general a very

poor approximation of xexact. However, the third property suggests that there is hope

6

of reconstructing some information about xexact; that is, an approximate solution can

be obtained by reconstructing components corresponding to the large singular values,

and filtering out components corresponding to small singular values.

1.2.1.2 Regularization by SVD Filtering

The SVD filtering approach to regularization is motivated by observations made in

the previous subsection. That is, by filtering out components of the solution corre-

sponding to the small singular values, a reasonable approximation of xexact can be

computed. Specifically, an SVD-filtered solution is given by

xfilt =
n∑
i=1

φi
uTi b

σi
vi , (1.4)

where the filter factors, φi, satisfy φi ≈ 1 for large σi, and φi ≈ 0 for small σi.

That is, the large singular value components of the solution are reconstructed, while

the components corresponding to the small singular values are filtered out. Different

choices of filter factors lead to different methods. Some examples include:

Truncated SVD Filter Tikhonov Filter Exponential Filter

φi =

{
1 if σi > α

0 if σi ≤ α
φi =

σ2
i

σ2
i + α2

φi = 1− e−σ2
i /α

2

Note that using a Taylor series expansion of the exponential term in the exponential

filter, it is not difficult to see that the Tikhonov filter is a truncated approximation

of the exponential filter. Moreover, the Tikhonov filter has an equivalent variational

form, which is described in Section 1.2.1.3.

Observe that each of the filtering methods has a parameter (in the above examples,

α) that needs to be chosen to specify how much filtering is done. Appropriate values

depend on properties of the matrix A (i.e., on its singular values and singular vectors)

as well as on the data, b. Some techniques to help guide the choice of the regularization

parameter are discussed in Section 1.2.1.6.

Because the SVD can be very expensive to compute for large matrices, this explicit

filtering approach is generally not used for large-scale inverse problems. There are

some exceptions, though, if A is highly structured. For example, suppose A can be

7

decomposed as a Kronecker product,

A = Ar ⊗ Ac =


a

(r)
11 Ac a

(r)
12 Ac · · · a

(r)
1nAc

a
(r)
21 Ac a

(r)
22 Ac · · · a

(r)
2nAc

...
...

...

a
(r)
n1Ac a

(r)
n2Ac · · · a

(r)
nnAc


where Ac is an m × m matrix, and Ar is an n × n matrix with entries denoted by

a
(r)
ij . Then this block structure can be exploited when computing the SVD and when

implementing filtering algorithms [67].

It is also sometimes possible to use an alternative factorization. Specifically, sup-

pose that

A = QΛQ∗ ,

where Λ is a diagonal matrix and Q∗ is the complex conjugate transpose of Q, with

Q∗Q = I. This is called a spectral factorization; the columns of Q are eigenvectors

and the diagonal elements of Λ are the eigenvalues of A. Although every matrix

has an SVD, only normal matrices (i.e., matrices that satisify A∗A = AA∗) have

a spectral decomposition. However, if A has a spectral factorization, then it can

be used, in place of the SVD, to implement the filtering methods described in this

section. The advantage is that it is sometimes more computationally convenient to

compute a spectral decomposition than it is an SVD.

1.2.1.3 Variational Regularization and Constraints

Variational regularization methods have the form

min
x

{
‖b− Ax‖2

2 + α2J (x)
}
, (1.5)

where the regularization operator J and the regularization parameter α must be

chosen. The variational form provides a lot of flexibility. For example, one could

include additional constraints on the solution, such as nonnegativity, or it may be

preferable to replace the least squares criterion with the Poisson log likelihood function

[8, 9, 11]. As with filtering, there are many choices for the regularization operator, J ,

such as Tikhonov, total variation [26, 113, 128], and sparsity constraints [23, 42, 122]:

Tikhonov Total Variation Sparsity

J (x) = ‖Lx‖2
2 J (x) =

∥∥∥∥√(Dhx)2 + (Dvx)2

∥∥∥∥
1

J (x) = ‖Bx‖1

8

Tikhonov regularization, which was first proposed and studied extensively in the

early 1960s [91, 105, 117, 118, 119], is perhaps the most well-known approach to

regularizing ill-posed problems. L is typically chosen to be the identity matrix or

a discrete approximation to a derivative operator, such as the Laplacian. If L =

I, then it is not difficult to show that the resulting variational form of Tikhonov

regularization, namely

min
x

{
‖b− Ax‖2

2 + α2‖x‖2
2

}
, (1.6)

can be written in an equivalent filtering framework by replacing A with its SVD [64].

For total variation, Dh and Dv denote discrete approximations of horizontal and

vertical derivatives of the 2D image x, and the approach extends to 3D images in an

obvious way. Efficient and stable implementation of total variation regularization is

a nontrivial problem; see [26, 128] and the references therein for further details.

In the case of sparse reconstructions, the matrix B represents a basis in which the

image, x, is sparse. For example, for astronomical images that contain a few bright

objects surrounded by a significant amount of black background, an appropriate choice

for B might be the identity matrix. Clearly the choice of B is highly dependent on

the structure of the image x. The usage of sparsity constraints for regularization is

currently a very active field of research, with many open problems.

We also mention that when the majority of the elements in the image x are zero

or near zero, as may be the case for astronomical or medical images, it may be wise

to enforce nonnegativity constraints on the solution [9, 11, 128]. This requires that

each element of the computed solution x is not negative, which is often written as

x ≥ 0. Though these constraints add a level of difficulty when solving, they can

produce results that are more feasible than when nonnegativity is ignored.

Finally it should be noted that, depending on the structure of matrix A, the type

of regularization, and the additional constraints to include, a variety of optimization

algorithms can be used to solve (1.5). In some cases it is possible to use a very efficient

filtering approach, but typically it is necessary to use an iterative method.

1.2.1.4 Iterative Regularization

As mentioned in Section 1.2.1.3, iterative methods are often needed to solve the vari-

ational form of the regularized problem. An alternate approach to using variational

regularization is to simply apply the iterative method to the least squares problem,

min
x
‖b− Ax‖2

2 .

9

Note that if an iterative method applied to this unregularized problem is allowed

to “converge”, it will converge to an inverse solution, xinv, which is corrupted by

noise (recall the discussion in Section 1.2.1.1). However, many iterative methods

have the property (provided the problem on which it is applied satisfies the discrete

Picard condition) that the early iterations reconstruct components of the solution

corresponding to large singular values, while components corresponding to small sin-

gular values are reconstructed at later iterations. Thus, there is an observed “semi-

convergence” behavior in the quality of the reconstruction, whereby the approximate

solution improves at early iterations and then degrades at later iterations (a more

detailed discussion of this behavior is given in Section 1.2.1.5 in the context of the

iterative method LSQR). If the iteration is terminated at an appropriate point, a reg-

ularized approximation of the solution is computed. Thus, the iteration index acts as

the regularization parameter, and the associated scheme is referred to as an iterative

regularization method.

Many algorithms can be used as iterative regularization methods, including Landwe-

ber [85], steepest descent, and the conjugate gradient method (e.g., for nonsymmetric

problems the CGLS implementation [15] or the LSQR implementation [102, 103], and

for symmetric indefinite problems, the MR-II implementation [57]). Most iterative

regularization methods can be put into a general framework associated with solving

the minimization problem

min f(x) =
1

2
xTATAx− xTATb (1.7)

with a general iterative method of the form

xk+1 = xk + ρkMk

(
ATb− ATAxk

)
= xk + ρkMkrk , (1.8)

where rk = ATb − ATAxk. With specific choices of ρk and Mk, one can obtain a

variety of well-known iterative methods:

• The Landweber method is obtained by taking ρk = ρ (that is, ρ remains con-

stant for each iteration), and Mk = I (the identity matrix). Due to its very slow

convergence, this classic approach is not often used for linear inverse problems.

However, it is very easy to analyze the regularization properties of the Landwe-

ber iteration, and it can be useful for certain large-scale nonlinear ill-posed

inverse problems.

• The steepest descent method is produced if Mk = I is again fixed as the identity,

but now ρk is chosen to minimize the residual at each iteration. That is, ρk is

10

chosen as

ρk = arg min
ρ>0

f(xk + ρrk).

Again, this method typically has very slow convergence, but with proper pre-

conditioning it may be competitive with other methods.

• It is also possible to obtain the conjugate gradient method by setting M0 = I

and Mk+1 = I − sky
T
k

yTk sk
, where sk = xk+1 − xk and yk = ATA (xk+1 − xk).

As with the steepest descent method, ρk is chosen to minimize the residual at

each iteration. Generally, the conjugate gradient method converges much more

quickly than Landweber or steepest descent.

Other iterative algorithms that can be put into this general framework include the

Brakhage ν methods [19] and Barzilai and Borwein’s lagged steepest descent scheme

[13].

1.2.1.5 Hybrid Iterative-Direct Regularization

One of the main disadvantages of iterative regularization methods is that it can be

very difficult to determine appropriate stopping criteria. To address this problem,

work has been done to develop hybrid methods that combine variational approaches

with iterative methods. That is, an iterative method, such as the LSQR implemen-

tation of the conjugate gradient method, is applied to the least squares problem

min
x
‖Ax − b‖2

2 , and variational regularization is incorporated within the iteration

process. To understand how this can be done, it is necessary to briefly describe how

the LSQR iterates are computed.

LSQR is based on the Golub-Kahan (sometimes referred to as Lanczos) bidiag-

onalization (GKB) process. Given an m × n matrix A and vector b, the k-th GKB

iteration computes an m × (k + 1) matrix Wk, an n × k matrix Yk, an n × 1 vector

yk+1, and a (k + 1)× k bidiagonal matrix Bk such that

ATWk = YkB
T
k + γk+1yk+1e

T
k+1 (1.9)

AYk = WkBk, (1.10)

11

where ek+1 denotes the (k + 1)st standard unit vector and Bk has the form

Bk =



γ1

β2 γ2

.

βk γk

βk+1


. (1.11)

Matrices Wk and Yk have orthonormal columns, and the first column of Wk is b/‖b‖2.

Given these relations, an approximate solution xk can be computed from the projected

least squares problem

min
x∈R(Yk)

‖Ax− b‖2
2 = min

x̂
‖Bkx̂− βe1‖2

2 (1.12)

where β = ‖b‖2, and xk = Ykx̂. An efficient implementation of LSQR does not

require storing the matrices Wk and Yk and uses an efficient updating scheme to

compute x̂ at each iteration; see [103] for details.

An important property of GKB is that for small values of k the singular values of

the matrix Bk approximate very well certain singular values of A, with the quality of

the approximation depending on the relative spread of the singular values; specifically,

the larger the relative spread, the better the approximation [15, 49, 115]. For ill-posed

inverse problems the singular values decay to and cluster at zero, such as σi = O(i−c)

where c > 1, or σi = O(ci), where 0 < c < 1 and i = 1, 2, . . . , n [124, 125]. Thus the

relative gap between large singular values is generally much larger than the relative

gap between small singular values. Therefore, if the GKB iteration is applied to a

linear system arising from discretization of an ill-posed inverse problem, then the

singular values of Bk converge very quickly to the largest singular values of A. The

following example illustrates this situation.

Example. Consider a linear system obtained by discretization of a one-dimensional

first kind Fredholm integral equation of the form

b(s) =

∫
Ω

k(s, t)x(t)dt+ η(s) , (1.13)

where the kernel k(s, t) is given by the Green’s function for the second derivative and

is constructed using deriv2 in the Matlab package Regularization Tools [63]. This is

a small-scale canonical ill-posed inverse problem that has properties found in imaging

applications. The deriv2 function constructs an n× n matrix A from the kernel

k(s, t) =

{
s (t− 1) if s < t

t (s− 1) if s ≥ t

12

defined on [0, 1]× [0, 1]. We use n = 256. There are also several choices for construct-

ing vectors xexact and bexact, (see [63]), but we focus only on the matrix A in this

example.

Figure 1.1 shows a plot of the singular values of A and their relative spread; that

is,
σi(A)− σi+1(A)

σi(A)
,

where the notation σi(A) is used to denote the ith largest singular value of A. Figure

1.1 clearly illustrates the properties of ill-posed inverse problems; the singular values

of A decay to and cluster at 0. Moreover, it can be observed that in general the

relative gap of the singular values is larger for large singular values and smaller for

the smaller singular values. Thus for small values of k, the singular values of Bk

converge quickly to the large singular values of A. This can be seen in Figure 1.2,

which compares the singular values of A with those of the bidiagonal matrix Bk for

k = 10, 20, 50, also giving the relative difference
|σi(A)− σi(Bk)|

σi(A)
. �

50 100 150 200 250
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

σ
i(A

)

i

Singular Values of A

(a) Singular Values of A

50 100 150 200 250

10
−4

10
−3

10
−2

10
−1

10
0

10
1

|σ
i(A

)−
σ

i+
1
(A

)|
/σ

i(A
)

i

Relative Spread of Singular Values of A

(b) Relative Spread of Singular Values

Figure 1.1: The singular values of A and their relative spread.

This example implies that if LSQR is applied to the least squares problem min
x
‖Ax−

b‖2, then at early iterations the approximate solutions xk will be in a subspace that

approximates a subspace spanned by the large singular components of A. Thus for

k � n, xk is a regularized solution. However, eventually xk should converge to the in-

verse solution, which is corrupted with noise (recall the discussion in Section 1.2.1.4).

This means that the iteration index k plays the role of a regularization parameter;

if k is too small, then the computed approximation xk is an over-smoothed solution,

13

0 10 20 30 40 50
10

−8

10
−6

10
−4

10
−2

10
0

i

s
in

g
u
la

r
v
a
lu

e
s
,σ

i(A
)

a
n
d
 σ

i(B
1

0
)

Singular Values of A and B
10

σ
i
(B

10
)

σ
i
(A)

(a) A and B10

0 10 20 30 40 50
10

−8

10
−6

10
−4

10
−2

10
0

i

s
in

g
u
la

r
v
a
lu

e
s
,σ

i(A
)

a
n
d
 σ

i(B
2

0
)

Singular Values of A and B
20

σ
i
(B

20
)

σ
i
(A)

(b) A and B20

0 10 20 30 40 50
10

−8

10
−6

10
−4

10
−2

10
0

i

s
in

g
u
la

r
v
a
lu

e
s
,σ

i(A
)

a
n
d
 σ

i(B
5

0
)

Singular Values of A and B
50

σ
i
(B

50
)

σ
i
(A)

(c) A and B50

0 5 10 15 20 25 30 35 40 45 50 55
10

−20

10
−15

10
−10

10
−5

10
0

|σ
i(A

)−
σ

i(B
1
0
)|

/σ
i(A

)

i

Relative Difference of Singular Values of A and B
10

0 5 10 15 20 25 30 35 40 45 50 55
10

−20

10
−15

10
−10

10
−5

10
0

|σ
i(A

)−
σ

i(B
2
0
)|

/σ
i(A

)

i

Relative Difference of Singular Values of A and B
20

0 5 10 15 20 25 30 35 40 45 50 55
10

−20

10
−15

10
−10

10
−5

10
0

|σ
i(A

)−
σ

i(B
5
0
)|

/σ
i(A

)

i

Relative Difference of Singular Values of A and B
50

Figure 1.2: Top Row: The singular values of A and Bk, for k = 10, 20, 50. Bottom Row:

The relative difference.

while if k is too large, xk is corrupted with noise. Again we emphasize that this semi-

convergence behavior requires that the problem satisfies the discrete Picard condition.

More extensive theoretical arguments of this semi-convergence behavior of conjugate

gradient methods can be found elsewhere; see [57] and the references therein.

Instead of early termination of the iteration, hybrid approaches enforce regular-

ization at each iteration of the GKB method. Hybrid methods were first proposed

by O’Leary and Simmons in 1981 [100], and later by Björck in 1988 [14]. The basic

idea is to regularize the projected least squares problem (1.12) involving Bk, which

can be done very cheaply because of the smaller size of Bk. More specifically, because

the singular values of Bk approximate those of A, as the GKB iteration proceeds, the

matrix Bk becomes more ill-conditioned. The iteration can be stabilized by including

Tikhonov regularization in the projected least square problem (1.12), to obtain

min
x̂

{
‖Bkx̂− βe1‖2

2 + α2‖x̂‖2
2

}
(1.14)

where again β = ‖b‖2 and xk = Ykx̂. Thus at each iteration it is necessary to solve a

regularized least squares problem involving a bidiagonal matrix Bk. Notice that since

the dimension of Bk is very small compared to A, it is much easier to solve for x̂ in

equation (1.14) than it is to solve for x in the full Tikhonov regularized problem (1.6).

More importantly, when solving equation (1.14) one can use sophisticated parameter

14

choice methods to find a suitable α at each iteration.

To summarize, hybrid methods have the following benefits:

• Powerful regularization parameter choice methods can be implemented effi-

ciently on the projected problem.

• Semi-convergence behavior of the relative errors observed in LSQR is avoided, so

an imprecise (over) estimate of the stopping iteration does not have a deleterious

effect on the computed solution.

Realizing these benefits in practice, though, is nontrivial. Thus, various authors have

considered computational and implementation issues, such as robust approaches to

choose regularization parameters and stopping iterations; see for example, [16, 21, 30,

59, 84, 86, 100]. We also remark that our discussion of hybrid methods focused on the

case of Tikhonov regularization with L = I. Implementation of hybrid methods when

L is not the identity matrix, such as a differentiation operator, can be nontrivial; see

for example [66, 83].

1.2.1.6 Choosing Regularization Parameters

Each of the regularization methods discussed in this section requires choosing a reg-

ularization parameter. It is a nontrivial matter to choose “optimal” regularization

parameters, but there are methods that can be used as guides. Some require a priori

information, such as a bound on the noise or a bound on the solution. Others attempt

to estimate an appropriate regularization parameter directly from the given data.

To describe some of the more popular parameter choice methods, let xreg denote

a solution computed by a particular regularization method.

• Discrepancy Principle. In this approach a solution is sought such that

‖b− Axreg‖2 = τ‖η‖2

where τ > 1 is a predetermined number [93]. This is perhaps the easiest of the

methods to implement, and there are substantial theoretical results establishing

its behavior in the presence of noise. However, it is necessary to have a good

estimate for ‖η‖2.

• Generalized Cross Validation. The idea behind generalized cross validation

(GCV) is that if one data point is removed from the problem, then a good

regularized solution should predict that missing data point well. If α is the

15

regularization parameter used to obtain xreg, then it can be shown [48] that the

GCV method chooses α to minimize the function

G(α) =
‖b− Axreg‖2(

trace
(
I − AA†reg

))2 ,

where A†reg is the matrix such that xreg = A†regb. For example, in the case of

Tikhonov regularization (1.6),

A†reg = (ATA+ α2I)−1AT .

A weighted version of GCV, W-GCV, finds a regularization parameter to mini-

mize

Gω(α) =
‖b− Axreg‖2(

trace
(
I − ωAA†reg

))2 .

W-GCV is sometimes more effective at choosing regularization parameters than

the standard GCV function for certain classes of problems. Setting the weight

ω = 1 gives the standard GCV method, while ω < 1 produces less smooth

solutions and ω > 1 produces smoother solutions. Further details about W-

GCV can be found in [30].

• L-Curve. This approach attempts to balance the size of the discrepancy (i.e.,

residual) produced by the regularized solution with the size of the solution. In

the context of Tikhonov regularization, this can often be found by a log-log scale

plot of ‖b − Axreg‖2 versus ‖xreg‖2 for all possible regularization parameters.

This plot often produces an L-shaped curve, and the solution corresponding to

the corner of the L indicates a good balance between discrepancy and size of

the solution. This observation was first made by Lawson and Hanson [87], and

later studied extensively, including efficient numerical schemes to find the corner

of the L (i.e., the point of maximum curvature), by Hansen [61, 68]. Although

the L-curve tends to work well for many problems, some concerns about its

effectiveness have been reported in the literature; see [58, 127].

There exist many other parameter choice methods besides the ones discussed above;

for more information, see [35, 64, 128] and the references therein.

A proper choice of the regularization parameter is critical. If the parameter is

chosen too small, then too much noise will be introduced in the computed solution.

On the other hand, if the parameter is too large, the regularized solution may become

over-smoothed and may not contain as much information about the true solution as it

16

could. However, it is important to keep in mind that no parameter choice method is

“fool proof”, and it may be necessary to solve the problem with a variety of parameters

and use knowledge of the application to help decide which solution is best.

1.2.2 Separable Nonlinear Inverse Problems

Separable nonlinear inverse problems,

b = A(x
(n`)
exact)x

(`)
exact + η , (1.15)

arise in many imaging applications, such as blind deconvolution, super-resolution

(which is an example of image data fusion) [28, 33, 80, 98], the reconstruction of

3D macromolecular structures from 2D electron microscopy images of cryogenically

frozen samples (Cryo-EM) [31, 43, 73, 89, 104, 116], and in seismic imaging applica-

tions [55]. One could consider equation (1.15) as a general nonlinear inverse problem

and use the approaches discussed in Section 1.2.3 to compute regularized solutions.

However, this section considers approaches that exploit the separability of the prob-

lem. In particular, some of the regularization methods described in Section 1.2.1,

such as variational and iterative regularization, can be adapted to equation (1.15).

To illustrate, consider the general Tikhonov regularized least squares problem:

min
x(`),x(n`)

{
‖A(x(n`))x(`) − b‖2

2 + α2‖x(`)‖2
2

}
= min
x(`),x(n`)

∥∥∥∥∥
[
A(x(n`))

αI

]
x(`) −

[
b

0

]∥∥∥∥∥
2

2

.

(1.16)

Three approaches to solve this nonlinear least squares problem are outlined in this

section.

1.2.2.1 Fully Coupled Problem

The nonlinear least squares problem given in equation (1.16) can be rewritten as

min
x
φ(x) = min

x

1

2
‖ρ(x)‖2

2 , (1.17)

where

ρ(x) = ρ(x(`),x(n`)) =

[
A(x(n`))

αI

]
x(`) −

[
b

0

]
, and x =

[
x(`)

x(n`)

]
Nonlinear least squares problems are solved iteratively, with algorithms having the

general form:

17

General Iterative Algorithm

choose initial x0 =

[
x

(`)
0

x
(n`)
0

]
for k = 0, 1, 2, . . .

• choose a step direction, dk

• determine step length, τk

• update the solution: xk+1 = xk + τkdk

• stop when a minimum of the objective is obtained

end

Typically dk is chosen to approximate the Newton direction,

dk = −(φ̂ ′′(xk))
−1φ′(xk) ,

where φ̂ ′′ is an approximation of φ′′, φ′ = JTφ ρ, and Jφ is the Jacobian matrix

Jφ =

[
∂ρ(x(`),x(n`))

∂x(`)

∂ρ(x(`),x(n`))

∂x(n`)

]
.

In the case of the Gauss-Newton method, which is often recommended for nonlinear

least squares problems, φ̂ ′′ = JTφ Jφ.

This general Gauss-Newton approach can work well, but constructing and solv-

ing the linear systems required to update dk can be very expensive. Note that the

dimension of the matrix Jφ corresponds to the number of pixels in the image, x(`),

plus the number of parameters in x(n`), and thus Jφ may be on the order of 106×106.

Thus, instead of using Gauss-Newton, it might be preferable to use a low storage

scheme such as the (nonlinear) conjugate gradient method. But there is a tradeoff –

although the cost per iteration is reduced, the number of iterations needed to attain

a minimum can increase significantly.

Relatively little research has been done on understanding and solving the fully

coupled problem. For example, methods are needed for choosing regularization pa-

rameters. In addition, the rate of convergence of the linear and nonlinear terms

may be quite different, and the effect this has on overall convergence rate is not well

understood.

18

1.2.2.2 Decoupled Problem

Probably the simplest idea to solve the nonlinear least squares problem is to decouple

it into two problems, one involving x(`) and the other involving x(n`). Specifically,

the approach would have the form:

Block Coordinate Descent Iterative Algorithm

choose initial x(n`)
0

for k = 0, 1, 2, . . .

• choose αk and solve the linear problem:

x
(`)
k = arg min

x(`)
‖A(x(n`)

k)x(`) − b‖22 + α2
k‖x(`)‖22

• solve the nonlinear problem:

x
(n`)
k+1 = arg min

x(n`)
‖A(x(n`))x(`)

k − b‖
2
2 + α2

k‖x
(`)
k ‖

2
2

• stop when objectives are minimized

end

The advantage of this approach is that any of the approaches discussed in Sec-

tion 1.2.1, including methods to determine α, can be used for the linear problem. The

nonlinear problem involving x(n`) requires using another iterative method, such as the

Gauss-Newton method. However, there are often significantly fewer parameters than

in the fully coupled approach discussed in the previous subsection. Thus, a Gauss-

Newton method to update x
(n`)
k+1 at each iteration is significantly more computationally

tractable. A disadvantage to this approach, which is known in the optimization lit-

erature as block coordinate descent, is that it is not clear what are the practical

convergence properties of the method. As mentioned in the previous subsection, the

rate of convergence of the linear and nonlinear terms may be quite different. More-

over, if the method does converge, it will typically be very slow (linear), especially

for problems with tightly coupled variables [99].

1.2.2.3 Variable Projection Method

The variable projection method [50, 51, 82, 101, 114] exploits structure in the non-

linear least squares problem (1.16). The approach exploits the fact that φ(x(`),x(n`))

is linear in x(`), and that x(n`) contains relatively few parameters compared to x(`).

19

However, rather than explicitly separating variables x(`) and x(n`) as in coordinate

descent, variable projection implicitly eliminates the linear parameters x(`), obtaining

a reduced cost functional that depends only on x(n`). Then a Gauss-Newton method

is used to solve the optimization problem associated with the reduced cost functional.

Specifically, consider

ψ(x(n`)) ≡ φ(x(`)(x(n`)),x(`))

where x(`)(x(n`)) is a solution of

min
x(`)

φ(x(`),x(n`)) = min
x(`)

∥∥∥∥∥
[
A(x(n`))

αI

]
x(`) −

[
b

0

]∥∥∥∥∥
2

2

. (1.18)

To use the Gauss-Newton algorithm to minimize the reduced cost functional ψ(x(n`)),

it is necessary to compute ψ′(x(n`)). Note that because x(`) solves (1.18), it follows

that
∂φ

∂x(`)
= 0, and thus

ψ′(y) =
dx

dy

∂φ

∂x(`)
+

∂φ

∂x(n`)
=

∂φ

∂x(n`)
= JTψρ ,

where the Jacobian of the reduced cost functional is given by

Jψ =
∂
(
A(x(n`))x(`)

)
∂x(n`)

.

Thus, a Gauss-Newton method applied to the reduced cost functional has the basic

form:

Variable Projection Gauss-Newton Algorithm

choose initial x(n`)
0

for k = 0, 1, 2, . . .

• choose αk

• x(`)
k = arg min

x(`)

∥∥∥∥∥
[
A(x(n`)

k)

αkI

]
x(`) −

[
b

0

]∥∥∥∥∥
2

• rk = b−A(x(n`)
k)x(`)

k

• dk = arg min
d
‖Jψd− rk‖2

• determine step length τk

• x(n`)
k+1 = x

(n`)
k + τkdk

end

20

Although computing Jψ is nontrivial, it is often much more tractable than con-

structing Jφ. In addition, the problem of variable convergence rates for the two sets of

parameters, x(`) and x(n`), has been eliminated. Another big advantage of the variable

projection method for large-scale inverse problems is that standard approaches, such

as those discussed in Section 1.2.1, can be used to solve the linear regularized least

squares problem at each iteration, including the schemes for estimating regularization

parameters.

1.2.3 Nonlinear Inverse Problems

Developing regularization approaches for general nonlinear inverse problems can be

significantly more challenging than the linear and separable nonlinear case. Theoret-

ical tools such as the SVD that are used to analyze ill-posedness in the linear case are

not available here, and previous efforts to extend these tools to the nonlinear case do

not always apply. For example, a spectral analysis of the linearization of a nonlinear

problem does not necessarily determine the degree of ill-posedness for the nonlinear

problem [37]. Furthermore, convergence properties for nonlinear optimization require

very strict assumptions that are often not realizable in real applications [35, 36].

Nevertheless, nonlinear inverse problems arise in many important applications, mo-

tivating research on regularization schemes and general computational approaches.

This section discusses some of this work.

One approach for nonlinear problems of the form

F (x) = b (1.19)

is to reformulate the problem to find a zero of F (x) − b = 0. Then a Newton-like

method, where the nonlinear function is repeatedly linearized around the current

estimate, can be written as

xk+1 = xk + ρkpk (1.20)

where pk solves the Jacobian system

J(xk)p = b− F (xk) . (1.21)

Though generally not symmetric, matrix and matrix-transpose multiplication with

the Jacobian, whose elements are the first derivatives of F (x), are typically com-

putable. However, the main disadvantages of using this approach are that the exis-

tence and uniqueness of a solution are not guaranteed and the sensitivity of solutions

21

depends on the conditioning of the Jacobian. Furthermore, there is no natural merit

function that can be monitored to help select the step length, ρk.

Another approach to solve (1.19) is to incorporate prior assumptions regarding

the statistical distribution of the model and maximize the corresponding likelihood

function. For example, an additive Gaussian noise model assumption under certain

conditions corresponds to solving the following nonlinear least squares problem:

min
x

1

2
‖b− F (x)‖2

2. (1.22)

Since this is a standard nonlinear optimization problem, any optimization algorithm

such as a gradient descent or Newton approach can be used here. For problem (1.22),

the gradient vector can be written as g(x) = J(x)T (F (x) − b) and Hessian matrix

can be written as H(x) = J(x)TJ(x)+Z(x), where Z(x) includes second derivatives

of F (x). The main advantage of this approach is that a variety of line search methods

can be used. However, the potential disadvantages of this approach are that the

derivatives may be too difficult to compute or that negative eigenvalues introduced

in Z(x) may cause problems in optimization algorithms.

Some algorithms for solving nonlinear optimization problems are direct exten-

sions of the iterative methods described in Section 1.2.1.4. The nonlinear Landweber

iteration can be written as

xk+1 = xk + J(xk)
T (b− F (xk)) , (1.23)

which reduces to the standard Landweber iteration if F (x) is linear, and it can

be easily extended to other gradient descent methods such as the steepest descent

approach. Newton and Newton-type methods are also viable options for nonlinear

optimization, resulting in iterates (1.20) where pk solves

H(xk)p = −g(xk) . (1.24)

Oftentimes, a quasi-Newton approach is used to approximate the Hessian. For ex-

ample, the Gauss-Newton algorithm, which takes H ≈ J(xk)
TJ(xk), is a preferred

choice for large-scale problems because it ensures positive semi-definiteness, but is

not advisable for large residual problems or highly nonlinear problems [55]. Addi-

tionally, quasi-Newton methods such as LBFGS, nonlinear Conjugate Gradient, and

Truncated-Newton (Newton-CG) can be good alternatives if storage is a concern. It

is important to remark that finding a global minimizer for a nonlinear optimization

problem is in general very difficult, especially since convexity of the objective function

22

is typically not guaranteed, as in the linear case. Thus, it is very likely that a descent

algorithm may get stuck in one of many local minima solutions.

When dealing with ill-posed problems, the general approach to incorporate reg-

ularization is to couple an iterative approach with a stopping criteria such as the

discrepancy principle to produce reasonable solutions. In addition, for Newton-type

methods it is common to incorporate additional regularization for the inner system

since the Jacobian or Hessian may become ill-conditioned. For example, including

linear Tikhonov regularization in (1.21) would result in

(J(xk)
TJ(xk) + α2I)p = J(xk)

T (b− F (xk)),

which is equivalent to a Levenberg-Marquardt iterate, where the update, pk, is the

solution of a particular Tikhonov minimization problem:

min
p
‖F (xk) + J(xk)p− b‖2

2 + α2‖p‖2
2 ,

where F (x) has been linearized around xk. Other variations for regularizing the up-

date can be found in [35] and the references therein. Regularization for the inner

system can also be achieved by solving the inner system inexactly using an iterative

method and terminating the iterations early. These are called inexact Newton meth-

ods, and the early termination of the inner iterations is a good way to not only make

this approach practical for large-scale problems but also to enforce regularization on

the inner system.

The variational approaches discussed in Section 1.2.1.3 can be extended for the

second class of algorithms where a likelihood function results in an nonlinear opti-

mization problem. For example, after selecting a regularization operator J (x) and

regularization parameter α for (1.22), the goal would be to solve a nonlinear opti-

mization problem of the form

min
x

{
‖b− F (x)‖2

2 + α2J (x)
}
. (1.25)

The flexibility in the choice of the regularization operator is nice, but selecting a

good regularization parameter a priori can be a computationally demanding task,

especially for large-scale problems. Some work on estimating the regularization pa-

rameter within a constrained optimization framework has been done [55, 56], but the

most common approach for regularization of nonlinear ill-posed inverse problems is

to use standard iterative methods to solve (1.22), where regularization is obtained

via early termination of the iterations. It cannot be stressed enough that when using

any iterative method to solve a nonlinear inverse problem where the regularization is

23

not already incorporated, a good stopping iteration for the outer iteration that serves

as a regularization parameter is imperative. See also [2, 35, 36, 39, 72, 120, 126] for

additional references on nonlinear inverse problems.

1.3 Outline of Work

In the rest of this work, we will consider linear inverse problems as described in

Section 1.2.1. The majority of our work will be focused on iterative methods, as these

are ideal approaches for solving large-scale inverse problems. Chapter 2 will describe

two iterative solvers that we have implemented within the Trilinos framework [69].

We will then consider an application whereby we wish to remove patient motion blur

from positron emission tomography brain scans. Chapter 3 will describe the problem

more fully, including our formulation of the problem and results. Next we will look at

a problem from adaptive optics. As described in Chapter 4, we wish to reconstruct

a wavefront given noisy gradient information. We will consider two approaches to

solving this problem, one a direct approach based on the truncated singular value

decomposition, the other an iterative approach based on Tikhonov regularization.

Finally, we will draw some conclusions in Chapter 5.

1.4 Contributions

This dissertation describes a number of contributions we have made, as detailed below.

• We have implemented two iterative methods, preconditioned LSQR and MRNSD,

within the Belos framework of Trilinos. Our non-preconditioned LSQR imple-

mentation is being included in the Trilinos source code.

• We have also implemented a Belos status test for returning the iteration with

least relative error, when the true solution is known.

• We have developed a new approach to solving the motion deblurring problem

for PET brain images, when motion information is tracked and recorded during

the scan. Our approach involves constructing a large, though sparse, matrix

and solving a linear inverse problem using iterative methods.

• We have implemented our linear approach in both Matlab and C++, utilizing

the Trilinos framework.

24

• We have used our implementations to test the effect of a number of variables,

including scalar precision, number of intervals into which the motion information

is divided, relative size of intervals, and patient motion.

• We have exploited properties of the Kronecker product and the generalized sin-

gular value decomposition to develop an efficient approach to determine a dis-

torted wavefront given gradient information in an adaptive optics application.

• We have developed a technique to solve this problem that applies truncated

SVD-type regularization in a direct fashion.

• We have also determined a preconditioner, allowing us to use Tikhonov regular-

ization to solve. We have analyzed the approximation quality of our precondi-

tioner.

• We have implemented our efficient approach for this adaptive optics problem

in both Matlab and C++, allowing us to use our preconditioned LSQR code.

Matrix-matrix multiplications and Hadamard (that is, element-wise) multipli-

cations are used.

• We have verified the effectiveness of our approach by looking at the number of

iterations required for different α values using Tikhonov regularization.

• We have also applied our square-aperture preconditioner to a problem with a

circular or annular aperture with good results.

25

Chapter 2

Large-Scale Software for Inverse

Problems

2.1 Motivation

For important scientific applications, one routinely has need of solving large-scale

inverse problems. Due to their size and often lack of structure, iterative methods are

commonly used to solve and provide regularization. The basic elements – distributed

matrices and vectors, efficient matrix-vector operations, vector-update operations –

are the same, regardless of which iterative algorithm is used to solve. Additionally,

flexibility on the type of computer architecture is desirable, as different users have

different environments available to them. A number of software packages have been

developed to enable users to solve large-scale problems. Some of these are given

in Section 2.2. The one we will focus on, Trilinos, is described in Section 2.3. In

addition to providing a multitude of solvers for inverse problems, it is able to run on

a variety of architectures, from serial devices to many-core parallel computers. Using

the linear iterative framework provided by one of the packages of Trilinos, we have

implemented two solvers: one for LSQR and the other for MRNSD. See Sections 2.4

and 2.5, respectively. Finally, for pedagogical reasons, the true solution may be known

and we may wish to automatically stop iterations once the solution with least error

is found; this procedure and its implementation are detailed in Section 2.6.

2.2 Previous Work

In the past fifteen years or so, a number of software libraries have been created to

enable users to solve large-scale problems in parallel. We will discuss but a few here.

26

These include ScaLAPACK [17], PETSc [3, 4, 5], and Aztec [123]. Each has its own

advantages and disadvantages, compared to Trilinos. ScaLAPACK is designed to be a

scalable linear algebra package (hence the name). Support for general sparse matrices

is not provided in ScaLAPACK, though support for banded and dense matrices is

given. The least-squares solvers depend on either a QR or LQ factorization. PETSc

is more similar to Trilinos as they both can solve sparse and dense distributed systems,

and in fact, its matrix and vector libraries could be used within Trilinos. However,

there are a number of differences, including that Trilinos is written mainly in C++

with an emphasis on packages. The parallel iterative library Aztec grew out of a

solver for a specific application. Trilinos can access this library via an object-oriented

interface called AztecOO; in fact, AztecOO even provides additional functionality not

available in the original Aztec solver library.

It is important to note that other software packages that are not designed for par-

allel use but rather are designed to solve inverse problems utilizing regularization also

exist. The ones we wish to highlight are written in Matlab and include Regulariza-

tion Tools [65], RestoreTools [94], and MOORe Tools [78, 79]. Regularization Tools

provides for both direct and iterative regularization, including a number of regular-

ization parameter choice methods. However, it was designed mainly for small-scale

problems, with many of the routines dependent on the SVD of the system matrix.

The RestoreTools package is designed for image restoration; in particular, support

for spatially variant blurs is included. An object-oriented design is employed, allow-

ing for efficient storage of and solving methods for separable blurs and point spread

function (PSF) objects. MOORe Tools also has an object-oriented design; its name

is an acronym for Modular Object Oriented Regularization Tools.

2.3 Overview of Trilinos

The Trilinos project [69, 70, 71] grew out of a desire to assist in the design of algo-

rithms and, at the same time, provide robust solvers for a variety of scientific ap-

plications. Currently, several dozen self-contained, publicly-available packages make

up this solver library. Roughly translated from Greek, Trilinos means “a string of

pearls”, referring to the fact that each individual package is a gem in its own right,

but when combined, they create a mathematical software library worth more than

the sum of its parts. It is worth noting that though there is a high level of inter-

operability, the interdependency of packages is intentionally low. The majority of

Trilinos is written in C++, taking advantage of its object-oriented features, including

27

the ability to have abstract interfaces. These allow users to extend parts of Trilinos,

if needed, to create solvers for specific problems, though concrete classes are provided

that are scalable and quite robust. Let us now focus on just three aspects of Trilinos:

the Petra object model, the all-purpose toolkit package of Teuchos, and the iterative

linear solver package Belos.

2.3.1 Petra Model

The Petra object model [70] is the foundation for Trilinos, describing the basic objects

of matrices, vectors, and graphs for use in a parallel, distributed memory environment.

In the abstract, Petra was designed with the ability to do parallel data redistribution

efficiently and easily. To that end, an important object is the map object (referred

to in [70] as an ElementSpace object); this describes the layout of an object (be it a

matrix, vector, or graph) across a parallel machine. The same map object can be, and

often is, shared by multiple distributed objects. Map objects work by detailing which

processor “manages” each element, each of which is identified by a unique global

ID (GID). The GIDs may be in any order on any processor and have a multiplicity

greater than one across all the processors (meaning that more than one processor

owns a given GID). To fully define a distributed matrix or graph, four map objects

are needed:

• RowMap: On each processor, this lists the GIDs that are managed by that

processor for each row. Typically, this means that part or all of the data on

that row is owned by this processor.

• ColumnMap: This is the same as RowMap, but regarding the distribution of

columns instead of rows.

• DomainMap: On each processor, this lists the GIDs that are associated with a

vector in the domain of the matrix; here, each GID must be uniquely associated

with a single processor.

• RangeMap: This is the same as DomainMap, but regarding the distribution of

vectors in the range of the matrix instead of in the domain. Again, the GIDs

must have a multiplicity of exactly one.

For a square matrix of size n × n distributed in a typical linear style across p

processors where processor 0 owns the first n/p rows, processor 1 owns the next n/p

rows, and so forth, the RowMap, DomainMap, and RangeMap may all be the same

28

object, while the ColumnMap would likely assert that each processor owns every

column (that is, no column is uniquely owned by a single processor). However, as

will be shown in Chapter 3, this need not be the case.

The map objects allow easy redistribution of data facilitating, for instance, the

ability for a single processor to perform all the necessary I/O. The head processor

may read all of the requisite data for a vector then send the needed values to each

processor. Alternatively, one processor may collect all of the values from a solution

vector and then write them to a file. These tasks, and others, can be effortlessly

accomplished using map objects, without the user having to worry about the details.

Though the Petra object model is abstract, there are three concrete implementa-

tions in Trilinos: Epetra, Jpetra, and Tpetra. Epetra is restricted to using real-valued,

double-precision data with integer GIDs. However, this is often sufficient for many

users and was particularly useful before compilers that could handle all aspects of

C++ were available. Jpetra is a pure Java implementation, with byte-code porta-

bility. Tpetra takes advantage of the templated aspects of C++, allowing real- or

complex-valued, single- or double-precision data, or even a user-defined type such as

a 2× 3 matrix.

2.3.2 Teuchos Toolkit

For completeness, we must briefly mention the Teuchos package. This “toolkit”-

type package contains utility classes that are useful to a variety of other packages in

Trilinos. For our purposes, the ParameterList object in Teuchos allows us to easily

pass solver options to our linear solvers. This affords us much flexibility in our code,

for if certain options are present, the code may behave in one way; otherwise, perhaps,

other behavior may be executed.

Another useful class is the Teuchos::SerialDenseMatrix class. This class allows

us to construct templated rectangular matrices on a processor. The primary reason

we need such matrices is the inclusion of a matrix-matrix multiplication routine.

Currently Tpetra does not include such capabilities.

2.3.3 Belos Framework

The Belos package provides a powerful framework for iterative linear solvers. In

addition, several implementations are given, including different variants of CG, Gram-

Schmidt, and GMRES. At the heart of Belos is a linear problem class that contains

information about the problem to be solved: an operator, optional preconditioners,

29

and left- and right-hand sides, among others. Note that the presence of an operator

allows much freedom for the user; a matrix is a natural choice, but anything that is

able to produce the effect of applying the linear operator to a vector is permissible.

Other classes that make up the Belos package include an abstract solver manager

class, which details the functionality required for solvers; an iterator class, which can

be extended to perform the specific iterations for a given solver algorithm; and an

abstract status test class, which is used to determine if convergence has been reached.

Concrete implementations of these classes, including a clever status test that combines

the results of other status tests, are provided in Belos.

A small subset of the classes found in Belos and Tpetra as well as some inter-

actions between them is modeled in Figure 2.1; here, italics signify abstractness.

As can be seen, the SolverManager class in Belos is purely virtual, though any

class that extends it would likely require a Teuchos::ParameterList object and a

Belos::LinearProblem object as class members. This shows the separation between

solver parameters, which are provided in the parameter list, and the linear problem,

which is given in the LinearProblem class. The LinearProblem itself is composed of

an operator object as well as two multivector objects. A common choice for the virtual

operator object is a Tpetra::CrsMatrix; similarly, a Tpetra::MultiVector would

work for the virtual multivector objects. Both of these objects require one or more

Tpetra::Map objects to describe their parallel distribution. The Belos::Iteration

object describes the steps to be performed during each iteration of the solver algo-

rithm, while the Belos::StatusTest class is used to test for convergence.

2.4 LSQR

LSQR, described in Section 1.2.1.5, is a well-known iterative solver when the transpose

of the (possibly rectangular) operator is available. See [102, 103] for more details.

A right-preconditioned version of the LSQR algorithm is found in [81]. Here the

right preconditioner M is based on an incomplete LU factorization of the inverse of the

normal matrix ATA. However, other choices for the preconditioner also produce good

results. Both the original, unpreconditioned LSQR algorithm and the preconditioned

algorithm from are given. The necessary changes for the preconditioned algorithm

are highlighted in red.

30

Figure 2.1: Brief diagram of key classes from Belos and Tpetra.

31

Original LSQR Algorithm

set x0 = 0

compute β0 = ‖b‖2,u0 = b/β0, α0 = ‖ATu0‖2,v0 = ATu0/α0

set w0 = v0, φ̄0 = β0, ρ̄0 = α0

for k = 0, 1, 2, . . .

• βk+1 = ‖Avk − αkuk‖2

• uk+1 = (Avk − αkuk)/βk+1

• zk = ATuk+1 − βk+1vk

• αk+1 = ‖zk‖2

• vk+1 = zk/αk+1

• ρk =
(
ρ̄2
k + β2

k+1

)1/2
• ck = ρ̄k/ρk

• sk = βk+1/ρk

• θk+1 = skαk+1

• ρ̄k+1 = −ckαk+1

• φk = ckφ̄k

• φ̄k+1 = skφ̄k

• xk+1 = xk + (φk/ρk)wk

• wk+1 = vk+1 − (θk+1/ρk)wk

• test for convergence

end

32

LSQR Algorithm with Right Preconditioning

compute approximate inverse factor M

set y0 = 0

compute β0 = ‖b‖2,u0 = b/β0, q0 = ATu0, α0 = ‖MTq0‖2,v0 = MTq0/α0

set w0 = v0, φ̄0 = β0, ρ̄0 = α0

for k = 0, 1, 2, . . .

• pk = Mvk

• βk+1 = ‖Apk − αkuk‖2

• uk+1 = (Apk − αkuk)/βk+1

• qk+1 = ATuk+1

• zk = MTqk+1 − βk+1vk

• αk+1 = ‖zk‖2

• vk+1 = zk/αk+1

• ρk =
(
ρ̄2
k + β2

k+1

)1/2
• ck = ρ̄k/ρk

• sk = βk+1/ρk

• θk+1 = skαk+1

• ρ̄k+1 = −ckαk+1

• φk = ckφ̄k

• φ̄k+1 = skφ̄k

• yk+1 = yk + (φk/ρk)wk

• wk+1 = vk+1 − (θk+1/ρk)wk

• if
∣∣φ̄k+1

∣∣ is small enough then compute xk+1 = Myk+1

test for convergence

end

33

2.4.1 Implementation Details of LSQR

As written, the Belos::LinearProblem class in Trilinos is designed to work only with

square matrices. However, by changing just a few lines in the source code and re-

compiling Trilinos, it now works with rectangular matrices. In particular, we needed

to change which vector was cloned when constructing the residual vector. The cloning

determines the size of the vector. For square matrices, the left- and right-side vectors

will be the same size. For rectangular matrices, though, the residual vector should

be the same size as the right-side vector.

Our LSQR implementation is based on the C++ implementation by John Tom-

lin [121], which in turn is based on the C version by James Howse [74].

2.5 MRNSD

MRNSD stands for Modified Residual Norm Steepest Descent. It is an iterative

scheme that enforces nonnegativity at each iteration, making it useful when it is

known that the true solution has only positive values or zero, as is often the case

for imaging problems [60, 95]. In particular, when the majority of pixel values are

at or near zero, reconstructions are often significantly better when nonnegativity is

enforced.

Following the procedure given in [95], let us derive an algorithm for MRNSD. We

wish to minimize

Φ(x) =
1

2
‖b− Ax‖2 (2.1)

subject to the constraint x ≥ 0. We use the parameterization x = ez, defined

element-wise, then compute the gradient taking advantage of the chain rule. Defining

X = diag(x) for convenience, we have

gradzΦ(x) = X gradxΦ(x) = XAT (Ax− b).

We obtain the KKT conditions by setting the gradient to be zero; that is, gradzΦ(x) =

0.

To write out the modified RNSD iterative method of the form

xk+1 = xk + τkdk,

where xk represents the solution at the kth iteration, we set dk to be XkA
T (Axk − b).

This is the direction of the negative gradient. We use a line search to find τk to

minimize the residual norm, but it must be bounded to ensure nonnegativity. Thus,

34

we can write the MRNSD algorithm as follows; here xk[i] refers to the ith element of

xk and similarly for dk.

MRNSD Algorithm

choose initial nonnegative x0

g0 = AT (Ax0 − b)

X0 = diag(x0)

γ0 = gT0 X0g0

for k = 0, 1, 2, . . .

• dk = −Xkgk

• uk = Adk

• τk = min
(
γk/u

T
k uk,mindk[i]<0 (−xk[i]/dk[i])

)
• xk+1 = xk + τkdk

• Xk+1 = diag(xk+1)

• zk = ATuk

• gk+1 = gk + τkzk

• γk+1 = gTk+1Xk+1gk+1

end

2.5.1 Implementation Details of MRNSD

The implementation of MRNSD into the Trilinos framework is fairly straightforward,

though several changes to the given algorithm can be made for the sake of efficiency.

For instance, the number of intermediary vectors can be reduced. Additionally, since

the only computations involving X are matrix-vector products, these can be done as

component-wise (Hadamard) products with the vector x.

One key part of the implementation of MRNSD into Trilinos is the choice of the

initial guess, if not provided by the user. By default, a vector is initialized to all

zeros in Trilinos. If the user opts not to change this, then an all-zero vector would

be passed into MRNSD as the initial guess. However, due to the nature of MRNSD,

when a component of the solution x becomes zero, it stays zero. Therefore this

method cannot progress if an all-zero vector is passed as the initial guess. An initial

vector with norm zero is detected and replaced with a vector (usually) containing the

35

mean value of the given right-hand side. Additionally, if the initial guess contains any

negative components, we compensate for them by adding a positive scalar to every

entry.

Initially we tried to use the square root of machine epsilon for the given floating-

point data type as the value to insert in the initial guess (in the case of an all-zero

vector). However, this may cause a variety of problems during the execution of

the iterative method due to its closeness to zero. For example, rounding errors in

finite-precision arithmetic could cause some values to be small numbers (negative or

positive) rather than zero. This may cause an incorrect τ value to be computed on

occasion, which in turn may cause more iterations to be run than necessary. However,

if the mean value of the right-hand side is smaller than the square root of machine

epsilon, the latter value is used instead in the case of an all-zero initial guess.

2.6 Least Error Convergence Test

One aspect of the Belos iterative solver framework is the separation of the linear solver

from the convergence testing. Thus the number of iterations, which is a common test

for many different solvers, can be used by any solver. Additionally any other tests

can also be used to check for convergence. LSQR and MRNSD both have their tests,

but if the true solution is known, then a least error convergence test may also be used.

The least error convergence test works by computing the error in the initial guess.

It then makes its own copy of the initial solution and keeps track of the error. At

each iteration it computes the new error. If the current iteration produces a solution

with worse error, then a counter is incremented. Once this counter meets a given

window size, convergence is declared. On the other hand, if the error at this iteration

is less than the current “best” error, it replaces the previous “best” solution with the

current iterate, updates the saved error information, and resets the counter.

Some iterative methods, including LSQR, produce a convergence curve that steadily

decreases to a minimum, then increases as more iterations are performed and the im-

pact of small singular values on the noise becomes apparent. In this situation, a small

window size would be sufficient. Other iterative methods, such as MRNSD when be-

gun with a poor initial guess, produce a bumpier convergence curve with multiple

local minima. A large window size that would likely be able to find the true global

minimum is better in these cases.

Regardless of the window size, once the least error convergence test has deter-

mined convergence, it must make some updates to the Belos::LinearProblem ob-

36

ject. Specifically, it must change the values in the left-hand side vector to reflect those

that yield a solution with minimal error; additionally, the number of iterations must

be changed to reflect the true iteration number of the solution. It must be noted,

therefore, that using the least error convergence test will cause several more iterations

to be performed past the number returned when the linear problem object is queried

post-solve – how many iterations more is dependent upon the window size.

2.7 Remarks and Future Directions

Trilinos provides a wonderful framework for the development of algorithms by pro-

viding both abstract interfaces and efficient concrete implementations. The Belos

package provides a variety of iterative solvers, while allowing users to add their own

solvers. Additionally, new features are being added continually. For these reasons, it

may be desirable to implement a hybrid iterative method, such as HyBR [30], into

this framework in the future. As the solvers are not dependent upon a matrix, it

may be useful to implement point spread function objects and similar structures as is

done in RestoreTools [94]. It may also be beneficial to have some methods to estimate

regularization parameters, as discussed in Section 1.2.1.6.

37

Chapter 3

Case Study 1: Positron Emission

Tomography Application

During a positron emission tomography (PET) scan, a patient may move. These

movements degrade the reconstructed image, especially as the resolution of the scan-

ner increases. When imaging a rigid object, such as the brain, these movements may

be tracked and recorded with fairly high precision. Then, this information may be

used in the deconvolution process to produce a better, sharper image.

We will consider the motivation behind removing motion blur from PET brain

images in Section 3.1 as well as some previous approaches in Section 3.2. We will

next describe our approach in Section 3.3, giving specific implementation details in

Section 3.4. Finally, we will show some results on simulated data in Section 3.5, with

concluding remarks in Section 3.6. For additional results using actual clinical images,

see [130].

3.1 Motivation

When positron emission tomography is used for brain imaging, movement of the

patient’s head during the scanning process introduces motion blur, and thus reduces

the resolution of the reconstructed image. While some patient motion can be tolerable

in low-resolution imaging systems, with new PET scanners, even a small amount

of motion can degrade image quality. The resolution of the latest PET scanners

approaches 2 mm, but this is only attainable when the subject is motionless. On the

other hand, it is unreasonable to expect patients to keep their heads perfectly still,

unless the acquisition time is very small. A cooperative patient, with the aid of a head

restraint system, can often limit the movement to within 2–4 mm for the duration

38

of a PET study. However, even with that restraint system, translations in the range

of 5mm and rotations of 1 degree have been observed [18, 54]. Even more movement

may be expected when patients suffer from psychiatric or neurologic diseases.

However, if it is possible to continuously measure the position of the head, this

positional information can be used to correct the measured data. Different meth-

ods for head motion tracking and correction have been described in the literature.

Position monitoring has been implemented using light-emitting diodes (LEDs) [106],

magnetic field [54] and infrared [45, 90] sources and targets to track patient head po-

sition. A commercial system able to make measurements such as these is the VICRA

stereo camera from NDI (Northern Digital, Waterloo, Ontario, Canada). It provides

estimates of the position of markers placed on the head at up to 20 Hz. Given that

object positioning information is available, there are different ways to use it to correct

patient motion.

3.2 Previous Work

Motion correction methods that have been reported fall into three general cate-

gories [41]. Sinogram rebinning described by Bloomfield [18], Buhler [20], Menke [90]

and Rahmim [108] uses known subject movement to move counts into the position

where they would have been detected had the patient not moved. This method re-

quires list mode reconstructions and careful consideration of scanner normalization. A

second approach is the multiple acquisition frame (MAF) method described by Picard

and Thompson [106] wherein short duration frames are acquired and each is corrected

for motion prior to summing to create the final image. However, this method uses

only the average head motion within a frame and hence does not correct for large head

movements. More recently, the known patient motion has been incorporated into a

system response function used during maximum likelihood expectation maximization

(MLEM) reconstruction of the emission image [109]. Since this method involves sys-

tem matrix modification, it requires a detailed understanding of the geometry of the

scanner as well as detector response characteristics and attenuation.

In [41], an MLEM-based deconvolution algorithm was implemented that worked

directly on the reconstructed image and hence no additional information specific to

the scanner was required. Head position was detected using the VICRA optical

tracking system and a system matrix was computed using the head motion data.

This matrix was used to deconvolve the motion-corrupted reconstruction. In software

simulations and physical phantom experiments, significant improvement in contrast

39

and accuracy with these deconvolution methods was shown. Improvement depended

upon the noise level and the amount of motion. However, direct implementation of

the EM deconvolution algorithm has distinct disadvantages. The system matrix is

very large (n2×n2, where n is the total number of voxels in the volume) and generally

cannot be stored in the memory of most standard PCs. In addition, the number of

operations is large and consists mainly of matrix multiplications. These problems were

somewhat addressed by using a modification of the ordered subset technique [76, 107].

The subsets were defined in image space rather than in projection space as is normally

done. In addition, IDL’s (ITT Visual Information Solutions, Boulder, CO) sparse

matrix capability for the matrix operations was used. Even with these modifications,

the time taken for deconvolution was still large. This was in part because each matrix

subset still had to be separately calculated and written out to the hard disk and then

read back at each iteration during the deconvolution step. In addition, the time taken

for deconvolution increased with the number of head movements and the number of

subsets used.

3.3 Methodology of Our Approach

The deconvolution used in our work requires solving a large-scale inverse problem of

the form

b = Ax+ η (3.1)

where b is a vector representing the motion-blurred reconstructed image, x is a vector

that represents the true object, and η is additive noise. The matrix A models the mo-

tion blur, which is highly spatially variant. Thus standard methods based on the fast

Fourier transform (FFT), such as the Wiener filter, cannot be used for the deconvolu-

tion. Instead, it is necessary to use iterative methods to compute an approximation of

x. Quality of the reconstruction depends on how well the motion information can be

estimated, which in turn provides necessary information to construct the matrix A.

Computational efficiency is obtained by exploiting modern sparse matrix techniques.

3.3.1 Motion Detection

Following the procedure from [107], a set of targets, which is composed of four passive

markers that reflect infrared light, is attached to the patient’s head using a modified

swimming cap. A motion tracker emits infrared light, which is reflected off the four

markers, and their orientation (as a unit quaternion) and position (as a vector of

40

length three) are calculated. This provides motion information in six degrees of free-

dom, which can be equivalently written in terms of an affine transformation. These

measurements are made multiple times per second and stored, resulting in fairly accu-

rate motion information. In particular, this information represents the transformation

between the reference and target coordinate frames for some orientation and position

of the head.

3.3.2 Construction of the Matrix

In this section we describe an approach to model the motion blur that allows for

efficient construction of the large and sparse matrix A. To simplify the discussion

we describe the process for two-dimensional images; extension to three-dimensional

images is straightforward. The basic idea is to assume the motion-blurred image is

the (normalized) sum of images at incremental times during acquisition. Each of the

individual images represents a snapshot of the object in a fixed position. To obtain

a mathematical model, let x(s, t) be a continuous function representing the object,

and let X be a discrete image, whose (i, j) entry is given by

X(i, j) = x(si, tj), i = 1, 2, . . . n, j = 1, 2, . . . n.

Now suppose X1 is a discrete image obtained from the object x after a rigid

movement. Then there is an affine transformation A ∈ R3×3 such that
ŝi

t̂j

1

 =


a11 a12 a13

a21 a22 a23

0 0 1



si

tj

1


and

X1(i, j) = x(ŝi, t̂j).

Note that because the continuous image x is not known at every point (s, t) – all

that is known is the discrete image X – it may not be possible to evaluate x(ŝi, t̂j),

unless ŝi = sî and t̂j = tĵ for some 1 ≤ î ≤ n and 1 ≤ ĵ ≤ n. However, an

approximation of x(ŝi, t̂j) can be computed by interpolating known values of x near

x(ŝi, t̂j). Suppose as illustrated in Figure 3.1 that x(sî, tĵ), x(sî+1, tĵ), x(sî, tĵ+1) and

x(sî+1, tĵ+1) are four known pixel values surrounding the unknown value x(ŝi, t̂j).

Nearest neighbor interpolation uses the known pixel value closest to x(ŝi, t̂j); for

example, in the illustration in Figure 3.1 we have

X1(i, j) = x(ŝi, t̂j) ≈ x(sî, tĵ+1).

41

In the case of bilinear interpolation, a weighted average of the four pixels surrounding

x(ŝi, t̂j) is used for the approximation:

X1(i, j) = x(ŝi, t̂j)

≈ (1−∆si)(1−∆tj)x(sî, tĵ)

+ (1−∆si)∆tjx(sî, tĵ+1)

+ ∆si(1−∆tj)x(sî+1, tĵ)

+ ∆si∆tjx(sî+1, tĵ+1),

where ∆si = ŝi − sî and ∆tj = t̂j − tĵ.

x(sî, t ĵ)

x(sî, t ĵ+1)

x(s î+1, t ĵ)

x(s î+1, t ĵ+1)

x(ŝi, t̂j)

x(sî, t ĵ)

x(sî, t ĵ+1)

x(s î+1, t ĵ)

x(s î+1, t ĵ+1)

x(ŝi, t̂j)

Nearest Neighbor Bilinear

Figure 3.1: Illustration of two interpolation schemes to approximate the value of x(ŝi, t̂j).

If we define vectors x = vec(X) and x1 = vec(X1) from the discrete image arrays

(e.g., through lexicographical ordering), we can write

x1 = A1x

where A1 is a sparse matrix that contains the interpolation weights. Specifically, the

kth row of A1 contains the weights for the pixel in the kth entry of x1. For example,

in the case of bilinear interpolation, there are at most four nonzero entries per row,

given by

(1−∆si)(1−∆tj), (1−∆si)∆tj, ∆si(1−∆tj), ∆si∆tj.

In the case of nearest neighbor interpolation, there is just one nonzero entry in each

row. We emphasize that by using a sparse data format (e.g., compressed row [32])

to represent A, we need only keep track of the nonzero entries and their locations

in the matrix A. Moreover, this discussion assumes the affine transformation A is

42

known, because this provides the necessary information to construct the interpolation

weights.

As previously discussed, we assume the observed motion-blurred image is the

(normalized) sum of images at incremental times during the acquisition. That is, we

assume

b =
m∑
`=1

ω`x` + η

where x` = A`x is a vector representing the discrete image at time t`, ω` is the

normalization weight for the `th image (for example, we could simply use ω` = 1
m

),

and η is additive noise. Furthermore, we assume that the position of the object at

time t` is known, and thus we can construct the sparse matrix A`. Thus, we obtain

the linear inverse problem given in equation (3.1), where the matrix modeling the

motion blur is

A =
m∑
`=1

ω`A`. (3.2)

Note that the motion detection system used in our work provides the position

information needed to construct the matrices A`. Since each A` has a different sparsity

pattern, the overall sparseness of A decreases (that is, A becomes more dense) as more

motion information is used. Thus there is a significant tradeoff between accurately

modeling the motion blur and computational cost. To overcome this, we segment

the position information into intervals where the position of the object is essentially

fixed and compute an average position for each interval. Thus, although the position

tracking device may record, say, one thousand distinct head positions, in practice

there may be only a few (e.g., ten) significantly different positions. Thus, the integer

m in equation (3.2) denotes the number of intervals, and the normalization weights

ω` are determined from how the position information was segmented.

3.3.3 Iterative Deblurring

The linear system given in equation (3.1) is an example of an ill-posed inverse problem

[64]. Regularization is typically needed to suppress noise amplification in the recon-

structed image, and because A is a very large, sparse matrix, it is essential to use

iterative methods. Here we consider two methods: LSQR [103] and Modified Resid-

ual Norm Steepest Descent (MRNSD) [60], both discussed in Chapter 2. MRNSD is

nonnegatively constrained, though it can converge slower than LSQR.

43

3.4 Implementation Details

Our solution to this problem was first implemented in Matlab, next in multithreaded

Java by Piotr Wendykier [129], and then in C++ using the Trilinos software frame-

work.

3.4.1 Memory Requirements

As the PET problem is large scale in the sense of large amounts of data, let us consider

the storage required to generate and solve one such problem on multiple processors.

For convenience, n will be the size of the problem (the number of voxels in x), p will

be the number of processors used, and m will be the number of intervals into which

the motion data is divided. First we will consider storage requirements for generating

the matrix, then the maps, and finally the vectors, including intermediary ones for

solving. We will then look at the total storage and per processor storage required for

various p and m values with a given realistic value for n.

3.4.1.1 Matrix Memory Requirements

The matrix is stored using a CrsMatrix object from the Tpetra class, which uses a

compressed row storage scheme as opposed to, say, i− j − k storage. In this storage

scheme, the values are stored in one array. Another array contains the column indices,

ordered by row, with a third array providing pointers into these arrays for each row.

As a reminder, the A matrix is the sum of m interpolation matrices; that is,

A =
∑m

`=1A`. In the simplest form, each of these interpolation matrices is formed

using nearest neighbor interpolation, so each A` matrix contains at most one nonzero

entry per row. Each processor constructs and stores approximately m/p of these A`

matrices and sums them together. However, the A matrix is never explicitly formed.

Thus, entries from multiple A` matrices on one processor may overlap and will be

summed together (saving storage), but the same location may be replicated across

multiple processors. For instance, more than one processor may have a nonzero at

location (0, 0), but if more than one A` matrix produces a nonzero at that location

on one processor, those values will be summed together locally.

This storage scheme, where each processor “owns” all rows, is different than the

typical distributed scheme, where processor 0 contains the first n/p rows, processor

1 contains the next n/p rows, and so forth. However, due to the nature of this

problem (interpolation matrices), it would be difficult and time consuming to use the

44

typical scheme for A. It would likely require each processor to, in essence, form the

interpolation matrix A` and check each row to see if it owns that row and needs to

store the nonzero there.

Since each processor forms approximately m/p interpolation matrices, each of

which may contain at most one nonzero per row using nearest neighbor interpolation,

in the worst case (where no overlapping occurs on a processor), each processor will

require storage for (m/p)∗n scalars. As there are p processors, this sums to storage for

m ∗ n scalars. If trilinear interpolation is used instead, where at most eight nonzeros

are stored per row of each interpolation matrix, then each processor may require

storage for (8m/p) ∗n scalars. Over all p processors, this would equate to storage for

8m ∗ n scalars. Since Tpetra takes advantage of the templated features of C++, the

size of the scalar is not set. A double, float, or other data type may be used.

As stated before, a CrsMatrix also stores the location of each column, plus pointers

to each row. Thus, in the worst case, storage for another m ∗ n values, this time

of ordinal type, is required, as well as p ∗ n more ordinals. This is because each

nonzero on a processor requires storage of its column, and each processor will need

a pointer to each of the n rows in the worst case. Thus, a total of m ∗ n scalars (or

8m ∗ n scalars for trilinear interpolation) plus (m + p) ∗ n ordinals are needed for a

CrsMatrix. Additionally, during the creation and storage optimization phases of the

matrix, temporary storage is needed; this storage is not included in our analysis.

3.4.1.2 Map Memory Requirements

In Trilinos, as discussed in Section 2.3.1, maps are used to describe the distribution

of elements across multiple processors. Each Tpetra::CrsMatrix needs four maps to

describe it thoroughly, though some of these may be the same Tpetra::Map object,

saving storage. The four maps are a row map, a column map, a domain map, and a

range map. The row map describes which rows a processor owns or has an interest in,

similarly for the column map. Suppose we wish to multiply Av = y. Then the domain

map describes the distribution of v, while the range map describes the distribution

of y.

In our situation, the row and column maps are the same, with each processor

owning all the rows and columns. Thus, the storage for these maps is p ∗ n ordinals.

The domain and range maps are the same, with processor 0 owning the first n/p rows,

and so forth, requiring (n/p)∗p = n storage of ordinals. Thus, the total storage costs

for maps is (p+ 1) ∗ n ordinal values.

45

3.4.1.3 Vector Memory Requirements

As described in the previous section, the domain and range maps have the typical

uniform contiguous distribution, where each row is owned by exactly one processor.

Thus, our left- and right-hand side vectors together require storage of 2 ∗ n scalars.

Additionally, since the row map and domain map of A differ, import and export

vectors are required. Together, these need about 2 ∗ n scalars.

The solvers and convergence testers may require additional vectors, each of which

needs storage for n scalars. The LSQR solver, when least-error convergence testing

is enabled, will require about five such vectors and MRNSD needs about the same

number as well. However, the vectors needed by LSQR may be released before the

MRNSD solver is created, so the space needed can be re-used rather than required

all at once.

3.4.1.4 Total Memory Requirements

Thus for nearest neighbor interpolation, storage for approximately m∗n+2∗n+2∗n+

5∗n = (m+9)∗n scalars and (m+p)∗n+p∗n+n = (m+2∗p+1)∗n ordinals is needed;

each processor will require storage for (m+ 9) ∗ n/p scalars and (m+ 1) ∗ n/p+ 2 ∗ n
ordinals. Trilinear interpolation will require storage for approximately 7m ∗ n more

scalars total. Let us set n to be 256*256*95, which is 6,225,920; that is, the image

consists of 256 × 256 × 95 voxels. Table 3.1 gives the approximate total and per

processor memory used in gigabytes when the data type double is used for scalars

(assuming 8 bytes each) and int for ordinals (assuming 4 bytes each), for various

m and p values; Table 3.2 provides similar results for the float datatype (assuming

4 bytes each) for scalars and int for ordinals. Both of these tables assume nearest

neighbor interpolation.

Table 3.1: Approximate storage requirements in gigabytes for various numbers of intervals

and processors with double and int datatypes, using nearest neighbor interpolation. The

storage per processor is given in parentheses following the total storage requirements.

p \ m m = 1 m = 20 m = 100 m = 560

p = 1 0.56 (0.56) 1.88 (1.88) 7.45 (7.45) 39.45 (39.45)

p = 2 0.60 (0.30) 1.93 (0.96) 7.49 (3.75) 39.50 (19.75)

p = 5 0.74 (0.15) 2.06 (0.41) 7.63 (1.53) 39.64 (7.93)

p = 10 0.97 (0.10) 2.30 (0.23) 7.86 (0.79) 39.87 (3.99)

46

Table 3.2: Approximate storage requirements in gigabytes for various numbers of intervals

and processors with float and int datatypes, using nearest neighbor interpolation. The

storage per processor is given in parentheses following the total storage requirements.

p \ m m = 1 m = 20 m = 100 m = 560

p = 1 0.32 (0.32) 1.21 (1.21) 4.92 (4.92) 26.25 (26.25)

p = 2 0.37 (0.19) 1.25 (0.63) 4.96 (2.48) 26.30 (13.15)

p = 5 0.51 (0.10) 1.39 (0.28) 5.10 (1.02) 26.44 (5.29)

p = 10 0.74 (0.07) 1.62 (0.16) 5.33 (0.53) 26.67 (2.67)

3.4.2 Scalability Analysis

When using multiple nodes, it is important to ensure the code scales well. Otherwise,

it may not be worth the effort of parallel programming if scalability becomes an

issue. We checked the scalability of our distributed matrix A in two different ways,

for two different sizes. First, we constructed a matrix using 560 intervals with nearest

neighbor interpolation, then performed from one thousand to ten thousand matrix-

vector multiplications (in increments of one thousand), on one, two, four, eight, and

sixteen processors. The results from this test are given in Tables 3.3 and 3.4, for

problem sizes 32× 32× 12 and 64× 64× 24 respectively. This test shows that, for a

given matrix, the time required to perform matrix-vector multiplications scales nearly

linearly when the number of processors is kept constant. Also, when the number of

matrix-vector multiplications is kept constant, the time required initially decreases

as the number of processors used increases, until communication costs overtake the

computational costs. Figure 3.2 gives a visual representation of these results.

Once we verified that, for a given matrix, the matrix-vector multiplications scale,

we considered how the timings scale when the number of intervals used changes.

We constructed matrices with nearest neighbor interpolation containing 16, 32, 64,

128, 256, and 512 intervals and performed 2500 matrix-vector multiplications on each,

recording the time used by one, two, four, eight, and sixteen processors. These results

are given in Tables 3.5 and 3.6, for problems with 12,288 voxels and 98,304 voxels

respectively. We see that, as expected, the amount of time to perform matrix-vector

multiplications increases as the number of nonzeros in the matrix increases, but that

doubling the number of intervals does not double the time. Again, we also see speedup

with increasing number of processors but just to the point where communication costs

47

prevail. For a visualization of the results from this test, see Figure 3.3.

Table 3.3: Time (in seconds) for varying numbers of matrix-vector multiplications to be

performed for problem size 32× 32× 12 when number of intervals is fixed.

Mults 1 proc 2 proc 4 proc 8 proc 16 proc

1000 5.0 4.0 3.0 7.0 16.7

2000 9.7 7.7 6.3 14.0 32.7

3000 14.3 11.0 9.0 20.7 49.3

4000 19.3 15.0 12.3 27.7 65.7

5000 24.3 18.7 15.7 34.7 81.7

6000 28.7 22.3 18.7 41.3 95.3

7000 34.0 26.0 22.7 48.7 112.3

8000 52.3 29.7 25.0 55.3 133.0

9000 60.7 33.7 29.0 62.3 148.7

10000 67.3 37.3 31.0 69.0 164.7

Table 3.4: Time (in seconds) for varying numbers of matrix-vector multiplications to be

performed for problem size 64× 64× 24 when number of intervals is fixed.

Mults 1 proc 2 proc 4 proc 8 proc 16 proc

1000 75.3 57.3 49.3 71.7 196.7

2000 150.3 115.0 98.3 144.0 248.0

3000 225.7 172.7 147.3 224.3 376.7

4000 301.0 230.0 197.0 290.7 504.3

5000 376.3 287.7 245.7 366.0 611.3

6000 451.3 345.0 295.0 441.0 731.3

7000 526.3 402.7 344.3 508.3 855.3

8000 601.7 460.3 393.3 592.3 982.7

9000 676.7 518.0 442.7 669.7 1142.3

10000 752.3 575.3 491.7 746.7 1228.0

48

0 2000 4000 6000 8000 10000

10
1

10
2

Number of Multiplications

T
im

e
 i
n

 S
e

c
o

n
d

s

Timings for 560 Intervals, Size 32 × 32 × 12

1 proc
2 proc
4 proc
8 proc
16 proc

(a) Size 32× 32× 12

0 2000 4000 6000 8000 10000

10
2

10
3

Number of Multiplications

T
im

e
 i
n

 S
e

c
o

n
d

s

Timings for 560 Intervals, Size 64 × 64 × 24

1 proc
2 proc
4 proc
8 proc
16 proc

(b) Size 64× 64× 24

Figure 3.2: Timings for varying numbers of matrix-vector multiplications on varying num-

bers of processors when the matrix is composed from 560 intervals.

Table 3.5: Time (in seconds) for 2500 matrix-vector multiplications to be performed for

problem size 32× 32× 12 when number of intervals varies.

Intervals 1 proc 2 proc 4 proc 8 proc 16 proc

16 3.3 4.7 4.7 14.3 39.3

32 4.7 4.7 5.3 14.7 38.0

64 5.7 5.7 6.3 14.7 39.0

128 7.7 6.0 6.3 16.0 37.7

256 9.0 6.7 6.7 17.7 40.3

512 11.7 8.0 7.7 18.7 41.0

Table 3.6: Time (in seconds) for 2500 matrix-vector multiplications to be performed for

problem size 64× 64× 24 when number of intervals varies.

Intervals 1 proc 2 proc 4 proc 8 proc 16 proc

16 44.0 45.7 43.3 93.0 210.0

32 63.7 53.7 50.7 96.0 228.0

64 82.3 66.0 57.7 112.7 245.3

128 151.7 88.3 74.0 127.0 257.0

256 193.3 113.3 95.7 156.0 276.0

512 221.3 133.0 124.7 179.0 379.3

49

16 32 64 128 256 512

10
1

Number of Intervals

T
im

e
 i
n

 S
e

c
o

n
d

s

Timings for 2500 Multiplications, Size 32 × 32 × 12

1 proc
2 proc
4 proc
8 proc
16 proc

(a) Size 32× 32× 12

16 32 64 128 256 512

10
2

Number of Intervals

T
im

e
 i
n

 S
e

c
o

n
d

s

Timings for 2500 Multiplications, Size 64 × 64 × 24

1 proc
2 proc
4 proc
8 proc
16 proc

(b) Size 64× 64× 24

Figure 3.3: Timings for varying numbers of intervals on varying numbers of processors when

2500 matrix-vector multiplications are performed.

3.4.3 Testbed

These timings and the following results were performed on the “puma” cluster at

Emory University, which is a high performance cluster with thirty-two nodes and 128

processor cores. Each node has two dual core AMD 2214 2.2 GHz Opteron CPUs,

four gigabytes of RAM and an eighty gigabyte drive. The nodes are connected via

a High Performance InfiniBand network and also Gigabit Ethernet. These timings

were done while other users also had access and jobs running. However, the overall

trend of the results would likely be the same had these tests been run in isolation.

3.5 Results

We will consider three different simulations. First, we will consider the effect of

precision on the results; namely, how the results compare when single or double

precision is used. Next, we will compare results when equally-sized intervals are used

compared to unequally-sized intervals. Finally, we will consider the effect of motion

on the results by considering three levels of patient motion: low, mid, and high.

Numerical simulations in this section were performed on a software-generated Hoff-

man phantom object. The original size of the object was 256× 256× 95 voxels, but

due to memory limitations when using a large number of intervals we had to resize

the image in Matlab. We used bilinear interpolation on each slice to ensure nonneg-

ativity, then selected every other slice to create a “true” image of size 128× 128× 48

50

voxels. The motion-blurred image was generated using real patient motion informa-

tion, trilinear interpolation, and 10% normally distributed noise; see Figure 3.4 for

the middle slice of an example image.

Figure 3.4: Motion-blurred phantom image.

3.5.1 Effect of Scalar Precision

We first consider the effects of scalar precision on the solution when motion from a

fairly cooperative patient is used. We generated blurred data for an image of size

of 128 × 128 × 48 and added ten percent noise (see Figure 3.4). We then solved

this using both single and double precision with LSQR and MRNSD solvers for an

increasing number of intervals, from two to one hundred. Both nearest neighbor (NN)

and trilinear (Tri) interpolation are considered. We ran out of memory when using

double-precision scalars with trilinear interpolation around eighty intervals, so we

stopped at the same point when using nearest neighbor interpolation.

The results in Figure 3.5 seem to show that the choice of precision has very little

impact on the relative error (the results are nearly indistinguishable). The iteration

count depends much more on the choice of solver and interpolation type than data

precision, as shown in Figure 3.6. Finally, in Figure 3.7, a visual comparison of the

solutions for both single and double precision is given. This figure shows the middle

slice of the reconstructed solutions for both solvers, when single or double precision

scalars are used. Trilinear interpolation is used, though the results are similar for

nearest neighbor. Notice the presence of ringing in the reconstructions using LSQR;

51

this is because there are no nonnegativity constraints. However, the reconstruction

when single precision is used is virtually identical to the reconstruction when double

precision is used, for the same solver.

The metric used in these results in relative error, defined as

‖xrecon − xexact‖2

‖xexact‖2

,

where xrecon is the reconstructed solution and xexact is the exact solution, both in

vector form. We use the least error status test, described in Section 2.6, to stop at

the iteration with least relative error for a given number of intervals.

10
1

10
2

0.25

0.3

0.35

0.4

0.45

Intervals

R
e
la

ti
v
e
 E

rr
o
r

Relative Error Versus Number of Intervals for LSQR

NN Single
NN Double

Tri Single
Tri Double

(a) LSQR

10
1

10
2

0.25

0.3

0.35

0.4

0.45

Intervals

R
e
la

ti
v
e
 E

rr
o
r

Relative Error Versus Number of Intervals for MRNSD

NN Single
NN Double

Tri Single
Tri Double

(b) MRNSD

Figure 3.5: Comparison of relative error to number of intervals used when scalar precision

varies.

10
1

10
2

1

2

3

4

5

6

Intervals

It
e
ra

ti
o
n
s

Iteration Count Versus Number of Intervals for LSQR

NN Single
NN Double

Tri Single
Tri Double

(a) LSQR

10
1

10
2

5

10

15

20

25

Intervals

It
e
ra

ti
o
n
s

Iteration Count Versus Number of Intervals for MRNSD

NN Single
NN Double

Tri Single
Tri Double

(b) MRNSD

Figure 3.6: Comparison of iterations to number of intervals used when scalar precision

varies.

52

LSQR Single Precision MRNSD Single Precision

LSQR Double Precision MRNSD Double Precision

Figure 3.7: Comparison of reconstructions when scalar precision and solver type varies.

53

3.5.2 Effect of Interval Choice

Using the same setup as in the previous simulation, we now consider the effect of

interval choice. Namely, we wish to compare intervals of unequal size to ones of

equal size. We performed a manual segmentation of the motion into both seven and

fourteen intervals of differing lengths. This was done by plotting the motion and

visually determining where the best locations for intervals may be. As such, this is

somewhat subjective, but no robust software for automating this task is currently

available. However, a Java program that attempts to determine the best locations

with some user guidance is described in [130]. See Figure 3.8 to compare the two

manual segmentations, plotted atop a scaled version of the motion information.

(a) 7 Unequal Intervals

(b) 14 Unequal Intervals

Figure 3.8: Comparison of two segmentations of patient motion.

After dividing the motion into either seven or fourteen intervals, we solved the

problem, stopping at the iteration with least relative error. We then subdivided the

intervals equally (or as equally as possible), and solved again. We continued in this

manner until we had at most 56 different intervals, formed by subdividing the original

seven intervals eight times or the fourteen intervals four times. It is to be noted that

only the original seven or fourteen intervals were manually chosen; after that, the

subdivisions were made equally within the larger intervals.

Figure 3.9 compares the relative error to the number of intervals for various inter-

polation scheme and solver combinations. For these and the following results, single

precision scalars were used. As can be seen, when solving with seven ideally-chosen

intervals, the results were not quite as good as when seven equally-spaced intervals

were used. However, as the intervals were further subdivided, the results improved.

54

7 14 21 28 35 42 49 56

10
−0.5

10
−0.4

Intervals

R
e

la
ti
v
e

 E
rr

o
r

Relative Error Versus Number of Intervals for NN LSQR

7 Unequal

14 Unequal

Equal

(a) Nearest Neighbor LSQR

7 14 21 28 35 42 49 56

10
−0.6

10
−0.5

Intervals
R

e
la

ti
v
e

 E
rr

o
r

Relative Error Versus Number of Intervals for Tri LSQR

7 Unequal

14 Unequal

Equal

(b) Trilinear LSQR

7 14 21 28 35 42 49 56

10
−0.6

10
−0.5

Intervals

R
e
la

ti
v
e
 E

rr
o
r

Relative Error Versus Number of Intervals for NN MRNSD

7 Unequal

14 Unequal

Equal

(c) Nearest Neighber MRNSD

7 14 21 28 35 42 49 56

10
−0.6

10
−0.5

Intervals

R
e

la
ti
v
e

 E
rr

o
r

Relative Error Versus Number of Intervals for Tri MRNSD

7 Unequal

14 Unequal

Equal

(d) Trilinear MRNSD

Figure 3.9: Comparison of relative error to number of intervals used when segmentation

process varies.

55

After a certain point, though, when the intervals were all sufficiently small, it seemed

to make little difference if ideally-chosen or equally-chosen intervals were originally

used.

On the other hand, when fourteen ideally-chosen intervals were used, the results

were significantly better than those obtained with fourteen equally-sized intervals.

But again, after the intervals had been subdivided sufficiently, there was little differ-

ence in the results.

This seems to suggest that if the intervals are made sufficiently small, then the

simple method of using intervals of equal size will work nearly as well as a more

complicated method of choosing interval size. Additionally, when few intervals are

used, then the choice becomes much more important. For well-chosen intervals of

a correct number, as was the case of fourteen initial intervals, the results can be

dramatically better than when using a few intervals of equal size. However, when the

wrong number of intervals is used, as was the case with seven intervals, then using

equally-sized intervals may prove to be better. This is likely because the intervals

at the beginning of the scan were much longer than those at the end of the scan

when seven manually-chosen intervals were used – the patient experienced much more

motion near the end of the scan. However, this unequal weighting can have a negative

effect on the results. When a larger number of intervals were manually chosen, the

results were significantly better.

As it would be incredibly costly and not a realistic solution to try every single

combination of number of intervals and relative size, it appears that using intervals

of equal size, and as many as computationally feasible, is a viable option.

3.5.3 Effect of Patient Motion

We next consider the effect of patient motion on the reconstructed solutions. We

consider three levels of motion: low motion from a cooperative patient, mid motion

from a semi-cooperative patient, and high motion from an uncooperative patient.

From each motion file, we generated a blurred image as described above, adding 10%

noise.

The following results are computed using single precision, as we have shown pre-

viously that the choice of single or double precision has little effect on the relative

error. Each reconstruction was formed using from two to one hundred equal-sized in-

tervals, using nearest neighbor (NN) or trilinear (Tri) interpolation, and using LSQR

or MRNSD as the solver. Since the true solution was known, we stopped at the

56

iteration giving the least relative error. Figure 3.10 displays the results comparing

the relative error to the number of intervals for each level of motion. Figure 3.11

compares the results for all levels of motion using either LSQR or MRNSD.

10
1

10
2

10
−0.6

10
−0.5

10
−0.4

Intervals

R
e
la

ti
v
e
 E

rr
o
r

Relative Error Versus Number of Intervals for Low Motion

NN LSQR

Tri LSQR

NN MRNSD

Tri MRNSD

(a) Low Motion

10
1

10
2

10
−0.4

10
−0.3

Intervals

R
e
la

ti
v
e
 E

rr
o
r

Relative Error Versus Number of Intervals for Mid Motion

NN LSQR

Tri LSQR

NN MRNSD

Tri MRNSD

(b) Mid Motion

10
1

10
2

10
−0.4

10
−0.3

10
−0.2

Intervals

R
e
la

ti
v
e
 E

rr
o
r

Relative Error Versus Number of Intervals for High Motion

NN LSQR
Tri LSQR

NN MRNSD
Tri MRNSD

(c) High Motion

Figure 3.10: Comparison of relative error to number of intervals used when level of patient

motion varies.

10
1

10
2

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

Intervals

R
e
la

ti
v
e
 E

rr
o
r

Relative Error Versus Number of Intervals for LSQR

NN − High
Tri − High
NN − Mid
Tri − Mid
NN − Low
Tri − Low

(a) LSQR

10
1

10
2

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

Intervals

R
e
la

ti
v
e
 E

rr
o
r

Relative Error Versus Number of Intervals for MRNSD

NN − High
Tri − High
NN − Mid
Tri − Mid
NN − Low
Tri − Low

(b) MRNSD

Figure 3.11: Comparison of relative error to number of intervals used when level of patient

motion varies, per solver type.

This next set of figures (Figures 3.12 and 3.13) compares the number of iterations

required to the number of intervals, both for each level of motion and for each solver

type.

The last set of figures we present displays the reduction in error compared to

the number of intervals for each motion level. The error reduction was computed as

follows. First, the initial relative error for each motion level was computed by using

the blurred, noisy data compared to the true solution. Table 3.7 displays the initial

relative error for each motion level. Notice how the images with less motion have a

smaller initial relative error than those with more motion.

Next we scale the relative error given in the previous figures by the initial relative

57

10
1

10
2

5

10

15

20

Intervals

It
e
ra

ti
o
n
s

Iteration Count Versus Number of Intervals for Low Motion

NN LSQR

Tri LSQR

NN MRNSD

Tri MRNSD

(a) Low Motion

10
1

10
2

2

4

6

8

10

12

14

16

18

Intervals

It
e
ra

ti
o
n
s

Iteration Count Versus Number of Intervals for Mid Motion

NN LSQR

Tri LSQR

NN MRNSD

Tri MRNSD

(b) Mid Motion

10
1

10
2

5

10

15

20

25

30

35

Intervals

It
e
ra

ti
o
n
s

Iteration Count Versus Number of Intervals for High Motion

NN LSQR
Tri LSQR

NN MRNSD
Tri MRNSD

(c) High Motion

Figure 3.12: Comparison of iterations to number of intervals used when level of patient

motion varies.

10
1

10
2

1

2

3

4

5

6

7

Intervals

It
e
ra

ti
o
n
s

Iteration Count Versus Number of Intervals for LSQR

NN − High
Tri − High
NN − Mid
Tri − Mid
NN − Low
Tri − Low

(a) LSQR

10
1

10
2

5

10

15

20

25

30

35

Intervals

It
e
ra

ti
o
n
s

Iteration Count Versus Number of Intervals for MRNSD

NN − High
Tri − High
NN − Mid
Tri − Mid
NN − Low
Tri − Low

(b) MRNSD

Figure 3.13: Comparison of iterations to number of intervals used when level of patient

motion varies, per solver type.

Table 3.7: Initial relative error for each motion level.

Motion Level Initial Relative Error

Low 0.4016

Mid 0.5705

High 0.6528

58

error simply by dividing. Finally, we subtract the scaled relative error from 1. Thus,

a reduction in relative error of 0.1 should signify an approximate 10% improvement

in the reconstructed image compared to the blurred, noisy image. This allows us to

compensate for the differing initial relative errors present in Figure 3.11.

This metric may not be the most appropriate choice as it is possible for the scaled

relative error to be larger than 1; that is, that a reconstructed solution using some

number of intervals produces a relative error that is worse than the relative error of

the blurred, noisy image. However, it appears that this metric shows the long-term

trend in error reduction as the number of intervals increases, taking the motion level

into account.

Figure 3.14 compares the number of intervals to the reduction in error for four

combinations of interpolation type and solver: nearest neighbor with LSQR, nearest

neighbor with MRNSD, trilinear with LSQR, and trilinear with MRNSD.

As can be seen, the initial relative error is less for lower amounts of patient motion.

However, the relative error decreases in a similar fashion for each type of patient

motion as the number of intervals increases. The number of iterations needed appears

not to depend on the type of patient motion as much, though the number of iterations

appears to increase somewhat as the number of intervals used increases. As expected,

the reduction in error increases as the number of intervals increases, though the

reduction seems to level off around 40%. Though the reduction in error differs slightly

depending on the combination of interpolation type and iterative method used, the

overall trend remains the same.

3.6 Remarks and Future Directions

We would like to draw some conclusions from the results presented.

• First, from Section 3.5.1, it appears that the results using single precision or

double precision are quite similar. Thus, to save on memory, we can use single

precision in solving without significant loss of accuracy.

• The difference between results computed using nearest neighbor or trilinear

interpolation appears to be greater when solving with LSQR than with MRNSD.

• Using intervals of equal size may be advisable when just a few or when many

intervals are used. When a moderate number is chosen, better results may be

obtained by selecting each interval size manually.

59

−0.2 0 0.2 0.4

10

20

30

40

50

60

70

80

90

100

Reduction in Error

In
te

rv
a
ls

Number of Intervals versus Reduction in Error for NN LSQR

Low

Mid

High

(a) NN with LSQR

−0.2 0 0.2 0.4

10

20

30

40

50

60

70

80

90

100

Reduction in Error
In

te
rv

a
ls

Number of Intervals versus Reduction in Error for NN MRNSD

Low

Mid

High

(b) NN with MRNSD

−0.2 0 0.2 0.4

10

20

30

40

50

60

70

80

90

100

Reduction in Error

In
te

rv
a
ls

Number of Intervals versus Reduction in Error for Tri LSQR

Low

Mid

High

(c) Tri with LSQR

−0.2 0 0.2 0.4

10

20

30

40

50

60

70

80

90

100

Reduction in Error

In
te

rv
a
ls

Number of Intervals versus Reduction in Error for Tri MRNSD

Low

Mid

High

(d) Tri with MRNSD

Figure 3.14: Comparison of number of intervals used to reduction in error when level of

patient motion varies.

60

• The iteration count is typically less than ten when solving with LSQR, regardless

of the level of patient motion or interpolation scheme. However, when MRNSD

is used to solve, often five to thirty iterations are required to obtain the solution

with least error.

• The relative error is typically lower for less patient motion and greater for more

patient motion.

• The initial relative error is less for lower levels of patient motion.

• The reduction in error appears to top out, suggesting that using extra intervals

provides little benefit in terms of error reduction. Just where this peak is,

though, depends heavily on the motion. In our examples, it seemed to occur

around fifty to ninety intervals.

• It may be possible to obtain a negative reduction in error when small numbers

of intervals are used. Here the relative error actually gets larger with the recon-

structed solution than with the initial blurred image. However, once a certain

number of intervals is used for the noise level, the error quickly reduces.

We have a number of ideas for future plans. We would like to further investigate

using intervals of unequal length. In particular, we would like to determine a method

to automatically choose the ideal number of intervals to use. To do so, we would

like to implement a method to generate random patient motion in Matlab. Ideally

it could accommodate two types of motion: the drifter (where the head slowly lolls

from one location to another) and the jerker (where the head abruptly moves from

one location to another), as well as a combination of these two. We would like to use

this random patient motion to generate more simulated blurred images. We could

then solve them, having more control over the random motion than is available in

true patient motion data.

61

Chapter 4

Case Study 2: Adaptive Optics

Application

The atmosphere affects the light captured by ground-based telescopes, even when the

telescopes are set atop high mountains. The atmosphere causes the light from stars

and other celestial objects to arrive in a nonplanar manner. However, the gradient

of the atmospheric disturbance may be detected and the disturbance (known as the

phase error) compensated for using adaptive optics systems. Thus, a main problem

in adaptive optics is to reconstruct the phase error given noisy phase differences; see

Section 4.1. Previous approaches to solve this least-squares minimization problem

are considered in Section 4.2, with our efficient approach presented in Section 4.3.

We consider using either truncated singular value decomposition (TSVD)-type or

Tikhonov-type regularization. Both of these approaches make use of Kronecker prod-

ucts and the generalized singular value decomposition. The TSVD-type regularization

operates as a direct method whereas the Tikhonov-type regularization uses a precon-

ditioned conjugate gradient-type iterative algorithm to achieve fast convergence. A

few implementation considerations are given in Section 4.4. Some results are pre-

sented in Section 4.5, with conclusions drawn in Section 4.6.

4.1 Motivation

When viewing objects in space using a ground-based telescope, the images are blurred

by the atmosphere. To remove the blur, adaptive optics systems solve two inverse

problems. First, quantitative information about the blur must be determined; second,

this quantitative information is used to remove the blur by a combination of telescope

mirror adjustments and computational postprocessing of the images. All of these

62

computations and adjustments must be performed in real time. This chapter, from [7],

focuses on the first problem, namely that of determining quantitative information

about the blur.

Using the classic model of image formation relating an object x and a blurring

kernel k to an image b, we can write:

b(s, t) =

∫
Ω

k(s, t; ξ, ψ) x(ξ, ψ) dξ dψ

The kernel is assumed to be spatially invariant; that is, we assume k(s, t; ξ, ψ) =

k(s − ξ, t − ψ). The Fourier optics model for k [53, 112] allows us to express it as a

function of the phase error φ of incoming wavefronts of light:

k(s, t) =
∣∣F−1{P(s, t)eiφ(s,t)}

∣∣2 . (4.1)

Here F−1 is the inverse Fourier transform, P(s, t) is the mirror or pupil aperture (a

characteristic) function, i =
√
−1, and φ is the phase error, which is the deviation

from planarity of the wavefront that reaches the telescope mirror.

The goal of the adaptive optics system on a telescope is to remove the effects of the

phase error φ on the kernel k. This is accomplished by first computing an estimate φ̃

of φ and then by constructing a counter wavefront −φ̃ via a deformable mirror. The

kernel k is then modified as follows:

k̃(s, t) =
∣∣∣F−1{P(s, t)ei(φ(s,t)−φ̃(s,t))}

∣∣∣2 .
If φ = φ̃, k̃ is said to have diffraction limited form, where the resolution is dependent

only on the telescope.

To obtain an estimate of φ, a wavefront sensor in the telescope collects discrete,

noisy measurements of the gradient of incoming wavefronts of light emitted by an

object. Since the gradient of the incoming wavefronts equals the gradient of the

phase error φ of those wavefronts, the data noise model takes the form[
bh

bv

]
=

[
Ah

Av

]
φ+ η, (4.2)

where bh and bv are discrete, noisy measurements of the horizontal and vertical deriva-

tives of φ; Ah and Av are discrete, horizontal and vertical derivative operators; and η

represents independent and identically distributed (iid) Gaussian noise. This linear

model can then be solved to compute an estimate of φ.

Model (4.2) requires some assumptions that are sufficiently accurate, but not

exact. For example, the mapping from the phase φ to the gradient measurements

63

contains nonlinearities [12]. Here we model it as linear. Additionally, the assumption

of iid Gaussian noise, while common in the literature (see e.g., [12, 24, 34, 46]), in

particular for simulations, is not precise as it ignores photon noise.

The operators Ah and Av are determined by the wavefront sensor geometry that

is used. Common wavefront sensor geometries discussed in the literature are those

of Hudgin [75] and Fried [44]. In this chapter, we focus on Fried geometry, both

because it is more commonly used in operational adaptive optics systems, and be-

cause it is more interesting mathematically. For the majority of our discussion, we

also assume a rectangular pupil for the telescope. This simplifies the mathematics,

however the approach set forth here can be extended to circular or annular pupils in

a preconditioned iterative framework, as in [110, 111]. We will briefly consider how

our approach works when circular or annular pupils are used.

4.2 Previous Work

The problem of reconstructing the shape of an object from measurements of its gra-

dient appears in a variety of applications (see e.g., [40] and the references therein),

while the more specific problem of wavefront sensing appears not only in adaptive

optics but also in phase imaging and visual optics [6].

Previous approaches to determining the phase error φ include the preconditioned

conjugate gradient (PCG) method and the alternating direction implicit (ADI) method.

In [47], PCG is used with the preconditioner based on a multigrid algorithm. Multigrid-

preconditioned CG is compared to several other methods, including least squares pre-

conditioned conjugate gradient and gradient denoised least squares, in [10]. Ren and

Dekany solve for φ using the ADI method by utilizing the Sylvester equation in [110].

4.3 Methodology of Our Approach

We propose to solve the phase reconstruction problem (4.2) using a preconditioned

iterative approach. The preconditioner is formed by using the generalized singular

value decomposition (GSVD) and Kronecker products to exploit the structure of the

coefficient matrix in (4.2). The preconditioner also suggests a very efficient direct

solver using TSVD-type regularization. Though this approach gives good results

and is quite efficient, the preconditioned iterative scheme, which uses Tikhonov-type

regularization, is preferred by the application people. Real-time solutions may be

obtained using either method.

64

4.3.1 Mathematical Background

We make significant use of various properties of the generalized singular value decom-

position (GSVD) [52] and Kronecker products [88] in our algorithm. Thus, in this

section we briefly describe a few of the relevant properties, as well as the matrices

that are formed from both the Hudgin and Fried geometries.

4.3.1.1 Generalized Singular Value Decomposition

The generalized singular value decomposition (GSVD) of two matrices B and C is

given as follows:

B = UΣXT , C = V∆XT (4.3)

where

• U and V are orthogonal matrices

• X is nonsingular

• Σ and ∆ are nonnegative diagonal matrices, though the entries may be on a

superdiagonal.

4.3.1.2 Kronecker Products

If B ∈ Rm×n and C is another matrix, then the Kronecker product of B and C

produces the block structured matrix

B ⊗ C =


b11C · · · b1nC

...
...

bm1C · · · bmnC

 ,
where bij is the ijth element of B. Assume that B = UBΣBV

T
B is some decomposi-

tion for B (and similarly for C). Kronecker products have a plethora of convenient

properties, many of which are detailed in Van Loan’s survey [88]. We present here

but a few of these:

(B ⊗ C)T = BT ⊗ CT , (4.4)

(B ⊗ C)−1 = B−1 ⊗ C−1, (4.5)

B ⊗ C = (UBΣBV
T
B)⊗ (UCΣCV

T
C) = (UB ⊗ UC)(ΣB ⊗ ΣC)(VB ⊗ VC)T .(4.6)

One additional property we need relates matrix-matrix multiplication with Kronecker

products. As is common, we define the vec(Z) operation as stacking the columns of

65

a matrix Z; that is, if Z ∈ Rm×n, then vec(Z) is an nm × 1 vector. Given matrices

C,Z,B such that the product CZBT is defined, then

Y = CZBT ⇔ y = (B ⊗ C)z, (4.7)

where z = vec(Z) and y = vec(Y).

4.3.1.3 Matrix Formulation of Geometries

B. R. Hunt came up with a way to develop the wavefront reconstruction problem in

a matrix-algebra framework [77]. We assume the two-dimensional phase spectrum

exists over a grid of points indexed by i, j = 1, 2, . . . , n, so that Φij is the phase

spectrum at the ijth coordinate. The wavefront sensor produces phase differences on

each of the two coordinates; we denote by bh the phase differences on the i coordinates

and by bv the phase differences on the j coordinates.

Using the vec operator so that vec(Φ) = φ, we then write the problem as

b = Aφ+ η, (4.8)

where

b =

[
bh

bv

]
and A =

[
Ah

Av

]
.

The vector η represents noise and other errors in the measured data, and is typically

assumed to be iid normal (Gaussian) random values.

In the case of Hudgin geometry [75],

Ah = I ⊗H and Av = H ⊗ I,

where

H =


1 −1

1 −1
.

1 −1

 (4.9)

is (n − 1) × n, and I is the n × n identity. H is a 1-dimensional phase difference

matrix.

In the case of Fried geometry [44],

Ah = F ⊗H and Av = H ⊗ F,

66


0 −1 0

−1 4 −1

0 −1 0



−1 0 −1

0 4 0

−1 0 −1


Figure 4.1: Grid representations of the Hudgin Laplacian (left) and the Fried Laplacian (right).

where

F =
1

2


1 1

1 1
.

1 1


is (n − 1) × n, and H is as above. F is an averaging matrix. For the remainder of

this chapter, we consider only the Fried geometry because it is used most often in

adaptive optics applications.

When least squares estimation is used to obtain a solution of (4.8), the coefficient

matrix for the normal equations has the form AThAh+ATvAv. When Hudgin geometry

is used, AThAh + ATvAv is the standard discrete Laplacian, with grid representation

given on the left in Figure 4.1, whereas when Fried geometry is used, AThAh + ATvAv

is a discrete Laplacian with grid representation given on the right in Figure 4.1.

4.3.2 Wavefront Reconstruction Using TSVD-Type Regularization

We now discuss the mathematical problem at the heart of this reconstruction [110,

111]: solving equation (4.8) for φ, which is a rank-deficient problem. Thus, we must

solve for φ in the least-squares sense.

In the case of Fried geometry, we have:

min
φ

∣∣∣∣∣
∣∣∣∣∣
[
F ⊗H
H ⊗ F

]
φ− b

∣∣∣∣∣
∣∣∣∣∣
2

2

(4.10)

We compute the GSVD of F and H, such that F = U1Σ1X
T
1 and H = V1∆1X

T
1 .

Then, using equations (4.4) and (4.6), we can see that:[
F ⊗H
H ⊗ F

]
=

[
U1 ⊗ V1

V1 ⊗ U1

][
Σ1 ⊗∆1

∆1 ⊗ Σ1

]
(X1 ⊗X1)T ≡ UΣXT . (4.11)

Since Σ1 is a superdiagonal (n − 1) × n matrix and ∆1 is a diagonal (n − 1) × n
matrix, the matrix Σ is a 2(n − 1)2 × n2 matrix, composed of stacking two roughly

diagonal matrices atop each other; an illustration of the Σ matrix for the case n = 6

67

is given in Figure 4.2. This matrix is rank deficient; its first and last columns are

all zero. By systematically applying Givens rotations, we can reduce Σ to diagonal

form; we denote this as Σ = QD, where the matrix Q contains the Givens rotations.

0 10 20 30

0

10

20

30

40

50

nz = 50

Spy plot of Σ matrix for n = 6

Figure 4.2: Visualization of nonzeros in Σ matrix for the case n = 6.

Using equation (4.10), we obtain

min
φ

∣∣∣∣∣
∣∣∣∣∣
[
F ⊗H
H ⊗ F

]
φ− b

∣∣∣∣∣
∣∣∣∣∣
2

2

= min
φ

∣∣∣∣UΣXTφ− b
∣∣∣∣2

2

= min
φ

∣∣∣∣UQDXTφ− b
∣∣∣∣2

2

= min
φ

∣∣∣∣DXTφ−QTUTb
∣∣∣∣2

2

= minbφ
∣∣∣∣∣∣Dφ̂− b̂∣∣∣∣∣∣2

2
, where φ̂ = XTφ and b̂ = QTUTb.

Since D is a diagonal matrix, it becomes trivial to solve this minimization problem.

Due to our organization of Givens rotations, the last two diagonal elements of D are

0; we have freedom in deciding what to use for the solution terms corresponding to

these values. We effectively truncate these two elements by setting their reciprocals to

0 in the pseudo-inverse D̂−1. This is where the term TSVD-like regularization comes

from. It is important to note that the remaining n2 − 2 values of D are relatively

large; the problem is rank-deficient, but it does not have the classical properties of an

ill-posed problem, which are that there are many small singular values, and no gap

to indicate a numerical rank.

Because F and H are defined by the geometry of the telescope, the generalized

singular value decomposition may be performed once and stored. Thus, U1, V1, X1,

68

D, and the rotators defining Q can be precomputed off line. Additionally, a suitable

factorization of X1 (such as the LU decomposition) can be precomputed off line. It is

important to note that we never actually explicitly compute U,Σ, or X, but instead

we always work with the smaller matrices that make up these larger ones, using the

properties of Kronecker products. In particular, if we let vec
([

Bh Bv

])
= b and

vec(Φ) = φ, the work to be done in real time then becomes

1. Compute b̂ = QTUTb ⇔ B̂ = Q̂T

([
V T

1 BhU1

UT
1 BvV1

])
, where Q̂T (A) applies the

Givens rotators described in QT to the matrix A, retaining matrix form through-

out.

2. Solve minbφ
∣∣∣∣∣∣Dφ̂− b̂∣∣∣∣∣∣2

2
⇔ Φ̂ = B̂ � D̂−1, where D̂−1 contains the pseudo-inverse

of the diagonal elements of D, with two elements of D̂−1 set to 0. The symbol

� represents Hadamard (i.e., element-wise) multiplication.

3. Solve XTφ = φ̂⇔ Φ = X−T1 Φ̂X−1
1 , using our precomputed factorization of X1.

4.3.3 Wavefront Reconstruction Using Tikhonov-Type Regularization

While solving equation (4.10) using TSVD-type regularization works well, astronomers

prefer a form of Tikhonov regularization motivated by a priori knowledge of the phase

error statistics. The values of φ are determined by turbulent temperature variations

within certain layers of the earth’s atmosphere. The turbulence is often modeled by

a Gaussian random vector with mean 0 and a covariance matrix Cφ with spectrum

given by the von Karman turbulence model [112]. In [34], it is shown that the inverse

biharmonic (or squared Laplacian) matrix gives an accurate, sparse approximation

of Cφ (see also [10]). Using this approximation, the minimum variance estimator for

the true phase error is obtained by solving

min
φ

∣∣∣∣∣
∣∣∣∣∣
[
F ⊗H
H ⊗ F

]
φ−

[
bh

bv

]∣∣∣∣∣
∣∣∣∣∣
2

2

+ (σ2/c0)‖Lφ‖2, (4.12)

where L is a discretization of the Laplacian; σ2 is the variance of the iid Gaussian

noise vector η in (4.8); and c0 is a scaling parameter chosen so that E(φTCφφ) =

c0E(φTL−2φ); see [10, 46] for more details. As is the case in other AO literature, we

assume that the user has an estimate of σ2 in hand, from which α can be computed

directly.

69

In order to express L in Kronecker product form, we estimate it using the Laplacian

arising from the Hudgin geometry. In particular,

||Lφ||2 def
=

∣∣∣∣∣
∣∣∣∣∣
[

(I ⊗H)φ

(H ⊗ I)φ

]∣∣∣∣∣
∣∣∣∣∣
2

,

where H is defined in (4.9); note then that LTL = I ⊗ (HTH) + (HTH)⊗ I.

Equating σ2/c0 with the regularization parameter α, problem (4.12) can be written

as

min
φ

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


F ⊗H
H ⊗ F
αI ⊗H
H ⊗ αI

φ−

bh

bv

0

0


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

2

. (4.13)

An important observation may be made regarding the coefficient matrix in (4.13);

a permutation matrix Π exists such that

Π


F ⊗H
H ⊗ F
αI ⊗H
H ⊗ αI

 =


[
F

αI

]
⊗H

H ⊗

[
F

αI

]
 ≡

[
Fα ⊗H
H ⊗ Fα

]
.

Thus, if the value of α did not change from one data set to another, we could apply

the techniques of the previous section and solve this problem in the same manner.

Namely, we could compute the GSVD of Fα and H, then efficiently solve using matrix-

matrix multiplications and Hadamard arithmetic.

Unfortunately, the value of α does not remain the same between data sets. How-

ever, though the value of α will typically change, the range of α values is restricted.

Thus, we can choose an “average” α value, denoted α0, that approximates the value

of α for any data set, and use this α0 value to form a preconditioner. More details

are given in Section 4.3.3.1.

To demonstrate how we construct the preconditioner, we rewrite equation (4.13)

as

min
φ

∣∣∣∣∣
∣∣∣∣∣
[
A1

A2

]
φ−

[
b

0

]∣∣∣∣∣
∣∣∣∣∣
2

2

, where A1 = Fα0 ⊗H,A2 = H ⊗ Fα0 .

Our goal is to find a preconditioner M such that MTM ≈ AT1A1 + AT2A2, while

retaining the desirable Kronecker product structure. We begin by calculating the

70

GSVD of Fα0 and H: Fα0 = UΣXT , H = V∆XT . Observe that

AT1A1 + AT2A2

= (XΣTUT ⊗X∆TV T)(UΣXT ⊗ V∆XT) + (X∆TV T ⊗XΣTUT)(V∆XT ⊗ UΣXT)

= (XΣTUTUΣXT)⊗ (X∆TV TV∆XT) + (X∆TV TV∆XT)⊗ (XΣTUTUΣXT)

= (XΣTΣXT)⊗ (X∆T∆XT) + (X∆T∆XT)⊗ (XΣTΣXT)

= (X ⊗X)(ΣTΣ⊗∆T∆)(X ⊗X)T + (X ⊗X)(∆T∆⊗ ΣTΣ)(X ⊗X)T

= (X ⊗X)(ΣTΣ⊗∆T∆ + ∆T∆⊗ ΣTΣ)(X ⊗X)T

= (X ⊗X)C(X ⊗X)T ,

where C = ΣTΣ⊗∆T∆ + ∆T∆⊗ ΣTΣ is a diagonal matrix.

We want MTM ≈ (X⊗X)C(X⊗X)T , which we achieve (exactly) by setting M =

QC1/2(X ⊗X)T . Q can be any orthogonal matrix; as long as it has an appropriate

Kronecker structure, the computations using M will be efficient. For all the results

in this chapter, we set Q to be the identity matrix.

We remark that the preconditioner M is computed once using an appropriate av-

erage α0 for all likely data sets. Thus, we do not need to consider the computational

costs of computing the GSVD of Fα0 and H as part of the real-time time constraints

needed by the application. The appropriate Q, X and C1/2 factors will be precom-

puted once and stored, or, rather, their inverses will be formed and stored. Since C

contains one zero diagonal element, we set the corresponding element in C−1/2 to be

zero.

Using the preconditioner, the problem now becomes

min
φ

∣∣∣∣∣
∣∣∣∣∣AM−1Mφ−

[
b

0

]∣∣∣∣∣
∣∣∣∣∣
2

2

, where A =


F ⊗H
H ⊗ F
αI ⊗H
H ⊗ αI

 . (4.14)

We use preconditioned LSQR [102, 103] to solve this problem. Note that, again, all

matrix-vector multiplications can be performed by exploiting the Kronecker product

structure of this problem and using matrix-matrix multiplications. This exploitation

occurs both when applying the preconditioner (or its transpose) or when multiplying

a vector by A or AT .

4.3.3.1 Approximation Quality of Preconditioner

It is important to consider how well a preconditioner approximates a matrix to deter-

mine the quality of the preconditioner. In this section, we consider the approximation

71

quality of the preconditioner in two ways: first, by looking at the singular values of

the original matrix and of the preconditioned system, and second, by looking at the

relative errors of the matrix and its preconditioner.

To obtain realistic values for α0, we ran a series of Matlab simulations. We created

an n2× 1 “true” φ [10] and formed bh and bv from equation (4.8). We then repeated

the following 1000 times: we added a realization of a certain noise level (such as 10%)

to the gradients bh and bv, then determined an optimal α value for that realization by

solving equation (4.13) for multiple values of α. An α value was considered optimal

if it produced a reconstructed φ with minimal relative residual error. After finding

the 1000 optimal α values for a given size n and noise level, we determined the α0

for that n-noise level combination by using the value at the peak of the histogram of

the α values. As n increases, the range of optimal α values decreases, leading to a

closer fit of α0 for all α values. Though all of our observations on α and α0 come from

simulations on realistic data, we feel that similar results will be obtained once real

data is used. As the α value can be found without knowledge of the true φ (see [10]),

the α0 value for real data can be found by again using the peak value of many α

values.

We consider the singular values of the matrix A given in equation (4.14) as well as

the singular values of the preconditioned matrix AM−1. We found that the singular

values of the preconditioned system cluster to 1, with tighter clustering the closer α0

is to α. Figure 4.3 shows the singular values for six preconditioned systems as well

as the singular values for one non-preconditioned system. In this figure, we took n

to be 64 and α0 to be 0.058. We varied α to be from 0.03 to 0.124, which were the

extremes of the optimal α values we found during the 1000 realizations of 10% noise.

The dots above the dashed line show the singular values for these six preconditioned

systems. Note that each preconditioned system has one zero singular value, while

the remaining singular values cluster toward one. In particular, for the case α = α0,

all of the nonzero singular values cluster at one. For comparison, we include the

singular values of one non-preconditioned system, for the case α = 0.058. These are

displayed in the figure below the dashed line. The smallest nonzero singular value for

this system is 0.0488 and the largest is 2.0022.

The second measure of the quality of the preconditioner can be obtained by con-

sidering the relative errors of the matrix and its preconditioner. Let α0 be the value

used in the preconditioner M and suppose α is the actual value specified by the data

72

0 0.5 1 1.5 2 2.5

no prec

0.03

0.053

0.058

0.073

0.093

0.124

Singular Values of 6 Preconditioned Systems, n=64, α
0
=0.058

singular values

a
lp

h
a

Figure 4.3: Singular values for one non-preconditioned and six preconditioned systems.

collection process. Then,

ATA = (F T
α Fα)⊗ (HTH) + (HTH)⊗ (F T

α Fα)

MTM = (F T
α0
Fα0)⊗ (HTH) + (HTH)⊗ (F T

α0
Fα0).

We can compute the error between these matrices as

E = ATA−MTM = (α2 − α2
0)I ⊗HTH +HTH ⊗ (α2 − α2

0)I.

Due to the simple nature of these matrices, we can explicitly compute the Frobe-

nius norm of each:∣∣∣∣ATA∣∣∣∣
F

=
√

4α4(5n2 − 8n+ 2) + 8α2(2n2 − 5n+ 3) + 5n2 − 14n+ 10∣∣∣∣MTM
∣∣∣∣
F

=
√

4α4
0(5n2 − 8n+ 2) + 8α2

0(2n2 − 5n+ 3) + 5n2 − 14n+ 10

||E||F = 2|α2 − α2
0|
√

5n2 − 8n+ 2.

Thus,

lim
n→∞

||E||F
||ATA||F

= lim
n→∞

2 |α2 − α2
0|
√

5− 8
n

+ 2
n2√

4α4(5− 8
n

+ 2
n2) + 8α2(2− 5

n
+ 3

n2) + (5− 14
n

+ 10
n2)

=
2
√

5 |α2 − α2
0|√

20α4 + 16α2 + 5

≤ 2
∣∣α2 − α2

0

∣∣ .

73

4.4 Implementation Details

This problem is currently implemented in Matlab and Trilinos for use on a sin-

gle processor. As of now, there are no matrix-matrix multiplication routines for

Tpetra::CrsMatrix objects in Trilinos. However, these routines are being developed

and should be included in a future release.

For our implementation, then, we use Teuchos::SerialDenseMatrix objects.

These are serial objects, but they provide matrix-matrix multiplication operations.

When applying the operator or the preconditioner to a vector, we first reshape the

vector into one or more appropriately-sized matrices by copying the values to new

SerialDenseMatrix objects. We then apply the matrices that make up the operator

or the preconditioner to these matrices. We finish by copying the values to the output

vector at the end. We obtain the matrices that make up the preconditioner via files

rather than constructing them from scratch.

Another approach may be to use Epetra CrsMatrix objects and the EpetraExt::

MatrixMatrix class to perform matrix-matrix multiplications. This requires us to use

double and int datatypes. However, these classes were designed for sparse matrices

whereas some of the matrices we use are dense.

4.5 Results

We now present some results showing the effectiveness of our preconditioning ap-

proach, even when α0 differs from the α value computed for a data set. We deter-

mined the optimal α0 for n = 256 with 10% noise using the procedure described in

Section 4.3.3.1. We then consider how well our preconditioner works when masking

is involved; that is, when the aperture is not a square. First, though, we give an

example of the noisy data and reconstructed solution.

Figure 4.4 shows a realization of the noisy phase differences Bh and Bv for the

case n = 256 with 10% noise. Figure 4.5 shows the reconstructed Φ for the TSVD-

type regularization on the left and the Tikhonov-type regularization on the right.

Visually, the results appear indistinguishable. However, the relative errors differ

slightly; the relative error for the TSVD solution is 1.058e-2 and for the Tikhonov

solution is 9.414e-3 – a roughly 10% improvement. This result, that the Tikhonov

approach produces a solution with slightly less relative error than the TSVD solution,

is consistent for all the noise realizations, and explains why the regularized approach

is often favored by astronomers [34].

74

(a) Noisy Bh (b) Noisy Bv

Figure 4.4: Example noisy gradients for n = 256 with 10% noise.

TSVD−Type Reconstruction

(a) TSVD Reconstruction

Tikhonov−Type Reconstruction

(b) Tikhonov Reconstruction

Figure 4.5: Comparison of reconstructions for two types of regularization.

75

4.5.1 Effect of Differing α Values

The next set of results we present focus entirely on the Tikhonov-type regularization.

We look at the number of preconditioned LSQR iterations required for different data

sets, solving to a tolerance of 10−6. Figure 4.6 compares the value of α to the number

of preconditioned LSQR iterations required for 1000 realizations of 10% noise. As

expected, when α exactly equals α0, only one preconditioned LSQR iteration is re-

quired. As α becomes further from the preconditioner value α0 (either being smaller

or larger than α0), the number of LSQR iterations required increases, though it never

takes more than a handful of iterations to reach convergence. Figure 4.7 displays the

results from this same set of simulations but in a different way. Here, we display the

number of times a given number of preconditioned LSQR iterations is required during

our 1000 simulations. For example, in nearly one-fourth of the experiments, exactly

three LSQR iterations are required to reach a convergence of 10−6.

It is important to consider different levels of noise. The previous results were

based on 10% noise, which may be more or less than in real life. Thus, we wish to

see how well our approach works for a larger range of noise, namely from 1% up to

20%. Table 4.1 gives the average number of LSQR iterations required both with and

without preconditioning, when solved to different tolerance levels and with different

amounts of noise.

As can be seen, the average number of preconditioned LSQR iterations required

increases very slowly with the noise level. On the other hand, the number of un-

preconditioned iterations required decreases as the noise level increases. Regardless

if preconditioning is used, the number of average iterations required goes up as the

tolerance level goes down.

4.5.2 Using Square-Aperture Preconditioner on Masked Problems

The final results we look at will consider the effectiveness of our preconditioner on a

problem with masking. As built, the preconditioner assumes a square aperture. That

is, the characteristic function in equation (4.1) returns 1 for all input. Now we wish

to solve the problem

min
φ

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


F ⊗H
H ⊗ F
αI ⊗H
H ⊗ αI

Pφ−

bh

bv

0

0


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

2

2

,

76

0.02 0.03 0.04 0.05 0.06
1

2

3

4

5

6

7

α values

it
e
ra

ti
o
n
s

Number of iterations required for n = 256 with α
0
 = 0.035

Figure 4.6: Comparison of iterations to α value for 1000 realizations of noise.

1 3 4 5 6 7
0

50

100

150

200

250

300

350

iterations

c
o
u
n
t

Count of number of iterations for n = 256 with α
0
 = 0.035

Figure 4.7: Count of number of preconditioned LSQR iterations required for 1000 realiza-

tions of noise.

77

Table 4.1: Number of LSQR iterations required, on average, for n = 256 with four different

amounts of noise for various tolerance levels.

Noise level Preconditioning? 1e− 1 1e− 2 1e− 3 1e− 4 1e− 5 1e− 6

1% No 5 156 346 490 554 611

1% Yes 1 1 1 2 3 3

5% No 5 112 220 408 531 578

5% Yes 1 1 2 2 3 4

10% No 5 98 193 372 515 564

10% Yes 1 1 2 3 3 4

20% No 5 81 175 345 488 554

20% Yes 1 1 2 3 3 4

where P is a diagonal matrix consisting of 0s and 1s on the diagonal. When P is the

identity matrix, as is the case of a square aperture, we are solving exactly (4.13). On

the other hand, when masking is involved, some of the diagonal entries of P will be

zero. We can equivalently consider stripping the diagonal from P and reshaping it

into a matrix of size n× n; this will allow us to apply the masking operation via an

element-wise matrix multiplication. The two masks we will consider are a circular

mask and an annular mask. These are illustrated in Figure 4.8 for the case n = 64.

For these results, we again use only Tikhonov regularization. We vary n from 64

to 256, using five different α values for each size. The α values were chosen to span

the range of values, including those values that occurred most often. The tolerance

levels for solving are the same as those used previously, namely from 1e− 1 to 1e− 6.

We look at the number of iterations required to converge to the desired tolerance

level with and without a preconditioner, given in Figure 4.9. We also consider the

masked relative error, which is simply the relative error of our reconstructed phase

Φ after the mask has been applied to it. This discards the values of Φ for which we

have no gradient data. The results relating the masked relative error to the tolerance

level are shown in Figure 4.10. For these figures, the results using the circular mask

are given with a solid dot while those for the annular pupil use an open circle.

As expected, the number of iterations required increases as the tolerance level

decreases. Interestingly, though, it appears that the number of iterations does not

vary too much as n increases in the preconditioned case, whereas in the unprecondi-

tioned case the iteration count significantly increases as the problem size increases.

78

The smallest α value takes significantly more iterations to converge than any other

α value; this implies that we may wish to choose α0 a little low to encourage faster

convergence in general. The results between the different masks, in terms of iteration

count, are quite similar.

When looking at the masked relative error, the results when preconditioning is

used vary little as the tolerance level decreases. However, the effect of the size has

more impact here than it does on the iteration count, with the largest n yielding results

with the smallest masked relative error. On the other hand, without preconditioning,

the results are less consistent, though for n = 256, there is a general trend of reduced

error with more stringent tolerance levels. Whether or not preconditioning is used, the

results appear to be more dependent on the particular problem than on the aperture

of the telescope.

Circular Mask

(a) Circular Mask

Annular Mask

(b) Annular Mask

Figure 4.8: Illustration of masks used.

1e−1 1e−2 1e−3 1e−4 1e−5 1e−6

10
1

10
2

Iteration Count Versus Tolerance Level − Preconditioned

Tolerance Level

It
e
ra

ti
o
n
s

n = 64

n = 128

n = 256

(a) With a preconditioner

1e−1 1e−2 1e−3 1e−4 1e−5 1e−6

10
1

10
2

10
3

Iteration Count Versus Tolerance Level − Unpreconditioned

Tolerance Level

It
e
ra

ti
o
n
s

n = 64

n = 128

n = 256

(b) Without a preconditioner

Figure 4.9: Comparison of iterations to tolerance level with and without a preconditioner.

79

1e−1 1e−2 1e−3 1e−4 1e−5 1e−6

10
−1.5

10
−1.4

10
−1.3

10
−1.2

10
−1.1

Masked Relative Error Versus Tolerance Level − Preconditioned

Tolerance Level

M
a

s
k
e
d
 R

e
la

ti
v
e
 E

rr
o
r

n = 64

n = 128

n = 256

(a) With a preconditioner

1e−1 1e−2 1e−3 1e−4 1e−5 1e−6

10
−1

10
0

Masked Relative Error Versus Tolerance Level − Unpreconditioned

Tolerance Level

M
a

s
k
e
d
 R

e
la

ti
v
e
 E

rr
o
r

n = 64

n = 128

n = 256

(b) Without a preconditioner

Figure 4.10: Comparison of masked relative error to tolerance level with and without a

preconditioner.

4.6 Remarks and Future Directions

A Kronecker product-structured, rank-deficient least squares adaptive optics problem

was described, for determining the phase error from noisy phase differences. Efficient

techniques for solving on the Fried geometry with square aperture were described.

Two types of regularization were considered: a TSVD-type and a preferred Tikhonov-

type. Using properties of Kronecker products and the GSVD, a direct solution using

TSVD regularization was described. Though this gives good results, a relatively bet-

ter reconstruction may be obtained using Tikhonov-type regularization. By forming

a preconditioner that will work well with any data set, fast convergence is obtained

when using LSQR. Approximation quality results of the preconditioner were given,

as well as numerical results on simulated data. It was shown that as long as the α0

value used by the preconditioner is suitably chosen, the number of preconditioned

LSQR iterations required is small. We have also shown positive results in using the

preconditioner developed for square apertures on problems with circular or annular

apertures. Exploiting the linear algebra structure of this problem has led to extremely

efficient computational approaches that can be solved in real time.

Further investigations including a Trilinos implementation that can run on multi-

ple processors with larger values of n would be interesting.

80

Chapter 5

Concluding Remarks

We have described a variety of inverse problems, from linear to separable nonlinear

to fully nonlinear, using a general model problem. By considering the properties of

inverse problems, in particular their ill-posedness, we have seen why regularization is

needed to obtain a reasonable solution. We have also considered different techniques

for solving and including regularization. A common approach to including regular-

ization is to solve using an iterative method, terminating the iterations before full

convergence has been reached.

When solving large-scale inverse problems, iterative methods are often the best

choice. No structure is required, allowing these methods to work on general problems.

Parallel computing also combines well with iterative methods, allowing numerous

computing nodes to work in tandem with each other. Trilinos is a robust library of

mathematical software for solving large-scale problems in parallel. In particular, the

Belos package of Trilinos contains a framework for iterative linear solvers. We have

described two iterative solvers, LSQR and MRNSD, that we have implemented using

this framework. We have also implemented a status test class that determines the

iteration providing least relative error, when the true solution is known.

Next we considered two different linear inverse problems, arising from distinct

fields, that both benefit by being solved in an iterative manner. Our first case study

came from the field of medical imaging. In particular, we wished to remove patient

motion blur in PET brain images. We described the motion information that is

collected during a scan and formulated a large linear problem from it. Depending

on how much or little of the motion information we include, by averaging over small

or large periods of time respectively, the matrix loses or gains sparsity. We then

implemented our application in C++, using the Trilinos library, and did a variety of

simulations. We found that the type of scalars used, single or double precision, had

81

little bearing on the results. On the other hand, breaking the motion information into

more intervals resulted in significantly better reconstructions. At times the relative

interval lengths made a difference, whether the intervals were chosen by hand or

were of equal size, though when many intervals were used the difference was minimal.

Varying levels of patient motion were also considered; the same trend of better results,

in terms of reduction in error, was obtained as the number of intervals used increased.

Our second case study came from adaptive optics, where we wished to reconstruct

a distorted wavefront given noisy gradient information. We described two different

sensor geometries, which determine the operators in the linear problem. We focused

only on the Fried geometry, which is more complex and mathematically interesting.

Due to the Kronecker product structure of the problem, we considered using the gener-

alized singular value decomposition in our solving process. From there, we determined

a direct method for solving, requiring only matrix-matrix and Hadamard multiplica-

tions. However, we could obtain slightly better results by incorporating Tikhonov

regularization, as the regularization parameter can be determined by statistics of the

data. Here we determined a preconditioner to be used for all problems of a given

size and considered its approximation quality. Finally we considered some results by

using preconditioned LSQR to solve our problems. We again performed only matrix-

matrix and Hadamard multiplications, allowing us great efficiency. We saw that good

results could be obtained in just a few iterations, with the iteration count slowly in-

creasing as the noise level increased. We also considered using our square-aperture

preconditioner when solving problems with a circular or annular aperture. Using the

preconditioner greatly reduced the number of iterations required compared to solving

without a preconditioner.

The mathematical and computational contributions we have made using these two

applications as case studies can be applied to inverse problems in a variety of other

fields.

82

Appendix A

Trilinos Code

We now include our C++ code, utilizing the Trilinos library, described in the previous

manuscript. Sections A.1 and A.2 contain the code for implementing LSQR and

MRNSD within the Belos framework. Each contains a solver manager, iteration,

and status test class. Section A.3 includes our least error status test class. We

then present our implementations for our two case studies. Code to solve the PET

brain motion deblurring problem is given in Section A.4, while Section A.5 contains

our code for the adaptive optics application. For each of these application codes,

an example extensible markup language (XML) file is also included. The XML file

contains information related to the specific problem to be solved, such as names of

files, problem size, and solver parameters.

A.1 Code for LSQR

A.1.1 LSQRSolMgr.hpp Code

#ifndef LSQR_SOLMGR_HPP

#define LSQR_SOLMGR_HPP

/* LSQRSolMgr.hpp

* The LSQRSolMgr provides a solver manager for the LSQR linear solver.

*/

#include "BelosConfigDefs.hpp"

#include "BelosTypes.hpp"

#include "BelosLinearProblem.hpp"

#include "BelosSolverManager.hpp"

#include "BelosStatusTestMaxIters.hpp"

#include "BelosStatusTestCombo.hpp"

83

#include "BelosStatusTestOutputFactory.hpp"

#include "BelosOutputManager.hpp"

#include "Teuchos_TimeMonitor.hpp"

#include "LSQRIter.hpp"

#include "LSQRStatusTest.hpp"

#include "LeastErrorStatusTest.hpp"

// LSQRSolMgr Exceptions

/* LSQRSolMgrLinearProblemFailure is thrown when the linear problem is not setup

* (i.e. setProblem() was not called) when solve() is called.

* This std::exception is thrown from the LSQRSolMgr::solve() method.

*/

class LSQRSolMgrLinearProblemFailure : public Belos::BelosError {public:

LSQRSolMgrLinearProblemFailure(const std::string& what_arg) : Belos::BelosError(

what_arg)

{}};

/* LSQRSolMgrBlockSizeFailure is thrown when the linear problem has more than

* one RHS. This std::exception is thrown from the LSQRSolMgr::solve() method.

*/

class LSQRSolMgrBlockSizeFailure : public Belos::BelosError {public:

LSQRSolMgrBlockSizeFailure(const std::string& what_arg) : Belos::BelosError(what_arg)

{}};

template<class ScalarType, class MV, class OP>

class LSQRSolMgr : public Belos::SolverManager<ScalarType,MV,OP> {

private:

typedef Belos::MultiVecTraits<ScalarType,MV> MVT;

typedef Belos::OperatorTraits<ScalarType,MV,OP> OPT;

typedef Teuchos::ScalarTraits<ScalarType> SCT;

typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;

typedef Teuchos::ScalarTraits<MagnitudeType> MT;

public:

// Constructors/Destructor

/* Empty constructor for LSQRSolMgr. This constructor takes no arguments and

* sets the default values for the solver. The linear problem must be passed

* in using setProblem() before solve() is called on this object. The solver

* values can be changed using setParameters().

*/

LSQRSolMgr();

84

/* Basic constructor for LSQRSolMgr. This constructor accepts the

* LinearProblem to be solved in addition to a parameter list of options for

* the solver manager. These options include the following:

* - "Maximum Iterations" - an int specifying the maximum number of iterations

* the underlying solver is allowed to perform. Default: 1000

* - "Condition Limit" - a MagnitudeType specifying the upper limit of the

* estimate of the norm of Abar to decide convergence. Default: 0

* - "Term Iter Max" - the number of consecutive successful iterations

* required before convergence is declared. Default: 1

* - "Rel RHS Err" - an estimate of the error in the data defining the RHS.

* Default: 0

* - "Rel Mat Err" - an estimate of the error in the data defining the matrix.

* Default: 0

* - "Verbosity" - a sum of MsgType specifying the verbosity. Default:

* Belos::Errors

* - "Output Style" - an OutputType specifying the style of output. Default:

* Belos::General

* - "Output Stream" - a reference-counted pointer to the output stream where

* all solver output is sent. Default: Teuchos::rcp(&std::cout,false)

* - "Output Frequency" - an int specifying how often convergence information

* should be outputted. Default: -1 (never)

* - "Timer Label" - a std::string to use as a prefix for the timer labels.

* Default: "Belos"

*/

LSQRSolMgr(const Teuchos::RCP<Belos::LinearProblem<ScalarType,MV,OP> > &problem, const

Teuchos::RCP<Teuchos::ParameterList> &pl);

// Destructor.

virtual ~LSQRSolMgr() {};

// Accessor methods

const Belos::LinearProblem<ScalarType,MV,OP>& getProblem() const {

return *problem_;

}

// Get a parameter list containing the valid parameters for this object.

Teuchos::RCP<const Teuchos::ParameterList> getValidParameters() const;

//Get a parameter list containing the current parameters for this object.

Teuchos::RCP<const Teuchos::ParameterList> getCurrentParameters() const { return

params_; }

/* Return the timers for this object.

* The timers are ordered as follows - time spent in solve() routine.

*/

85

Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {

return tuple(timerSolve_);

}

// Get the iteration count for the most recent call to solve().

int getNumIters() const {

return numIters_;

}

/* Return whether a loss of accuracy was detected by this solver during the

* most current solve.

*/

bool isLOADetected() const { return false; }

// Set methods

// Set the linear problem that needs to be solved.

void setProblem(const Teuchos::RCP<Belos::LinearProblem<ScalarType,MV,OP> > &problem)

{ problem_ = problem; }

// Set parameters the solver manager should use to solve the linear problem.

void setParameters(const Teuchos::RCP<Teuchos::ParameterList> ¶ms);

// Reset methods

/* Performs a reset of the solver manager specified by the ResetType. This

* informs the solver manager that the solver should prepare for the next call

* to solve by resetting certain elements of the iterative solver strategy.

*/

void reset(const Belos::ResetType type) { if ((type & Belos::Problem) && !Teuchos::

is_null(problem_)) problem_->setProblem(); }

// Solver application methods

/* This method performs possibly repeated calls to the underlying linear

* solver’s iterate() routine until the problem has been solved (as decided by

* the solver manager) or the solver manager decides to quit. This method

* calls LSQRIter::iterate(), which will return either because a specially

* constructed status test evaluates to Belos::Passed or an std::exception is

* thrown. A return from LSQRIter::iterate() signifies one of the following

* scenarios:

* - the maximum number of iterations has been exceeded. In this scenario, the

* current solution to the linear system will be placed in the linear problem

* and return Belos::Unconverged.

* - global convergence has been met. In this case, the current solution to

* the linear system will be placed in the linear problem and the solver

* manager will return Belos::Converged.

* Return: Belos::ReturnType specifying:

86

* - Belos::Converged: the linear problem was solved to the specification

* required by the solver manager.

* - Belos::Unconverged: the linear problem was not solved to the

* specification desired by the solver manager.

*/

Belos::ReturnType solve();

// Overridden from Teuchos::Describable

// Method to return description of the LSQR solver manager

std::string description() const;

private:

// Linear problem.

Teuchos::RCP<Belos::LinearProblem<ScalarType,MV,OP> > problem_;

// Output manager.

Teuchos::RCP<Belos::OutputManager<ScalarType> > printer_;

Teuchos::RCP<std::ostream> outputStream_;

// Status test.

Teuchos::RCP<Belos::StatusTest<ScalarType,MV,OP> > sTest_;

Teuchos::RCP<Belos::StatusTestMaxIters<ScalarType,MV,OP> > maxIterTest_;

Teuchos::RCP<LSQRStatusTest<ScalarType,MV,OP> > convTest_;

Teuchos::RCP<LeastErrorStatusTest<ScalarType,MV,OP> > errorTest_;

Teuchos::RCP<Belos::StatusTestOutput<ScalarType,MV,OP> > outputTest_;

// Current parameter list.

Teuchos::RCP<ParameterList> params_;

// Default solver values.

static const ScalarType lambda_default_;

static const MagnitudeType condlim_default_;

static const MagnitudeType relRhsErr_default_;

static const MagnitudeType relMatErr_default_;

static const int maxIters_default_;

static const int verbosity_default_;

static const int outputStyle_default_;

static const int outputFreq_default_;

static const int termIterMax_default_;

static const int windowSize_default_;

static const std::string label_default_;

static const Teuchos::RCP<std::ostream> outputStream_default_;

static const Teuchos::RCP< MV > trueSolution_default_;

// Current solver values.

ScalarType lambda_;

MagnitudeType condlim_, relRhsErr_, relMatErr_;

int maxIters_, numIters_, termIterMax_, windowSize_;

int verbosity_, outputStyle_, outputFreq_;

87

Teuchos::RCP< MV > trueSolution_;

// Timers.

std::string label_;

Teuchos::RCP<Teuchos::Time> timerSolve_;

// Internal state variables.

bool isSet_;

};

// Default solver values.

template<class ScalarType, class MV, class OP>

const ScalarType LSQRSolMgr<ScalarType,MV,OP>::lambda_default_ = 0.0;

template<class ScalarType, class MV, class OP>

const typename LSQRSolMgr<ScalarType,MV,OP>::MagnitudeType LSQRSolMgr<ScalarType,MV,OP>::

condlim_default_ = 0.0;

template<class ScalarType, class MV, class OP>

const typename LSQRSolMgr<ScalarType,MV,OP>::MagnitudeType LSQRSolMgr<ScalarType,MV,OP>::

relRhsErr_default_ = 0.0;

template<class ScalarType, class MV, class OP>

const typename LSQRSolMgr<ScalarType,MV,OP>::MagnitudeType LSQRSolMgr<ScalarType,MV,OP>::

relMatErr_default_ = 0.0;

template<class ScalarType, class MV, class OP>

const Teuchos::RCP< MV > LSQRSolMgr<ScalarType,MV,OP>::trueSolution_default_ = Teuchos::

null;

template<class ScalarType, class MV, class OP>

const int LSQRSolMgr<ScalarType,MV,OP>::windowSize_default_ = 1;

template<class ScalarType, class MV, class OP>

const int LSQRSolMgr<ScalarType,MV,OP>::maxIters_default_ = 1000;

template<class ScalarType, class MV, class OP>

const int LSQRSolMgr<ScalarType,MV,OP>::termIterMax_default_ = 1;

template<class ScalarType, class MV, class OP>

const int LSQRSolMgr<ScalarType,MV,OP>::verbosity_default_ = Belos::Errors;

template<class ScalarType, class MV, class OP>

const int LSQRSolMgr<ScalarType,MV,OP>::outputStyle_default_ = Belos::General;

template<class ScalarType, class MV, class OP>

const int LSQRSolMgr<ScalarType,MV,OP>::outputFreq_default_ = -1;

88

template<class ScalarType, class MV, class OP>

const std::string LSQRSolMgr<ScalarType,MV,OP>::label_default_ = "Belos";

template<class ScalarType, class MV, class OP>

const Teuchos::RCP<std::ostream> LSQRSolMgr<ScalarType,MV,OP>::outputStream_default_ =

Teuchos::rcp(&std::cout,false);

// Empty Constructor

template<class ScalarType, class MV, class OP>

LSQRSolMgr<ScalarType,MV,OP>::LSQRSolMgr() :

outputStream_(outputStream_default_),

lambda_(lambda_default_),

condlim_(condlim_default_),

relRhsErr_(relRhsErr_default_),

relMatErr_(relMatErr_default_),

trueSolution_(trueSolution_default_),

windowSize_(windowSize_default_),

maxIters_(maxIters_default_),

termIterMax_(termIterMax_default_),

verbosity_(verbosity_default_),

outputStyle_(outputStyle_default_),

outputFreq_(outputFreq_default_),

label_(label_default_),

isSet_(false)

{}

// Basic Constructor

template<class ScalarType, class MV, class OP>

LSQRSolMgr<ScalarType,MV,OP>::LSQRSolMgr(const Teuchos::RCP<Belos::LinearProblem<

ScalarType,MV,OP> > &problem, const Teuchos::RCP<Teuchos::ParameterList> &pl) :

problem_(problem),

outputStream_(outputStream_default_),

lambda_(lambda_default_),

condlim_(condlim_default_),

relRhsErr_(relRhsErr_default_),

relMatErr_(relMatErr_default_),

trueSolution_(trueSolution_default_),

windowSize_(windowSize_default_),

maxIters_(maxIters_default_),

termIterMax_(termIterMax_default_),

verbosity_(verbosity_default_),

outputStyle_(outputStyle_default_),

outputFreq_(outputFreq_default_),

label_(label_default_),

89

isSet_(false)

{

TEST_FOR_EXCEPTION(problem_ == Teuchos::null, std::invalid_argument, "Problem not given

to solver manager.");

/* If the parameter list pointer is null, then set the current parameters to

* the default parameter list.

*/

if (!is_null(pl)) {

setParameters(pl);

}

}

template<class ScalarType, class MV, class OP>

void LSQRSolMgr<ScalarType,MV,OP>::setParameters(const Teuchos::RCP<Teuchos::

ParameterList> ¶ms)

{

// Create the internal parameter list if ones doesn’t already exist.

if (params_ == Teuchos::null) {

params_ = Teuchos::rcp(new Teuchos::ParameterList(*getValidParameters()));

}

else {

params->validateParameters(*getValidParameters());

}

// Check for damping value lambda; update in our list and status test.

if (params->isParameter("Lambda")) {

lambda_ = (ScalarType) params->get("Lambda", (double) lambda_default_);

params_->set("Lambda",lambda_);

}

// Check for window size; update in our list and status test.

if (params->isParameter("Window Size")) {

windowSize_ = params->get("Window Size", windowSize_default_);

params_->set("Window Size", windowSize_);

}

// Check for maximum number of iterations; update in our list and status test.

if (params->isParameter("Maximum Iterations")) {

maxIters_ = params->get("Maximum Iterations",maxIters_default_);

params_->set("Maximum Iterations", maxIters_);

if (maxIterTest_!=Teuchos::null)

maxIterTest_->setMaxIters(maxIters_);

}

90

// Check to see if timer label changed; update in our list and solver timer.

if (params->isParameter("Timer Label")) {

std::string tempLabel = params->get("Timer Label", label_default_);

if (tempLabel != label_) {

label_ = tempLabel;

params_->set("Timer Label", label_);

std::string solveLabel = label_ + ": LSQRSolMgr total solve time";

timerSolve_ = Teuchos::TimeMonitor::getNewTimer(solveLabel);

}

}

// Check for a change in verbosity level; update in our list.

if (params->isParameter("Verbosity")) {

if (Teuchos::isParameterType<int>(*params,"Verbosity")) {

verbosity_ = params->get("Verbosity", verbosity_default_);

} else {

verbosity_ = (int)Teuchos::getParameter<Belos::MsgType>(*params,"Verbosity");

}

params_->set("Verbosity", verbosity_);

if (printer_ != Teuchos::null)

printer_->setVerbosity(verbosity_);

}

// Check for a change in output style; update in our list.

if (params->isParameter("Output Style")) {

if (Teuchos::isParameterType<int>(*params,"Output Style")) {

outputStyle_ = params->get("Output Style", outputStyle_default_);

} else {

outputStyle_ = (int)Teuchos::getParameter<Belos::OutputType>(*params,"Output Style"

);

}

params_->set("Output Style", outputStyle_);

outputTest_ == Teuchos::null;

}

// Check for output stream; update in our list.

if (params->isParameter("Output Stream")) {

outputStream_ = Teuchos::getParameter<Teuchos::RCP<std::ostream> >(*params,"Output

Stream");

params_->set("Output Stream", outputStream_);

if (printer_ != Teuchos::null)

printer_->setOStream(outputStream_);

}

// Check for frequency level; update in our list and output status test.

91

if (verbosity_ & Belos::StatusTestDetails) {

if (params->isParameter("Output Frequency")) {

outputFreq_ = params->get("Output Frequency", outputFreq_default_);

}

params_->set("Output Frequency", outputFreq_);

if (outputTest_ != Teuchos::null)

outputTest_->setOutputFrequency(outputFreq_);

}

// Create output manager if we need to.

if (printer_ == Teuchos::null) {

printer_ = Teuchos::rcp(new Belos::OutputManager<ScalarType>(verbosity_,

outputStream_));

}

// Convergence

typedef Belos::StatusTestCombo<ScalarType,MV,OP> StatusTestCombo_t;

// Check for convergence tolerance; update in our list and residual tests.

if (params->isParameter("Condition Limit")) {

condlim_ = params->get("Condition Limit",condlim_default_);

params_->set("Condition Limit", condlim_);

if (convTest_ != Teuchos::null)

convTest_->setCondLim(condlim_);

}

// Check for number of consecutive passed iterations; update in our list and

// residual tests.

if (params->isParameter("Term Iter Max")) {

termIterMax_ = params->get("Term Iter Max", termIterMax_default_);

params_->set("Term Iter Max", termIterMax_);

if (convTest_ != Teuchos::null)

convTest_->setTermIterMax(termIterMax_);

}

// Check for true solution; update in our list and status test.

if (params->isParameter("True Solution")) {

trueSolution_ = params->get< Teuchos::RCP< MV > >("True Solution",

trueSolution_default_);

params_->set("True Solution",trueSolution_);

}

// Check for relative RHS error; update in our list and residual tests.

if (params->isParameter("Rel RHS Err")) {

relRhsErr_ = params->get("Rel RHS Err",relRhsErr_default_);

92

params_->set("Rel RHS Err", relRhsErr_);

if (convTest_ != Teuchos::null)

convTest_->setRelRhsErr(relRhsErr_);

}

// Check for relative matrix error; update in our list and residual tests.

if (params->isParameter("Rel Mat Err")) {

relMatErr_ = (MagnitudeType) params->get("Rel Mat Err", (double) relMatErr_default_)

;

params_->set("Rel Mat Err", relMatErr_);

if (convTest_ != Teuchos::null)

convTest_->setRelMatErr(relMatErr_);

}

// Create status tests if we need to.

// Basic test checks maximum iterations.

if (maxIterTest_ == Teuchos::null)

maxIterTest_ = Teuchos::rcp(new Belos::StatusTestMaxIters<ScalarType,MV,OP>(

maxIters_));

// Least error test if needed.

if (trueSolution_ != Teuchos::null)

errorTest_ = Teuchos::rcp(new LeastErrorStatusTest<ScalarType,MV,OP>(trueSolution_,

windowSize_));

// Status test specific to LSQR.

if (convTest_ == Teuchos::null)

convTest_ = Teuchos::rcp(new LSQRStatusTest<ScalarType,MV,OP>(condlim_, termIterMax_

, relRhsErr_, relMatErr_));

if (sTest_ == Teuchos::null)

sTest_ = Teuchos::rcp(new StatusTestCombo_t(StatusTestCombo_t::OR, maxIterTest_,

convTest_));

if (errorTest_ != Teuchos::null)

// add error test to the status test combo

((Teuchos::rcp_dynamic_cast< StatusTestCombo_t >) (sTest_))->addStatusTest(errorTest_

);

if (outputTest_ == Teuchos::null) {

// Create the status test output class.

// This class manages and formats the output from the status test.

Belos::StatusTestOutputFactory<ScalarType,MV,OP> stoFactory(outputStyle_);

outputTest_ = stoFactory.create(printer_, sTest_, outputFreq_, Belos::Passed+Belos::

Failed+Belos::Undefined);

93

// Set the solver string for the output test

std::string solverDesc = " LSQR ";

outputTest_->setSolverDesc(solverDesc);

}

// Create the timer if we need to.

if (timerSolve_ == Teuchos::null) {

std::string solveLabel = label_ + ": LSQRSolMgr total solve time";

timerSolve_ = Teuchos::TimeMonitor::getNewTimer(solveLabel);

}

// Inform the solver manager that the current parameters were set.

isSet_ = true;

}

template<class ScalarType, class MV, class OP>

Teuchos::RCP<const Teuchos::ParameterList>

LSQRSolMgr<ScalarType,MV,OP>::getValidParameters() const

{

static Teuchos::RCP<const Teuchos::ParameterList> validPL;

// Set all the valid parameters and their default values.

if(is_null(validPL)) {

Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();

pl->set("Lambda", lambda_default_, "The default damping parameter.");

pl->set("Condition Limit", condlim_default_,

"The upper limit on the estimate of the condition number of Abar");

pl->set("Maximum Iterations", maxIters_default_,

"The maximum number of block iterations allowed for each\n"

"set of RHS solved.");

pl->set("Term Iter Max", termIterMax_default_,

"The number of consecutive successful convergent iterations");

pl->set("Window Size", windowSize_default_,

"The window size for the least error test");

pl->set("True Solution", trueSolution_default_,

"The true solution for the least error test");

pl->set("Verbosity", verbosity_default_,

"What type(s) of solver information should be outputted\n"

"to the output stream.");

pl->set("Output Style", outputStyle_default_,

"What style is used for the solver information outputted\n"

"to the output stream.");

pl->set("Output Frequency", outputFreq_default_,

"How often convergence information should be outputted\n"

"to the output stream.");

pl->set("Output Stream", outputStream_default_,

94

"A reference-counted pointer to the output stream where all\n"

"solver output is sent.");

pl->set("Rel RHS Err", relRhsErr_default_,

"An estimate in the error in the data defining the\n"

"right hand side.");

pl->set("Rel Mat Err", relMatErr_default_,

"An estimate in the error in the data defining the matrix.");

pl->set("Timer Label", label_default_,

"The string to use as a prefix for the timer labels.");

validPL = pl;

}

return validPL;

}

// Solve method

template<class ScalarType, class MV, class OP>

Belos::ReturnType LSQRSolMgr<ScalarType,MV,OP>::solve() {

// Set the current parameters if they were not set before.

// NOTE: This may occur if the user generated the solver manager with the

// default constructor and then didn’t set any parameters using setParameters.

if (!isSet_) {

setParameters(Teuchos::parameterList(*getValidParameters()));

}

TEST_FOR_EXCEPTION(!problem_->isProblemSet(),LSQRSolMgrLinearProblemFailure, "

LSQRSolMgr::solve(): Linear problem is not ready, setProblem() has not been called.

");

TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*(problem_->getRHS())) != 1,

LSQRSolMgrBlockSizeFailure, "LSQRSolMgr::solve(): Incorrect number of RHS vectors,

should be exactly 1.");

// Inform the linear problem of the current linear system to solve.

std::vector<int> currRHSIdx(1, 0);

problem_->setLSIndex(currRHSIdx);

Teuchos::ParameterList plist;

plist.set("Lambda", lambda_);

outputTest_->reset();

// Assume convergence is achieved, then let any failed convergence set this

// to false.

bool isConverged = true;

// LSQR should be given an all-zero initial guess, so ensure that’s the case.

Teuchos::RCP<MV> x = problem_->getLHS();

x->putScalar((ScalarType) 0.0);

problem_->updateSolution(x);

95

// LSQR solver

Teuchos::RCP<LSQRIter<ScalarType,MV,OP> > lsqr_iter = Teuchos::rcp(new LSQRIter<

ScalarType,MV,OP>(problem_, printer_, outputTest_, plist));

Teuchos::TimeMonitor slvtimer(*timerSolve_);

// Reset the number of iterations.

lsqr_iter->resetNumIters();

// Reset the number of calls that the status test output knows about.

outputTest_->resetNumCalls();

// Set the new state and initialize the solver.

LSQRIterationState<ScalarType,MV> newstate;

lsqr_iter->initializeLSQR(newstate);

// Tell lsqr_iter to iterate

try {

lsqr_iter->iterate();

// Check convergence first

if (convTest_->getStatus() == Belos::Passed) {

}

else if ((errorTest_ != Teuchos::null) && errorTest_->getStatus() == Belos::Passed)

{

}

else if (maxIterTest_->getStatus() == Belos::Passed) {

// We don’t have convergence

isConverged = false;

}

// We returned from iterate(), but none of our status tests Passed.

// Something is wrong, and it is probably our fault.

else {

TEST_FOR_EXCEPTION(true,std::logic_error, "LSQRSolMgr::solve(): Invalid return from

LSQRIteration::iterate().");

}

}

catch (const std::exception &e) {

printer_->stream(Belos::Errors) << "Error! Caught std::exception in LSQRIter::iterate

() at iteration " << lsqr_iter->getNumIters() << std::endl << e.what() << std::

endl;

throw;

}

// Inform the linear problem that we are finished with this linear system.

problem_->setCurrLS();

// Print final summary and timing information.

sTest_->print(printer_->stream(Belos::FinalSummary));

96

Teuchos::TimeMonitor::summarize(printer_->stream(Belos::TimingDetails));

// Get iteration information for this solve.

numIters_ = lsqr_iter->getNumIters();

if (!isConverged) {

return Belos::Unconverged; // return from LSQRSolMgr::solve()

}

return Belos::Converged; // return from LSQRSolMgr::solve()

}

// This method requires the solver manager to return a std::string that

// describes itself.

template<class ScalarType, class MV, class OP>

std::string LSQRSolMgr<ScalarType,MV,OP>::description() const

{

std::ostringstream oss;

oss << "LSQRSolMgr<...,"<<Teuchos::ScalarTraits<ScalarType>::name()<<">";

return oss.str();

}

#endif /* LSQR_SOLMGR_HPP */

A.1.2 LSQRIter.hpp Code

#ifndef LSQR_ITER_HPP

#define LSQR_ITER_HPP

/* LSQRIter.hpp

* Concrete class for performing the LSQR iteration.

*/

#include "BelosConfigDefs.hpp"

#include "BelosTypes.hpp"

#include "BelosIteration.hpp"

#include "BelosLinearProblem.hpp"

#include "BelosOutputManager.hpp"

#include "BelosStatusTest.hpp"

#include "BelosOperatorTraits.hpp"

#include "BelosMultiVecTraits.hpp"

#include "Teuchos_SerialDenseMatrix.hpp"

#include "Teuchos_SerialDenseVector.hpp"

#include "Teuchos_ScalarTraits.hpp"

#include "Teuchos_ParameterList.hpp"

#include "Teuchos_TimeMonitor.hpp"

// LSQRIteration Structures

97

/* Structure to contain pointers to LSQRIteration state variables.

* This struct is utilized by initialize() and getState().

*/

template <class ScalarType, class MV>

struct LSQRIterationState {

/*! \brief Bidiagonalization vector. */

Teuchos::RCP<const MV> U;

/*! \brief Bidiagonalization vector. */

Teuchos::RCP<const MV> V;

/*! \brief The search direction vector. */

Teuchos::RCP<const MV> W;

/*! \brief The A^T*U vector. */

Teuchos::RCP<const MV> Q;

/*! \brief The M*V vector. */

Teuchos::RCP<const MV> P;

/*! \brief The Y vector. */

Teuchos::RCP<const MV> Y;

/*! \brief The damping value. */

ScalarType lambda;

/*! \brief The current residual norm. */

ScalarType resid_norm;

/*! \brief An approximation to the Frobenius norm of A. */

ScalarType frob_mat_norm;

/*! \brief An approximation to the condition number of A. */

ScalarType mat_cond_num;

/*! \brief An estimate of the norm of A^T*resid. */

ScalarType mat_resid_norm;

/*! \brief An estimate of the norm of the solution. */

ScalarType sol_norm;

/*! \brief The norm of the RHS vector b. */

ScalarType bnorm;

LSQRIterationState() : U(Teuchos::null), V(Teuchos::null),

W(Teuchos::null), Q(Teuchos::null),

P(Teuchos::null), Y(Teuchos::null),

lambda(0.0),

resid_norm(0.0), frob_mat_norm(0.0),

mat_cond_num(0.0), mat_resid_norm(0.0),

sol_norm(0.0), bnorm(0.0)

{}

};

// LSQRIteration Exceptions

/* LSQRIterationInitFailure is thrown when the LSQRIteration object is unable

* to generate an initial iterate in the initialize() routine. This

98

* std::exception is thrown from the initialize() method, which is called by

* the user or from the iterate() method if isInitialized() == false. In the

* case that this std::exception is thrown, isInitialized() will be false and

* the user will need to provide a new initial iterate to the iteration.

*/

class LSQRIterationInitFailure : public Belos::BelosError {public:

LSQRIterationInitFailure(const std::string& what_arg) : Belos::BelosError(what_arg)

{}};

/* LSQRIterateFailure is thrown when the LSQRIteration object is unable to

* compute the next iterate in the iterate() routine. This std::exception is

* thrown from the iterate() method.

*/

class LSQRIterateFailure : public Belos::BelosError {public:

LSQRIterateFailure(const std::string& what_arg) : Belos::BelosError(what_arg)

{}};

template<class ScalarType, class MV, class OP>

class LSQRIter : virtual public Belos::Iteration<ScalarType,MV,OP> {

public:

typedef Belos::MultiVecTraits<ScalarType,MV> MVT;

typedef Belos::OperatorTraits<ScalarType,MV,OP> OPT;

typedef Teuchos::ScalarTraits<ScalarType> SCT;

typedef typename SCT::magnitudeType MagnitudeType;

// Constructors/Destructor

/* LSQRIter constructor with linear problem, solver utilities, and parameter

* list of solver options. This constructor takes pointers required by the

* linear solver iteration, in addition to a parameter list of options for the

* linear solver.

*/

LSQRIter(const Teuchos::RCP<Belos::LinearProblem<ScalarType,MV,OP> > &problem, const

Teuchos::RCP<Belos::OutputManager<ScalarType> > &printer, const Teuchos::RCP<Belos

::StatusTest<ScalarType,MV,OP> > &tester, Teuchos::ParameterList ¶ms);

// Destructor.

virtual ~LSQRIter() {};

// Solver methods

/* This method performs LSQR iterations until the status test indicates the

* need to stop or an error occurs (in which case, an std::exception is

* thrown). This function will first determine whether the solver is

* initialized; if not, it will call initialize() using default arguments.

* After initialization, the solver performs LSQR iterations until the status

99

* test evaluates as Belos::Passed, at which point the method returns to the

* caller. The status test is queried at the beginning of the iteration.

*/

void iterate();

/* Initialize the solver to an iterate, providing a complete state. The

* LSQRIter contains a certain amount of state, consisting of two

* bidiagonalization vectors, a descent direction, several other vectors, a

* damping value, and various estimates of errors and the like. For any

* pointer in newstate which directly points to the multivectors in the

* solver, the data is not copied.

*/

void initializeLSQR(LSQRIterationState<ScalarType,MV> newstate);

// Initialize the solver.

void initialize()

{

LSQRIterationState<ScalarType,MV> empty;

initializeLSQR(empty);

}

/* Get the current state of the linear solver. The data is only valid if

* isInitialized() == true.

* Return: A LSQRIterationState object containing const pointers to the

* current solver state.

*/

LSQRIterationState<ScalarType,MV> getState() const {

LSQRIterationState<ScalarType,MV> state;

state.U = U_;

state.V = V_;

state.W = W_;

state.Q = Q_;

state.P = P_;

state.Y = Y_;

state.lambda = lambda_;

state.resid_norm = resid_norm_;

state.frob_mat_norm = frob_mat_norm_;

state.mat_cond_num = mat_cond_num_;

state.mat_resid_norm = mat_resid_norm_;

state.sol_norm = sol_norm_;

state.bnorm = bnorm_;

return state;

}

// Status methods

100

// Get the current iteration count.

int getNumIters() const { return iter_; }

// Reset the iteration count.

void resetNumIters(int iter = 0) { iter_ = iter; }

// Get the norms of the residuals native to the solver.

// This method returns a null pointer because residuals aren’t used with LSQR.

Teuchos::RCP<const MV> getNativeResiduals(std::vector<MagnitudeType> *norms) const {

return Teuchos::null; }

// Get the current update to the linear system.

// This method returns a null pointer because the linear problem is current.

Teuchos::RCP<MV> getCurrentUpdate() const { return Teuchos::null; }

// Accessor methods

// Get a constant reference to the linear problem.

const Belos::LinearProblem<ScalarType,MV,OP>& getProblem() const { return *lp_; }

// Get blocksize to be used by iterative solver in solving this linear problem

int getBlockSize() const { return 1; }

// Set blocksize to be used by iterative solver in solving this linear problem

void setBlockSize(int blockSize) {

TEST_FOR_EXCEPTION(blockSize!=1,std::invalid_argument, "LSQRIter::setBlockSize():

Cannot use a block size that is not one.");

}

// States whether the solver has been initialized or not.

bool isInitialized() { return initialized_; }

private:

// Method for initalizing the state storage needed by LSQR.

void setStateSize();

// Classes inputed through constructor that define the linear problem to be

// solved.

const Teuchos::RCP<Belos::LinearProblem<ScalarType,MV,OP> > lp_;

const Teuchos::RCP<Belos::OutputManager<ScalarType> > om_;

const Teuchos::RCP<Belos::StatusTest<ScalarType,MV,OP> > stest_;

// Current solver state.

/* initialized_ specifies that the basis vectors have been initialized and the

* iterate() routine is capable of running; _initialize is controlled by the

* initialize() member method. For the implications of the state of

101

* initialized_, please see documentation for initialize().

*/

bool initialized_;

/* stateStorageInitialized_ specifies that the state storage has been

* initialized. This initialization may be postponed if the linear problem

* was generated without the right-hand side or solution vectors.

*/

bool stateStorageInitialized_;

// Current number of iterations performed.

int iter_;

// Bidiagonalization vector

Teuchos::RCP<MV> U_;

// Bidiagonalization vector

Teuchos::RCP<MV> V_;

// Direction vector

Teuchos::RCP<MV> W_;

// A^T*U vector

Teuchos::RCP<MV> Q_;

// M*V vector

Teuchos::RCP<MV> P_;

// Y vector

Teuchos::RCP<MV> Y_;

// Damping value

ScalarType lambda_;

// Residual norm estimate

ScalarType resid_norm_;

// Frobenius norm estimate

ScalarType frob_mat_norm_;

// Condition number estimate

ScalarType mat_cond_num_;

// A^T*resid norm estimate

ScalarType mat_resid_norm_;

// Solution norm estimate

ScalarType sol_norm_;

// RHS norm

ScalarType bnorm_;

};

// Constructor.

template<class ScalarType, class MV, class OP>

LSQRIter<ScalarType,MV,OP>::LSQRIter(const Teuchos::RCP<Belos::LinearProblem<ScalarType

,MV,OP> > &problem, const Teuchos::RCP<Belos::OutputManager<ScalarType> > &printer,

const Teuchos::RCP<Belos::StatusTest<ScalarType,MV,OP> > &tester, Teuchos::

ParameterList ¶ms):

lp_(problem),

102

om_(printer),

stest_(tester),

initialized_(false),

stateStorageInitialized_(false),

iter_(0),

lambda_(params.get("Lambda", (ScalarType) 0.0))

{

}

// Setup the state storage.

template <class ScalarType, class MV, class OP>

void LSQRIter<ScalarType,MV,OP>::setStateSize ()

{

if (!stateStorageInitialized_) {

// Check if there is any multivector to clone from.

Teuchos::RCP<const MV> lhsMV = lp_->getLHS();

Teuchos::RCP<const MV> rhsMV = lp_->getRHS();

if (lhsMV == Teuchos::null || rhsMV == Teuchos::null) {

stateStorageInitialized_ = false;

return;

}

else {

// Initialize the state storage. If the subspace has not been

// initialized before, generate it using the LHS and RHS from lp_.

if (U_ == Teuchos::null) {

TEST_FOR_EXCEPTION(rhsMV == Teuchos::null, std::invalid_argument, "LSQRIter::

setStateSize(): linear problem does not specify right hand multivector to clone

from.");

TEST_FOR_EXCEPTION(lhsMV == Teuchos::null, std::invalid_argument, "LSQRIter::

setStateSize(): linear problem does not specify left hand multivector to clone

from.");

U_ = MVT::Clone(*rhsMV, 1);

V_ = MVT::Clone(*lhsMV, 1);

W_ = MVT::Clone(*lhsMV, 1);

if (lp_->isRightPrec()) {

Q_ = MVT::Clone(*lhsMV, 1);

P_ = MVT::Clone(*lhsMV, 1);

Y_ = MVT::Clone(*lhsMV, 1);

}

}

// State storage has now been initialized.

stateStorageInitialized_ = true;

}

}

103

}

// Initialize this iteration object

template <class ScalarType, class MV, class OP>

void LSQRIter<ScalarType,MV,OP>::initializeLSQR(LSQRIterationState<ScalarType,MV>

newstate)

{

// Initialize the state storage if it isn’t already.

if (!stateStorageInitialized_)

setStateSize();

TEST_FOR_EXCEPTION(!stateStorageInitialized_,std::invalid_argument, "LSQRIter::

initialize(): Cannot initialize state storage!");

std::string errstr("LSQRIter::initialize(): Specified multivectors must have a

consistent length and width.");

// Create convenience variables for zero and one.

const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();

const ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();

// Compute initial bidiagonalization vectors and search direction.

Teuchos::RCP<const MV> lhsMV = lp_->getLHS();

Teuchos::RCP<const MV> rhsMV = lp_->getRHS();

lp_->applyOp(*lhsMV, *U_);

MVT::MvAddMv(one, *rhsMV, -one, *U_, *U_);

if (lp_->isRightPrec()) {

lp_->getOperator()->apply(*U_, *Q_, Teuchos::TRANS);

lp_->getRightPrec()->apply(*Q_, *V_, Teuchos::TRANS);

} else {

lp_->getOperator()->apply(*U_, *V_, Teuchos::TRANS);

}

MVT::MvAddMv(one, *V_, zero, *V_, *W_);

frob_mat_norm_ = zero;

mat_cond_num_ = zero;

sol_norm_ = zero;

// The solver is initialized.

initialized_ = true;

}

// Iterate until the status test informs us we should stop.

template <class ScalarType, class MV, class OP>

void LSQRIter<ScalarType,MV,OP>::iterate()

{

// Allocate/initialize data structures

104

if (initialized_ == false) {

initialize();

}

// Create convenience variables for zero and one.

const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();

const MagnitudeType zero = Teuchos::ScalarTraits<MagnitudeType>::zero();

// Allocate memory for scalars.

std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> alpha(1);

std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> beta(1);

std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> wnorm2(1);

ScalarType rhobar, phibar, cs1, phi, rho, cs, sn, theta, xxnorm = zero, common;

ScalarType zetabar, sn1, psi, res = zero, bbnorm = zero, ddnorm = zero, gamma, tau;

ScalarType cs2 = -one, sn2 = zero, gammabar, zeta = zero, delta;

// Allocate memory for working vectors.

// Operator applied to bidiagonalization vector

Teuchos::RCP<MV> AV;

// Transpose of operator applied to bidiagonalization vector

Teuchos::RCP<MV> AtU;

AV = MVT::Clone(*U_, 1);

AtU = MVT::Clone(*V_, 1);

// Get the current solution vector.

Teuchos::RCP<MV> cur_soln_vec = lp_->getCurrLHSVec();

// Check that the current solution vector only has one column.

TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*cur_soln_vec) != 1, LSQRIterateFailure, "

LSQRIter::iterate(): current linear system has more than one vector!");

// Compute alpha and beta and scale bidiagonalization vectors

MVT::MvNorm(*U_, beta);

MVT::MvScale(*U_, one / beta[0]);

if (lp_->isRightPrec()) {

MVT::MvScale(*Q_, one / beta[0]);

lp_->getRightPrec()->apply(*Q_, *V_, Teuchos::TRANS);

MVT::MvNorm(*V_, alpha);

MVT::MvScale(*V_, one / alpha[0]);

} else {

MVT::MvScale(*V_, one / beta[0]);

MVT::MvNorm(*V_, alpha);

MVT::MvScale(*V_, one / alpha[0]);

}

MVT::MvScale(*W_, one / (beta[0] * alpha[0]));

105

rhobar = alpha[0];

phibar = beta[0];

resid_norm_ = beta[0];

mat_resid_norm_ = alpha[0] * beta[0];

bnorm_ = beta[0];

// Iterate until the status test tells us to stop.

while (stest_->checkStatus(this) != Belos::Passed) {

// Increment the iteration.

iter_++;

// Perform the next step of the bidiagonalization.

if (lp_->isRightPrec()) {

lp_->applyRightPrec(*V_, *P_);

lp_->applyOp(*P_, *AV);

} else {

lp_->applyOp(*V_, *AV);

}

MVT::MvAddMv(one, *AV, -alpha[0], *U_, *U_);

MVT::MvNorm(*U_, beta);

// Check that beta is a positive number.

TEST_FOR_EXCEPTION(SCT::real(beta[0]) <= zero, LSQRIterateFailure, "LSQRIter::

iterate(): non-positive value for beta encountered!");

bbnorm += alpha[0]*alpha[0] + beta[0]*beta[0] + lambda_*lambda_;

MVT::MvScale(*U_, one / beta[0]);

if (lp_->isRightPrec()) {

lp_->getOperator()->apply(*U_, *Q_, Teuchos::TRANS);

lp_->getRightPrec()->apply(*Q_, *AtU, Teuchos::TRANS);

} else {

lp_->getOperator()->apply(*U_, *AtU, Teuchos::TRANS);

}

MVT::MvAddMv(one, *AtU, -beta[0], *V_, *V_);

MVT::MvNorm(*V_, alpha);

// Check that alpha is a positive number.

TEST_FOR_EXCEPTION(SCT::real(alpha[0]) <= zero, LSQRIterateFailure, "LSQRIter::

iterate(): non-positive value for alpha encountered!");

MVT::MvScale(*V_, one / alpha[0]);

// Use a plane rotation to eliminate the damping parameter. This alters

// the diagonal (rhobar) of the lower-bidiagonal matrix.

common = Teuchos::ScalarTraits< ScalarType >::squareroot(rhobar*rhobar + lambda_*

lambda_);

106

cs1 = rhobar / common;

sn1 = lambda_ / common;

psi = sn1 * phibar;

phibar = cs1 * phibar;

// Use a plane rotation to eliminate the subdiagonal element (beta) of the

// lower-bidiagonal matrix, giving an upper-bidiagonal matrix.

rho = Teuchos::ScalarTraits< ScalarType >::squareroot(rhobar*rhobar + lambda_*

lambda_ + beta[0]*beta[0]);

cs = common / rho;

sn = beta[0] / rho;

theta = sn * alpha[0];

rhobar = -cs * alpha[0];

phi = cs * phibar;

phibar = sn * phibar;

tau = sn * phi;

delta = sn2 * rho;

gammabar = -cs2 * rho;

zetabar = (phi - delta*zeta) / gammabar;

sol_norm_ = Teuchos::ScalarTraits< ScalarType >::squareroot(xxnorm + zetabar*

zetabar);

gamma = Teuchos::ScalarTraits< ScalarType >::squareroot(gammabar*gammabar + theta*

theta);

cs2 = gammabar / gamma;

sn2 = theta / gamma;

zeta = (phi - delta*zeta) / gamma;

xxnorm += zeta*zeta;

// Update the solution vector and search direction vector.

if (lp_->isRightPrec()) {

MVT::MvAddMv(phi / rho, *W_, one, *Y_, *Y_);

lp_->applyRightPrec(*Y_, *cur_soln_vec);

} else {

MVT::MvAddMv(phi / rho, *W_, one, *cur_soln_vec, *cur_soln_vec);

}

lp_->updateSolution();

MVT::MvNorm(*W_, wnorm2);

ddnorm += (one / rho)*(one / rho) * wnorm2[0]*wnorm2[0];

MVT::MvAddMv(one, *V_, -theta / rho, *W_, *W_);

frob_mat_norm_ = Teuchos::ScalarTraits< ScalarType >::squareroot(bbnorm);

mat_cond_num_ = frob_mat_norm_ * Teuchos::ScalarTraits< ScalarType >::squareroot(

ddnorm);

res+= psi*psi;

107

resid_norm_ = Teuchos::ScalarTraits< ScalarType >::squareroot(phibar*phibar + res);

mat_resid_norm_ = alpha[0] * Teuchos::ScalarTraits< ScalarType >::magnitude(tau);

} // end while (sTest_->checkStatus(this) != Passed)

}

#endif /* LSQR_ITER_HPP */

A.1.3 LSQRStatusTest.hpp Code

#ifndef LSQR_STATUS_TEST_HPP

#define LSQR_STATUS_TEST_HPP

/* LSQRStatusTest.hpp

* Belos::StatusTest class for specifying convergence of LSQR.

*/

#include "BelosStatusTest.hpp"

template <class ScalarType, class MV, class OP>

class LSQRStatusTest: public Belos::StatusTest<ScalarType,MV,OP> {

public:

typedef Teuchos::ScalarTraits<ScalarType> SCT;

typedef typename SCT::magnitudeType MagnitudeType;

typedef Belos::MultiVecTraits<ScalarType,MV> MVT;

// Constructor/Destructor.

/* The constructor takes four optional arguments, specifying the upper limit

* of the apparent condition number of Abar, the number of successful

* convergent iterations, an estimate of the relative error in the data

* defining b, and an estimate of the relative error in the data defining A.

* The value of 0 will be used as default for all of these arguments, except

* for the number of iterations will have a default of 1.

*/

LSQRStatusTest(MagnitudeType cond_lim = 0.0, int term_iter_max = 1, MagnitudeType

rel_rhs_err = 0.0, MagnitudeType rel_mat_err = 0.0);

// Destructor

virtual ~LSQRStatusTest();

// Parameter definition methods.

/* Set the value of the tolerance. We allow the limit of the condition number

* of Abar to be reset for cases where, in the process of testing convergence,

* we find that the initial limit was too tight or too lax.

*/

108

int setCondLim(MagnitudeType cond_lim) {

cond_lim_ = cond_lim;

cond_tol_ = (cond_lim > 0) ? (Teuchos::ScalarTraits< MagnitudeType >::one() /

cond_lim) : Teuchos::ScalarTraits< MagnitudeType >::eps();

return(0);}

int setTermIterMax(int term_iter_max) {

term_iter_max_ = term_iter_max;

if (term_iter_max_ < 1)

term_iter_max_ = 1;

return(0);}

int setRelRhsErr(MagnitudeType rel_rhs_err) {

rel_rhs_err_ = rel_rhs_err;

return(0);}

int setRelMatErr(MagnitudeType rel_mat_err) {

rel_mat_err_ = rel_mat_err;

return(0);}

// Status methods

/* This method checks to see if the convergence criteria are met using the

* current information from the iterative solver, returning one of

* Belos::Unconverged, Belos::Converged, or Belos::Failed.

*/

Belos::StatusType checkStatus(Belos::Iteration<ScalarType,MV,OP> *iSolver);

// Return the result of the most recent CheckStatus call.

Belos::StatusType getStatus() const {return(status_);}

// Reset the status test to the initial internal state.

void reset();

// Print methods

// Output formatted description of stopping test to output stream.

void print(std::ostream& os, int indent = 0) const;

// Print message for each status specific to this stopping test.

void printStatus(std::ostream& os, Belos::StatusType type) const;

// Methods to access data members.

// Return value of upper limit of condition number of Abar set in constructor.

MagnitudeType getCondLim() const {return(cond_lim_);};

// Return number of successful convergent iterations required.

109

int getTermIterMax() const {return(term_iter_max_);};

// Return value of the estimate of the relative error in the data defining b.

MagnitudeType getRelRhsErr() const {return(rel_rhs_err_);};

// Return value of the estimate of the relative error in the data defining A.

MagnitudeType getMatErr() const {return(rel_mat_err_);};

// Call to setup initialization.

Belos::StatusType firstCallCheckStatusSetup(Belos::Iteration<ScalarType,MV,OP>* iSolver

);

// Overridden from Teuchos::Describable

// Method to return description of the LSQR status test.

std::string description() const

{

std::ostringstream oss;

oss << "LSQRStatusTest<>: [limit of condition number = " << cond_lim_ << "]";

return oss.str();

}

private:

// Upper limit of condition number of Abar

MagnitudeType cond_lim_;

// Error in data defining b

MagnitudeType rel_rhs_err_;

// Error in data defining A

MagnitudeType rel_mat_err_;

// Tolerance used to determine convergence: the reciprocal of cond_lim_ or, if

// that is zero, machine epsilon

MagnitudeType cond_tol_;

// Status

Belos::StatusType status_;

// Is this the first time CheckStatus is called?

bool firstcallCheckStatus_;

// How many iterations in a row a test for convergence has passed.

int term_iter_;

// How many iterations in a row a passing test for convergence is required.

int term_iter_max_;

};

template <class ScalarType, class MV, class OP>

LSQRStatusTest<ScalarType,MV,OP>::LSQRStatusTest(MagnitudeType cond_lim /* = 0 */, int

term_iter_max /* = 1 */, MagnitudeType rel_rhs_err /* = 0 */, MagnitudeType

110

rel_mat_err /* = 0 */)

: cond_lim_(cond_lim),

term_iter_max_(term_iter_max),

rel_rhs_err_(rel_rhs_err),

rel_mat_err_(rel_mat_err),

status_(Belos::Undefined),

firstcallCheckStatus_(true)

{}

template <class ScalarType, class MV, class OP>

LSQRStatusTest<ScalarType,MV,OP>::~LSQRStatusTest()

{}

template <class ScalarType, class MV, class OP>

void LSQRStatusTest<ScalarType,MV,OP>::reset()

{

status_ = Belos::Undefined;

firstcallCheckStatus_ = true;

}

template <class ScalarType, class MV, class OP>

Belos::StatusType LSQRStatusTest<ScalarType,MV,OP>::firstCallCheckStatusSetup(Belos::

Iteration<ScalarType,MV,OP>* iSolver)

{

if (firstcallCheckStatus_) {

firstcallCheckStatus_ = false;

term_iter_ = -1;

if (cond_lim_ > 0)

cond_tol_ = 1.0 / cond_lim_;

else

cond_tol_ = Teuchos::ScalarTraits< MagnitudeType >::eps();

}

return Belos::Undefined;

}

template <class ScalarType, class MV, class OP>

Belos::StatusType LSQRStatusTest<ScalarType,MV,OP>::checkStatus(Belos::Iteration<

ScalarType,MV,OP>* iSolver)

{

if (firstcallCheckStatus_) {

Belos::StatusType status = firstCallCheckStatusSetup(iSolver);

if(status==Belos::Failed) {

status_ = Belos::Failed;

return(status_);

}

111

}

const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();

const MagnitudeType zero = Teuchos::ScalarTraits<MagnitudeType>::zero();

bool flag = false;

LSQRIter<ScalarType,MV,OP>* solver = dynamic_cast< LSQRIter<ScalarType,MV,OP>* > (

iSolver);

LSQRIterationState< ScalarType, MV > state = solver->getState();

// Compute the three stopping criteria

ScalarType stop_crit_1 = state.resid_norm / state.bnorm;

ScalarType stop_crit_2 = (state.resid_norm > zero) ? state.mat_resid_norm / (state.

frob_mat_norm * state.resid_norm) : zero;

ScalarType stop_crit_3 = one / state.mat_cond_num;

ScalarType resid_tol = rel_rhs_err_ + rel_mat_err_ * state.mat_resid_norm * state.

sol_norm / state.bnorm;

ScalarType resid_tol_mach = Teuchos::ScalarTraits< MagnitudeType >::eps() + Teuchos::

ScalarTraits< MagnitudeType >::eps() * state.mat_resid_norm * state.sol_norm /

state.bnorm;

// Check if any stopping criteria have been met

if (stop_crit_1 <= resid_tol || stop_crit_2 <= rel_mat_err_ || stop_crit_3 <= cond_tol_

|| stop_crit_1 <= resid_tol_mach || stop_crit_2 <= Teuchos::ScalarTraits<

MagnitudeType >::eps() || stop_crit_3 <= Teuchos::ScalarTraits< MagnitudeType >::

eps()) {

flag = true;

}

// Check if stopping criteria have been met for enough consecutive iterations.

if (!flag) {

term_iter_ = -1;

}

term_iter_++;

status_ = (term_iter_ < term_iter_max_) ? Belos::Failed : Belos::Passed;

return status_;

}

template <class ScalarType, class MV, class OP>

void LSQRStatusTest<ScalarType,MV,OP>::print(std::ostream& os, int indent) const

{

for (int j = 0; j < indent; j++)

os << ’ ’;

printStatus(os, status_);

os << "limit of condition number = " << cond_lim_ << std::endl;

112

}

template <class ScalarType, class MV, class OP>

void LSQRStatusTest<ScalarType,MV,OP>::printStatus(std::ostream&os, Belos::StatusType

type) const

{

os << std::left << std::setw(13) << std::setfill(’.’);

switch (type) {

case Belos::Passed:

os << "OK";

break;

case Belos::Failed:

os << "Failed";

break;

case Belos::Undefined:

default:

os << "**";

break;

}

os << std::left << std::setfill(’ ’);

return;

}

#endif /* LSQR_STATUS_TEST_HPP */

A.2 Code for MRNSD

A.2.1 MRNSDSolMgr.hpp Code

#ifndef MRNSD_SOLMGR_HPP

#define MRNSD_SOLMGR_HPP

/* MRNSDSolMgr.hpp

* The MRNSDSolMgr provides a solver manager for the MRNSD linear solver.

*/

#include "BelosConfigDefs.hpp"

#include "BelosTypes.hpp"

#include "BelosLinearProblem.hpp"

#include "BelosSolverManager.hpp"

#include "BelosStatusTestMaxIters.hpp"

#include "BelosStatusTestCombo.hpp"

#include "BelosOutputManager.hpp"

#include "Teuchos_TimeMonitor.hpp"

113

#include "MRNSDIter.hpp"

#include "MRNSDStatusTest.hpp"

#include "LeastErrorStatusTest.hpp"

// MRNSDSolMgr Exceptions

/* MRNSDSolMgrLinearProblemFailure is thrown when the linear problem is not

* setup (i.e. setProblem() was not called) when solve() is called.

* This std::exception is thrown from the MRNSDSolMgr::solve() method.

*/

class MRNSDSolMgrLinearProblemFailure : public Belos::BelosError {public:

MRNSDSolMgrLinearProblemFailure(const std::string& what_arg) : Belos::BelosError(

what_arg)

{}};

/* MRNSDSolMgrBlockSizeFailure is thrown when the linear problem has more than

* one RHS. This std::exception is thrown from the MRNSDSolMgr::solve() method.

*/

class MRNSDSolMgrBlockSizeFailure : public Belos::BelosError {public:

MRNSDSolMgrBlockSizeFailure(const std::string& what_arg) : Belos::BelosError(what_arg

)

{}};

template<class ScalarType, class MV, class OP>

class MRNSDSolMgr : public Belos::SolverManager<ScalarType,MV,OP> {

private:

typedef Belos::MultiVecTraits<ScalarType,MV> MVT;

typedef Belos::OperatorTraits<ScalarType,MV,OP> OPT;

typedef Teuchos::ScalarTraits<ScalarType> SCT;

typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;

typedef Teuchos::ScalarTraits<MagnitudeType> MT;

public:

// Constructors/Destructor

/* Empty constructor for MRNSDSolMgr. This constructor takes no arguments and

* sets the default values for the solver. The linear problem must be passed

* in using setProblem() before solve() is called on this object. The solver

* values can be changed using setParameters().

*/

MRNSDSolMgr();

/* Basic constructor for MRNSDSolMgr. This constructor accepts the

* LinearProblem to be solved in addition to a parameter list of options for

* the solver manager. These options include the following:

114

* - "Maximum Iterations" - an int specifying the maximum number of iterations

* the underlying solver is allowed to perform. Default: 1000

* - "Tolerance" - a MagnitudeType specifying the convergence tolerance.

* Default: -1, resulting in a tolerance computed to be sqrt(eps)*norm(A^T*b).

* - "Verbosity" - a sum of Belos::MsgType specifying the verbosity. Default:

* Belos::Errors

* - "Output Style" - a Belos::OutputType specifying the style of output.

* Default: Belos::General

* - "Output Stream" - a reference-counted pointer to the output stream where

* all solver output is sent. Default: Teuchos::rcp(&std::cout,false)

* - "Output Frequency" - an int specifying how often convergence information

* should be outputted. Default: -1 (never)

* - "Timer Label" - a std::string to use as a prefix for the timer labels.

* Default: "Belos"

*/

MRNSDSolMgr(const Teuchos::RCP<Belos::LinearProblem<ScalarType,MV,OP> > &problem,

const Teuchos::RCP<Teuchos::ParameterList> &pl);

// Destructor.

virtual ~MRNSDSolMgr() {};

// Accessor methods

const Belos::LinearProblem<ScalarType,MV,OP>& getProblem() const {

return *problem_;

}

// Get a parameter list containing the valid parameters for this object.

Teuchos::RCP<const Teuchos::ParameterList> getValidParameters() const;

// Get a parameter list containing the current parameters for this object.

Teuchos::RCP<const Teuchos::ParameterList> getCurrentParameters() const { return

params_; }

/* Return the timers for this object.

* The timers are ordered as follows - time spent in solve() routine.

*/

Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {

return tuple(timerSolve_);

}

// Get the iteration count for the most recent call to solve().

int getNumIters() const {

return numIters_;

}

115

/* Return whether a loss of accuracy was detected by this solver during the

* most current solve.

*/

bool isLOADetected() const { return false; }

// Set methods

// Set the linear problem that needs to be solved.

void setProblem(const Teuchos::RCP<Belos::LinearProblem<ScalarType,MV,OP> > &problem)

{ problem_ = problem; }

// Set parameters the solver manager should use to solve the linear problem.

void setParameters(const Teuchos::RCP<Teuchos::ParameterList> ¶ms);

// Reset methods

/* Performs a reset of the solver manager specified by the ResetType. This

* informs the solver manager that the solver should prepare for the next call

* to solve by resetting certain elements of the iterative solver strategy.

*/

void reset(const Belos::ResetType type) { if ((type & Belos::Problem) && !Teuchos::

is_null(problem_)) problem_->setProblem(); }

// Solver application methods

/* This method performs possibly repeated calls to the underlying linear

* solver’s iterate() routine until the problem has been solved (as decided by

* the solver manager) or the solver manager decides to quit. This method

* calls MRNSDIter::iterate(), which will return either because a specially

* constructed status test evaluates to Belos::Passed or an std::exception is

* thrown. A return from MRNSDIter::iterate() signifies one of the following

* scenarios:

* - the maximum number of iterations has been exceeded. In this scenario, the

* current solution to the linear system will be placed in the linear problem

* and return Belos::Unconverged.

* - global convergence has been met. In this case, the current solution to

* the linear system will be placed in the linear problem and the solver

* manager will return Belos::Converged.

* Return: Belos::ReturnType specifying:

* - Belos::Converged: the linear problem was solved to the specification

* required by the solver manager.

* - Belos::Unconverged: the linear problem was not solved to the

* specification desired by the solver manager.

*/

Belos::ReturnType solve();

// Overridden from Teuchos::Describable

// Method to return description of the MRNSD solver manager

116

std::string description() const;

private:

// Linear problem.

Teuchos::RCP<Belos::LinearProblem<ScalarType,MV,OP> > problem_;

// Output manager.

Teuchos::RCP<Belos::OutputManager<ScalarType> > printer_;

Teuchos::RCP<std::ostream> outputStream_;

// Status test.

Teuchos::RCP<Belos::StatusTest<ScalarType,MV,OP> > sTest_;

Teuchos::RCP<Belos::StatusTestMaxIters<ScalarType,MV,OP> > maxIterTest_;

Teuchos::RCP<MRNSDStatusTest<ScalarType,MV,OP> > convTest_;

Teuchos::RCP<LeastErrorStatusTest<ScalarType,MV,OP> > errorTest_;

Teuchos::RCP<Belos::StatusTestOutput<ScalarType,MV,OP> > outputTest_;

// Current parameter list.

Teuchos::RCP<ParameterList> params_;

// Default solver values.

static const ScalarType tolerance_default_;

static const int maxIters_default_;

static const int verbosity_default_;

static const int outputStyle_default_;

static const int outputFreq_default_;

static const int windowSize_default_;

static const std::string label_default_;

static const Teuchos::RCP<std::ostream> outputStream_default_;

static const Teuchos::RCP< MV > trueSolution_default_;

// Current solver values.

ScalarType tolerance_;

int maxIters_, numIters_, windowSize_;

int verbosity_, outputStyle_, outputFreq_;

Teuchos::RCP< MV > trueSolution_;

// Timers.

std::string label_;

Teuchos::RCP<Teuchos::Time> timerSolve_;

// Internal state variables.

bool isSet_;

};

// Default solver values.

template<class ScalarType, class MV, class OP>

const ScalarType MRNSDSolMgr<ScalarType,MV,OP>::tolerance_default_ = -1.0;

template<class ScalarType, class MV, class OP>

117

const Teuchos::RCP< MV > MRNSDSolMgr<ScalarType,MV,OP>::trueSolution_default_ = Teuchos::

null;

template<class ScalarType, class MV, class OP>

const int MRNSDSolMgr<ScalarType,MV,OP>::windowSize_default_ = 1;

template<class ScalarType, class MV, class OP>

const int MRNSDSolMgr<ScalarType,MV,OP>::maxIters_default_ = 1000;

template<class ScalarType, class MV, class OP>

const int MRNSDSolMgr<ScalarType,MV,OP>::verbosity_default_ = Belos::Errors;

template<class ScalarType, class MV, class OP>

const int MRNSDSolMgr<ScalarType,MV,OP>::outputStyle_default_ = Belos::General;

template<class ScalarType, class MV, class OP>

const int MRNSDSolMgr<ScalarType,MV,OP>::outputFreq_default_ = -1;

template<class ScalarType, class MV, class OP>

const std::string MRNSDSolMgr<ScalarType,MV,OP>::label_default_ = "Belos";

template<class ScalarType, class MV, class OP>

const Teuchos::RCP<std::ostream> MRNSDSolMgr<ScalarType,MV,OP>::outputStream_default_ =

Teuchos::rcp(&std::cout,false);

// Empty Constructor

template<class ScalarType, class MV, class OP>

MRNSDSolMgr<ScalarType,MV,OP>::MRNSDSolMgr() :

outputStream_(outputStream_default_),

tolerance_(tolerance_default_),

trueSolution_(trueSolution_default_),

windowSize_(windowSize_default_),

maxIters_(maxIters_default_),

verbosity_(verbosity_default_),

outputStyle_(outputStyle_default_),

outputFreq_(outputFreq_default_),

label_(label_default_),

isSet_(false)

{}

// Basic Constructor

template<class ScalarType, class MV, class OP>

MRNSDSolMgr<ScalarType,MV,OP>::MRNSDSolMgr(const Teuchos::RCP<Belos::LinearProblem<

ScalarType,MV,OP> > &problem, const Teuchos::RCP<Teuchos::ParameterList> &pl) :

118

problem_(problem),

outputStream_(outputStream_default_),

tolerance_(tolerance_default_),

trueSolution_(trueSolution_default_),

windowSize_(windowSize_default_),

maxIters_(maxIters_default_),

verbosity_(verbosity_default_),

outputStyle_(outputStyle_default_),

outputFreq_(outputFreq_default_),

label_(label_default_),

isSet_(false)

{

TEST_FOR_EXCEPTION(problem_ == Teuchos::null, std::invalid_argument, "Problem not given

to solver manager.");

/* If the parameter list pointer is null, then set the current parameters to

* the default parameter list.

*/

if (!is_null(pl)) {

setParameters(pl);

}

}

template<class ScalarType, class MV, class OP>

void MRNSDSolMgr<ScalarType,MV,OP>::setParameters(const Teuchos::RCP<Teuchos::

ParameterList> ¶ms)

{

// Create the internal parameter list if ones doesn’t already exist.

if (params_ == Teuchos::null) {

params_ = Teuchos::rcp(new Teuchos::ParameterList(*getValidParameters()));

}

else {

params->validateParameters(*getValidParameters());

}

// Check for window size; update in our list and status test.

if (params->isParameter("Window Size")) {

windowSize_ = params->get("Window Size", windowSize_default_);

params_->set("Window Size", windowSize_);

}

// Check for maximum number of iterations; update in our list and status test.

if (params->isParameter("Maximum Iterations")) {

maxIters_ = params->get("Maximum Iterations",maxIters_default_);

params_->set("Maximum Iterations", maxIters_);

119

if (maxIterTest_!=Teuchos::null)

maxIterTest_->setMaxIters(maxIters_);

}

// Check to see if timer label changed; update in our list and solver timer.

if (params->isParameter("Timer Label")) {

std::string tempLabel = params->get("Timer Label", label_default_);

if (tempLabel != label_) {

label_ = tempLabel;

params_->set("Timer Label", label_);

std::string solveLabel = label_ + ": MRNSDSolMgr total solve time";

timerSolve_ = Teuchos::TimeMonitor::getNewTimer(solveLabel);

}

}

// Check for a change in verbosity level; update in our list.

if (params->isParameter("Verbosity")) {

if (Teuchos::isParameterType<int>(*params,"Verbosity")) {

verbosity_ = params->get("Verbosity", verbosity_default_);

} else {

verbosity_ = (int)Teuchos::getParameter<Belos::MsgType>(*params,"Verbosity");

}

params_->set("Verbosity", verbosity_);

if (printer_ != Teuchos::null)

printer_->setVerbosity(verbosity_);

}

// Check for a change in output style; update in our list.

if (params->isParameter("Output Style")) {

if (Teuchos::isParameterType<int>(*params,"Output Style")) {

outputStyle_ = params->get("Output Style", outputStyle_default_);

} else {

outputStyle_ = (int)Teuchos::getParameter<Belos::OutputType>(*params,"Output Style"

);

}

params_->set("Output Style", outputStyle_);

outputTest_ == Teuchos::null;

}

// Check for output stream; update in our list.

if (params->isParameter("Output Stream")) {

outputStream_ = Teuchos::getParameter<Teuchos::RCP<std::ostream> >(*params,"Output

Stream");

params_->set("Output Stream", outputStream_);

if (printer_ != Teuchos::null)

120

printer_->setOStream(outputStream_);

}

// Check for frequency level; update in our list and output status test.

if (verbosity_ & Belos::StatusTestDetails) {

if (params->isParameter("Output Frequency")) {

outputFreq_ = params->get("Output Frequency", outputFreq_default_);

}

params_->set("Output Frequency", outputFreq_);

if (outputTest_ != Teuchos::null)

outputTest_->setOutputFrequency(outputFreq_);

}

// Create output manager if we need to.

if (printer_ == Teuchos::null) {

printer_ = Teuchos::rcp(new Belos::OutputManager<ScalarType>(verbosity_,

outputStream_));

}

// Convergence

typedef Belos::StatusTestCombo<ScalarType,MV,OP> StatusTestCombo_t;

// Check for convergence tolerance; update in our list and residual tests.

if (params->isParameter("Tolerance")) {

tolerance_ = params->get("Tolerance",tolerance_default_);

params_->set("Tolerance", tolerance_);

if (convTest_ != Teuchos::null)

convTest_->setTolerance(tolerance_);

}

// Check for true solution; update in our list and status test.

if (params->isParameter("True Solution")) {

trueSolution_ = params->get< Teuchos::RCP< MV > >("True Solution",

trueSolution_default_);

params_->set("True Solution",trueSolution_);

}

// Create status tests if we need to.

// Basic test checks maximum iterations.

if (maxIterTest_ == Teuchos::null)

maxIterTest_ = Teuchos::rcp(new Belos::StatusTestMaxIters<ScalarType,MV,OP>(

maxIters_));

// Least error test if needed.

if (trueSolution_ != Teuchos::null)

121

errorTest_ = Teuchos::rcp(new LeastErrorStatusTest<ScalarType,MV,OP>(trueSolution_,

windowSize_));

// Status test specific to MRNSD.

if (convTest_ == Teuchos::null)

convTest_ = Teuchos::rcp(new MRNSDStatusTest<ScalarType,MV,OP>(tolerance_));

if (sTest_ == Teuchos::null)

sTest_ = Teuchos::rcp(new StatusTestCombo_t(StatusTestCombo_t::OR, maxIterTest_,

convTest_));

if (errorTest_ != Teuchos::null)

// add error test to the status test combo

((Teuchos::rcp_dynamic_cast< StatusTestCombo_t >) (sTest_))->addStatusTest(errorTest_

);

if (outputTest_ == Teuchos::null) {

// Create the status test output class.

// This class manages and formats the output from the status test.

Belos::StatusTestOutputFactory<ScalarType,MV,OP> stoFactory(outputStyle_);

outputTest_ = stoFactory.create(printer_, sTest_, outputFreq_, Belos::Passed+Belos::

Failed+Belos::Undefined);

// Set the solver string for the output test

std::string solverDesc = " MRNSD ";

outputTest_->setSolverDesc(solverDesc);

}

// Create the timer if we need to.

if (timerSolve_ == Teuchos::null) {

std::string solveLabel = label_ + ": MRNSDSolMgr total solve time";

timerSolve_ = Teuchos::TimeMonitor::getNewTimer(solveLabel);

}

// Inform the solver manager that the current parameters were set.

isSet_ = true;

}

template<class ScalarType, class MV, class OP>

Teuchos::RCP<const Teuchos::ParameterList>

MRNSDSolMgr<ScalarType,MV,OP>::getValidParameters() const

{

static Teuchos::RCP<const Teuchos::ParameterList> validPL;

122

// Set all the valid parameters and their default values.

if(is_null(validPL)) {

Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();

pl->set("Tolerance", tolerance_default_,

"The convergence tolerance.");

pl->set("Maximum Iterations", maxIters_default_,

"The maximum number of block iterations allowed for each\n"

"set of RHS solved.");

pl->set("Window Size", windowSize_default_,

"The window size for the least error test");

pl->set("True Solution", trueSolution_default_,

"The true solution for the least error test");

pl->set("Verbosity", verbosity_default_,

"What type(s) of solver information should be outputted\n"

"to the output stream.");

pl->set("Output Style", outputStyle_default_,

"What style is used for the solver information outputted\n"

"to the output stream.");

pl->set("Output Frequency", outputFreq_default_,

"How often convergence information should be outputted\n"

"to the output stream.");

pl->set("Output Stream", outputStream_default_,

"A reference-counted pointer to the output stream where all\n"

"solver output is sent.");

pl->set("Timer Label", label_default_,

"The string to use as a prefix for the timer labels.");

validPL = pl;

}

return validPL;

}

// Solve method

template<class ScalarType, class MV, class OP>

Belos::ReturnType MRNSDSolMgr<ScalarType,MV,OP>::solve() {

// Set the current parameters if they were not set before.

// NOTE: This may occur if the user generated the solver manager with the

// default constructor and then didn’t set any parameters using setParameters.

if (!isSet_) {

setParameters(Teuchos::parameterList(*getValidParameters()));

}

TEST_FOR_EXCEPTION(!problem_->isProblemSet(),MRNSDSolMgrLinearProblemFailure, "

MRNSDSolMgr::solve(): Linear problem is not ready, setProblem() has not been called

123

.");

TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*(problem_->getRHS())) != 1,

MRNSDSolMgrBlockSizeFailure, "MRNSDSolMgr::solve(): Incorrect number of RHS vectors

, should be exactly 1.");

// Inform the linear problem of the current linear system to solve.

std::vector<int> currRHSIdx(1, 0);

problem_->setLSIndex(currRHSIdx);

Teuchos::ParameterList plist;

outputTest_->reset();

// Assume convergence is achieved, then let any failed convergence set this

// to false.

bool isConverged = true;

// MRNSD solver

Teuchos::RCP<MRNSDIter<ScalarType,MV,OP> > mrnsd_iter = Teuchos::rcp(new MRNSDIter<

ScalarType,MV,OP>(problem_, printer_, outputTest_, plist));

Teuchos::TimeMonitor slvtimer(*timerSolve_);

// Reset the number of iterations.

mrnsd_iter->resetNumIters();

// Reset the number of calls that the status test output knows about.

outputTest_->resetNumCalls();

// Set the new state and initialize the solver.

MRNSDIterationState<ScalarType,MV> newstate;

mrnsd_iter->initializeMRNSD(newstate);

// Tell mrnsd_iter to iterate

try {

mrnsd_iter->iterate();

// Check convergence first

if (convTest_->getStatus() == Belos::Passed) {

}

else if ((errorTest_ != Teuchos::null) && errorTest_->getStatus() == Belos::Passed)

{

}

else if (maxIterTest_->getStatus() == Belos::Passed) {

// We don’t have convergence

isConverged = false;

}

// We returned from iterate(), but none of our status tests Passed.

// Something is wrong, and it is probably our fault.

else {

TEST_FOR_EXCEPTION(true,std::logic_error,

"MRNSDSolMgr::solve(): Invalid return from MRNSDIteration::iterate().");

}

124

}

catch (const std::exception &e) {

printer_->stream(Belos::Errors) << "Error! Caught std::exception in MRNSDIter::

iterate() at iteration "

<< mrnsd_iter->getNumIters() << std::endl

<< e.what() << std::endl;

throw;

}

// Inform the linear problem that we are finished with this linear system.

problem_->setCurrLS();

// Print final summary and timing information.

sTest_->print(printer_->stream(Belos::FinalSummary));

Teuchos::TimeMonitor::summarize(printer_->stream(Belos::TimingDetails));

// Get iteration information for this solve.

numIters_ = mrnsd_iter->getNumIters();

if (!isConverged) {

return Belos::Unconverged; // return from MRNSDSolMgr::solve()

}

return Belos::Converged; // return from MRNSDSolMgr::solve()

}

// This method requires the solver manager to return a std::string that

// describes itself.

template<class ScalarType, class MV, class OP>

std::string MRNSDSolMgr<ScalarType,MV,OP>::description() const

{

std::ostringstream oss;

oss << "MRNSDSolMgr<...,"<<Teuchos::ScalarTraits<ScalarType>::name()<<">";

return oss.str();

}

#endif /* MRNSD_SOLMGR_HPP */

A.2.2 MRNSDIter.hpp Code

#ifndef MRNSD_ITER_HPP

#define MRNSD_ITER_HPP

/* MRNSDIter.hpp

* Concrete class for performing the MRNSD iteration.

*/

#include "BelosConfigDefs.hpp"

#include "BelosTypes.hpp"

125

#include "BelosIteration.hpp"

#include "BelosLinearProblem.hpp"

#include "BelosOutputManager.hpp"

#include "BelosStatusTest.hpp"

#include "BelosOperatorTraits.hpp"

#include "BelosMultiVecTraits.hpp"

#include "Teuchos_SerialDenseMatrix.hpp"

#include "Teuchos_SerialDenseVector.hpp"

#include "Teuchos_ScalarTraits.hpp"

#include "Teuchos_ParameterList.hpp"

#include "Teuchos_TimeMonitor.hpp"

// MRNSDIteration Structures

/* Structure to contain pointers to MRNSDIteration state variables.

* This struct is utilized by initialize() and getState().

*/

template <class ScalarType, class MV>

struct MRNSDIterationState {

/* Vector g. */

Teuchos::RCP<const MV> G;

/* Vector xg. */

Teuchos::RCP<const MV> XG;

/* Storage vector. */

Teuchos::RCP<const MV> AV;

/* Storage vector. */

Teuchos::RCP<const MV> AtV;

/* The gamma value. */

ScalarType gamma;

MRNSDIterationState() : G(Teuchos::null), XG(Teuchos::null),

AV(Teuchos::null), AtV(Teuchos::null),

gamma(0.0)

{}

};

// MRNSDIteration Exceptions

/* MRNSDIterationInitFailure is thrown when the MRNSDIteration object is

* unable to generate an initial iterate in the initialize() routine. This

* std::exception is thrown from the initialize() method, which is called by

* the user or from the iterate() method if isInitialized() == false. In the

* case that this std::exception is thrown, isInitialized() will be false and

* the user will need to provide a new initial iterate to the iteration.

*/

class MRNSDIterationInitFailure : public Belos::BelosError {public:

126

MRNSDIterationInitFailure(const std::string& what_arg) : Belos::BelosError(what_arg

)

{}};

/* MRNSDIterateFailure is thrown when the MRNSDIteration object is unable to

* compute the next iterate in the iterate() routine. This std::exception is

* thrown from the iterate() method.

*/

class MRNSDIterateFailure : public Belos::BelosError {public:

MRNSDIterateFailure(const std::string& what_arg) : Belos::BelosError(what_arg)

{}};

template<class ScalarType, class MV, class OP>

class MRNSDIter : virtual public Belos::Iteration<ScalarType,MV,OP> {

public:

typedef Belos::MultiVecTraits<ScalarType,MV> MVT;

typedef Belos::OperatorTraits<ScalarType,MV,OP> OPT;

typedef Teuchos::ScalarTraits<ScalarType> SCT;

typedef typename SCT::magnitudeType MagnitudeType;

// Constructors/Destructor

/* MRNSDIter constructor with linear problem, solver utilities, and parameter

* list of solver options. This constructor takes pointers required by the

* linear solver iteration, in addition to a parameter list of options for the

* linear solver.

*/

MRNSDIter(const Teuchos::RCP<Belos::LinearProblem<ScalarType,MV,OP> > &problem, const

Teuchos::RCP<Belos::OutputManager<ScalarType> > &printer, const Teuchos::RCP<Belos

::StatusTest<ScalarType,MV,OP> > &tester, Teuchos::ParameterList ¶ms);

// Destructor.

virtual ~MRNSDIter() {};

// Solver methods

/* This method performs MRNSD iterations until the status test indicates the

* need to stop or an error occurs (in which case, an std::exception is

* thrown). This function will first determine whether the solver is

* initialized; if not, it will call initialize() using default arguments.

* After initialization, the solver performs MRNSD iterations until the status

* test evaluates as Belos::Passed, at which point the method returns to the

* caller. The status test is queried at the beginning of the iteration.

*/

void iterate();

127

/* Initialize the solver to an iterate, providing a complete state. The

* MRNSDIter contains a certain amount of state, consisting of a gradient

* vector, helper vectors, and gamma. For any pointer in newstate which

* directly points to the multivectors in the solver, the data is not copied.

*/

void initializeMRNSD(MRNSDIterationState<ScalarType,MV> newstate);

// Initialize the solver.

void initialize()

{

MRNSDIterationState<ScalarType,MV> empty;

initializeMRNSD(empty);

}

/* Get the current state of the linear solver. The data is only valid if

* isInitialized() == true.

* Return: A MRNSDIterationState object containing const pointers to the

* current solver state.

*/

MRNSDIterationState<ScalarType,MV> getState() const {

MRNSDIterationState<ScalarType,MV> state;

state.G = G_;

state.XG = XG_;

state.AV = AV_;

state.AtV = AtV_;

state.gamma = gamma_;

return state;

}

// Status methods

// Get the current iteration count.

int getNumIters() const { return iter_; }

// Reset the iteration count.

void resetNumIters(int iter = 0) { iter_ = iter; }

// Get the norms of the residuals native to the solver.

// This method returns a null pointer because these aren’t used with MRNSD.

Teuchos::RCP<const MV> getNativeResiduals(std::vector<MagnitudeType> *norms) const {

return Teuchos::null; }

// Get the current update to the linear system.

// This method returns a null pointer because the linear problem is current.

Teuchos::RCP<MV> getCurrentUpdate() const { return Teuchos::null; }

128

// Accessor methods

// Get a constant reference to the linear problem.

const Belos::LinearProblem<ScalarType,MV,OP>& getProblem() const { return *lp_; }

// Get blocksize to be used by iterative solver in solving this linear problem

int getBlockSize() const { return 1; }

// Set blocksize to be used by iterative solver in solving this linear problem

void setBlockSize(int blockSize) {

TEST_FOR_EXCEPTION(blockSize!=1,std::invalid_argument,

"MRNSDIter::setBlockSize(): Cannot use a block size that is not one.");

}

// States whether the solver has been initialized or not.

bool isInitialized() { return initialized_; }

private:

// Method for initalizing the state storage needed by MRNSD.

void setStateSize();

// Classes inputed through constructor that define the linear problem to be

// solved.

const Teuchos::RCP<Belos::LinearProblem<ScalarType,MV,OP> > lp_;

const Teuchos::RCP<Belos::OutputManager<ScalarType> > om_;

const Teuchos::RCP<Belos::StatusTest<ScalarType,MV,OP> > stest_;

// Current solver state.

/* initialized_ specifies that the basis vectors have been initialized and the

* iterate() routine is capable of running; _initialize is controlled by the

* initialize() member method. For the implications of the state of

* initialized_, please see documentation for initialize().

*/

bool initialized_;

/* stateStorageInitialized_ specifies that the state storage has been

* initialized. This initialization may be postponed if the linear problem

* was generated without the right-hand side or solution vectors.

*/

bool stateStorageInitialized_;

// Current number of iterations performed.

int iter_;

// Vector g

Teuchos::RCP<MV> G_;

// Vector xg

Teuchos::RCP<MV> XG_;

// Helper vector

129

Teuchos::RCP<MV> AV_;

// Helper vector

Teuchos::RCP<MV> AtV_;

// Gamma value

ScalarType gamma_;

};

// Constructor.

template<class ScalarType, class MV, class OP>

MRNSDIter<ScalarType,MV,OP>::MRNSDIter(const Teuchos::RCP<Belos::LinearProblem<

ScalarType,MV,OP> > &problem, const Teuchos::RCP<Belos::OutputManager<ScalarType> >

&printer, const Teuchos::RCP<Belos::StatusTest<ScalarType,MV,OP> > &tester,

Teuchos::ParameterList ¶ms):

lp_(problem),

om_(printer),

stest_(tester),

initialized_(false),

stateStorageInitialized_(false),

iter_(0)

{

}

// Setup the state storage.

template <class ScalarType, class MV, class OP>

void MRNSDIter<ScalarType,MV,OP>::setStateSize ()

{

if (!stateStorageInitialized_) {

// Check if there is any multivector to clone from.

Teuchos::RCP<const MV> lhsMV = lp_->getLHS();

Teuchos::RCP<const MV> rhsMV = lp_->getRHS();

if (lhsMV == Teuchos::null || rhsMV == Teuchos::null) {

stateStorageInitialized_ = false;

return;

}

else {

if (G_ == Teuchos::null) {

TEST_FOR_EXCEPTION(rhsMV == Teuchos::null, std::invalid_argument, "MRNSDIter::

setStateSize(): linear problem does not specify right hand multivector to

clone from.");

TEST_FOR_EXCEPTION(lhsMV == Teuchos::null, std::invalid_argument, "MRNSDIter::

setStateSize(): linear problem does not specify left hand multivector to

clone from.");

// Initialize the state storage

G_ = MVT::Clone(*lhsMV, 1);

XG_ = MVT::Clone(*lhsMV, 1);

130

AV_ = MVT::Clone(*rhsMV, 1);

AtV_ = MVT::Clone(*lhsMV, 1);

// State storage has now been initialized.

stateStorageInitialized_ = true;

}

}

}

}

// Initialize this iteration object

template <class ScalarType, class MV, class OP>

void MRNSDIter<ScalarType,MV,OP>::initializeMRNSD(MRNSDIterationState<ScalarType,MV>

newstate)

{

// Initialize the state storage if it isn’t already.

if (!stateStorageInitialized_)

setStateSize();

TEST_FOR_EXCEPTION(!stateStorageInitialized_,std::invalid_argument, "MRNSDIter::

initialize(): Cannot initialize state storage!");

std::string errstr("MRNSDIter::initialize(): Specified multivectors must have a

consistent length and width.");

// Create convenience variables for zero, one, and tau.

const ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();

const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();

const MagnitudeType tau = Teuchos::ScalarTraits<MagnitudeType>::squareroot(Teuchos::

ScalarTraits< MagnitudeType >::eps());

Teuchos::RCP<MV> cur_soln_vec = lp_->getCurrLHSVec();

Teuchos::RCP<const MV> rhsMV = lp_->getRHS();

std::vector<MagnitudeType> norm(1);

std::vector<ScalarType> meanValue(1);

// Compensate for negative values of initial guess.

Teuchos::ArrayRCP<const ScalarType> xView = cur_soln_vec->get1dView();

ScalarType minx = xView[0];

for (int i = 1; i < xView.size(); i++) {

if (minx > xView[i])

minx = xView[i];

}

xView = Teuchos::null;

if (cur_soln_vec->isDistributed()) {

Teuchos::Array<ScalarType> lminxPacket(1), minxPacket(1);

lminxPacket[0] = minx;

131

Teuchos::reduceAll(*cur_soln_vec->getMap()->getComm(), Teuchos::REDUCE_MIN, 1, &

lminxPacket[0], &minxPacket[0]);

minx = minxPacket[0];

}

if (minx < 0) {

AtV_->putScalar(tau - minx);

MVT::MvAddMv(one, *cur_soln_vec, one, *AtV_, *cur_soln_vec);

lp_->updateSolution();

}

// Change initial guess if all zeros.

MVT::MvNorm(*cur_soln_vec, norm);

if (norm[0] == zero) {

rhsMV->meanValue(meanValue);

cur_soln_vec->putScalar(std::max(meanValue[0], tau));

lp_->updateSolution();

}

// Compute initial g, xg, and gamma.

lp_->applyOp (*cur_soln_vec, *AV_);

MVT::MvAddMv(one, *rhsMV, -one, *AV_, *AV_);

lp_->getOperator()->apply(*AV_, *G_, Teuchos::TRANS);

MVT::MvScale(*G_, -one);

XG_->elementWiseMultiply(one, *(G_->getVector(0)), *cur_soln_vec, zero);

MVT::MvDot(*G_, *XG_, norm);

gamma_ = norm[0];

// The solver is initialized

initialized_ = true;

}

// Iterate until the status test informs us we should stop.

template <class ScalarType, class MV, class OP>

void MRNSDIter<ScalarType,MV,OP>::iterate()

{

// Allocate/initialize data structures.

if (initialized_ == false) {

initialize();

}

// Create convenience variables for zero and one.

const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();

const MagnitudeType zero = Teuchos::ScalarTraits<MagnitudeType>::zero();

// Allocate memory for scalars and pointers.

132

ScalarType alpha, beta;

Teuchos::Array<ScalarType> lalphaPacket(1), alphaPacket(1);

std::vector<MagnitudeType> norm(1);

Teuchos::ArrayRCP<const ScalarType> xView, xgView;

// Get the current solution vector.

Teuchos::RCP<MV> cur_soln_vec = lp_->getCurrLHSVec();

// Check that the current solution vector only has one column.

TEST_FOR_EXCEPTION(MVT::GetNumberVecs(*cur_soln_vec) != 1, MRNSDIterateFailure, "

MRNSDIter::iterate(): current linear system has more than one vector!");

// Iterate until the status test tells us to stop.

while (stest_->checkStatus(this) != Belos::Passed) {

// Increment the iteration

iter_++;

lp_->applyOp(*XG_, *AV_);

MVT::MvScale(*AV_, -one);

MVT::MvDot(*AV_, *AV_, norm);

alpha = gamma_ / norm[0];

xView = cur_soln_vec->get1dView();

xgView = XG_->get1dView();

for (int i = 0; i < xgView.size(); i++) {

if (xgView[i] > 0) {

beta = xView[i] / xgView[i];

if (beta < alpha)

alpha = beta;

}

}

xView = Teuchos::null;

xgView = Teuchos::null;

if (cur_soln_vec->isDistributed()) {

lalphaPacket[0] = alpha;

Teuchos::reduceAll(*cur_soln_vec->getMap()->getComm(), Teuchos::REDUCE_MIN, 1, &

lalphaPacket[0], &alphaPacket[0]);

alpha = alphaPacket[0];

}

MVT::MvAddMv(one, *cur_soln_vec, -alpha, *XG_, *cur_soln_vec);

lp_->getOperator()->apply(*AV_, *AtV_, Teuchos::TRANS);

MVT::MvAddMv(one, *G_, alpha, *AtV_, *G_);

XG_->elementWiseMultiply(one, *(G_->getVector(0)), *cur_soln_vec, zero);

MVT::MvDot(*G_, *XG_, norm);

gamma_ = norm[0];

133

// Update the solution vector.

lp_->updateSolution();

} // end while (sTest_->checkStatus(this) != Passed)

}

#endif /* MRNSD_ITER_HPP */

A.2.3 MRNSDStatusTest.hpp Code

#ifndef MRNSD_STATUS_TEST_HPP

#define MRNSD_STATUS_TEST_HPP

/* MRNSDStatusTest.hpp

* Belos::StatusTest class for specifying convergence of MRNSD.

*/

#include "BelosStatusTest.hpp"

template <class ScalarType, class MV, class OP>

class MRNSDStatusTest: public Belos::StatusTest<ScalarType,MV,OP> {

public:

typedef Teuchos::ScalarTraits<ScalarType> SCT;

typedef typename SCT::magnitudeType MagnitudeType;

typedef Belos::MultiVecTraits<ScalarType,MV> MVT;

// Constructor/Destructor.

/* The constructor takes one argument, specifying the tolerance. If negative,

* then the tolerance is computed as sqrt(eps)*norm(A^T*b).

*/

MRNSDStatusTest(ScalarType tolerance);

// Destructor

virtual ~MRNSDStatusTest();

// Parameter definition methods.

/* Set the value of the tolerance. We allow the tolerance to be reset for

* cases where, in the process of testing convergence, we find that the

*initial limit was too tight or too lax.

*/

int setTolerance(ScalarType tolerance) {

tolerance_ = tolerance;

return(0);}

134

// Status methods

/* This method checks to see if the convergence criteria are met using the

* current information from the iterative solver, returning one of:

* Belos::Unconverged, Belos::Converged, or Belos::Failed.

*/

Belos::StatusType checkStatus(Belos::Iteration<ScalarType,MV,OP> *iSolver);

// Return the result of the most recent CheckStatus call.

Belos::StatusType getStatus() const {return(status_);}

// Reset the status test to the initial internal state.

void reset();

// Print methods

// Output formatted description of stopping test to output stream.

void print(std::ostream& os, int indent = 0) const;

// Print message for each status specific to this stopping test.

void printStatus(std::ostream& os, Belos::StatusType type) const;

// Return the value of the tolerance set in the constructor.

ScalarType getTolerance() const {return(tolerance_);};

// Call to setup initialization.

Belos::StatusType firstCallCheckStatusSetup(Belos::Iteration<ScalarType,MV,OP>* iSolver

);

// Overridden from Teuchos::Describable

// Method to return description of the MRNSD status test.

std::string description() const

{

std::ostringstream oss;

oss << "MRNSDStatusTest<>: [tolerance = " << tolerance_ << "]";

return oss.str();

}

private:

// Tolerance used to determine convergence

ScalarType tolerance_;

// Status

Belos::StatusType status_;

// Is this the first time CheckStatus is called?

bool firstcallCheckStatus_;

};

135

template <class ScalarType, class MV, class OP>

MRNSDStatusTest<ScalarType,MV,OP>::MRNSDStatusTest(ScalarType tolerance)

: tolerance_(tolerance),

status_(Belos::Undefined),

firstcallCheckStatus_(true)

{}

template <class ScalarType, class MV, class OP>

MRNSDStatusTest<ScalarType,MV,OP>::~MRNSDStatusTest()

{}

template <class ScalarType, class MV, class OP>

void MRNSDStatusTest<ScalarType,MV,OP>::reset()

{

status_ = Belos::Undefined;

firstcallCheckStatus_ = true;

}

template <class ScalarType, class MV, class OP>

Belos::StatusType MRNSDStatusTest<ScalarType,MV,OP>::firstCallCheckStatusSetup(Belos::

Iteration<ScalarType,MV,OP>* iSolver)

{

if (firstcallCheckStatus_) {

firstcallCheckStatus_ = false;

if (tolerance_ < 0) {

Belos::LinearProblem<ScalarType,MV,OP> lp = iSolver->getProblem();

Teuchos::RCP<const MV> lhsMV = lp.getLHS();

Teuchos::RCP<const MV> rhsMV = lp.getRHS();

Teuchos::RCP<MV> trAb = MVT::Clone(*lhsMV, 1);

std::vector<MagnitudeType> norm(1);

lp.applyOp(*rhsMV, *trAb);

MVT::MvNorm(*trAb, norm);

tolerance_ = Teuchos::ScalarTraits< MagnitudeType >::squareroot(Teuchos::

ScalarTraits< MagnitudeType >::eps()) * norm[0];

}

}

return Belos::Undefined;

}

template <class ScalarType, class MV, class OP>

Belos::StatusType MRNSDStatusTest<ScalarType,MV,OP>::checkStatus(Belos::Iteration<

ScalarType,MV,OP>* iSolver)

{

if (firstcallCheckStatus_) {

136

Belos::StatusType status = firstCallCheckStatusSetup(iSolver);

if(status==Belos::Failed) {

status_ = Belos::Failed;

return(status_);

}

}

MRNSDIter<ScalarType,MV,OP>* solver = dynamic_cast< MRNSDIter<ScalarType,MV,OP>* > (

iSolver);

MRNSDIterationState< ScalarType, MV > state = solver->getState();

ScalarType rnrm = Teuchos::ScalarTraits< MagnitudeType >::squareroot(std::abs(state.

gamma));

status_ = (rnrm <= tolerance_) ? Belos::Passed : Belos::Failed;

return status_;

}

template <class ScalarType, class MV, class OP>

void MRNSDStatusTest<ScalarType,MV,OP>::print(std::ostream& os, int indent) const

{

for (int j = 0; j < indent; j++)

os << ’ ’;

printStatus(os, status_);

os << "tolerance = " << tolerance_ << std::endl;

}

template <class ScalarType, class MV, class OP>

void MRNSDStatusTest<ScalarType,MV,OP>::printStatus(std::ostream&os, Belos::StatusType

type) const

{

os << std::left << std::setw(13) << std::setfill(’.’);

switch (type) {

case Belos::Passed:

os << "OK";

break;

case Belos::Failed:

os << "Failed";

break;

case Belos::Undefined:

default:

os << "**";

break;

}

os << std::left << std::setfill(’ ’);

return;

}

137

#endif /* MRNSD_STATUS_TEST_HPP */

A.3 Code for Least Error Status Test

A.3.1 LeastErrorStatusTest.hpp Code

#ifndef LEAST_ERROR_STATUS_TEST_HPP

#define LEAST_ERROR_STATUS_TEST_HPP

/* LeastErrorStatusTest.hpp

* Belos::StatusTest class for specifying convergence of iterative solvers based

* on lowest error.

*/

#include "BelosStatusTest.hpp"

#include "Teuchos_Array.hpp"

#include "BelosTpetraAdapter.hpp"

template <class ScalarType, class MV, class OP>

class LeastErrorStatusTest: public Belos::StatusTest<ScalarType,MV,OP> {

public:

typedef Teuchos::ScalarTraits<ScalarType> SCT;

typedef typename SCT::magnitudeType MagnitudeType;

typedef Belos::MultiVecTraits<ScalarType,MV> MVT;

// Constructor/Destructor.

/* The constructor takes one argument, a pointer to the exact solution, plus

* an optional argument that specifies the "windowSize" for this test. If an

* approximate solution has the least error of the next windowSize approximate

* solutions, convergence is considered achieved. By default, the windowSize

* is 1, meaning that an approximate solution is best if the next solution has

* a larger error.

*/

LeastErrorStatusTest(const Teuchos::RCP< const MV > &trueSolution, int windowSize = 1

);

// Destructor

virtual ~LeastErrorStatusTest() {};

// Status method

/* This method checks to see if the convergence criteria are met using the

* current information from the iterative solver, returning one of

138

* Belos::Unconverged, Belos::Converged, or Belos::Failed.

*/

Belos::StatusType checkStatus(Belos::Iteration<ScalarType,MV,OP> *iSolver);

// Return the result of the most recent CheckStatus call.

Belos::StatusType getStatus() const {return(status_);}

// Reset the status test to the initial internal state.

void reset();

// Print methods

// Output formatted description of stopping test to output stream.

void print(std::ostream& os, int indent = 0) const;

// Print message for each status specific to this stopping test.

void printStatus(std::ostream& os, Belos::StatusType type) const;

// Methods to access data members.

// Return the value of the window size set in the constructor.

int getWindowSize() const {return(window_size_);};

// Call to setup initialization.

Belos::StatusType firstCallCheckStatusSetup(Belos::Iteration<ScalarType,MV,OP>* iSolver

);

// Overridden from Teuchos::Describable

// Method to return description of the least error status test.

std::string description() const

{

std::ostringstream oss;

oss << "LeastErrorStatusTest<>: [window size = " << window_size_ << "]";

return oss.str();

}

private:

// True solution

const Teuchos::RCP< const MV > true_solution_;

// Norm of true solution

MagnitudeType true_norm_;

// Current best approximate solution

Teuchos::RCP< MV > best_solution_;

// Helper multivector to compute difference between approximate and truth

Teuchos::RCP< MV > diff_mv_;

// Window size

139

int window_size_;

// Current window size

int best_window_;

// Current best error

MagnitudeType best_error_;

// Status

Belos::StatusType status_;

// Is this the first time CheckStatus is called?

bool firstcallCheckStatus_;

};

template <class ScalarType, class MV, class OP>

LeastErrorStatusTest<ScalarType,MV,OP>::LeastErrorStatusTest(const Teuchos::RCP< const

MV > &trueSolution, int windowSize /* = 1 */)

: true_solution_(trueSolution),

window_size_(windowSize),

status_(Belos::Undefined),

firstcallCheckStatus_(true)

{

}

template <class ScalarType, class MV, class OP>

void LeastErrorStatusTest<ScalarType,MV,OP>::reset()

{

status_ = Belos::Undefined;

firstcallCheckStatus_ = true;

}

template <class ScalarType, class MV, class OP>

Belos::StatusType LeastErrorStatusTest<ScalarType,MV,OP>::firstCallCheckStatusSetup(Belos

::Iteration<ScalarType,MV,OP>* iSolver)

{

const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();

std::vector< MagnitudeType > norm_(1);

if (firstcallCheckStatus_) {

firstcallCheckStatus_ = false;

MVT::MvNorm(*true_solution_, norm_);

true_norm_ = norm_[0];

Belos::LinearProblem< ScalarType, MV, OP > problem = iSolver->getProblem();

diff_mv_ = MVT::Clone(*problem.getLHS(), 1);

best_solution_ = MVT::CloneCopy(*problem.getLHS());

MVT::MvAddMv(one, *best_solution_, -one, *true_solution_, *diff_mv_);

MVT::MvNorm(*diff_mv_, norm_);

best_error_ = norm_[0];

best_window_ = -1;

140

}

return Belos::Undefined;

}

template <class ScalarType, class MV, class OP>

Belos::StatusType LeastErrorStatusTest<ScalarType,MV,OP>::checkStatus(Belos::Iteration<

ScalarType,MV,OP>* iSolver)

{

if (firstcallCheckStatus_) {

Belos::StatusType status = firstCallCheckStatusSetup(iSolver);

if(status==Belos::Failed) {

status_ = Belos::Failed;

return(status_);

}

}

int iter = iSolver->getNumIters();

const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();

const ScalarType zero = Teuchos::ScalarTraits<ScalarType>::zero();

std::vector< MagnitudeType > norm_(1);

Belos::LinearProblem< ScalarType, MV, OP > problem = iSolver->getProblem();

MVT::MvAddMv(one, *(problem.getLHS()), -one, *true_solution_, *diff_mv_);

MVT::MvNorm(*diff_mv_, norm_);

if (problem.getLHS()->getMap()->getComm()->getRank() == 0)

std::cout << "iter " << iter << " norm = " << norm_[0] / true_norm_ << std::endl;

// Check if our best solution is better than this iteration’s solution.

if (best_error_ <= norm_[0]) {

// If yes, increment window size.

best_window_++;

// Now check if we have a best solution for the given window size.

if (best_window_ >= window_size_) {

iSolver->resetNumIters(iter - window_size_);

MVT::MvAddMv(one, *best_solution_, zero, *(problem.getLHS()), *(problem.getLHS())

);

problem.updateSolution();

status_ = Belos::Passed;

std::cout << "norm of truth = " << true_norm_ << std::endl;

std::cout << "norm of solution = " << best_error_ << std::endl;

} else {

status_ = Belos::Failed;

}

} else {

// If no, save current solution and its error and reset current window.

best_solution_ = MVT::CloneCopy(*(problem.getLHS()));

141

best_error_ = norm_[0];

best_window_ = 0;

status_ = Belos::Failed;

}

return status_;

}

template <class ScalarType, class MV, class OP>

void LeastErrorStatusTest<ScalarType,MV,OP>::print(std::ostream& os, int indent) const

{

for (int j = 0; j < indent; j++)

os << ’ ’;

printStatus(os, status_);

os << "window size = " << window_size_ << std::endl;

}

template <class ScalarType, class MV, class OP>

void LeastErrorStatusTest<ScalarType,MV,OP>::printStatus(std::ostream&os, Belos::

StatusType type) const

{

os << std::left << std::setw(13) << std::setfill(’.’);

switch (type) {

case Belos::Passed:

os << "OK";

break;

case Belos::Failed:

os << "Failed";

break;

case Belos::Undefined:

default:

os << "**";

break;

}

os << std::left << std::setfill(’ ’);

return;

}

#endif /* LEAST_ERROR_STATUS_TEST_HPP */

A.4 Code for PET Application

A.4.1 HRRT.hpp Code

#include <Teuchos_RCP.hpp>

#include <Teuchos_ParameterList.hpp>

142

#include "Tpetra_DefaultPlatform.hpp"

#include "Tpetra_Map.hpp"

#include "Tpetra_MultiVector.hpp"

#include "Tpetra_Vector.hpp"

#include "Tpetra_CrsMatrix.hpp"

#include "Teuchos_SerialDenseMatrix.hpp"

#include "Tpetra_Export.hpp"

#include "Tpetra_Operator.hpp"

#include "BelosLinearProblem.hpp"

#include "BelosBlockCGSolMgr.hpp"

#include "BelosBlockGmresSolMgr.hpp"

#include "BelosTpetraAdapter.hpp"

#include "LSQRSolMgr.hpp"

#include "MRNSDSolMgr.hpp"

using Tpetra::MultiVector;

using Tpetra::Operator;

// Explicitly invert a four-by-four matrix.

/*

\param mat - (In) Four-by-four matrix to invert.

\param inv - (Out) Inverse of the matrix.

*/

template <class Scalar, class Ordinal>

void invert(const Teuchos::SerialDenseMatrix< Ordinal, Scalar > &mat, Teuchos::

SerialDenseMatrix< Ordinal, Scalar > &inv);

// Convert a quaternion to a four-by-four matrix.

/*

\param outtrans1 - (Out) Matrix formed from the quaternion.

\param w, x, y, z - (In) Elements of the quaternion.

\param tx, ty, tz - (In) Elements of the quaternion.

*/

template <class Scalar, class Ordinal>

void quatToMatrix(Teuchos::SerialDenseMatrix< Ordinal, Scalar > &outtrans1, Scalar w,

Scalar x, Scalar y, Scalar z, const Scalar tx, const Scalar ty, const Scalar tz);

// Read duration information from a CSV file. Each processor has its own copy

// of the duration information.

/*

\param file - (In) File in CSV form containing duration information.

\param durationsVec - (Out) Vector to store the durations.

143

*/

template <class Ordinal>

void readDurations(const char *file, Teuchos::SerialDenseVector< Ordinal, Ordinal > &

durationsVec);

//! Read motion information from a CSV file and create average motion matrix for

// each bin.

/*

\param file - (In) File in CSV form containing motion information.

\param motionsMat - (Out) Average quaternions for each bin on this processor.

\param mapMotions - (In) Map for motion matrices.

\param durationsVec - (In) Vector containing the durations.

\param calib - (In) Calibration matrix.

\param invInitial - (Out) Inverse of initial motion matrix.

\param timeOffset - (In) Number of seconds’ worth of information to discard.

\param samplingRate - (In) Sampling rate of machine. The product of

samplingRate and timeOffset will be the number of motion data discarded at

the beginning of the file.

*/

template <class Scalar, class Ordinal>

void readMotions(const char *file, Teuchos::SerialDenseMatrix< Ordinal, Scalar > &

motionsMat, const Teuchos::RCP<const Tpetra::Map<Ordinal> > &mapMotions, const

Teuchos::SerialDenseVector< Ordinal, Ordinal > &durationsVec, const Teuchos::

SerialDenseMatrix< Ordinal, Scalar > &calib, Teuchos::SerialDenseMatrix< Ordinal,

Scalar > &invInitial, const Ordinal timeOffset, const Ordinal samplingRate);

// Read noisy, blurred RHS data given in raw form (4 bytes per number).

/*

\param file - (In) File in raw data form containing RHS.

\param b - (Out) Vector to store data.

*/

template <class Scalar, class Ordinal>

void readData(const char *file, const Teuchos::RCP<Tpetra::Vector< Scalar, Ordinal,

Ordinal > > &b);

// Write reconstructed solution in raw form (4 bytes per number).

/*

\param file - (In) File to store solution in raw form.

\param x - (In) Reconstructed solution.

*/

template <class Scalar, class Ordinal>

void writeData(const char *file, const Teuchos::RCP<const Tpetra::Vector< Scalar, Ordinal

, Ordinal > > &x);

// Form system matrix A using nearest neighbor interpolation.

144

/*

\param A - (Out) System matrix.

\param splitMap - (In) Map describing distribution of b/x.

\param motionsMat - (In) Average quaternions for each bin on this processor.

\param durationsVec - (In) Vector containing the durations.

\param calib - (In) Calibration matrix.

\param invInitial - (In) Inverse of initial motion matrix.

\param mapMotions - (In) Map for motion matrices.

\param size_m1, size_m2, size_m3 - (In) Problem size.

*/

template <class Scalar, class Ordinal>

void formA(const Teuchos::RCP<Tpetra::CrsMatrix< Scalar, Ordinal > > &A, const Teuchos::

RCP<const Tpetra::Map<Ordinal> > &splitMap, const Teuchos::SerialDenseMatrix< Ordinal

, Scalar > &motionsMat, const Teuchos::SerialDenseVector< Ordinal, Ordinal > &

durationsVec, const Teuchos::SerialDenseMatrix< Ordinal, Scalar > &calib, const

Teuchos::SerialDenseMatrix< Ordinal, Scalar > &invInitial, const Teuchos::RCP<const

Tpetra::Map<Ordinal> > &mapMotions, const Ordinal size_m1, const Ordinal size_m2,

const Ordinal size_m3);

// Form system matrix A using trilinear interpolation.

/*

\param A - (Out) System matrix.

\param splitMap - (In) Map describing distribution of b/x.

\param motionsMat - (In) Average quaternions for each bin on this processor.

\param durationsVec - (In) Vector containing the durations.

\param calib - (In) Calibration matrix.

\param invInitial - (In) Inverse of initial motion matrix.

\param mapMotions - (In) Map for motion matrices.

\param size_m1, size_m2, size_m3 - (In) Problem size.

*/

template <class Scalar, class Ordinal>

void formATrilinear(const Teuchos::RCP<Tpetra::CrsMatrix< Scalar, Ordinal > > &A, const

Teuchos::RCP<const Tpetra::Map<Ordinal> > &splitMap, const Teuchos::SerialDenseMatrix

< Ordinal, Scalar > &motionsMat, const Teuchos::SerialDenseVector< Ordinal, Ordinal >

&durationsVec, const Teuchos::SerialDenseMatrix< Ordinal, Scalar > &calib, const

Teuchos::SerialDenseMatrix< Ordinal, Scalar > &invInitial, const Teuchos::RCP<const

Tpetra::Map<Ordinal> > &mapMotions, const Ordinal size_m1, const Ordinal size_m2,

const Ordinal size_m3);

// Solver linear system using LSQR.

/*

\param A - (In) System matrix.

\param X - (In/Out) Solution vector.

\param B - (In) Data vector.

\param Truth - (In) True solution vector.

145

\param WindowSize - (In) Window size for least error status test if true

solution is known.

\param maxIters - (In) Maximum number of allowable iterations.

*/

template <class Scalar, class Ordinal>

void solveNewLSQR(const Teuchos::RCP<const Tpetra::CrsMatrix< Scalar, Ordinal > > &A,

const Teuchos::RCP< Tpetra::Vector< Scalar, Ordinal, Ordinal > > &X, const Teuchos::

RCP<const Tpetra::Vector< Scalar, Ordinal, Ordinal > > &B, const Teuchos::RCP< Tpetra

::Vector< Scalar, Ordinal > > &Truth = Teuchos::null, const int WindowSize = 1, const

int maxIters = 10000);

// Solve linear system using MRNSD.

/*

\param A - (In) System matrix.

\param X - (In/Out) Solution vector.

\param B - (In) Data vector.

\param Truth - (In) True solution vector.

\param WindowSize - (In) Window size for least error status test if true

solution is known.

\param Tolerance - (In) Tolerance level.

\param maxIters - (In) Maximum number of allowable iterations.

*/

template <class Scalar, class Ordinal>

void solveNewMRNSD(const Teuchos::RCP<const Tpetra::CrsMatrix< Scalar, Ordinal > > &A,

const Teuchos::RCP<Tpetra::Vector< Scalar, Ordinal, Ordinal > > &X, const Teuchos::

RCP<const Tpetra::Vector< Scalar, Ordinal, Ordinal > > &B, const Teuchos::RCP< Tpetra

::Vector< Scalar, Ordinal, Ordinal > > &Truth = Teuchos::null, const int WindowSize =

1, const Scalar Tolerance = 0.1, const int maxIters = 10000);

// Main method for reconstructing.

/*

\param pl - (In) Parameter list containing all the necessary information.

*/

template <class Scalar, class Ordinal>

void reconstruct(const Teuchos::RCP< const Teuchos::ParameterList > &pl);

template <class Scalar, class Ordinal>

void invert(const Teuchos::SerialDenseMatrix< Ordinal, Scalar > &mat, Teuchos::

SerialDenseMatrix< Ordinal, Scalar > &inv) {

Scalar det = mat(0,3) * mat(1,2) * mat(2,1) * mat(3,0) -

mat(0,2) * mat(1,3) * mat(2,1) * mat(3,0) -

mat(0,3) * mat(1,1) * mat(2,2) * mat(3,0) +

mat(0,1) * mat(1,3) * mat(2,2) * mat(3,0) +

mat(0,2) * mat(1,1) * mat(2,3) * mat(3,0) -

mat(0,1) * mat(1,2) * mat(2,3) * mat(3,0) -

146

mat(0,3) * mat(1,2) * mat(2,0) * mat(3,1) +

mat(0,2) * mat(1,3) * mat(2,0) * mat(3,1) +

mat(0,3) * mat(1,0) * mat(2,2) * mat(3,1) -

mat(0,0) * mat(1,3) * mat(2,2) * mat(3,1) -

mat(0,2) * mat(1,0) * mat(2,3) * mat(3,1) +

mat(0,0) * mat(1,2) * mat(2,3) * mat(3,1) +

mat(0,3) * mat(1,1) * mat(2,0) * mat(3,2) -

mat(0,1) * mat(1,3) * mat(2,0) * mat(3,2) -

mat(0,3) * mat(1,0) * mat(2,1) * mat(3,2) +

mat(0,0) * mat(1,3) * mat(2,1) * mat(3,2) +

mat(0,1) * mat(1,0) * mat(2,3) * mat(3,2) -

mat(0,0) * mat(1,1) * mat(2,3) * mat(3,2) -

mat(0,2) * mat(1,1) * mat(2,0) * mat(3,3) +

mat(0,1) * mat(1,2) * mat(2,0) * mat(3,3) +

mat(0,2) * mat(1,0) * mat(2,1) * mat(3,3) -

mat(0,0) * mat(1,2) * mat(2,1) * mat(3,3) -

mat(0,1) * mat(1,0) * mat(2,2) * mat(3,3) +

mat(0,0) * mat(1,1) * mat(2,2) * mat(3,3);

inv(0,0) = mat(1,2)*mat(2,3)*mat(3,1) - mat(1,3)*mat(2,2)*mat(3,1) + mat(1,3)*mat(2,1)*

mat(3,2) - mat(1,1)*mat(2,3)*mat(3,2) - mat(1,2)*mat(2,1)*mat(3,3) + mat(1,1)*mat

(2,2)*mat(3,3);

inv(0,1) = mat(0,3)*mat(2,2)*mat(3,1) - mat(0,2)*mat(2,3)*mat(3,1) - mat(0,3)*mat(2,1)*

mat(3,2) + mat(0,1)*mat(2,3)*mat(3,2) + mat(0,2)*mat(2,1)*mat(3,3) - mat(0,1)*mat

(2,2)*mat(3,3);

inv(0,2) = mat(0,2)*mat(1,3)*mat(3,1) - mat(0,3)*mat(1,2)*mat(3,1) + mat(0,3)*mat(1,1)*

mat(3,2) - mat(0,1)*mat(1,3)*mat(3,2) - mat(0,2)*mat(1,1)*mat(3,3) + mat(0,1)*mat

(1,2)*mat(3,3);

inv(0,3) = mat(0,1)*mat(1,3)*mat(2,2) + mat(0,2)*mat(1,1)*mat(2,3) + mat(0,3)*mat(1,2)*

mat(2,1) - mat(0,1)*mat(1,2)*mat(2,3) - mat(0,2)*mat(1,3)*mat(2,1) - mat(0,3)*mat

(1,1)*mat(2,2);

inv(1,0) = mat(1,3)*mat(2,2)*mat(3,0) - mat(1,2)*mat(2,3)*mat(3,0) - mat(1,3)*mat(2,0)*

mat(3,2) + mat(1,0)*mat(2,3)*mat(3,2) + mat(1,2)*mat(2,0)*mat(3,3) - mat(1,0)*mat

(2,2)*mat(3,3);

inv(1,1) = mat(0,2)*mat(2,3)*mat(3,0) - mat(0,3)*mat(2,2)*mat(3,0) + mat(0,3)*mat(2,0)*

mat(3,2) - mat(0,0)*mat(2,3)*mat(3,2) - mat(0,2)*mat(2,0)*mat(3,3) + mat(0,0)*mat

(2,2)*mat(3,3);

inv(1,2) = mat(0,3)*mat(1,2)*mat(3,0) - mat(0,2)*mat(1,3)*mat(3,0) - mat(0,3)*mat(1,0)*

mat(3,2) + mat(0,0)*mat(1,3)*mat(3,2) + mat(0,2)*mat(1,0)*mat(3,3) - mat(0,0)*mat

(1,2)*mat(3,3);

inv(1,3) = mat(0,0)*mat(1,2)*mat(2,3) + mat(0,2)*mat(1,3)*mat(2,0) + mat(0,3)*mat(1,0)*

mat(2,2) - mat(0,0)*mat(1,3)*mat(2,2) - mat(0,2)*mat(1,0)*mat(2,3) - mat(0,3)*mat

(1,2)*mat(2,0);

147

inv(2,0) = mat(1,1)*mat(2,3)*mat(3,0) - mat(1,3)*mat(2,1)*mat(3,0) + mat(1,3)*mat(2,0)*

mat(3,1) - mat(1,0)*mat(2,3)*mat(3,1) - mat(1,1)*mat(2,0)*mat(3,3) + mat(1,0)*mat

(2,1)*mat(3,3);

inv(2,1) = mat(0,3)*mat(2,1)*mat(3,0) - mat(0,1)*mat(2,3)*mat(3,0) - mat(0,3)*mat(2,0)*

mat(3,1) + mat(0,0)*mat(2,3)*mat(3,1) + mat(0,1)*mat(2,0)*mat(3,3) - mat(0,0)*mat

(2,1)*mat(3,3);

inv(2,2) = mat(0,1)*mat(1,3)*mat(3,0) - mat(0,3)*mat(1,1)*mat(3,0) + mat(0,3)*mat(1,0)*

mat(3,1) - mat(0,0)*mat(1,3)*mat(3,1) - mat(0,1)*mat(1,0)*mat(3,3) + mat(0,0)*mat

(1,1)*mat(3,3);

inv(2,3) = mat(0,0)*mat(1,3)*mat(2,1) + mat(0,1)*mat(1,0)*mat(2,3) + mat(0,3)*mat(1,1)*

mat(2,0) - mat(0,0)*mat(1,1)*mat(2,3) - mat(0,1)*mat(1,3)*mat(2,0) - mat(0,3)*mat

(1,0)*mat(2,1);

inv(3,0) = mat(1,2)*mat(2,1)*mat(3,0) - mat(1,1)*mat(2,2)*mat(3,0) - mat(1,2)*mat(2,0)*

mat(3,1) + mat(1,0)*mat(2,2)*mat(3,1) + mat(1,1)*mat(2,0)*mat(3,2) - mat(1,0)*mat

(2,1)*mat(3,2);

inv(3,1) = mat(0,1)*mat(2,2)*mat(3,0) - mat(0,2)*mat(2,1)*mat(3,0) + mat(0,2)*mat(2,0)*

mat(3,1) - mat(0,0)*mat(2,2)*mat(3,1) - mat(0,1)*mat(2,0)*mat(3,2) + mat(0,0)*mat

(2,1)*mat(3,2);

inv(3,2) = mat(0,2)*mat(1,1)*mat(3,0) - mat(0,1)*mat(1,2)*mat(3,0) - mat(0,2)*mat(1,0)*

mat(3,1) + mat(0,0)*mat(1,2)*mat(3,1) + mat(0,1)*mat(1,0)*mat(3,2) - mat(0,0)*mat

(1,1)*mat(3,2);

inv(3,3) = mat(0,0)*mat(1,1)*mat(2,2) + mat(0,1)*mat(1,2)*mat(2,0) + mat(0,2)*mat(1,0)*

mat(2,1) - mat(0,0)*mat(1,2)*mat(2,1) - mat(0,1)*mat(1,0)*mat(2,2) - mat(0,2)*mat

(1,1)*mat(2,0);

inv.scale(1.0/det);

}

template <class Scalar, class Ordinal>

void quatToMatrix(Teuchos::SerialDenseMatrix< Ordinal, Scalar > &outtrans1, Scalar w,

Scalar x, Scalar y, Scalar z, const Scalar tx, const Scalar ty, const Scalar tz) {

Scalar qlen = sqrt(x*x + y*y + z*z + w*w);

w /= qlen;

x /= qlen;

y /= qlen;

z /= qlen;

outtrans1(0,0) = w*w + x*x - y*y - z*z;

outtrans1(0,1) = 2*x*y - 2*w*z;

outtrans1(0,2) = 2*x*z + 2*w*y;

outtrans1(0,3) = tx;

outtrans1(1,0) = 2*x*y + 2*w*z;

outtrans1(1,1) = w*w + y*y - x*x - z*z;

148

outtrans1(1,2) = 2*y*z - 2*w*x;

outtrans1(1,3) = ty;

outtrans1(2,0) = 2*x*z - 2*w*y;

outtrans1(2,1) = 2*y*z + 2*w*x;

outtrans1(2,2) = w*w + z*z - x*x - y*y;

outtrans1(2,3) = tz;

outtrans1(3,0) = 0;

outtrans1(3,1) = 0;

outtrans1(3,2) = 0;

outtrans1(3,3) = 1;

}

template <class Ordinal>

void readDurations(const char *file, Teuchos::SerialDenseVector< Ordinal, Ordinal > &

durationsVec) {

Ordinal dur;

int i;

char comma;

std::ifstream DurationsFileName;

DurationsFileName.open(file);

if (DurationsFileName.fail()) {

std::cerr << "Error: failed to open durations file: " << file << std::endl;

exit(1);

}

DurationsFileName >> dur;

durationsVec(0) = dur;

for (i = 1; i < durationsVec.length(); i++) {

DurationsFileName >> comma;

DurationsFileName >> dur;

durationsVec(i) = dur;

}

DurationsFileName.close();

}

template <class Scalar, class Ordinal>

void readMotions(const char *file, Teuchos::SerialDenseMatrix< Ordinal, Scalar > &

motionsMat, const Teuchos::RCP<const Tpetra::Map<Ordinal> > &mapMotions, const

Teuchos::SerialDenseVector< Ordinal, Ordinal > &durationsVec, const Teuchos::

SerialDenseMatrix< Ordinal, Scalar > &calib, Teuchos::SerialDenseMatrix< Ordinal,

Scalar > &invInitial, const Ordinal timeOffset, const Ordinal samplingRate) {

std::string line;

Scalar tempScalar;

149

char comma;

Ordinal i, j, k, skipLines = 0, curDuration;

std::ifstream MotionsFileName;

Scalar avgquat[7];

Teuchos::SerialDenseMatrix< Ordinal, Scalar >o1(4, 4, true);

Teuchos::SerialDenseMatrix< Ordinal, Scalar >o2(4, 4, true);

MotionsFileName.open(file);

if (MotionsFileName.fail()) {

std::cerr << "Error: failed to open motions file: " << file << std::endl;

exit(1);

}

// Remove first timeOffset*samplingRate lines

for (i = 0; i < timeOffset*samplingRate; i++) {

getline(MotionsFileName, line);

}

// Now read the first motion info for the first position and find the inverse

for (i = 0; i < 7; i++) {

avgquat[i] = 0.0;

}

for (i = 0; i < durationsVec[0]; i++) {

getline(MotionsFileName, line);

std::stringstream ss(line);

for (j = 0; j < 3; j++) {

ss >> tempScalar;

ss >> comma;

}

ss >> comma >> comma >> comma;

for (j = 0; j < 7; j++) {

ss >> tempScalar;

avgquat[j] += tempScalar;

ss >> comma;

}

}

for (i = 0; i < 7; i++) {

avgquat[i] /= durationsVec[0];

}

quatToMatrix(o1, avgquat[0], avgquat[1], avgquat[2], avgquat[3], avgquat[4], avgquat

[5], avgquat[6]);

o2.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, calib, o1, 0.0);

invert<Scalar,Ordinal>(o2, invInitial);

/* Now, for each interval, find the average quaternion. First skip the

* correct number of rows by determining how many rows are on previous

* processors.

*/

150

for (i = 1; i < mapMotions->getMinGlobalIndex(); i++) {

skipLines += durationsVec[i];

}

for (i = 0; i < skipLines; i++) {

getline(MotionsFileName, line);

}

// Now get the average quaternion for each of its own intervals

for (i = 0; i < motionsMat.numRows(); i++) {

curDuration = mapMotions->getComm()->getRank()==0 ? durationsVec[i + 1] :

durationsVec[i + mapMotions->getMinGlobalIndex()];

for (j = 0; j < 7; j++) {

avgquat[j] = 0.0;

}

for (j = 0; j < curDuration; j++) {

getline(MotionsFileName, line);

std::stringstream ss(line);

for (k = 0; k < 3; k++) {

ss >> tempScalar;

ss >> comma;

}

ss >> comma >> comma >> comma;

for (k = 0; k < 7; k++) {

ss >> tempScalar;

avgquat[k] += tempScalar;

ss >> comma;

}

}

for (j = 0; j < 7; j++) {

avgquat[j] /= curDuration;

motionsMat(i, j) = avgquat[j];

}

}

MotionsFileName.close();

}

template <class Scalar, class Ordinal>

void readData(const char *file, const Teuchos::RCP<Tpetra::Vector< Scalar, Ordinal,

Ordinal > > &b) {

Ordinal NumMyElements_target;

if (b->getMap()->getComm()->getRank()==0) {

NumMyElements_target = b->getGlobalLength();

}

else {

NumMyElements_target = 0;

}

151

Teuchos::RCP<Tpetra::Map< Ordinal > > TargetMap = Teuchos::rcp(new Tpetra::Map<

Ordinal > (Teuchos::OrdinalTraits<Ordinal>::invalid(), NumMyElements_target, b->

getMap()->getIndexBase(), b->getMap()->getComm()));

Teuchos::RCP<Tpetra::Vector < Scalar, Ordinal, Ordinal > > Y = Teuchos::rcp(new Tpetra

::Vector< Scalar, Ordinal, Ordinal > (TargetMap));

std::ifstream BlurredImageFileName;

float* tempNumArray = new float[NumMyElements_target];

if (b->getMap()->getComm()->getRank()==0) {

BlurredImageFileName.open(file, std::ios::out | std::ios::binary);

BlurredImageFileName.read((char*)tempNumArray, NumMyElements_target*sizeof(float));

for (int i = 0; i < NumMyElements_target; i++) {

Y->replaceGlobalValue(i, tempNumArray[i]);

}

BlurredImageFileName.close();

}

Tpetra::Export< Ordinal > Exporter(TargetMap, b->getMap());

b->doExport(*Y, Exporter, Tpetra::INSERT);

}

template <class Scalar, class Ordinal>

void writeData(const char *file, const Teuchos::RCP<const Tpetra::Vector< Scalar, Ordinal

, Ordinal > > &x) {

Ordinal NumMyElements_target;

if (x->getMap()->getComm()->getRank()==0) {

NumMyElements_target = x->getGlobalLength();

}

else {

NumMyElements_target = 0;

}

Teuchos::RCP<Tpetra::Map< Ordinal > > TargetMap = Teuchos::rcp(new Tpetra::Map<

Ordinal > (Teuchos::OrdinalTraits<Ordinal>::invalid(), NumMyElements_target, x->

getMap()->getIndexBase(), x->getMap()->getComm()));

Tpetra::Export< Ordinal > Exporter(x->getMap(), TargetMap);

Teuchos::RCP<Tpetra::Vector < Scalar, Ordinal, Ordinal > > Y = Teuchos::rcp(new Tpetra

::Vector< Scalar, Ordinal, Ordinal > (TargetMap));

Y->doExport(*x, Exporter, Tpetra::INSERT);

std::ofstream SolutionFileName;

if (x->getMap()->getComm()->getRank()==0) {

Teuchos::ArrayRCP<const Scalar> yView = Y->get1dView();

Ordinal i;

float temp;

SolutionFileName.open(file, std::ios::out | std::ios::binary);

for (i = 0; i < x->getGlobalLength(); i++) {

temp = (float) yView[i];

152

SolutionFileName.write((char*)&temp, sizeof(float));

}

SolutionFileName.close();

}

}

template <class Scalar, class Ordinal>

void formA(const Teuchos::RCP<Tpetra::CrsMatrix< Scalar, Ordinal > > &A, const Teuchos::

RCP<const Tpetra::Map<Ordinal> > &splitMap, const Teuchos::SerialDenseMatrix< Ordinal

, Scalar > &motionsMat, const Teuchos::SerialDenseVector< Ordinal, Ordinal > &

durationsVec, const Teuchos::SerialDenseMatrix< Ordinal, Scalar > &calib, const

Teuchos::SerialDenseMatrix< Ordinal, Scalar > &invInitial, const Teuchos::RCP<const

Tpetra::Map<Ordinal> > &mapMotions, const Ordinal size_m1, const Ordinal size_m2,

const Ordinal size_m3) {

Scalar weight;

Ordinal x, y, z;

Ordinal i, j, k;

Ordinal sumDurations = 0;

Ordinal dataSize = size_m1 * size_m2 * size_m3;

Teuchos::SerialDenseMatrix< Ordinal, Scalar > outtrans1(4, 4, false);

Teuchos::SerialDenseMatrix< Ordinal, Scalar > outtrans2(4, 4, false);

Teuchos::SerialDenseMatrix< Ordinal, Scalar > outtrans(4, 4, false);

Teuchos::SerialDenseMatrix< Ordinal, Scalar > inv(4, 4, true);

Teuchos::SerialDenseMatrix< Ordinal, Scalar >P(dataSize, 4, false);

Teuchos::SerialDenseMatrix< Ordinal, Scalar >W(dataSize, 4, false);

for (i = 0; i < durationsVec.length(); i++) {

sumDurations += durationsVec[i];

}

if (A->getComm()->getRank()==0) {

weight = (1.0*durationsVec(0)) / sumDurations;

for (i = 0; i < dataSize; i++) {

A->insertGlobalValues(i, Teuchos::ArrayView<const Ordinal>(&i, 1), Teuchos::

ArrayView<const Scalar>(&weight, 1));

}

}

for (k = 0; k < size_m3; k++) {

for (j = 0; j < size_m2; j++) {

for (i = 0; i < size_m1; i++) {

P(k*(size_m1 * size_m2) + j*size_m1 + i, 0) = j;

P(k*(size_m1 * size_m2) + j*size_m1 + i, 1) = i;

P(k*(size_m1 * size_m2) + j*size_m1 + i, 2) = k;

P(k*(size_m1 * size_m2) + j*size_m1 + i, 3) = 1.0;

}

}

}

153

// Each processor now needs to form its Ai matrices.

for (i = 0; i < motionsMat.numRows(); i++) {

quatToMatrix(outtrans1, motionsMat(i, 0), motionsMat(i, 1), motionsMat(i, 2),

motionsMat(i, 3), motionsMat(i, 4), motionsMat(i, 5), motionsMat(i, 6));

outtrans2.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1, calib, outtrans1, 0);

outtrans.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1, outtrans2, invInitial, 0);

invert<Scalar,Ordinal>(outtrans, inv);

W.multiply(Teuchos::NO_TRANS, Teuchos::TRANS, 1, P, inv, 0);

weight = (1.0*(A->getComm()->getRank()==0 ? durationsVec[i + 1] : durationsVec[i +

mapMotions->getMinGlobalIndex()])) / sumDurations;

for (j = 0; j < W.numRows(); j++) {

x = (Ordinal) round(W(j,1));

y = (Ordinal) round(W(j,0));

z = (Ordinal) round(W(j,2));

if (x >= 0 && x < size_m2 && y >= 0 && y < size_m1 && z >= 0 && z < size_m3) {

k = x + y*size_m1 + z*size_m1*size_m2;

A->insertGlobalValues(j, Teuchos::ArrayView<const Ordinal>(&k, 1), Teuchos::

ArrayView<const Scalar>(&weight, 1));

}

}

}

// Needed in case no entries are inserted on some processor

k = 0; weight = 0;

A->insertGlobalValues(0, Teuchos::ArrayView<const Ordinal>(&k, 1), Teuchos::ArrayView<

const Scalar>(&weight, 1));

A->fillComplete(splitMap, splitMap);

}

template <class Scalar, class Ordinal>

void formATrilinear(const Teuchos::RCP<Tpetra::CrsMatrix< Scalar, Ordinal > > &A, const

Teuchos::RCP<const Tpetra::Map<Ordinal> > &splitMap, const Teuchos::SerialDenseMatrix

< Ordinal, Scalar > &motionsMat, const Teuchos::SerialDenseVector< Ordinal, Ordinal >

&durationsVec, const Teuchos::SerialDenseMatrix< Ordinal, Scalar > &calib, const

Teuchos::SerialDenseMatrix< Ordinal, Scalar > &invInitial, const Teuchos::RCP<const

Tpetra::Map<Ordinal> > &mapMotions, const Ordinal size_m1, const Ordinal size_m2,

const Ordinal size_m3) {

Scalar weight;

Ordinal x, y, z;

Scalar xi, eta, gam;

Ordinal i, j, k;

Ordinal sumDurations = 0;

Ordinal dataSize = size_m1 * size_m2 * size_m3;

Ordinal cols[8];

Scalar vals[8];

154

Teuchos::SerialDenseMatrix< Ordinal, Scalar > outtrans1(4, 4, false);

Teuchos::SerialDenseMatrix< Ordinal, Scalar > outtrans2(4, 4, false);

Teuchos::SerialDenseMatrix< Ordinal, Scalar > outtrans(4, 4, false);

Teuchos::SerialDenseMatrix< Ordinal, Scalar > inv(4, 4, true);

Teuchos::SerialDenseMatrix< Ordinal, Scalar >P(dataSize, 4, false);

Teuchos::SerialDenseMatrix< Ordinal, Scalar >W(dataSize, 4, false);

for (i = 0; i < durationsVec.length(); i++) {

sumDurations += durationsVec[i];

}

if (A->getComm()->getRank()==0) {

weight = (1.0*durationsVec(0)) / sumDurations;

for (i = 0; i < dataSize; i++) {

A->insertGlobalValues(i, Teuchos::ArrayView<const Ordinal>(&i, 1), Teuchos::

ArrayView<const Scalar>(&weight, 1));

}

}

for (k = 0; k < size_m3; k++) {

for (j = 0; j < size_m2; j++) {

for (i = 0; i < size_m1; i++) {

P(k*(size_m1 * size_m2) + j*size_m1 + i, 0) = j;

P(k*(size_m1 * size_m2) + j*size_m1 + i, 1) = i;

P(k*(size_m1 * size_m2) + j*size_m1 + i, 2) = k;

P(k*(size_m1 * size_m2) + j*size_m1 + i, 3) = 1.0;

}

}

}

// Each processor now needs to form its Ai matrices

for (i = 0; i < motionsMat.numRows(); i++) {

quatToMatrix(outtrans1, motionsMat(i, 0), motionsMat(i, 1), motionsMat(i, 2),

motionsMat(i, 3), motionsMat(i, 4), motionsMat(i, 5), motionsMat(i, 6));

outtrans2.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1, calib, outtrans1, 0);

outtrans.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1, outtrans2, invInitial, 0);

invert<Scalar,Ordinal>(outtrans, inv);

W.multiply(Teuchos::NO_TRANS, Teuchos::TRANS, 1, P, inv, 0);

weight = (1.0*(A->getComm()->getRank()==0 ? durationsVec[i + 1] : durationsVec[i +

mapMotions->getMinGlobalIndex()])) / sumDurations;

for (j = 0; j < W.numRows(); j++) {

x = (Ordinal) floor(W(j,1));

xi = W(j,1) - x;

y = (Ordinal) floor(W(j,0));

eta = W(j,0) - y;

z = (Ordinal) floor(W(j,2));

gam = W(j,2) - z;

155

if (x >= 0 && x < (size_m2-1) && y >= 0 && y < (size_m1-1) && z >= 0 && z < (

size_m3-1)) {

cols[0] = x + y*size_m1 + z*size_m1*size_m2;

cols[1] = (x+1) + y*size_m1 + z*size_m1*size_m2;

cols[2] = x + (y+1)*size_m1 + z*size_m1*size_m2;

cols[3] = x + y*size_m1 + (z+1)*size_m1*size_m2;

cols[4] = (x+1) + y*size_m1 + (z+1)*size_m1*size_m2;

cols[5] = x + (y+1)*size_m1 + (z+1)*size_m1*size_m2;

cols[6] = (x+1) + (y+1)*size_m1 + z*size_m1*size_m2;

cols[7] = (x+1) + (y+1)*size_m1 + (z+1)*size_m1*size_m2;

vals[0] = (1-xi)*(1-eta)*(1-gam)*weight;

vals[1] = xi*(1-eta)*(1-gam)*weight;

vals[2] = (1-xi)*eta*(1-gam)*weight;

vals[3] = (1-xi)*(1-eta)*gam*weight;

vals[4] = xi*(1-eta)*gam*weight;

vals[5] = (1-xi)*eta*gam*weight;

vals[6] = xi*eta*(1-gam)*weight;

vals[7] = xi*eta*gam*weight;

A->insertGlobalValues(j, Teuchos::ArrayView<const Ordinal>(cols, 8), Teuchos::

ArrayView<const Scalar>(vals, 8));

}

else if (x >= 0 && x < (size_m2-1) && y >= 0 && y < (size_m1-1) && z == (size_m3-1)

) { // include last image in stack

cols[0] = x + y*size_m1 + z*size_m1*size_m2;

cols[1] = (x+1) + y*size_m1 + z*size_m1*size_m2;

cols[2] = x + (y+1)*size_m1 + z*size_m1*size_m2;

cols[3] = (x+1) + (y+1)*size_m1 + z*size_m1*size_m2;

vals[0] = (1-xi)*(1-eta)*(1-gam)*weight;

vals[1] = xi*(1-eta)*(1-gam)*weight;

vals[2] = (1-xi)*eta*(1-gam)*weight;

vals[3] = xi*eta*(1-gam)*weight;

A->insertGlobalValues(j, Teuchos::ArrayView<const Ordinal>(cols, 4), Teuchos::

ArrayView<const Scalar>(vals, 4));

}

}

}

// Needed in case no entries are inserted on some processor

k = 0; weight = 0;

A->insertGlobalValues(0, Teuchos::ArrayView<const Ordinal>(&k, 1), Teuchos::ArrayView<

const Scalar>(&weight, 1));

A->fillComplete(splitMap, splitMap);

}

template <class Scalar, class Ordinal>

156

void solveNewLSQR(const Teuchos::RCP<const Tpetra::CrsMatrix< Scalar, Ordinal > > &A,

const Teuchos::RCP< Tpetra::Vector< Scalar, Ordinal, Ordinal > > &X, const Teuchos::

RCP<const Tpetra::Vector< Scalar, Ordinal, Ordinal > > &B, const Teuchos::RCP< Tpetra

::Vector< Scalar, Ordinal > > &Truth /* = Teuchos::null */, const int WindowSize /* =

1 */, const int maxIters /* = 10000 */) {

typedef Tpetra::MultiVector< Scalar, Ordinal, Ordinal > MV;

typedef Tpetra::Operator< Scalar, Ordinal > OP;

Teuchos::RCP< Belos::LinearProblem< Scalar, MV, OP > >myProblem = Teuchos::rcp(new

Belos::LinearProblem< Scalar, MV, OP>(A, X, B));

bool set = myProblem->setProblem();

if (A->getComm()->getRank()==0 && !set)

std::cout << "ERROR! LSQR not set" << std::endl;

Teuchos::RCP< Teuchos::ParameterList > pl = Teuchos::rcp(new Teuchos::ParameterList());

pl->set("Adaptive Block Size", false);

pl->set("Maximum Iterations", (Ordinal) maxIters);

pl->set("Condition Limit", (Scalar) 1000);

pl->set("Term Iter Max", 1);

pl->set("Rel Mat Err", 0.0);

if (Truth != Teuchos::null) {

pl->set< Teuchos::RCP < MV > >("True Solution", Truth);

pl->set("Window Size", WindowSize);

}

LSQRSolMgr< Scalar, MV, OP > solver(myProblem, pl);

solver.solve();

Ordinal numIters = solver.getNumIters();

if (A->getComm()->getRank()==0)

std::cout << "LSQR num iters = " << numIters << std::endl;

}

template <class Scalar, class Ordinal>

void solveNewMRNSD(const Teuchos::RCP<const Tpetra::CrsMatrix< Scalar, Ordinal > > &A,

const Teuchos::RCP<Tpetra::Vector< Scalar, Ordinal, Ordinal > > &X, const Teuchos::

RCP<const Tpetra::Vector< Scalar, Ordinal, Ordinal > > &B, const Teuchos::RCP< Tpetra

::Vector< Scalar, Ordinal, Ordinal > > &Truth /* = Teuchos::null */, const int

WindowSize /* = 1 */, const Scalar Tolerance /* = 0.1 */, const int maxIters /* =

10000 */) {

typedef Tpetra::MultiVector< Scalar, Ordinal, Ordinal > MV;

typedef Tpetra::Operator< Scalar, Ordinal > OP;

Teuchos::RCP< Belos::LinearProblem< Scalar, MV, OP > >myProblem = Teuchos::rcp(new

Belos::LinearProblem< Scalar, MV, OP>(A, X, B));

bool set = myProblem->setProblem();

157

if (A->getComm()->getRank()==0 && !set)

std::cout << "ERROR! MRNSD not set" << std::endl;

Teuchos::RCP< Teuchos::ParameterList > pl = Teuchos::rcp(new Teuchos::ParameterList());

pl->set("Maximum Iterations", (Ordinal) maxIters);

pl->set("Tolerance", Tolerance);

if (Truth != Teuchos::null) {

pl->set< Teuchos::RCP< MV > >("True Solution", Truth);

pl->set("Window Size", WindowSize);

}

MRNSDSolMgr< Scalar, MV, OP > solver(myProblem, pl);

solver.solve();

Ordinal numIters = solver.getNumIters();

if (A->getComm()->getRank()==0)

std::cout << "MRNSD num iters = " << numIters << std::endl;

}

template <class Scalar, class Ordinal>

void reconstruct(const Teuchos::RCP< const Teuchos::ParameterList > &pl) {

Teuchos::RCP<const Teuchos::Comm<int> > comm = Tpetra::DefaultPlatform::

getDefaultPlatform().getComm();

size_t myRank = comm->getRank();

size_t numProc = comm->getSize();

bool verbose = (myRank==0);

const Ordinal indexBase = 0;

const Ordinal quatSize = 7;

const Ordinal calibSize = 4;

Ordinal motionSize;

Ordinal numDurations;

const Ordinal size_m1 = pl->get<Ordinal>("nx");

const Ordinal size_m2 = pl->get<Ordinal>("ny");

const Ordinal size_m3 = pl->get<Ordinal>("nz");

const Ordinal dataSize = size_m1*size_m2*size_m3;

// Maps

Teuchos::RCP<const Tpetra::Map<Ordinal> > splitMap;

Teuchos::RCP<const Tpetra::Map<Ordinal> > allMap;

Teuchos::RCP<const Tpetra::Map<Ordinal> > mapMotions;

// Matrices and vectors

Teuchos::RCP< Tpetra::CrsMatrix< Scalar, Ordinal > > A;

Teuchos::SerialDenseMatrix< Ordinal, Scalar > motionsMat;

158

Teuchos::SerialDenseVector< Ordinal, Ordinal > durationsVec;

Teuchos::RCP<Tpetra::Vector< Scalar, Ordinal, Ordinal > > B;

Teuchos::RCP<Tpetra::Vector< Scalar, Ordinal, Ordinal > > X;

Teuchos::SerialDenseMatrix< Ordinal, Scalar > invInitial(4, 4, true);

Teuchos::RCP<Tpetra::Vector< Scalar, Ordinal, Ordinal > > Truth;

// Read Calibration Matrix

Teuchos::SerialDenseMatrix< Ordinal, Scalar >calib(calibSize, calibSize, true);

std::ifstream CalibFileName;

Scalar num;

std::string fname = pl->get<std::string>("Calibration File");

CalibFileName.open(fname.c_str());

if (CalibFileName.fail()) {

std::cout << "Error: failed to open calibration file: " << pl->get<const char*>("

Calibration File") << std::endl;

exit(1);

}

if (pl->get<std::string>("Calibration Orientation").compare("Row") == 0) {

for (int i = 0; i < calibSize; i++) {

for (int j = 0; j < calibSize; j++) {

CalibFileName >> num;

calib(i,j) = num;

}

}

} else {

for (int j = 0; j < calibSize; j++) {

for (int i = 0; i < calibSize; i++) {

CalibFileName >> num;

calib(i,j) = num;

}

}

}

CalibFileName.close();

// Read Durations

numDurations = pl->get<Ordinal>("Number of Intervals");

durationsVec = Teuchos::SerialDenseVector< Ordinal, Ordinal >(numDurations, false);

readDurations<Ordinal>(pl->get<std::string>("Interval File").c_str(), durationsVec);

// Read Motions

mapMotions = Teuchos::rcp(new Tpetra::Map<Ordinal>(numDurations, indexBase, comm));

motionsMat = Teuchos::SerialDenseMatrix< Ordinal, Scalar >(verbose ? mapMotions->

getNodeNumElements() - 1 : mapMotions->getNodeNumElements(), quatSize, false);

readMotions<Scalar,Ordinal>(pl->get<std::string>("Motion File").c_str(), motionsMat,

mapMotions, durationsVec, calib, invInitial, pl->get<Ordinal>("Motion Offset"), pl

159

->get<Ordinal>("Sampling Rate"));

// First make allMap, then form A

std::vector<Ordinal> indices(dataSize);

for (Ordinal i = 0; i < dataSize; i++) {

indices[i] = i;

}

allMap = Teuchos::rcp(new Tpetra::Map<Ordinal>(Teuchos::OrdinalTraits<Ordinal>::

invalid(), Teuchos::ArrayView<const Ordinal>(indices), indexBase, comm));

splitMap = Teuchos::rcp(new Tpetra::Map<Ordinal>(dataSize, indexBase, comm));

if (pl->isParameter("Interpolation")) {

if (pl->get<std::string>("Interpolation") == "Trilinear") {

A = Teuchos::rcp(new Tpetra::CrsMatrix< Scalar, Ordinal, Ordinal >(allMap, allMap,

numDurations*8));

formATrilinear<Scalar,Ordinal>(A, splitMap, motionsMat, durationsVec, calib,

invInitial, mapMotions, size_m1, size_m2, size_m3);

} else if (pl->get<std::string>("Interpolation") == "Nearest Neighbor") {

A = Teuchos::rcp(new Tpetra::CrsMatrix< Scalar, Ordinal, Ordinal >(allMap, allMap,

numDurations));

formA<Scalar,Ordinal>(A, splitMap, motionsMat, durationsVec, calib, invInitial,

mapMotions, size_m1, size_m2, size_m3);

} else {

if (verbose)

std::cerr << "Error: undefined Interpolation type: " << pl->get<std::string>("

Interpolation") << std::endl;

exit(1);

}

} else { // no interpolation given; used NN

A = Teuchos::rcp(new Tpetra::CrsMatrix< Scalar, Ordinal, Ordinal >(allMap, allMap,

numDurations));

formA<Scalar,Ordinal>(A, splitMap, motionsMat, durationsVec, calib, invInitial,

mapMotions, size_m1, size_m2, size_m3);

}

// Read Data

B = Teuchos::rcp(new Tpetra::Vector< Scalar, Ordinal, Ordinal >(splitMap, false));

readData<Scalar,Ordinal>(pl->get<std::string>("Input File").c_str(), B);

// Read Truth, if available

if (pl->isParameter("True Solution File")) {

Truth = Teuchos::rcp(new Tpetra::Vector< Scalar, Ordinal, Ordinal >(splitMap, false)

);

readData<Scalar,Ordinal>(pl->get<std::string>("True Solution File").c_str(), Truth);

} else {

160

Truth = Teuchos::null;

}

X = Teuchos::rcp(new Tpetra::Vector< Scalar, Ordinal, Ordinal >(splitMap, true));

Teuchos::RCP<Tpetra::Vector< Scalar, Ordinal, Ordinal > > diff_mv = Teuchos::rcp(new

Tpetra::Vector< Scalar, Ordinal, Ordinal > (splitMap, false));

// Solve

if (pl->isSublist("LSQR Solver")) {

solveNewLSQR<Scalar,Ordinal>(A, X, B, Truth, pl->sublist("LSQR Solver").get<Ordinal>(

"Window Size"), pl->sublist("LSQR Solver").get<Ordinal>("Maximum Iterations"));

fname = pl->get<std::string>("LSQR Output File");

writeData<Scalar,Ordinal>(fname.c_str(), X);

}

X->putScalar((Scalar) 0.0);

if (pl->isSublist("MRNSD Solver")) {

solveNewMRNSD<Scalar,Ordinal>(A, X, B, Truth, pl->sublist("MRNSD Solver").get<Ordinal

>("Window Size"), (Scalar) pl->sublist("MRNSD Solver").get<double>("Tolerance"),

pl->sublist("MRNSD Solver").get<Ordinal>("Maximum Iterations"));

fname = pl->get<std::string>("MRNSD Output File");

writeData<Scalar,Ordinal>(fname.c_str(), X);

}

}

A.4.2 HRRTmain.cpp Code

#include "HRRT.hpp"

#include <time.h>

#include "Teuchos_XMLParameterListHelpers.hpp"

int main(int argc, char *argv[]) {

time_t time0 = time(NULL);

typedef int Ordinal;

typedef float Scalar;

Teuchos::oblackholestream blackhole;

Teuchos::GlobalMPISession mpiSession(&argc,&argv,&blackhole);

Teuchos::RCP< Teuchos::ParameterList > pl = Teuchos::getParametersFromXmlFile(argv[1]);

reconstruct<Scalar,Ordinal>(pl);

time_t time1 = time(NULL);

std::cout << "Total time = " << time1 - time0 << " seconds " << std::endl;

return 0;

}

A.4.3 Example XML File

<ParameterList>

161

<Parameter name="Motion File" type="string" value="motions.csv"/>

<Parameter name="Number of Intervals" type="int" value="17"/>

<Parameter name="Interval File" type="string" value="intervals.csv"/>

<Parameter name="Input File" type="string" value="rhs.img"/>

<Parameter name="True Solution File" type="string" value="true.img"/>

<Parameter name="Motion Offset" type="int" value="0"/>

<Parameter name="Sampling Rate" type="int" value="20"/>

<Parameter name="nx" type="int" value="128"/>

<Parameter name="ny" type="int" value="128"/>

<Parameter name="nz" type="int" value="48"/>

<Parameter name="Amount of Noise" type="float" value="0.10"/>

<Parameter name="Scalar Type" type="string" value="float"/>

<Parameter name="Ordinal Type" type="string" value="int"/>

<Parameter name="Interpolation" type="string" value="Trilinear"/>

<Parameter name="Calibration File" type="string" value="calib.txt"/>

<Parameter name="Calibration Orientation" type="string" value="Row"/>

<Parameter name="LSQR Output File" type="string" value="LSQRsol.img"/>

<Parameter name="MRNSD Output File" type="string" value="MRNSDsol.img"/>

<ParameterList name="LSQR Solver">

<Parameter name="Maximum Iterations" type="int" value="500"/>

<Parameter name="Condition Limit" type="float" value="1000"/>

<Parameter name="Term Iter Max" type="int" value="1"/>

<Parameter name="Rel RHS Err" type="float" value="0.0"/>

<Parameter name="Rel Mat Err" type="float" value="0.0"/>

<Parameter name="Window Size" type="int" value="4"/>

</ParameterList>

<ParameterList name="MRNSD Solver">

<Parameter name="Maximum Iterations" type="int" value="1000"/>

<Parameter name="Tolerance" type="float" value="0.0"/>

<Parameter name="Window Size" type="int" value="8"/>

</ParameterList>

</ParameterList>

A.5 Code for AO Application

A.5.1 AOOperator.hpp

#ifndef AO_OPERATOR_HPP

#define AO_OPERATOR_HPP

/* AOOperator.hpp

* Concrete class representing the Adaptive Optics operator.

*/

#include "Tpetra_Operator.hpp"

162

#include "Teuchos_SerialDenseMatrix.hpp"

#include "Tpetra_Map.hpp"

template<class Scalar, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal,

class Node = Kokkos::DefaultNode::DefaultNodeType>

class AOOperator : public Tpetra::Operator<Scalar,LocalOrdinal,GlobalOrdinal,Node> {

public:

// Constructors/Destructor

/* AOOperator constructor with mask.

* This class is templated on Scalar, LocalOrdinal, GlobalOrdinal and Node.

* The LocalOrdinal type, if omitted, defaults to int.

* The GlobalOrdinal type defaults to the LocalOrdinal type.

* The Node type defaults to the default node in Kokkos.

* This constructor takes a Teuchos::SerialDenseMatrix describing the mask

* for this operator. The mask is of size (n-1)xn, so the problem size is

* known. It also takes a pointer to the domain and range maps.

*/

AOOperator(const Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar> > &mask

, const Scalar alpha, const Teuchos::RCP<const Tpetra::Map<LocalOrdinal,

GlobalOrdinal,Node> > &domainMap, const Teuchos::RCP<const Tpetra::Map<LocalOrdinal

,GlobalOrdinal,Node> > &rangeMap);

// Destructor.

~AOOperator() {};

// Getter methods

const Teuchos::RCP< const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > & getDomainMap

() const { return dMap_; }

const Teuchos::RCP< const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > & getRangeMap

() const { return rMap_; }

bool hasTransposeApply() const { return true; }

// Apply method

/* This method applies the adaptive optics operator, or its transpose, to a

* vector X. It scales the result by alpha, then adds that to beta*Y, storing

* the result in Y. Thus, Y = alpha*AO^{mode}*X + beta*Y.

*/

void apply(const Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &X, Tpetra

::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &Y, Teuchos::ETransp mode=

Teuchos::NO_TRANS, Scalar alpha = Teuchos::ScalarTraits<Scalar>::one(), Scalar beta

= Teuchos::ScalarTraits<Scalar>::zero()) const;

163

private:

// H and F matrices

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar> > H_;

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar> > F_;

// Mask matrix

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar> > mask_;

// Domain and range maps

Teuchos::RCP<const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > dMap_;

Teuchos::RCP<const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > rMap_;

// Alpha value

Scalar alpha_;

// Size

LocalOrdinal n_;

};

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>

AOOperator<Scalar,LocalOrdinal,GlobalOrdinal,Node>::AOOperator(const Teuchos::RCP<

Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar> > &mask, const Scalar alpha, const

Teuchos::RCP<const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > &domainMap, const

Teuchos::RCP<const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > &rangeMap) :

mask_(mask),

alpha_(alpha),

dMap_(domainMap),

rMap_(rangeMap),

n_(mask_->numRows() + 1)

{

H_ = Teuchos::rcp(new Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar>(n_ - 1, n_));

F_ = Teuchos::rcp(new Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar>(n_ - 1, n_));

const Scalar one = Teuchos::ScalarTraits<Scalar>::one();

const Scalar negOne = -Teuchos::ScalarTraits<Scalar>::one();

const Scalar half = static_cast<Scalar>(one / 2.0);

for (LocalOrdinal i = 0; i < n_ - 1; i++) {

(*H_)(i, i) = one;

(*H_)(i, i+1) = negOne;

}

for (LocalOrdinal i = 0; i < n_ - 1; i++) {

(*F_)(i, i) = half;

(*F_)(i, i+1) = half;

}

}

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>

164

void AOOperator<Scalar,LocalOrdinal,GlobalOrdinal,Node>::apply(const Tpetra::MultiVector<

Scalar,LocalOrdinal,GlobalOrdinal,Node> &X, Tpetra::MultiVector<Scalar,LocalOrdinal,

GlobalOrdinal,Node> &Y, Teuchos::ETransp mode /* = Teuchos::NO_TRANS */, Scalar alpha

/* = Teuchos::ScalarTraits<Scalar>::one() */, Scalar beta /* = Teuchos::ScalarTraits

<Scalar>::zero() */) const

{

const Scalar one = Teuchos::ScalarTraits<Scalar>::one();

const Scalar zero = Teuchos::ScalarTraits<Scalar>::zero();

const LocalOrdinal STRIDE = X.getStride();

if (mode == Teuchos::NO_TRANS) {

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > V = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_, n_, false));

Teuchos::ArrayRCP<const Scalar> xView = X.get1dView();

for (LocalOrdinal i = 0; i < n_; i++) {

for (LocalOrdinal j = 0; j < n_; j++) {

(*V)(i,j) = xView[j*n_ + i];

}

}

xView = Teuchos::null;

/* Note: We need the Teuchos::Copy because, otherwise, we need to reshape V,

* which effectively copies the entries anyway. This is because the lda

* will be 0 otherwise (due to the stride) and mat-mat multiplies won’t work

*/

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > HV = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_ - 1, n_, false));

HV->multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, one, *H_, *V, zero);

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > VHt = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_, n_ - 1, false));

int res = VHt->multiply(Teuchos::NO_TRANS, Teuchos::TRANS, one, *V, *H_, zero);

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > Nm1Nm1 = Teuchos::rcp(

new Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_ - 1, n_ - 1, false));

Nm1Nm1->multiply(Teuchos::NO_TRANS, Teuchos::TRANS, one, *HV, *F_, zero);

Nm1Nm1->scale(*mask_);

Scalar *values = Nm1Nm1->values();

for (LocalOrdinal i = 0; i < (n_-1)*(n_-1); i++) {

Y.replaceGlobalValue(i, 0, values[i]);

}

Nm1Nm1->multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, one, *F_, *VHt, zero);

Nm1Nm1->scale(*mask_);

values = Nm1Nm1->values();

for (LocalOrdinal i = 0; i < (n_-1)*(n_-1); i++) {

Y.replaceGlobalValue(i + (n_-1)*(n_-1), 0, values[i]);

}

HV->scale(alpha_);

values = HV->values();

165

for (LocalOrdinal i = 0; i < (n_-1)*n_; i++) {

Y.replaceGlobalValue(i + 2*(n_-1)*(n_-1), 0, values[i]);

}

VHt->scale(alpha_);

values = VHt->values();

for (LocalOrdinal i = 0; i < n_*(n_-1); i++) {

Y.replaceGlobalValue(i + 2*(n_-1)*(n_-1) + (n_-1)*n_, 0, values[i]);

}

} else /* mode == Teuchos::TRANS */ {

// Get pointer to values

Teuchos::ArrayRCP<const Scalar> Xview = X.get1dView();

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > V1 = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_ - 1, n_ - 1, false));

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > V2 = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_ - 1, n_ - 1, false));

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > V3 = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_ - 1, n_, false));

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > V4 = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_, n_ - 1, false));

Teuchos::ArrayRCP<const Scalar> xView = X.get1dView();

for (LocalOrdinal i = 0; i < n_ - 1; i++) {

for (LocalOrdinal j = 0; j < n_ - 1; j++) {

(*V1)(i,j) = xView[j*(n_-1) + i];

}

}

for (LocalOrdinal i = 0; i < n_ - 1; i++) {

for (LocalOrdinal j = 0; j < n_ - 1; j++) {

(*V2)(i,j) = xView[j*(n_-1) + i + (n_-1)*(n_-1)];

}

}

for (LocalOrdinal i = 0; i < n_ - 1; i++) {

for (LocalOrdinal j = 0; j < n_; j++) {

(*V3)(i,j) = xView[j*(n_-1) + i + 2*(n_-1)*(n_-1)];

}

}

for (LocalOrdinal i = 0; i < n_; i++) {

for (LocalOrdinal j = 0; j < n_ - 1; j++) {

(*V4)(i,j) = xView[j*n_ + i + 2*(n_-1)*(n_-1)+(n_-1)*n_];

}

}

xView = Teuchos::null;

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > MAV = Teuchos::rcp(

new Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_, n_, true));

166

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > Nm1Nm1 = Teuchos::rcp(

new Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (*V1));

Nm1Nm1->scale(*mask_);

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > NNm1 = Teuchos::rcp(

new Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_, n_ - 1, false));

NNm1->multiply(Teuchos::TRANS, Teuchos::NO_TRANS, one, *H_, *Nm1Nm1, zero);

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > NN = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_, n_, false));

NN->multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, one, *NNm1, *F_, zero);

(*MAV) += (*NN);

(*Nm1Nm1) = (*V2);

Nm1Nm1->scale(*mask_);

NNm1->multiply(Teuchos::TRANS, Teuchos::NO_TRANS, one, *F_, *Nm1Nm1, zero);

NN->multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, one, *NNm1, *H_, zero);

(*MAV) += (*NN);

NN->multiply(Teuchos::TRANS, Teuchos::NO_TRANS, one, *H_, *V3, zero);

NN->scale(alpha_);

(*MAV) += (*NN);

NN->multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, one, *V4, *H_, zero);

NN->scale(alpha_);

(*MAV) += (*NN);

Scalar *values = MAV->values();

for (LocalOrdinal i = 0; i < n_*n_; i++) {

Y.replaceGlobalValue(i, 0, values[i]);

}

}

}

#endif /* AO_OPERATOR_HPP */

A.5.2 AOPreconditioner.hpp

#ifndef AO_PRECONDITIONER_HPP

#define AO_PRECONDITIONER_HPP

/* AOPreconditioner.hpp

* Concrete class representing the Adaptive Optics preconditioner.

*/

#include "Tpetra_Operator.hpp"

#include "Teuchos_SerialDenseMatrix.hpp"

#include "Tpetra_Map.hpp"

template<class Scalar, class LocalOrdinal = int, class GlobalOrdinal = LocalOrdinal,

class Node = Kokkos::DefaultNode::DefaultNodeType>

167

class AOPreconditioner : public Tpetra::Operator<Scalar,LocalOrdinal,GlobalOrdinal,Node>

{

public:

// Constructors/Destructor

/* AOPreconditioner constructor.

* This class is templated on Scalar, LocalOrdinal, GlobalOrdinal and Node.

* The LocalOrdinal type, if omitted, defaults to int.

* The GlobalOrdinal type defaults to the LocalOrdinal type.

* The Node type defaults to the default node in Kokkos.

* This constructor takes a Teuchos::SerialDenseMatrix describing the diagonal

* values of C^(-1/2) for this operator as well as one for the explicit

* inverse of X, both of size n x n. It also takes a pointer to the

* domain and range maps.

*/

AOPreconditioner(const Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar> >

&Chahlfinv, const Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar> >

&Xinv, const Teuchos::RCP<const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > &

domainMap, const Teuchos::RCP<const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> >

&rangeMap);

// Destructor.

~AOPreconditioner() {};

// Getter methods

const Teuchos::RCP< const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > & getDomainMap

() const { return dMap_; }

const Teuchos::RCP< const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > & getRangeMap

() const { return rMap_; }

bool hasTransposeApply() const { return true; }

// Apply method

/* This method applies the preconditioner for the adaptive optics problem, or

* its transpose to a vector X. It scales the result by alpha, then adds that

* to beta*Y, storing the result in Y. Thus, Y = alpha*P^{mode}*X + beta*Y.

*/

void apply(const Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &X, Tpetra

::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &Y, Teuchos::ETransp mode=

Teuchos::NO_TRANS, Scalar alpha = Teuchos::ScalarTraits<Scalar>::one(), Scalar beta

= Teuchos::ScalarTraits<Scalar>::zero()) const;

private:

168

// Inverse of C^.5 and X matrices

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar> > Chalfinv_;

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar> > Xinv_;

// Domain and range maps

Teuchos::RCP<const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > dMap_;

Teuchos::RCP<const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > rMap_;

// Size

LocalOrdinal n_;

};

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>

AOPreconditioner<Scalar,LocalOrdinal,GlobalOrdinal,Node>::AOPreconditioner(const Teuchos

::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar> > &Chalfinv, const Teuchos::

RCP<Teuchos::SerialDenseMatrix<LocalOrdinal, Scalar> > &Xinv, const Teuchos::RCP<

const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > &domainMap, const Teuchos::RCP<

const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> > &rangeMap) :

Chalfinv_(Chalfinv),

Xinv_(Xinv),

dMap_(domainMap),

rMap_(rangeMap),

n_(Chalfinv_->numRows())

{

}

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>

void AOPreconditioner<Scalar,LocalOrdinal,GlobalOrdinal,Node>::apply(const Tpetra::

MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &X, Tpetra::MultiVector<Scalar,

LocalOrdinal,GlobalOrdinal,Node> &Y, Teuchos::ETransp mode /* = Teuchos::NO_TRANS */,

Scalar alpha /* = Teuchos::ScalarTraits<Scalar>::one() */, Scalar beta /* = Teuchos

::ScalarTraits<Scalar>::zero() */) const

{

const Scalar one = Teuchos::ScalarTraits<Scalar>::one();

const Scalar zero = Teuchos::ScalarTraits<Scalar>::zero();

const LocalOrdinal STRIDE = 0;

if (mode == Teuchos::NO_TRANS) {

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > V = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_, n_, false));

Teuchos::ArrayRCP<const Scalar> xView = X.get1dView();

for (LocalOrdinal i = 0; i < n_; i++) {

for (LocalOrdinal j = 0; j < n_; j++) {

(*V)(i,j) = xView[j*n_ + i];

}

}

xView = Teuchos::null;

V->scale(*Chalfinv_);

169

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > NN1 = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_, n_, false));

NN1->multiply(Teuchos::TRANS, Teuchos::NO_TRANS, one, *Xinv_, *V, zero);

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > NN2 = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_, n_, false));

NN2->multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, one, *NN1, *Xinv_, zero);

Scalar *values = NN2->values();

for (LocalOrdinal i = 0; i < n_*n_; i++) {

Y.replaceGlobalValue(i, 0, values[i]);

}

} else /* mode == Teuchos::TRANS */ {

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > V = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_, n_, false));

Teuchos::ArrayRCP<const Scalar> xView = X.get1dView();

for (LocalOrdinal i = 0; i < n_; i++) {

for (LocalOrdinal j = 0; j < n_; j++) {

(*V)(i,j) = xView[j*n_ + i];

}

}

xView = Teuchos::null;

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > NN1 = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_, n_, false));

NN1->multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, one, *Xinv_, *V, zero);

Teuchos::RCP<Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> > NN2 = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar> (n_, n_, false));

NN2->multiply(Teuchos::NO_TRANS, Teuchos::TRANS, one, *NN1, *Xinv_, zero);

NN2->scale(*Chalfinv_);

Scalar *values = NN2->values();

for (LocalOrdinal i = 0; i < n_*n_; i++) {

Y.replaceGlobalValue(i, 0, values[i]);

}

}

}

#endif /* AO_PRECONDITIONER_HPP */

A.5.3 AOmain.hpp

#ifndef AO_MAIN_HPP

#define AO_MAIN_HPP

#include "AOOperator.hpp"

#include "AOPreconditioner.hpp"

#include "LSQRSolMgr.hpp"

#include "Tpetra_Map.hpp"

#include "Tpetra_MultiVector.hpp"

170

#include "Tpetra_DefaultPlatform.hpp"

#include "BelosTpetraAdapter.hpp"

#include "BelosLinearProblem.hpp"

enum Orientation {

ROW_MAJOR,

COL_MAJOR

};

// Read in a file in raw data form that contains a matrix and store the values

// in a given SerialDenseMatrix object.

/*

\param file - (In) File in raw data form containing a matrix.

\param matrix - (Out) Matrix of correct size to store data.

\param orientation - (In) Orientation of data in file (row or column major).

*/

template <class Scalar, class Ordinal>

void readFile(const char *file, const Teuchos::RCP< Teuchos::SerialDenseMatrix< Ordinal,

Scalar > > &matrix, Orientation orientation);

// Write reconstructed solution in raw form.

/*

\param file - (In) File to store solution in raw form.

\param Phi - (In) Reconstructed solution.

*/

template <class Scalar, class Ordinal>

void writeFile(const char *file, const Teuchos::RCP<const Tpetra::Vector< Scalar, Ordinal

, Ordinal > > &Phi);

// Generate a mask. If r0 is omitted, the mask is circular with radius r1.

// Otherwise, it is annular with inner radius r0. The largest circle contained

// in the n by n square has radius r1 = 1.

/*

\param mask - (Out) Matrix of size n x n to hold mask. Consists of 1s and 0s.

\param r1 - (In) Outer radius. Default value is 0.5.

\param r0 - (In) Inner radius. Default value is 0.

*/

template <class Scalar, class Ordinal>

void makeMask(const Teuchos::RCP< Teuchos::SerialDenseMatrix< Ordinal, Scalar > > &mask,

Scalar r1 = 0.5, Scalar r0 = 0.0);

// Solver function with or without preconditioning.

/*

\param alpha - (In) Alpha value.

\param ChalfinvFileName - (In) File containing diagonal portion of

171

preconditioner.

\param XinvFileName - (In) File containing other portion of preconditioner.

\param mask - (In) Mask matrix.

\param Phi - (Out) Solution vector.

\param B - (In) Data vector.

\param solverParams - (In) Solver parameters.

*/

template <class Scalar, class Ordinal>

void solve(Scalar alpha, const char *ChalfinvFileName, const char *XinvFileName, Teuchos

::RCP< Teuchos::SerialDenseMatrix< Ordinal, Scalar > > &mask, const Teuchos::RCP<

Tpetra::MultiVector< Scalar, Ordinal > > &Phi, const Teuchos::RCP< Tpetra::

MultiVector< Scalar, Ordinal> > &B, Teuchos::RCP< Teuchos::ParameterList > &

solverParams);

// Main method for reconstructing.

/*

\param pl - (In) Parameter list containing all the necessary information.

*/

template <class Scalar, class Ordinal>

void reconstruct(const Teuchos::RCP< const Teuchos::ParameterList > &pl);

template <class Scalar, class Ordinal>

void readFile(const char *file, const Teuchos::RCP< Teuchos::SerialDenseMatrix< Ordinal,

Scalar > > &matrix, Orientation orientation) {

std::ifstream fileName;

int size = matrix->numRows() * matrix->numCols();

double* tempNumArray = new double[size];

fileName.open(file, std::ios::out);

if (fileName.fail()) {

std::cerr << "Error: failed to open file: " << file << std::endl;

exit(1);

}

fileName.read((char*)tempNumArray, size*sizeof(double));

if (orientation == ROW_MAJOR) {

for (Ordinal i = 0; i < matrix->numRows(); i++) {

for (Ordinal j = 0; j < matrix->numCols(); j++) {

(*matrix)(i,j) = (Scalar) tempNumArray[i*matrix->numCols() + j];

}

}

} else if (orientation == COL_MAJOR) {

for (Ordinal j = 0; j < matrix->numCols(); j++) {

for (Ordinal i = 0; i < matrix->numRows(); i++) {

(*matrix)(i,j) = (Scalar) tempNumArray[j*matrix->numRows() + i];

}

}

172

} else {

std::cerr << "Incorrect orientation type" << std::endl;

}

fileName.close();

delete [] tempNumArray;

}

template <class Scalar, class Ordinal>

void writeData(const char *file, const Teuchos::RCP<const Tpetra::Vector< Scalar, Ordinal

, Ordinal > > &Phi) {

std::ofstream SolutionFileName;

Teuchos::ArrayRCP<const Scalar> phiView = Phi->get1dView();

Ordinal i;

Scalar temp;

SolutionFileName.open(file, std::ios::out | std::ios::binary);

for (i = 0; i < Phi->getGlobalLength(); i++) {

temp = (Scalar) phiView[i];

SolutionFileName.write((char*)&temp, sizeof(Scalar));

}

SolutionFileName.close();

phiView = Teuchos::null;

}

template <class Scalar, class Ordinal>

void makeMask(const Teuchos::RCP< Teuchos::SerialDenseMatrix< Ordinal, Scalar > > &mask,

Scalar r1 /* = 0.5 */, Scalar r0 /* = 0.0 */) {

Ordinal n = mask->numRows();

Scalar zero = Teuchos::ScalarTraits<Scalar>::zero();

Scalar one = Teuchos::ScalarTraits<Scalar>::one();

Scalar negOne = -one;

Scalar two = 2*one;

Scalar h = two / n;

Teuchos::RCP< Teuchos::SerialDenseVector< Ordinal, Scalar > > x = Teuchos::rcp(new

Teuchos::SerialDenseVector< Ordinal, Scalar > (n, false));

for (Ordinal i = 0; i < n; i++) {

(*x)(i) = negOne + i*h;

}

Teuchos::RCP< Teuchos::SerialDenseVector< Ordinal, Scalar > > onevec = Teuchos::rcp(new

Teuchos::SerialDenseVector< Ordinal, Scalar > (n, false));

(*onevec) = one;

Teuchos::RCP< Teuchos::SerialDenseMatrix< Ordinal, Scalar > > xonet = Teuchos::rcp(new

Teuchos::SerialDenseMatrix< Ordinal, Scalar > (n, n, false));

xonet->multiply(Teuchos::NO_TRANS, Teuchos::TRANS, one, *x, *onevec, zero);

173

Teuchos::RCP< Teuchos::SerialDenseMatrix< Ordinal, Scalar > > onext = Teuchos::rcp(new

Teuchos::SerialDenseMatrix< Ordinal, Scalar > (n, n, false));

onext->multiply(Teuchos::NO_TRANS, Teuchos::TRANS, one, *onevec, *x, zero);

Teuchos::RCP< Teuchos::SerialDenseMatrix< Ordinal, Scalar > > r = Teuchos::rcp(new

Teuchos::SerialDenseMatrix< Ordinal, Scalar > (n, n, false));

for (Ordinal i = 0; i < n; i++) {

for (Ordinal j = 0; j < n; j++) {

(*r)(i,j) = Teuchos::ScalarTraits<Scalar>::squareroot((*xonet)(i,j) * (*xonet)(i,j

) + (*onext)(i,j) * (*onext)(i,j));

}

}

if (r0 <= zero) {

// Making a circular mask

for (Ordinal i = 0; i < n; i++) {

for (Ordinal j = 0; j < n; j++) {

(*mask)(i,j) = (*r)(i,j) <= r1 ? one : zero;

}

}

} else {

// Making an annular mask

for (Ordinal i = 0; i < n; i++) {

for (Ordinal j = 0; j < n; j++) {

(*mask)(i,j) = ((r0 <= (*r)(i,j)) && ((*r)(i,j) <= r1)) ? one : zero;

}

}

}

}

template <class Scalar, class Ordinal>

void solve(Scalar alpha, const char *ChalfinvFileName, const char *XinvFileName, Teuchos

::RCP< Teuchos::SerialDenseMatrix< Ordinal, Scalar > > &mask, const Teuchos::RCP<

Tpetra::MultiVector< Scalar, Ordinal > > &Phi, const Teuchos::RCP< Tpetra::

MultiVector< Scalar, Ordinal > > &B, Teuchos::RCP< Teuchos::ParameterList > &

solverParams) {

typedef Tpetra::MultiVector< Scalar, Ordinal, Ordinal > MV;

typedef Tpetra::Operator< Scalar, Ordinal > OP;

// Determine n

Ordinal n = mask->numRows();

bool havePrec = (ChalfinvFileName != NULL && XinvFileName != NULL);

Teuchos::RCP< Teuchos::SerialDenseMatrix< Ordinal, Scalar > > Chalfinv;

Teuchos::RCP< Teuchos::SerialDenseMatrix< Ordinal, Scalar > > Xinv;

if (havePrec) {

Chalfinv = Teuchos::rcp(new Teuchos::SerialDenseMatrix< Ordinal, Scalar > (n, n,

false));

174

Xinv = Teuchos::rcp(new Teuchos::SerialDenseMatrix< Ordinal, Scalar > (n, n, false)

);

readFile(ChalfinvFileName, Chalfinv, COL_MAJOR);

readFile(XinvFileName, Xinv, COL_MAJOR);

}

Teuchos::RCP< AOOperator<Scalar,Ordinal> > AO = Teuchos::rcp(new AOOperator<Scalar,

Ordinal> (mask, alpha, Phi->getMap(), B->getMap()));

Teuchos::RCP< Belos::LinearProblem< Scalar, MV, OP > > myProblem = Teuchos::rcp(new

Belos::LinearProblem< Scalar, MV, OP>(AO, Phi, B));

Teuchos::RCP< AOPreconditioner<Scalar,Ordinal> > AP;

if (havePrec) {

AP = Teuchos::rcp(new AOPreconditioner<Scalar,Ordinal> (Chalfinv, Xinv, Phi->getMap

(), Phi->getMap()));

myProblem->setRightPrec(AP);

}

bool set = myProblem->setProblem();

if (!set) {

std::cout << "Error! LSQR not set" << std::endl;

}

LSQRSolMgr< Scalar, MV, OP > solver(myProblem, solverParams);

solver.solve();

Ordinal numIters = solver.getNumIters();

std::cout << "LSQR num iters = " << numIters << std::endl;

}

template <class Scalar, class Ordinal>

void reconstruct(const Teuchos::RCP< const Teuchos::ParameterList > &pl) {

Ordinal n = pl->get<Ordinal>("n");

Scalar r0 = -1;

Scalar r1 = -1;

if (pl->isParameter("r0")) {

r0 = pl->get<Scalar>("r0");

}

if (pl->isParameter("r1")) {

r1 = pl->get<Scalar>("r1");

}

Teuchos::RCP< Teuchos::SerialDenseMatrix<Ordinal,Scalar> > mask = Teuchos::rcp(new

Teuchos::SerialDenseMatrix<Ordinal,Scalar>(n-1, n));

if (r0 != -1 && r1 != -1) {

makeMask<Scalar,Ordinal>(mask, r1, r0);

} else if (r1 != -1) {

makeMask<Scalar,Ordinal>(mask, r1);

} else {

makeMask<Scalar,Ordinal>(mask);

175

}

std::string sxFileName = pl->get<std::string>("sx File");

std::string syFileName = pl->get<std::string>("sy File");

Scalar alpha = pl->get<Scalar>("alpha");

std::string ChalfinvFileName, XinvFileName;

bool prec = false;

if (pl->isParameter("Chalfinv File") && pl->isParameter("Xinv File")) {

ChalfinvFileName = pl->get<std::string>("Chalfinv File");

XinvFileName = pl->get<std::string>("Xinv File");

prec = true;

}

Teuchos::RCP<const Teuchos::Comm<int> > comm = Tpetra::DefaultPlatform::

getDefaultPlatform().getComm();

Teuchos::RCP<const Tpetra::Map<Ordinal> > domainMap = Teuchos::rcp(new Tpetra::Map<

Ordinal>(n*n, 0, comm));

Teuchos::RCP<Tpetra::Vector< Scalar, Ordinal, Ordinal > > Phi = Teuchos::rcp(new

Tpetra::Vector< Scalar, Ordinal, Ordinal >(domainMap));

Teuchos::RCP<const Tpetra::Map<Ordinal> > rangeMap = Teuchos::rcp(new Tpetra::Map<

Ordinal> (2*(n-1)*(n-1)+2*n*(n-1), 0, comm));

Teuchos::RCP<Tpetra::Vector< Scalar, Ordinal, Ordinal > > B = Teuchos::rcp(new Tpetra

::Vector<Scalar, Ordinal, Ordinal > (rangeMap));

Teuchos::RCP< Teuchos::SerialDenseMatrix< Ordinal, Scalar > > sx = Teuchos::rcp(new

Teuchos::SerialDenseMatrix< Ordinal, Scalar > ((n-1)*(n-1), 1, false));

Teuchos::RCP< Teuchos::SerialDenseMatrix< Ordinal, Scalar > > sy = Teuchos::rcp(new

Teuchos::SerialDenseMatrix< Ordinal, Scalar > ((n-1)*(n-1), 1, false));

readFile(sxFileName.c_str(), sx, COL_MAJOR);

readFile(syFileName.c_str(), sy, COL_MAJOR);

for(Ordinal i = 0; i < (n-1)*(n-1); i++) {

B->replaceGlobalValue(i, (*sx)(i,0));

}

for(Ordinal i = 0; i < (n-1)*(n-1); i++) {

B->replaceGlobalValue(i+(n-1)*(n-1), (*sy)(i,0));

}

Teuchos::ParameterList spl = (pl->sublist("LSQR Solver"));

Teuchos::RCP< Teuchos::ParameterList > solverPL = Teuchos::rcp(&spl, false);

if (prec) {

solve<Scalar,Ordinal>(alpha, ChalfinvFileName.c_str(), XinvFileName.c_str(), mask,

Phi, B, solverPL);

} else {

solve<Scalar,Ordinal>(alpha, NULL, NULL, mask, Phi, B, solverPL);

}

std::string fname = pl->get<std::string>("Output File");

writeData<Scalar, Ordinal>(fname.c_str(), Phi);

176

}

#endif /* AO_MAIN_HPP */

A.5.4 AOmain.cpp

#include "AOmain.hpp"

#include <Teuchos_GlobalMPISession.hpp>

#include <Teuchos_oblackholestream.hpp>

#include "Teuchos_XMLParameterListHelpers.hpp"

int main(int argc, char *argv[]) {

typedef int Ordinal;

typedef double Scalar;

Teuchos::oblackholestream blackhole;

Teuchos::GlobalMPISession mpiSession(&argc, &argv, &blackhole);

Teuchos::RCP< Teuchos::ParameterList > pl = Teuchos::getParametersFromXmlFile(argv[1]);

reconstruct<Scalar,Ordinal>(pl);

return 0;

}

A.5.5 Example XML File

<ParameterList>

<Parameter name="n" type="int" value="64"/>

<Parameter name="r1" type="double" value="0.9"/>

<Parameter name="alpha" type="double" value="0.0"/>

<Parameter name="sx File" type="string" value="sx64.double"/>

<Parameter name="sy File" type="string" value="sy64.double"/>

<Parameter name="Chalfinv File" type="string" value="Chalfinv64.double"/>

<Parameter name="Xinv File" type="string" value="Xinv64.double"/>

<ParameterList name="LSQR Solver">

<Parameter name="Condition Limit" type="double" value="1000"/>

<Parameter name="Maximum Iterations" type="int" value="200"/>

<Parameter name="Rel Mat Err" type="double" value="0"/>

<Parameter name="Term Iter Max" type="int" value="1"/>

</ParameterList>

<Parameter name="Ordinal Type" type="string" value="int"/>

<Parameter name="Scalar Type" type="string" value="double"/>

<Parameter name="Output File" type="string" value="reconstructedPhi64.double"/>

</ParameterList>

Bibliography

[1] H. C. Andrews and B. R. Hunt. Digital Image Restoration. Prentice Hall

Professional Technical Reference, Englewood Cliffs, NJ, 1977.

[2] M. Bachmayr and M. Burger. Iterative total variation schemes for nonlinear

inverse problems. Inverse Problems, 25(10), 2009.

[3] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik,

M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users man-

ual. Technical Report ANL-95/11 - Revision 3.1, Argonne National Laboratory,

2010.

[4] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Kne-

pley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc Web page, 2011.

http://www.mcs.anl.gov/petsc.

[5] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management

of parallelism in object oriented numerical software libraries. In E. Arge, A. M.

Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific

Computing, pages 163–202. Birkhäuser Press, 1997.

[6] S. Barbero, J. Rubinstein, and L. N. Thibos. Wavefront sensing and recon-

struction from gradient and Laplacian data measured with a Hartmann-Shack

sensor. Optics Letters, 31(12):1845–1847, 2006.

[7] J. Bardsley, S. Knepper, and J. Nagy. Structured linear algebra problems in

adaptive optics imaging. Adv. Comput. Math., to appear, 2011.

[8] J. M. Bardsley. An efficient computational method for total variation-penalized

Poisson likelihood estimation. Inverse Prob. Imag., 2(2):167–185, 2008.

[9] J. M. Bardsley. Stopping rules for a nonnegatively constrained iterative method

for ill-posed Poisson imaging problems. BIT, 48(4):651–664, 2008.

178

[10] J. M. Bardsley. Wavefront reconstruction methods for adaptive optics systems

on ground-based telescopes. SIAM J. Matrix Anal. Appl., 30(1):67–83, 2008.

[11] J. M. Bardsley and C. R. Vogel. A nonnegatively constrained convex program-

ming method for image reconstruction. SIAM J. Sci. Comput., 25(4):1326–1343,

2003.

[12] H. H. Barrett, C. Dainty, and D. Lara. Maximum-likelihood methods in wave-

front sensing: stochastic models and likelihood functions. J. Opt. Soc. Am. A,

24(2):391–414, 2007.

[13] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA J.

Numer. Anal., 8(1):141–148, 1988.

[14] Å. Björck. A bidiagonalization algorithm for solving large and sparse ill-posed

systems of linear equations. BIT, 28(3):659–670, 1988.

[15] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia,

PA, 1996.

[16] Å. Björck, E. Grimme, and P. van Dooren. An implicit shift bidiagonalization

algorithm for ill-posed systems. BIT, 34(4):510–534, 1994.

[17] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-

garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.

Whaley. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

[18] P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos,

R. Fulton, and T. Jones. The design and implementation of a motion correction

scheme for neurological PET. Phys. Med. Biol., 48(8):959–978, 2003.

[19] H. Brakhage. On ill-posed problems and the method of conjugate gradients. In

H. W. Engl and C. W. Groetsch, editors, Inverse and Ill-Posed Problems, pages

165–175. Academic Press, Boston, 1987.

[20] P. Bühler, U. Just, E. Will, J. Kotzerke, and J. van den Hoff. An accurate

method for correction of head movement in PET. IEEE Trans. Med. Imag.,

23(9):1176–1185, 2004.

[21] D. Calvetti and L. Reichel. Tikhonov regularization of large linear problems.

BIT, 43(2):263–283, 2003.

179

[22] D. Calvetti and E. Somersalo. Introduction to Bayesian Scientific Comput-

ing: Ten Lectures on Subjective Computing. Springer-Verlag New York, Inc.,

Secaucus, NJ, 2007.

[23] E. J. Candès, J. K. Romberg, and T. Tao. Stable signal recovery from incom-

plete and inaccurate measurements. Comm. Pure Appl. Math., 59(8):1207–1223,

2006.

[24] R. C. Cannon. Global wave-front reconstruction using Shack-Hartmann sensors.

J. Opt. Soc. Am. A, 12(9):2031–2039, 1995.

[25] K. Chadan, D. Colton, L. Päivärinta, and W. Rundell. An Introduction to

Inverse Scattering and Inverse Spectral Problems. SIAM, Philadelphia, PA,

1997.

[26] T. F. Chan and J. Shen. Image Processing and Analysis: Variational, PDE,

Wavelet, and Stochastic Methods. SIAM, Philadelphia, PA, 2005.

[27] M. Cheney and B. Borden. Fundamentals of Radar Imaging. SIAM, Philadel-

phia, PA, 2009.

[28] J. Chung, E. Haber, and J. Nagy. Numerical methods for coupled super-

resolution. Inverse Problems, 22(4):1261–1272, 2006.

[29] J. Chung, S. Knepper, and J. Nagy. Large-scale inverse problems in imaging.

In O. Scherzer, editor, Handbook of Mathematical Methods in Imaging, pages

43–86. Springer, 2011.

[30] J. Chung, J. G. Nagy, and D. P. O’Leary. A weighted GCV method for Lanczos

hybrid regularization. Elec. Trans. Numer. Anal., 28:149–167, 2008.

[31] J. Chung, P. Sternberg, and C. Yang. High performance 3-dimensional image

reconstruction for molecular structure determination. Int. J. High Perform.

Comput. Appl., 24(2):117–135, 2010.

[32] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia,

PA, 2006.

[33] M. Elad and A. Feuer. Restoration of a single superresolution image from several

blurred, noisy, and undersampled measured images. IEEE Trans. Image Proc.,

6(12):1646–1658, 1997.

180

[34] B. L. Ellerbroek. Efficient computation of minimum-variance wave-front recon-

structors with sparse matrix techniques. J. Opt. Soc. Am. A, 19(9):1803–1816,

2002.

[35] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems.

Kluwer Academic Publishers, Dordrecht, 2000.

[36] H. W. Engl and P. Kügler. Nonlinear inverse problems: Theoretical aspects and

some industrial applications. In V. Capasso and J. Périaux, editors, Multidis-

ciplinary Methods for Analysis Optimization and Control of Complex Systems,

pages 3–48. Springer, Berlin, 2005.

[37] H. W. Engl, K. Kunisch, and A. Neubauer. Convergence rates for Tikhonov

regularisation of nonlinear ill-posed problems. Inverse Problems, 5(4):523–540,

1989.

[38] H. W. Engl, A. K. Louis, and W. Rundell, editors. Inverse Problems in Geo-

physical Applications, Philadelphia, PA, 1997. SIAM.

[39] J. Eriksson and P. Wedin. Truncated Gauss-Newton algorithms for ill-

conditioned nonlinear least squares problems. Optim. Methods Softw.,

19(6):721–737, 2004.

[40] S. Ettl, J. Kaminski, M. C. Knauer, and G. Häusler. Shape reconstruction from

gradient data. Applied Optics, 47(12):2091–2097, 2008.

[41] T. L. Faber, N. Raghunath, D. Tudorascu, and J. R. Votaw. Motion correction

of PET brain images through deconvolution: I. Theoretical development and

analysis in software simulations. Phys. Med. Biol., 54(3):797–811, 2009.

[42] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection

for sparse reconstruction: Application to compressed sensing and other inverse

problems. IEEE J. Sel. Topics Signal Process., 1(4):586–597, 2007.

[43] J. Frank. Three-Dimensional Electron Microscopy of Macromolecular Assem-

blies. Oxford University Press, New York, 2006.

[44] D. L. Fried. Least-square fitting a wave-front distortion estimate to an array of

phase-difference measurements. J. Opt. Soc. Am., 67(3):370–375, 1977.

[45] R. R. Fulton, S. R. Meikle, S. Eberl, J. Pfeiffer, C. J. Constable, and M. J.

Fulham. Correction for head movements in positron emission tomography using

181

an optical motion-tracking system. IEEE Trans. Nucl. Sci., 49(1):116–123,

2002.

[46] L. Gilles. Order-N sparse minimum-variance open-loop reconstructor for ex-

treme adaptive optics. Optics Letters, 28(20):1927–1929, 2003.

[47] L. Gilles, C. R. Vogel, and B. L. Ellerbroek. Multigrid preconditioned conjugate-

gradient method for large-scale wave-front reconstruction. J. Opt. Soc. Am. A,

19(9):1817–1822, 2002.

[48] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a

method for choosing a good ridge parameter. Technometrics, 21(2):215–223,

1979.

[49] G. H. Golub, F. T. Luk, and M. L. Overton. A block Lanczos method for

computing the singular values and corresponding singular vectors of a matrix.

ACM Trans. Math. Softw., 7(2):149–169, 1981.

[50] G. H. Golub and V. Pereyra. The differentiation of pseudo-inverses and non-

linear least squares problems whose variables separate. SIAM J. Numer. Anal.,

10(2):413–432, 1973.

[51] G. H. Golub and V. Pereyra. Separable nonlinear least squares: the variable

projection method and its applications. Inverse Problems, 19(2):R1–R26, 2003.

[52] G. H. Golub and C. F. Van Loan. Matrix Computations, 3rd edition. Johns

Hopkins University Press, Baltimore, MD, 1996.

[53] J. W. Goodman. Introduction to Fourier Optics, 2nd edition. McGraw-Hill,

New York, 1996.

[54] M. V. Green, J. Seidel, S. D. Stein, T. E. Tedder, K. M. Kempner, C. Kertzman,

and T. A. Zeffiro. Head movement in normal subjects during simulated PET

brain imaging with and without head restraint. J. Nucl. Med., 35(9):1538–1546,

1994.

[55] E. Haber, U. M. Ascher, and D. Oldenburg. On optimization techniques for

solving nonlinear inverse problems. Inverse Problems, 16(5):1263–1280, 2000.

[56] E. Haber and D. Oldenburg. A GCV based method for nonlinear ill-posed

problems. Computational Geosciences, 4(1):41–63, 2000.

182

[57] M. Hanke. Conjugate Gradient Type Methods for Ill-Posed Problems. Pitman

Research Notes in Mathematics, Longman Scientific & Technical, Harlow, Es-

sex, 1995.

[58] M. Hanke. Limitations of the L-curve method in ill-posed problems. BIT,

36(2):287–301, 1996.

[59] M. Hanke. On Lanczos based methods for the regularization of discrete ill-posed

problems. BIT, 41(5):1008–1018, 2001.

[60] M. Hanke, J. G. Nagy, and C. Vogel. Quasi-Newton approach to nonnegative

image restorations. Linear Algebra Appl., 316(1–3):223–236, 2000.

[61] P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve.

SIAM Review, 34(4):561–580, 1992.

[62] P. C. Hansen. Numerical tools for analysis and solution of Fredholm integral

equations of the first kind. Inverse Problems, 8(6):849–872, 1992.

[63] P. C. Hansen. Regularization Tools: A Matlab package for analysis and solution

of discrete ill-posed problems. Numerical Algorithms, 6(1):1–35, 1994.

[64] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical As-

pects of Linear Inversion. SIAM, Philadelphia, PA, 1998.

[65] P. C. Hansen. Regularization Tools version 4.0 for Matlab 7.3. Numerical

Algorithms, 46(2):189–194, 2007.

[66] P. C. Hansen. Discrete Inverse Problems: Insight and Algorithms. SIAM,

Philadelphia, PA, 2010.

[67] P. C. Hansen, J. G. Nagy, and D. P. O’Leary. Deblurring Images: Matrices,

Spectra, and Filtering. SIAM, Philadelphia, PA, 2006.

[68] P. C. Hansen and D. P. O’Leary. The use of the L-curve in the regularization

of discrete ill-posed problems. SIAM J. Sci. Comput., 14(6):1487–1503, 1993.

[69] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq,

K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro,

J. Willenbring, and A. Williams. An overview of Trilinos. Technical Report

SAND2003-2927, Sandia National Laboratories, 2003.

183

[70] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G.

Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G.

Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams,

and K. S. Stanley. An overview of the Trilinos project. ACM Trans. Math.

Softw., 31(3):397–423, 2005.

[71] M. A. Heroux and J. M. Willenbring. Trilinos users guide. Technical Report

SAND2003-2952, Sandia National Laboratories, 2003.

[72] B. Hofmann. Regularization of nonlinear problems and the degree of ill-

posedness. In G. Anger, R. Gorenflo, H. Jochmann, H. Moritz, and W. Webers,

editors, Inverse Problems: Principles and Applications in Geophysics, Technol-

ogy, and Medicine. Akademie Verlag, Berlin, 1993.

[73] M. Hohn, G. Tang, G. Goodyear, P. R. Baldwin, Z. Huang, P. A. Penczek,

C. Yang, R. M. Glaeser, P. D. Adams, and S. J. Ludtke. SPARX, a new

environment for Cryo-EM image processing. J. Struct. Biol., 157(1):47–55,

2007.

[74] J. Howse. Software for LSQR (C version), 1999.

http://www.stanford.edu/group/SOL/software/lsqr.html.

[75] R. H. Hudgin. Wave-front reconstruction for compensated imaging. J. Opt.

Soc. Am., 67(3):375–378, 1977.

[76] H. M. Hudson and R. S. Larkin. Accelerated image reconstruction using ordered

subsets of projection data. IEEE Trans. Med. Imag., 13(4):601–609, 1994.

[77] B. R. Hunt. Matrix formulation of the reconstruction of phase values from phase

differences. J. Opt. Soc. Am., 69(3):393–399, 1979.

[78] M. Jacobsen. Modular Regularization Algorithms. PhD thesis, Informatics and

Mathematical Modelling, Technical Unversity of Denmark, Lyngby, 2004.

[79] T. K. Jensen. Stabilization Algorithms for Large-Scale Problems. PhD thesis,

Informatics and Mathematical Modelling, Technical University of Denmark,

Lyngby, 2006.

[80] M. G. Kang and S. Chaudhuri. Super-resolution image reconstruction. IEEE

Signal Process. Mag., 20(3):19–20, 2003.

184

[81] S. Karimi, D. K. Salkuyeh, and F. Toutounian. A preconditioner for the LSQR

algorithm. J. Appl. Math. and Informatics, 26(1–2):213–222, 2008.

[82] L. Kaufman. A variable projection method for solving separable nonlinear least

squares problems. BIT, 15(1):49–57, 1975.

[83] M. E. Kilmer, P. C. Hansen, and M. I. Español. A projection-based approach to

general-form Tikhonov regularization. SIAM J. Sci. Comput., 29(1):315–330,

2007.

[84] M. E. Kilmer and D. P. O’Leary. Choosing regularization parameters in iterative

methods for ill-posed problems. SIAM J. Matrix Anal. Appl., 22(4):1204–1221,

2001.

[85] L. Landweber. An iteration formula for Fredholm integral equations of the first

kind. American J. of Mathematics, 73(3):615–624, 1951.

[86] R. M. Larsen. Lanczos Bidiagonalization with Partial Reorthogonalization. PhD

thesis, Dept. of Computer Science, University of Aarhus, Denmark, 1998.

[87] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. SIAM,

Philadelphia, PA, 1995.

[88] C. Van Loan. The ubiquitous Kronecker product. J. Comp. and Appl. Math.,

123(1–2):85–100, 2000.

[89] R. Marabini, G. T. Herman, and J. M. Carazo. 3D reconstruction in electron

microscopy using ART with smooth spherically symmetric volume elements

(blobs). Ultramicroscopy, 72(1–2):53–65, 1998.

[90] M. Menke, M. S. Atkins, and K. R. Buckley. Compensation methods for head

motion detected during PET imaging. IEEE Trans. Nucl. Sci., 43(1):310–317,

1996.

[91] K. Miller. Least squares methods for ill-posed problems with a prescribed

bound. SIAM J. Math. Anal., 1(1):52–74, 1970.

[92] J. Modersitzki. Numerical Methods for Image Registration. Oxford University

Press, Oxford, 2004.

[93] V. A. Morozov. On the solution of functional equations by the method of

regularization. Soviet Math. Dokl., 7:414–417, 1966.

185

[94] J. G. Nagy, K. Palmer, and L. Perrone. Iterative methods for image deblurring:

A Matlab object-oriented approach. Numerical Algorithms, 36(1):73–93, 2004.

[95] J. G. Nagy and Z. Strakoš. Enforcing nonnegativity in image reconstruction

algorithms. In D. C. Wilson, H. D. Tagare, F. L. Bookstein, F. J. Preteux, and

E. R. Dougherty, editors, Mathematical Modeling, Estimation, and Imaging,

volume 4121, pages 182–190. SPIE, 2000.

[96] F. Natterer. The Mathematics of Computerized Tomography. SIAM, Philadel-

phia, PA, 2001.

[97] F. Natterer and F. Wübbeling. Mathematical Methods in Image Reconstruction.

SIAM, Philadelphia, PA, 2001.

[98] N. Nguyen, P. Milanfar, and G. Golub. Efficient generalized cross-validation

with applications to parametric image restoration and resolution enhancement.

IEEE Trans. Image Proc., 10(9):1299–1308, 2001.

[99] J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, 1999.

[100] D. P. O’Leary and J. A. Simmons. A bidiagonalization-regularization procedure

for large scale discretizations of ill-posed problems. SIAM J. Sci. Stat. Comp.,

2(4):474–489, 1981.

[101] M. R. Osborne. Separable least squares, variable projection, and the Gauss-

Newton algorithm. Elec. Trans. Numer. Anal., 28:1–15, 2007.

[102] C. C. Paige and M. A. Saunders. Algorithm 583: LSQR: Sparse linear equations

and least squares problems. ACM Trans. Math. Softw., 8(2):195–209, 1982.

[103] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations

and sparse least squares. ACM Trans. Math. Softw., 8(1):43–71, 1982.

[104] P. Penczek, M. Radermacher, and J. Frank. Three-dimensional reconstruction

of single particles embedded in ice. Ultramicroscopy, 40(1):33–53, 1992.

[105] D. L. Phillips. A technique for the numerical solution of certain integral equa-

tions of the first kind. J. ACM, 9(1):84–97, 1962.

[106] Y. Picard and C. J. Thompson. Motion correction of PET images using multiple

acquisition frames. IEEE Trans. Med. Imag., 16(2):137–144, 1997.

186

[107] N. Raghunath, T. L. Faber, S. Suryanarayanan, and J. R. Votaw. Motion correc-

tion of PET brain images through deconvolution: II. Practical implementation

and algorithm optimization. Phys. Med. Biol., 54(3):813–829, 2009.

[108] A. Rahmim, P. Bloomfield, S. Houle, M. Lenox, C. Michel, K. R. Buckley, T. J.

Ruth, and V. Sossi. Motion compensation in histogram-mode and list-mode

EM reconstructions: beyond the event-driven approach. IEEE Trans. Nucl.

Sci., 51(5):2588–2596, 2004.

[109] A. Rahmim, J. C. Cheng, K. Dinelle, M. Shilov, W. P. Segars, O. G. Rousset,

B. M. Tsui, D. F. Wong, and V. Sossi. System matrix modelling of externally

tracked motion. Nucl. Med. Commun., 29(6):574–581, 2008.

[110] H. Ren and R. Dekany. Fast wave-front reconstruction by solving the

Sylvester equation with the alternating direction implicit method. Opt. Ex-

press, 12(14):3279–3296, 2004.

[111] H. Ren, R. Dekany, and M. Britton. Large-scale wave-front reconstruction for

adaptive optics systems by use of a recursive filtering algorithm. Applied Optics,

44(13):2626–2637, 2005.

[112] M. Roggemann and B. Welsh. Imaging Through Turbulence. CRC Press, 1996.

[113] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise

removal algorithms. Physica D, 60(1–4):259–268, 1992.

[114] A. Ruhe and P. Wedin. Algorithms for separable nonlinear least squares prob-

lems. SIAM Review, 22(3):318–337, 1980.

[115] Y. Saad. On the rates of convergence of the Lanczos and the block-Lanczos

methods. SIAM J. Numer. Anal., 17(5):687–706, 1980.

[116] S. D. Saban, M. Silvestry, G. R. Nemerow, and P. L. Stewart. Visualization of

α-helices in a 6-Ångstrom resolution cryoelectron microscopy structure of aden-

ovirus allows refinement of capsid protein assignments. J. Virol., 80(24):12049–

12059, 2006.

[117] A. N. Tikhonov. Regularization of incorrectly posed problems. Soviet Math.

Dokl., 4:1624–1627, 1963.

[118] A. N. Tikhonov. Solution of incorrectly formulated problems and the regular-

ization method. Soviet Math. Dokl., 4:1035–1038, 1963.

187

[119] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. Winston,

Washington, D.C., 1977.

[120] A. N. Tikhonov, A. S. Leonov, and A. G. Yagola. Nonlinear Ill-Posed Problems,

Volumes I and II. Chapman and Hall, London, 1998.

[121] J. Tomlin. Software for LSQR (C++ version), 2007.

http://www.stanford.edu/group/SOL/software/lsqr.html.

[122] Y. Tsaig and D. L. Donoho. Extensions of compressed sensing. Signal Process-

ing, 86(3):549–571, 2006.

[123] R. S. Tuminaro, M. A. Heroux, S. A. Hutchinson, and J. N. Shadid. Official

Aztec user’s guide: Version 2.1. Technical report, Sandia National Laboratories,

1999.

[124] J. M. Varah. Pitfalls in the numerical solution of linear ill-posed problems.

SIAM J. Sci. Stat. Comp., 4(2):164–176, 1983.

[125] C. R. Vogel. Optimal choice of a truncation level for the truncated SVD solution

of linear first kind integral equations when data are noisy. SIAM J. Numer.

Anal., 23(1):109–117, 1986.

[126] C. R. Vogel. An overview of numerical methods for nonlinear ill-posed problems.

In H. W. Engl and C. W. Groetsch, editors, Inverse and Ill-Posed Problems,

pages 231–245. Academic Press, Boston, 1987.

[127] C. R. Vogel. Non-convergence of the L-curve regularization parameter selection

method. Inverse Problems, 12(4):535–547, 1996.

[128] C. R. Vogel. Computational Methods for Inverse Problems. SIAM, Philadelphia,

PA, 2002.

[129] P. Wendykier. Parallel HRRT Deconvolution project, 2009.

http://sites.google.com/site/piotrwendykier/software/deconvolution/

parallelhrrtdeconvolution.

[130] P. Wendykier, N. Raghunath, T. L. Faber, J. Chung, S. Knepper, J. G. Nagy,

and J. R. Votaw. Deblurring PET images using motion information. Technical

Report TR-2010-028, Emory University, 2010.

