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Abstract 
 

Development of Multi-modality polymer-coated Quantum Dots for cancer imaging 
By Hening Wang 

 
Cancer has become a large threat to people’s health and lives in the world. It is very important if we 
can achieve the early diagnosis of cancer, which can significantly reduce cancer mortality and 
improve the life quality of patients. Nanotechnology is currently widely used in cancer diagnosis and 
treatment. Nanometer-sized Quantum Dots have intrinsic optical, electronic, and structural 
properties therefore they have found many applications in the biomedical imaging field. For better 
applications, we need the QDs to have excellent water-stability, biocompatibility and even targeting 
ability. Here, we design and develop novel biocompatible Hyaluronic acid polymer coated QDs for 
CD44+ cancer targeted imaging. The resulted QDs not only have good water solubility, 
biocompatibility, strong stability, but also achieved CD44 receptor targeted cancer cell imaging. The 
development of multi-modal imaging equipment requires the design for multi-modality imaging 
probes. We synthesized DTPA and DOTA chelating agent conjugated hyaluronic acid, which can 
couple magnetic resonance imaging elements-Gd, and PET isotopes-Cu respectively to make a NIR 
/ MR or NIR / PET dual-modality imaging probes. The multi-modality imaging probe holds the 
ability for fluorescence imaging, magnetic resonance imaging and PET imaging which can 
complement the advantages of different imaging modality and help to enhance tumor identification 
and diagnostic capabilities. We expect our novel method to have broad applications in biomedical 
imaging research, for the realization of precise diagnosis of tumors, as well as to promote 
personalized medicine. 
 
 
 



E 

 
 
 
 
 

Development of Multi-modality polymer-coated Quantum Dots for cancer imaging 
 
 

By 
 
 
 

Hening Wang 
B.A. Shanghai Jiao Tong University, 2010 

 
 
 

Advisor: Dr. Qiushi Ren and Dr. Shuming Nie 
 
 
 
 
 
 
 

A dissertation submitted to the Faculty of the  
James T. Laney School of Graduate Studies of Emory University 

in partial fulfillment of the requirements for the degree of  
Doctor of Philosophy 

in Biomedical Engineering 
2016 

 
 
 

 



iii 

 

ACKNOWLEDGEMENTS 

 

 I would like to thank all the people that come to my life and I dedicated this thesis 

to all of you. I would like to thank my family, my mentors, labmates, and friends in my 

life and am forever grateful for the support you have given to me during the completion 

of my PhD.  

First , I would like to thank my advisors. I thank Dr. Qiushi Ren and Dr. Peng Xi 

to gave me this opportunity to be a PhD candidate and have two years’ study in the US. 

Thank you for your patient coach and help on my study. I thank Dr. Shuming Nie, you 

have inspired me a lot on my research. Without your support, I cannot learn that much in 

the US. Your generous help and kindness is my spiritual prop and your pursuit for truth 

will always encourage me. I thank Dr. Hongfang Sun, you are a pure and able women full 

of love, your kind guidance and direction benefits me a lot, and your attitude towards 

research and life will always be my role model. I also thank Dr. Changhui Li, Dr. Andrew 

Smith and Dr. Hui Wei, you are so nice and I appreciate all of your help on my study and 

research. 

I would like to thank my labmates in Peking University and in Georgia Tech and 

Emory Univerisity. I would like to thank Dr. Brad Kairdolf, Dr. Lucas Lane, Dr. Yichen 

Ding, Dr. Guohe Wang, Jian Tian, and all the labmates. Thank you for your support and 

help not only on my research, but also the good memories that we have. 

I would like to thank my parents, Hui Wang and Jianheng Wang, who have 

always supported me. You filled my life with all your love, stand by me at any time and 

encourage me to pursue better education and a life of continuous learning. I thank my 



iv 

 

handsome and brilliant husband Hechao Wang, your love and your shoulder is the 

strongest support during the completion of my degree. I thank all my grandparents, my 

parents in law and sister in law and all my family members for your endless love and 

support. 

Finally I would like to thank all my friends. I thank Dr. Wei Yang, my soulmate. 

The luckiest thing in my life is that I met you in my PhD and I cherish all the time that I 

had with you. I thank Zhen Zhen, Yang Wang and all the friends. Thank you for your 

support and help.  

I’d like to thank everyone that come to my life who has supported and helped me 

to get here today. Thank you for all. 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 



v 

 

TABLE OF CONTENTS 

Page 

CHAPTER 

1 Introduction 1 

1.1 Background 1 

1.2 Thesis goals 6 

2 Semiconductor Quantum Dots and biological applications 8 

2.1 Semiconductor physics and semiconductor nanocrystals 8 

 2.1.1 Semiconductor physics and nanocrystals 8 

 2.1.2 Properties of Quantum Dots 10 

2.2 Chemical synthesis and coating methods of Quantum Dots 13 

 2.2.1 Chemical synthesis of QDs 13 

 2.2.2 QDs coating methods 14 

 2.2.3 Bioconjugation of QDs 17 

2.3 Biological applications of Quantum Dots 18 

 2.3.1 Fixed cells and tissue staining 18 

 2.3.2 live cell imaging 20 

 2.3.3 In vivo animal imaging 21 

 2.3.4 Challenges and opportunities 22 

3 Biocompatible Hyaluronic Acid-cystamine polymer coated QDs for cancer cell 
imaging 25 

3.1 HA applications and the mechanism for targeting CD44 receptor 25 

 3.1.1 Hyaluronic Acid 25 

 3.1.2 CD44 receptor 30 

 3.1.3 HA-based CD44 targeted imaging using QDs 32 



vi 

 

3.2 Materials and Methods 33 

 3.2.1 Materials 33 

 3.2.2 Methods 34 

3.3 Results and Discussions 38 

 3.3.1 Results 38 

 3.3.2 Discussions 47 

3.4 Summary 49 

4 Multi-modality HA coated-QDs for optical/MRI/PET imaging 51 

4.1 Background of Multi-modality imaging probes 51 

 4.1.1 Background 51 

 4.1.2 Multi-modality QDs probes 55 

4.2 HA-DTPA-Gd QDs for dual-modality optical/MRI imaging 61 

 4.2.1 Materials and Methods 61 

 4.2.2 Results and Discussions 68 

 4.2.3 Summary 80 

4.3 HA-DOTA-Cu QDs for dual-modality optical/PET imaging 81 

 4.3.1 Materials and Methods 81 

 4.3.2 Results and Disscussions 85 

 4.3.3 Summary 89 

4.4 Summary 89 

5 Summary 91 

REFERENCES 93 



vii 

 

LIST OF TABLES 

Page 

Table 4.1: Typical amount for HA-cystamine synthesis 63 

Table 4.2: Typical amount for HA-cystamine conjugating DTPA 64 

Table 4.3: Typical amount for Gd coupling with HA-cystamine-DTPA polymer 64 

Table 4.4: Typical amount for HA-cystamine synthesis 83 

Table 4.5: Typical amount for HA-cystamine conjugating DOTA 84 

 



viii 

 

LIST OF FIGURES 

Page 

Figure 1.1: Among all the cancers, Lung, liver, stomach, colorectal and breast cancers 
cause the most cancer deaths each year. (from 2014 world cancer report [1]) 2 

Figure 1.2: Nanometer scale comparison showing the nanoparticles size (from Peter R. 
Wich Research Lab) 3 

Figure 2.1: (A). Diagram of electronic energy bands in solid-state materials showing the 
Bandgap (Eg) of semiconductor. Eg is the separation between the conduction 
and valence energy bands. (B). Electronic transitions in a semiconductor. 
(Figure from Andrew M. Smith.) 9 

Figure 2.2: Size-tunable fluorescence properties and spectral range of six QD dispersions. 
(from Mattoussi et al. [2]) 11 

Figure 2.3: Photostability comparison between QDs and Alexa 488. (from Wu et al. [3])
 12 

Figure 2.4: QDs coating and bioconjugation methods (from Smith et al. [4]) 16 

Figure 2.5: Pseudocoloured image depicting five-colour QD staining of fixed human 
epithelial cells. Courtesy of Quantum Dot Corp. (from Wu et al. [3] 19 

Figure 2.6: Multiplexed molecular profiling of FFPE tissue sections. (from Maksym V. 
Yezhelyev et al. [5] 19 

Figure 2.7: Simultaneous in vivo imaging of multicolor QD-encoded microbeads. (from 
Gao et.al. [6]) 22 

Figure 2.8: Applications of quantum dots as multimodal contrast agents in bioimaging 
(from X. Michalet et al. [7] 24 

Figure 3.1: The structure of HA) 26 

Figure 3.2: Schematic illustration of HA-based 3-D constructs for cartilage engineering. 
(from Pereira et al. [8] 28 

Figure 3.3: Advantages of drug delivery systems of chemotherapy agent conjugated with 
macromolecules (from Posocco et al. [9]) 29 

Figure 3.4: HA-based RNAi delivery nano-platform for siRNAs (from Choi et al. [10])30 

Figure 3.5: Synthesis of a hyaluronic acid−quantum dot (HA-QDot) conjugate using 
adipic acid dihydrazide-modified HA (HA-ADH) (from Kim et.al. [11]) 32 



ix 

 

Figure 3.6: Preparation of HA-cysteamine polymer-coated QDs. (a) The chemical 
synthesis of HA-cysteamine polymer. (b) Schematic illustration of HA 
polymer coating on QDs 39 

Figure 3.7: Schematic illustration of reverse micelle phase transfer procedure for HA-
cysteamine polymer coated QD synthesis 40 

Figure 3.8: Characterization of QDs 41 

Figure 3.9: pH stability of HA-cysteamine polymer coated QDs 43 

Figure 3.10: Long-time stability of HA-cysteamine polymer coated QDs, compared with 
MAA coated QDs 43 

Figure 3.11: Stability in cell culture medium of HA polymer coated QDs and commercial 
carboxyl QDs from Invitrogen 44 

Figure 3.12: Cytotoxicity test of HA-cysteamine polymer-coated QDs 45 

Figure 3.13: Illustration of the targeted imaging of breast cancer cells with HA-
cysteamine polymer-coated QDs with final concentration of 5 and 10 nM 46 

Figure 3.14: HA receptor competitive targeted imaging of MCF-7 cell line with HA-
cysteamine polymer-coated QDs treated with different concentrations of HA47 

Figure 4.1: Comparisons of advantages and limitations for each imaging modality (from 
Yan Xing et al. [12] 52 

Figure 4.2: Multi-modality imaging machines (A) Quad-modality imaging system design, 
which consisted of PET, CT, SPECT, and FMI modules. (B) Photograph of 
quad-modality imaging prototype system. (from Lu et al [13]) 53 

Figure 4.3: Synthesis of dual-function PET/NIRF probe DOTA–QD–RGD through 
Chelator coupling to surface of CdTe nanoparticles. (from Louie [14]) 56 

Figure 4.4: Synthesis of lipid-coated multi modality QDs (form Louie [15]) 58 

Figure 4.5: Schematic shown for the synthesis of the Gd:CdTe QDs and their surface 
function with Folic acid. (from Zhang et.al [16]) 59 

Figure 4.6: Schematic illustration of functionalized QD probe for in vivo cancer dual-
targeting and dual-modality imaging (from Kongzhen Hu et al. [17]) 60 

Figure 4.7: Synthesis routes of HA-DTPA-Gd polymer 63 

Figure 4.8: FT-IR image of HA and HA-cystamine-DTPA 69 

Figure 4.9: NMR image of HA-cystamine-DTPA 70 



x 

 

Figure 4.10: NMR prediction by chemdraw of HA-cystamine-DTPA 70 

Figure 4.11: UV-absorption and Fluorescence image of QDs and HA-QDs 71 

Figure 4.12: TEM figures of QDs in decane (A) and HA-Gd QDs (B) 72 

Figure 4.13: T1-weighted MR images of HA-Gd QDs and DTPA-Gd solution at different 
TE value 73 

Figure 4.14: The matlab code used for calculating the T1 value at different concentrations 
of Gd 74 

Figure 4.15: The typical curve for T1 value calculation 74 

Figure 4.16: The proton longitudinal relaxation rate (1/T1) according to the Gd 
concentration 75 

Figure 4.17: Cell viability test of Hela cells 76 

Figure 4.18: Fluorescence microscopic images of Hela and NIH/3T3 cells labeled with 
HA-Gd QDs 77 

Figure 4.19: The HA-Gd QDs that was used to inject the mouse (A) Bright field image. 
(B) Fluorescence image. (C) Overlay of the bright field and fluorescence 
images 77 

Figure 4.20: In vivo fluorescence imaging of Hela tumor-bearing mice injected with HA-
Gd QDs. (A) before injection (B) 1 h (C) 2 h (D) 3 h (E) 6 h after HA-Gd QDs 
was injected. The figures are the merged images of bright field and 
fluorescence images. All of the images were taken under the same condition78 

Figure 4.21: The fluorescence image of the tumor and organs of the mouse. (A) photo to 
show the organs and tumor. (B) Bright field image. (C) Fluorescence image. 
(D) Overlay of the bright field and fluorescence images 79 

Figure 4.22: T1-weighted MR images of the mice bearing Hela tumor (as indicated by 
arrow) following tail vein injection of HA-Gd QDs obtained at 0 h (before 
injection, Figure A) and 1 h (Figure B) after injection 80 

Figure 4.23: Synthesis routes of HA-DOTA polymer 82 

Figure 4.24: FT-IR image of HA and HA-cystamine-DOTA 85 

Figure 4.25: NMR of HA-cystamine-DOTA and HA 86 

Figure 4.26: NMR prediction of HA-cystamine-DOTA by Chemdraw 87 

Figure 4.27: UV-absorption and Fluorescence image of QDs and HA-Cu QDs 87 



xi 

 

Figure 4.28: TEM figure of HA-DOTA Cu QDs to show a size distribution 88 

Figure 5.1: Multi-modality imaging probe based on our HA-cystamine QDs system 92 

Figure 5.2: Multi-modality imaging probe based on our HA-cystamine Au NP system 92 

 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Cancer by definition is the uncontrolled growth of cells that can invade and 

spread to distant sites of the body. Cancer can have serious health consequences, and is a 

leading cause of death all over the world. Cancer affects everyone and brings a 

tremendous burden to patients, families and societies. Cancer is a leading cause of death 

worldwide, and accounts for 8.2 million deaths in 2012. From the 2014 world cancer 

report, cancers figure among the leading causes of morbidity and mortality worldwide, 

with about 14 million new cases and 8.2 million cancer related deaths in 2012 [1]. It is 

expected that annual cancer cases will rise from 14 million in 2012 to 22 million within 

the next two decades. As Dr. Varmus mentioned, ‘Indeed, the age-adjusted mortality rate 

for cancer is about the same in the 21st century as it was 50 years ago, whereas the death 

rates for cardiac, cerebrovascular, and infectious diseases have declined by about two-

thirds.’[18] Early detection, accurate diagnosis, and effective treatment help increase 

cancer survival rates and reduce suffering. Among all the cancers, lung, liver, stomach, 

colorectal and breast cancers cause the most cancer deaths each year, as shown in Figure 

1.1. Research has vastly expanded our knowledge of cancer and cancer biology, 

particularly with new insights into the molecular mechanism of the disease[19, 20]. 

Although people have made a lot of progress in the treatment of cancer, substantial 

hurdles still remain because of its complexity nature. Because of these research efforts 

and recent advances in diagnostic technologies, there is an opportunity to bring the idea 

of ‘personalized medicine’ to reality. As WHO pointed out, 30% of cancers could be 
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prevented and early detection of cancer will greatly improve the likelihood for successful 

treatment.  

Nanotechnology is a multidisciplinary field and it covers a broad diversification 

range from engineering, biology, physics and chemistry [21]. Formal definition of nano-

technological devices typically feature the requirements that the device itself or its 

essential components be man-made, and in the 1–100 nm range which is from a few 

atoms to subcellular size in at least one dimension. Two main fields of nanotechnology 

are nanovectors for the administration of targeted therapeutic and imaging moieties and 

the precise patterning of surfaces. Cancer-related examples of nanotechnologies include 

injectable drug delivery nanovectors such as liposomes for the therapy of breast cancer, 

biologically targeted, nanosized contrast agents for intraoperative imaging and novel, 

nanoparticle-based methods for high-specificity detection of DNA and protein. If 

properly combined with cancer research, nanotechnology provides a lot of opportunities 

to meet the challenges in cancer. 

 

Figure 1.1. Among all the cancers, Lung, liver, stomach, colorectal and breast cancers 
cause the most cancer deaths each year. (from 2014 world cancer report [1]) 
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Figure 1.2. Nanometer scale comparison showing the nanoparticles size (from Peter 
R. Wich Research Lab) 

 
Multifunctionality is the fundamental advantage of nanovectors for the cancer-

specific delivery of therapeutic and imaging agents. The size and multicomponent nature 

of many nanomaterials offer an excellent platform to combine different materials for 

various imaging modalities. Primary functionalities include the avoidance of biobarriers 

and biomarker-based targeting, and the reporting of therapeutic efficacy. The dilemma of 

imaging modality selection in the clinic is that each modality has its own unique 

advantages and intrinsic limitations [22], such as insufficient sensitivity or low spatial 

resolution, so it remains difficult to extract accurate and reliable biomedical information 

solely based on single imaging modalities. Integrating the advantages of different 

imaging techniques is apparently an effective approach for improving the efficacy of 

clinical imaging diagnosis. Although the optical imaging techniques have shown 

potentials in extracting detailed biomedical information with high imaging sensitivities 

and low cost in imaging facilities, the assist of anatomical information is essentially 

required. Although not all imaging applications require multiple imaging modalities bind 

to a single probe, a multi-modality imaging probe has many advantages. A multi-modal 
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probe can guarantee the same pharmacokinetics and co-localization of different imaging 

modes. Also it avoid using multiple doses of imaging probes to bring a lot of pressure to 

the in vivo blood clearance [14].  

A combination of MRI and optical imaging techniques can achieve more accurate 

biomedical detection, in which the whole body MRI or optical imaging can be used to 

track the probe distribution in the body [22-24]. Although the body optical imaging is 

less powerful compared to MRI, fluorophores allow histological studies after whole body 

imaging where optical imaging provides great convenience.  

QDs are nanometer-sized crystals of semiconductor materials (typically 2-8 nm) 

that emit fluorescent light with great intensity and unparalleled signal stability. These 

attributes have found immediate use for monitoring individual molecules on cell surfaces 

in real time for extended periods, for sensitive detection of cancer in vivo, and for 

sensitive and specific characterization of viruses and cancer antigens in body fluids[2, 4, 

6, 25-33]. Compared with traditional organic dyes and fluorescent proteins, QDs are 

highly bright and resistant to photobleaching. Even importantly they have size, 

composition, and lattice strain tunable emission wavelength [4, 34-36]. However, great 

concern has been raised over the application of quantum dots in living cells and animals 

due to their chemical composition of toxic heavy metals like Cd. Some studies have 

indicated that the cytotoxicity of QDs strongly correlated with the stability and surface 

coatings of these nanoparticles[6, 31, 37, 38]. Besides, for biomedical applications, ideal 

QDs should not only have good water solubility, high stability, minimized cell toxicity, 

but also have abundant functional groups such as amine (–NH2) and carboxyl (–COOH) 

groups for further conjugation toward specific targeted imaging. 

A number of QDs surface coating methods have been used, which include silica 

coating [25, 38, 39], encapsulation with amphiphilic polymers (most commercial water-

soluble QDs) [40-42], and ligand replacement with hydrophilic ligands [27, 43, 44]. 

Silica shell coating and amphiphilic polymer encapsulation provide QDs with good 
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aqueous solubility and preserve high photoluminescence quantum yields. However, this 

approach is complex and usually results in large hydrodynamic diameters of 30–50 nm 

[27, 38], which are often much larger than the cellular receptors being labeled, and 

become a barrier for the widespread application of QDs in biomedical imaging. Due to 

the particularly strong affinity of sulfur for the metallic cations on the surface of QDs, 

mercaptopropionic acid (MPA) [27] and cysteine [43] are widely used as phase transfer 

reagents for QDs, owing to its simplicity, speed, and smaller size. Nevertheless, the 

colloidal stability is still limited due to the poor protection and drastic decrease in the 

quantum yields of the resulting water-soluble QDs. Thus, how to obtain water-soluble 

QDs with high quantum yield and high stability remains a great challenge. 

Another way to make QDs watersoluble is through multidentate polymer coating 

by ligand exchange, which usually produces compact QDs with high colloidal stability, 

with different combinations of polymer backbone, anchoring groups and pendant groups 

[44-54]. However, further bioconjugation is needed since there are not any recognition 

sites on common polymers, which will increase the size of QDs and make the experiment 

too complicated. Therefore, if one can realize specific targeting and good stability as well 

as biocompatibility through one surface modification step, it would be very convenient 

for the further biomedical application of QDs. 

At present, many people have used quantum dots to develop a lot of bimodal 

probes, such as PET or MRI. These methods can mainly be divided into three categories 

[14]. The first is through conjugates and other molecules such as Gd and Cu are attached 

to the QDs through surface chemistry. A typical approach is to attach chelators such as 

tetra-azacyclododecanetetra-acetic acid (DOTA) and diethylenetriaminepentaacetic acid 

(DTPA) to the surface of QDs to metalate PET- or MRI-active molecules Cu and Gd [55-

57]. The second method is through core-shell structure and other molecules are 

incorporated by adding them in an additional layer coating the QDs [58, 59]. The third 

method is by doping appropriate molecules such as Mn to the core of the QDs [22, 60]. 
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Hyaluronic acid (HA), which is a natural polysaccharide abundant in extracellular 

matrix, has been widely used in skin care [61, 62] and wound healing [63, 64] due to its 

intrinsic physicochemical and biological properties including great water retention ability 

and biocompatibility. HA is also reported to selectively bind with CD44 receptor, which 

is overexpressed in many cancers of epithelial origin [65] such as ovarian carcinoma [66] 

and breast adenocarcinoma [67]. Owing to these unique features, HA has been used for 

development of the targetable carriers to deliver the therapeutic agents such as drug 

delivery [68] and siRNA delivery [69-71] as well as imaging agents [72, 73]. 

Additionally, HA also contains derivable functional groups along its backbone. For 

instance, the carboxyl groups are good sites to be conjugated with thiol-containing 

cysteamine for QD surface binding. The hydroxyl groups can also act as good sites to 

conjugate DTPA, the Gd coupling unit for MRI imaging and conjugate DOTA, the Cu 

coupling unit for PET imaging [74, 75].  

1.2 Thesis goals 

This thesis aims to establish a facile and convenient method to obtain 

multimodality imaging probes based on QDs for the development of advanced functional 

nanometer scale tools for multimodality and targeted imaging of cancer. This goal is 

approached from three directions.  

First, an understanding of the physics of the optical and electronic properties of 

quantum dots, previous coating and bioconjugation methods for QDs and biomedical 

applications of QDs is summarized. This is performed by providing an exhaustive review 

of the properties and applications of quantum dots (Chapter 2).  

Second, a novel biocompatible Hyaluronic acid polymer was modified to coat the 

QDs and the colloidal properties of these nanocrystals were studied comprehensively. Its 

cellular toxicity and targeted imaging ability was also studied (Chapter 3).  
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Finally, the possibility of making multimodality QDs was tried by conjugating the 

HA cystamine polymer with DTPA and DOTA. HA-DTPA cysteamine polymer-coated 

QDs were conjugated with Gd for dual-modality MRI/optical imaging applications. 

Those QDs was used for MRI imaging and its longitudinal relaxation rate was calculated. 

HA-DOTA cystamine polymer was also synthesized and conjugate with Cu. The Cu 

content was determined by ICP-AES (Chapter 4).  

We expect the multi-modality imaging methods can be extended to 

SPECT/optical, MRI/PET/optical, CT/PET/SPECT imaging and other combinations for 

multi-modality imaging and find more applications in cancer imaging.  
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CHAPTER 2 

SEMICONDUCTOR QUANTUM DOTS AND BIOLOGICAL 

APPLICATIONS 

 

Abstract 

Quantum dots are nanometer-sized nanocrystals composed of semiconductor 

materials that have unique optical and electronic properties. The most important and 

useful feature of these particles is their size-dependent absorption and 

photoluminescence, which make them ideal for use in a number of biomedical 

applications. In this chapter, we will discuss the physical principles and properties of 

QDs. We will also describe the synthesis and coating methods of QDs. Finally, the 

relevant uses of QDs for biological applications will also be discussed. 

2.1 Semiconductor physics and semiconductor nanocrystals 

2.1.1 Semiconductor physics and nanocrystals 

Solid state physics and materials science broadly classify solids as conductors, 

semiconductors, or insulators, depending on the capacity of the materials to conduct 

electricity at room temperature. The difference between these materials arises from the 

bandgap energy (Eg), the energy difference between the highest occupied electronic 

energy level and the lowest unoccupied electronic energy level. The energy difference 

separating these bands is called the bandgap, a region of forbidden electronic energy 

within the solid. If an electron is excited, for example absorption of a photon whose 

energy is greater than the bandgap, or through thermal excitation, the electron is free to 

move in the solid upon application of an electric field, thus generating current. 
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Semiconductors have energy gaps that are small enough to allow room temperature 

conduction, but large enough that the magnitude of conduction can be largely controlled 

by a host of useful intrinsic and extrinsic factors, such as doping, the presence of a 

magnetic field, material strain, or incident light. 

When a photon of light with energy greater than Eg is illuminated on a 

semiconductor material, the electrons in the material can absorb the photon to transition 

to a higher electronic energy level, resulting in an excited state electron. As shown in 

Figure 2.1 B, an electron in the valence band absorbs a photon (green), exciting it to the 

conduction band, and leaving a positively charged hole in the valence band. The electron 

and hole quickly lose their excess kinetic energies through dissipation to lattice 

vibrations, settling at the band edges in a process called relaxation. The electron and hole 

can then recombine in a process that yields the emission of a single photon (red) with 

energy equal to the bandgap energy.  

 

Figure 2.1. (A). Diagram of electronic energy bands in solid-state materials showing 
the Bandgap (Eg) of semiconductor. Eg is the separation between the conduction and 

valence energy bands. (B). Electronic transitions in a semiconductor. (Figure from 
Andrew M. Smith.) 
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Many of the unique electronic and optical properties of QDs are the result of a 

phenomenon called  “quantum confinement” [76-78]. The first excited state of a 

semiconductor is the exciton state, in which an electron-hole pair is coulombically 

stabilized. The exciton state has a fundamental unit of length dictated by its Bohr radius, 

which can assume a value less than 1 nm diameter to over 100 nm, depending on the 

material. Therefore if the dimensions of the semiconductor crystal are on the nanometer 

scale, the electronic properties of a semiconductor can significantly differ from those of 

the bulk crystal. When a crystal is shrunk to a size similar to the Bohr diameter, the 

exciton becomes highly localized in space in the crystal. Similar to the classic example in 

quantum mechanics of a “particle in a box,”[79] the lowest energy state of the exciton 

(particle) will increase if the semiconductor nanocrystal (box) shrinks. This “quantum 

confinement effect” results in an increase in energy required to create the exciton and an 

increase in energy generated when the electron and hole recombine, i.e. an increase in the 

bandgap. This effect is illustrated by the characteristic blue-shift of the absorption and 

luminescence spectra for semiconductors nanocrystals near or smaller than the size of the 

exciton.  

The most important consequence of the quantum confinement effect is the size 

dependence of the bandgap for nanocrystalline semiconductors. By confining the exciton 

of a semiconductor, the bandgap may be tuned to a precise energy depending on the 

dimensionality and degree of confinement. 

2.1.2 Properties of Quantum Dots 

QDs are nanometer-sized crystals of semiconductor materials (typically 2-8 nm) 

that emit fluorescent light with great intensity and unparalleled signal stability. These 

attributes have found immediate use for monitoring individual molecules on cell surfaces 

in real time for extended periods, for sensitive detection of cancer in vivo, and for 

sensitive and specific characterization of viruses and cancer antigens in bodily fluids [2, 
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4, 6, 25-33]. Compared with traditional organic dyes and fluorescent proteins, QDs are 

highly bright and resistant to photobleaching. Even importantly they have size, 

composition, and lattice strain tunable emission wavelength [4, 34-36].  

The absorption and emission spectra of six different QDs was shown in Figure 

2.2. The black line shows the absorption of the QDs at 510nm emission. Size-tunable 

fluorescence properties and spectral range of the six QDs compare to CdSe core size were 

also plotted. All samples were excited at 365 nm with a UV light source [2]. 

Simultaneous excitation of multiple fluorescence colors spanning the entire visible range 

allows highly multiplexed staining of different disease biomarkers. 

 

 

Figure 2.2. Size-tunable fluorescence properties and spectral range of six QD 
dispersions. (from Mattoussi et al. [2]) 

 
Resistance to photobleaching is another important feature that is necessary for use 

in clinical applications. Unlike organic dyes that can easily photobleach upon exposure to 

light, the constant fluorescence intensity of QDs make them ideal imaging and biosensing 

agents. As shown in Figure 2.3 [3], Nuclear antigens were labeled with QD 630–
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streptavidin (red), and microtubules were labeled with Alexa 488 conjugated to anti-

mouse IgG (green) simultaneously in a NIH/3T3 cell. The photos in bottom row showed 

microtubules that were labeled with QD 630–streptavidin (red), and nuclear antigens 

were stained green with Alexa 488 conjugated to anti-human IgG. The specimens were 

continuously illuminated for 3 min with light from a 100 W mercury lamp under a 100 

times 1.30 oil-immersion objective. Images at 0, 20, 60, 120, and 180 s are shown. 

Whereas labeling signals of Alexa 488 faded quickly and became undetectable within 2 

min, the signals of QD 630 showed no obvious change for the entire 3 min illumination 

period [3]. Quantitative analysis of changes in intensities of QD 608–streptavidin (stained 

microtubules) and Alexa 488–streptavidin (stained nuclear antigens) using specimens 

mounted with glycerol or antifade mounting medium were shown in Figure 2.3 B, QDs 

showed excellent photostability and resistance to photobleaching as compared to organic 

dyes, which make them ideal imaging and biosensing agents where consistent 

measurements are essential. 

 

Figure 2.3. Photostability comparison between QDs and Alexa 488. (from Wu et al. 
[3]) 
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2.2 Chemical synthesis and coating methods of Quantum Dots 

2.2.1 Chemical synthesis of QDs 

The synthesis of quantum confined semiconductor nanocrystals was first 

described in 1982 by Ekimov [80, 81], who grew nanocrystals and microcrystals of CuCl 

semiconductors in glass matrices. A major step toward the goal of monodisperse, 

colloidally dispersible, and highly fluorescent quantum dots was made by Bawendi and 

coworkers in 1993 with the introduction of nanocrystal synthesis in a high temperature 

coordinating solvent composed of trioctylphosphine (TOP) and trioctylphosphine oxide 

(TOPO) [82]. This novel demonstration of temporal separation of nucleation and growth 

was found to be crucial for the production of monodisperse samples, although size-

selective precipitations were still necessary to improve the size distribution. 

The next major development in colloidal quantum dot synthesis was the 

demonstration that the overgrowth of an insulating shell on the surface of a quantum dot 

tremendously enhances the photoluminescence efficiency. For example, Arnim Henglein 

and coworkers found that the addition of excess cations to alkaline aqueous solutions of 

semiconductor colloids (e.g. Cd2+ for CdS) resulted in large fluorescence enhancements 

[83]. This was hypothesized to be the results of surface defect passivation, and a similar 

trend was found for the addition of alkylamines [84]. It was also reported that when a 

wider bandgap material (ZnS) was grown on top of semiconductor nanocrystals (CdSe) in 

reverse micelles, the luminescence efficiency was tremendously enhanced [85]. Bawendi 

and coworkers improved this synthetic method and analyzed the luminescence 

dependence of the shell thickness from the perspective of interfacial strain [86].  

Up to now, considerable advances have been made in the chemical synthesis and 

preparation of high quality, monodispersed QDs [82, 87], especially with the use of 

organometallic and chelated cadmium precursors [88, 89], noncoordinating solvents [90], 

and inorganic passivating shells [86, 91]. These advances have led to the production of 
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nanoparticles with very narrow size distributions (fluorescence emission FWHM < 25 

nm) and high quantum yields (QY > 75%).  

While the resulting QDs have excellent physical and optical properties, the 

highest quality nanoparticles typically have hydrophobic surface ligands are often 

unsuited for use in biological environments. The production of biologically functional 

quantum dots has now become a multistep process involves three steps: 1. Synthesis of 

the nanocrystal core and growth of an inorganic shell (usually ZnS) to protect the optical 

properties of the quantum dot. 2. Coating of the QDs for phase transfer of the nanocrystal 

from organic liquid phase to aqueous solution. 3. Bioconjugation of biologically active 

molecules to the nanoparticle surface to render functionality, or linkage of biologically 

inert polymers to the nanoparticle to minimize biological activity.  

2.2.2 QDs coating methods 

To better make water-soluble QDs, a number of surface encapsulation and water 

solubilization strategies have been used to transfer QDs to aqueous solvents including 

direct ligand exchange of the hydrophobic surface ligands with hydrophilic small 

molecules, indirect surface encapsulation techniques using silica, lipids, block 

copolymers and low molecular weight amphiphilic polymers and multi-dentate polymers 

coating method. 

Direct ligand exchange 

For ligand exchange, a suspension of TOPO-coated quantum dots may be mixed 

with a solution containing an excess of a heterobifunctional ligand, which has one 

functional group that binds to the nanocrystal surface, usually a thiol group and another 

functional group that is hydrophilic. Thereby, hydrophobic TOPO ligands are displaced 

from the nanocrystal, as the new bifunctional ligand adsorbs to render water solubility. 

Thiol functional groups were found to strongly coordinate with the inorganic shell of the 

nanocrystal. Using this method, (CdSe)ZnS quantum dots have been coated with 
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mercaptoacetic acid [27] (3-mercaptopropyl) trimethoxysilane [25], and cysteine [43] 

,which contain basic thiol groups to bind to the zinc atoms on the nanocrystal surface, 

yielding quantum dots displaying carboxylic acids or silane monomers, respectively. 

These methods with simplicity and speed generate quantum dots of smaller size and 

useful for biological assays. Nevertheless, the colloidal stability is still limited due to the 

poor protection, and ligand exchange is commonly associated with decreased fluorescent 

efficiency and a propensity to aggregate and precipitate in biological buffers.  

Further advances have been made for this transfer strategy, using other functional 

groups to coordinate with the QD surface and ligand molecules capable of multivalent 

coordination to the surface [2, 44, 92-94], to improve the stability of the particles with 

different combinations of polymer backbone, anchoring groups and pendant groups [44-

54], which usually produces compact QDs with high colloidal stability. In addition, 

biocompatible molecules such as amino acids, proteins have also been used for direct 

ligand exchange and QD coatings [95, 96]. 

Surface encapsulation with amphiphilic polymers 

Another strategy for the transfer of QDs to aqueous environments involves the 

coating of the hydrophobic nanoparticles with amphiphilic polymers (most commercial 

water-soluble QDs) [40-42]. This method retains the native nonpolar coordinating ligands 

on the surface, and cover the hydrophobic nanocrystal with amphiphilic molecules, such 

as silica, lipids or polymers [6, 31, 97]. These methods yield water-soluble quantum dots 

that are stable for long periods of time due to a protective bilayer encapsulating the 

nanocrystal through hydrophobic interactions. Particles transferred using these techniques 

tend to have higher quantum yields than other particles, likely due to the protective layer 

of the hydrophobic segments of the polymer and the original surface ligands. These 

particles are also much more stable than ligand exchanged QDs, due to the multiple 

interactions between the polymer and the QD surface. One question of these strategies is 

a substantial increase in particle size. Nanoparticles are much larger when encapsulated 
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in amphiphiles compared to particles prepared using standard ligand exchange methods. 

This approach is complex and usually results in large hydrodynamic diameters of 30–50 

nm [27, 38], which are often much larger than the cellular receptors being labeled, and 

become a barrier for the widespread application of QDs in biomedical imaging. Thus, 

how to obtain water-soluble QDs with high quantum yield and high stability remains a 

great challenge. 

No matter what method was used to dissolve the quantum dots in water, for 

biological applications the QDs needs to be purified, such as ultrafiltration, dialysis and 

other methods to remove excess chelators. In addition, the surface of the quantum dot can 

affect the biological and physical characteristics of the quantum dots and the thickness of 

the coated quantum dots will also affect the entire physical dimensions [4].  

The use of quantum dots to observe molecular events in biology has become one 

of their most intriguing applications. For biological applications, further bioconjugation is 

needed since there are not any recognition sites on common polymers.  

 

Figure 2.4. QDs coating and bioconjugation methods (from Smith et al. [4]) 
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2.2.3 Bioconjugation of QDs 

Biological specificity can be rendered by coupling to peptides, proteins, aptamers, 

nucleotides, polysaccharides, or small molecule ligands. Methods used to modify 

aqueous nanocrystals with bioaffinity molecules fall under several broad categories, with 

applicability dictated by the specific nanocrystal surface coating. Nanocrystals with 

accessible surface atoms can directly interact with biomolecules that contain chelating or 

strongly basic residues. This method has been used to successful tag quantum dots coated 

with hydrophilic thiol ligands using peptides and nucleotides with reduced thiols [98, 99] 

and recombinant proteins containing histidine tags [100, 101]. These methods are 

generally not applicable for nanocrystals coated with thick hydrophobic bilayers, which 

have sterically inaccessible surface facets. 

The most commonly used coupling scheme is the covalent coupling between 

functional groups of the organic surface coating and functional groups on proteins or 

other biomolecules. This typically involves amide bond formation between carboxylic 

acid groups on the quantum dot and primary amines on proteins using carbodiimide 

chemistry [32, 94]. This method is more specific, resulting in more predictable 

crosslinking geometries and reduced aggregation, especially for antibody-quantum dot 

coupling. 

Bioconjugation may also be approached through a more modular direction using 

high-affinity streptavidin-biotin binding. Quantum dot-streptavidin conjugates are 

convenient for indirect binding to a broad range of biotinylated biomolecules, which are 

widely available commercially [31]. Biocompatible quantum dots are now commercially 

available, conjugated to a variety of functional biological molecules, like streptavidin, 

biotin, or monoclonal antibodies. Currently, bioconjugation methods are a major limiting 

step in the production of quantum dots for bioimaging applications due to the poor 

efficiency, specificity, reproducibility, scalability, and versatility of most coupling 
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schemes, and due to the inability to control the stoichiometry and geometry of binding 

[102]. 

More complex and specific bioconjugation methods are currently in development, 

including nickel-NTA-histidine interactions, SNAP-tagging, HALO-tagging, and 

crosslinking to glycosylated residues on proteins [32, 103]. 

2.3 Biological applications of Quantum Dots 

Due to their novel optical and electronic properties, semiconductor QDs are being 

intensely studied as a new class of nanoparticle probe for molecular, cellular, and in vivo 

imaging [4, 104-122]. 

2.3.1 Fixed cells and tissue staining 

Cell and tissue staining is an application that has received considerable attention 

for the use of QDs [31, 123, 124]. The fluorescence properties of QDs make them ideally 

suited for this type of application. Of particular interest for these applications are their 

photostability and the ability to excite multiple QD colors simultaneously. As shown in 

Figure 2.5, Pseudocoloured image depicts five-colour QD staining of fixed human 

epithelial cells. Cyan corresponds to 655-nm Qdots labelling the nucleus, magenta 605-

Qdots labelling Ki-67 protein, orange 525-Qdots labelling mitochondria, green 565-

Qdots labelling microtubules and red 705-Qdots labelling actin filaments [3]. Many 

different cellular antigens in fixed cells and tissues have been labeled using quantum 

dots, including specific genomic sequences [125], plasma membrane proteins [31], 

cytoplasmic proteins [25] and nuclear proteins, and it is apparent that they can function as 

both primary and secondary antibody stains. In addition, high resolution actin filament 

imaging has been demonstrated using quantum dot [31] , It is now clear that quantum 

dots are superior to organic dyes for fixed cell labeling. 
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Figure 2.5. Pseudocoloured image depicting five-colour QD staining of fixed human 
epithelial cells. Courtesy of Quantum Dot Corp. (from Wu et al. [3]) 

 
 

 

Figure 2.6. Multiplexed molecular profiling of FFPE tissue sections. (from Maksym 
V. Yezhelyev et al. [5]) 

 
 

Tissue staining is proving to be another exciting application for QDs [32]. The 

potential for multiplexing opens the possibility of a QD revolution for molecular imaging 

in cells and pathological analysis of tissues. As shown in Figure 2.6, up to five 

biomarkers have been simultaneously imaged in clinical tissue samples. Different 
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patterns of nuclear, cytoplasmic and cell membrane fluorescent signals were detected by 

microscopy (left panels, pseudo-color) and expression of these biomarkers was quantified 

by wavelength-resolved spectroscopy (right panels) [5], with the potential for even higher 

degrees of multiplexing. The optical stability of QDs also makes them attractive for this 

application, where samples are often stored and may be revisited at a later time for a 

second opinion or reanalysis. 

2.3.2 live cell imaging 

Quantum dots have found many applications in living cells targeting and 

identifing membrane antigen recognition [126]. In 2002 Thomas Jovin and coworkers 

coupled red-light emitting (CdSe)ZnS nanocrystals to epidermal growth factor, a small 

protein with a specific affinity for the erbB/HER membrane receptor[127]. Maxime 

Dahan and coworkers similarly reported that quantum dots conjugated to an antibody 

fragment specific for glycine receptors on the membranes of living neurons allowed 

tracking of single receptors [128]. These applications have inspired the use quantum dots 

for monitoring other plasma membrane proteins such as integrins [129] and G-protein 

coupled receptors [130] . 

A variety of techniques have been explored to label cells internally with quantum 

dots using passive uptake, receptor-mediated internalization, chemical transfection, and 

mechanical delivery. Quantum dots have been loaded passively into cells by exploiting 

the innate capacity of many cell types to uptake their extracellular space through 

endocytosis [131]. Quantum dots have also been successfully delivered to cells using 

cell-penetrating peptides such as polyarginine and HIV-1 Tat [132, 133]. Nie and 

coworkers used Tat peptide-conjugated quantum dots to examine the cellular uptake and 

intracellular transport of nanoparticles in live cells, and confirmed previous reports of a 

macropinocytosis internalization mechanism [29]. Recently a novel method for three-

dimensional localization for tracking the three-dimensional movements of single protein-
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conjugated Quantum Dots in living cell was presented by out-of-focus imaging with 

diffraction pattern recognition. They localize commercially available Quantum Dots in 

living cells with accuracy better than 7 nm over 2 microns depth [134]. 

2.3.3 In vivo animal imaging 

In vivo molecular imaging using QDs has also been reported [97, 135-150]. 

Tumor imaging is a big challenge, not only because of cancer imaging requires high 

sensitive and specific contrast agents, but of because of the cancerous tissue has inherent 

unique biological properties. During the tumor-induced angiogenesis, the blood vessels 

form abnormally erratic architectures and have wide endothelial pores, which are large 

enough to allow the extravasation for the large macromolecules up to ~400 nm in size, 

thus accumulate in the tumor microenvironment [151]. This ‘enhanced permeability and 

retention’ effect (EPR effect) has inspired the development of many nano-therapeutics for 

the treatment and imaging of cancer. Also the surface receptors on the cancer cells may 

be used as active targets of bioaffinity molecules. In developing imaging probes, active 

targeting cancer antigens got a lot of attention, because it can be used to detect early 

cancers and their metastasis. Semiconductor QDs were very promising in these 

applications due to their strong fluorescent signals and multiplexing capabilities, which 

allow a high degree of sensitivity and selectivity in cancer imaging with multiple antigens 

[4]. 

In 2004 Nie and coworkers demonstrated that tumor targeting with quantum dots 

could generate tumor contrast on the scale of whole-animal imaging [152]. These 

nanocrystals were conjugated to an antibody against the prostate-specific membrane 

antigen (PSMA), and were intravenously injected into mice bearing subcutaneous human 

prostate cancers [6]. Since that work, there have been a number of exciting studies 

showing the utility of QDs as in vivo imaging agents. Using similar methods, Ququan 

Wang and coworkers were able to actively target and image mouse models of human 
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liver cancer using quantum dots conjugated to an antibody against alpha-fetoprotein 

[153], and the group of Xiaoyuan Chen showed that labeling quantum dots with RGD 

peptides significantly increased their uptake in human glioblastoma tumors [154]. 

 

Figure 2.7.  Simultaneous in vivo imaging of multicolor QD-encoded microbeads. 
(From Gao et.al. [6]) 

 

2.3.4 Challenges and opportunities 

Many concerns have been raised over the application of quantum dots in living 

cells and animals due to their chemical composition of toxic heavy metals like Cd. Some 

studies have indicated that the cytotoxicity of QDs strongly correlates with the stability 

and surface coatings of these nanoparticles and many preliminary studies have shown that 

toxicity issues for QDs in vivo are of some concern [6, 31, 37, 38]. Although this could 

eventually prevent their use in vivo, immunohistological and cellular and tissue staining 

is performed on in vitro or ex vivo clinical samples, where heavy metal toxicity is 

consequential. As a result, the use of multicolor QD probes for tissue staining and 

biomarker detection is likely one of the most important and clinically relevant 

applications in the near term [32, 155]. 
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The applications of quantum dots in biomedicine span a broad range of length 

scales and address a lot of clinical and biological sensing needs. Despite the many assets 

of these probes, many challenges must be overcome. The colloidal and surface properties 

of these nanoparticles must be optimized in order to maximize their stability, minimize 

nonspecific binding, and minimize their size. For biomedical applications, ideal QDs 

should not only have good water solubility, high stability, minimized cell toxicity, but 

also have abundant functional groups such as amine (–NH2) and carboxyl (–COOH) 

groups for further conjugation toward specific targeted imaging.  

In the future, the major goal for bio-nanotechnology is to develop complex 

biological probes and agents that can be used to monitor and specifically manipulate 

biological systems, most importantly for medical applications. The nanocrystal probes 

designed from quantum dot backbones have already reached an impressive level of 

layered complexity, and probes with multimodal imaging and drug delivery capabilities 

are in development [12, 17, 143, 156-188]. They have been the topic of many efforts to 

develop probes that are detectable by both optical imaging and other modalities such as 

PET or MRI [21], such as lipid-coated multimodality QDs[58, 59], doped QDs with Mn 

into the core matrix of the QDs [22, 60], and QDs conjugates with DOTA and DTPA to 

the surface to metalate PET or MRI active molecules [55-57, 189]. Increasing the 

precision, dimensionality, and multimodality of these particles may generate great 

advances throughout biomedical fields, such as for cancer detection, profiling and 

treatment and even for other diseases. 
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Figure 2.8. Applications of quantum dots as multimodal contrast agents in 
bioimaging (from X. Michalet et al. [7]) 
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CHAPTER 3 

BIOCOMPATIBLE HYALURONIC ACID-CYSTAMINE POLYMER 

COATED QDS FOR CANCER CELL IMAGING 

 

   

Abstract 

 The cysteamine-modified hyaluronic acid (HA) polymer was employed to coat 

quantum dots (QDs) through a convenient one-step reverse micelle method, with the final 

QDs hydrodynamic size of around 22.6 nm. The HA coating renders the QDs with very 

good stability in PBS for more than 140 days and resistant to large pH range of 2–12. 

Besides, the HA- coated QDs also show excellent fluorescence stability in BSA-

containing cell culture medium. In addition, the cell culture assay indicates no significant 

cytotoxicity for MD-MB-231 breast cancer cells, and its targeting ability to cancer 

receptor CD44 has been demonstrated on two breast cancer cell lines. The targeting 

mechanism was further proved by the HA competition experiment. This work has 

established a new approach to help solve the stability and toxicity problems of QDs, and 

moreover render the QDs cancer targeting property. The current results indicate that the 

HA polymer-coated QDs hold the potential application for both in vitro and in vivo 

cancer imaging researches. 

3.1 HA applications and the mechanism for targeting CD44 receptor 

3.1.1 Hyaluronic Acid 

Hyaluronic acid (HA) is a glycosaminoglycan, which presents in the extracellular 

matrix of many parts of the body cell. As an important biological material, HA has a very 

wide range of applications in different fields, such as tissue culture scaffolds and 
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cosmetic materials [190]. Here we describe the structure and properties of HA and give 

several examples on the applications of HA in tissure engineering and nanocarriers for 

controlled delivery.  

HA structure and properties 

Hyaluronic acid is an anionic, non-sulfated, linear polysaccharide which consists 

of disaccharide units of d-glucuronic acid and N-acetyl-d-glucosamine linked together by 

β-1,4 and β-1,3 glycosidic bonds, as shown in Figure 3.1 [8].  

 

Figure 3.1. The structure of HA 

 

HA can be extracted from animal products or produced by bacterial fermentation 

(such as Bacillus subtilis) to obtain controllable molecular weight. It exists in the 

synovial fluid and natural extracellular matrix and is an important component of 

connective tissue, epithelial tissue, and nerve tissue. In addition, HA is biocompatible and 

hydrophilic and can form a lower concentration of viscous solution, which promotes 

wound healing by promoting cell migration and proliferation. Moreover, HA can be 

degraded by hyaluronidase and reactive oxygen species in mammals, producing low 

molecular weight HA and oligosaccharides. HA can interact with several cell surface 

receptors such as CD44, CD54 and CD168 which makes it very popular in a lot of 

controlled delivery applications [8]. 

Application of HA in tissue engineering 

The scaffold is a temporary supporting structure for growing cells and tissues by 

definition and also called synthetic extracellular matrix, which plays an important role in 
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supporting cells [191]. HA offers many advantages as a tissue scaffold. First, it is 

biodegradable, biocompatible and is a major component of connective tissues that play an 

important role in cell differentiation and growth. Second, HA has a lot of functional 

groups such as carboxylic acids and hydroxyl groups which can introduce functional 

domains to form hydrogel by crosslinking. Thirdly, HA has low non-specific adsorption 

of proteins, and they can have specific interactions between the scaffold and growing 

cells through cell receptors such as CD44 and RHAMM to facilitate tissue growth and 

repair [190]. 

The development of 3D cellular scafold in tissue engineering has been intensively 

studied in recent years. Because HA has a lot of functional groups such as carboxylic 

acid, hydroxyl groups and N-acetyl group, it offers a lot of strategies for HA 

photopolymerization. The photocrosslinkable HA hydrogels can be formed through the 

covalent carboxylic acid or hydroxyl groups by reacting the polymer with functional 

groups, such as methacrylates under homogeneous (such as water) or heterogeneous (e.g., 

water/DMSO) conditions [8]. As shown in Figure 3.2A, a versatile bioink for 3D printing 

of high-resolution scaffolds was developed. The scaffolleds were based on thermal- and 

photo-triggered tandem gelation through the blending of thermos-responsive polymer 

poly (N-isopropylacrylamide) grafted hyaluronan (HA-pNIPAAM) and methacrylated 

hyaluronan (HAMA) and scaffolds of good viability can be printed by this novel method. 
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Fig. 1. (a) The variation in G0/G00 is schematically illustrated for the different stages of bioprinting with a thermoresponsive polymer. (b) The gelation mechanism in which
HA-pNIPAAM forms a physical gel (only the isopropyl groups of pNIPAAM are depicted).

Fig. 2. Schematic illustration of the fabrication of 3-D constructs for cartilage engineering: (a) thermal crosslinking of the bioink maintains the printed shape; (b)
establishment of a mechanically stable secondary network with UV crosslinking; (c) elution of the transient matrix; (d) implantation into a cartilage lesion.

164 M. Kesti et al. / Acta Biomaterialia 11 (2015) 162–172

 

Figure 3.2. Schematic illustration of HA-based 3-D constructs for cartilage engineering. 
(from Pereira et al. [8]) 

 

HA-based nanocarriers for controlled delivery 

Among the several drug delivery materials that was using now, polysaccharides 

are a kind of attractive molecules because they can undergo a large range of chemical 

modifications and they are biocompatible, biodegradable, and have relatively low 

immunogenicity. Therefore, polysaccharides have been widely used in delivery of many 

types of drugs [9]. There’re a lot of advantages for the conjugation of chemotherapy 

drugs to macromolecules, as shown in Figure 3.3. Macromolecules help to improve the 

drugs’ pharmacodynamics (PD) and pharmacokinetics (PK) by different mechanism. For 

the PD aspect, macromolecules have a high drug loading ability and also can conjugate 

targeting molecules to improve the specificity of the drugs. As for the PK aspect, 

macromolecules can increase the blood circulation time and reduce the volume of 

distribution.  Also, the bigger size of the polymer–drug conjugates can get to the tumor 

sites due to the enhanced permeability and retention (EPR) effect. 
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Figure 5. Advantages of chemotherapy agent conjugation with macromolecules. 

Macromolecules can ameliorate drugs’ pharmacokinetics (PK) and pharmacodynamics (PD) by 
different phenomena. Regarding PD, macromolecules have high drug loading capacity and, in addition, 
can be equipped with targeting molecules to increase drug specificity. In some cases, stimuli-responsive 
delivery has been studied to improve drug release in cancer tissues. In this regard, for example,  
pH-sensitive drug delivery systems take advantage of the different pH in normal (pH~7.4) vs. cancer 
(pH < 6) tissue [72]. With regard to PK, macromolecules can increase blood circulation time, reduce the 
volume of distribution and prolong the distribution/elimination phases [73]. It is also noteworthy that,  
in general, polymer–drug conjugates are not able to cross the endothelium surrounding healthy vessels. 
This mostly depends on the bigger size of polymer–drug conjugates compared to endothelium 
fenestration. In contrast, in pathological conditions like cancer, local vessels are more permeable due to 
the increased size of endothelium fenestration. Through these gaps, the delivery systems can extravasate 
and reach the tumor where they tend to reside due to the scarce lymphatic drainage. Collectively these 
phenomena go under the name of enhanced permeability and retention (EPR) effect [74]. The use of 
materials able to release the drug slowly, may further improve drug residence at the tumor site, possibly 
ameliorating drug efficacy and reducing side effects. 

The use of macromolecule-based delivery systems also allows facing more complex clinical 
problems. For instance, it is possible to design multidrug delivery systems to improve, on one hand,  
the treatment efficacy and, on the other hand, the compliance of the patients. Another interesting option 
is related to the possibility to design so called “theragnostic” agents, that render possible the 
simultaneous cancer diagnosis and therapy. This approach typically combines the use of a therapeutic 
agent together with a targeting/marker agent, as below detailed. 

Based on the above considerations, chemotherapeutic drugs have been encapsulated, conjugated or 
linked to different carriers [75]. Among these, biopolymers have been frequently used due to their 
biocompatibility, natural occurrence, often targeting ability, relatively inexpensiveness and the possibility 
of derivatization with different chemical groups [76].  
  

 

Figure 3.3 Advantages of drug delivery systems of chemotherapy agent conjugated with 
macromolecules (from Posocco et al. [9]) 

 

Hyaluronic Acid conjugates have been used as nanovectors for drugs, genes and 

nanocomposite for the active targeting in cancer diagnosis and treatment [192]. 

Hyaluronic acid receptor CD44 is found to overexpress in many cancer cells, particularly 

in tumor-initiating cells, whereas lower level of CD44 receptors are found on the surface 

of other non-tumor cells, such as epithelial, hematopoietic, and neuronal cells. Therefore, 

HA has attracted a lot of interest in the development of novel drug delivery systems in 

different types of nanovectors, serving as targeting ligand in preparation of actively 

targeted nano-platforms for a lot of genes, drugs, and diagnostic agents [192].  

HA has been widely used in RNAi delivery due to its great advantages mentioned 

above. Development of nontoxic, tumor-targeting, and in vivo RNAi delivery system was 

usually a hard work. In a study as shown in Figure 3.4, the researchers developed a 

versatile RNAi nanoplatform which is based on a tumor-targeting and pH responsive 

RNA nanocarrier [10]. This nanoplatform for RNA delivery contains four components 

which are a hydrophilic HA shell as CD44-targeting ligand, hydrophobic 5β-cholanic 
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acid (CA) core as drug reservoir, phosphate receptor Zn(II)-dipicolylamine (DPA/Zn) as 

RNA binding site and a calcium phosphate layer. The nanocarrier can distribute the 

RNAs into the cytoplasm of the cancer cells uniformly and selectively suppress the target 

gene expression. This nanoplatform can serve as a versatile delivery system for RNAi 

applications, and this work may open up new possibilities for RNA-based cancer 

treatments and therapeutics. Materials 2015, 8 2600 
 

 

 

Figure 8. HA-based delivery for siRNAs proposed by Choi et al. [38]. 

3.2.5. Dextran Based Delivery 

Thus far, several types of dextran-based NPs have been generated for NABD delivery. From the first 
attempt where dextran alone was bound via electrostatic interaction to NABDs, more complex solutions 
have been proposed. For example, Naeye et al. decorated the dextran/NABDs NPs with a hydrophilic 
PEG shell for the intravenous delivery route [130,131]. Whereas PEGylation did not prevent the partial 
dissociation of NABDs in human plasma, it was able to prevent NPs aggregation and the lysis of red 
blood cell. However, a clear charge dependent interaction with platelets and leukocytes was observed. 
On one hand, these results suggest the positive NPs features able to prevent a significant interaction with 
red blood cells; on the other hand, they indicate that further improvements aimed at the reduction of 
platelet interaction are necessary. 

Another example of dextran NPs modification consisted in the conjugation of an acetal-modified 
dextran (Ac-DEX) with spermine as NABD delivery material [47]. The cationic nature of spermine 
improved the NPs complexation with the negatively charged siRNA and facilitated the cell membrane 
binding. Additionally, the Ac-DEX-spermine NPs resulted to be efficiently released from endosome, 
thus allowing the siRNA distribution with the cell cytoplasm [48]. This in turn resulted in an efficient 
silencing of the expression of the luciferase gene in HeLa cells expressing luciferase. 

Very recently, dextran was used to encapsulate NPs containing NABD and PEI [49]. In particular, the 
authors encapsulated NABD/PEI with multiple layers of dextran sulfate (DexS) and poly-L-arginine 
(pArg). The idea below this approach is that the DexS/pArg layers can protect the NABD in the 

 

Figure 3.4. HA-based RNAi delivery nano-platform for siRNAs (from Choi et al. [10]) 

 

3.1.2 CD44 receptor 

CD44 is a single chain glycoprotein and a multi-structural and multi-functional 

cell surface molecule. CD44 involves in a lot of cell activities, such cell proliferation and 

differentiation, cell migration, angiogenesis, presentation of cytokines, chemokines, and 
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growth factors to the corresponding receptors, and the docking of proteases at cell 

membrane, and in the signaling for cell survival. The discovery that CD44 receptor is 

crucial on many tumor cell activity has given new hope in the scientific and medical 

research. Its multi-structural and pleotropic nature was revealed by the biochemical 

characterization, allows the targeting of malignant cells, which express CD44 receptors. 

The principal ligand of the CD44 receptor is hyaluronic acid and CD44 can be activated 

by fragmented HA (molecular mass <5 × 105D), but not the high molecular mass HA 

(>106D) [193]. 

CD44 can mediate the internalization and metabolism of HA, and various cell 

types in normal tissues have low levels of endogenous expression, but it needs to be 

activated before they can bind HA [194]. CD44 can transit from the inactive, low-affinity 

state to an active, high-affinity state after cell activation such as antigen receptors 

ligation, sulfation, or the action of cytokines and will be capable of binding HA. Unlike 

normal cells, tumor-derived cells express the high-affinity state of CD44, thus is capable 

of binding and internalizing HA. Furthermore, CD44 is reported to interact with HA of 

minimum length of 6–8 saccharide units [195]. Therefore, there are several possible 

strategies for cancer treatment, such as interference with the HA-CD44 interaction, 

targeting drugs to CD44 or HA matrix. 

CD44 involves in many pathways such as activation of cell cycling and 

proliferation, cytoskeleton reorganization, cell migration and maintenance of cell 

survival, which are highly related with the malignant process, therefore, CD44 is 

associated with aggressive type of tumors in many cases. There is an upregulation of 

CD44 in many cancers of epithelial origin [65]. Overexpression of CD44 isoforms in 

malignant tissues has been already detected in some of the patients compared with the 

control counterparts, in several diseases including breast and colorectal malignant tissue, 

lung cancer (squamous cell carcinoma; adenocarcinoma; large cell carcinoma; small cell 
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carcinoma), hepatocellular carcinoma, renal cell carcinoma, gallbladder carcinoma, 

ovarian (mostly clear cell) carcinoma, endometrial cancer and melanoma [193]. 

In conclusion, CD44 can be a promising targeting molecule for the therapy and 

diagnosis of several human cancers [193]. HA has already been used as drug carrier and 

ligand on liposomes or nanoparticles to target the drugs to CD44 overexpressing cells. 

The drugs can be attached to HA through the carboxyl group on the glucuronic acid 

residue or the hydroxyl group on the N-acetylglucosamine [65]. HA targeting will 

increase drug accumulation in the CD44 overexpressing cells and HA conjugated drugs 

can enter the cells via endocytosis. 

3.1.3 HA-based CD44 targeted imaging using QDs 

A number of work has been done using QDs for HA-CD44 targeted imaging. 

Hahn’s group has reported a series of work using adipic acid dihydrazide-modified HA to 

conjugate commercial carboxyl Quantum Dots for in vivo imaging, and found that lower 

carboxyl-modified HA (i.e., 35, 22 %) kept the targeted ability for HA receptors in liver, 

while higher modification ratio (i.e. 50, 68 %) of HA will lose much of HA targeting 

ability [11, 196-198].  

 

Figure 3.5. Synthesis of a hyaluronic acid−quantum dot (HA-QDot) conjugate using 
adipic acid dihydrazide-modified HA (HA-ADH) (from Kim et.al. [11]) 

 

Graphene quantum dot (GQD) has also been conjugated with hyaluronic acid 

(HA) (GQD-HA) as a targeting agent and in vitro cellular imaging exhibited strong 



33 

 

fluorescence from CD44 overexpressed A549 cells. In vivo investigation on CD44 

receptor overexpressed tumor-bearing balb/c female mice also demonstrated more bright 

fluorescence from the tumor tissue [199]. 

Fluorescent nanosized carbon dots (Cdots) were also reported for the application 

of real time bioimaging of target specific delivery of hyaluronic acid (HA) 

derivatives. Polyethylene glycol (PEG) diamine-capped Cdots were synthesized for HA-

Cdot conjugates by amide bond formation between amine groups of Cdot and carboxylic 

groups of HA.  In vitro bioimaging was realized for target specific intracellular delivery 

of the HA-Cdot conjugates through HA receptor-mediated endocytosis. Furthermore, in 

vivo real-time bioimaging of Cdots and HA-Cdot conjugates proved the target specific 

delivery of HA-Cdot conjugates to the liver with abundant HA receptors [200]. Those 

work in previous studies are good examples for the application of QDs in HA-CD44 

targeted imaging. 

3.2 Materials and Methods 

3.2.1 Materials 

Chemicals and instruments 

Sodium hyaluronate with MW of 7500 was purchased from Lifecore (USA). 

Cystamine dihydrochloride, dithiothreitol (DTT), cyclohexane, IGEPAL CO-520, 

tetramethylammonium hydroxide (TMAH), ethylene- diaminetetraacetic acid (EDTA), 

and Ellman’s reagent were purchased from Sigma-Aldrich. EDC, sulfo-NHS, and 

cysteine hydrochloride monohydrate were purchased from Pierce. UV–Vis absorption 

spectra were obtained using a Cary 100 Bio UV–Visible Spectrophotometer from Varian 

Company. Photoluminescence spectra were recorded by a Fluoromax 2 

spectrofluorometer. Dynamic light scattering measurements were performed on a 

Brookhaven 90Plus Particle size analyzer. Transmission electron micros- copy was 

performed on a Hitachi H-7500 TEM at the Electron Microscopy Core Facility at Emory 
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Univer- sity. 96-well plates were read by a Synergy 2 Multi- Mode Microplate Reader 

(Biotek, USA). 

3.2.2 Methods 

Synthesis of HA-cysteamine polymer 

The synthesis of HA-cysteamine polymer involves two steps: synthesis of HA-

cystamine polymer and reduction of the disulfide bond of cystamine by DTT. Typically, 

sodium hyaluronate with average MW of 7500 was dissolved in PBS, then 18 molar 

excess of EDC and 18 molar excess of sulfo-NHS were added to the HA sodium salt 

solution, and the mixture was stirred for 1 h to activate the carboxyl groups. Then 12 

molar excess of cystamine dihydrochloride in PBS was added dropwise while stirring, 

and the mixture was kept reacting overnight. The HA-cystamine product was purified by 

dialyzing against 1X PBS buffer using MWCO 3500 dialysis tube. For DTT reduction of 

the disulfide bond on cystamine, 5 molar excess of DTT was added to HA-cystamine 

solution and stirred for 24 h. The final product was purified by dialyzing against pH 3 

buffer using MWCO 3500 dialysis tube. The water was removed by lyophilizing for 2–3 

days. Finally cotton-like HA-cysteamine polymers were obtained. The final product 

should be stored at -20 °C to protect the active thiol groups from being oxidized. 

Determination of reactive thiols on HA- cysteamine polymer 

The sulfhydryl group concentration on HA-cysteamine polymer was determined 

via Ellman’s reagent by comparing to a standard curve composed of known 

concentrations of cysteine. Namely, 0.1 M sodium phosphate buffer of pH 8 containing 1 

mM EDTA was prepared as reaction buffer. 4 mg Ellman’s Reagent was dissolved in 1 

ml of reaction buffer as Ellman’s reagent solution. A set of cysteine standards were 

prepared by dissolving cysteine hydrochloride mono- hydrate at concentrations of 0, 0.25, 

0.5, 0.75, 1, 1.25, and 1.5 mM in reaction buffer. 250 µl of each cysteine standard or HA-

cysteamine polymer of known weight was added to separate test tubes, which contain 50 
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µl of Ellman’s reagent solution and 2.5 ml of reaction buffer. The mixture was incubated 

at room temperature for 15 min. Then the absorbance at 412 nm was measured using a 

plate reader and the standard curve was plotted. Finally, the active thiol group 

concentration of the HA-cysteamine polymer was determined accordingly. 

Synthesis of (CdSe)CdZnS QDs and encapsulation with HA-cysteamine polymer 

(CdSe)CdZnS QDs of 645nm emission wavelength were synthesized following 

previous methods [87, 201]. When encapsulating QDs with HA-cysteamine polymer, a 

modified reverse micelle method was used [94, 202]. Typically, 0.64 nmol QDs in 

hexane was dried by vacuum to get a thin film, then 9 ml cyclohexane was added until 

the QDs was fully dissolved. Next 1 ml IGEPAL CO-520, 10 mg HA-cysteamine 

polymer in 500 µl water and 3.61 mg TMAH in 200 µl methanol were added to form 

reverse micelle. The solution should be clear after adding all these reagents. If not clear, 

add more IGEPAL CO-520 or water. The mixture was sonicated for 5 min, and votexed 

for 60 min. Then 1-2 ml ethanol was added to precipitate the HA-cysteamine polymer 

coated QDs. The pellets was washed with additional ethanol for 3 times and re-dispersed 

in 1X PBS. After centrifuging the QDs solution at 5000 g for 10 minutes to get rid of the 

undissolved parts, the supernatant which contains the HA-cysteamine coated QDs was 

purified using a 0.2 µm syringe filter. 

pH stability test 

An "universal" pH buffer, Britton–Robinson buffer with pH range from 2 to 12 

were prepared [203]. Then a same amount of concentrated QDs were added to each pH 

solution. The QDs solution were added in fluorescence testing tubes and sealed well with 

parafilm. After 1 h, 16 h and 24 h incubation at room temperature, the photoluminescence 

of QDs were recorded by a fluorometer and integrated intensity was calculated for 

comparison. The fluorescence intensity of QDs in pH 7 buffer after 1h incubation was 

referenced as 1, and others were scaled as certain percent ratio. The corresponding 
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fluorescence images of QDs after 24 h incubation were taken by illuminating with a 365 

nm hand-held UV lamp. 

Long-time stability test 

Long-time stability of the HA-polymer coated QDs was tracked for 5 months and 

compared with mercaptoacetic acid (MAA) coated QDs. Typically, 300 µL HA-polymer 

coated QDs in 1X PBS buffer at a concentration of 25 nM was added in a fluorescence 

testing tube and sealed well with parafilm. The QDs containing tube was stored in 4°C 

refrigerator and the fluorescence intensity was tested on certain days. To prepare MAA-

coated QDs, 150 µl QDs of 10 nM in crude stock were precipitated with 13 ml acetone. 

The pellets were washed with acetone and re-dispersed in 1ml chloroform. 500 µl MAA 

and 100 mg TMAH in 500 µl methanol were added. The whole solution was sonicated 

for 10 min and kept at 60°C water bath for 1 h. The QDs were precipitated with acetone 

by centrifuge at 8000 g for 10 min, washed with acetone and dissolved in 1X Borate 

buffer. The QDs were dialyzed against 50 mM borate buffer (pH 8.5) using 20K MWCO 

dialysis tube, and then stored at 4ºC in the dark. The fluorescence intensity was integrated 

for each spectrum and compared with the first day’s result. 

Cell culture medium stability test 

The stability of HA-QDs in cell culture medium was tested and compared with 

the commercial carboxyl 655 nm QDs from Invitrogen. Typically, the HA-QDs and 655 

nm carboxyl QDs from Invitrogen were diluted in PBS or DMEM phenol-red free 

medium with 10% fetal bovine serum (FBS) added. The QDs were sealed and put under 

room temperature without any protection from light. At 0 h, 1 h, 16 h and 24 h, the 

fluorescence of these QDs were tested and integrated. The integrated fluorescence 

intensity of each QDs in PBS at 0 h were set as 1 and all results were referenced to get 

certain percent ratio.  

Cytotoxicity test 
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MD-MB-231 breast cancer cell line was cultured in RPMI 1640 with 10% FBS 

and 1% streptomycin and penicillin antibiotics. On the first day, cells were seeded on a 

96 well plate at 5×103 cells/well. After 24 h culture, QDs were added to the 4, 10 and 25 

h incubation time group with the final concentrations of 1, 5, 10 and 20 nM.  For the 

control group, cells of same number were seeded but no QDs were added.  This is 

regarded as 100% cell viability. A blank control with no cells and QDs but only cell 

culture medium was used as 0% cell viability. Experiments were triplicated. After 

incubation with QDs, the medium was aspirated and 100 µl of new cell culture medium 

and 10 µl Cell Counting Kit-8 solution was added to each well. Following incubation 

with cells at 37°C for 3 h, the absorbance at 450 nm was measured by a plate reader. 

Cancer cell targeted imaging 

CD44+ MD-MB-231 and MCF-7 breast cancer cells were used for targeted 

imaging and NIH/3T3 fibroblast cell was used as a negative control. Due to the different 

growth speed, NIH/3T3 fibroblast cells were seeded at 3500 cell/well and MD-MB-231 

and MCF-7 breast cancer cells were seeded at 25×103 cell/well on 8-well chamber slides. 

After 24 h growth, cells were washed with 1X PBS buffer and then fixed with 200 µl 4% 

formaldehyde and 0.25% Triton X-100 in PBS for each well. After 15 min, cells were 

washed with PBS for 5 min, three times. 200 µl blocking buffer of 6% bovine serum 

albumin (BSA) in PBS were added to each well and incubated for 1 h. Then blocking 

buffer was aspirated and 200 µl HA-cysteamine polymer coated QDs were added to each 

well, with final concentrations of 1, 5, 10 and 20 nM in blocking buffer. After 1 h 

incubation, each well was washed with PBS three times for 5 min each. The slides were 

mounted with anti-fade mounting media containing DAPI. The slides were imaged under 

Olympus IX71, using 20X objective. 

Hyaluronic acid competitive inhibition test 

MCF-7 cells were seeded on an 8-well chamber slide at 30 k/well for overnight 

growth. The fixation, permeabilization and blocking procedure are the same with the 
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targeted imaging experiment. Before adding QDs, different concentrations of 200 µl HA 

in blocking buffer were added to each well for 1 h. HA concentrations used are 0 nM (as 

control), 10 nM, 100 nM, 1 µM, 10 µM, 100 µM, 1 mM and10 mM. Then HA solution 

was aspirated and 200 µl QDs at final concentration of 10 nM in blocking buffer were 

added to each well. After 1 h incubation, the QDs was washed with PBS and mounted, 

and the slide was imaged under Olympus IX71, using a 20X objective. 

3.3 Results and Discussions 

3.3.1 Results 

Synthesis and characterization of HA-cysteamine polymer 

As shown in Figure 3.6(a), the amine group of cystamine was first covalently 

conjugated to the carboxyl group on HA using EDC and sulfo-NHS. Then the disulfide 

bond of cystamine was further reduced with DTT to get the final HA-cysteamine 

polymer. Each polymer molecule contains approximately 8 active thiols, as determined 

via Ellman’s method. Averagely, an HA molecule with MW 7500 contains about 19 

carboxyl groups, therefore about 42% carboxyl groups on HA have been converted to 

thiol groups. This thiol modification ratio can ensure strong binding of the HA polymer 

on QDs surface and also, a large amount of carboxyl groups are left to maintain the HA 

targeting ability for CD44 receptor on cell surface.  
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Figure 3.6. Preparation of HA-cysteamine polymer-coated QDs. (a) The chemical 
synthesis of HA-cysteamine polymer. (b) Schematic illustration of HA polymer coating 

on QDs 

 

Preparation and characterization of HA-cysteamine polymer coated QDs 

Polymer coated QDs were synthesized using an adapted reverse micelle method 

for ligand exchange and phase transfer reaction [94, 202] as shown in Figure 3.6(b). 

Hydrophobic QDs protected with oleylamine on surface was synthesized by traditional 

methods. [87, 201]   For ligand exchange, the hydrophobic QDs were first dispersed in 

cyclohexane. With the addition of IGEPAL CO-520 and HA-cysteamine polymer 

dissolved in water, a reverse micelle was formed. TMAH was used as a phase transfer 

catalyst to induce the reaction. After the reaction, water soluble QDs coated with HA-

cysteamine polymer were incorporated inside the reverse micelle.  
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Figure 3.7. Schematic illustration of reverse micelle phase transfer procedure for HA-
cysteamine polymer coated QD synthesis.  

 

Figure 3.8(a-b) show representative transmission electron microscopy (TEM) 

images of QDs before and after polymer coating. Both of them appear uniform in size 

and were well dispersed. Figure 3.8(a) shows the crystal size of QDs before polymer 

coating is 9.5 ± 1.3 nm. Negative staining TEM with 1% methylamine tungstate clearly 

shows polymer coated QDs with a thin layer as shown in the inserted plot of Figure 

3.8(b) and the overall size of HA coated QDs is 14.5 ± 1.6 nm. Figure 3.8 (c-d) show UV 

absorption and fluorescence spectra before (Figure 3.8(c)) and after (Figure 3.8 (d)) the 

HA polymer coating. We can see that there is no significant difference between the 2 sets 

of spectra. Quantum yield (QY) calculation was 24% after coating while the QY of QDs 

in hexane before coating is 28.1%. The QY didn’t lose much after polymer coating, 

which proves a good surface protection and passivation.  The dynamic light scattering 

(DLS) results (Figure 3.8 (e)) show that the hydrodynamic size of the compact polymer 

coated QDs is around 22.6±5.2 nm. 
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Figure 3.8. Characterization of QDs. (a) TEM image of QDs in hexane (before polymer 
coating). (b) TEM images of HA-cysteamine polymer coated QDs in water. Negative 

staining TEM is inserted with the same scale bar, showing the polymer coating layer. (c) 
Absorption and fluorescence spectra of QDs in hexane (before polymer coating). (d) 
Absorption and fluorescence spectra of QDs after HA-cysteamine polymer coating, 

showing no significant difference with the spectra before polymer coating. (e) DLS size 
distribution showing a peak hydrodynamic diameter of ~22.6 nm 

 

To exclude the possibility that the hydrophobic part of IGEPAL CO-520 

intercalate into oleylamine on QD surface, and the hydroxyl groups render QDs water 

soluble, control experiment without adding HA-cysteamine polymer was conducted. The 
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final QDs pellets cannot dissolve in water, which proved that it is HA polymer rather than 

IGEPAL CO-520 that makes QDs water-soluble. 

pH stability test 

The colloidal stability of HA-cysteamine polymer coated QDs in different pH buffer from 

2 to 12 was tested. As shown in Figure 3.9 (a), the polymer coated QDs keep great 

fluorescence performance even after as long as 24 h incubation with the extreme pH 

condition. The QDs have better fluorescence performance in basic buffer than in acidic 

buffer. As the incubation time increases at each pH, integrated fluorescence in acidic 

buffer gradually decreases while in basic buffer it increases. This is reasonable 

considering the HA has unmodified carboxyl groups, which makes them more soluble in 

basic solution. However, we can see from Figure 3.9 (b), that after 24 h incubation the 

QDs didn’t precipitate or aggregate and still keeps great colloidal and photo stability even 

for as long as 24 h incubation with pH range from 2-12. This indicates that the QDs can 

adapt to the complex body environment of different pH changes, and they can be good 

candidates as intracellular and in vivo imaging probes for lone time tracking.  

Long-time stability test 

Long-time stability of the HA-polymer coated QDs was tracked for 5 months. For 

the same vial of 25 nM QDs in 1X PBS buffer stored at 4°C, the integrated fluorescence 

intensity didn’t drop much even after as long as 140 days, while a control group using 

MAA coated QDs stored at the same condition precipitated within 11 days, as shown in 

Figure 3.10. The HA-polymer coated QDs shows great long time stability comparing 

with the single thiol MAA coated QDs. This is a good example showing the necessity of 

using multi-thiol polymer coating.  
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Figure 3.9. pH stability of HA-cysteamine polymer coated QDs. (a) Normalized 
integrated fluorescence intensity after incubating for 1 h, 16 h and 24 h in different pH 

buffer. The fluorescence intensity of QDs in pH 7 buffer after 1 h incubation was 
referenced as 1.  (b) Corresponding fluorescence images of QDs after 24 h incubation 

(illuminated with a 365 nm hand-held UV lamp) 

 

 

Figure 3.10. Long-time stability of HA-cysteamine polymer coated QDs, compared with 
MAA coated QDs. The MAA coated QDs precipitated after 11 days thus lose its 

fluorescence totally 
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Stability in cell culture medium 

The QDs stability in FBS containing cell culture medium is very important for 

further cellular and even in vivo imaging applications. If the fluorescence of QDs is easily 

influenced by the cell culture medium, then stable and quantitative continues imaging is 

challengeable. The results of the HA polymer coated QDs were shown in Figure 3.11 (a). 

We can see that those QDs keeps excellent fluorescence stability in cell culture medium 

at room temperature without any protection from the light, and the stability of our HA 

polymer coated QDs are comparable to the commercial carboxyl QDs from Invitrogen 

(Figure 3.11 (b)). The results proved the great cell culture medium stability of the QDs 

and showed the possibility for further cellular applications. 

 

 

Figure 3.11. Stability in cell culture medium of HA polymer coated QDs and commercial 
carboxyl QDs from Invitrogen 
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Cytotoxicity test 

MD-MB-231 breast cancer cell line was used for cell toxicity test. T-test was 

performed for each group comparing to the control group. As shown in Figure 3.12, no 

significant cytotoxicity was observed in different time and concentration groups, which 

proved great biocompatibility for the HA polymer coated QDs, and show the potential for 

in vivo application in the future. 

 

Figure 3.12. Cytotoxicity test of HA-cysteamine polymer-coated QDs. Dose-dependent 
viability evaluation of MD-MB-231 breast cancer cells treated for 4, 10, and 25 h. The 

experiments were performed in triplicate. 

 

CD44+ Cancer cell targeted imaging 

CD44+ MCF-7 and MD-MB-231 cell lines were used for targeted imaging and 

NIH/3T3 cell line was used as a negative control. QDs with different final concentrations 

of 5 nM and 10 nM have been tested, and shown in Figure 3.13. Obviously, strong 

fluorescence on MD-MB-231 and MCF-7 cell lines was observed but no fluorescence on 

NIH/3T3 cell line can be seen. This result not only demonstrates the targeted ability of 

the polymer coated QDs, but also indicates very little non-specific cellular binding for 

NIH/3T3 cell. Therefore, for future studies, final concentration of 5 nM QDs will be high 

enough for HA targeted imaging. 
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Figure 3.13. Illustration of the targeted imaging of breast cancer cells with HA-
cysteamine polymer-coated QDs with final concentration of 5 and 10 nM. (a) NIH/3T3 

fibroblast cell line shows no QD fluorescence and little non-specific cellular binding. (b) 
MD-MB-231 breast cancer cell line shows strong QD fluorescence of targeted staining. 

(c) MCF-7 breast cancer cell line also shows strong QD fluorescence of targeted staining. 
20X objective was used on an Olympus IX 71 microscope 

 

Hyaluronic acid receptor competitive imaging 

In order to confirm that the staining of breast cancer cell line is receptor mediated, 

we conducted a HA competitive imaging experiment on MCF-7 cell by treating the cells 

with different concentrations of HA before adding of HA polymer coated QDs. As 

presented in Figure 3.14, when HA concentration increases, the QDs fluorescence 

intensity shows a downward trend and QD fluorescence couldn’t be detected at 10 µM 

HA treating dosage. This result is a solid evidence to prove that the mechanism of HA-

QDs to stain the cells is mediated by the HA receptor.  
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Figure 3.14. HA receptor competitive targeted imaging of MCF-7 cell line with HA-
cysteamine polymer-coated QDs treated with different concentrations of HA. (a) Control 
group (no HA), (b) 10 nM, (c) 100 nM, (d) 1 µM, (e) 10 µM, (f) 100 µM, (g) 1 mM, (h) 
10 mM. QD final concentration was 10 nM for all. 20X objective was used on Olympus 

IX 71 microscope. From 1 to 10 µM HA, QD fluorescence intensity has a dramatic 
change, which indicates that the staining is mediated by HA receptor 

 

3.3.2 Discussions 

The current established one-step QDs modification method is advantageous in the 

following three aspects. Firstly, for biomedical applications a targeting moiety like 

antibody, peptide or small molecule should be added to the surface modified QDs, so that 

QDs can be used to target tumor biomarkers as well as tumor vasculatures with high 

affinity and specificity [4]. Because most of the surface coating itself doesn’t have 

targeting ability, thus a following bioconjugation step is necessary. However, it is always 



48 

 

time consuming and usually increases the overall size of QDs. Comparing with previous 

multidentate polymer coating methods [44-54], the current method is much simplified. 

By employing the HA polymer as the coating molecules, we have circumvented the 

targeting moiety conjugation step, and produced QDs with not only small size, but also 

CD44 receptor recognition groups, namely the carboxyl groups on HA. 

Secondly, the traditional QDs coating methods, such as single thiol [27, 43] and 

di-thiol coating[204] could not protect the QDs surface very well thus the resulting 

stability is not good enough. And their applications for in vivo imaging are hampered by 

their sensitivity to biochemical environments. In order to get more stable QDs, recent 

efforts have been directed toward synthesizing ligands or polymers with multiple 

functional groups with different backbones and pendant groups. For instance poly 

(methacrylate), [46, 48, 52, 53] poly (acryl acid) (PAA) [44, 47, 49] and poly (maleic 

anhydride)[45, 54] are the most frequently used backbones. DHLA [46, 49-53] and 

cysteamine [44, 45, 47] are mostly used as anchoring group, and polyethylene glycol 

(PEG) [45, 48-50, 52-54] is often used as pendant group to increase water solubility and 

minimize non-specific cellular binding. However, the reported pH stability is still in a 

limited range and short time. For instance, polyPEG QDs were incubated at room 

temperature for 4 h in a pH range of 5-10.5 [48], or for days over a pH range 5.0-9.0 

[205]. In this work, a wide pH range of 2-12 has been tested with as long as 24 h 

incubation time, showing great pH stability and potential to adapt to a more complex 

body environment. Besides, it is reported that SiO2 and PE-PEG coated QDs has 

remarkable stability among pH 1-14 [38], however the pH stability was recorded for only 

1 h and the size of the modified QDs are as large as 40-50 nm. These QDs are good 

candidates for pH sensing, but may not be very suitable for biological application since 

further bioconjuation will undoubtedly increase the overall size. 
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Thirdly, the introduction of reverse micelle can prevent QDs aggregation and help 

keeping good dispersity. This has been demonstrated by the TEM images and the DLS 

analysis. The reason is that the reverse micelles are tiny droplets of water encapsulated by 

the surfactant molecules IGEPAL CO-520 and thus physically separated from the 

cyclohexane oil phase. This water-in-oil microemulsion provides microreactors for QDs 

coating with hydrophilic cysteamine-HA molecules, therefore allows excellent control of 

the particle size, shapes, homogeneity and negligible contamination of the product 

compared with other bulk wet approaches like traditional biphasic exchange method with 

thiol containing molecule and polymers [43, 44]. 

It is notably that HA targets the cell receptor through the carboxyl groups, 

therefore the modification ratio of carboxyl groups on HA is very important. People have 

done a series of work using adipic acid dihydrazide modified HA to conjugate 

commercial carboxyl Quantum Dots for in vivo imaging, and found that lower carboxyl 

modified HA (i.e. 35%, 22%) kept the targeted ability for HA receptors in liver, while 

higher modification ratio (i.e. 50%, 68%) HA will lose much of HA targeting ability 

[196, 197]. In our work, about 42% of the carboxyl group on HA was modified and the 

CD44+ cancer cell targeted imaging test has proved that this ratio still works well for HA 

to keep the targeting ability for receptors. 

3.4 Summary 

In conclusion, we have successfully developed a novel HA-cysteamine polymer 

coated QDs which are water-soluble, and stable for long time and over a large pH range. 

The polymer coated QDs shows great biocompatibility and no significant toxicity. 

Moreover, the HA-cysteamine polymer coated QDs holds CD44+ cancer cell targeting 

ability for breast cancer cell lines. In our work, we only test breast cancer cell lines, but 

we can see the potential of HA-QDs for other CD44+ cancer cell lines. Besides, the 
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carboxyl groups on the polymer also allows for further functionalization and conjugation. 

These HA polymer coated QDs open new possibilities such as for long time single QDs 

tracking, and moreover for in vivo cancer imaging. 
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CHAPTER 4 

MULTI-MODALITY HA COATED-QDS FOR OPTICAL/MRI/PET 

IMAGING 

 

Abstract 

Based on the previous work of HA-cystamine polymer coated QDs, the HA 

polymer was further conjugated with DTPA and DOTA for multi-modality MRI/optical 

and PET/optical imaging. The DTPA can conjugate Gd ion thus provides ability for MRI 

imaging and the DOTA unit renders the QDs to have the ability for conjugating Cu ion 

which provides future ability for 64Cu isotope coupling for PET imaging. The resulting 

QDs have great water solubility, and excellent colloidal stability. The biocompatibility to 

NIH/3T3 fibroblast cells and Hela cervical cancer cells were tested. Moreover, CD44+ 

cancer cell targeting ability for cervical cancer cell lines were also tested. This novel HA-

DTPA and HA-DOTA polymer holds the promise for multi-modality imaging, such as 

MRI/optical, PET/optical, SPECT/optical and MRI/PET/SPECT/optical imaging and will 

have an important influence on cancer diagnostics, molecular imaging, and the 

integration of different modality imaging. 

4.1 Background of Multi-modality imaging probes 

4.1.1 Background  

Different imaging techniques have their own unique advantages and inherent 

limitations, therefore, it is unlikely that a single probe can be used for all applications. 

Typically, high-resolution imaging modality has relatively poor sensitivity, while high 

sensitivity imaging technique usually has poor resolution. For example, fluorescence 

imaging can provide high sensitivity, and the ability to have sensitivity for single cells 
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and subcellular imaging, and can achieve multiplex imaging, but lower tissue penetration 

depth. MRI and PET can provide high penetration depth, and they are non-invasive 

imaging techniques. However, PET has a relatively low spatial resolution and the 

sensitivity of MRI is relatively low [122, 189].  

 

 

Figure 4.1. Comparisons of advantages and limitations for each imaging modality (from 
Yan Xing et al. [12]) 

 

In recent years, a variety of imaging modality fusion concepts are very popular 

and multi-modal imaging techniques and equipment has been greatly developed. 

Researchers have learned that different imaging modalities can complement to each other 

and will have a big impact on the bio-medical imaging area. The first fusion of two 

modal PET / CT device was developed in 1998 by Townsend and his colleagues in 

cooperation with Siemens Medical and machine was commercially available in 2001 

[14]. The next dual-modality PET / MRI instrument was also expected to improve patient 

safety and in the imaging capability than PET / CT. Nowadays, PET, CT, SPECT, 

Fluorescence imaging modalities have been fused and developed to 4-modality imaging 

machine [13]. With the emergence and gradual integration enhanced imaging technology, 
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these new tools led to the imaging probe design and development, in order to help multi-

modality imaging equipment to better realizes the advantages of multi-modality imaging. 

 

Figure 4.2. Multi-modality imaging machines (A) Quad-modality imaging system design, 
which consisted of PET, CT, SPECT, and FMI modules. (B) Photograph of quad-

modality imaging prototype system. (from Lu et al [13]) 

 

In the past few years, the research on multi-modal molecular imaging probe has 

made a lot of progress [14]. The imaging method of multi-modal probes will help to 

achieve high resolution, high sensitivity biomedical imaging. To have a more 

comprehensive view of the disease, an ideal situation is to use multi-modality contrast 

agent on multi-modality imaging techniques. An advantage of the multi-modality contrast 
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agent is to avoid multiple injections of contrast agent in the body. What’s more, multi-

modality probes allow the overall optimization of space, time and sensitivity and can 

obtain a variety of information in organ, tissue, cellular and sub-cellular level. For 

example, the research on bimodal contrast agents, optical / MRI contrast agents have 

been studied a lot in recent years. The optical contrast agent allows the detection of 

fluorescence intensity of the cells or sub-cellular level while MRI contrast agents 

typically have a deep tissue penetration property, can reflect physiological differences in 

tissue and organ levels [14]. Thus, these two complementary techniques help to obtain 

information that will allow a more precise diagnosis. 

Although not all imaging applications require multiple imaging modality binds to 

a single probe, a multi-modality imaging probe has many advantages. A multi-modal 

probe can guarantee the same pharmacokinetics and co-localization of different imaging 

modes. Also it avoid using multiple doses of imaging probes to bring a lot of pressure to 

the in vivo blood clearance [14]. One thing should be note is that, due to the different 

sensitivity between different imaging modalities, we cannot simply add all different 

modalities to one molecule, because the required concentration of the contrast agents are 

different among different imaging modes [14].  

Functionalized nanoparticles for enhancing medical diagnostic image contrast has 

been playing an increasingly important role in molecular imaging and is very important. 

Currently the most active areas of research on multi-modality probes are in nano-

materials, which has proved good integration of other imaging modalities to form a multi-

modal imaging probes [7]. The size and nature of the multi-component nanomaterials 

provides an excellent platform that can combine with various imaging modalities. 

Compared with a typical traditional multi-modality small molecular probes, the synthesis 

procedure of some of the of nanoparticles are relatively simple and fast, and does not 

require complex multi-step organic synthesis and allow a modular approach, so that the 
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element replacement for the nanoparticles can be done only by changing simple reagents 

and does not require the entire redesign [14].  

Multi-modality imaging contrast agents can provide a plurality of signals from a 

biological sample, thus greatly improving the visualization of biological processes. The 

combination of optical imaging techniques and MRI may represent a useful imaging 

modality pair for more accurate biomedical detections [22-24], Where MRI or optical 

imaging can be used to track the distribution of the probes in the body. The advantage of 

MRI is its high anatomy spatial resolution, but its sensitivity is not good enough, 

especially for the tiny tumors. While fluorescence imaging has high sensitivity, and the 

instruments nowadays can detect very little photons and present images on the computer 

screen. Shorter wavelength light cannot penetrate to deeper tissue, which limits its 

biological applications. However, the near infrared light can penetrate to relatively deep 

tissue. Therefore, by combining MRI and fluorescence imaging together, a multimodal 

imaging probe will has the advantages of high sensitivity and high spatial resolution, so 

as to enhance the ability of recognition and diagnosis of tumors. 

4.1.2 Multi-modality QDs probes 

The advantages of quantum dot have made them a good substitute for 

fluorescence imaging because it can diagnose diseases and other applications at the 

cellular level to achieve high sensitivity, high spatial resolution, and target-specific real-

time imaging. However, fluorescence imaging technology also has its own drawbacks, 

such as low tissue penetration depth and biological auto-fluorescence, which limits its 

application in imaging deep tissue. Therefore, they are widely studied in developing 

multi-modal probes, such as combining PET or MRI [21]. A main approach for 

synthesizing multi-modality quantum dots can be classified as a conjugation method, 

such as gadolinium and other molecules attached to the QDs surface via chemical 

connection. A typical approach is to attach agents such as DOTA and DTPA to the 
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surface of the quantum dot to chelate PET- or MRI active molecules [55-57, 143, 172-

176]. The second method is a core / shell structure, other molecules are comprised in an 

additional layer to coat QDs [58, 59]. The third way is by doping the appropriate 

molecules or atoms such as Mn into the QD core [22, 60]. 

QDs conjugates 

The most direct method of modifying quantum dots is by using bifunctional 

chemical crosslinkers to attach two different molecules to each other, typically functional 

groups such as amine, thiol or carboxyl group, followed by reaction of the crosslinking 

agent for a given functional group for specifically connection [206]. A typical approach is 

to attach agents such as DOTA and DTPA to the surface of the quantum dot to chelate 

PET- or MRI active molecules [189]. The traditional method through coupling chemistry 

using succinimidyl ester derivative has been widely used for connecting gadolinium (III) 

or 64Cu to the amino group on quantum dot surface. In this way, DOTA and DTPA have 

been coupled to the CdTe / ZnS quantum dots [207] CdSe/ZnS, and glutathione-coupled 

CdSeTe/CdS QDs. 

 

Figure 4.3. Synthesis of dual-function PET/NIRF probe DOTA–QD–RGD through 
Chelator coupling to surface of CdTe nanoparticles. (From Louie [14]).  
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  A uridine-based dual-modality probe based on quantum dots (QDs) has been 

reported [208]. The Gd3+-QDs was synthesized through complex procedures. The Gd3+-

QD can penetrate the cell surface and can be delivered into the RAW 264.7 cells. The 

Gd3+-QD enables high-performance MR and fluorescence imaging. This work provides 

possibilities for QDs based optical/MR imaging, but the synthesis is complex and the 

coating material cannot provide targeted ability. 

In order to limit the intrinsic toxicity of QDs constructed from heavy metals, 

Stasiuk et al. used InP/ZnS quantum dots with an emission wavelength at around 620 nm 

which were direct conjugated with gadolinium chelates containing single thiol or dithiol 

[209]. Another work by Erogbogbo et al. used silicon QDs which is composed of a 

PEGylated micelle, with hydrophobic Silicon QDs in the core, covalently bound to 

DOTA-chelated Gd3+, with dynamic light scattering radius of 85 nm [210]. In this work, 

after the macrophages cell uptake, the probes maintain their optical properties within the 

intracellular environment. However, only in vitro work was done and tumor-targeted 

study has not been done.  

Lipid-Coated dual-modality QDs 

Another method for making dual-modality QDs is to introduce paramagnetic ions 

to the coating lipid shell of the QDs where Gd chelates with lipids are inserted into the 

lipid coating layer to render MRI functionality [15]. Mulder group have done a lot of 

work using this typical configuration for different biomedical applications [211-215]. The 

process was done through evaporation of the mixture of QDs and paramagnetic lipids, as 

shown in Figure 4.4 [216]. The properties of the particles are similar to liposomes and 

can be synthesized in a similar size ranges with the QDs which are usually smaller than 

10 nm [214]. The size and use of stealth coatings such as PEG can both facilitate to 

increase the circulating half-life of the probes. 
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Figure 4.4. Synthesis of lipid-coated multi modality QDs (form Louie [15]) 

 

Doped QDs 

The third method is by doping the appropriate molecules to QDs. Because the 

QDs are really small, doping into QDs are very challenging, but still has been studied a 

lot. The QDs has been doped with transition metals, and the properties are characterized 

[217-222]. For example, Mn has been doped into II-VI quantum dots such as ZnSe [223], 

ZnS [224], CdSe [225], and into III-V systems such as InP [226]. The doped QDs 

materials has been investigated for multimodal imaging applications.  

There are some challenges for directly doping into the QDs, because many 

introduced dopants of impurities will quench the luminescence efficiency of the QDs. 

The quenching is in a concentration dependent way, therefore the improvement of the 

MR contrast properties will degrade the optical imaging ability [227]. In order to avoid 

this problem, researchers have studied many ways to incorporate the paramagnetic ions 

into the outer coating shell rather than the core to keep the luminescent efficiency. Most 

quantum dots for biological applications are core/shell structure where the core is coated 

with a shell of different materials [228]. The shell helps to protect the core from 

degradation and also improve the surface passivation thus increase the luminescence 

efficiency. For example, Cd-based QDs (CdSe, CdS, etc.) are usually coated with ZnS 

shell to prevent the release of toxic Cd ions if the core is degraded. The concept of shell 
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coatings provide a good platform of multi-modality probes, for each layer can have 

another functionality, and a lot of work were designed and reported. 

The fabrication of Gd-doped CdTe quantum dots (Gd:CdTe QDs) as an agent for 

dual-modality MRI/ optical imaging was shown in Figure 4.5. A facile one-pot aqueous 

approach was used and the QDs are synthesized at room temperature with an ultrasmall 

particle size. Further conjugation with the folic acid renders the QDs targeting ability and 

successfully labelled live HepG2 cells for targeted cellular imaging [16]. 

 

 

Figure 4.5. Schematic shown for the synthesis of the Gd:CdTe QDs and their surface 
function with Folic acid. (from Zhang et.al [16]) 

 

In another work by Dr. Mingyuan Gao’s group, Cd-free CuInS2@ZnS:Mn QDs 

were synthesized for dual-modality fluorescence and MRI imaging of tumors in vivo 

[22]. Those QDs has a Zn gradient CuInS2 core and a ZnS shell and the Mn ions were 

incorporated into the ZnS shell in order to balance the optical and magnetic properties of 

the QDs. The QDs were further PEGylated through ligand exchange by using DHLA-

PEG ligand. The resulting QDs showed 7000 times lower cytotoxicity than the CdTe 

QDs and experiments on fluorescence and MR imaging of tumors showed that both the 

subcutaneous and the intraperitoneal tumor can be visualized for in vivo imaging.  
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Dual-Targeting and Dual-Modality in vivo cancer imaging with Quantum Dots  

Except for dual-modality imaging probes, dual-targeting probes was another trend 

that was studied. Recently a dual receptor targeting dual-modality PET/near-infrared 

fluorescence (NIRF) probe was developed for a more accurate evaluation of tumor-

targeted efficacy of QDs [17]. In this work, the QDs were modified with beta-Glu-RGD-

BBN (BBN is bombesin) peptides and labeled with F-18 via the 4-nitrophenyl-2-F-18-

fluoropropionate prosthetic group. As shown in Figure 4.6, the structure of the multiplex 

modifying multi-functional QD probe was on the left and structure of single modified 

multi-functional QDs probe was in the middle, and strategy for enhancing synergistic 

binding of the hetero-dimeric multi-functional QDs probe was on the right. The 

functionalized QD probe showed a great promise as a universal dual-targeting probe for 

in vivo detection of tumors and opens up a new strategy for multi-targeting multi-

modality QD probes for improved tumor-targeting efficacy. 

 

 

Figure 4.6. Schematic illustration of functionalized QD probe for in vivo cancer dual-
targeting and dual-modality imaging (from Kongzhen Hu et al. [17]) 
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Summary 

Combining modalities of different instruments and in different probes have the 

advantages and benefits, but there is no one is the best approach for all problems. The 

clinical applications for multi-modality probes still need time to establish for not all 

applications benefits from an all-in-one probe. Therefore, to identify the diagnostic and 

therapeutic targets which have the most to gain from common probe is still a challenge 

which will aid in increase of the acceptance of multi-modality imaging probes. What’s 

more, the collaboration between biologists, chemists, and clinicians is very important in 

order to adapt biologically incompatible probes with imaging properties for the realistic 

uses. Greater cross communication and multi-modality cross communication will be 

crucial for the development of new probes especially for novel nanotechnology 

platforms. Another thing that need to notice is that some modalities such as PET and MRI 

have different sensitivities, therefore multi-modality probes will require a lot of low-

sensitivity probes which increase probe size comparing to the high sensitivity probe, in 

order to fulfill the concentration requirements for each modality. In an ideal situation, 

fusing probes of different functions should not reduce each probe’s individual 

effectiveness [15]. 

4.2 HA-DTPA-Gd QDs for dual-modality optical/MRI imaging 

4.2.1 Materials and Methods 

Materials 

Sodium hyaluronate with MW of 6300 was purchased from Lifecore (USA). 

Cystamine dihydrochloride, dithiothreitol (DTT), IGEPAL CO-520, 

tetramethylammonium hydroxide (TMAH), diethylene triamine pentaacetic acid (DTPA) 

were purchased from Sigma-Aldrich. NIR QDs were purchased from Invitrogen. EDC 

and sulfo-NHS were purchased from Pierce. GdCl3 were purchased from Aladin. Tetra-

azacyclododecanetetra-acetic acid (DOTA) were purchased from STREM chemicals. Dry 
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DMSO was provided by J&K Scientific. Cyclohexane, Methanol, Ethanol and other 

solvent were purchased from Sinopharm Chemical Reagent Beijing. Dialysis tube 

(MWCO 1000) was purchased from Spectrum Labs. UV–Vis absorption spectra were 

obtained using a UV-2550 UV-vis spectrophotometer (Shimadzu). The fluorescence 

spectrum was recorded on a Nanolog FL3-2iHR (HORIBA JOBIN). The structural 

details of the nanoparticles were analyzed by the HRTEM method using a JEM-2100F at 

Peking University. NMR spectrums were performed on a 400Hz NMR machine at the 

NMR imaging center of Peking University. Gadolinium and copper contents were 

determined on an inductive coupled plasma-optical emission spectrometry (PROFILE 

SPEC, Leeman Labs, USA). MRI images are acquired on a GE Discovery MR 750 3.0T 

machine with a T/R Animal coil by Magtron-35mm using SE series. 

Methods 

Synthesis of HA-cystamine-DTPA-Gd polymer 

As shown in Figure 4.7, the synthesis of HA-cysteamine-DTPA-Gd polymer 

involves four steps: synthesis of HA-cystamine polymer, DTPA conjugation to the HA-

cystamine polymer, Gd coupling and reduction of the disulfide bond of cystamine by 

DTT.  

Typically, sodium hyaluronate with average MW of 6276 was dissolved in PBS to 

about 10 mg/ml, then 17 molar excess of EDC, and final concentration of 5mM sulfo-

NHS were added to the HA sodium salt solution. The solution was stirred for 15min to 

activate the carboxyl groups on HA polymer. Then 30 molar excess of cystamine 

dihydrochloride in PBS were added, and the mixture was kept reacting at room 

temperature for 24 h. The HA-cystamine product was purified by dialysis against pure 

water using dialysis tube (molecular weight cut-off, 1kDa) for 2 days and lyophilized to 

get the dry HA-cystamine product. The HA-cystamine conjugation was confirmed by 1H 

NMR on a 400MHz machine.  
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Figure 4.7. Synthesis routes of HA-DTPA-Gd polymer  

 

Table 4.1. Typical amount for HA-cystamine synthesis. 

Reagent 
Equiva
lent 

Amount 
(umol) 

Molecular 
weight(g/mol) 

weight 
(mg) 

volum
e (ml) 

 Hyaluronic acid 
sodium salt 1 39.8 6276 250 23 in PBS 
COOH 17 677.2         
EDC 30 1195.1 191.7 229.1 1   
sulfo-NHS   125 217.13 27.1 1   
Cystamine 
dihydrochloride 30 1195.0 225.2 269.1 0   
          25 in PBS 

 
 

According to previously reported method [229, 230], DTPA was conjugated to 

the HA backbone by the formation of ester bonds between the carboxyl group in DTPA 

and the hydroxyl group in the HA backbone. Typically, 40 molar excess of DTPA and 

HA-cystamine were dissolved in 50 ml of anhydrous dimethyl sulfoxide and protected 
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with a drying tube containing calcium chloride inside. The mixture was stirred for 24 h at 

room temperature, and after the reaction, 25 ml of pure water was slowly added to the 

solution. The resulting solution was placed in a dialysis bag (molecular weight cut-off, 

1kDa) and dialyzed against pure water for 2 days. The dialysis product was lyophilized 

and the HA-cysteamine-DTPA product was obtained as a powder.  

The conjugation of DTPA to HA was confirmed via fourier transform infrared 

spectrometry (FT-IR) on a VECTOR22 (Bruker, Germany). Spectra was recorded on 

KBr plates over the range 4000~400 cm-1 at a wavenumber resolution of 1 cm-1. To 

determine the amount of DTPA that was conjugated to HA, NMR was also conducted on 

a 400MHz NMR machine. 

Table 4.2. Typical amount for HA-cystamine conjugating DTPA. 

Reagent Equiva
lent 

Amount 
(umol) 

Molecular 
weight(g/mol) 

weight 
(mg) 

volume 
(ml)   

HA-cystamine 1 9.2 6276 57.8 50 in DMSO 
DTPA 40 368.4 393.35 144.9     

 
 

Subsequently, for Gd coupling, 50 molar excess of GdCl3·6H2O and HA-

cysteamine-DTPA polymer were dissolved in 8 ml of water and shaked for 24 h at room 

temperature and then dialyzed in a dialysis bag (molecular weight cutoff, 1 kDa) against 

pure water for 1 day.  

 

Table 4.3. Typical amount for Gd coupling with HA-cystamine-DTPA polymer. 

Reagent Equivalent Amount 
(umol) 

Molecular 
weight (g/mol) 

weight 
(mg) 

Volume 
(ml)   

HA-
cystamine-
DTPA 

1 9.2 6276 57.8 8 in water 

GdCl3 50 460.5 371.7 171.2     
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Finally, for DTT reduction of the disulfide bond on cystamine, DTT of a final 

concentration of 80mM was added and the whole solution was shaked for 24 h. After 

dialyzing, 5~10 mg DTT was added to the solution to protect the free thiol groups. After 

lyophilizing, the HA-Gd polymer was collected.  

Gadolinium contents were estimated on an inductive coupled plasma-optical 

emission spectrometry (ICP-AES). For the ICP-AES sample preparation, the HA-Gd 

polymer was digested by adding 3.5mg polymer to 5ml HNO3, and incubate overnight. 

On the 2nd day, 2ml perchloric acid was added and the mixture was heated slowly to 

170°C for 1.5h. Finally pure water was added to 10 ml. Gadolinium contents were 

determined on an inductive coupled plasma-optical emission spectrometry (PROFILE 

SPEC, Leeman Labs, USA). 

QDs coating with of HA-DTPA-Gd polymer and characterization 

NIR Organic (CdSeTe) ZnS QDs of 780 nm emission wavelength were purchased 

from invitrogen. When encapsulating QDs with HA-DTPA-Gd polymer, a modified 

reverse micelle method was used [94, 124, 202]. Typically, 200µl of 1µM QDs in decane 

were diluted with 4.5 ml cyclohexane and 0.5 ml IGEPAL CO-520 was added to the 

solution. Then 3.5~4 mg of HA-DTPA-Gd polymer in 50 µl water was added to form 

reverse micelle. 50 µl of 0.1M Tetramethylammonium Hydroxide (TMAH) in methanol 

was also added as a catalyst. The mixture was votexed for 1 min, and shaked for 60 min. 

After reaction, 1 ml ethanol was added and the solution was centrifuged at 6000g for 5 

min to precipitate the HA polymer-coated QDs. The pellets were washed with additional 

ethanol for 3 times and washed with water once and finally re-dispersed in water. After 

centrifuging the QDs solution at 5000 g for 5 min to get rid of the undissolved parts, the 

supernatant which contains the HA polymer-coated QDs was purified using a 0.45 µm 

syringe filter. 

For characterization, the UV-vis absorption spectrum was recorded on a UV-2550 

UV-vis spectrophotometer (Shimadzu). The fluorescence spectrum was recorded on a 
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Nanolog FL3-2iHR (HORIBA JOBIN). The structural details of the nanoparticles were 

analyzed by the HRTEM using a JEM-2100F under the help of Dr. Jia at College of 

Chemistry and Molecular Engineering, Peking University. This machine was equipped 

with a field emission gun, ultra-high resolution pole piece, and ultrathin window JEOL 

detector. An OSIS CANTEGA CCD camera was used to obtain the HRTEM images. The 

gadolinium contents were determined on an inductive coupled plasma-optical emission 

spectrometry (PROFILE SPEC, Leeman Labs, USA) by digesting QDs with HNO3 and 

perchloric acid. 

Relaxation rate measurements of the HA-Gd QDs 

The T1 relaxitivity of HA-GD QDs was compared with Gd-DTPA solution of the 

same Gd concentration. The test was performed with GE Discovery MR 750 3.0T 

machine. The T1 contrast intensities of the HA-Gd QDs and Gd-DTPA solution were 

scanned at 0.2, 0.1, 0.05, 0.02, 0.01 and 0.005 mM of Gd concentrations. Typically, 500 

µl of HA-Gd QDs and Gd-DTPA solution at different concentrations were put in each 

1.5ml Eppendorf tube, and placed in a plastic box containing pure water. A head and 

neck unite coil of the MRI machine was used to hold the box and T1-weighted MR 

images was collected at different repetition time. The specific parameters are as follows: 

echo time (TE) = 9 ms, repetition time (TR) = 100, 200, 300, 600, 900, 1200, 1500 ms. 

Cell viability test 

Hela cervical cancer cell line was cultured in DMEM with 10 % FBS and 1 % 

streptomycin and penicillin antibiotics. On the first day, cells were seeded on a 96-well 

plate at 5000 cells/well. After 24 h culture, HA-Gd polymer-coated QDs were added to 

the 1, 4 and 8 h incubation time group with the final concentrations of 1, 5 and 10 nM. 

For the control group, cells of the same number were seeded but no QDs were added. 

This is regarded as 100 % cell viability. A blank control with only cell culture medium in 

the well was regarded as 0 % cell viability. Experiments were quintuplicated. After 

incubation with QDs, 10 µl Cell Counting Kit-8 solution was added to each well. 
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Following incubation with cells at 37 °C for 3 h, the absorbance at 450 nm was measured 

by a plate reader. 

In vitro cell targeted imaging  

CD44+ cervical cancer Hela cells were used for targeted imaging and NIH/3T3 

fibroblast cell was used as a negative control. The cells were cultured in DMEM with 

10% FBS and 1 % streptomycin and penicillin antibiotics. Cells were plated on an 8-well 

chamber slide at 10k cell/well in 400ul culture medium. After 24 h growth, the medium 

was aspirated and cells were washed with 1X PBS buffer and then fixed with 200 µl 4 % 

formaldehyde and 0.25 % Triton X-100 in PBS for each well. After 15 min, cells were 

washed with PBS for 5 min, three times. After fixation, 160 µl blocking buffer of 5 % 

bovine serum albumin (BSA) in PBS was added to each well and incubated for 1h at RT. 

Then blocking buffer was aspirated and each well was washed with PBS three times for 5 

min each. For QDs coating, 100 µl HA polymer-coated QDs were added to each well, 

with final concentrations of 5nM and 20 nM in PBS. After 1 h incubation, the QDs was 

aspirated and washed with PBS for 3 times, 5 min each. The slides were mounted with 

anti-fade mounting media containing DAPI. The slides were imaged under Leica 

DMI3000B microscope. 

In vivo Tumor-targeted fluorescence imaging 

For the in vivo fluorescence imaging experiment, cervical cancer Hela cells was 

used to build the tumor model. Female “Balb/c nude” mice of six weeks are used as the 

experimental models. Tumors were created by subcutaneous injection of 5×106 Hela cells 

in 100 µL PBS buffer onto the back of right shoulder of each mouse. Tumors grew to a 

suitable size at the injection sites 6 weeks later. Before imaging, each mouse was subject 

to isofluorane anesthesia and placed in the animal bed in the right position with the 

anesthesia. HA-Gd QDs with an emission wavelength of 780 nm conjugates were 

prepared and purified with 0.2µm syringe filter before injection. 200µl of 50nM HA-Gd 

QDs were administered to the nude tumor bearing mice by tail-vein injection. 
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The fluorescence of injected HA-Gd QDs was captured with a luminescent image 

analyzer before and after injection. An animal fluorescence imaging system was used to 

take the fluorescence images, which contains a tungsten halogen-based excitation 

module, an adjustable animal holder, a high sensitivity CCD camera (iKon 934 M, 

Andor) detection module and a gas anesthesia component. High-resolution images 

(512×512 pixels) were taken using GFP filter (FF01-466/40-25) for excitation and Cy7 

filter (FF02-809/81-25) for emission. The raw data was acquired under the control of 

baseline clamp and processed by Andor SOLIS software. The images were processed by 

ImageJ.  

In vivo Tumor-targeted MRI imaging 

For in vivo MRI imaging, the animal model was the same as for the fluorescence 

imaging. Female “Balb/c nude” Hela tumor bearing mice was used. The tumor-bearing 

mice are obtained by injecting Hela cells into their right back without any other 

treatment. After the tumors formed at the injection sites, mice were taken for MRI 

imaging. Before imaging, the mouse was injected with 10% chloralhydrate anesthesia for 

100 µl / 25g mouse and placed in the animal bed in the ventral position. Then, HA-Gd 

QDs conjugates were prepared and purified with 0.2 µm syringe filter before injection. 

200µl of 50nM QDs were administered to the nude tumor bearing mice by tail-vein 

injection. MRI images are acquired before and after the injection of the HA-Gd QDs 

contrast agents, on a GE Discovery MR 750 3.0T machine with a T/R Animal coil by 

Magtron-35mm using SE series. The TR was set to be 400 and TE was 12. 

4.2.2 Results and Discussions 

Characterization of HA-cystamine-DTPA polymer 

The synthesis of HA-cysteamine-DTPA-Gd polymer involves four steps: 

synthesis of HA-cystamine polymer, DTPA conjugation to the HA-cystamine polymer, 

Gd coupling and reduction of the disulfide bond of cystamine by DTT. 
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For the HA-cystamine polymer conjugate DTPA, from the FT-IR image of HA-

cystamine-DTPA (Figure 4.8), the peak at 1730cm-1 which represents the C=O formation 

is a strong sign that DTPA was successfully conjugated to the HA backbone.  

 

 

Figure 4.8.  FT-IR image of HA and HA-cystamine-DTPA  

 
The HA-cystamine conjugation was confirmed by NMR.  As shown in Figure 4.9, 

the comparison of HA and HA-cystamine, the peak at around 2.85 ppm and 2.95 ppm 

which is the cystamine was shown, which proved successful conjugation of cystamine to 

HA polymer. The amount of cystamine and DTPA that was conjugated to HA can be 

calculated from the integration of the corresponding part on the NMR curve. After 

calculation, there were ~6 cystamine on each HA polymer. 

Quantitative characterization of DTPA that was conjugated to HA-cystamine 

polymer was also confirmed by NMR. The NMR curve was shown in Figure 4.9, and the 

NMR prediction by chemdraw was shown in Figure 4.10. The circles of the same color 

represent the corresponded group. The amount of DTPA that was conjugated to HA can 
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be calculated from the integration of the corresponding part on the NMR curve. After 

calculation, there were 1 DTPA on every 2 HA polymer. 

 

 

Figure 4.9  NMR image of HA-cystamine-DTPA  

 

 

Figure 4.10.  NMR prediction by Chemdraw of HA-cystamine-DTPA 
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Characterization of HA-Gd polymer coated QDs 

  UV-absorption and Fluorescence curve before and after HA-Gd polymer coating 

were shown in Figure 4.11. The QDs absorption and emission curve after HA-Gd 

polymer coating keeps the same shape as before coating, thus indicates a good stability of 

the HA-Gd polymer coated QDs. 

 

Figure 4.11. UV-absorption and Fluorescence image of QDs and HA-QDs  

 
A typical TEM image of NIR QDs in decane was shown in Figure 4.12 A, where 

the as-prepared HA-Gd QDs was shown in figure B. The HA-Gd QDs exhibited a 

triangle-like geometry with a diameter of ∼10 nm, and were highly dispersible in water. 

The surface conjugation of QDs with DTPA and further Gd3+ chelation did not obviously 

affect the morphology of QDs, as evidenced by the TEM images. 
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Figure 4.12. TEM figures of QDs in decane (A) and HA-Gd QDs (B)  

 
Gd content determination of HA-DTPA Gd QDs by ICP-AES 

200 µl HA-DTPA Gd QDs were used for ICP-AES. Typically, 200 µl QDs were 

diluted with 5ml HNO3 and stay overnight. The second day 2 ml perchloric acid were 

added and the whole solution was heated to 170 °C for 1.5h. Finally, the solution was 

cooled to room temperature and pure water was added to 10ml for ICP-AES. After 

running ICP-AES, the Gd content in solution is 0.781 µg/ml. therefore, there were total 

7.81µg Gd in 10ml solution. Namely, in 200 µl QDs, the Gd content is 7.81µg 

/(157.25g/mol) =0.0497 µmol = 49.7 nmol.  

The concentration of Gd is 49.7nmol / 200µl = 2.485*10-4 mol/L=248.5 µM. The 

concentration of QDs was determined by UV-vis absorption, which is 123.23 nM. 

Therefore, there were 248.5 / 123.23 * 1000 = 2016 Gd ions per QD. 

Calculation of longitudinal relaxation rate 

T1-weighted MR images of the HA-Gd QDs according to the Gd concentration 

are presented in Figure 4.13. As the Gd concentration increased, the MR signals also 

strengthened, which can be seen by the brightness.  
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Figure 4.13. T1-weighted MR images of HA-Gd QDs and DTPA-Gd solution at different 
TE value  

 
According to the T1 calculation equation: 

SSE (TR,TE) = N (H )[1- 2e
-(TR-TE 2) T1 + e-(TR T1) ]e-(TE T 2)               (4.1) 

SE refers to the Spin Echo, TR refers to Time of Repetition and TE refers to Time 

of Echo. For the calculation of T1, We can use any two SSE value such as S1 and S2, by 

calculating the ratio of S1 and S2,  

S1
S2
=
1− 2e−(TR1−TE /2)/T1 + e−(TR1/T1)

1− 2e−(TR2−TE /2)/T1 + e−(TR2 /T1)
                          (4.2) 

Using the corresponding TR1 and TR2, we can get different T1 value. By 

calculating the average of T1, we can get T1 value at different concentrations of Gd. 

Through programing on Matlab, different T1 value at different concentration were 

calculated.  The code was as the following: 
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Figure 4.14. The matlab code used for calculating the T1 value at different concentrations 
of Gd.  

 
After running the program, a curve of y will be plotted and the minimum value at 

the valley will be corresponded T1 value. By calculating the average of different T1 

value, we can get T1 value of different concentration. 

 

Figure 4.15. The typical curve for T1 value calculation 

Quantitative analysis on Origin software showed a linear relationship between the 

proton longitudinal relaxation rate (1/T1) and Gd concentration. The linearity between T1 

relaxivity (r1) of the HA-QDs and Gd concentration indicates that Gd3+ was successfully 
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chelated into the DTPA ligand on HA shell of the QDs. The specific relaxivity (r1) of 

HA-Gd QDs was 5 mM-1s-1, which is slightly higher than the DTPA-Gd solution. 

 

Figure 4.16. The proton longitudinal relaxation rate (1/T1) according to the Gd 
concentration. 

 

Biocompatibility test of HA-Gd QDs on Hela cell lines 

The cytotoxicity of HA-Gd QDs was examined in cervical cancer Hela cells. QDs 

of different final concentrations of 1, 5, 10 nM were incubated with the cells for 1, 4 and 

8 h. The experiments were performed in quintuplicated and T test was performed for each 

group comparing to the control group. As shown in Figure 4.17, no significant 

cytotoxicity was observed at all concentration and incubation time groups and the cell 

viability remains over 80 %. This result has proved great biocompatibility for the HA-Gd 

QDs, and shows the potential for in vivo applications in the future.  
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Figure 4.17. Cell viability test of Hela cells.  

 

In vitro cell targeted imaging 

CD44+ Hela cell lines were used for targeted imaging and NIH/3T3 cell line was 

used as a negative control. QDs with different final concentrations of 5 nM and 20 nM 

have been tested, and shown in Figure 4.18. Obviously, strong fluorescence on Hela cell 

lines was observed but no fluorescence on NIH/3T3 cell line can be seen. This result not 

only demonstrates the HA-Gd polymer coated QDs still remains the targeted ability for 

CD44+ cancer cells, but also indicates very little non-specific cellular binding for 

NIH/3T3 cell.  

In vivo Tumor-targeted fluorescence imaging 

The HA-Gd QDs was prepared with the final concentration of 50 nM in PBS 

buffer and administered intravenous injection (200 µL per mouse) into the nude mice 

bearing subcutaneous Hela tumors. An animal FL imaging system was used to take the 

fluorescence images. We set the GFP excitation filter (FF01-466/40-25) and the Cy7 

emission filter (FF02-809/81-25) to take the fluorescence images.  The pictures of HA-

Gd QDs solution in tube before injection was shown in Figure 4.19. Figure 4.19 (A) 
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shows the bright field image while B is the fluorescence image. Figure 4.19 (C) was the 

overlay of the bright field and fluorescence images. 

 

 

Figure 4.18. Fluorescence microscopic images of Hela and NIH/3T3 cells labeled with 
HA-Gd QDs. 

 

 

Figure 4.19. The HA-Gd QDs that was used to inject the mouse (A) Bright field image. 
(B) Fluorescence image. (C) Overlay of the bright field and fluorescence images. 

 

As shown in Figure 4.20, a series of in vivo images detected by the animal 

fluorescence imaging system at different time was taken. The fluorescent background as 



78 

 

a control prior to injection was collected first (Fig 4.20 (A)). After HA-Gd QDs was 

injected through the tail vein, fluorescence images of the mouse were collected at 1 h, 2 

h, 3 h and 6 h, respectively. The images indicated that fluorescence signal was observed 

in the tumor after 1 h (Figure 4.20 (B)). During the 2 h time intervals, there was an 

obvious increase area of fluorescence signal in tumor site, indicating highly specific 

tumor targeting of HA-Gd QDs. After 3 h, the fluorescence showed slightly decrease. By 

reviewing the literatures of QDs in vivo tumor-targeted imaging, most of the QDs started 

to accumulate at the tumor sites around 1-2 hours [6, 11, 197, 231-237], which coincide 

with our results.  

 

Figure 4.20. In vivo fluorescence imaging of Hela tumor-bearing mice injected with HA-
Gd QDs. (A) before injection (B) 1 h (C) 2 h (D) 3 h (E) 6 h after HA-Gd QDs was 

injected. The figures are the merged images of bright field and fluorescence images. All 
of the images were taken under the same condition. 

 

To verify the information collected from the in vivo fluorescence images, the 

mouse was sacrificed after 24 hours. The tumor and organs (liver, spleen, heart, lung and 

kidney) of the mouse were taken out and the fluorescence image was acquired, which 

was shown in Figure 4.21. Fluorescence intensity in tumor tissues and liver was stronger 

than other tissues (heart, kidney, spleen and lung). 
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Figure 4.21. The fluorescence image of the tumor and organs of the mouse. (A) photo to 
show the organs and tumor. (B) Bright field image. (C) Fluorescence image. (D) Overlay 

of the bright field and fluorescence images. 

 

In vivo Tumor-targeted MRI imaging 

The in vivo MRI imaging was performed in mice bearing transplanted Hela 

tumor. The HA-Gd QDs (50nM QDs concentration, 100µM Gd concentration, 200 µL) 

was injected into mice through tail vein. The MR images were acquired before injection 

and at 1 h after injection as illustrated in Figure 4.22. The positions of tumor were 

indicated by arrow. A significant contrast enhancement of the whole body and tumor 

tissue was observed at 1 h after injection on the MRI image. These in vivo experiments 

showed that the HA-Gd conjugated QDs selectively target CD44 overexpressed tumor 

after systemic administration and are sufficient to contrast the CD44 expression in tumor 

lesions using both T1 MRI sequence and Fluorescence modalities. 
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Figure 4.22. T1-weighted MR images of the mice bearing Hela tumor (as indicated by 
arrow) following tail vein injection of HA-Gd QDs obtained at 0 h (before injection, 

Figure A) and 1 h (Figure B) after injection. 

 

4.2.3 Summary 

As a summary, we have successfully conjugated HA-cysteamine polymer with 

DTPA via the formation of ester bonds between the carboxyl group in DTPA and the 

hydroxyl group in the HA backbone and the HA-cystamine DTPA polymer was used to 

coat NIR QDs. The QDs has the binding ability of Gd through the DTPA group. The Gd 

ion conjugation provides ability for MRI imaging and the calculated longitudinal 

relaxation rate is comparable with DTPA-Gd solution. Therefore, dual-modality 

MRI/optical imaging probes can be realized through this novel method. The resulting 

QDs have great water solubility, and excellent colloidal stability and also show great 

biocompatibility and no significant toxicity to NIH/3T3 fibroblast cells and Hela cervical 

cancer cells. Moreover, the HA polymer-coated QDs hold CD44+ cancer cell targeting 

ability for cervical cancer cell lines. Besides, the carboxyl groups on the polymer 

backbone also allow for further functionalization and conjugation with other targeting 

probes like ligands or antibodies. Therefore, the HA-DTPA Gd polymer coated QDs can 

be applied for dual-modality MRI/optical imaging and can be used for variety of 
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biomarkers detection such as multi- plexed biomarker staining and for in vivo molecular 

imaging as well as targeted drug delivery. 

4.3 HA-DOTA-Cu QDs for dual-modality optical/PET imaging 

4.3.1 Materials and Methods 

Materials 

Sodium hyaluronate with MW of 6300 was purchased from Lifecore (USA). 

Cystamine dihydrochloride, dithiothreitol (DTT), IGEPAL CO-520, 

tetramethylammonium hydroxide (TMAH) were purchased from Sigma-Aldrich. NIR 

QDs were purchased from Invitrogen. EDC and sulfo-NHS were purchased from Pierce. 

tetra-azacyclododecanetetra-acetic acid (DOTA) were purchased from STREM 

chemicals. dry DMSO were provided by J&K Scientific. Cyclohexane, Methanol, 

Ethanol and other solvent were purchased from Sinopharm Chemical Reagent Beijing. 

Dialysis tube (MWCO 1000) was purchased from Spectrum Labs. UV–Vis absorption 

spectra were obtained using a UV-2550 UV-vis spectrophotometer (Shimadzu). The 

fluorescence spectrum was recorded on a Nanolog FL3-2iHR (HORIBA JOBIN). The 

structural details of the nanoparticles were analyzed by the HRTEM method using a 

JEM-2100F at Peking University. NMR spectrum were performed on a 400Hz NMR 

machine at the NMR imaging center of Peking University. Copper contents were 

estimated on an inductive coupled plasma-optical emission spectrometry (PROFILE 

SPEC, Leeman Labs, USA).  

Methods 

Synthesis of HA-cystamine-DOTA polymer 

As shown in Figure 4.23, the synthesis of HA-cysteamine-DOTA polymer 

involves three steps: synthesis of HA-cystamine polymer, DOTA conjugation to the HA-

cystamine polymer and DTT reduction of the disulfide bond.  
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Figure 4.23. Synthesis routes of HA-DOTA polymer  

 

Typically, sodium hyaluronate with average MW of 6276 was dissolved in PBS to 

about 10 mg/ml, then 17 molar excess of EDC, and final concentration of 5mM sulfo-

NHS were added to the HA sodium salt solution. The solution was stirred for 15min to 

activate the carboxyl groups on HA polymer. Then 30 molar excess of cystamine 

dihydrochloride in PBS were added, and the mixture was kept reacting at room 

temperature for 24 h. The HA-cystamine product was purified by dialysis against pure 

water using dialysis tube (molecular weight cut-off, 1kDa) for 2 days and lyophilized to 

get the dry HA-cystamine product. The HA-cystamine conjugation was confirmed by 1H 

NMR on a 400MHz machine.  
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Table 4.4. Typical amount for HA-cystamine synthesis. 

Reagent Equivalent Amount 
(µmol) 

Molecular 
weight 
(g/mol) 

weight 
(mg) 

volume 
(ml)  

Hyaluronic acid 
sodium salt 1 39.8 6276 250 23 in PBS 

COOH 17 677.2     EDC 30 1195.0 191.7 229.1 1  sulfo-NHS  125 217.13 27.1 1  Cystamine 
dihydrochloride 30 1195.0 225.2 269.1 0  

     25 in PBS 
 

 

 

According to previously reported method [229, 230], DOTA was conjugated to 

the HA backbone by the formation of ester bonds between the carboxyl group in DOTA 

and the hydroxyl group in the HA backbone. Typically, 40 molar excess of DOTA and 

HA-cystamine were dissolved in 50 ml of anhydrous dimethyl sulfoxide and protected 

with a drying tube containing calcium chloride inside. The mixture was stirred for 24 h at 

room temperature, and after the reaction, 25 ml of pure water was slowly added to the 

solution. The resulting solution was placed in a dialysis bag (molecular weight cut-off, 

1kDa) and dialyzed against pure water for 2 days. The dialysis product was lyophilized 

and the HA-cysteamine-DOTA product was obtained as a powder.  

The conjugation of DOTA to HA was confirmed via fourier transform infrared 

spectrometry (FT-IR) on a VECTOR22 (Bruker, Germany). Spectra was recorded on 

KBr plates over the range 4000~400 cm-1 at a wavenumber resolution of 1 cm-1. To 

determine the amount of DOTA that was conjugated to HA, NMR was also conducted on 

a 400MHz NMR machine. 
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Table 4.5. Typical amount for HA-cystamine conjugating DOTA. 

Reagent Equivalent Amount(µmol) 
Molecular 
weight 
(g/mol) 

weight 
(mg) 

volume 
(ml)  

HA-
cystamine 1 7.97 6276 50 50 in DMSO 

DOTA 40 318.7 404.42 128.9     
 
Next for DTT reduction of the disulfide bond on cystamine, DTT of a final 

concentration of 80mM was added and the whole solution was shaked for 24 h. After 

dialyzing against water through 1000 MWCO tube for 1 day, 5~10 mg DTT was added to 

the solution to protect the free thiol groups. After lyophilizing, the HA-cystamine-DOTA 

polymer was collected as powder.  

HA-DOTA polymer for Cu coupling and QDs coating 

As HA-DOTA polymer will be used for isotope Cu coupling, so Cu coupling and 

QDs coating were finished in one step in order to reduce the time for purifying the QDs. 

Typically, 1mg HA-DOTA polymer were conjugated with 10 µl CuCl2 (10 mg/ml in 

water) and 40 µl H2O solution for 1h (37°C). Then the QDs were coated with the HA-

DOTA Cu polymer. Typicall 50µl of 1µM QDs in decane was diluted with 4.5ml 

cyclohexane and 0.5ml IGEPAL 520 was added. The 1mg HA-DOTA Cu polymer in 50 

µl water was then added to the solution and 50µl 0.1M TMAH in methanol was also 

added as a catalyst. The mixture was votexed for 1 min, and shaked for 60 min. After 

reaction, 1 ml ethanol was added and the solution was centrifuged at 6000g for 5 min to 

precipitate the HA polymer-coated QDs. The pellets were washed with additional ethanol 

for 3 times and washed with water once and finally re-dispersed in water. After 

centrifuging the QDs solution at 5000 g for 5 min to get rid of the undissolved parts, the 

supernatant which contains the HA polymer-coated QDs was purified using a 0.22 µm 

syringe filter. 
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For characterization, the UV-vis absorption spectrum was recorded on a UV-2550 

UV-vis spectrophotometer (Shimadzu). The fluorescence spectrum was recorded on a 

Nanolog FL3-2iHR (HORIBA JOBIN). The TEM was preformed on a JEM-2100F TEM 

machine. The Cu contents were estimated on an inductive coupled plasma-optical 

emission spectrometry (PROFILE SPEC, Leeman Labs, USA) by digesting QDs with 

HNO3 and perchloric acid. 

4.3.2 Results and Discussions 

Characterization of HA-cystamine-DOTA polymer 

The synthesis of HA-cysteamine-DOTA polymer involves there steps: synthesis 

of HA-cystamine polymer, DOTA conjugation to the HA-cystamine polymer and DTT 

reduction of the disulfide bond. 

For the HA-cystamine polymer conjugate DOTA, from the FT-IR image of HA-

cystamine-DOTA (Figure 4.24), the peak at 1730cm-1 which represents the C=O 

formation is a strong sign that DOTA was successfully conjugated to the HA backbone.  

 

Figure 4.24.  FT-IR image of HA and HA-cystamine-DOTA 
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The HA-cystamine conjugation was confirmed by NMR.  As shown in Figure 4.25, the 

comparison of HA and HA-cystamine-DOTA, the peak at around 2.85 ppm and 2.95 ppm 

which is the cystamine was shown, which proved successful conjugation of cystamine to 

HA polymer. Quantitative characterization of DOTA that was conjugated to HA-

cystamine polymer was also confirmed by NMR. The NMR curve was shown in Figure 

4.25, and the NMR prediction by chemdraw was shown in Figure 4.26. The circles of the 

same color represents the corresponded group. The amount of DOTA that was conjugated 

to HA can be calculated from the integration of the corresponding part on the NMR 

curve. After calculation, there were 1 DOTA on every 3 HA polymer.  

Characterization of HA-DOTA-Cu polymer coated QDs 

  UV-absorption and Fluorescence curve before and after HA-DOTA-Cu polymer 

coating were shown in Figure 4.27. The QDs absorption and emission curve after HA-

DOTA-Cu polymer coating keeps the same shape as before coating, thus indicates a good 

stability of the HA-DOTA-Cu polymer coated QDs. 

 

 

Figure 4.25. NMR of HA-cystamine-DOTA and HA. 
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Figure 4.26. NMR prediction of HA-cystamine-DOTA by Chemdraw.  

 

 

Figure 4.27. UV-absorption and Fluorescence image of QDs and HA-Cu QDs  
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TEM results were shown in Figure 4.28. From the TEM, we can get the average 

size of the QDs was around 10 nm. The HA-DOTA Cu QDs distributed uniformly in 

size, which proves a well disperse in water. The surface conjugation of QDs with DOTA 

and further Cu ion chelation did not obviously affect the morphology of QDs, as 

evidenced by the TEM images. 

 

Figure 4.28. TEM figure of HA-DOTA Cu QDs to show a size distribution.  

 

Cu content determination of HA-DOTA Cu QDs by ICP-AES 

100 µl HA-DOTA Cu QDs were used for ICP-AES. Typically, 100 µl QDs were 

diluted with 5ml HNO3 and stay overnight. The second day 2 ml perchloric acid were 

added and the whole solution was heated to 170 °C for 1.5h. Finally, the solution was 

cooled to room temperature and pure water was added to 10ml for ICP-AES. After 

running ICP-AES, the Cu content in solution is 0.0571 µg/ml. therefore, there were total 

0.571µg Cu in 10ml solution. Namely, in 100µl QDs, the Cu content is  0.571ug 

/(64g/mol) =0.0089 µmol = 8.9nmol.  

The concentration of Cu is 8.9nmol / 100µl=8.9*10-5 mol/L=89µM. The 

concentration of QDs was determined by UV-vis absorption, which is 74nM. Therefore, 

there were 89 / 74 * 1000 = 1203 Cu ions per QD. 
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4.3.3 Summary 

In this part, we have successfully conjugated HA-cysteamine polymer with 

DOTA via the formation of ester bonds between the carboxyl group in DOTA and the 

hydroxyl group in the HA backbone and the HA-cystamine DOTA polymer was used to 

coat NIR QDs. The resulting QDs have great water solubility and excellent colloidal 

stability. The QDs also has the binding ability of Cu through the DOTA group, and ICP-

AES results shows a relatively high amount of Cu content in the HA-DOTA Cu QDs. 

The preliminary results provide a future application for coupling 64Cu isotopes for PET 

imaging. Therefore, dual-modality PET/optical imaging probes can be realized through 

this novel method.  

4.4 Summary 

In this chapter, the Hyaluronic acid-cystamine polymer was conjugated with 

DTPA and DOTA for multi-modality MRI/optical and PET/optical imaging. The DTPA 

can conjugate Gd ion thus provides ability for MRI imaging and the calculated 

longitudinal relaxation rate is comparable with DTPA-Gd solution. The DOTA unit 

renders the QDs to have the ability for conjugating Cu ion, which provides future ability 

for 64Cu isotope coupling for PET imaging. The resulting QDs have great water 

solubility, and excellent colloidal stability and also show great biocompatibility and no 

significant toxicity to NIH/3T3 fibroblast cells and Hela cervical cancer cells. Moreover, 

the HA polymer-coated QDs hold CD44+ cancer cell targeting ability for cervical cancer 

cell lines. The HA-DTPA polymer can also conjugate 99mTc for SPECT imaging. 

Therefore, this novel HA-DTPA and HA-DOTA polymer holds the promise for multi-

modality imaging, such as MRI/optical, PET/optical, SPECT/optical and 
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MRI/PET/SPECT/optical imaging and will have a significant impact on cancer 

diagnostics, molecular profiling, and the integration of different modality imaging. 
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CHAPTER 5 

SUMMARY 

 

 As a summary, we have successfully developed a novel HA-cysteamine polymer 

coated QDs, which are water-soluble, and stable for long time and over a large pH, range. 

The polymer coated QDs shows great biocompatibility and no significant toxicity. 

Moreover, the HA-cysteamine polymer coated QDs holds CD44+ cancer cell targeting 

ability for breast cancer cell lines. Based on this well-designed system, the Hyaluronic 

acid-cystamine polymer was further conjugated with DTPA and DOTA for multi-

modality MRI/optical and PET/optical imaging. The DTPA can conjugate Gd ion 

provides ability for MRI imaging and the calculated longitudinal relaxation rate is 

comparable with DTPA-Gd solution. The DOTA unit renders the QDs to have the ability 

for conjugating Cu ion, which provides future ability for 64Cu isotope coupling for PET 

imaging. The resulting QDs have great water solubility, and excellent colloidal stability 

and also show great biocompatibility and no significant toxicity to NIH/3T3 fibroblast 

cells and Hela cervical cancer cells. Moreover, the HA polymer-coated QDs hold CD44+ 

cancer cell targeting ability for cervical cancer Hela cell lines. The HA-DTPA polymer 

can also conjugate 99mTc for SPECT imaging. The QDs core can also be replaced with 

Au nanoparticles, which is suitable for CT enhancement imaging. Therefore, this novel 

HA-DTPA and HA-DOTA polymer holds the promise for multi-modality imaging, such 

as MRI/optical, MRI/CT, PET/optical, SPECT/optical and PET/CT/SPECT imaging. We 

expect this versatile method will have a significant impact on cancer diagnostics, 

molecular profiling, and the integration of different modality imaging. 
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Figure 5.1 Multi-modality imaging probe based on our HA-cystamine QDs system 

 

 

Figure 5.2 Multi-modality imaging probe based on our HA-cystamine Au NP system 



93 

 

REFERENCES 

 

 

1. WHO, 2014 World Cancer Report. 2014. 

2. Medintz, I.L., et al., Quantum dot bioconjugates for imaging, labelling and 
sensing. Nature Materials, 2005. 4(6): p. 435-446. 

3. Wu, X., et al., Immunofluorescent labeling of cancer marker Her2 and other 
cellular targets with semiconductor quantum dots. Nat Biotech, 2003. 21(1): p. 
41-46. 

4. Smith, A.M., et al., Bioconjugated quantum dots for in vivo molecular and 
cellular imaging. Advanced drug delivery reviews, 2008. 60(11): p. 1226-1240. 

5. Yezhelyev, M.V., et al., In situ molecular profiling of breast cancer biomarkers 
with multicolor quantum dots. Advanced Materials, 2007. 19(20): p. 3146-+. 

6. Gao, X., et al., In vivo cancer targeting and imaging with semiconductor quantum 
dots. Nature biotechnology, 2004. 22(8): p. 969-976. 

7. Michalet, X., et al., Quantum Dots for Live Cells, in Vivo Imaging, and 
Diagnostics. Science, 2005. 307(5709): p. 538-544. 

8. Pereira, R.F. and P.J. Bartolo, 3D bioprinting of photocrosslinkable hydrogel 
constructs. Journal of Applied Polymer Science, 2015. 132(48). 

9. Posocco, B., et al., Polysaccharides for the Delivery of Antitumor Drugs. 
Materials, 2015. 8(5): p. 2569-2615. 

10. Choi, K.Y., et al., Versatile RNA Interference Nanoplatform for Systemic Delivery 
of RNAs. ACS Nano, 2014. 8(5): p. 4559-4570. 

11. Kim, K.S., et al., Bioimaging for Targeted Delivery of Hyaluronic Acid 
Derivatives to the Livers in Cirrhotic Mice Using Quantum Dots. ACS Nano, 
2010. 4(6): p. 3005-3014. 

12. Xing, Y., et al., Radiolabeled Nanoparticles for Multimodality Tumor Imaging. 
Theranostics, 2014. 4(3): p. 290-306. 

13. Lu, Y., et al., An Integrated Quad-Modality Molecular Imaging System for Small 
Animals. Journal of Nuclear Medicine, 2014. 55(8): p. 1375-1379. 

14. Louie, A., Multimodality imaging probes: design and challenges. Chem Rev, 
2010. 110(5): p. 3146-95. 



94 

 

15. Louie, A.Y., Multimodality Imaging Probes: Design and Challenges. Chemical 
Reviews, 2010. 110(5): p. 3146-3195. 

16. Zhang, F., et al., Facile synthesis of functional gadolinium-doped CdTe quantum 
dots for tumor-targeted fluorescence and magnetic resonance dual-modality 
imaging. Journal of Materials Chemistry B, 2014. 2(41): p. 7201-7209. 

17. Hu, K.Z., et al., In Vivo Cancer Dual-Targeting and Dual-Modality Imaging with 
Functionalized Quantum Dots. Journal of Nuclear Medicine, 2015. 56(8): p. 
1278-1284. 

18. Varmus, H., The new era in cancer research. Science, 2006. 312(5777): p. 1162-
5. 

19. Sherr, C.J., Cancer cell cycles. Science, 1996. 274(5293): p. 1672-7. 

20. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 
57-70. 

21. Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nature 
Reviews Cancer, 2005: p. 161-171. 

22. Ding, K., et al., Magnetically engineered Cd-free quantum dots as dual-modality 
probes for fluorescence/magnetic resonance imaging of tumors. Biomaterials, 
2014. 35(5): p. 1608-17. 

23. Cormode, D.P., et al., Nanocrystal core high-density lipoproteins: a 
multimodality contrast agent platform. Nano Lett, 2008. 8(11): p. 3715-23. 

24. Prinzen, L., et al., Optical and magnetic resonance imaging of cell death and 
platelet activation using annexin a5-functionalized quantum dots. Nano Lett, 
2007. 7(1): p. 93-100. 

25. Bruchez, M., et al., Semiconductor nanocrystals as fluorescent biological labels. 
Science, 1998. 281(5385): p. 2013-2016. 

26. Chan, W.C.W., et al., Luminescent quantum dots for multiplexed biological 
detection and imaging. Current Opinion in Biotechnology, 2002. 13(1): p. 40-46. 

27. Chan, W.C.W. and S. Nie, Quantum dot bioconjugates for ultrasensitive 
nonisotopic detection. Science, 1998. 281(5385): p. 2016-2018. 

28. Cheng, Y., et al., Convenient Generation of Quantum Dot-Incorporated Photonic 
Crystal Beads for Multiplex Bioassays. Journal of Biomedical Nanotechnology, 
2014. 10(5): p. 760-766. 

29. Ruan, G., et al., Imaging and tracking of tat peptide-conjugated quantum dots in 
living cells: new insights into nanoparticle uptake, intracellular transport, and 



95 

 

vesicle shedding. Journal of the American Chemical Society, 2007. 129(47): p. 
14759-14766. 

30. Steponkiene, S., et al., Cellular Uptake and Photosensitizing Properties of 
Quantum Dot-Chlorin e 6 Complex: In Vitro Study. Journal of Biomedical 
Nanotechnology, 2014. 10(4): p. 679-686. 

31. Wu, X., et al., Immunofluorescent labeling of cancer marker Her2 and other 
cellular targets with semiconductor quantum dots. Nature biotechnology, 2002. 
21(1): p. 41-46. 

32. Xing, Y., et al., Bioconjugated quantum dots for multiplexed and quantitative 
immunohistochemistry. Nature Protocols, 2007. 2(5): p. 1152-1165. 

33. Zheng, H., et al., Detection of the cancer marker CD146 expression in melanoma 
cells with semiconductor quantum dot label. Journal of biomedical 
nanotechnology, 2010. 6(4): p. 303-311. 

34. Leutwyler, W.K., S.L. Bürgi, and H. Burgl, Semiconductor clusters, nanocrystals, 
and quantum dots. Science, 1996. 271: p. 933. 

35. Smith, A.M., A.M. Mohs, and S. Nie, Tuning the optical and electronic 
properties of colloidal nanocrystals by lattice strain. Nature nanotechnology, 
2008. 4(1): p. 56-63. 

36. Smith, A.M. and S. Nie, Bright and compact alloyed quantum dots with broadly 
tunable near-infrared absorption and fluorescence spectra through mercury 
cation exchange. Journal of the American Chemical Society, 2011. 133(1): p. 24. 

37. Derfus, A.M., W.C. Chan, and S.N. Bhatia, Probing the cytotoxicity of 
semiconductor quantum dots. Nano letters, 2004. 4(1): p. 11-18. 

38. Hu, X. and X. Gao, Silica−Polymer Dual Layer-Encapsulated Quantum Dots 
with Remarkable Stability. ACS nano, 2010. 4(10): p. 6080-6086. 

39. Schroedter, A., et al., Biofunctionalization of silica-coated CdTe and gold 
nanocrystals. Nano Letters, 2002. 2(12): p. 1363-1367. 

40. Kim, S.-W., et al., Phosphine oxide polymer for water-soluble nanoparticles. 
Journal of the American Chemical Society, 2005. 127(13): p. 4556-4557. 

41. Pellegrino, T., et al., Hydrophobic nanocrystals coated with an amphiphilic 
polymer shell: a general route to water soluble nanocrystals. Nano Letters, 2004. 
4(4): p. 703-707. 

42. Uskoković, V. and M. Drofenik, Synthesis of materials within reverse micelles. 
Surface Review and Letters, 2005. 12(02): p. 239-277. 



96 

 

43. Liu, W., et al., Compact cysteine-coated CdSe (ZnCdS) quantum dots for in vivo 
applications. Journal of the American Chemical Society, 2007. 129(47): p. 14530-
14531. 

44. Smith, A.M. and S. Nie, Minimizing the hydrodynamic size of quantum dots with 
multifunctional multidentate polymer ligands. Journal of the American Chemical 
Society, 2008. 130(34): p. 11278-11279. 

45. Duan, H.W., M. Kuang, and Y.A. Wangi, Quantum Dots with Multivalent and 
Compact Polymer Coatings for Efficient Fluorescence Resonance Energy 
Transfer and Self-Assembled Biotagging. Chemistry of Materials, 2010. 22(15): p. 
4372-4378. 

46. Giovanelli, E., et al., Highly Enhanced Affinity of Multidentate versus Bidentate 
Zwitterionic Ligands for Long-Term Quantum Dot Bioimaging. Langmuir, 2012. 
28(43): p. 15177-15184. 

47. Liu, L., et al., Bifunctional Multidentate Ligand Modified Highly Stable Water-
Soluble Quantum Dots. Inorganic Chemistry, 2010. 49(8): p. 3768-3775. 

48. Liu, W., et al., Compact biocompatible quantum dots via RAFT-mediated 
synthesis of imidazole-based random copolymer ligand. Journal of the American 
Chemical Society, 2009. 132(2): p. 472-483. 

49. Palui, G., H.B. Na, and H. Mattoussi, Poly(ethylene glycol)-Based Multidentate 
Oligomers for Biocompatible Semiconductor and Gold Nanocrystals. Langmuir, 
2011. 28(5): p. 2761-2772. 

50. Stewart, M.H., et al., Multidentate Poly(ethylene glycol) Ligands Provide 
Colloidal Stability to Semiconductor and Metallic Nanocrystals in Extreme 
Conditions. Journal of the American Chemical Society, 2010. 132(28): p. 9804-
9813. 

51. Wu, Y.Z., et al., pH-Responsive Quantum Dots via an Albumin Polymer Surface 
Coating. Journal of the American Chemical Society, 2010. 132(14): p. 5012-
5014. 

52. Yildiz, I., et al., Hydrophilic CdSe−ZnS Core−Shell Quantum Dots with Reactive 
Functional Groups on Their Surface. Langmuir, 2010. 26(13): p. 11503-11511. 

53. Yildiz, I., et al., Biocompatible CdSe−ZnS Core−Shell Quantum Dots Coated 
with Hydrophilic Polythiols. Langmuir, 2009. 25(12): p. 7090-7096. 

54. Zhang, P., et al., Click-Functionalized Compact Quantum Dots Protected by 
Multidentate-Imidazole Ligands: Conjugation-Ready Nanotags for Living-Virus 
Labeling and Imaging. Journal of the American Chemical Society, 2012. 134(20): 
p. 8388-8391. 



97 

 

55. Cai, W., et al., Dual-function probe for PET and near-infrared fluorescence 
imaging of tumor vasculature. J Nucl Med, 2007. 48(11): p. 1862-70. 

56. Schipper, M.L., et al., microPET-based biodistribution of quantum dots in living 
mice. J Nucl Med, 2007. 48(9): p. 1511-8. 

57. Jin, T., et al., Gd3+-functionalized near-infrared quantum dots for in vivo dual 
modal (fluorescence/magnetic resonance) imaging. Chem Commun (Camb), 
2008(44): p. 5764-6. 

58. Koole, R., et al., Paramagnetic lipid-coated silica nanoparticles with a 
fluorescent quantum dot core: a new contrast agent platform for multimodality 
imaging. Bioconjug Chem, 2008. 19(12): p. 2471-9. 

59. Van Schooneveld, M.M., et al., Improved biocompatibility and pharmacokinetics 
of silica nanoparticles by means of a lipid coating: a multimodality investigation. 
Nano Lett, 2008. 8(8): p. 2517-25. 

60. Lee, J.H., et al., Dual-mode nanoparticle probes for high-performance magnetic 
resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed 
Engl, 2006. 45(48): p. 8160-2. 

61. Gold, M.H., Use of hyaluronic acid fillers for the treatment of the aging face. 
Clinical interventions in aging, 2007. 2(3): p. 369. 

62. Kerscher, M., J. Bayrhammer, and T. Reuther, Rejuvenating influence of a 
stabilized hyaluronic acid–based gel of nonanimal origin on facial skin aging. 
Dermatologic Surgery, 2008. 34(5): p. 720-726. 

63. Jang, Y.L., et al., Hyaluronic Acid-siRNA Conjugate/Reducible Polyethylenimine 
Complexes for Targeted siRNA Delivery. Journal of Nanoscience and 
Nanotechnology, 2014. 14(10): p. 7388-7394. 

64. Wang, T.W., et al., The effect of gelatin–chondroitin sulfate–hyaluronic acid skin 
substitute on wound healing in SCID mice. Biomaterials, 2006. 27(33): p. 5689-
5697. 

65. Platt, V.M. and F.C. Szoka Jr, Anticancer therapeutics: targeting macromolecules 
and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Molecular 
pharmaceutics, 2008. 5(4): p. 474-486. 

66. Luo, Y. and G.D. Prestwich, Synthesis and selective cytotoxicity of a hyaluronic 
acid-antitumor bioconjugate. Bioconjugate chemistry, 1999. 10(5): p. 755-763. 

67. Coradini, D., et al., Hyaluronic acid as drug delivery for sodium butyrate: 
Improvement of the anti‐proliferative activity on a breast‐cancer cell line. 
International journal of cancer, 1999. 81(3): p. 411-416. 



98 

 

68. Yadav, A.K., P. Mishra, and G.P. Agrawal, An insight on hyaluronic acid in drug 
targeting and drug delivery. Journal of drug targeting, 2008. 16(2): p. 91-107. 

69. Hosseinkhani, H., et al., Biodegradable nanoparticles for gene therapy 
technology. Journal of Nanoparticle Research, 2013. 15(7): p. 1-15. 

70. Jiang, G., et al., Target specific intracellular delivery of siRNA/PEI− HA complex 
by receptor mediated endocytosis. Molecular pharmaceutics, 2009. 6(3): p. 727-
737. 

71. Lee, H., et al., Target-specific intracellular delivery of siRNA using degradable 
hyaluronic acid nanogels. Journal of controlled release, 2007. 119(2): p. 245-252. 

72. Chen, B., R.J. Miller, and P.K. Dhal, Hyaluronic Acid-Based Drug Conjugates: 
State-of-the-Art and Perspectives. Journal of Biomedical Nanotechnology, 2014. 
10(1): p. 4-16. 

73. Saravanakumar, G., et al., Hyaluronic Acid-Based Conjugates for Tumor-
Targeted Drug Delivery and Imaging. Journal of Biomedical Nanotechnology, 
2014. 10(1): p. 17-31. 

74. Mi, P., et al., Gd-DTPA-loaded polymer-metal complex micelles with high 
relaxivity for MR cancer imaging. Biomaterials, 2013. 34(2): p. 492-500. 

75. Kim, K.S., et al., A cancer-recognizable MRI contrast agents using pH-responsive 
polymeric micelle. Biomaterials, 2014. 35(1): p. 337-43. 

76. Einevoll, G.T., Confinement of excitons in Quantum Dots. Physical Review B, 
1992. 45(7): p. 3410-3417. 

77. Takagahara, T. and K. Takeda, Theory of the quantum confinement effect on 
excitons in Quantum Dots of indirect-gap materials. Physical Review B, 1992. 
46(23): p. 15578-15581. 

78. Takagahara, T., Effects of dielectric confinement and electron-hole exchange 
interaction on excitonic states in semiconductor Quantum Dots. Physical Review 
B, 1993. 47(8): p. 4569-4585. 

79. Alivisatos, A.P., Perspectives on the Physical Chemistry of Semiconductor 
Nanocrystals. The Journal of Physical Chemistry, 1996. 100(31): p. 13226-13239. 

80. Efros, A.L., Interband absorption of light in a semiconductor sphere. Soviet 
Physics Semiconductors-Ussr, 1982. 16(7): p. 772-775. 

81. Ekimov, A.I. and A.A. Onushchenko, Quantum size effect in the optical-spectra 
of semiconductor micro-crystals. Soviet Physics Semiconductors-Ussr, 1982. 
16(7): p. 775-778. 



99 

 

82. Murray, C., D.J. Norris, and M.G. Bawendi, Synthesis and characterization of 
nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor 
nanocrystallites. Journal of the American Chemical Society, 1993. 115(19): p. 
8706-8715. 

83. Spanhel, L., et al., Photochemistry of colloidal semiconductors- surface 
modification and stability of strong luminescing CdS particles. Journal of the 
American Chemical Society, 1987. 109(19): p. 5649-5655. 

84. Dannhauser, T., et al., Photophysics of quantized colloidal semiconductors 
dramatic luminescence enhancement by binding of simple amines. Journal of 
Physical Chemistry, 1986. 90(23): p. 6074-6076. 

85. Kortan, A.R., et al., Nucleation and growth of CdSe on ZnS quantum crystallite 
seeds, and vice versa, in inverse micelle media. Journal of the American Chemical 
Society, 1990. 112(4): p. 1327-1332. 

86. Dabbousi, B.O., et al., (CdSe)ZnS core-shell quantum dots: Synthesis and 
characterization of a size series of highly luminescent nanocrystallites. Journal of 
Physical Chemistry B, 1997. 101(46): p. 9463-9475. 

87. Qu, L. and X. Peng, Control of photoluminescence properties of CdSe 
nanocrystals in growth. Journal of the American Chemical Society, 2002. 124(9): 
p. 2049-2055. 

88. Murray, C.B., D.J. Norris, and M.G. Bawendi, Synthesis and characterization of 
nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. Journal 
of the American Chemical Society, 1993. 115(19): p. 8706-8715. 

89. Peng, Z.A. and X.G. Peng, Formation of high-quality CdTe, CdSe, and CdS 
nanocrystals using CdO as precursor. Journal of the American Chemical Society, 
2001. 123(1): p. 183-184. 

90. Yu, W.W. and X.G. Peng, Formation of high-quality CdS and other II-VI 
semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of 
monomers. Angewandte Chemie-International Edition, 2002. 41(13): p. 2368-
2371. 

91. Hines, M.A. and P. Guyot-Sionnest, Synthesis and characterization of strongly 
luminescing ZnS-Capped CdSe nanocrystals. Journal of Physical Chemistry, 
1996. 100(2): p. 468-471. 

92. Duan, H. and S. Nie, Cell-penetrating quantum dots based on multivalent and 
endosome-disrupting surface coatings. Journal of the American Chemical 
Society, 2007. 129(11): p. 3333-3338. 



100 

 

93. Uyeda, H.T., et al., Synthesis of compact multidentate ligands to prepare stable 
hydrophilic quantum dot fluorophores. Journal of the American Chemical 
Society, 2005. 127(11): p. 3870-3878. 

94. Jana, N.R., et al., Cysteine-functionalized polyaspartic acid: a polymer for 
coating and bioconjugation of nanoparticles and quantum dots. Langmuir, 2010. 
26(9): p. 6503-6507. 

95. Choi, H.S., et al., Renal clearance of quantum dots. Nature Biotechnology, 2007. 
25(10): p. 1165-1170. 

96. Mattoussi, H., et al., Self-assembly of CdSe-ZnS quantum dot bioconjugates using 
an engineered recombinant protein. Journal of the American Chemical Society, 
2000. 122(49): p. 12142-12150. 

97. Dubertret, B., et al., In vivo imaging of quantum dots encapsulated in 
phospholipid micelles. Science, 2002. 298(5599): p. 1759-1762. 

98. Gao, X.H., W.C.W. Chan, and S.M. Nie, Quantum-dot nanocrystals for 
ultrasensitive biological labeling and multicolor optical encoding. Journal of 
Biomedical Optics, 2002. 7(4): p. 532-537. 

99. Akerman, M.E., et al., Nanocrystal targeting in vivo. Proceedings of the National 
Academy of Sciences of the United States of America, 2002. 99(20): p. 12617-
12621. 

100. Goldman, E.R., et al., Self-assembled luminescent CdSe-ZnS quantum dot 
bioconjugates prepared using engineered poly-histidine terminated proteins. 
Analytica Chimica Acta, 2005. 534(1): p. 63-67. 

101. Medintz, I.L., et al., Self-assembled nanoscale biosensors based on quantum dot 
FRET donors. Nature Materials, 2003. 2(9): p. 630-638. 

102. Howarth, M., et al., Monovalent, reduced-size quantum dots for imaging 
receptors on living cells. Nature Methods, 2008. 5(5): p. 397-399. 

103. Zhang, Y., et al., HaloTag protein-mediated site-specific conjugation of 
bioluminescent proteins to quantum dots. Angewandte Chemie-International 
Edition, 2006. 45(30): p. 4936-4940. 

104. Xue, M., et al., A new nanoprobe based on FRET between functional quantum 
dots and gold nanoparticles for fluoride anion and its applications for biological 
imaging. Biosensors & Bioelectronics, 2012. 36(1): p. 168-173. 

105. Lv, Y., K. Li, and Y. Li, Surface modification of quantum dots and magnetic 
nanoparticles with PEG-conjugated chitosan derivatives for biological 
applications. Chemical Papers, 2013. 67(11): p. 1404-1413. 



101 

 

106. Regulacio, M.D., et al., Aqueous synthesis of highly luminescent AgInS2-ZnS 
quantum dots and their biological applications. Nanoscale, 2013. 5(6): p. 2322-
2327. 

107. Zhu, Y., et al., One-pot preparation of highly fluorescent cadmium 
telluride/cadmium sulfide quantum dots under neutral-pH condition for biological 
applications. Journal of Colloid and Interface Science, 2013. 390: p. 3-10. 

108. Chinnathambi, S., et al., Silicon Quantum Dots for Biological Applications. 
Advanced Healthcare Materials, 2014. 3(1): p. 10-29. 

109. Lin, L., et al., Luminescent graphene quantum dots as new fluorescent materials 
for environmental and biological applications. Trac-Trends in Analytical 
Chemistry, 2014. 54: p. 83-102. 

110. Karakoti, A.S., et al., Surface functionalization of quantum dots for biological 
applications. Advances in Colloid and Interface Science, 2015. 215: p. 28-45. 

111. Massey, M., et al., Mind your P's and Q's: the coming of age of semiconducting 
polymer dots and semiconductor quantum dots in biological applications. Current 
Opinion in Biotechnology, 2015. 34: p. 30-40. 

112. Peng, J., et al., Biological Application of Luminescent Graphene Quantum Dots. 
Science of Advanced Materials, 2015. 7(10): p. 1945-1961. 

113. Wang, J. and J. Qiu, Luminescent Graphene Quantum Dots: As Emerging 
Fluorescent Materials for Biological Application. Science of Advanced Materials, 
2015. 7(10): p. 1979-1989. 

114. Zheng, X.T., et al., Glowing Graphene Quantum Dots and Carbon Dots: 
Properties, Syntheses, and Biological Applications. Small, 2015. 11(14): p. 1620-
1636. 

115. Iyer, G., et al., Peptide coated quantum dots for biological applications. Ieee 
Transactions on Nanobioscience, 2006. 5(4): p. 231-238. 

116. Jamieson, T., et al., Biological applications of quantum dots. Biomaterials, 2007. 
28(31): p. 4717-4732. 

117. Liu, J., et al., Applications of Quantum Dots in Biological Analysis and 
Biomedical Diagnosis. Progress in Chemistry, 2010. 22(6): p. 1068-1076. 

118. Obonyo, O., et al., Quantum dots synthesis and biological applications as 
imaging and drug delivery systems. Critical Reviews in Biotechnology, 2010. 
30(4): p. 283-301. 



102 

 

119. Rauf, S., A. Glidle, and J.M. Cooper, Application of quantum dot barcodes 
prepared using biological self-assembly to multiplexed immunoassays. Chemical 
Communications, 2010. 46(16): p. 2814-2816. 

120. Bilan, R., et al., Quantum Dot Surface Chemistry and Functionalization for Cell 
Targeting and Imaging. Bioconjugate Chemistry, 2015. 26(4): p. 609-624. 

121. Lim, S.Y., W. Shen, and Z. Gao, Carbon quantum dots and their applications. 
Chemical Society Reviews, 2015. 44(1): p. 362-381. 

122. Wegner, K.D. and N. Hildebrandt, Quantum dots: bright and versatile in vitro 
and in vivo fluorescence imaging biosensors. Chemical Society Reviews, 2015. 
44(14): p. 4792-4834. 

123. Smith, A.M. and S.M. Nie, Chemical analysis and cellular imaging with quantum 
dots. Analyst, 2004. 129(8): p. 672-677. 

124. Wang, H., et al., Biocompatible hyaluronic acid polymer-coated quantum dots for 
CD44+ cancer cell-targeted imaging. Journal of Nanoparticle Research, 2014. 
16(10): p. 1-13. 

125. Pathak, S., et al., Hydroxylated quantum dots as luminescent probes for in situ 
hybridization. Journal of the American Chemical Society, 2001. 123(17): p. 4103-
4104. 

126. Jaiswal, J.K., et al., Long-term multiple color imaging of live cells using quantum 
dot bioconjugates. Nat Biotech, 2003. 21(1): p. 47-51. 

127. Lidke, D.S., et al., Quantum dot ligands provide new insights into erbB/HER 
receptor-mediated signal transduction. Nature Biotechnology, 2004. 22(2): p. 
198-203. 

128. Dahan, M., et al., Diffusion dynamics of glycine receptors revealed by single-
quantum dot tracking. Science, 2003. 302(5644): p. 442-445. 

129. Lieleg, O., et al., Specific Integrin Labeling in Living Cells Using Functionalized 
Nanocrystals. Small, 2007. 3(9): p. 1560-1565. 

130. Young, S.H. and E. Rozengurt, Qdot Nanocrystal Conjugates conjugated to 
bombesin or ANG II label the cognate G protein-coupled receptor in living cells. 
American Journal of Physiology-Cell Physiology, 2006. 290(3): p. C728-C732. 

131. Jaiswal, J.K., et al., Long-term multiple color imaging of live cells using quantum 
dot bioconjugates. Nature Biotechnology, 2003. 21(1): p. 47-51. 

132. Lagerholm, B.C., et al., Multicolor coding of cells with cationic peptide coated 
quantum dots. Nano Letters, 2004. 4(10): p. 2019-2022. 



103 

 

133. Delehanty, J.B., et al., Self-assembled quantum dot-peptide bioconjugates for 
selective intracellular delivery. Bioconjugate Chemistry, 2006. 17(4): p. 920-927. 

134. Gardini, L., M. Capitanio, and F.S. Pavone, 3D tracking of single nanoparticles 
and quantum dots in living cells by out-of-focus imaging with diffraction pattern 
recognition. Scientific Reports, 2015. 5: p. 10. 

135. Larson, D.R., et al., Water-soluble quantum dots for multiphoton fluorescence 
imaging in vivo. Science, 2003. 300(5624): p. 1434-1436. 

136. Gao, X.H., et al., In vivo cancer targeting and imaging with semiconductor 
quantum dots. Nature Biotechnology, 2004. 22(8): p. 969-976. 

137. Gao, X.H., et al., In vivo molecular and cellular imaging with quantum dots. 
Current Opinion in Biotechnology, 2005. 16(1): p. 63-72. 

138. So, M.K., et al., Self-illuminating quantum dot conjugates for in vivo imaging. 
Nature Biotechnology, 2006. 24(3): p. 339-343. 

139. Li, L., et al., Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: 
Cadmium-Free Quantum Dots for In Vivo Imaging. Chemistry of Materials, 2009. 
21(12): p. 2422-2429. 

140. Morgan, N.Y., et al., Real time in vivo non-invasive optical imaging using near-
infrared fluorescent quantum dots. Academic Radiology, 2005. 12(3): p. 313-323. 

141. Smith, A.M., et al., Engineering luminescent quantum dots for In vivo molecular 
and cellular imaging. Annals of Biomedical Engineering, 2006. 34(1): p. 3-14. 

142. Gao, X., et al., Quantum Dots Bearing Lectin-Functionalized Nanoparticles as a 
Platform for In Vivo Brain Imaging. Bioconjugate Chemistry, 2008. 19(11): p. 
2189-2195. 

143. Jin, T., et al., Gd(3+)-functionalized near-infrared quantum dots for in vivo dual 
modal (fluorescence/magnetic resonance) imaging. Chemical Communications, 
2008(44): p. 5764-5766. 

144. Weng, K.C., et al., Targeted tumor cell internalization and imaging of 
multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. 
Nano Letters, 2008. 8(9): p. 2851-2857. 

145. Kikkeri, R., et al., In Vitro Imaging and in Vivo Liver Targeting with 
Carbohydrate Capped Quantum Dots. Journal of the American Chemical Society, 
2009. 131(6): p. 2110-+. 

146. Yong, K.-T., et al., Biocompatible Near-Infrared Quantum Dots as Ultrasensitive 
Probes for Long-Term in vivo Imaging Applications. Small, 2009. 5(17): p. 1997-
2004. 



104 

 

147. Gao, J., et al., Ultrasmall Near-Infrared Non-cadmium Quantum Dots for in vivo 
Tumor Imaging. Small, 2010. 6(2): p. 256-261. 

148. Gao, J., et al., In Vivo Tumor-Targeted Fluorescence Imaging Using Near-
Infrared Non-Cadmium Quantum Dots. Bioconjugate Chemistry, 2010. 21(4): p. 
604-609. 

149. Gu, Y.-P., et al., Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable 
Fluorescence for in Vivo Imaging. Journal of the American Chemical Society, 
2012. 134(1): p. 79-82. 

150. Hong, G., et al., In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the 
Second Near-Infrared Region. Angewandte Chemie-International Edition, 2012. 
51(39): p. 9818-9821. 

151. Maeda, H., et al., Tumor vascular permeability and the EPR effect in 
macromolecular therapeutics: a review. Journal of Controlled Release, 2000. 
65(1-2): p. 271-284. 

152. Singhal, S., S. Nie, and M.D. Wang, Nanotechnology Applications in Surgical 
Oncology, in Annual Review of Medicine. 2010. p. 359-373. 

153. Yu, X., et al., Immunofluorescence detection with quantum dot bioconjugates for 
hepatoma in vivo. Journal of Biomedical Optics, 2007. 12(1). 

154. Cai, W.B., et al., Peptide-labeled near-infrared quantum dots for imaging tumor 
vasculature in living subjects. Nano Letters, 2006. 6(4): p. 669-676. 

155. Yezhelyev, M.V., et al., Emerging use of nanoparticles in diagnosis and 
treatment of breast cancer. Lancet Oncology, 2006. 7(8): p. 657-667. 

156. Mulder, W.J.M., et al., Quantum dots with a paramagnetic coating as a bimodal 
molecular imaging probe. Nano Letters, 2006. 6(1): p. 1-6. 

157. Rumiana Bakalova, †, §, et al., Silica-Shelled Single Quantum Dot Micelles as 
Imaging Probes with Dual or Multimodality. Analytical Chemistry, 2006. 78(16): 
p. 5925-32. 

158. van Tilborg, G.A., et al., Annexin A5-Conjugated Quantum Dots with a 
Paramagnetic Lipidic Coating for the Multimodal Detection of Apoptotic Cells. 
Bioconjugate Chemistry, 2006. 17(4): p. 865-868. 

159. Weibo, C., et al., Dual-function probe for PET and near-infrared fluorescence 
imaging of tumor vasculature. Journal of Nuclear Medicine Official Publication 
Society of Nuclear Medicine, 2007. 48(11): p. 1862-70. 



105 

 

160. Wang, S., et al., Core/Shell Quantum Dots with High Relaxivity and 
Photoluminescence for Multimodality Imaging. J.am.chem.soc, 2007. 129(13): p. 
3848-3856. 

161. Guo, W.S., et al., Intrinsically Radioactive Cu-64 CuInS/ZnS Quantum Dots for 
PET and Optical Imaging: Improved Radiochemical Stability and Controllable 
Cerenkov Luminescence. Acs Nano, 2015. 9(1): p. 488-495. 

162. Guo, W.S., et al., Color-tunable Gd-Zn-Cu-In-S/ZnS quantum dots for dual 
modality magnetic resonance and fluorescence imaging. Nano Research, 2014. 
7(11): p. 1581-1591. 

163. Qiang, M., et al., Multilayered, core/shell nanoprobes based on magnetic ferric 
oxide particles and quantum dots for multimodality imaging of breast cancer 
tumors. Biomaterials, 2012. 33(33): p. 8486-8494. 

164. Selvan, S.T., Silica-coated quantum dots and magnetic nanoparticles for 
bioimaging applications (Mini-Review). Biointerphases Journal, 2010. 5(3): p. 
110-115. 

165. Tu, C.Q., et al., Paramagnetic, Silicon Quantum Dots for Magnetic Resonance 
and Two-Photon Imaging of Macrophages. Journal of the American Chemical 
Society, 2010. 132(6): p. 2016-2023. 

166. Koole, R., et al., Paramagnetic Lipid-Coated Silica Nanoparticles with a 
Fluorescent Quantum Dot Core: A New Contrast Agent Platform for 
Multimodality Imaging. Bioconjugate Chemistry, 2008. 19(12): p. 2471-2479. 

167. Wang, S., et al., Core/shell quantum dots with high relaxivity and 
photoluminescence for multimodality imaging. Journal of the American Chemical 
Society, 2007. 129(13): p. 3848-3856. 

168. Bakalova, R., et al., Silica-shelled single quantum dot micelles as imaging probes 
with dual or multimodality. Analytical Chemistry, 2006. 78(16): p. 5925-5932. 

169. Teston, E., et al., Design, Properties, and In Vivo Behavior of Superparamagnetic 
Persistent Luminescence Nanohybrids. Small, 2015. 11(22): p. 2696-2704. 

170. Chen, F., et al., In Vivo Tumor Vasculature Targeted PET/NIRF Imaging with 
TRC105(Fab)-Conjugated, Dual-Labeled Mesoporous Silica Nanoparticles. 
Molecular Pharmaceutics, 2014. 11(11): p. 4007-4014. 

171. Lin, X., et al., Chimeric Ferritin Nanocages for Multiple Function Loading and 
Multimodal Imaging. Nano Letters, 2011. 11(2): p. 814-819. 

172. Weibo, C., et al., Dual-function probe for PET and near-infrared fluorescence 
imaging of tumor vasculature. Journal of Nuclear Medicine, 2007. 48(11): p. 
1862-70. 



106 

 

173. Chen, K., et al., Dual-modality optical and positron emission tomography 
imaging of vascular endothelial growth factor receptor on tumor vasculature 
using quantum dots. European Journal of Nuclear Medicine and Molecular 
Imaging, 2008. 35(12): p. 2235-2244. 

174. Schipper, M.L., et al., MicroPET-based biodistribution of quantum dots in living 
mice. Journal of Nuclear Medicine, 2007. 48(9): p. 1511-1518. 

175. Gerion, D., et al., Paramagnetic Silica-Coated Nanocrystals as an Advanced MRI 
Contrast Agent. The Journal of Physical Chemistry C, 2007. 111(34): p. 12542-
12551. 

176. Yang, H., et al., Gd-III-functionalized fluorescent quantum dots as multimodal 
imaging probes. Advanced Materials, 2006. 18(21): p. 2890-+. 

177. Sun, Y., et al., Core-Shell Lanthanide Upconversion Nanophosphors as Four-
Modal Probes for Tumor Angiogenesis Imaging. Acs Nano, 2013. 7(12): p. 
11290-11300. 

178. Heidt, T. and M. Nahrendorf, Multimodal iron oxide nanoparticles for hybrid 
biomedical imaging. Nmr in Biomedicine, 2013. 26(7): p. 756-765. 

179. Liu, Y., et al., Optical probes and the applications in multimodality imaging. 
Contrast Media & Molecular Imaging, 2011. 6(4): p. 169-177. 

180. Lim, Y.T., et al., Multiplexed Imaging of Therapeutic Cells with Multispectrally 
Encoded Magnetofluorescent Nanocomposite Emulsions. Journal of the American 
Chemical Society, 2009. 131(47): p. 17145-17154. 

181. Cherry, S.R., Multimodality Imaging: Beyond PET/CT and SPECT/CT. Seminars 
in Nuclear Medicine, 2009. 39(5): p. 348-353. 

182. Mulder, W.J.M., et al., Nanoparticulate Assemblies of Amphiphiles and 
Diagnostically Active Materials for Multimodality Imaging. Accounts of 
Chemical Research, 2009. 42(7): p. 904-914. 

183. Lucignani, G., Nanoparticles for concurrent multimodality imaging and therapy: 
The dawn of new theragnostic synergies. European Journal of Nuclear Medicine 
and Molecular Imaging, 2009. 36(5): p. 869-874. 

184. Mulder, W.J.M., et al., Molecular imaging of tumor angiogenesis using alpha v 
beta 3-integrin targeted multimodal quantum dots. Angiogenesis, 2009. 12(1): p. 
17-24. 

185. Cormode, D.P., et al., Nanocrystal Core High-Density Lipoproteins: A 
Multimodality Contrast Agent Platform. Nano Letters, 2008. 8(11): p. 3715-3723. 



107 

 

186. Cai, W.B. and X.Y. Chen, Multimodality molecular imaging of tumor 
angiogenesis. Journal of Nuclear Medicine, 2008. 49: p. 113S-128S. 

187. Kobayashi, H., et al., Multimodal nanoprobes for radionuclide and five-color 
near-infrared optical lymphatic imaging. Acs Nano, 2007. 1(4): p. 258-264. 

188. Mulder, W.J.M., et al., Magnetic and fluorescent nanoparticles for multimodality 
imaging. Nanomedicine, 2007. 2(3): p. 307-324. 

189. Shi, Y.P., et al., Facile synthesis of gadolinium (III) chelates functionalized 
carbon quantum dots for fluorescence and magnetic resonance dual-modal 
bioimaging. Carbon, 2015. 93: p. 742-750. 

190. Collins, M.N. and C. Birkinshaw, Hyaluronic acid based scaffolds for tissue 
engineering-A review. Carbohydrate Polymers, 2013. 92(2): p. 1262-1279. 

191. Murugan, R. and S. Ramakrishna, Design strategies of tissue engineering 
scaffolds with controlled fiber orientation. Tissue Engineering, 2007. 13(8): p. 
1845-1866. 

192. Arpicco, S., et al., Hyaluronic Acid Conjugates as Vectors for the Active 
Targeting of Drugs, Genes and Nanocomposites in Cancer Treatment. Molecules, 
2014. 19(3): p. 3193-3230. 

193. Naor, D., et al., CD44 in Cancer. Critical Reviews in Clinical Laboratory 
Sciences, 2002. 39(6): p. 527-579(53). 

194. Cichy, J. and E. Pure, The liberation of CD44. Journal of Cell Biology, 2003. 
161(5): p. 839-843. 

195. Lesley, J., et al., Hyaluronan binding by cell surface CD44. Journal of Biological 
Chemistry, 2000. 275(35): p. 26967-26975. 

196. Kim, J., et al., In vivo real‐time bioimaging of hyaluronic acid derivatives using 
quantum dots. Biopolymers, 2008. 89(12): p. 1144-1153. 

197. Kim, K.S., et al., In Vivo Real Time Confocal Microscopy for Target Specific 
Delivery of Hyaluronic Acid-Quantum Dot Conjugates. Nanomedicine: 
Nanotechnology, Biology and Medicine, 2012. 

198. Kim, J., K. Park, and S.K. Hahn, Effect of hyaluronic acid molecular weight on 
the morphology of quantum dot–hyaluronic acid conjugates. International Journal 
of Biological Macromolecules, 2008. 42(1): p. 41-45. 

199. Abdullah Al, N., et al., Target Delivery and Cell Imaging Using Hyaluronic Acid-
Functionalized Graphene Quantum Dots. Molecular Pharmaceutics, 2013. 10(10): 
p. 3736-3744. 



108 

 

200. Goh, E.J., et al., Bioimaging of Hyaluronic Acid Derivatives Using Nanosized 
Carbon Dots. Biomacromolecules, 2012. 13(8): p. 2554-2561. 

201. Xie, R., et al., Synthesis and characterization of highly luminescent CdSe-Core 
CdS/Zn0. 5Cd0. 5S/ZnS multishell nanocrystals. Journal of the American 
Chemical Society, 2005. 127(20): p. 7480-7488. 

202. Ying, J.Y. and A. Zarur, Synthesis of nanometer-sized particles by reverse micelle 
mediated techniques. 2002, Google Patents. 

203. Britton, H.T.S. and R.A. Robinson, CXCVIII.—Universal buffer solutions and the 
dissociation constant of veronal. Journal of the Chemical Society (Resumed), 
1931: p. 1456-1462. 

204. Clapp, A.R., E.R. Goldman, and H. Mattoussi, Capping of CdSe–ZnS quantum 
dots with DHLA and subsequent conjugation with proteins. Nature Protocols, 
2006. 1(3): p. 1258-1266. 

205. Yildiz, I., et al., Biocompatible CdSe− ZnS Core− Shell Quantum Dots Coated 
with Hydrophilic Polythiols. Langmuir, 2009. 25(12): p. 7090-7096. 

206. Hermanson, G.T., Chapter 1 - Functional Targets, in Bioconjugate Techniques 
(Second Edition), G.T. Hermanson, Editor. 2008, Academic Press: New York. p. 
1-168. 

207. Cai, W., et al., Dual-function probe for PET and near-infrared fluorescence 
imaging of tumor vasculature. Journal of Nuclear Medicine, 2007. 48(11): p. 
1862-1870. 

208. Park, J., et al., A DTTA-ligated uridine-quantum dot conjugate as a bimodal 
contrast agent for cellular imaging. Chemical Communications, 2012. 48(26): p. 
3218-3220. 

209. Stasiuk, G.J., et al., Cell-Permeable Ln(III) Chelate-Functionalized InP Quantum 
Dots As Multimodal Imaging Agents. Acs Nano, 2011. 5(10): p. 8193-8201. 

210. Erogbogbo, F., et al., Bioconjugation of luminescent silicon quantum dots to 
gadolinium ions for bioimaging applications. Nanoscale, 2012. 4(17): p. 5483-
5489. 

211. Koole, R., et al., Paramagnetic Lipid-Coated Silica Nanoparticles with a 
Fluorescent Quantum Dot Core: A New Contrast Agent Platform for 
Multimodality Imaging. Bioconjugate Chemistry, 2008. 19(12): p. 2471-2479. 

212. Mulder, W.J.M., et al., Molecular imaging of tumor angiogenesis using αvβ3-
integrin targeted multimodal quantum dots. Angiogenesis, 2008. 12(1): p. 17-24. 



109 

 

213. van Tilborg, G.A.F., et al., Annexin A5-Conjugated Quantum Dots with a 
Paramagnetic Lipidic Coating for the Multimodal Detection of Apoptotic Cells. 
Bioconjugate Chemistry, 2006. 17(4): p. 865-868. 

214. van Schooneveld, M.M., et al., Improved Biocompatibility and Pharmacokinetics 
of Silica Nanoparticles by Means of a Lipid Coating: A Multimodality 
Investigation. Nano Letters, 2008. 8(8): p. 2517-2525. 

215. Mulder, W.J.M., et al., Molecular imaging of macrophages in atherosclerotic 
plaques using bimodal PEG-micelles. Magnetic Resonance in Medicine, 2007. 
58(6): p. 1164-1170. 

216. Mulder, W.J.M., et al., Quantum Dots with a Paramagnetic Coating as a Bimodal 
Molecular Imaging Probe. Nano Letters, 2006. 6(1): p. 1-6. 

217. Erwin, S.C., et al., Doping semiconductor nanocrystals. Nature, 2005. 436(7047): 
p. 91-94. 

218. Beaulac, R., et al., Mn2+-Doped CdSe Quantum Dots: New Inorganic Materials 
for Spin-Electronics and Spin-Photonics. Advanced Functional Materials, 2008. 
18(24): p. 3873-3891. 

219. Bhattacharjee, A.K. and J. Pérez-Conde, Transition metal-doped quantum dots: 
Optical detection and manipulation of spin states. Physica E: Low-dimensional 
Systems and Nanostructures, 2006. 32(1–2): p. 430-433. 

220. Ma, L., et al., Magnetic properties of transition-metal impurities in silicon 
quantum dots. Physical Review B, 2007. 75(4): p. 045312. 

221. Mahamuni, S., A.D. Lad, and S. Patole, Photoluminescence Properties of 
Manganese-Doped Zinc Selenide Quantum Dots. The Journal of Physical 
Chemistry C, 2008. 112(7): p. 2271-2277. 

222. Radovanovic, P.V., et al., Colloidal Transition-Metal-Doped ZnO Quantum Dots. 
Journal of the American Chemical Society, 2002. 124(51): p. 15192-15193. 

223. Bhattacharjee, A.K. and J. Pérez-Conde, Optical properties of paramagnetic ion-
doped semiconductor nanocrystals. Physical Review B, 2003. 68(4): p. 045303. 

224. Huong, N.Q. and J.L. Birman, Theory of luminescent emission in nanocrystal 
ZnS:Mn with an extra electron. Physical Review B, 2004. 69(8): p. 085321. 

225. Magana, D., et al., Switching-on Superparamagnetism in Mn/CdSe Quantum 
Dots. Journal of the American Chemical Society, 2006. 128(9): p. 2931-2939. 

226. Sahoo, Y., et al., Chemically Fabricated Magnetic Quantum Dots of InP:Mn. The 
Journal of Physical Chemistry B, 2005. 109(32): p. 15221-15225. 



110 

 

227. Bol, A.A. and A. Meijerink, Luminescence Quantum Efficiency of 
Nanocrystalline ZnS:Mn2+. 1. Surface Passivation and Mn2+ Concentration. 
The Journal of Physical Chemistry B, 2001. 105(42): p. 10197-10202. 

228. Reiss, P., M. Protière, and L. Li, Core/Shell Semiconductor Nanocrystals. Small, 
2009. 5(2): p. 154-168. 

229. Yim, H., et al., The performance of gadolinium diethylene triamine pentaacetate-
pullulan hepatocyte-specific T1 contrast agent for MRI. Biomaterials, 2011. 
32(22): p. 5187-5194. 

230. Cho, H.-J., et al., Hyaluronic acid-ceramide-based optical/MR dual imaging 
nanoprobe for cancer diagnosis. Journal of Controlled Release, 2012. 162(1): p. 
111-118. 

231. Chen, H., et al., Folate Conjugated CdHgTe Quantum Dots with High Targeting 
Affinity and Sensitivity for In vivo Early Tumor Diagnosis. Journal of 
Fluorescence, 2011. 21(2): p. 793-801. 

232. Yimei, L., et al., Aqueous synthesized near-infrared-emitting quantum dots for 
RGD-based in vivo active tumour targeting. Nanotechnology, 2013. 24(13): p. 
135101. 

233. Qin, M.-Y., et al., In vivo cancer targeting and fluorescence-CT dual-mode 
imaging with nanoprobes based on silver sulfide quantum dots and iodinated oil. 
Nanoscale, 2015. 7(46): p. 19484-19492. 

234. Chen, H., et al., Characterization of tumor-targeting Ag2S quantum dots for 
cancer imaging and therapy in vivo. Nanoscale, 2014. 6(21): p. 12580-12590. 

235. Oh, E.J., et al., Target specific and long-acting delivery of protein, peptide, and 
nucleotide therapeutics using hyaluronic acid derivatives. Journal of Controlled 
Release, 2010. 141(1): p. 2-12. 

236. Yong, K.-T., et al., Synthesis of cRGD-peptide conjugated near-infrared 
CdTe/ZnSe core-shell quantum dots for in vivo cancer targeting and imaging. 
Chemical Communications, 2010. 46(38): p. 7136-7138. 

237. Chen, L.-N., et al., Aqueous one-pot synthesis of bright and ultrasmall CdTe/CdS 
near-infrared-emitting quantum dots and their application for tumor targeting in 
vivo. Chemical Communications, 2012. 48(41): p. 4971-4973. 

 

 

 


