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Abstract 

Estimating short- and long-term impact of COVID-19 on air quality, human health, and 
economic losses in China through machine learning counterfactual simulations 

By Haoran Cheng 

The short-term reduction in air pollutant concentrations due to acute lock-down during COVID-
19 has been widely studied but few have quantified the amount of reduction in pollutant 
concentrations due to COVID. Fewer studies have analyzed the long-term impact of COVID-19 
on local air quality or studied their social impacts. Our study uses machine learning 
counterfactual simulations to analyze both the acute (~weeks) and chronic (~year) impacts of 
COVID-19 on air quality, human health, and the economy in China. We analyzed concentrations 
of six air pollutants (PM2.5, PM10, SO2, NO2, CO, O3) in 39 major cities in China during and after 
COVID-19 lockdown (January 28th, 2020 to April 30th, 2021) and predicted the pollutant 
concentrations for each pollutant in a counterfactual scenario – with no “COVID-19” lockdown, 
using local meteorological data with XGBoost machine learning model. We calculated the 
associated health and economic impacts in the counterfactual world and compared them with 
the real-world impact. Among the cities surveyed, 64%, 93%, 82%, 95%, 81% of the cities 
showed a statistically significant reduction between the observed PM2.5, PM10, SO2, NO2, CO 
during the lockdown, compared to the model prediction. We observed an increase in O3 

concentrations in all cities during the lockdown but this increase was only significant for 34% of 
the cities analyzed. The total amount of observed gaseous oxidants (Ox= NO2+O3) remained 
mostly the same, compared to the counterfactual scenario. In both the observed and predicted 
simulations, NO2 and O3 were the leading cause of excess health and economic burdens. For the 
post-lockdown period, the observed concentrations of each pollutant were still lower than the 
counterfactual scenario for all regions combined but the differences were much smaller (more 
than 90% reduction in differences) compared to those during the lockdown period. The health 
and economic burdens due to air pollution continued to be lower with COVID than without in 
the post-lockdown period, except for O3 in the Northeast (NE), Southeast (SE) and Southwest 
(SW) regions. The implementation of COVID lockdown in China resulted in a significant 
reduction of various air pollutant concentrations. Long-term impacts varied among the cities 
and pollutants studied. The chronic, post-lockdown impact of COVID-19 on China’s air quality is 
yet to be determined and further research is needed. 
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1 Introduction 

In 2019, a new coronavirus was first reported and became known as severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease was named 

coronavirus disease 2019 (COVID-19) and has been declared a pandemic by the 

World Health Organization, causing a large threat to public health. So far till 2022 

March (or something that you have the data for), it has caused 470 million infections 

and 6.07 million deaths globally, becoming one of the new “Big Three” infectious 

diseases in history, together with Tuberculosis, Malaria, and HIV/AIDS (Makam et 

al., 2021). Economic losses associated with the prevention and treatment of COVID-

19 as well as reduction in the working population due to infection are estimated to be 

12.5 trillion dollars (Reuters, 2022). Given the health impacts caused by COVID-19, 

more than 140 countries implemented a wide range of strict non-pharmaceutical 

interventions after March 2020 to slow the infection rate, according to the Oxford 

COVID-19 Government Response Tracker (OxCGRT). These lockdown policies led 

to various social, economic, and environmental consequences on our day-to-day 

activities (Cole et al., 2020). 

 

China was the first country to impose a city-level lockdown policy and a large wave 

of national lockdown lasted until the first half of 2020. As the result of the lockdown, 

there were significant short-term concentration reductions in several air pollutants 

(PM2.5, PM10, SO2, NO2, CO), as well as an increases in O3 (Wang et al., 2020; Li et 

al., 2021; Chen et al., 2021). There were also considerable changes in associated 
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premature mortality and health economic losses due to the lockdown (Nie et al., 

2021). Multiple attempts have already been made to quantify the exact proportion of 

change due to COVID-19 using difference-in-difference analysis or machine learning 

counterfactual simulations (Hu et al., 2021; Bybarczyk et al., 2021; Lovric et al., 

2021; He et al., 2020). However, such studies are usually based on only one or few 

cities. Also, many are focused only on the change in air quality, neglecting associated 

health or economic costs into account. What is more, past studies have suggested that 

the impact of COVID-19 on air quality is long lasting. In other words, even in places 

where COVID-19 is largely contained and there is no further nation-wide lock down, 

it is likely that these places will still remain under the chronic influence of COVID-

19. However, few papers have investigated the air quality change in China in the year 

after COVID and even less research analyzes the economic and health impacts.  

 

To help answer these questions, we created a counterfactual “COVID-19 free” 

scenario and predicted the concentration of various pollutants in that scenario using 

meteorological conditions from previous years. We then calculated the differences 

between the reality and the counterfactual to quantity the attributable fraction of 

change in air quality due to COVID-19. We further conducted a difference-in-

difference analysis to estimate the changes in air quality after lockdown. Eventually, 

we estimated the combined excess health and economic burden for both the lockdown 

and the 1-year post-lockdown period.   
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2. Data and Method 

2. 1  Data  

2.1.1 Air Quality Data 

AQICN (https://aqicn.org/) is the website of the World Air Quality Index project that 

includes air quality observational data from different monitoring stations around the 

world. It includes concentrations of six major air pollutant species, including PM2.5, 

PM10, SO2, NO2, CO and O3 and has daily pollutant Air Quality Index (AQI) of all six 

species for major cities around the world. All AQIs were converted to raw 

concentrations in the following analyses, using the standard equation provided by the 

Environmental Protection Agency (EPA).  

 

2.1.2 Meteorological Data 

China meteorological data service center (http://data.cma.cn/en) is an upgraded 

system of the meteorological data sharing network. Its meteorological data archive 

ranges from surface meteorological monitoring stations, upper air meteorological 

stations, modeling predictions, radar reflectivity and satellite data. For this paper, 

average temperature, average relative humidity, minimal relative humidity, average 

wind speed, maximum wind speed, maximum wind speed wind direction, extreme 

wind speed, extreme windspeed direction, hours of daylight and precipitation per day 

for each city from surface meteorological stations are included.  

 

2.1.3. Demographic Data 
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China National Statistical Yearbook is an annual statistical publication by National 

Bureau of Statistics of China that reflects comprehensively the economic and social 

development of China. The book is divided into 28 chapters and includes data, such as 

population, prices, people’s livelihood and others. For our research purpose, we used 

the 2020 updated version and included baseline mortality rate, GDP per capita and 

CPI for each city. Data can be accessed online, using the following website: 

http://data.stats.gov.cn/easyquery.htm?cn=C01.  

 

2.2 Method  

2.2.1 Sample inclusion and grouping  

We analyzed air quality in 39 cities in China, including all provincial capitals and 

other major cities (Table 1 and Figure 2). Pollutant concentrations, meteorological 

conditions, demographic information of all cities are included from 2017 January 1st 

to 2021 April 30th. The cities were then separated into eight spatial groups based on 

their geographical locations, including North (N), Northeast (NE), Northwest (NW), 

Southwest (SW), Southeast (SE), South (S), East (E), and Central (C).  

 

Table 1. A list of 39 cities included in the analysis and their respective eight 

geographical regions    

Regions Cities 
North (N) Hohhot (HHT), Taiyuan (TY), Beijing (BJ), Tianjin (TJ), 

Baoding (BD), Shijiazhuang (SJZ) 
Northeast (NE) Harbin (HB), Changchun (CC), Shenyang (SY) 
Northwest 
(NW) 

Urumqi (URQ), Xining (XN), Lanzhou (LZ), Yinchuan (YC), 
Xian (XA) 
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Southwest 
(SW) 

Lhasa (LS), Chengdu (CD), Kunming (KM), Guiyang (GY), 
Chongqing (CQ) 

Southeast (SE) Nanchang (NC), Fuzhou (FZ), Hangzhou (HZ) 
South (S) Nanning (NN), Haikou (HK), Guangzhou (GZ), Dongguan (DG), 

Shenzhen (SZ) 
East (E) Hefei (HF), Shanghai (SH), Suzhou (SZ), Nanjing (NJ), Wuxi 

(WX), Jinan (JN), Qingdao (QD), Weifang (WF) 
Central (C) Wuhan (WH), Changsha (CS), Zhoukou (ZK), Zhengzhou (ZZ) 

 

Figure 1. Cities studied in this work. Colors indicate the regions (pink—SW, 

yellow— S, purple—SE, blue—C, green—NW, orange—E, red—N, indigo—NE) 

 

Data from each city was then further separated into groups based on seasonality and 

relations to the National lockdown: pre-lockdown, during lockdown, and post-

lockdown. The lockdown period for each city was determined from the news 

(https://www.thepaper.cn/newsDetail_forward_7231201) and has been summarized in 

Table 2.  

 

Table 2: Start and end date of lockdown for each individual province.  
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2.2.2 Air Quality Change 

We performed a counterfactual simulation using the Extreme Gradient Boosting 

(XGBoost) machine learning model in Python. XGBoost is an ensemble learning 

method that uses multiple learning algorithms at the same time to obtain 
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better predictive performance than could be obtained from any of the constituent 

learning algorithms alone. XGBoost is a scalable, distributed gradient-boosted 

decision tree (GBDT) machine learning library that provides a parallel tree boosting 

and has become the leading machine learning library for regression, classification, 

and ranking problems. We included meteorological conditions as independent 

variables and different pollutant concentrations as dependent variables from 2017-

2018 for each city in our training dataset. We then used grid search and cross-

validation to choose the optimal set of hyperparameters values that minimize Mean 

Square Error (MSE) and the hyperparameters we tuned include maximum depth per 

tree, learning rate and number of trees in our ensemble. The model was developed and 

tuned by our former postdoc Dr. Qiao Zhu and data scientist Dr. Tianlong Xu and we 

used their model for the following analysis.  

 

To evaluate the predictions of a model with observational data, we used the statistical 

performance parameters used in Hanna et al. (1993), which have been widely used in 

air quality performance evaluation (Chang et al., 2004). These parameters include 

fractional bias (FB), geometric mean bias (MG), normalized mean square error 

(NMSE), geometric variance (VG), correlation coefficient (R), and the fraction of 

predictions within a factor of two of observations (FAC2):	 	 	  

FB = 	
%C!''' − C"''')

0.5%C!''' + C"''')
	

MG = e#$%&!'''''''($%&"''''''')	
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NMSE = 	
%C! − C"	)

*'''''''''''''''

C!'''	C"'''
	

VG = e+($%&!($%&"	)#/
''''''''''''''''''''''

	

R =
(C! − C!''')%C" − C"''')'''''''''''''''''''''''''

σC"σC!
	

𝐹𝐴𝐶2 = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑡ℎ𝑎𝑡	𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠	0.5 ≤
𝐶0
𝐶1
≤ 2.0	

 

Where Cp is model prediction, Co is observation, and the bar indicates the average 

over the variable and 𝜎C is the standard deviation over the dataset. A perfect model 

would have MG, VG, R, and FAC2 = 1.0; and FB and NMSE = 0. Note that since FB 

and MG measure only the systematic bias of a model, it is possible for a model to 

have predictions completely out of phase of observations and still have FB = 0 or MG 

= 1.0 because of canceling errors.  

 

We then used the model to predict the air quality in 2020 and 2021 in a counterfactual 

world where there was no COVID-19. We calculated the difference between the 

observed and the simulated as the magnitude of reduction due to COVID-19. 

Nonparametric Wilcoxon tests were performed to test the level of statistical 

significance for differences as followed, due to non-normally distributed data.  

𝑧 = 	
𝑊2 −

𝑛(𝑛 + 1)
4

O𝑛(𝑛 + 1)(2𝑛 + 1)24
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Where n is the number of pairs where difference is not 0 and ws is the smallest of 

absolute values of the sums. 

 

2.2.3 Health Impact Analysis 

Health and Economic impact analyses are conducted to look into the long-term impact 

of COVID-19. The estimated health burden owing to short-term exposure to air 

pollutants can be calculated as follows (Silva et al. 2013): 

𝑀 = 	Q𝐴𝐹3 × 𝐵𝑀
4

5

 

𝐴𝐹3 =
𝑅𝑅3 − 1
𝑅𝑅3

 

𝑅𝑅3 = 𝑒(6×(8(8$)) 

Where M denotes the total mortality from air pollution, n is the total number of days, 

BM is the daily baseline mortality, AFi is the daily attributable fraction associated 

with short-term exposure to an air pollutant i. In Eq. (2), RRi is the daily relative risk 

associated with short-term exposure to an air pollutant i. In Eq. (3), β is the 

concentration-response coefficient for health endpoints due to an exposure to air 

pollutants, which were obtained from recent epidemiological studies (Shang et 

al.2013) (Table 3); Ci is the daily concentration of an air pollutant i; Ci0 is the daily 

threshold concentration of air pollutants, which is assumed to be zero here, as in 

previous studies (Chen et al. 2017; Yao et al. 2020).  

 

Table 3: Response coefficient (β) for each pollutant species 
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Pollutant species Response Coefficient (β/%) 

PM2.5 (10 µg/m³) 0.38 
PM10 (10 µg/m³) 0.32 
SO2 (10 µg/m³) 0.81 
NO2 (10 µg/m³) 1.30 
CO (1 mg/m³) 3.70 
O3 (10 µg/m³) 0.48 

  

2.2.4 Economic Impact Analysis  

The value of statistical life (VSL) method was applied to estimate the economic loss 

due to mortality caused by short-term exposure to air pollution. The associated health 

economic loss (HEL) was calculated by: 

𝐻𝐸𝐿 = 𝑀 × 𝑉𝑆𝐿9,*;5< 

Where M is the health burden calculated from Eq. (1). VSLk,2019 is the adjusted VSL 

in city k in 2019 and can be calculated by Eq. (5) (Yao et al. 2020; Zhao et al. 2016): 

𝑉𝑆𝐿9,*;5< = 𝑉𝑆𝐿=,*;5; × (
𝐺9,*;5;
𝐺*;5;

)> × 	(1 +%∆𝑃9 +%∆𝛾9)> 

 

Where VSLb,2010 is the base value of VSL in Beijing in 2010 (1.68 million RMB). 

Gk,2010 is the GDP (gross domestic product) per capita in city k in 2010. G2010 is the 

GDP per capita in Beijing in 2010. δ is the income elasticity, which is assumed to be 

0.8 recommended by the Organization for Economic Co-operation and Development 

(OECD) (OECD, 2014). %Δ Pk represents the price inflation, i.e. percentage change 

in CPI (consumer price index) from 2010 to 2019; %Δγk is the post-2010 income 

growth, i.e. the percentage change of GDP per capital in city k from 2010 to 2019. 

The CPI and GDP data of each city are available from the China Statistical Yearbook 

2019 (http://data.stats.gov.cn/easyquery.htm?cn=C01). Figure 2 is the overall 
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flowchart of our study design, concerning how we split the data, train the model and 

calculated the associated health and economic impact.  

 

 

Figure 2.  A flowchart illustrating how we built and validated our model before using 

the model output for health and economic analyses.  

 

 

3 Results 

3.1  Model Validation using 2019 observational data 

The model validation part was done by Dr. Qiao Zhu. Figure 3 summarizes the most 

important ten predictors in our model based on training dataset, seven of which are 

dummy variables for seasons and months. The baseline value for year, season and 

month dummy are 2018, fall, and January. The most important dummy variable is 
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season_spring and the most important non-dummy variable is average temperature. 

The figure is scaled so that the importance of season_spring in predicting the output is 

1 and importance of other predictors is relative to season_spring.  

 

 
Figure 3: The most importance 10 predictors in the XGBoost model and their relative 

importance to the most important predictor (season_spring) (Figure Courtesy: Dr. Qiao 

Zhu). 

 

Table 4 summarizes the parameters we calculated to evaluate model performance.	

Theoretically, a perfect model would have geometric mean bias (MG), geometric 

variance (VG), correlation coefficient(R), and fraction of predictions within a factor of 

two of observations (FAC2) = 1.0; and FB (Fractional Bias) and NMSE (Normalized 

Mean Square Error) = 0.0. For our data, the model has FB lower than 10%, high MG 

above 0.95, low NMSE less than 0.01, high R over 0.7, and high FAC2 over 86%, for 

all species other than for SO2. The reason why the model performs relatively poorer for 

SO2 is most likely caused by its low concentrations. The fractions of differences 

between observations and prediction are larger when absolute values are low compared 
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to when them are high. Overall, the model does a good job of predicting pollutant 

concentrations pre-COVID and gives us enough confidence in estimating air quality, 

using the meteorological data. 

 

Table 4: Evaluation Table for the XGBoost model using 2019 as test data. FB = 

Fractional Bias, MG = Geometric Mean Bias, NMSE = Normalized Mean Square 

Error, VG = Geometric Variance, R = correlation coefficient, FAC2 = fraction of 

observation within a factor of 2 of the observations 

 

 

3.2 Comparison of simulation and observational data during lockdown  

3.2.1 Air Quality Change 

During lockdown, many regions exhibited statistically significant differences between 

observed and simulated concentrations for PM2.5, PM10, SO2, NO2, and CO (Figure 4). 

To be specific, the differences between observations and simulations were statistically 

significant for all the five species according to Wilcoxon test for N, NW, SE, S, E, C. 

On a city level, 64%, 93%, 82%, 95%, and 81% of the cities surveyed showed a 

statistically significant reduction in PM2.5, PM10, SO2, NO2, and CO concentrations, 

respectively, due to COVID lockdown, according to the Wilcoxon test. The 
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percentage reductions due to COVID were 17%, 26%, 24%, 36%, 24% for PM2.5, 

PM10, SO2, NO2, and CO concentrations, respectively. On a regional level, the 

differences were statistically significant for all eight regions for PM10, NO2 and CO. 

For PM2.5, the differences were significant for all regions other than NE and for SO2, 

the differences were significant for all regions other than SW.  

 

The lockdown has impacted O3 differently than the other air pollutants. O3 

concentrations were higher during the COVID lockdown. The O3 concentrations 

during the lockdown were 11% greater than the values simulated without COVID and 

the increase was found in 34 cities in 8 regions. However, the Wilcoxon test indicated 

that this increase was not statistically significant for most of the cities. At the regional 

level, five (C, E, NW, S, SW) out of eight regions had significant differences for O3. 

At the city level, the increase was only significant for 34% of cities (16 out of 35) 

surveyed. 
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Figure 4. Observed pollutant concentration in 2020 during lockdown period compared 

against those in a counterfactual simulation without COVID-19. * symbol next to the 

region abbreviation on the X-axis illustrates regions with significant differences 

between the observed and the predicted using Wilcoxon tests. 

 

Table 5 summarizes the same six parameters that we use to validate model 

performance during the lockdown period. Compared to 2019 where absolute FB is 

less than 0.1 for all pollutants other than SO2, the FB for during lockdown period is 

larger than 0.1 for all speies, and aboslute FB for NO2 in particularly is more than 0.4. 

This is also consistent with our findings that decrease in NO2 concentration is the 

most significant during lockdown. MG and FAC2 are both less than 0.9 for PM2.5, 

PM10, SO2, NO2 and CO.  

 

Table 5: Evaluation Table for the XGBoost model by comparing 2020 simulation data 

with observational data 

 

 

3.2.2 Premature Mortality 
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Tables 5 and 6 describe the excess mortality during the lockdown by region and by 

species. Excess mortalities due to exposure to SO2, CO, and NO2 are higher in the 

observed compared to simulated values for all regions. NO2 is the primary contributor 

to excess mortality in counterfactual simulations both nationally and for each region 

individually. In reality, however, O3 is the primary contributor to excess mortality for 

seven out of the eight regions (except for NW, where NO2 is still the primary health 

concern in observation) and in aggregate nationally. The nationwide avoided excess 

mortality due to NO2 is the greatest among all pollutant species (3.83 people per 

million people per day, later all same unit unless otherwise stated). All regions 

experienced an increase in O3 associated excess mortality and the mortality was 

higher in the east and north in general (C, E, NE, N) compared to the South and West 

(S, SW). The increase is biggest for NW (1.82) and smallest for N (0.37). This is also 

consistent with findings in earlier studies that short-term excess mortality is more 

attributable to NO2 and O3. (Yao et al., 2020; Nie et al., 2021; Xiao et al., 2021) Even 

though the raw concentration of NO2 is less than that PM2.5, it still causes many more 

deaths in the short-term, due to a much larger exposure response coefficient which is 

obtained from and confirmed by previous meta-analysis (CITATION).  

 

Nationally-combined CO mortality followed next (4.92), with a similar impact due to 

PM10 (4.62). It is also interesting to notice that among all regions, CO-associated 

excess death was still the highest in Central (where Wuhan is) in observation. SO2 

caused the least excess mortality, both in observation and simulations for each region 
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separately. Regionally speaking, in the modeled result, Central has the greatest 

combined mortality due to air pollution (42.08). South has the lowest combined 

mortality (21.86). In reality, Northeast has the greatest combined mortality (33.78) 

and South has the lowest combined mortality (16.09). The combined observation-

simulation difference is greatest for East (-10.43) and smallest for Northeast (-4.78) 

 

Table 6: Excess mortality by species during lockdown (death per million people per 

day) 

 

Table 7: Excess mortality by regions during lockdown (death per million people per 

day) 
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Figure 5. Observed excess mortality per species (death per million people) in 2020 

during lockdown period compared against those in a counterfactual simulation 

without COVID-19. 

 

3.2.3 Health Economic Losses 

The distribution of health economic losses is overall similar to that of excess 

mortality. O3 is the pollutant with the greatest economic burden for six out of the eight 

regions during the lockdown, with the exception of E & NW, where NO2 was the 

primary Economic concern. O3 caused the greatest economic losses in the east and 

north regions (NE, N, SE) and also resulted in additional economic losses during the 

lockdown, compared to the counterfactual simulation for all regions. The excess 

losses were the greatest for NW (2.45 million yuan per million people per day, 

following all the same unit unless otherwise stated) and smallest for N (0.70). Due to 

the large concentration reduction found for NO2 during the lockdown, we found that 
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substantial economic loss (6.53 million yuan per million people per day) was avoided 

due to the COVID lockdown. 

 

Table 8: Health Economic Losses by species during lockdown (million yuan per 

million people per day) 

 

Table 9: Health Economic Losses by regions during lockdown (million yuan per 

million people per day) 
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Figure 6. Observed excess health economic losses per species (million yuan per 

million people) in 2020 during lockdown period compared against those in a 

counterfactual simulation without COVID-19. 

 

3.3 Comparison of simulation and observational data post lockdown 

3.3.1 Excess mortality 

The difference between observation and counterfactual simulations is smaller after the 

lockdown. The difference between the combined health burden calculated from the 

machine learning simulation result and that from actual observation is -0.28 people 

per million people per day after lockdown, compared to -1.14 people per million 

people per day during the lockdown. To be specific, the difference for PM2.5, PM10, 

SO2, NO2, CO, and O3 were -0.52, -1.56, -0.4, -3.83, -1.39, and 0.87 during the 

lockdown and -0.13, -0.03, -0.19, -0.8, -0.57 and 0.03 after lockdown, respectively. 

The mortality due to the exposure to SO2, NO2, CO by region were lower during 

COVID compared to counterfactuals for all regions. Among all species, the COVID 

impact was found to be the greatest for NO2. In the counterfactual scenario, NO2 is the 

leading health concern for six out of eight areas but using the observed values, NO2 

only results in the largest health impacts in four areas (E, NE, NW, SW), while O3 is 

important in the remaining four regions (C, N, S, SE). Geographically, O3-associated 
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economic losses were higher in the east and north in general (C, E, NE, N), compared 

to south and west (S, SW, SW). SO2 was still the pollutant with the least health 

burden. 

 

In spite of the significant reduction in excess mortality, the total gaseous oxidants 

(Ox=O3+NO2) remained mostly unchanged. Table 10 summarizes the total gaseous 

oxidants before lockdown and reduction were much smaller compared to changes in 

NO2 and O3 only. Earlier studies also yielded similar results (Shi, et al., 2021). This is 

due to a nonlinear photochemical process known as the Ozone-NOx-VOC sensitivity. 

Volatile organic compounds or VOCs, and NO2 are both precursors to O3. In the 

VOC-limited areas where NOx concentrations are high, increasing NOx will lead to 

decreased O3 and decreasing NO2 would instead increase O3. This also sheds light on 

the difficulty to treat NO2 and O3 pollution at the same time in major cities as the 

VOC-limited region is typical of polluted urban areas. 

 

Table 10: Excess mortality by species after lockdown (death per million people per 

day)  
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Table 11: Excess mortality by regions after lockdown (death per million people per 

day) 

 

 

Table 12: Total amount of Ox before and after lockdown (µg/m³) 

 

 

Figure 7. Observed excess mortality per species (death per million people) in 2020 

after lockdown period compared against those in a counterfactual simulation without 

COVID-19. 
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3.3.2 Health economic losses  

Similar to the health burden distribution, the areas where O3 was the primary health 

concern (C, N, S, SE) were also places where O3 was a primary economic concern. 

SO2 is the pollutant causing the least economic losses (15.64) for all regions. The 

health economic losses due to the exposure to SO2, NO2, CO were lower during 

COVID for all regions. Among all species, the observation- counterfactual differences 

are still greatest for NO2. To be specific, the difference between OBS-Sim results 

before lockdown for PM2.5, PM10, SO2, NO2, CO, and O3 were -0.98, -2.8, -0.71, -

6.53, -2.39, and 1.35 during the lockdown and -0.24, -0.13, -0.32, -1.37, -0.92, and 

0.03 after lockdown, respectively. In modeled result, E (Primarily owing to O3 and 

NO2) has the greatest health economic losses due to air pollution (85.45). S has the 

lowest combined mortality (37.12). In actual observation, the ranking of combined 

mortality per region is consistent with machine learning output, which also 

corroborates the validity of the model.  

 

Table 13: Health Economic Losses by species after lockdown (million yuan per 

million people per day) 
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Table 14: Health Economic Losses by regions after lockdown (million yuan per 

million people per day) 

 

 

Figure 8. Observed health economic losses per species (million yuan per million 

people) in 2020 after the lockdown period compared against those in a counterfactual 

simulation without COVID-19. 

 

3.4 Limitation & Strengths 

Data availability and quality has been major issues. For many of the demographic data 

(e.g., baseline mortality) the national statistical yearbook only had the data for each 

province, instead of for each individual city. Therefore, we could only use provincial 
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data as proxies in calculations. For those data that had to be at the city level, (e.g., city 

population), the national statistical yearbook only had the values available for 

provincial capitals. For non-capital cities, we needed to rely on alternative sources, 

such as the statistical yearbook of each province, which unfortunately usually does 

not match those from the national stat yearbook. We were not able to contrast the 

excess deaths due to COVID-19 vs the lives saved due to improved air quality 

conditions as we couldn’t find data for COVID-related deaths in China in each city.   

 

Data availability also played a role in our mortality and economic loss analysis. 

Unfortunately, we were not able to conduct an age-stratified health analysis, as we 

failed to find relevant literature that included response coefficients by age group for 

all six species. For the consistency of our analysis, we only calculated all-age 

mortality. The multi-species cumulative health impact was also an important factor to 

consider for a more comprehensive health analysis but we lacked information to do 

so. 

 

Despite the limitations, the study also has its strength. The study is highly 

interdisciplinary and combines data from natural science and social science, and 

estimated the atmospheric, health, and economic impact of COVID-19 on air quality. 

It is also one of the first papers to analyze the long-term post lockdown air quality and 

uses ensemble machine learning algorithms XGBoost. Unlike standalone machine 

learning algorithms, such as decision trees and random forests, ensemble learning 
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combines the output from multiple models and further optimizes the performance. 

The high model performance created a more trustworthy counterfactual world and the 

large sample size also allowed to provide a comprehensive overview of air quality 

change in China post lockdown.  

 

3.5 Future steps  

In the future, we plan to apply more machine learning models (Support Vector 

Machine, Random Forest and Neural Network etc.) to the data, compare how different 

models perform and take the best performing part. Even though XGBoost model has 

already done a good job of predicting pollution concentration, we believe the 

ensemble of different model algorithms would do even better, as has been 

corroborated in earlier studies. (Di et al., 2019; Di et al., 2020; Requia et al., 2020) 

We also would like to extend our study period to the two years after lockdown and 

assess if the post-lockdown effect is still present and how that has changed in 

magnitude. Since two years is not a short-term, we could also conduct a sensitivity 

analysis with long-term exposure response coefficients and see how different the 

results are from the short-term coefficients. We also want to include more cities and 

use age-stratified exposure-response coefficients to have the estimation of excess 

mortality and health economic losses at a higher resolution.  
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5 Appendix  

Graph:  

1. AQ predicted vs observed Per city (PM25) –boxplot 

Cities name with * refers to statistically significant Wilcoxon test result 
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2. Health Analysis Per city 
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