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Abstract 

Genome-wide TWAS of brain and blood tissues identifies novel risk 

genes for Alzheimer’s disease dementia 

By Shuyi Guo 

Background: Transcriptome-wide association studies (TWAS) are a powerful tool for identifying 
novel genes associated with complex diseases, including Alzheimer's disease (AD) dementia. 
TWAS integrate reference genetic and transcriptomic data to identify expression quantitative 
trait loci (eQTLs) of target genes and estimate the genetically regulated gene expression (GReX) 
levels for each gene. GReX data are then integrated with the genome-wide association study 
(GWAS) summary statistics to assess the association between gene expression and the 
phenotype of interest. However, existing TWAS methods only consider cis-eQTL (eQTLs located 
within the 1 MB region of the gene) effects and miss effects of trans-eQTLs (outside of the 1 MB 
region). To overcome this limitation, we applied a Bayesian Genome-wide TWAS (BGW-TWAS) 
method to leverage both cis- and trans-eQTL information to improve the mapping of risk genes 
for AD dementia. 

Methods and Materials: We applied BGW-TWAS to the Genotype-Tissue Expression (GTEx) 
dataset on three tissues – the prefrontal cortex, cortex, and whole blood. Then we integrated 
estimated eQTL effect sizes by BGW-TWAS with a summary-level GWAS dataset of AD dementia 
by S-PrediXcan to identify genes associated with AD dementia. We also use aggregated Cauchy 
association test-omnibus (ACAT-O) method to combine the TWAS p-values across the three 
tissues for each gene to obtain the combined p-values. 

Results: Our analysis identified 37 genes significantly associated with AD dementia in the 
prefrontal cortex, 55 in the cortex, and 51 in the whole blood. After combining TWAS p-values 
across the three tissues by ACAT-O, we obtained 93 genes with significant combined p-values, 
including 50 novel genes not reported in previous studies, and 29 genes significant primarily 
due to trans-eQTLs. We detected 5 functional clusters comprised of both known AD risk genes 
and novel genes in the protein-protein association networks, and 7 enriched phenotypes in the 
phenotype enrichment analysis.  

Conclusion: In this study, we conducted BGW-TWAS on three tissues and identified known and 
novel genes associated with AD dementia. Our study is the first genome-wide TWAS utilizing 
both cis- and trans-eQTLs for AD risk gene identification and provides new insights into the 
genetic basis of AD dementia. 
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1. Introduction 

Alzheimer's disease (AD) dementia is a complex neurodegenerative disorder that is characterized by 

progressive cognitive decline and memory loss, currently affecting 6.5 million Americans aged 65 and 

older, and listed as the seventh-leading cause of death [1]. Despite extensive research, the underlying 

molecular mechanisms of AD dementia are still not fully understood, and effective treatments are 

lacking [2]. Recent studies have highlighted the role of genetic factors in AD dementia [3, 4], and several 

genes have been identified as risk factors for the disease. However, these genes explain only a small 

portion of the heritability of AD dementia, suggesting that many other genetic variants may also 

contribute to disease risk. 

Transcriptome-wide association studies (TWAS) have emerged as a powerful tool for identifying novel 

genes and biological pathways associated with complex diseases, including AD dementia [5, 6]. There 

are commonly two stages for a TWAS. In the first stage, by using profiled transcriptomic and genetic 

data from a reference panel, TWAS fit imputation regression models for the expression quantitative 

traits of target genes with nearby genotypes, and these imputation models are applied to the reference 

genotype data to estimate genetically regulated gene expression (GReX) levels for each gene. In the 

fitted imputation models, single nucleotide polymorphisms (SNPs) with non-zero effect sizes on 

reference transcriptome are identified as expression quantitative trait loci (eQTLs), representing genetic 

variants that affect gene expression. In the second stage, GReX are subsequently tested for associations 

with the phenotype of interest, using either individual-level or summary-level genome-wide association 

studies (GWAS) data of test samples.  

However, one limitation of existing TWAS methods is that they only consider cis-eQTL effects [5, 7, 8], 

which refers to the effects of eQTLs located within the 1 MB region of the gene of interest. This can 

result in the missed effects of trans-eQTLs, which are eQTLs outside of the 1 MB region of the target 
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gene. Trans-eQTLs have been found to play an important role in regulating gene expression levels by 

affecting the activity of distal genes, which can in turn impact biological processes and disease 

susceptibility [9, 10]. Incorporating trans-eQTLs into TWAS is essential as they can reveal more complex 

regulatory mechanisms, contribute to the identification of novel gene-trait associations, and enhance 

our understanding of the genetic architecture underlying complex traits and diseases. To overcome this 

limitation, we employ a Bayesian Genome-wide TWAS (BGW-TWAS) method that leverage both cis- and 

trans-eQTL information [11]. By integrating large-scale reference transcriptome data with GWAS 

summary statistics, BGW-TWAS enables the identification of disease-relevant genes with improved 

accuracy and power.  

In this study, we applied the BGW-TWAS method to the reference Genotype-Tissue Expression (GTEx) V8 

dataset [12] on three tissues – the prefrontal cortex, cortex, and whole blood – to fit gene expression 

imputation models. We chose to conduct TWAS on these two brain tissues due to the substantial 

evidence highlighting the involvement of the cortex and prefrontal cortex in the progression of AD 

dementia [13]. We also chose to conduct TWAS on the whole blood tissue due to three reasons. First, 

whole blood tissue usually has greater accessibility and larger sample size compared to brain tissues. 

Second, recent studies have demonstrated that specific gene expression products in whole blood can 

serve as biomarkers for AD dementia [14, 15]. Third, there is a probable correlation between the gene 

expression in the whole blood and that of the brain's cortex [16]. By using S-PrediXcan [17], we 

integrated our estimated eQTL effect sizes by BGW-TWAS with a summary-level AD GWAS dataset with 

sample size of 74,004 individuals [18] to identify genes associated with AD dementia.  

As a result, we identified 37 significant genes in the prefrontal cortex, 55 significant genes in the cortex, 

and 51 significant genes in the whole blood. We also utilized an aggregated Cauchy association test-

omnibus (ACAT-O) method to combine the TWAS p-values across the three tissues for each gene. ACAT-

O is an omnibus test that can combine p-values from multiple sources by transforming these p-values to 
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conform to a standard Cauchy distribution [19]. By ACAT-O, we obtained a total of 93 genes with 

significant combined p-values. We identified several well-known AD risk genes among these 93 

significant genes, but also found 50 novel genes that have never been detected by other GWAS and 

TWAS studies of AD. Through protein-protein association networks of the 93 genes, we detected a main 

functional cluster comprised of APOE and other known AD risk genes, and found another 4 clusters 

comprised of both known AD risk genes and 19 novel genes. The phenotype enrichment analysis 

showed that several phenotypes, such as Apolipoprotein B, low-density lipoprotein cholesterol, 

inflammatory biomarkers, and C-reactive protein, were enriched with the 93 genes. 

As a genome-wide TWAS, our study is the first to utilize both cis- and trans-eQTLs for AD risk gene 

identification. Our results provide new insights into the genetic basis of AD dementia and pave the way 

for the development of novel treatments for this disease. 

 

2. Material and Methods 

2.1 Bayesian Genome-wide TWAS (BGW-TWAS) 

In this thesis project, we focus on the application of the BGW-TWAS method to perform TWAS. BGW-

TWAS is a TWAS method that accounts for both cis- and trans-eQTLs based on a Bayesian variable 

selection regression (BVSR) model for imputing GReX. 

2.1.1 Bayesian Variable Selection Regression Model (BVSR) 

The following BVSR model [20] is assumed for quantitative gene expression traits: 

𝜠𝜠𝒏𝒏×𝟏𝟏 = 𝑿𝑿𝒏𝒏×𝒑𝒑𝒘𝒘𝒑𝒑×𝟏𝟏 + 𝝐𝝐𝒏𝒏×𝟏𝟏,  𝑤𝑤𝑖𝑖 ∼ 𝜋𝜋𝜋𝜋(0,𝜎𝜎𝑤𝑤2𝜎𝜎𝜖𝜖2) + (1 − 𝜋𝜋)𝛿𝛿0(⋅), 𝜖𝜖𝑖𝑖 ∼ 𝜋𝜋(0,𝜎𝜎𝜖𝜖2). 
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Here, 𝑬𝑬𝒏𝒏×𝟏𝟏 represents the centered quantitative expression levels vector for n samples; 𝑿𝑿𝒏𝒏×𝒑𝒑 is the 

centered genotype matrix containing p genetic variants; 𝜖𝜖𝑖𝑖 is the residual error which follows a normal 

distribution 𝜋𝜋(0,𝜎𝜎𝜖𝜖2); and 𝒘𝒘𝒑𝒑×𝟏𝟏 follows a spike-and-slab prior distribution [20-22], which means that 𝑤𝑤𝑖𝑖 

follows the normal distribution 𝜋𝜋(0,σ𝑤𝑤2 σϵ2) with probability π and the point-mass density function δ0(⋅) 

at 0 with probability (1 − π). 

The genotype matrix 𝑿𝑿𝒏𝒏×𝒑𝒑 typically contains either dosage data within the range of [0, 2] or genotype 

data with values {0,1,2}, representing the expected or genotyped number of minor alleles. By utilizing a 

spike-and-slab prior for 𝒘𝒘𝒑𝒑×𝟏𝟏, variable selection is enforced in the regression model. Since both 𝐄𝐄𝒏𝒏×𝟏𝟏 

and columns of 𝑿𝑿𝒏𝒏×𝒑𝒑 are centered, the intercept term is omitted from the regression model. 

The BVSR model can be extended to account for both cis- and trans- eQTL genotype data for modeling 

quantitative gene expression traits. The extended model can be represented as: 

𝓔𝓔𝓰𝓰 = 𝑿𝑿𝒄𝒄𝒄𝒄𝒄𝒄𝒘𝒘𝒄𝒄𝒄𝒄𝒄𝒄 + 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝒘𝒘𝒕𝒕𝒕𝒕𝒕𝒕𝒏𝒏𝒄𝒄 + ϵ 

𝑤𝑤𝑐𝑐𝑖𝑖𝑡𝑡,𝑖𝑖 ∼ π𝑐𝑐𝑖𝑖𝑡𝑡𝜋𝜋�0,σ𝑐𝑐𝑖𝑖𝑡𝑡2 σϵ2� + (1 − π𝑐𝑐𝑖𝑖𝑡𝑡)δ0�𝑤𝑤𝑐𝑐𝑖𝑖𝑡𝑡,𝑖𝑖� 

𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 ∼ π𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝜋𝜋(0,σ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 σϵ2) + (1 − π𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)δ0�𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖� 

ϵ𝑖𝑖 ∼ 𝜋𝜋(0,σϵ2). 

Compared with the general BVSR model, we further separate the genotype matrix and corresponding 

parameters into two distinct parts based on the cis- and trans- SNPs. Cis- and trans- can be viewed as 

two non-overlapping annotations for SNPs in the BVSR model, making this model a special case of the 

previously developed Bayesian Functional GWAS (BFGWAS) method [23]. 

The following independent and conjugate hyper priors are assumed for hyper parameters in the model:  

𝜋𝜋𝑐𝑐𝑖𝑖𝑡𝑡~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐵𝐵𝑐𝑐𝑖𝑖𝑡𝑡, 𝑏𝑏𝑐𝑐𝑖𝑖𝑡𝑡),𝜎𝜎𝑐𝑐𝑖𝑖𝑡𝑡2 ~𝐼𝐼𝐼𝐼(𝑘𝑘1,𝑘𝑘2), 
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𝜋𝜋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡),𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 ~𝐼𝐼𝐼𝐼(𝑘𝑘3,𝑘𝑘4), 

σϵ2~𝐼𝐼𝐼𝐼(𝑘𝑘5,𝑘𝑘6), 

where the probability π for cis- and trans- SNPs is assumed to follow Beta distributions with different 

hyper priors, while (𝜎𝜎𝑐𝑐𝑖𝑖𝑡𝑡2 ,𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 ,σϵ2) follows different Inverse Gamma distributions. In this study, we set 

𝑘𝑘1 = 𝑘𝑘2 = 𝑘𝑘3 = 𝑘𝑘4 = 𝑘𝑘5 = 𝑘𝑘6 = 0.1, and 
𝑡𝑡𝑞𝑞

𝑡𝑡𝑞𝑞+𝑏𝑏𝑞𝑞
= 10−6 with �𝐵𝐵𝑞𝑞 + 𝑏𝑏𝑞𝑞� equal to the total number of 

variants of respective annotation 𝑞𝑞 = {𝑐𝑐𝑐𝑐𝑐𝑐, 𝐵𝐵𝑡𝑡𝐵𝐵𝑡𝑡𝑐𝑐}. 

We also set a latent indicator vector 𝜸𝜸𝑝𝑝×1 in the extended model. Each element γ𝑖𝑖 indicates whether 

the corresponding 𝑐𝑐th effect 𝑤𝑤𝑞𝑞,𝑖𝑖 equals to 0 with γ𝑖𝑖 = 0 or follows the 𝜋𝜋�0,σ𝑞𝑞2σϵ2� distribution with 

γ𝑖𝑖 = 1. The latent indicator variable can be represented as: 

γ𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐(π𝑖𝑖), 

𝑤𝑤−γ ∼ δ0(⋅), 𝑤𝑤γ ∼ 𝑀𝑀𝑀𝑀𝜋𝜋|γ|�0,σϵ2𝑀𝑀γ�. 

The expectation of the latent indicator variable (𝐸𝐸[γ𝑖𝑖]) is the posterior probability (𝑃𝑃𝑃𝑃𝑖𝑖) for the 𝑐𝑐th SNP 

to be an eQTL with effect size 𝑤𝑤𝑖𝑖. 

Given the BVSR model and hyperpriors, along with genotype and gene expression data, we can infer the 

posterior distribution of 𝑤𝑤 and 𝜸𝜸 by using a scalable Expectation-Maximization Markov Chain Monte 

Carlo (EM-MCMC) algorithm [23, 24]. The detailed derivations of the Bayesian inference process and 

EM-MCMC algorithm are referred to the supplementary parts of BGW-TWAS and BFGWAS paper [11, 

23].  

2.1.2 EM-MCMC Algorithm 

The EM-MCMC algorithm is a key component of the BGW-TWAS method, helping to reduce the 

computational burden and memory usage of the method. It can be summarized in the following steps: 
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i. Generate summary statistics: obtain GWAS summary statistics from individual-level genotype 

data and gene expression data, by doing single variant analyses for genome-wide SNPs. 

ii. Prune genome blocks: 

a. Consider blocks that consist of at least one cis-SNP or one potential trans-eQTL with a 

single-variant test p-value less than 1e-5. 

b. Select up to 100 blocks with minimal p-values, ordered from smallest to largest.  

c. Select any remaining blocks containing cis-SNPs not chosen in step b. 

iii. Apply the EM-MCMC algorithm to pruned blocks: 

a. Fix the variance of the expression residuals. 

b. Set initial values for (π,σ2). In this study, we set π𝑐𝑐𝑖𝑖𝑡𝑡 = π𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1 × 10−6 and σ𝑐𝑐𝑖𝑖𝑡𝑡2 =

σ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 = 0.1. 

c. E-step: Conditioned on the current estimates of (π,σ2), estimate (𝒘𝒘,𝑷𝑷𝑷𝑷) by using 

MCMC algorithm per block with summary statistics. 

d. M-step: Update the estimates of (π,σ2) by their maximum a posteriori estimates 

(MAPs) [25], conditioned on estimates from the previous E-step. 

e. Repeat steps c and d until the MAPs of (π,σ2) converge (2 EM steps in this study). 

iv. Keep the estimates of (𝒘𝒘,𝑷𝑷𝑷𝑷) from the last E-step for further imputation of GReX. 

2.1.3 TWAS with summary-level GWAS data  

By multiplying the estimated effect sizes 𝒘𝒘 with the posterior probabilities 𝑷𝑷𝑷𝑷 of eQTLs, we can 

establish their weights. Utilizing the genotype and weight information and GWAS summary data 

produced by single variant tests, we employed the S-PrediXcan [17] test statistic to acquire burden 

TWAS Z-score test statistics. The burden TWAS Z-score test statistic for gene g is expressed as follows: 
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𝑍𝑍𝑔𝑔 = �  
𝑙𝑙∈ Model𝑔𝑔

𝑤𝑤𝑙𝑙𝑔𝑔�
𝜎𝜎𝑙𝑙�
𝜎𝜎𝑔𝑔�

𝛽𝛽𝑙𝑙�

𝑆𝑆𝐸𝐸�𝛽𝛽𝑙𝑙)�
= �  

𝑙𝑙∈ Model𝑔𝑔

𝑤𝑤𝑙𝑙𝑔𝑔�
𝜎𝜎𝑙𝑙�
𝜎𝜎𝑔𝑔�
𝑍𝑍𝑙𝑙 = �  

𝑙𝑙∈ Model𝑔𝑔

�𝑤𝑤𝑙𝑙𝑔𝑔� 𝜎𝜎𝑙𝑙��𝑍𝑍𝑙𝑙
�𝑤𝑤𝑽𝑽𝑤𝑤��

,

𝜎𝜎𝑙𝑙2� = Var (𝑥𝑥𝑙𝑙),𝜎𝜎𝑔𝑔2� = 𝑤𝑤�𝑽𝑽𝑤𝑤� ,𝑽𝑽 = 𝐶𝐶𝐵𝐵𝐶𝐶 (𝑿𝑿),

 

where 𝛽𝛽𝑙𝑙�  denotes the effect size of SNP 𝐵𝐵 from GWAS, 𝑍𝑍𝑙𝑙  denote the Z-score statistic by single variant 

test, and 𝑤𝑤𝑙𝑙𝑔𝑔� = 𝑃𝑃𝑃𝑃𝚤𝚤�𝑤𝑤�𝑖𝑖 is the weight of SNP 𝐵𝐵 which have non-zero eQTL effect size from the BVSR model. 

Here, 𝑿𝑿 is the genotype matrix from reference panels, and 𝑽𝑽 is the genotype covariance matrix. 

We subsequently calculated two-tailed p-values from the TWAS Z-score test statistics. If the TWAS p-

value for a specific gene within a particular tissue is lower than 0.05 divided by the total number of 

genes in that tissue, we conclude that the GReX of this gene is significantly associated with AD dementia 

in the respective tissue. 

 

2.2 Aggregated Cauchy association test-omnibus (ACAT-O) 

ACAT-O is an omnibus test that combines the p-values of different set-based tests, and this method is 

based on aggregated Cauchy association test (ACAT) [19]. ACAT employs a linear combination of 

transformed p-values as the test statistic, with these p-values modified to follow a standard Cauchy 

distribution under the null hypothesis. This combination permits the use of flexible weights. The ACAT-O 

test statistics is as follows: 

𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝑂𝑂 =
1
𝐾𝐾
�  
𝐾𝐾

𝑖𝑖=1

tan {(0.5 − 𝑝𝑝𝑖𝑖)𝜋𝜋}, 

where 𝑝𝑝𝑖𝑖s are the p-values of the K tests, and the tests are treated equally in the combination. 

We used the ACAT-O method to combine TWAS p-values from three tissue types per gene. In this study, 

ACAT-O was conducted by the “ACATO” function from R package “sumFREGAT”.  



8 
 

 

2.3 Genotype-Tissue Expression (GTEx) dataset and GWAS summary statistics 

The genotype and gene expression data we used is from the GTEx Version 8 (V8) dataset, which consists 

of 838 donors and 17,382 samples from 52 tissues and two cell lines [12]. Specifically, we used the gene 

expression data of the prefrontal cortex (158 samples), cortex (184 samples) and whole blood (574 

samples). We only studied 3 tissue types of the GTEx V8 dataset because of the large computational 

burden of BGW-TWAS.  

The summary-level GWAS data used in this study were generated by the most recent large-scale GWAS 

for AD dementia with a sample size of 74,004 [18]. 

 

2.4 Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 

STRING (version 11.5) [26] is a bioinformatics online tool that provides information on protein-protein 

interactions and networks, as well as functional characterization of genes and proteins. The tool 

integrates different types of evidence, such as genomic context, high-throughput experiments, and 

previous knowledge from other databases, to generate reliable predictions of protein interactions. We 

used the tool to study the protein-protein association networks and determine which phenotypes may 

be enriched with genes identified from our study.  
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3. Results 

3.1 Overview of the workflow 

To identify genes associated with AD dementia, we performed a BGW-TWAS on GTEx V8 dataset across 

3 tissues, which are the prefrontal cortex, cortex, and whole blood. Briefly, this approach applies the 

BVSR model to estimate weights for both cis- and trans-eQTLs across the genome for the target genes. 

Based on the BGW-TWAS weights, reference genotype data and AD GWAS summary data, we utilized 

the S-PrediXcan approach to obtain burden TWAS Z-score test statistics and derived 2-tailed p-values. 

ACAT-O method was used to combine TWAS p-values across three tissues, resulting in ACAT-O combined 

p-values for each gene. 

 

Figure 1. Workflow for the BGW-TWAS process. 
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3.2 BGW-TWAS results of AD dementia in three tissues 

We performed BGW-TWAS on a total of 23,721 genes expressed in the prefrontal cortex, 23,864 genes 

expressed in the cortex, and 19,514 genes expressed in the whole blood. Our analysis identified 37, 55, 

and 51 genes with significant p-values in the prefrontal cortex, cortex, and whole blood, respectively. Of 

these, 15 genes were significant in both the prefrontal cortex and cortex, six were significant in both the 

prefrontal cortex and whole blood, eight were significant in both the cortex and whole blood, and three 

were significant across all three tissue types. These results were summarized in Figure 2 as a Venn plot. 

 

Figure 2. Venn plot of numbers of significant genes in three tissues. 

 

We also summarized the proportion of trans-eQTLs of each significant gene in three tissues, as shown in 

Figure 3. As a result, there were 12 (32.4%), 24 (43.6%), and 16 (31.4%) significant genes in the 

prefrontal cortex, cortex, and whole blood, respectively, that have a proportion of trans-eQTLs above 

0.5. These results demonstrated that trans-eQTLs contributed to a large proportion of the significance of 

many of the genes in three tissues. 
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Figure 3. Bar graphs of trans-eQTL proportion of significant genes in the three tissues. Graph A, B, C 
are the bar graphs of trans-eQTL proportion of significant genes in the prefrontal cortex, cortex, and 
whole blood, respectively. For each bar graph, x-axis represents the proportion of trans-eQTLs, ranging 
from 0-1; y-axis represents all the genes that have a significant p-value in the tissue. 

 

 

3.3 ACAT-O results of AD dementia across three tissues 

After combining the TWAS p-values of genes across three tissues using the ACAT-O method, we 

obtained a total of 17,468 genes with an ACAT-O combined p-value. Among these, 93 genes had a 

significant p-value. We created a Manhattan plot to display the significance levels of genes with an 

ACAT-O combined p-value across all 22 chromosomes (Figure 4). As illustrated by the Manhattan plot, 

the majority of significant genes were located on chromosome 19, which is consistent with prior 

research findings. Additionally, we observed clusters of significant genes on chromosomes 6, 7, and 11. 
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Furthermore, a number of significant genes were also identified on chromosomes 1, 2, 5, 14, 15, 16, 17, 

and 20. 

 

Figure 4. Manhattan plot of TWAS ACAT-O combined results. The horizontal dashed line represents the 
significance threshold of the p-value, which is determined by dividing 0.05 by the total number of genes. 
Orange markers indicate genes that were significant in only one tissue type, while red markers with 
labels highlight genes that were significant in at least two tissue types. 

 

 

To examine the influence of utilizing trans-eQTLs, we conducted a separate TWAS analysis that excluded 

trans-eQTLs and only utilized cis-eQTLs. This analysis showed that 64 of the previously identified 93 

significant genes retained their significance, while 29 genes were no longer significant, indicating that 

the significance of these genes was primarily derived from trans-eQTLs. We compiled a summary of part 

of the 93 genes significantly associated with AD dementia as displayed in Table 1, categorizing them 

based on whether their significance resulted from cis-eQTLs or trans-eQTLs. 
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Genes significant due to cis-eQTLs Genes significant due to trans-eQTLs 
Gene CHR P value Gene CHR P value 

CR1ab 1 4.99E-21 RP11-343H5.4b 1 4.80E-07 
BIN1bc 2 2.22E-15 DDR1a 6 2.08E-07 
HLA-DRB1ab 6 1.74E-07 BAG6c 6 1.69E-07 
TAP2ac 6 1.28E-07 ATAT1b 6 1.43E-07 
AP4M1ab 7 1.67E-06 DHX16a 6 5.46E-08 

STAG3ab 7 5.91E-08 XXbac-
BPG252P9.10a 6 9.65E-09 

C1QTNF4bc 11 2.00E-06 TUBBb 6 3.88E-10 
SLC39A13ab 11 1.19E-06 CTNND1a 11 9.02E-08 
MTCH2ab 11 8.79E-07 SLC3A2c 11 2.01E-10 
MS4A3c 11 9.82E-17 VWCEb 11 4.95E-11 
MS4A4Ac 11 9.99E-24 AP001350.4b 11 1.22E-17 
MS4A6Ac 11 1.03E-25 RP5-882C2.2a 17 1.03E-08 
APH1Bac 15 1.56E-09 PGLYRP1a 19 2.82E-06 
ACEabc 17 2.00E-07 CTC-435M10.12c 19 8.44E-07 
GRNab 17 2.37E-08 SNRPD2b 19 1.52E-07 
GEMIN7ab 19 3.09E-10 ARHGAP35c 19 1.45E-08 
CTB-179K24.3c 19 6.47E-14 TMEM160c 19 6.75E-09 
ZNF285bc 19 5.11E-15 CTB-12A17.2a 19 5.35E-09 
APOC2abc 19 1.78E-15 SLC1A5b 19 1.49E-10 
BCAMc 19 4.44E-16 AC007191.4b 19 3.59E-11 
GPR4a 19 4.44E-16 CALM3b 19 2.44E-11 
RELBc 19 1.51E-16 GNG8b 19 2.22E-15 
DMPKab 19 6.52E-24 TRAPPC6Ac 19 8.13E-20 
ZNF230bc 19 7.13E-29 CTD-2233K9.1ab 19 2.00E-21 
CTC-204F22.1b 19 1.91E-44 PTGIRc 19 7.70E-26 
APOEbc 19 3.03E-53 DACT3-AS1a 19 1.61E-38 
CLPTM1abc 19 2.29E-124 PPP5Cab 19 9.86E-43 
ZNF226ac 19 1.14E-149 ZC3H4a 19 2.04E-49 
CASS4c 20 2.15E-14 DACT3ab 19 1.19E-71 
a: Genes significant in the prefrontal cortex        b: Genes significant in the cortex             
c: Genes significant in the whole blood   

 

Table 1. Part of significant genes of TWAS ACAT-O combined results. The right column of the table 
includes all the genes significant primarily due to trans-eQTLs, while part of the significant genes 
primarily driven by cis-eQTLs are included in the left column of the table. 
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3.4 Known risk genes for AD dementia 

We next sought to quantify the extent of overlapping results between our BGW-TWAS findings and 

TWAS findings by TIGAR [27]. Comparing our ACAT-O combined results with TWAS findings by TIGAR 

with reference transcriptomic data of prefrontal cortex tissue [28], 9 out of 93 genes were identified by 

both methods. These include HLA-DRB1 on chromosome 6, OSBP on chromosome 11, ACE on 

chromosome 17, as well as BCL3, CLPTM1, DMPK, GEMIN7, ZNF230, and ZNF296 on chromosome 19. 

Additionally, 34 out of the 93 genes we identified were also detected in other TWAS or GWAS studies as 

being related to AD. Particular attention should be paid to ACE, APOC2, and CLPTM1, as they showed 

significance across all three tissue types.  

Our study identified several well-known genes related to AD dementia. For example, according to the 

burden Z-score direction, we observed that the GReX of APOE in the cortex was positively associated 

with risk of AD dementia, while a significant negative association was observed in the whole blood. The 

GReX of another well-known AD risk gene on chromosome 9, APOC2, was found to be positively 

associated with risk of AD dementia in the prefrontal cortex and the cortex, and negatively associated 

with risk of AD dementia in the whole blood. We also identified that the GReX of ACE and CLPTM1 was 

positively associated with risk of AD dementia in all the three tissues we tested. 

In addition to well-known genes, we also identified some genes that have been detected only in recent 

TWAS studies for AD. For instance, a TWAS conducted with hippocampus tissue in 2021 [29] showed 

that the expression of DACT3, SNRPD2 and DMPK in the hippocampus affects the risk of AD, while we 

also identified these genes as significant in our study. Moreover, a recent study [30] that integrated 

eQTL data and GWASs of late-onset AD (LOAD) by a Bayesian statistical method identified risk loci on 

gene ZNF226, which is consistent with our findings. Although TNIP1 has recently been identified to 

having eQTLs of AD within blood tissue in a study [18], it was not detected as related to AD in another 
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study [31]. Our TWAS identified TNIP1 as a risk gene of AD dementia in whole blood, which add evidence 

to support the previous statement. 

 

3.5 Novel findings of risk genes for AD dementia 

Among the ACAT-O results, we found that 50 out of the 93 significant genes identified by BGW-TWAS 

were novel findings that have not been reported in previous TWAS nor GWAS studies. Notably, the 

majority of genes found significant due to trans-eQTLs were not accounted by prior TWAS, with the 

exception of TRAPPC6A, DMPK, and DACT3 on chromosome 19.  

There is evidence from previous biological studies indicating that some of the novel genes we found by 

BGW-TWAS have associations with AD. For example, UGGT1, located on chromosome 2, is a gene 

responsible for creating N-glycosylation-related proteins in the endoplasmic reticulum. A 2022 study 

[32] revealed that UGGT1 protein expression was upregulated in AD brain capillaries. In contrast, our 

study showed that GReX of UGGT1 in the cortex is negatively related to AD dementia.   

Additionally, a 2022 study [33] suggested that BAG6 could prevent the accumulation and aggregation of 

misfolded proteins with exposed hydrophobic regions, which is a potential cause of AD dementia. This 

study is in accordance with our finding that GReX of BAG6 is positively associated with AD dementia in 

the whole blood. 

We identified DHX16 as a novel risk gene for AD dementia, which was also recognized as a candidate risk 

gene for early onset AD in the study by Victoria Fernandez et al [34]. According to this study, the RNA 

helicase Dhx16 is involved in transcription alterations and DNA methylation changes that play a role in 

memory-related neurological and neuropsychiatric disorders.  
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Our BGW-TWAS results demonstrated that TUBB was a novel AD risk gene in the cortex. TUBB protein is 

a principal component of microtubules, which are formed by the polymerization of α-tubulin and β-

tubulin dimers that bind to Guanosine-5′-triphosphate (GTP). It has been reported that higher levels of β

-tubulin can be associated with aberrant hyper-phosphorylated tau aggregates, which play a crucial role 

in etiology of AD [35]. This finding indicates the potential impact of TUBB on AD development. 

 

3.6 Protein-protein association networks and phenotype enrichment analysis by STRING 

To further understand the underlying biological mechanism of our identified TWAS risk genes, we 

generated protein-protein association networks and performed phenotype enrichment analysis of the 

significant genes using the STRING tool (Figure 5). STRING is a powerful online database and software 

platform designed to provide comprehensive insights into protein-protein interactions and functional 

associations. We utilized STRING to construct protein-protein association networks for the significant 

genes identified in ACAT-O results. These networks are essential for understanding the complex 

interplay among proteins and their functional relationships within cellular pathways and systems. After 

the network analysis, STRING also generated phenotype enrichment analysis results. This analysis helps 

elucidate the functional implications of these genes in the context of AD dementia and other related 

disorders. 

 

 



17 
 

 
Figure 5. Protein-protein association networks and phenotype enrichment plot. Graph A is the protein-
protein association network of the 93 significant genes generated by STRING. The colors of different 
connections have different meanings as shown below the plot. Graph B is the phenotype enrichment 
plot of the significant genes, with x-axis being -log10(FDR) of the phenotype, and y-axis showing 
different phenotypes enriched in the genes. 

 
3.6.1 Protein-protein association networks 

The networks identified by STRING highlight a major functional cluster composed of known AD risk 

genes APOE, BIN1, CASS4, MS4A4A, MS4A6A, SLC24A4, CD33, and HLA-DRB1. Three potential pathways 

were found to be enriched within these gene networks. Two of them, the CD20-like family/membrane-

spanning 4-domains subfamily and MHC class I protein-binding genes, involve immune system 

processes. These pathways include B-cell surface antigen CD20 or MS4A and MHC class I proteins, which 

present antigens to T cells. It is noticeable that the CD20-like family / MS4A genes MS4A4A and MS4A6A 

were reported as AD risk genes [36], and MHC class I proteins are proved to be critical for maintaining 

neuronal structural complexity in aging brains [37]. The third pathway involves simultanagnosia and 
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sodium/potassium/calcium exchanger 4, including SLC24A4 and related genes such as CD33, CASS4, and 

MS4A4A. There has been evidence supporting the association between SLC24A4 and AD, with previous 

studies showing that AD risk variants in SLC24A4 correlate with increased expression in blood and brain 

regions [38]. Our study also found that the GReX of SLC24A4 in the whole blood positively correlated 

with risk of AD dementia. Apart from the known genes within the main cluster, several novel genes are 

connected to it. For example, SLC1A5 and SLC3A2 are connected to SLC24A34, while CFB and AZGP1 are 

connected to APOE. 

In addition to the main cluster discussed above, two other clusters are associated with APOC2. The first 

cluster consists of BCL3, RELB, and TNIP1, while the second cluster includes DMPK, ARHGAP35, CTNND1, 

SNRPD2, DHX16, GEMIN7, ZNF296, PPP5C, CALM3, and TUBB. All genes in the first cluster are known AD 

risk genes. Both BCL3 and RELB have AD risk variants near the APOE region [39], and AD-related eQTLs 

have been detected within TNIP1 [18]. Among the genes in the second cluster, DMPK, SNRPD2, GEMIN7 

and ZNF296 are known AD risk genes, with the remaining being novel findings. Among the known genes, 

DMPK and SNRPD2 were identified as AD risk genes in the hippocampus and putamen by a previous 

TWAS [29]. Moreover, GEMIN7 and ZNF296 has been identified as AD risk genes in a TWAS conducted 

on cortex and the amygdala region of the brain [40], respectively.  

Another network worth paying attention to is the cluster composed of TAP2, ZBTB22, HSD17B8, 

SLC39A7, VPS52 and TRAPPC6A. Except for TRAPPC6A, these genes are all novel findings associated with 

AD risk on chromosome 6. Among these genes, ZBTB22 and SLC39A7 have been shown to be associated 

with zinc finger in some capacity: ZBTB22 is a gene that encodes a transcription factor containing both 

zinc finger and BTB domains, and SLC39A7 is a gene that encodes a zinc transporter protein. Although 

we know that some zinc finger proteins influence the accumulation of tau proteins to affect the 

neurofibrillary tangles[41], which is a confirmed pathogenic factor of AD, we are not clear how ZBTB22 

and SLC39A7 may related to this process. In addition, TAP2 acts as a molecular scaffold for the final 
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stage of MHC class I folding, which was detected as a potential AD-related function in the first cluster. As 

for the gene TRAPPC6A, it has been previously implicated in association with AD [42].  

Another cluster, which is composed of WDR33, ZC3H4, TMEM160, MTCH2, NDUFS2, and SLC39A13, is 

combined with known AD risk genes MTCH2 and NDUFS2 and novel AD risk genes. MTCH2 is a gene that 

plays a crucial role in mitochondrial metabolism, and a recent study has shown that decrease of MTCH2 

level in the forebrain can impair cognitive functions related to the hippocampus and may eventually lead 

to AD [43]. Similarly, NDUFS2 is a gene related to the oxidative phosphorylation process of 

mitochondrial metabolism which affects the risk of AD [14].  

Within the network clusters discussed above, 19 novel genes are identified, and 17 of them lack known 

functions related to AD dementia. Although our understanding of these novel genes is limited, they are 

involved in networks with known AD risk genes. Further research is needed to investigate the potential 

roles of these novel genes in AD dementia and their interactions with neighboring genes in the cluster. 

3.6.2 Phenotype enrichment analysis 

The phenotype enrichment analysis showed that certain human phenotypes, such as family history of 

Alzheimer's disease (FDR = 4.57e-19) and mental or behavioral disorders (FDR = 1.18e-07), were 

enriched with our detected BGW-TWAS significant genes. Genes associated with family history of 

Alzheimer's disease included APOE, BIN1, CR1, etc., while genes associated with mental or behavioral 

disorder biomarkers included HLA-DRB1, MS4A6A, GRN, etc. Other enriched phenotypes included 

biomarkers for Alzheimer's disease (FDR = 9.52e-12), Apolipoprotein b (FDR = 3.44e-06), low-density 

lipoprotein cholesterol (FDR = 1.40e-03), inflammatory biomarkers (FDR = 1.79e-02), and C-reactive 

protein (FDR = 2.16e-02). Specific genes associated with these phenotypes included MS4A4A, SLC24A4, 

APOC2, and ZNF226. 
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Apart from phenotypes directly related to AD, our analysis identified significant genes associated with 

other phenotypes, such as Apolipoprotein B (ApoB), low-density lipoprotein cholesterol (LDL-C), 

inflammatory biomarkers, and C-reactive protein (CRP). These phenotypes have been reported to have 

potential associations with AD in previous studies. Elevated LDL-C levels have been implicated in AD 

development , as they can contribute to lipid-rich deposits in the brain, potentially leading to the 

formation of amyloid-beta plaques and neurofibrillary tangles, which are two major AD pathological 

features [44]. In addition, as a major protein component of LDL-C, several studies have suggested a link 

between elevated ApoB levels and a higher risk of AD dementia [45-48]. Chronic inflammation has been 

proposed as a significant factor to AD pathogenesis [49]. Increased levels of inflammatory biomarkers, 

such as cytokines and chemokines, have been observed in brains of AD patients [50]. CRP is an acute-

phase protein produced in response to inflammation. Elevated levels of CRP have been associated with 

an increased risk of AD dementia [51]. Investigating these connections further may offer valuable 

insights into the risk factors of AD dementia and its development. 

 

3.7 eQTLs of the significant genes 

To investigate how eQTL contributed to the association significance by TWAS, we looked into the eQTL 

weights that were estimated by BGW-TWAS and used as variant weights for gene-based association 

tests in the second stage of TWAS. Particularly, these eQTL weights were given by the product of the 

posterior causal probability and estimated eQTL effect size. In Figure 6, we showed scatter plots of non-

zero eQTL weights of a couple of example genes. 
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Figure 6. scatter plots of eQTL weights.  In this set of scatter plots, the y-axis depicts the absolute values 
of eQTL weights, and x-axis shows the genome location of the eQTLs. For each eQTL depicted in the 
plots, circles denote cis-eQTLs, and triangles refer to trans-eQTLs. The scale of color shows the degree of 
the -log(p-value) of the eQTL.  

 

Across the three tissues, column A in Figure 6 shows the eQTLs of gene ACE whose significance is 

primarily due to cis-eQTLs, while column B shows the eQTLs of gene DACT3 whose significance is 

primarily due to trans-eQTLs. Column C of the figure shows the eQTLs of three genes — CTNND1, 

AP001350.4, and SLC3A2 — in the prefrontal cortex, cortex, and whole blood, respectively. In column A, 

it is evident that the cis-eQTLs within the 1 MB region of ACE on chromosome 17 primarily contribute to 

its significance. Conversely, for DACT3, the trans-eQTLs outside its region on chromosome 19 account 

for most of its significance. Column C further demonstrates examples of how trans-eQTLs contribute to 

the significance of genes. It is noticeable that all the trans-eQTLs of the example genes (and actually for 

most of the genes we studied) are still on the same chromosome where the gene located. Overall, these 
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plots in Figure 4 demonstrated that trans-eQTLs played a crucial role in identifying risk genes of AD 

dementia. 

 

4. Discussion 

In this study, we performed a BGW-TWAS analysis across three tissues - prefrontal cortex, cortex, and 

whole blood – to identify genes associated with AD dementia, and we identified 37, 55, and 51 genes 

with significant p-values in the three tissues respectively. After combining the TWAS p-values of genes 

across three tissues using ACAT-O, we obtained 93 genes with significant p-values. We further 

conducted a separate TWAS analysis that excluded trans-eQTLs and only utilized cis-eQTLs, and found 

that 64 of the previously identified 93 significant genes retained their significance, while 29 genes were 

no longer significant, indicating that the significance of these genes was primarily driven by trans-eQTLs.  

Among the 93 genes identified as significant in our study, we observed that 9 of them were shared with 

a previous TWAS by TIGAR on the prefrontal cortex. Furthermore, 34 of these genes were also identified 

as AD risk genes in other TWAS or GWAS studies. Alongside the well-known genes, we also discovered 

50 novel genes that have not been previously reported in either TWAS or GWAS investigations. 

Importantly, most of the genes exhibiting significance due to trans-eQTLs were not detected in previous 

studies, indicating the potential of trans-eQTLs in uncovering novel disease-associated genes.  

Through protein-protein association network analysis using STRING, we identified multiple network 

clusters containing both known and novel AD risk genes. Our findings are consistent with previous 

studies highlighting the critical involvement of APOE on chromosome 19 in AD pathology, as evidenced 

by its extensive connectivity with other known genes within the network plot. The analysis also 

underlines the important function of MHC class I protein binding genes (MS4A4A and MS4A6A in our 
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study) in the protein network related to AD dementia. Nevertheless, we also identified several clusters 

mainly comprised of novel AD risk genes that are not directly associated with well-established gene 

functions and networks of AD dementia. One such cluster included unknown risk genes ZBTB22 and 

SLC39A7, which are associated with zinc finger generation and may potentially play a role in AD 

progression. Another cluster featured known AD risk genes MTCH2 and NDUFS2, which are related to 

the oxidative phosphorylation process of mitochondrial metabolism. Despite these findings, the specific 

mechanisms by which certain genes contribute to AD pathogenesis are still largely unknown, particularly 

for novel genes. As such, further research is necessary to explore these novel network cluster findings 

and unravel their biological roles in AD pathology.  

Through the phenotype enrichment analysis, we detected phenotypes enriched in the significant genes. 

Apart from the phenotypes directly related to AD dementia, some other phenotypes included 

Apolipoprotein B, low-density lipoprotein cholesterol, inflammatory biomarkers, and C-reactive protein. 

These phenotypes have been reported to have potential associations with AD dementia in various 

studies, suggesting a complex interplay between genetic, metabolic, and inflammatory factors in the 

pathogenesis of the disease. Further studies are needed to elucidate the precise mechanisms underlying 

these associations and to explore their implications for prevention and treatment of AD dementia. 

Our study has several limitations that should be noted. First, due to computation burden of running 

BGW-TWAS, we only applied our BGW-TWAS analysis to three tissues – the prefrontal cortex, cortex, 

and whole blood - using the GTEx dataset to investigate AD dementia. However, other tissues, such as 

hippocampus, muscle, and spinal cord, are also known to play crucial roles in AD dementia [52-54]. 

Considering only three of these tissues may not capture the full spectrum of gene expression changes 

that contribute to pathogenesis of AD dementia. Future studies expanding the BGW-TWAS analysis to 

additional tissues could provide a more comprehensive understanding of the genetic basis of AD 

dementia and help identify novel therapeutic targets.  
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Second, although the summary-level GWAS data of AD dementia were meta-analysis results of multiple 

studies with diverse population, the GTEx reference transcriptomic data used in this study are mainly 

consisted with individuals of European descent. Especially, eQTL effect sizes can differ across 

populations due to factors such as population-specific linkage disequilibrium patterns and allele 

frequencies. Consequently, the gene-trait associations and potential risk loci identified in our study may 

not fully capture the genetic architecture of AD dementia in non-European populations. Future studies 

should include more reference transcriptomic populations in the analysis to obtain a more 

comprehensive understanding of genetics of AD dementia.  

Third, the BVSR model employed in the BGW-TWAS method inherently assumes a sparse representation 

of eQTLs contributing to gene expression. This sparsity assumption implies that only a small number of 

eQTLs have a substantial effect on gene expression, while the majority of eQTLs exert little or no impact. 

Although this assumption can be computationally advantageous, it may not always accurately represent 

the underlying genetic architecture of complex traits. Future research could explore alternative 

modeling approaches that relax the sparsity assumption, allowing for a more flexible representation of 

eQTL-gene relationships.  

Overall, our study highlights the importance of considering trans-eQTLs in TWAS analysis as it can help 

identify significant risk genes that would have been missed in cis-eQTL-only TWAS. We identified several 

well-known AD-related genes, as well as novel genes that have potential associations with AD dementia. 

This study provides further insights into the genetic architecture of AD dementia and could help in the 

identification of potential therapeutic targets. To our knowledge, our study is the first to conduct a 

genome-wide TWAS of AD dementia utilizing both cis- and trans-eQTLs in the three tissue types, and our 

approach may offer a promising avenue for identifying hitherto unknown disease-related genes. Our 

findings could also serve as a valuable reference for future TWAS on AD dementia. 
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