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Abstract 

A Toy Model for the Evolution of Directed Motility 

By Sergio Eraso 

Nonequilibrium systems dissipate energy and hence break time reversal symmetry. As a result, 

a polarization vector in such systems is allowed to couple to the system's velocity vector. Thus, 

one expects that, generically, a polarized nonequilibrium system would exhibit directed motion 

along the polarization direction. However, the coupling between the polarization and the 

motion may be very weak. Here we conduct a computational experiment with a model of a 1-d 

gas of active agents (motors) in an enclosure (cell) with polarized mechanical properties to 

demonstrate that (1) generic values of the parameters of the system, indeed, result in a weak 

directed motion, and (2) a biological evolution-inspired genetic algorithm can strongly amplify 

the polarization-velocity coupling in relatively few generations.  This toy model suggests that 

directed motility (e.g., chemotaxis) may be present generically in the context of living cells, and 

evolution may only need to amplify the taxis speed instead of performing a much harder task of 

evolving the taxis from scratch. 
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Chapter 1

Introduction

1.1 The evolution of cell motility

It is hard to imagine life without motion. From an evolutionary standpoint,

the necessity for cellular motility is quite obvious: cells must traverse environ-

ments with nonuniform nutrient distributions while also avoiding predators.

In multicellular organisms, cell motility is also essential for complex biologi-

cal processes such as collective immune response and tissue repair, as well as

pathological phenomena like cancer metastasis. Biologists have long studied

the various mechanisms cells use to traverse their natural habitats and the

evolutionary origins of such processes.

One notable class of motility machineries are bacterial flagella, long rotat-

ing filaments paired with a stator and motor used to generate thrust. These

marvelous structures are composed of over 20 different proteins assembled in

a temporally and spatially precise manner and allow a bacterium to swim dis-

tances of about 60 cell lengths at a time [1, 2]. Swimming eukaryotes also
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make use of flagella, and there is even strong agreement that the evolutionary

origin of the flagellum traces back to a single ancestor of all eukaryotes [3].

Archaea use a functionally similar rotary device, the archaellum, to achieve

motility [3]. However, the subunits of archaella and flagella are distinct and

both use different energy sources, indicating separate evolutionary ancestry

[4]. Another type of motility, cell crawling, can be achieved by various dif-

ferent independent mechanisms and the scientific community does not have a

consensus with regard to its origins [3]. For the most part, the question of the

evolutionary origins of cellular motility remains a mystery in biology [3, 5].

How could motility, such as that provided by the elaborate structure of the

bacterial flagellum, have been evolved via natural selection? Some argue this

could not have been the case. As in the complex hardware of a wristwatch, pro-

ponents of creationism argue that removing any component from the intricate

bacterial motor of E. coli causes the entire system to fail, making it impossi-

ble for such a device to be attained through the incremental modifications of

natural selection [6]. This claim is known as irreducible complexity and it has

served as the poster-child argument for advocates of intelligent design since

the 1990s.

Biologists have refuted irreducible complexity with various arguments and

evidence. For instance, while chemotaxis provides an obvious evolutionary

advantage to cells, it has been shown that mere random, undirected motility,

is also advantageous for survival and is preferable to the absence of any motility

at all [7]. This suggests an avenue of natural selection where cells can evolve

random motility before moving on to developing more complicated, directed

mechanisms. Furthermore, all three domains of life — bacteria, archaea, and

eukarya — have evolved a plethora of different mechanisms for motility, a
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clear demonstration of convergent evolution [4]. This indicates that motility

is much more robust than advocates of intelligent design suggest. There have

also been attempts to describe pathways by which Darwinian evolution can

create complex multi-part systems [8]. Recent work has also demonstrated the

rapid evolution of ion processes and modularity in the E. coli flagellum [9].

Overall, biologists have created a large body of work that dismisses irreducible

complexity. As physicists, we would like to offer a different perspective.

1.2 A physical perspective: generic motility

By abstracting away the details of biology and viewing cells as any other

system in statistical physics, we argue that motility can naturally arise in

living matter as a consequence of some simple physical observations. If we

consider an arbitrary statistical system in equilibrium, any given trajectory in

phase space is just as probable as its time-reversed trajectory. Therefore, no

motion can be observed in the thermodynamic limit,

〈v〉 =

〈
dx

dt

〉
=

〈
dx

d(−t)

〉
= 0. (1.1)

However, for non-equilibrium systems, this is no longer true — the pro-

duction of entropy breaks time-reversal symmetry. Thus, spontaneous motion

is permitted for a nonequilibrium system. If a nonequilibrium system addition-

ally breaks spatial inversion symmetry, one expects generically for the velocity

vector to be coupled to the asymmetry vector. In the spirit of Landau, the

most general way to express the velocity vector v of a system is a function of

all other quantities of the system that could produce a vector that also respects

the symmetries of the Hamiltonian. Thus, unless there exists a symmetry to
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prohibit the coupling between velocity and a polarization vector p, we expect

v ∝ p. (1.2)

This simple, yet powerful, fact has been studied extensively both in exper-

imental settings and analytic calculations. Indeed, it has been demonstrated

analytically that an asymmetric passive gear immersed in a bacterial bath

should experience spontaneous rotational motion [10], results which have also

been confirmed experimentally [11]. Furthermore, analytic calculations have

shown coupling between the velocity and polarization vectors for a system of

passive asymmetric dumbbells submerged in a nonequilibrium bath [12]. Sim-

ilar calculations and experiments have been done for various other systems

and geometries [13, 14]. All of these serve as examples of how structurally

asymmetric nonequilibrium systems can rectify random fluctuations, coupling

their velocity to a polarization vector and thus achieving spontaneous motion.

Why should cells be any different?

1.3 Evolution and generic motility

Living cells are constantly consuming energy: they are inherently nonequilib-

rium systems. Additionally, in the presence of chemical gradients, electrical

fields, or mechanical stimuli, cells have the ability to polarize their structure

[15]. Establishing such polarization and thus determining the front and back

of the cell has been observed to be a prerequisite for cell motility [16, 17].

Thus, given the symmetry arguments in Sec. 1.2, one might expect for motil-

ity to have always been present in living cells. However, while nonequilibrium

and structural asymmetry seem to comprise a minimum set of ingredients re-

quired for motility, the symmetry arguments outlined above do not provide
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a way to predict the strength of said motility. It may be that generic motil-

ity present in cells is too weak to be measurable, let alone useful for cellular

function. It remains to be determined whether strong motility could naturally

arise in a nonequilibrium asymmetric system through the amplification of the

generically-present v−p coupling via a random process such as evolution. The

aim of this thesis is to answer this question with computational experiments.
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Chapter 2

Methods

Motivated by biology and the symmetry arguments of 1.2, we wish to create

a minimal model for the evolution of directed motility in a nonequilibrium

asymmetric system. We take a computational approach, using the rigid-body

physics simulation library, PyMunk [18], and design a toy system that fulfills

the requirements for motility. We then present a genetic algorithm that plays

the role of natural selection, used to evolve a large population of toy systems.

2.1 A minimal system capable of motility

2.1.1 System overview

The two ingredients needed for motility are 1) time-reversal symmetry break-

ing and 2) structural polarization. With this in mind, we designed the one-

dimensional model depicted in Fig. 1. It consists of a box with two outer walls

and two inner walls. There are springs at each side, each with a differing spring

constant k1 and k2. Each spring connects an outer wall to its corresponding
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inner wall. Each spring has a rest length `. The outer walls of the box are

themselves connected by a spring with spring constant K � k1, k2 and rest

length L � `. The interior of the box is filled with a dilute gas of Nm active

motors. The motors do not collide with each other. The entire system, motors

and walls, are subject to a viscous drag force, quantified by a parameter β

which ranges from zero to one. For every second in simulation, a body loses

1 − β percent of its velocity. The total mass of the walls M is much greater

than the mass of an individual motor m.

Figure 1: A minimal system that can achieve motility. The differing spring

constants are responsible for the structural asymmetry. The active motors

and viscous drag force fulfill the requirement of nonequilibrium. This system

should exhibit generic v − p coupling.

2.1.2 Motor details

Each motor i is driven by a force Fi = fi + η where fi ∼ N (f0, σ
2
f ) is a

constant and η is thermal noise η ∼ N (0, σ2). Motors do not collide with each

other and can only interact with one another by coming into contact with

an inner wall at the same time. When a motor encounters an interior wall,

it experiences a perfectly inellastic collision and pushes against the wall with
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Figure 2: Motors tend to cluster when colliding with a spring at the same

time. The “forget” parameter ps prevents this.

a constant force. It continues to transfer energy to the box until the spring

force overcomes the motor force. At this point, the motor force F switches

direction to −F , causing the motor to turn around. Each motor has a constant

probability to spontaneously switch direction at each time step, parametrized

by ps. Without this behavior, motors will tend to cluster into groups via the

mechanism depicted in Fig. 2. Eventually, two groups of motors would be left,

effectively reducing the complexity of our system and leading to uninteresting,

predictable collisions between motors and the inner walls.

2.2 A genetic algorithm

Genetic algorithms are a wide class of optimization methods inspired by the

biological phenomenon of natural selection. They consist of the steps in Fig. 3:
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Figure 3: The general structure of a genetic algorithm. One loop through this

computational graph is equivalent to one generation of simulation.

scoring, selection, and mutation. Since our goal is to demonstrate that our

system can evolve directed motility via random fluctuations in system param-

eters, we use a genetic algorithm rather than a different optimization scheme.

We are not interested in the precise a∗ that globally optimizes model perfor-

mance, nor the best initialization scheme, nor hyperparameter optimization.

We are interested in determining if the model can evolve to an appreciable

amount of motility without fine tuning.

2.2.1 Initialization

We initialize a population of N = 100 systems (Fig. 1) each with no polariza-

tion k1 = k2. We use a damping coefficient of β = 0.4. This value of β puts us

in the overdamped, low Reynolds number regime, while also keeping simulation

times reasonable. It is also convenient for calculations as − log β ≈ 1. Each

system is filled with a dilute gas of motors with density ρ = Nm/L = 0.02.
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Each motor is initialized to be much weaker than the springs with a mean force

of f0/k1` = f0/k2` = 10−3 and coefficient of variation CV = σf/f0 = 0.2. The

thermal noise is σ/f0 = 0.1. Since the springs connecting the inner to outer

walls play a role analogous to a cell membrane, we use the biologically in-

spired value `/L = 0.02. The “forget” parameter of each motor is ps = 0.01

for each simulation second. This was empirically observed to be enough to

prevent motors from clustering in the time scale of a complete simulation run.

Simulations were carried out with ∆t = 0.01 seconds for a total duration of

1000 simulation seconds. The duration of one simulation is of the time scale

of about 50 motor-wall collisions.

Each member of the population is described by a genome, or parameter

vector

a = (k1, k2, Nm,ps) ps ∈ [0, 1]Nm , (2.1)

which consists of the two spring constants k1, k2, the number of motors Nm,

and the “forget” probabilities for each motor ps.

2.2.2 Scoring

Since any random, undirected motility has been determined to be evolutionar-

ily advantageous [7], we use the velocity v of a system to determine its fitness.

The velocity of such a system is a random variable v = v(a). Computationally,

v is the function that runs a PyMunk simulation of a system with parameter

vector a.
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2.2.3 Selection

In the selection step, we weigh each system i according to its velocity vi. The

probability of a genome ai to advance to the next population is the canonical

distribution

p(ai) =
esv

i∑
esvi

(2.2)

where s is a hyperparameter of the genetic algorithm that determines the

selection strength, and in turn, convergence rate. We do not perform hyper-

parameter optimization. A new population of N genomes is drawn from this

distribution.

2.2.4 Mutation

A mutation function µ introduces slight random perturbations to each genome

ai in a new population,

µ(ai) = ai′ with
〈
µ(ai)

〉
= ai. (2.3)

We ran two experiments with mutation functions

µ1 =


k′1 ∼ N (k1, 0.01k1)

k′2 ∼ N (k2, 0.01k2)

N ′m = Nm

(2.4)

and

µ2 =


k′1 ∼ N (k1, 0.01k1)

k′2 ∼ N (k2, 0.01k2)

N ′m = Nm + ni where ni = −1, 0, 1 with equal probability,

(2.5)

respectively.
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2.2.5 An edge case

One might suspect that the genetic algorithm will drive the population to 1)

evolve a large polarization and 2) evolve to have small spring constants. This

way, the motors are able to transfer more energy to the rest of the box. What

should happen when a spring constant becomes so small that a single motor

can push an internal wall a whole distance `? At this point, the inner wall

will touch the outer wall and the motor will never turn around, continuing

to transfer energy to the box for eternity. This is not good. Thus, we have

to amend our selection function Eq. 2.2. One fix is to simply restrict the

values of k the algorithm is allowed to mutate to. We avoid this approach

as it limits the parameter space and is not compatible with a system where

the number of motors can change, as in µ2. A different simple fix is to just

make p(ai) extremely small if at any point an outer and inner wall come into

contact, regardess of what v(ai) comes out to be. This is the approach we take

here. One could argue that this is not a valid selection rule, as it is discrete

and dichotomous. A system either experiences this penalty or not. Perhaps

a better way to deal with this issue is to implement a continuous penalty

function f(r) that depends on the distance between the inner and outer walls

r. We believe that this complication is not necessary to achieve the goals of

this thesis, so we stick with our simpler, discrete selection function.

2.3 Limitations

While the goal of this paper is not the study of a particular system, but rather a

demonstration of what can be achieved with a minimal model, we acknowledge

that there are various limitations to our system and genetic algorithm. For
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example, we do not consider any coupling between the system of Fig. 1 and

its environment — we did state earlier that cells often polarize their structure

due to external stimuli. However, here we assume that k1 and k2 do not vary

with time and that there is nothing outside of the box. Furthermore, the

motors are swimming in the same medium that the rest of the box structure

is embeded in. Thus, the unobstructed movement of motors in the interior of

the system does not transfer any momentum to the rest of the box. In reality,

the movement of a motor inside a cell would cause the rest of the cell to recoil

back slightly, due to transfer of momentum through the medium. These are

complications we do not consider here. Furthermore, the mutation function µ2

allows populations to increase the number of motors without bound. This is

clearly not possible in real systems as they are constrained by energy budgets.
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Chapter 3

Results and Discussion

3.1 Sanity check

First, we observe that when there is no polarization, a population of N = 500

systems performs an unbiased random walk1, shown in Fig. 4. As predicted

by the arguments in Sec. 1.2 and Eq. 1.2, a lack of polarization results in no

rectification of the motor forces.

3.2 Convergence to motility

If we turn on the genetic algorithm, thus allowing the spring constants to

become asymmetric, N = 100 populations initialized with no polarization

equilibrate to a non-negligible directed motility for both µ1 and µ2 (Fig. 5). We

use distance per motor collision to quantify velocity. This takes into account

the motor gas density ρ that is allowed to fluctuate across generations when

1All quantities with dimensions of length presented in this chapter are in units of the

system length L.
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Figure 4: (log-log) The relationship between displacement and time is x ∼ t1/2,

indicating that a nonpolarized ensemble of systems exhibits diffusion.

using µ2. For instance, in the µ2 experiments, the average number of motors

per generation increases throughout the entire 350 epochs, yet, the distance per

collision settles around generation 150. This form of measurement also gives

a notion of how efficient the motors are at transferring energy to the rest of

the system2. Changing the hyperparameter s changes the rate of convergence.

Recall that we did not perform optimization to tune s.

Were our populations able to evolve strong motility? Let us estimate the

maximum theretical distance per collision our system could have achieved. A

typical motor traversing the interior of its box while undergoing a viscous drag

2The y-axis contains a factor of 10−5 because everything is being divided by L = 1000

for our system as well as by the total number of collisions, which at initialization are about

∼ 50Lρ0 = 1000.
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Figure 5: The evolution of four populations across 350 generations. Each

population is initialized with zero polarization k1 = k2. All populations reach

a steady state after about 150 generations.

force −γv will obey the equation of motion

mv̇ = f0 − γv =⇒ vterm =
f0

γ
, (3.1)

where m is the mass of the motor. To relate this to the β parameter in our

model, we use the definition of β from Sec. 2.1.1 and finite difference to findv(t+ ∆t) = βv(t)

v(t+ ∆t) = (1− γ∆t/m)v(t)

(3.2)

=⇒ γ = m
1− β∆t

∆t
−→ −m log β. (3.3)

Pairing this with Eq. 3.1,

〈vterm〉 = − f0

m log β
. (3.4)

An overestimate for the maximum theoretical distance per collision can be

approximated by considering an elastic collision between a motor and a wall
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containing all the mass of the box M . The solution to Eq. 3.1 has time scale

τ =
m

γ
= − 1

log β
(3.5)

Therefore, the maximum distance per collision is

vmaxτ ≈ −
m

M

〈vterm〉
log β

. (3.6)

For our choices of parameters, vmaxτ ≈ 3× 10−4. This indicates that without

fine tuning, the µ2 populations were able to converge to at least 5% the max-

imum theoretical velocity. The µ1 populations converged to at least 2% the

maximum theoretical velocity.

3.3 Coupling between v and p

The arguments of Sec. 1.2 also predict polarization and velocity to be strongly

correlated. This is what we observe in Fig. 6.

There is a clear qualitative difference between the behavior of the µ1 and

µ2 experiments. In particular, the curving behavior of the µ2 experiments are

an artifact of the issues described in Sec. 2.2.5. The explanation is as follows:

as the motor gas density increases, which µ2 allows, it becomes more likely for

multiple motors to collide with an inner wall at the same time. The forces of

each motor are additive. As the motors work together, both motors can push

for a larger distance before the spring force overcomes the joint motor force.

For large enough ρ, there are enough motors to push the inner wall a distance

` and we encounter the selectivity rule described in Sec. 2.2.5. Namely, if

enough motors collide with an inner wall at once and are able to push the

wall up against the outer wall, that particular system will effectively be killed

off. Thus, the µ2 experiments avoid extremely large polarizations to avoid this
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Figure 6: The correlation between distance per collision and polarization,

quantified by k1/k2. Notice the curving of the µ2 experiment.

selectivity rule. Notice that the red µ1 experiments do not display such an

artifact. We can further confirm this explanation by looking at the evolution

of the average of the spring constants. As ρ increases in the µ2 experiments,

the average of the spring constants must also increase.

3.4 Conclusions

Our computational experiments have demonstrated that it is, in fact, possible

to evolve appreciable directed motility in a generic system without fine tuning

as long as the system meets the minimum requirements for generic motility.

These requirements are 1) nonequilibrium and 2) structural asymmetry, fea-

tures of many biological systems, such as cells. Thus, it seems plausible that

evolution could have picked up on the weak generic motility found in these

systems and amplified it via natural selection.
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Figure 7: Correlation between distance per collision and the average of the

spring constants. The average spring constant reduces across generations in

all cases. This is to be expected, as this makes it easier for motors to transfer

energy to the rest of the system.

3.5 Future directions

One of the most obvious improvements that can be made to our current model

is to place energy constraints on µ. Unlike µ2, which can mutate a system to

have a much larger number of motors than what it started with, an energy-

constrained µ would force a population to face a trade-off. Is it more advan-

tageous to have few, strong motors, or a large quantity of weak motors? The

complexity of the motors should also be increased in order to expand the pa-

rameter space and strengthen our arguments about the generic character of

motility. If the convergent evolution we see in cellular motility is to offer any

intuition, it should be the case that in a large parameter space, there exist

multiple adequate local optima for our genetic algorithm to find.
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