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Abstract 

 
Fundamental Principles of 3D Genomic Organization 

 
By Michael Holden Nichols 

 
The three-dimensional (3D) conformation of chromatin in the nucleus is an elusive but essential 
aspect of genomic regulation. Only with recent advances in techniques such as Hi-C has it been 
possible to assess this structure at the sequence level across the entire genome. A variety of 
architectural patterns are observed in these conformational assays. Here we present insights 
into the fundamental principles that give rise to these structural phenomena. Two independent 
processes can explain the majority of the conformational features of the genome. Extrusion of 
DNA loops by Structural Maintenance of Chromosomes (SMC) complexes form stable CTCF 
loops and associated topological domains. We present the theoretical logic of this model and a 
mechanistic explanation for how SMC complexes may extrude loops. Separately, chromatin 
segments associate preferentially with other regions with similar chromatin features. We show 
this agglomeration directly corresponds to various epigenetic features and extends beyond 
canonical binary segregation of transcriptionally active and inactive chromatin. Together these 
processes organize the genome, playing essential roles in transcriptional regulation and likely 
other aspects of genome function. 
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Chapter 1: Introduction 

 

The chromosome as a folded polymer 

 

The three-dimensional folding of polymers is one of the fundamental bases of all known biology. 

The folding of amino acid chains produces proteins responsible for nearly every biological 

process. Likewise, the ribonucleic acid (RNA) polymers that encode these proteins also fold to 

regulate their own function and even to produce enzymatic activity of their own. With recent 

advances in technique and theory, it is now becoming clear that the folding of deoxyribonucleic 

acid (DNA) also plays an essential role in its function. Investigating and understanding this 

organization is a uniquely difficult problem due to the DNA polymer’s large size, the highly 

stochastic and labile nature of this organization, and the myriad of proteins and RNAs that 

interact with the DNA to regulate folding. 

 

Chromosomes are massive molecules composed of hundreds of millions of DNA base pairs 

chained together to form a polymer with a contour length measured in centimeters. These 

polymers are highly flexible with a persistence length of only about 100 base pairs (Gross et al. 

2011). Together these features make chromosomes the most structurally complex molecules in 

biology with many possible folded configurations. Additionally, chromosomes do not each fold 

only among themselves but intermingle in the nucleus. Human nuclei have diameters on the 

order of 10 micrometers, meaning the dozens of centimeter-long chromosomes of a diploid 

nucleus are necessarily extensively folded (Sun, Shen, and Yokota 2000). The sheer enormity 

of DNA folding poses unique methodological obstacles to its understanding. 
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Fluorescence in-situ hybridization (FISH) allows for the visualization of the nuclear localization 

of regions of the genome according to sequence. Whole chromosome FISH has revealed that 

the organization at the chromosome scale is highly stochastic (Meaburn and Misteli 2007). A 

given chromosome tends to occupy a given region of the nucleus termed a chromosome 

territory, but this position varies from cell to cell. These territories are not sharply delineated, 

with one chromosome’s territory blending into those of its neighbors (Meaburn and Misteli 

2007). While some non-random features exist at this level of organization, such as a 

chromosome’s distance from the nuclear periphery, these correlations tend to be weak 

(Meaburn and Misteli 2007). 

 

These findings evince another major obstacle in understanding DNA polymer folding. DNA 

polymers lack any specific configuration favorable enough to overcome entropy. This intrinsic 

disorder causes stochastic variation to dominate large-scale genomic organization. This 

phenomenon is also found in some protein and RNA structures that lack a single stable 

conformation. As a result, the organization of the genome is highly dynamic from cell to cell and 

even moment to moment. However, entropy is not the only force at work on the DNA polymer. 

The DNA is organized by several distinct nuclear phenomena. This makes describing the folding 

of a DNA polymer more complex than identifying a few optimal conformational states. Rather, 

DNA folding can only be understood as an energy landscape where polymers in constant 

thermodynamic flux shift between local minima. This probabilistic nature confounds traditional 

models of polymer folding. 

 

The dynamic forces driving this organization have only recently begun to be identified and 

represent another layer of complexity in understanding the folding of DNA polymers. Unlike 

proteins and single-stranded RNA, double-stranded DNA polymers do not strongly self-interact 

by themselves. The organization present in DNA is thus not an intrinsic property of the DNA 
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nucleotide sequence but rather is mediated by DNA binding proteins and their interactions with 

each other and other pieces of DNA. In addition, many RNAs associate with chromatin and 

likely play organizational roles as well. The DNA nucleotide sequence still governs organization, 

but only indirectly by the nature of the proteins with which each sequence interacts. This 

complicates the process of understanding genomic organization as the nucleotide sequence 

alone is not sufficient to explain the folding of the DNA. This is not a concept unknown in protein 

or RNA folding where chaperones play a large role in directing folding, but these ancillary 

molecules represent the primary forces at work in DNA folding. These “epigenetic” features are 

dynamic and change between cell types, respond to environmental conditions and change over 

the course of the cell cycle. The genomic organization is therefore equally dynamic. 

Understanding the organizational patterns at work in the nucleus thus requires an 

understanding of the multitude of DNA-interacting proteins that constitute the epigenome.  

 

These features of chromosome folding, its size, its stochasticity, and its protein-driven nature 

make understanding this incredibly complex phenomenon profoundly difficult. However, just as 

the structure of a protein or RNA polymer determines its function, there is mounting evidence 

that the structure of DNA polymers and the organization of the nucleus are key to transcriptional 

regulation and other nuclear functions. With this driving motivation in recent years, we have 

begun to elucidate the fundamental forces governing genomic organization. 

 

Features of genomic architecture 

 

Chromosomes fold across such large length scales that distinct forces play roles in different size 

regimes. DNA is most directly folded by histone octamers that wrap roughly 146 base pairs 

around them in approximately 1.5 turns (Andrews and Luger 2011). While this immediate 
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organization is rather straightforward these integrated proteins play a large role in functional 

regulation and organization at larger scales. The positioning and spacing of these histones 

alone are significant features of chromatin organization and regulate the binding of other 

proteins to the DNA (Struhl and Segal 2013). These histones also function as a canvas for a 

palette of post-translational modifications (PTMs) that correlate with and are thought to play 

important roles in numerous genomic processes. This histone code represents the most 

foundational level of chromosome organization upon which higher levels are built. In addition to 

histones, the chromatin is festooned with thousands of different proteins. Most of these DNA 

binding proteins are thought to function as transcription factors that affect transcriptional activity 

(Spitz and Furlong 2012). While some of these transcription factors bend the DNA with their 

binding their effects on DNA-polymer folding are poorly understood with only several 

exceptions. Models of transcription factor function generally require them to physically interact 

with the transcription machinery at the site of transcription activation, the promoter. However, 

many transcription factors bind DNA sequences called enhancers, which can be located very far 

away along the length of the chromosome. It follows that transcription factors rely on the folding 

of the DNA into a loop between the enhancer and promoter in order to play their proximal role. 

To what extent transcription factors drive the formation of these loops is not well understood. 

This enhancer-promoter looping is a key mechanism by which genomic folding is thought to 

regulate genomic function (Nolis et al. 2009). This basic understanding of DNA folding comes 

from the direct implications of the proteins that bind to it, but to understand folding at a larger 

scale requires different methods. 

 

The first glimpses into large-scale nuclear organization came from microscopic analysis of the 

nucleus using various staining and fluorescence techniques. These analyses revealed that the 

nucleoplasm was not uniform but rather contained numerous examples of discrete regions with 

different contents (Zimber, Nguyen, and Gespach 2004). These nuclear bodies lack membranes 

https://www.zotero.org/google-docs/?broken=pLoSEf


5 
 

 
 

and so represent agglomerations of specific subsets of nucleoplasm components due to mutual 

attractions. Subsequent studies have shown that many of these nuclear bodies are responsible 

for specific functions such as mRNA splicing (Galganski, Urbanek, and Krzyzosiak 2017). This 

has led to a general model in which various nuclear functions occur in spatially segregated 

regions of the nucleus. It is thought that this organization improves the efficiency of these 

processes by concentrating the necessary components with their targets, but also provides a 

means of regulating function by the inclusion and exclusion of targets. Some of these 

membraneless nuclear bodies contain chromatin such as the nucleolus where ribosomal RNA 

genes congregate along with RNA Polymerase 1 to transcribe ribosomal RNAs (Iarovaia et al. 

2019). This has led to the natural hypothesis that functionally related regions of the genome 

may colocalize together with their intended machinery. An example is transcription, which in 

some cases is thought to occur in “transcription factories” where genes colocalize with RNA 

polymerases based on the visualization of focal sites of transcription (Jackson et al. 1993). This 

concept of functional regulation through spatial segregation into biomolecular condensates 

appears to be a fundamental feature of genomic organization. 

 

Our understanding of genomic organization at the level of specific genomic loci has largely been 

informed by a technique known as chromatin conformation capture. This simple method 

measures the frequency that genomic loci are near each other by chopping the chromosomes 

into small pieces and then rejoining them together into novel chimeric sequences (Dekker et al. 

2002). Because DNA is extensively folded, the rejoining process does not repair the 

chromosome into its original sequence but rather into a novel order based on the spatial 

proximity of each piece in the nucleus. In this way, chimeric pieces of DNA composed of 

sequences potentially far apart along a chromosome or even from separate chromosomes are 

generated and the frequency of any given chimeric sequence is a function of the frequency with 

which those two loci were spatially proximal in the cell population. By quantifying the abundance 
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of a specific chimeric sequence, we can determine how frequently a given pair of genomic loci 

interact. By sequencing all of the resulting chimeric sequences we can see the interaction 

frequencies of the entire genome at the sequence level. This latter technique is known as Hi-C 

and produces a two-dimensional matrix composed of counts of the chimeric sequences 

originating from each pair of genomic loci (Lieberman-Aiden et al. 2009). As genomic 

organization is highly stochastic these counts represent the relative frequency these genomic 

regions are in proximity with one another. 

 

The strongest feature of these Hi-C maps is an expected characteristic of a predominantly 

disordered polymer. Interaction frequency decays with genomic distance. Loci close together on 

a polymer interact more frequently than loci farther away according to a power law decay (Mirny 

2011). This means sites within ten thousand base pairs of each other interact orders of 

magnitude more frequently than sites hundreds of thousands of base pairs apart. Several other 

significant features are found in these Hi-C maps but none compare to distance decay, 

indicating that even the most enriched interactions are still stochastic and only occur in a 

fraction of cells or a fraction of the time. 

 

The most significant deviation from the uniform distance decay is a division of the chromosome 

into types that interact more frequently with other chromatin of the same type. Alternating 

genomic regions of each type along the chromosome result in a checkerboard-like pattern of 

increased and decreased interactions in the Hi-C map (Figure 1.1, top). Examining the 

chromatin features associated with each type revealed that transcriptional activity was largely 

associated with only one type making the other type transcriptionally inactive. This analysis was 

first performed in the lymphoblastoid cell line GM12878 and the two types of chromatin were 

called A and B, for transcriptionally active and inactive, respectively (Figure 1.1, red and blue) 

(Lieberman-Aiden et al. 2009). This basic pattern is found throughout human cell types and in 
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every Eukaryote for which Hi-C maps exist (Rowley et al. 2017). One explanation for this pattern 

of interaction biases among chromatin types is that they are spatially segregated into discrete 

compartments in the genome. The physical characteristics of these compartments such as their 

size, their count, and the precision of their segregation, are still unclear. These biomeolcular 

condensates likely exist along a gradient from large, discrete, and stable formations, such as 

the larger nuclear bodies to small, fuzzy, and transient formations that would more closely 

match the appearance of punctate transcription factories but may be even smaller. Where along 

this gradient each compartment type falls is likely a function of the strength with which the 

proteins and RNA of each chromatin type self-attract. Stronger attractive forces would more 

effectively overcome entropy to produce more stable agglomerations while weaker forces would 

more easily fall apart. 

 

Initial studies of this phenomenon necessarily used a large resolution of 1 megabase leaving 

their precise relationship with transcription and other chromatin features unclear as these 

features vary on the scale of kilobases (Lieberman-Aiden et al. 2009). In Drosophila, where due 

to its smaller genome size higher resolution Hi-C maps can be produced, the compartment 

types directly correspond to transcription such that genomic organization can be reproduced 

using only measures of transcription or its associated histone modifications (Rowley et al. 

2017). It is tempting to extend these results to humans, however, the Drosophila genome is 

extremely gene dense and is almost entirely occupied by histone modification associated with 

transcriptional activity (H3K27ac) or inactivity (H3K27me3) (Rowley et al. 2017). The human 

genome, on the other hand, is far more gene sparse, with large inactive stretches of the 

chromosome that are often not strongly marked by chromatin features associated with 

transcriptional inactivity. The chromatin features associated with each compartment differ 

between studies of different cell types, suggesting the two-compartment model is likely an 

oversimplification. Closer and higher resolution examinations have refined the concept to show 
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that compartmental interaction patterns are better described by more than just two types of 

chromatin (Rao et al. 2014). 

 

Another feature of Hi-C maps are contiguous regions of the chromosome that preferentially self-

interact called topologically-associating domains (TADs). Naturally, compartmentalization 

creates TADs as each contiguous region of the same chromatin type will interact more 

frequently with itself than with neighboring regions of different types. These are called 

compartmental domains and are responsible for TADs found in Drosophila (Rowley et al. 2017). 

However, compartmental domains are not sufficient to explain all TADs seen in human nuclei, 

although they are responsible for many. A separate phenomenon is at work in our nuclei. 

Conspicuously strong interactions are found between the binding sites of the DNA-binding 

protein CTCF (Rao et al. 2014). This protein’s homolog in Drosophila, dCTCF, had long been 

known as an insulator reported to inhibit enhancer-promoter interactions when placed between 

the two elements (Gerasimova et al. 2007). These strong interactions or loops between CTCF 

sites are, however, not found in Drosophila (Rowley et al. 2017). It is tempting to suppose these 

loops are formed by stable homodimerization between CTCF proteins. A model by which 

stochastic motion brings two CTCF sites into contact and they bind tightly to each other could 

create loops, however this model is actually incompatible with a remarkably curious feature of 

CTCF looping. CTCF’s binding motif is non-palindromic, meaning each site is oriented along the 

chromosome. This orientation plays an immense and unexpected role in loop formation as the 

vast majority of CTCF loops form between CTCF sites in a convergent orientation with respect 

to each other (Figure 1.1, grey arrows). In contrast, looping interactions only rarely form 

between CTCF sites in a divergent orientation. This orientation bias has strong implications for 

the mechanism by which CTCF loops form, as any mechanism relying on stochastic motion 

cannot explain it. Instead, this observation has led to the proposal of a loop extrusion 

mechanism for CTCF loop formation (Nichols and Corces 2015). In this model CTCF sites form 
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loops due to the action of a loop extruding complexes for which CTCF sites act as oriented 

borders. 

 

The loop extrusion model posits the existence of a DNA motor that extrudes loops between 

CTCF sites. However, at the time, no existing DNA motor fit the required characteristics nor 

associated strongly with CTCF sites. Attention turned to the Structural Maintenance of 

Chromosomes (SMC) family of protein complexes. These ring-shaped complexes were capable 

of hydrolyzing ATP and one member, cohesin, strongly colocalized with CTCF binding sites in 

the genome (Figure 1.1, green rings). Another member, condensin, was known to play a key 

role in mitotic condensation of the genome, which had independently been theorized to also 

utilize a loop extrusion mechanism (Alipour and Marko 2012). This strong circumstantial 

evidence led to tests of the putative roles of cohesin and condensin in loop extrusion processes 

and to in vitro experiments testing their ability to act as DNA motors and extrude loops. Both 

protein complexes are now known to be indispensable for their respective looping functions and 

to extrude DNA loops in vitro confirming a key prediction of the extrusion model of CTCF loop 

formation (Rao et al. 2017; Green et al. 2012; Ganji et al. 2018; Davidson et al. 2019). While 

CTCF oriented loops are absent in Drosophila, loop extrusion is likely a conserved function of 

the SMC complexes, as SMC homologs extrude circular chromosomes even in prokaryotes 

(Wang et al. 2015). Moreover, cohesin strongly affects genomic organization even in the 

absence of CTCF sites by its constant extrusion action, which condenses the DNA and 

increases the frequency of short range interactions (Fudenberg et al. 2017). The mechanism by 

which these complexes move along the DNA to extrude loops is still a matter of debate without 

a fully satisfactory model.  

 

By constraining the loops extruded by cohesin, CTCF sites act as unidirectional barriers and 

change the topology of the chromatin. The chromatin between two convergently oriented CTCF 
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sites self-interacts more than average. This is another mechanism by which TADs are formed 

and are known as contact domains. Contact domains form by an independent process but their 

borders frequently correlate with compartmental domains suggesting a functional role for these 

borders. These domains may play an important role in regulating distal enhancer-promoter 

interactions. By increasing interaction frequencies within domains, the frequency of enhancer-

promoter loops would be increased and, correspondingly, enhancer-promoter loops between 

domains would be diminished (Hnisz, Day, and Young 2016). Loop extrusion may even be 

playing a direct role in enhancer-promoter looping since, as the cohesin complex tracks over the 

domain, it will bring distal regions directly together (Schoenfelder and Fraser 2019). The 

preferential localization of cohesin to promoter regions further hints towards this possibility. 

 

While we are only beginning to understand the 3D architecture of the genome, we have already 

identified at least two key independent processes. Both these processes, compartmentalization 

and loop extrusion, influence the interaction frequencies of genomic loci with each other and so 

likely play a role in enhancer-promoter interactions. However, as assessed by Hi-C, even strong 

interaction biases created by these processes still fall far short of ensuring or prohibiting any 

given interaction. Thus, it seems unlikely that a modest increase or decrease in enhancer-

promoter contact frequencies is the sole function of compartmental or contact domains. We 

understand only the most basic consequences of these organizational principles and lack a 

detailed mechanistic understanding of how compartments segregate or how loops are extruded.  
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Figures 

   

 

Figure 1.1. Compartments and CTCF loops organize the genome 

Human Hi-C map (top) is organized by A (red) and B (blue) compartments (second from top) 

and oriented CTCF sites (grey arrows) which form loops with cohesin rings (green rings). 

Together these processes fold the genome (rainbow line). 
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Chapter 2: A CTCF code for 3D genome architecture 
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Summary 

The architectural protein CTCF plays a complex role in decoding the functional output of the 

genome. In this issue of Cell Guo et al. show that the orientation of a CTCF site restricts its 

choice of interacting partner, thus creating a code that predicts the three-dimensional 

organization of the genome. 

  

Main Text 

CTCF is a DNA-binding protein known to play a variety of roles in the regulation of transcription 

by forming loops in which distant elements of the genome are brought into spatial proximity 

within the nucleus (Ong and Corces, 2014). The formation of these loops is believed to involve 

homodimerization of the CTCF protein bound to their bases. By mediating contacts between 

distant sequences, CTCF regulates enhancer-promoter interactions throughout the genome and 

appears to play a key role in the formation of Topologically Associating Domains (TADs) (Nora 

et al., 2012). Analysis of genome-wide interaction data obtained by Hi-C suggests that CTCF-

mediated contacts occur much more frequently when the binding sites for this protein are 

present in the forward and reverse orientations (Rao et al., 2014). Interactions between binding 

sites arranged in the same orientation still occur, although less frequently, and interactions 

between CTCF sites in a divergent orientation rarely take place. In this issue, Guo et al. (Guo et 
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al., 2015) carry out a detailed functional analysis of the role of CTCF binding site orientation in 

the regulation of enhancer-promoter choice underlying stochastic expression of specific 

protocadherin isoforms. 

The mouse protocadherin genes are arranged in three different clusters, named Pcdha, b and g, 

located in two different sub-TADs. Each Pcdh protein isoform is encoded by an RNA arising 

from alternative splicing between a series of alternative constant and variable exons. Each 

variable exon contains an upstream promoter, and transcription from a specific promoter 

requires interaction with downstream enhancers via DNA looping. Each variable exon and 

enhancers are associated with specific CTCF sites. Guo et al noticed that the CTCF binding 

sites that form loops between promoters and enhancers are arranged in a convergent 

orientation. Using the CRISPR-Cas9 genome editing system they created inversions of key 

CTCF binding sites, switching their orientation. The authors then use 4C to show that the 

inverted CTCF binding sites now have an inverted interaction bias. This confirms the causal 

relationship between DNA binding site orientation and the direction of looping. Furthermore, the 

change in looping directionality is accompanied by changes in transcription, indicating a 

functional role for the CTCF mediated interactions in regulating gene expression. 

The authors then expand their investigation to the entire genome using published CTCF ChIA-

PET data. They find the same orientation bias in interactions between CTCF sites as previously 

shown seen using Hi-C. The authors use these data to show that TAD boundaries are enriched 

in CTCF sites arranged in divergent orientations. This means that CTCF sites at the borders of 

TADs will tend to loop towards the interior of each TAD. While it was known that CTCF binding 

sites were enriched in TAD boundaries in specific orientations (Vietri Rudan et al., 2015), this 

finding helps explain why only a subset of CTCF sites in the genome are able to form these 

boundaries, and reinforces the functional relevance of these sites to the formation of TADs. 
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These observations solidify what now appears to be one of the underlying principles by which 

the orientation of the DNA sequence in CTCF binding sites shapes 3D genome organization. 

However, this new finding raises a series of questions as to the mechanisms underlying the 

specificity of interactions between CTCF sites in the genome. CTCF binding sites in divergent 

and convergent orientations are molecularly identical and impossible to distinguish outside of 

the larger context of the DNA molecule. Figure 2.1A shows two theoretical CTCF mediated 

loops. The only difference between the two loops is which side of the CTCF sites the looped-out 

DNA is on. Despite this, the loop depicted on top occurs much more frequently than the loop 

depicted below. This means that the mechanism by which CTCF forms loops must be aware of 

this context and be capable of discriminating between CTCF sites in convergent and divergent 

orientations. A simplistic model of loop formation that relies on random collisions in the nuclear 

space between CTCF bound to DNA in different orientations to form interactions (Rao et al., 

2014) is incompatible with the observations, as it could not be aware of the relative positions or 

orientations of the CTCF binding sites. 

One potential explanation for the directionality in loop formation is that the bias is created by the 

binding of CTCF to its recognition site, which causes a ninety degree bending in the DNA, 

resulting in the formation of an unusual structure that could be interpreted as a loop 

(MacPherson and Sadowski, 2010). Several potential processes could then contribute to the 

expansion of the initial loop (Figure 2.1B). rather than in the interacting proteins. If CTCF 

binding sites have an intrinsic bias for interacting with the DNA on one side of the binding site 

more frequently than the other side it would explain the bias seen in loop formation. 

Unpublished analysis of cohesin ChIA-PET data from our lab supports this hypothesis by 

showing that CTCF sites show an orientation bias in all cohesin mediated loops and not just 

CTCF-CTCF interactions. The directional bias of CTCF sites can be explained by results from 

EMSA assays, which show that CTCF can bend DNA to form a DNA structure hypothesized to 
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be a loop on one side of the CTCF binding site (Macpherson and Sadowski, 2010). As this DNA 

structure is formed in the same orientation as the bias in looping it seems likely that the two 

phenomena are causally linked. Figure 2.1B depicts model in which a loop is initiated by CTCF 

binding and recruitment of cohesin and expanded in size by pulling DNA into the loop. Since the 

CTCF end of the loop is anchored in place the loop expands unidirectionally to bring DNA in the 

direction of the loop into proximity with the CTCF site. CTCF is known to interact with the 

cohesin complex, which has two ATPase domains whose function is currently unclear but could 

potentially be involved in extruding the loop (Alipour and Marko, 2012; Strick et al., 2004). 

Transcriptional activity could also contribute to the movement of the DNA through the loop if the 

transcription complex bound to cohesin at the CTCF site is unable to move through and remains 

stationary (Lengronne et al., 2004). The same result could be attained if CTCF is bound to 

mRNAs as they are transcribed (Kung et al., 2015). The observed frequency of interactions 

between CTCF sites with the same orientation is relatively low (Guo et al., 2015), perhaps due 

to the exact positioning of the CTCF proteins as they pass through the loop and collide with 

each other or cohesin in anti-parallel orientations, which may not favor homodimerization. The 

directionality imposed by this loop extrusion model would result in a CTCF site interacting more 

frequently with the DNA on one side of it, explaining why divergent CTCF sites interact very 

infrequently (Guo et al., 2015; Rao et al., 2014). Finally, the requirement for the extrusion of the 

looped DNA increases the likelihood of collisions between CTCF sites and Mediator complexes 

or gene promoters (Figure 2.1B), imposing a directionality on these interactions. 
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Figures 

  

Figure 2.1. Model of Orientation Biased CTCF Looping 

(A) CTCF mediated loops in convergent and divergent orientations only differ in how they are 

connected by the DNA. The top loop occurs much more frequently than the bottom loop 

suggesting the mechanism of loop formation must be able to distinguish the two cases. 
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(B) A loop-extrusion model would explain the orientation bias seen in CTCF mediated looping. 

CTCF bends DNA and could be capable of forming a loop on one side of its binding site only 

due to the manner in which the DNA is bent. This loop could then be expanded in one direction 

causing the CTCF site to contact other DNA elements such as other CTCF sites, Mediator 

complexes, and gene promoters more frequently in one orientation. 
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Abstract 

The DNA loop extrusion model is a provocative new concept explaining the formation of 

chromatin loops, which revolutionizes our understanding of genome organization. Central to this 

model is the Structural Maintenance of Chromosomes (SMC) protein family that is now being 

ascribed a new function as a DNA motor. In this Perspective we review and reinterpret the 

current knowledge of SMC structure and function and propose a novel mechanism for SMC 

motor activity. 

Main Text 

The spatial organization of DNA in the nucleus is critical to its function. A fundamental 

component of this organization involves DNA “loops”, physical point-to-point interactions 

between DNA sequences located far apart on the chromosome. These loops are key to 

chromatin condensation during mitosis and also regulate enhancer-promoter interactions during 

interphase. Several recent findings have led to the ‘DNA extrusion model’ of loop formation (Box 

1). First theorized to explain how mitotic chromatin condensation might proceed without forming 

knots, the model also elegantly explains the observed CTCF motif orientation bias discussed in 

Box 1(ref. 1-6). The loop extrusion model posits that DNA loops begin as small pinches of the 

DNA molecule with each side held by one end of a proposed extrusion complex (Figure 3.1a). 

As the extrusion complex reels in DNA, the loop is progressively enlarged (Figure 3.1b). A 
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stable loop is formed when the complex stops extruding (Figure 3.1c). This relatively 

straightforward model is a radical departure from previous thinking, and while it explains several 

puzzles it poses perhaps more. 

An important participant in loop extrusion is the highly conserved SMC family of proteins. SMC 

complexes assemble into large rings thought to encircle DNA strands . Entrapping DNA entirely 

within a protein complex leads to topological binding that will only be released by an opening of 

the protein complex. This renders the binding immune to disruption of the protein-DNA contacts 

and leads to exceptionally long residency times, while also permitting the free sliding of the 

SMC ring along the DNA. 

The SMC complex condensin is known to organize DNA during mitosis. Processive expansion 

of initially small loops ensures that loop compaction occurs in order and only within a 

chromosome, precluding the formation of knots3. The SMC complex cohesin colocalizes with 

CTCF and is required for the formation of CTCF loops in interphase. Degradation of cohesin 

results in a complete loss of CTCF loops, while its stabilization via degradation of the cohesin 

release factor WAPL leads to additional loops7,8,9. This excessive looping condenses interphase 

chromatin into dense, mitotic-like “vermicelli” chromosomes. Importantly, this observation 

suggests that interphase loop formation by cohesin and mitotic condensation by condensin are 

fundamentally related processes. The SMC family also includes structurally similar members in 

Prokarya, where bacterial condensin juxtaposes the arms of replicating chromosomes in a 

manner reminiscent of loop extrusion10. It is thus likely that SMC complexes are part of an 

ancient mechanism of moving and organizing DNA via loop extrusion that has been repurposed 

to many ends over evolutionary time. 

 

The Missing Motor 
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The loop extrusion model offers an attractive explanation for the reversible and orderly 

formation of DNA loops within chromosomes, but mechanistic details remain unknown, including 

how the proposed extrusion complex responsible for initiating and expanding DNA loops would 

work. The ability of the SMC family to bind DNA topologically recommends a model in which 

cohesin and condensin rings hold DNA loop ends, but the formation of loops up to millions of 

bases in size requires a motor: a mechanism by which DNA is pulled into the SMC loop. 

Numerous explanations have been proposed as to how loop extrusion is powered, including 

hitching rides with known DNA motors, such as RNA polymerase, pushing by DNA supercoiling, 

and passive diffusion along gradients of SMC complexes11,12,13,14. While each of these 

processes may be playing some role, there is now direct experimental evidence that the SMC 

complex condensin is capable of ATP-dependent unidirectional movement on a DNA substrate 

in vitro. In addition, strong circumstantial evidence suggests that loop extrusion is ATP 

dependent in vivo15,16. Condensin attached to DNA curtains was detected moving 

unidirectionally over a DNA molecule at ~60 base pairs per second17. Interestingly, on a relaxed 

single-tethered DNA curtain, condensin compacts DNA through loop formation, but on the taut 

DNA of a double-tethered curtain, condensin translocates. This demonstrates that condensin 

can move along the DNA without forming an intramolecular loop. A subsequent experiment 

using Sytox Orange staining observed the extrusion of a loop on relaxed DNA at speeds up to 

~1500 base pairs per second18. Importantly this study revealed that the SMC complex can 

extrude loops as a single complex, and that this extrusion is unidirectional in nature, with DNA 

being reeled into the loop from only one direction. 

  

It is now clear that condensin is an ATP-powered DNA motor, but similar experiments 

performed with the cohesin complex have not detected motor activity19,20,21. Cohesin and 

condensin have remarkably similar architectures, and both have been independently 
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hypothesized to form loops in DNA via loop extrusion. While it is possible that the intrinsic motor 

activity of cohesin has been replaced with an external process, it is also possible that in vitro 

assays are missing some critical component or post-translation modification. The extensive 

literature on the structure and function of the SMC complexes does not offer an immediate 

explanation for how these machines function as motors and a novel mechanism of active DNA 

translocation is required. 

 

The Head, the Hinge, and the HAWKs 

The core components of cohesin and condensin complexes are the SMC proteins (Figure 3.2a). 

These proteins have a complex structure with two globular domains, the head and the hinge, 

separated by long ~45 nm antiparallel coiled-coils. Pairs of SMC proteins heterodimerize at their 

hinges. SMC1 and SMC3 form the core of cohesin and SMC2 and SMC4 form condensin. The 

globular head domains contain ABC-type nucleotide binding domains that are thought to 

mediate dimerization between the two head domains of a complex. Each complex thereby 

cooperatively binds 2 ATP molecules. A third SMC component, kleisin, interacts with both head 

domains of the complex, linking them and forming a tripartite ring (Figure 3.2a). Kleisins are 

largely disordered peptide chains, much longer than is required to bind the two head domains. 

Kleisins are further bound by various members of a family of proteins that have come to be 

known as HEAT-repeat proteins associated with kleisins or HAWKs (Figure 3.2a). This family is 

rich in HEAT-repeat domains consisting of pairs of antiparallel alpha-helices linked together by 

just a few amino acids. Found in many proteins throughout the cell, HEAT-repeats are 

remarkable for their conformational flexibility. These structures adopt a horseshoe-like 

configuration capable of stretching and scrunching22. The kleisins of cohesin and condensin 
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each interact with a number of these HAWKs, which regulate loading, unloading, and likely the 

motor activity of these complexes. 

For a single SMC ring to achieve unidirectional movement, it must possess two means of 

interacting with the DNA simultaneously: one that will act as a stationary anchor and another 

that will produce movement along the DNA. The SMC complex has two reported mechanisms of 

binding DNA, the hinge domains on one end of the molecule and the kleisin and HAWK 

subcomplex on the other. The hinge domains of cohesin and condensin have high affinity for 

single-stranded DNA and some affinity for double-stranded DNA23. How the hinge interacts with 

DNA is still uncertain, but some evidence points to a positively charged groove formed by the 

inner-side of the hinge and the nearby coiled-coils24. DNA binding by the hinge has been shown 

to catalyze ATP hydrolysis by the head domains, and disruption of the hinge can disrupt the 

function of the entire complex18. The SMC hinge is a critical component of the complex that is 

likely key to the mechanochemical cycle driving SMC movement. In condensin, the kleisin and 

HAWK subcomplex forms a positively-charged pocket that wraps around the DNA fiber in what 

is described as a “safety belt” binding mechanism25. This creates a topological engagement that 

holds DNA in a sequence-independent manner. While this specific DNA-binding conformation 

has only been directly observed in the Brn1-Ycg1 kleisin-HAWK complex of S. cerevisiae, many 

HAWKs have DNA binding affinity. Structural similarities between the kleisin-HAWK 

subcomplexes that form part of cohesin suggest this may be a conserved mechanism of DNA 

binding. The kleisins of cohesin and condensin bind to at least two HAWK components 

simultaneously potentially forming multiple DNA binding pockets in each complex. These 

subcomplexes could bind to the same molecule of DNA or possibly hold two separate molecules 

of DNA together. 

  



28 
 

 
 

The Anchor and the Motor 

Even with an understanding of how SMC complexes might engage DNA, it is not immediately 

obvious which end of the SMC complex would remain stationary and which end would move 

along the DNA. It has been proposed that the kleisin-HAWK topological binding pocket may 

serve as the anchor26, which would leave the comparatively simple hinge domain to serve as a 

motor. In one proposed model the SMC arms and hinge act as a DNA pump26,27. In this model, 

DNA loops are loaded into the ring formed by the SMC arms and ATP driven conformational 

changes close the ring, driving the loop into a smaller chamber formed by the kleisin and SMC 

heads where it combines with a larger loop. This model posits a topological binding of the DNA 

by the SMC-kleisin ring. However, a recent study of cohesin suggests that SMC rings incapable 

of topologically binding the DNA are still capable of extrusion28. Another potential model for 

hinge-mediated motor activity might be ATP-driven dissociation of the hinge leading to a walking 

mechanism. However, studies of the DNA binding capabilities of the hinge monomers have 

seen little to no independent DNA binding ability23. 

Alternatively, the hinge domain could serve as the anchor, while the kleisin and HAWK 

subcomplexes move along the DNA. Several features of the structure support this model. The 

topological engagement of the kleisin-HAWK binding domain would allow movement of the DNA 

through the groove without release. Indeed, the loose nature of the DNA binding pocket results 

in low binding affinity for short DNA fragments, suggesting they could slide out of the groove25. 

Additionally, the kleisin and HAWK components appear uniquely suited for large conformational 

changes. The kleisin-HAWK DNA binding domain is not conformationally frozen, with different 

configurations of the HAWK and DNA observed in different crystals25. Between the terminal 

domains of kleisins, the protein is mostly unstructured, and much longer than would seem 

necessary to connect the two head domains together, suggesting there may exist some “slack” 

in this tether. The HEAT-repeats of the HAWKs are found in many other proteins, where they 
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are known to stretch and compress in response to mechanical force22. Indeed, HEAT-repeats 

can be thought of as springs capable of stretching and contracting while storing and releasing 

potential energy29. Cryo-EM analysis of the HAWK protein Scc2 revealed a high degree of 

conformational flexibility with an estimated capacity to stretch lengthwise up to ~11 nm30. Taken 

together, the kleisin-HAWK DNA binding domain would appear to be capable of undergoing 

large conformational changes and sliding along the DNA. We therefore propose that the kleisin-

HAWK subcomplexes represent the mobile DNA binding domain. 

A model for SMC complex translocation on DNA must be compatible with both eukaryotic and 

prokaryotic SMC members. Prokaryotic SMC complexes lack HAWK proteins. Instead their 

kleisins are bound by much smaller Kite proteins that nevertheless appear to have functional 

similarities to the HAWKs31. Kite proteins are composed of two Winged-Helix Domains (WHD) 

connected by an intrinsically disordered linker. Each WHD binds to the kleisin creating the 

potential for two topological DNA binding grooves. Indeed, the eukaryotic Kites of the SMC5/6 

complex have recently been found to bind DNA32. The disordered linker would permit the 

orientations of the WHDs to change dramatically allowing for folding and opening that could 

mimic the conformational flexibility of the HAWK proteins33. That the unrelated Kite and HAWK 

families share distinctive functional characteristics suggests that they might play a conserved 

role as flexible DNA binding components of the SMC complexes. 

Kinetics 

The step rate and step size of the extrusion process are important criteria for evaluating 

potential models of SMC motors. Unfortunately, the existing estimates of SMC motor kinetics 

are rough and ambiguous. The speed at which the SMC complex moves depends on the rate at 

which it steps and the size of its steps. If the SMC heads function similarly to related ABC-type 

domains, then each ATPase cycle most likely corresponds to the hydrolysis of 1 or 2 molecules 
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of ATP. In the presence of DNA, condensin hydrolyzes ATP at a rate of ~2 ATP per second17. 

However, this bulk rate represents a mixture of condensin molecules in various states: actively 

extruding complexes, DNA-bound but stationary, non-extruding complexes, and non-DNA 

bound complexes. Therefore, the rate of hydrolysis of an actively extruding complex could be 

significantly higher than this average rate. The most unambiguous observation of the extrusion 

speed of condensin shows a single condensin extruding up to ~1,500 bp or ~500 nm per 

second18. However, the rate of extrusion displays a strong dependence on the tension on the 

DNA fiber and slows to a more modest ~600 bp per second rate at physiological tensions of 

~0.4 pN. Whether this reduction in speed is a result of changes in step sizes, step rates, or the 

proportion of productive steps, will have important implications for the mechanism of the SMC 

motor. Importantly, the experiments discussed above were performed on naked DNA lacking 

nucleosomes. ATP-independent diffusion of cohesin on DNA is significantly impeded by the 

presence of nucleosomes19. Additionally, the force generated by condensin extrusion, estimated 

at ~1 pN, would be insufficient to evict the histone octamer34. This suggests that SMC 

complexes likely possess the ability to actively translocate past nucleosomes on chromatin. 

Step size can be directly measured by experiments using magnetic tweezers, which precisely 

detect the compaction of DNA with high temporal resolution. Several magnetic tweezer 

experiments using condensin and cohesin from S. cerevisiae as well as condensin I from X. 

laevis have demonstrated DNA compaction on naked DNA occurring in highly variable steps 

larger than 100 nm in size35,36,37. Such large step sizes are incompatible with models that limit 

themselves to the ~50 nm length of SMC complexes. However, there is evidence to suggest 

these steps represent a mechanism of compaction distinct from extrusion. Similar large DNA 

compaction steps are observed for budding yeast condensin in the absence of ATP; these have 

been demonstrated to be distinct from smaller, co-occurring steps34. Two separate DNA 

compaction mechanisms have been reported for bacterial SMC complexes as well38. Most likely 



31 
 

 
 

these large steps represent some form of loop capture distinct from extrusion. Both cohesin and 

condensin have demonstrated some capability to form inter-complex interactions that could 

explain these large compaction steps. Further studies will be needed to distinguish between 

these processes and to establish the kinetics of the SMC motors. 

The Tethered Inchworm Model 

While the kleisin-HAWK DNA bound subcomplex is in principle capable of accommodating large 

conformational changes, it must be the ATP-hydrolyzing head domains that provide the motive 

force. The ABC-type ATPase domains located in the SMC head domains form 2 ATP binding 

sites when engaged. ABC-type domains are thought to have a conserved mechanism of action 

where ATP binding and hydrolysis correspond to head engagement and disengagement39. ATP-

mediated head engagement is accompanied by a conformational shift, often a rotation, of the 

interface between the two domains to accommodate the nucleotides. Commonly this rotation is 

propagated into adjacent domains to perform mechanical work. Crystal structures of SMC 

heads reveal that ATP-bound forms are rotated ~30 degrees in relation to their unbound form40. 

This rotation dramatically increases the angle between the coiled-coil arms as they exit the head 

domains. Driving the coiled-coil arms apart likely forces them to bend, widening the ring and 

propagating this steric strain all the way to the hinge domain (Figure 3.2b). It has been proposed 

that this tension is relieved by ATP hydrolysis followed by disengagement and separation of the 

head domains40. In this way, ATP binding and hydrolysis could force the head domains apart, 

using the arms as force-amplifying levers (Figure 3.2c). No structural data for this open 

conformation exists, however AFM images of SMC dimers often show large, >50 nm distances 

between the head domains41. 

Taking into consideration the conformational flexibility present in the kleisin-HAWK 

subcomplexes linking the two head domains, it is possible the kleisin might remain bound to 
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both heads as they are pulled apart42. The disordered structure of kleisin could straighten and 

unfurl to accommodate this motion. In doing so, this could stretch the HAWK subunits bound at 

multiple points to the kleisins. If the kleisin-HAWK subcomplexes are topologically engaged with 

the DNA molecule, then this movement could be permitted by sliding the proteins along the 

DNA. Together these conformational changes would spread the SMC complex along the DNA. 

These motions could generate productive unidirectional movement if they were coordinated with 

changes in DNA binding affinity in the kleisin-HAWK subcomplexes. If in the closed 

configuration two kleisin-HAWK binding domains had differing affinities for DNA, then the side 

more weakly bound would preferentially move upon head separation. This would cause the less 

tightly bound HAWK to slide forward along the DNA (Figure 3.2c). A subsequent closing motion 

would pull the lagging end of the complex forward, assuming that the stretching of the kleisin-

HAWK subcomplexes reversed the DNA binding affinities of the proteins (Figure 3.2d). The 

HEAT-repeats of the HAWKs act as springs, storing potential energy in their conformational 

changes. This energy might help drive the lagging step by pulling the head domains back 

together. Dimerization of the reunited SMC heads would complete a mechanochemical cycle in 

which ATP binding and hydrolysis powers net unidirectional movement along the DNA. This 

model, in which opening of the SMC ring pushes the leading end forward along the DNA and 

subsequent closing pulls the lagging end up, is akin to an inchworm motor. The interesting 

topology of the DNA-bound complex leads us to suggest the more descriptive term “tethered 

inchworm” for this model of SMC locomotion. 

The tethered inchworm model is a general framework lacking in specifics and leaves several 

important questions unanswered. A wide range of step sizes would be compatible with this 

model due to the extremely flexible nature of each component. Step sizes upwards of ~50 nm 

could be accommodated by eukaryotic kleisins but will ultimately depend on the separation 

driven by ATP-binding and hydrolysis, which is likely smaller. A related question is how SMC 
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complexes navigate obstacles such as nucleosomes. While the DNA binding grooves of the 

kleisin-HAWK subcomplexes are not large enough to permit ~11 nm sized nucleosomes, it is 

conceivable that HAWK-kleisin dissociation during the walking cycle would allow SMC 

complexes to step over nucleosomes. It is also unclear in which direction the SMC complex 

moves, which would be determined by the order of changes in binding affinity of the kleisin-

HAWK subcomplexes. Nevertheless, this putative model may begin to explain the known 

regulatory roles of various HAWKs on SMC function. Chromatin-bound cohesin consists of both 

mobile and immobile fractions43. Depleting the cohesin HAWK PDS5, rather than stopping 

extrusion, results in enhanced extrusion and condensation of the genome, suggesting that 

PDS5 may function as a component of immobile cohesin complexes9. PDS5 competes for its 

kleisin binding site with the HAWK NIPBL, whose depletion results in a loss of loops and 

extrusion44,45. PDS5 and NIPBL may represent static and mobile HAWK components, 

respectively, which compete to turn the cohesin motor off and on46. The tethered inchworm 

model is highly speculative, but our new perception of SMC complexes as loop extruding motors 

requires a bold reimagining of previous knowledge. Our proposal that the HAWK proteins are 

conformationally flexible and dynamic DNA binding elements is conjecture that is required to 

create a functional model of motor activity. Further study of the enigmatic HAWK family will be 

needed to evaluate this proposition. Our relatively better understanding of the core SMC 

proteins is unable to account for the motor activity of the SMC complex. Thus, understanding 

the functions of kleisin and HAWK proteins, namely whether and how they bind to DNA, what 

conformational changes they undergo during the ATP-hydrolysis cycle, and what roles different 

subunits play in regulating the complexes, will likely prove key to elucidating the motor function 

of SMC complexes. Future work on the structures and kinetics of SMC complexes will refine our 

understanding of this fascinating protein family responsible for DNA organization across all 

domains of life. 
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Figures  

 

Figure 3.1. DNA loop extrusion model 

a. Cohesin complexes load onto the DNA, either randomly or at specific sites, such as CTCF 

binding sites (purple). b. The cohesin complex reels in DNA, translocating over the DNA and 

expanding the loop. c. Cohesin complexes stop extruding when they meet a properly oriented 

CTCF site, leading to a loop between convergently-oriented CTCF anchors. 

Box 1. Loop extrusion has been independently proposed to explain the formation of numerous 

types of DNA loops, but the recent surge in interest is due to the ability of this model to explain 

the curious phenomenon of motif-oriented CTCF looping. CTCF loops are thought to be formed 

by two CTCF proteins bound to separate motifs on a chromosome. These loops are a clear and 

prominent feature of how the genome is organized. The asymmetric CTCF binding motif has an 

orientation that plays a fundamental role in the formation of these loops. As revealed by 

chromatin conformation capture assays, CTCF sites interact with each other significantly more 

when arranged in a convergent orientation. In agreement with this, CTCF loops form 

predominantly between CTCF sites oriented towards each other47. Conversely, CTCF sites 

oriented away from each other only rarely form loops. This finding has fundamental implications 

for the mechanism of loop formation. A simplistic model of loop formation via stabilization of 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311135/#R47
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stochastic collisions taking place in the three-dimensional space cannot account for this 

orientation bias. Rather, the loop formation mechanism must account for the orientation context 

of CTCF sites up to millions of base pairs apart. Loop extrusion solves this conundrum by 

having loops begin as small bends in the DNA that are progressively expanded (Figure 3.1). A 

loop extruder is theorized to expand the loop by translocating along the DNA, reeling the 

chromatin into the loop. The orientation bias of CTCF sites can then be explained by orientation-

dependent interactions of CTCF with the extrusion machinery. 

 

 

 

 

Figure 3.2 The Tethered Inchworm Model. a. The SMC complex is composed of two SMC 

proteins (green and blue) which dimerize at the hinge (top) and at the head domain (bottom). 

Tethering the two heads together is a kleisin (red) further bound by HAWK proteins (orange). 

The SMC complex forms a small loop in the DNA (purple) by binding with both the hinge dimer 

and the kleisin-HAWK subcomplexes. b. Binding of 2 ATP molecules (yellow) by the ATPase 

head domains (green and blue) induces a conformational rotation of each head. This movement 

forces the coiled-coil arms apart, bending them, and propagating the strain to the hinge 

domains. c. ATP hydrolysis causes dissociation of the head domains and opening of the SMC 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311135/figure/F1/
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arms. In this model, the leading HAWK would slide forward along the DNA due to its weaker 

affinity for DNA. The kleisin would straighten and unfurl to accommodate this movement and in 

doing so pull on the HAWKs, stretching these spring-like proteins. d. In the extended 

configuration the DNA binding affinities of the HAWKs then reverse causing the lagging HAWK 

to catch up as the head domains reunite, completing a mechanochemical cycle that has 

enlarged the DNA loop. 
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Summary 

TADs, CTCF loop domains, and A/B compartments have been identified as important structural 

and functional components of 3D chromatin organization, yet the relationship between these 

features is not well understood. Using high-resolution Hi-C and HiChIP we show that Drosophila 

chromatin is organized into domains we term compartmental domains that correspond precisely 

with A/B compartments at high resolution. We find that transcriptional state is a major predictor 

of Hi-C contact maps in several eukaryotes tested, including C. elegans and A. thaliana. 

Architectural proteins insulate compartmental domains by reducing interaction frequencies 

between neighboring regions in Drosophila, but CTCF loops do not play a distinct role in this 

organism. In mammals, compartmental domains exist alongside CTCF loop domains to form 

topological domains. The results suggest that compartmental domains are responsible for 

domain structure in all eukaryotes, with CTCF playing an important role in domain formation in 

mammals. 
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Introduction 

The development of Hi-C has enabled the examination of the 3D chromatin conformation of an 

entire genome. The first Hi-C analyses of mammalian genomes provided low resolution (ca. 1 

Mb) contact maps revealing a plaid pattern of interactions representing active A and inactive B 

compartments (Lieberman-Aiden et al., 2009). Subsequent higher resolution Hi-C experiments 

(ca. 50 kb) identified topologically associating domains (TADs), which are contiguous segments 

of the genome that preferentially interact whithin themselves over neighboring regions (reviewed 

in Rowley and Corces, 2016). TADs in mammals have an average size between 200 kb and 1 

Mb and were originally described as related to, but independent of, compartments (Dixon et al., 

2012). Using high resolution (ca. 1 kb) data, Lieberman Aiden and collaborators defined contact 

domains smaller in size than TADs (Rao et al., 2014). Borders of a subset of these smaller 

contact domains were found to interact preferentially over the rest of the domain creating a 

“peak” or more intense spot in the Hi-C contact map (Rao et al., 2014). These Hi-C peaks 

correlate with the presence of the architectural protein CTCF, suggesting that many of these 

contact domains are CTCF loops (Rao et al., 2014). Strikingly, the orientation of the CTCF motif 

appears to determine the direction in which CTCF sites will form loops, with convergently 

oriented CTCF motifs highly enriched at the anchors of CTCF loops (Guo et al., 2015; Rao et 

al., 2014). Contact domain boundaries often correspond to CTCF loop anchors, but some do 

not, suggesting that principles other than CTCF-mediated interactions may also govern the 

establishment of contact domains (Rao et al., 2014). 

TADs have also been identified in Drosophila, but the low resolution of Hi-C data in early studies 

has limited the precision with which these domains can be mapped and identified (Hou et al., 

2012; Sexton et al., 2012). Broadly, TAD borders defined at 10 kb resolution were reported to 

be enriched in clusters of architectural protein binding sites (APBSs) (reviewed in Rowley and 

Corces, 2016). APBSs are often associated with promoters of highly expressed genes, 
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suggesting a possible relationship between transcription and TAD border formation (Hou et al., 

2012; Van Bortle et al., 2014). Several studies have found that boundaries/inter-TAD regions 

correlate with active chromatin (El-Sharnouby et al., 2017; Hug et al., 2017; Ulianov et al., 

2016). However, whether active regions exhibit their own structure or are simply boundaries 

between TADs is a matter of debate due to the low resolution of currently available Hi-C 

datasets. Patterns of 3D chromatin organization identified in mammals and Drosophila have 

been found to be applicable to other model organisms. Contact domains of varying size have 

been found in S. pombe, S. cerevisiae, C. elegans, and A. thaliana (reviewed in Rowley and 

Corces, 2016). These organisms have no known CTCF homologs yet they can form distinct 

domains reminiscent of those seen in humans. The mechanisms responsible for the 

establishment of contact domains in these organisms are not known, and it is unclear whether 

conserved processes are involved in the formation of domains of different sizes and strengths 

across the evolutionary tree. 

High resolution (ca. 250 bp) Here we show that high resolution (ca. 250 bp) Hi-C data in D. 

melanogaster suggest the existence of domains, which we term compartmental domains, 

smaller in size than the TADs defined originally. Distinct from mammals, we find no evidence of 

looping mediated by CTCF or other architectural proteins between borders of these domains. 

Using HiChIP and ChIA-PET for histone modifications and RNA Polymerase II (RNAPII), we find 

that domains are a direct result of the establishment of A/B compartments defined by the 

chromatin state of their interior rather than by a border element. This principle also applies to 

other eukaryotic organisms. Furthermore, we show that mammalian chromosome organization 

is established via a combination of compartmental domains and point-to-point CTCF 

interactions, leading to the formation of distinct but often overlapping domains. We conclude 

that compartmental domains represent the primary mechanism underlying 3D chromatin 

organization in eukaryotes but that architectural proteins, especially CTCF, are responsible for 
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additional point-to-point interactions that establish the complex 3D architecture of the 

mammalian nucleus. 

Results 

Compartmental Domains Are the Main Feature of Drosophila Chromatin Organization 

Studies of Drosophila 3D chromatin organization have identified TADs that are smaller than 

typical mammalian TADs (Sexton et al., 2012). To gain further insights into the principles 

controlling the establishment of 3D chromatin organization in D. melanogaster, we combined Hi-

C datasets acquired in Kc167 cells to obtain nearly a billion uniquely mapped reads (Cubeñas-

Potts et al., 2016). In comparison to the ultra-high resolution Hi-C dataset in humans (Rao et al., 

2014), this is equivalent to 12-fold higher contacts at short distances (<10kb) (Figure 4.S1A). 

The high resolution Hi-C map exhibits a clear checkerboard pattern reminiscent of A/B 

compartments originally found in humans at 1 Mb resolution (Lieberman-Aiden et al., 2009), but 

is evident in Drosophila in 10 kb resolution Pearson correlation maps (Figure 4.1A). To classify 

these compartments we used a principal component analysis (eigenvector decomposition) of 

the Pearson correlation matrix (Lieberman-Aiden et al., 2009) at 10 kb resolution (Figure 4.1A, 

right panel). In mammals, A (active) compartments have high levels of transcriptional activity, 

chromatin accessibility, and active histone modifications. To test if this is also the case in 

Drosophila, we performed Fast-ATAC-seq (Corces et al., 2016) and examined GRO-seq data. 

We find that A compartments have higher transcription and chromatin accessibility than B 

compartments (Figure 4.1B, 4.S1BC). Next, we performed ChIP-seq for seven different histone 

modifications/variants, including H3K36me3, H4K16ac, H4K20me1, H3K9me3, ubiquitinated 

H2B (H2Bub), H3.3, and H2A.Z. We also examined previously published ChIP-seq data for 

H3K27ac, H3K27me3, H3K4me1, H3K4me3, and H3K9me2. We found that the eigenvector 

closely follows the switch between active and inactive histone modifications (Figure 4.1B). We 
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tested the relative levels of histone modifications across the compartments and found that the 

two compartments generally partition active from inactive chromatin (Figure 4.1C, 4.S1D) which 

is similar to the partitioning of A and B compartments observed in mammals (Lieberman-Aiden 

et al., 2009). 

Upon examination of compartments in Drosophila, we noticed several locations with visibly 

evident compartment switches in the Hi-C heatmap that are unidentified by the standard 

algorithm (Figure 4.S1E), and thus sought an alternate method to better characterize these fine-

scale compartments. Since H3K27ac and H3K27me3 show the most pronounced distinction 

between A and B compartments (Figure 4.1C, 4.S1F), we performed HiChIP (Mumbach et al., 

2016) using antibodies for these two histone modifications (Table 4.S1-4.S2). We chose these 

histone modifications not only because of their close correspondence to A and B compartments, 

but because of their prevalence in the Drosophila genome, such that nearly every 1 kb bin has 

either H3K27ac or H3K27me3 (Figure 4.1B, 4.S1G). H3K27me3 is absent at H3K27ac peaks, is 

highly enriched at Pc-repressed loci, and shows an intermediate level of enrichment in the rest 

of the genome (Figure 4.1B), a feature that has also been reported by others (El-Sharnouby et 

al., 2017). We found that HiChIP for H3K27ac or H3K27me3 effectively enriched for A or B 

compartments respectively (Figure 4.1D, 4.S1H). We next classified compartments at 10 kb 

resolution using the ratio of interactions from H3K27ac HiChIP versus H3K27me3 HiChIP 

datasets, and found that the result closely matches the Hi-C eigenvector obtained from principal 

component analysis. However, the compartment calls obtained using HiChIP data allow the 

discovery of small compartments that were previously undetected by the Hi-C eigenvector 

(Figure 4.S1E). Because we found that either H3K27ac or H3K27me3 occupy most of the 

genome, we then tested how well the HiChIP contact maps recapitulate the full Hi-C data. We 

combined reads obtained from H3K27ac and from H3K27me3 HiChIP into a single contact map 

and found a 98.9% correlation with Hi-C data (Figure 4.S1IJ). Altogether this indicates that 
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HiChIP for these two histone modifications, when combined, can recapitulate Hi-C data, but 

when used separately can accurately capture compartmental interactions. 

Compartments were originally identified in humans at 1 Mb resolution (Lieberman-Aiden et al., 

2009) which has led to the notion that compartments are structures encompassing large swaths 

of the genome. In Drosophila, however, we have identified small compartments at 10 kb 

resolution, indicating that compartments are actually fine-scale features of chromatin 

organization. We further tested the scalability of compartments by calling compartments at 1 kb 

resolution. This provided an overall good correspondence between calls at 1 kb and 10 kb 

resolution, although 1 kb resolution calls afford better identification of some small compartments 

(Figure 4.S1K). This indicates that compartments represent small, discrete, and scalable 

interactions that occur between loci with correlated chromatin and transcriptional activity states. 

We will refer to these domains as compartmental domains in the rest of the manuscript. 

Drosophila Domain Organization is not a Result of CTCF Looping 

High resolution Hi-C contact maps in mammals have shown the presence of strong point-to-

point interactions, manifested as bright spots in Hi-C heatmaps, that correspond to CTCF loops 

at contact domain corners (Rao et al., 2014) (Figure 4.2A). High resolution Hi-C contact maps in 

Drosophila also show the presence of what appear to be similar spots that seem to correspond 

to interactions between borders of domains (Figure 4.2B). However, we find that the signal 

corresponding to these interactions is not punctate; instead, it extends beyond the corners of 

individual domains (blue arrowheads in Figure 4.2B left; see also the magnified view in the right 

panel). This signal in fact corresponds to compartmental interactions between small flanking 

domains (Figure 4.2B right). Detection of these domains requires very high resolution Hi-C 

maps, explaining why previous studies have misidentified these domains as TAD borders and 

their interactions as loops formed by interactions between boundaries of TADs. Visualization of 
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these domains in Drosophila also requires heatmaps at a smaller genomic scale than in humans 

due to their differences in size (Figure 4.2AB). Similar to CTCF loops found in human cells, we 

also found 458 interaction peaks in Drosophila enriched in various architectural proteins, but 

unlike in humans, we did not see an enrichment of CTCF at the anchors of these loops 

(Cubeñas-Potts et al., 2016; Rao et al., 2014). Importantly, these interaction peaks do not occur 

at domain corners (Figure 4.S2A). Altogether, these data indicate that domains in Drosophila 

are likely not the result of the establishment of point-to-point interactions by CTCF or other 

architectural proteins. 

In human cells, interaction peaks at some domain corners occur between convergently oriented 

CTCF sites (Rao et al., 2014). We thus examined Drosophila Hi-C data to determine whether 

the orientation of the CTCF binding motif influences contact domain structure without the need 

for strongly stabilized boundary associated CTCF loops. We found that only 28% of domains 

have CTCF within 3 kb of each border. Of those that have CTCF, there is no evidence for motif 

orientation preference, in contrast to CTCF borders in human cells (Figure 4.S2B). Additionally, 

the relationship between human CTCF motif orientation and the interaction preference can be 

visualized at bound CTCF motifs where Hi-C interactions preferentially occur in the same 

direction as the motif orientation. In humans, right facing CTCF sites preferentially interact with 

other genomic sequences to the right along a chromosome (Figure 4.2C red) and left facing 

CTCF sites interact to the left (Figure 4.2C blue). We performed this same analysis in 

Drosophila to test if interactions at CTCF bound motifs follow the same rule. In contrast to 

humans, Drosophila CTCF sites show no directional preference when interacting with other 

sites along the chromosome (Figure 4.2C bottom). Overall, this indicates that Drosophila 

domains can form without stabilized point-to-point border interactions between CTCF sites, and 

that Drosophila’s CTCF differs fundamentally in its function from the human homolog. 

Gene Mini-Domains Underlie Drosophila Chromatin Organization 
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Sequences located between large domains appear to be small active domains (Figure 4.2B and 

4.S1E). To explore this further, we examined published TAD calls and found that small domains 

have been consistently misclassified by previous studies due to the low resolution of the Hi-C 

maps available. For example, TAD calls at low resolution in Drosophila frequently labeled small 

domains as TAD borders (Hou et al., 2012; Sexton et al., 2012) (Figure 4.S2C). Other attempts 

at domain calling at low resolution labeled many of these domains as inter-TAD regions (Ulianov 

et al., 2016). More recently, TAD borders identified in nuclear cycle 14 staged embryos 

correlated with RNAPII (Hug et al., 2017) correspond in fact to small domains and RNAPII is not 

present at borders between TADs but it is present throughout every active compartmental 

domain (Figure 4.S2DE). Thus, we find that borders are not defined by transcriptionally active 

regions/RNAPII binding as was previously suggested (Hug et al., 2017; Ulianov et al., 2016), but 

rather by the segregation between active and inactive regions that form compartmental 

domains, suggesting that this is the prevalent mechanism of domain formation in Drosophila 

(Figure 4.S2F). We therefore refer to these domain structures along the diagonal as 

compartmental domains as described above because they coincide with the A/B compartments 

defined by Principal Component Analysis. 

Small transcriptionally active domains interact to the exclusion of the larger silent or intergenic 

regions of the genome in a compartmental manner. We tested whether these interactions are 

associated directly with transcriptional elongation by performing HiChIP with an antibody for 

RNA Polymerase II phosphorylated on serine 2 (RNAPIISer2ph) (Table S3). We found that the 

small active compartments found by Hi-C are highly enriched in RNAPIISer2ph HiChIP signal 

(Figure 4.2D, 4.S3AB). Closer examination of these data indicates the presence of even smaller 

domains comprised of individual genes (Figure 4.S3C top right). Because an enrichment of 

interactions is seen within the gene body we call these structures gene mini-domains. To further 

confirm these findings, we also performed ChIA-PET for RNAPII and found similar gene mini-
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domains (Figure 4.2E top right, 4.S3D-F). Hi-C also shows the presence of domains that 

coincide precisely with a single actively transcribed gene (Figure 4.2E, 4.S3C-E; see panels 

below the diagonal). Because we found that active compartments are composed of RNAPII 

interactions in gene mini-domains, we propose that interactions within and between A 

compartmental domains are composed of gene-to-gene interactions. We took genes at each 

expression level (no expression and lowest to highest quartiles of GRO-seq signal) and found 

that gene-to-gene interactions in A compartments correlate with expression (Figure 4.2F). 

These observations suggest that active compartmental domains are created in a hierarchical 

manner by gene mini-domains and gene-to-gene interactions. 

The correlation between transcription, compartmental interactions, and domain formation 

suggests that transcriptional activity may be a good measure of domain structure in Drosophila. 

To test this, we used a hidden Markov model (HMM) to classify the genome into active and 

inactive states based on GRO-seq levels. We find that borders between domains observed 

using Hi-C form precisely at transcription switches (Figure 4.S3G). We overlaid the GRO-seq 

transcriptional states on the Hi-C contact map and find a precise correlation with Hi-C contact 

domains at 1 kb resolution (Figure 4.2G). This indicates that domains are not formed by some 

feature of borders, but by the segregation between transcriptional states of neighboring 

domains. Domains identified by this method are similar in size to compartmental domains 

identified by high resolution Hi-C (Figure 4.S3H). The small size of domains in Drosophila would 

cause them to appear as one or two bins along the diagonal in the 20 kb resolution matrix that 

was originally used to identify TADs, which may account for the inaccurate border identification 

mentioned above. Altogether these data indicate that transcriptional or chromatin state plays a 

prominent role in 3D chromatin organization at the gene level in D. melanogaster. Additionally, 

compartments are not multi-megabase features of chromatin organization, but are composed of 

gene-to-gene interactions. Perhaps most surprisingly, compartments and domains do not 
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represent separate features of 3D chromatin organization in Drosophila, as is generally thought 

to be the case in mammals. Rather, the formation of compartments is responsible for the 

establishment of all domains in the Drosophila genome. 

RNAPII Occupancy Inside Domains Affects Drosophila Chromatin Organization 

Since transcriptional state and domain organization are highly correlated, we tested whether 

inhibition of transcription affects formation of compartmental domains. Triptolide inhibits 

transcription initiation and heat shock results in widespread repression of transcription in 

Drosophila (Li et al., 2015). Hi-C heatmaps at 10 kb resolution from triptolide-treated cells 

display decreased signal inside compartmental domains (Figure 4.3AB). The decrease in 

domain architecture appears more pronounced in cells subjected to heat shock than triptolide 

treatment, although both result in transcription silencing of most or all genes (Figure 4.3AB). We 

therefore examined the levels of RNAPII after each treatment and found that heat shock results 

in a more pronounced decrease of RNAPII levels than triptolide treatment, consistent with its 

more substantial effect on compartmental domain interactions (Figure 4.S4AB). Active domains 

showed a greater decrease in interaction frequency than inactive domains (Figure 4.3C). 

Triptolide treatment also results in an increase in A-B and B-B contacts, but a decrease in A-A 

contacts, especially at triptolide sensitive domains (Figure 4.3F). When the activity state of A 

domains decreases to more closely resemble the activity of B domains, segregation and domain 

structure of both A and B compartments is reduced. We then examined active domains with a 

>= 2 fold change in RNAPII ChIP-seq signal across the domain, which we term triptolide 

sensitive domains. Upon treatment, these domains showed a greater decrease in Hi-C signal 

than other active domains (Figure 4.3DE), suggesting that RNAPII level is an important factor 

influencing domain architecture. 
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Treatment of Drosophila embryos during the zygotic genome activation stage with triptolide has 

been recently shown to affect the structure of domains observed by Hi-C (Hug et al., 2017). We 

compared the extent of reduction in domain structure observed in nc14 embryos with our data in 

Kc167 cells. Kc167 cells were treated with 10 µM triptolide for 3 hr while nc8-nc14 embryos 

were treated with 1.8 µM triptolide for roughly 1.5 hr (Hug et al., 2017; Li et al., 2015). We find 

that nc14 embryos display a smaller decrease in domain structure than Kc167 cells under these 

conditions (Figure 4.S4CD). We then examined results from RNAPII ChIP-seq experiments 

performed in each of the two conditions and found that the extended triptolide treatment in 

Kc167 cells had a greater effect on RNAPII binding than in nc14 embryos (Figure 4.S4EF). The 

3 hr treatment with 10 mM triptolide of Kc167 cells resulted in at least a two-fold change in 

about 69% of RNAPII peaks, while treatment with 1.8 mM triptolide of nc14 embryos affected 

only about 29% of RNAPII peaks. Therefore, the greater decrease in domain structure observed 

in Kc167 cells correlates with a larger reduction in RNAPII occupancy, supporting the 

conclusion that transcription or RNAPII and/or its associated factors are important for the 

establishment of compartmental domains in Drosophila. The effect of triptolide treatment on 

chromatin organization correlates with its effect on RNAPII occupancy, although it is possible 

that triptolide treatment alters more than just RNAPII. To test whether triptolide affects 

transcription factor occupancy at non-promoter sites, we performed ATAC-seq in triptolide-

treated cells and examined non-TSS (± 100 bp) associated subnucleosomal size fragments. We 

did not see loss of ATAC-seq signal in triptolide sensitive domains (Figure 4.3G, 4.S4G). This 

implicates RNAPII and associated proteins, rather than factors binding at distal regulatory 

sequences, as having a prominent role in domain organization. 

Architectural Proteins Act as Insulators in Domain Segregation 

It was previously reported that TAD boundaries defined with low resolution Hi-C data were 

enriched in active chromatin and APBSs (Hou et al., 2012; Sexton et al., 2012; Van Bortle et al., 
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2014). This conclusion may be influenced by the imprecise TAD boundary calls obtained using 

low resolution Hi-C data. To further examine the role of architectural proteins in chromatin 

organization, we performed HiChIP for CP190. HiChIP for this protein resembles that of 

RNAPIISer2ph, with most interactions occurring in active compartmental domains (Figure 4.4A, 

4.S3IJ). Architectural protein occupancy is closely correlated with transcription (Figure 4.S3K), 

making it difficult to interpret the significance of this observation. In order to distinguish the 

relative roles of APBS occupancy and transcriptional state we examined APBSs ranked either 

by architectural protein occupancy or by transcriptional activity, and used the directionality index 

as an indicator of border formation (Dixon et al., 2012). APBS occupancy and transcriptional 

activity both correlate with negative to positive Hi-C directionality switches indicative of domain 

borders (Figure 4.4B). We next grouped APBSs by their presence near highly or lowly 

transcribed genes and examined Hi-C directionality. We find that highly transcribed genes have 

negative to positive changes in Hi-C directionality (i.e. domain borders) regardless of APBS 

occupancy levels (Figure 4.4C). Conversely, APBSs distant from active gene promoters do not 

show a distinct change in Hi-C directionality, even when at high occupancy (Figure 4.4D). To 

more directly test domain border organization at APBSs, we plotted the median Hi-C signal 

around high occupancy APBSs that are distant from transcribed regions. The results suggest 

that APBSs by themselves do not form strong domain borders when compared to 

compartmental interactions (Figure 4.S3L). However, this does not preclude the possibility that 

APBSs play a role in conjunction with transcription. 

Although non-TSS associated APBSs do not show a pronounced correlation with 

compartmental domain border formation (Figure 4.4D), these proteins are known to insulate 

enhancer-promoter interactions in transgenic assays (Van Bortle and Corces, 2013). To test the 

effect of APBSs on interactions between genes, we categorized highly expressed genes located 

in A compartmental domains (Figure 4.2F far right) by the number of architectural proteins 
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separating pairs of genes. We found that highly expressed genes interact less frequently with 

each other if they are separated by high occupancy APBSs (Figure 4.4E). We also examined 

the effect of APBS occupancy at immediately neighboring active genes. We found that gene 

neighbors separated by more architectural proteins have lower interaction frequencies between 

them (Figure 4.4F). Finally, we tested the effects of APBS occupancy on interactions between A 

compartmental domains and find that distance matched A-A compartmental interactions 

separated by high occupancy APBSs are lower than those separated by low occupancy APBSs 

(Figure 4.S3M). These observations suggest that transcription can explain much of chromatin 

organization based on the clustering of active transcriptional states, but that APBSs, 

commensurate to the number of proteins present, modulate these interactions. 

Gene Expression and the Establishment of Contact Domains in other Eukaryotes 

Due to the strong link between transcriptional state and domain organization observed in 

Drosophila, we asked whether we could simulate Hi-C contact domains using transcriptional 

activity data without any information from 3D chromatin architecture. The simulation creates a 

pseudo-Hi-C interaction map where the interaction frequency in each bin of the matrix is 

generated using one-dimensional genomic data (i.e. GRO-seq) to test the ability of one 

dimensional features to recapitulate the real Hi-C data (see STAR Methods). Using GRO-seq, 

we set the simulated interaction frequency between any two 5 kb segments proportional to the 

correlation between the activity scores of the two segments. The result is a simulated interaction 

map that uses only GRO-seq data to predict Hi-C data (Figure 4.5A bottom right). We found that 

contact maps simulated by GRO-seq alone could capture domains and compartments with high 

accuracy (Figure 4.5A). Our simulation assumed that all active genes at the same distance will 

interact with the same frequency. However, results described above suggest that APBSs can 

exert an insulation effect between highly expressed genes and active compartments (Figure 

4.4). We thus asked whether insulation by architectural proteins could explain some features of 
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Hi-C contact maps that transcriptional state alone cannot. To simulate this, the interaction 

frequency between each pair of genomic segments is decreased slightly for each architectural 

protein ChIP-seq peak bound between them. Simulations using APBS insulation alone recreate 

the large domains though miss the separation of small active domains into A compartments 

(Figure 4.5B). We then created a third simulation that combines both the principle of 

transcriptional state segregation and an interaction decay by APBS insulation. When these two 

components are combined, we see remarkable recapitulation of actual Hi-C data at 1 kb and 5 

kb resolutions (Figure 4.5C, 4.S5A-C). We find that GRO-seq based simulations correlate well 

with actual Hi-C maps, though APBS occupancy combined with GRO-seq improved the 

accuracy (Figure 4.5D). Indeed the majority of contact bin interactions in the simulation are 

within 2-fold of the actual Hi-C data at a range of distances (Figure 4.S5D). The accuracy of the 

GRO-seq plus APBS simulation at high resolution suggests that transcriptional state in 

combination with ABPS insulation may explain the compartmental domain structures observed 

by Hi-C. We next asked how this principle contributes to coarser resolution structures, such as 

previously identified TADs. When the high-resolution simulation is viewed at 25 kb resolution, it 

recapitulates previously identified TADs, suggesting that TADs are composed of compartmental 

domains that are binned together and viewed at a coarser resolution (Figure 4.5E). 

The high correlation between the experimental results and the computer simulations suggests 

that segregation of domains based on transcriptional state can explain a large part of chromatin 

organization in Drosophila. We then postulated that the genomes of other organisms may be 

organized by these same fundamental principles. According to our hypothesis, domain sizes 

may vary between organisms depending on the lengths of contiguous active and inactive 

genomic regions. This may explain why large topological domains are not easily observed in 

gene dense organisms (Rowley and Corces, 2016). For example, Arabidopsis thaliana has a 

genome size similar to that of Drosophila melanogaster, but the two differ drastically in gene 
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content and gene activity profiles. To compare the distribution of transcriptional states between 

Arabidopsis and Drosophila, we plotted transcription levels along a 1 Mb region and saw the 

existence of large non-transcribed regions in Drosophila (Figure 4.5F) but constant transcription 

levels in Arabidopsis (Figure 4.5G). In agreement, Arabidopsis Hi-C interaction maps do not 

show large contact domains at most locations in the genome, a result predicted by our computer 

simulation (Figure 4.5H). However, when we specifically search for large inactive genomic 

regions, we then observe large domains that align well with blocks of silenced regions 

separated by small transcribed regions (Figure 4.5I actual). These compartmental domains are 

captured by the computer simulation (Figure 4.5I simulated, S5E) indicating that transcriptional 

states play a critical role in domain formation in Arabidopsis, and this principle represents an 

evolutionarily conserved mechanism controlling 3D chromatin organization. 

To further test the correlation between 3D genome organization and gene expression 

throughout eukaryotes, we examined Hi-C contacts from the protist P. falciparum, the fungus N. 

crassa, and the animal C. elegans. We searched for large regions with different transcriptional 

states and found that, in each case, contact domain boundaries appear at transcriptionally 

inactive-active switches, a feature that is recapitulated in the computer simulation (Figures 4.5J-

L, 4.S5F-H). We propose that the differences seen in contact domain sizes between eukaryotic 

organisms are not due to different principles governing chromatin architecture, but are primarily 

a result of the size of contiguous active and silenced regions, in combination with the resolution 

of the Hi-C experiments performed. Furthermore, our ability to simulate Hi-C data at such high 

resolution based solely on transcription information indicates that transcription is a major 

contributor to 3D chromatin architecture in many eukaryotes. 

Compartmental Domains are Small Structures Underlying TADs in Humans Cells 
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Results described above suggest that compartments are small fine-scale structures in 

Drosophila and, therefore, we hypothesized that compartments may be also fine-scale 

structures in human cells. To test this hypothesis, we examined Hi-C data in GM12878 cells for 

evidence of fine-scale compartmentalization. Hi-C data viewed at 1 Mb resolution depicts large 

compartments as previously identified (Figure 4.S6A left). We compared this to the 100 kb 

compartments of Rao et al. 2014 and found that 1 Mb compartments are composed of smaller, 

alternating A and B compartments. The A/B identity of the 1 Mb compartments merely reflects 

the proportion of smaller A and B compartments that constitute them (Figure 4.S6A right). This 

suggests that compartments defined at 1 Mb resolution are the result of coarse binning of 

interaction maps. 

Due to the importance of resolution in proper identification of compartments, we asked whether 

100 kb compartments could be resolved into even smaller compartments and whether 

compartmental domains exist in human cells as they do in Drosophila. Figure 4.6A shows a 

typical example of fine-scale compartmental interactions in GM12878 cells. The central active 

region (black arrowhead) does not interact with neighboring silenced sequences, even within 

the same CTCF loop (black circle), but interacts preferentially with other nearby active regions, 

even when located outside of the CTCF loop (green arrowhead). This fine-scale 

compartmentalization can be better appreciated in the local Pearson correlation matrix (Figure 

4.6A right), but it is not detected by compartment calls at resolutions as low as 100 kb (Figure 

4.6A). We therefore sought to call fine-scale compartments in human cells by refining 

compartment calls at 5 kb resolution. Because compartments were already identified at 100 kb 

resolution in GM12878 cells (Rao et al., 2014), in lieu of using unsupervised learning methods, 

we classified 5 kb bins as A or B by their propensity to interact with other A or B regions. First 

we tested this method of compartment refinement utilizing Drosophila data and found that the A-

B index matches well with the eigenvector and 1 kb HiChIP compartments (Figure 4.S6B). Next 
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we used the A-B index to refine compartment calls in human GM12878 cells to detect fine-scale 

compartments as shown in Figure 4.6A. Comparison with GRO-seq data suggests that these 5 

kb-resolution compartments correlate with the transcriptional state of genes, similar to what we 

saw in Drosophila (Figure 4.6A, 4.S6C) and what is generally known about compartments 

(Lieberman-Aiden et al., 2009). These results support the idea that compartments in human 

cells are fine-scale structures rather than large Mb-sized regions. 

Since we find compartmental domains in human cells, we then explored the relationship 

between these domains and previously identified TADs (Moore et al., 2015). We examined 

these TAD calls and found that they identify low resolution domains (Figure 4.S6D). When we 

examine these structures at different intensity scales we find underlying subdomains (Figure 

4.6B, 4.S6D). We noticed that these often correspond to compartment switches inside TADs 

(Figure 4.6B), suggesting that compartmental domains can occur at scales smaller than TADs in 

mammalian cells. This also indicates that TADs called at low-resolution are composed of 

compartmental domains (compare Figure 4.6C and 4.S6D). We examined the prevalence of 

compartment switches occurring within TADs and find that ~71% of TADs contain more than 

one compartmental switch (Figure 4.S6E). 

TADs have been predominately identified at 40 kb resolution in human cells (Dixon et al., 2012; 

Moore et al., 2015) and they do not appear to correspond to the compartmental domains seen 

at higher resolution (Figure 4.6B). To further explore this issue, we called TADs in GM12878 

cells utilizing the directionality index (Dixon et al., 2012) and the 1 kb resolution contact map 

(Rao et al., 2014). These TAD calls better define the underlying domain structures (Figure 

4.6C). We noted that CTCF loops often coincide with compartmental switches (Figure 4.6C) and 

questioned whether CTCF or the underlying compartmental switch determines the formation of 

boundaries between domains. To test this, we selected CTCF loop anchors located at least 50 

kb away from a compartmental domain switch and examined the boundary score around these 
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sites. We found that these CTCF loops still form boundaries (Figure 4.S6F). Interestingly, not all 

domains show the presence of a loop at the domain corner and correspond instead with the 

compartmental pattern (Figure 4.6C). To confirm the existence of compartmental domains in the 

human genome, we examined compartmental switches that were at least 50 kb away from a 

CTCF loop anchor. These compartmental switches correspond well with the formation of 

domain boundaries without the need of a CTCF loop (Figure 4.6D). We then determined the 

proportion of TAD borders that can be explained by compartments, CTCF loops, or both. We 

found that CTCF loops can explain many TADs, but a large portion of borders occur at 

compartmental switches (Figure 4.S6G). Additionally, as we noted above (Figure 4.6C) many 

TAD borders correspond to both a compartmental switch and a CTCF loop anchor, suggesting a 

correlation between the two (Figure 4.S6G). It should be noted that we found 1,939 TAD 

borders (23%) that do not correspond to CTCF loop anchors or to compartmental switches and 

it is unclear which features contribute to the formation of these borders. Altogether these 

observations suggest that TADs defined based on a directionality index are composed of CTCF 

loops and/or fine-scale compartments. While CTCF is an important player in controlling 3D 

chromatin organization in mammalian cells, compartmentalization by transcriptional states likely 

plays a similarly important role. 

CTCF and Compartments Organize Chromatin into Domains in Human Cells 

Results described above suggest that compartmental domains often represent structures 

smaller than traditionally defined TADs in human cells and in other eukaryotes. This indicates a 

conserved principle of chromatin organization by the segregation of active and inactive 

transcription. To further understand the relationship between transcription and known features 

of 3D chromatin organization such as CTCF loops, we classified the genome into 

transcriptionally active and inactive segments by their GRO-seq signal using a hidden Markov 

model in GM12878 cells. We find that transcriptionally active regions form domains with a 
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structure distinct from that of CTCF loops i.e. lack of an intense signal spot at the corner of the 

domain (Rao et al., 2014), which is similar to that of domains found in Drosophila (Figures 4.7A 

and 4.2B). As an example, Figure 4.7B shows a region of chromosome 5 containing a domain 

formed by multiple interactions among transcribed regions. In addition, a CTCF loop is formed 

between two CTCF sites present inside and outside of this domain (Figure 4.7B circle). The 

borders of this domain do not correspond to CTCF motifs in convergent orientation, but instead 

correspond to switches in transcriptional activity (Figure 4.7B GRO-seq). Therefore, since some 

contact domains can be explained by transcription rather than by the formation of loops 

between CTCF sites, we hypothesized that these domains should be sensitive to changes in 

transcription. We tested this hypothesis by finding regions with differential transcription between 

cell types. In one example, transcription of the PBX1 gene occurs in IMR90, K562, NHEK, and 

HeLa cells and each has a corresponding domain structure separating this site from the 

neighboring inactive regions (Figure 4.7C). IMR90 appears to have the strongest expression 

and correspondingly shows the strongest compartmental domain pattern. Additionally, 

transcription is lost in GM12878 cells, which correlates with a loss of the compartmental domain 

(Figure 4.7C). In a second example, transcription occurs in GM12878 and a compartmental 

domain is formed, while both the domain and transcription are lost in the other cell types (Figure 

4.S7A). We tested the validity of these observations genome-wide by taking the median 

distance normalized interaction signal around regions that are transcribed in IMR90 but not in 

GM12878 cells. We found that differentially transcribed regions show distinct differential contact 

domains between the two cell types (Figure 4.7D top). We also tested regions transcribed in 

GM12878 but not in IMR90 and found that differentially transcribed regions in GM12878 form 

contact domains structures that are not present in IMR90 (Figures 4.7D bottom). 

The finding that compartmental domains are distinct from CTCF loops predicts that long 

stretches of the genome that lack transcription, such as gene deserts, should display only CTCF 
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loops. We examined Hi-C data from GM12878 cells and found that gene deserts contain CTCF 

loops and their corresponding loop domains. However, domain segregation in gene deserts 

does not appear as strong as in neighboring regions that have both CTCF loops and 

compartmental domains (Figure 4.7E and 4.S7B). 

Motivated by the apparent applicability of the fine-scale compartmentalization model to the 

human genome we then examined whether chromatin contact maps obtained from Hi-C 

experiments could be predicted using computer simulations as in other eukaryotes. Figure 4.7E 

shows an example of the Hi-C contact map in a region containing CTCF loops, predicted 

transcriptional domains, and evident compartmental interactions. First we recreated features of 

CTCF loops by creating a simulated Hi-C interaction map where the intensity of the CTCF loop 

is used to create the Hi-C peak, line of interactions from CTCF anchors, and the enriched 

interactions comprising the underlying domain (see STAR Methods). This map reproduced 

some small domains well, but could not account for interactions larger than the CTCF loops 

themselves (Figure 4.7F). Next, we modeled Hi-C contacts based solely on the correlation of 

GRO-seq signal, as we previously did for Drosophila and other eukaryotes. Simulations using 

only transcription information produce compartmental domains that match many fine-scale 

compartments and domain-like structures observed in Hi-C heatmaps, but miss CTCF loop 

domains. This is particularly evident in large inactive regions of the genome (Figure 4.7G). We 

then combined CTCF and transcription based simulations to produce a map in which both 

CTCF and transcription contributed independently to contact signals. The accuracy of the 

resulting map indicates that both transcription and CTCF looping are important components of 

chromatin architecture in human cells (Figure 4.7H). Overall, these results suggest that the fine-

scale compartmentalization principle underlying Drosophila contact domain formation is also 

operational in human cell nuclei, but that CTCF loops and their resulting domains are not 

conserved features between the two organisms. Changes in transcriptional state can explain the 
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establishment of compartments and compartmental domains, whereas CTCF-mediated loops 

account for the rest of the contact domains observed in human cells. Therefore, transcriptional 

activity is a major predictor of chromatin organization throughout Eukarya, with CTCF playing a 

prominent role in mammals. 

Discussion 

Results presented here suggest that compartments and contact domains not mediated by CTCF 

loops are structurally and functionally equivalent, and arise from the segregation of the genome 

into active and silent regions. These compartmental domains likely represent a basic and 

ancient form of 3D chromatin organization in eukaryotes. In this model of nuclear architecture, 

actively transcribed genes form mini-domains that interact more frequently with other active 

genes. Clusters of active genes without large transcriptionally silent spaces between them form 

larger, multi-gene domains. Domains of similar transcriptional activity interact to form the 

characteristic plaid pattern of compartments. Thus, the compartmentalization of the genome by 

transcriptional state is responsible for the formation of both long-range compartments and local 

compartmental domains. This appears to be the main mechanisms of 3D organization for 

organisms that lack architectural proteins such as CTCF. Drosophila lacks motif-oriented CTCF 

looping, which is likely key to its function in mammals, and compartmental domains explain 

most visible chromatin organization observed by Hi-C. In humans, these compartmental 

domains exist alongside CTCF loops to constitute structures previously defined as TADs. In 

Drosophila, a large effort has gone into identifying components of TAD borders. A major 

problem with this approach is that the results depend on an often-inaccurate border 

identification due to the low resolution of the Hi-C data employed in the analyses, and ignores 

features within the domain. This has led to the conclusion that TAD borders are enriched for 

architectural proteins, active chromatin, or transcription/RNAPII (Hou et al., 2012; Hug et al., 

2017; Sexton et al., 2012; Ulianov et al., 2016; Van Bortle et al., 2014). Results presented here 
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suggest that regions where these features are enriched represent small domains rather than 

domain borders. 

Our results appear to conflict with current thinking suggesting that TADs are invariant between 

mammalian cell types (Dixon et al., 2012). However, the degree of variability in TAD calls 

between cell lines, for example 54% conservation between mESCs and brain cortex in mouse 

and 65% between hESC and IMR90 cells in humans (Dixon et al., 2012), is in line with 

differences in transcription and CTCF distribution among different cell types. The essential 

contribution of transcriptional state to the 3D architecture of the genome is also supported by 

observations suggesting that TAD organization is altered during the heat shock response (Li et 

al., 2015). Our results show that alteration of transcription or correlated factors such as RNAPII 

occupancy, using either inhibitors or heat shock, results in changes of compartmental domains. 

Furthermore, differential gene expression between multiple cell types results in the formation of 

distinct gene-level compartmental domains. This supports the idea that TADs, which are in part 

formed by these compartmental domains, should be different when comparing cell types with 

distinct transcription patterns. Recently published studies have examined the role of CTCF in 

the formation of loops and TADs using an auxin-mediated degradation system in mammals 

(Kubo et al., 2017; Nora et al., 2017). The loss of CTCF domains and maintenance of 

compartments seen after CTCF degradation fits with our model. Compartmental domains can 

explain why TAD-like structures can still be seen after CTCF depletion. 

Interestingly, compartmental domains are found in representatives across Eukarya and the 

relative sizes of active and inactive segments can explain the differences in domain sizes found 

in these organisms. Our findings invite the question of when animal genomes first acquired 

oriented CTCF loops. One possibility is that an ancient Bilaterian ancestor possessed oriented 

looping CTCF whose function was later lost in D. melanogaster and C. elegans. It has been 

shown that CTCF motifs are oriented in accordance with topological domain borders in both D. 
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rerio and S. purpuratus, suggesting that CTCF acquired this role early in the Deuterostome 

ancestor (Gómez-Marín et al., 2015). Although there is a clear correspondence between 

transcriptional activity, compartments, and domain formation, the question of what establishes 

and/or maintains compartmental domains remains unclear. It has been recently suggested that 

TADs are still established after inhibition of transcription in Drosophila embryos using low 

concentrations of triptolide. However, it is possible that transcription of most genes in the 

genome was not affected under these conditions, since RNAPIISer5ph remains bound to 

promoter regions under this treatment (Hug et al., 2017). It is also possible that the presence of 

RNAPII and other associated proteins, rather than transcription itself, is responsible for the 

establishment of compartmental domains, since compartmental interactions appear to correlate 

more closely with occupancy of RNAPII at promoter regions. A role for RNAPII and/or 

associated proteins in the establishment of compartmental domains is also supported by HiChIP 

and ChIA-PET results, which identify RNAPII-mediated interactions throughout A 

compartmental domains. This idea is further supported by analysis of Hi-C data in mouse 

sperm, which is transcriptionally silent but contains RNAPII and active or silent histone 

modifications, but shows a similar compartmental organization as embryonic stem cells (Jung et 

al., 2017). 

Segregation of the genome into gene-sized active and inactive components explains structural 

aspects of chromatin organization in all organisms analyzed to date. Proximal gene domains co-

associate to form domains that further interact to form compartments. Together with point-to-

point interactions mediated by CTCF, these short and long-range interactions give rise to TADs. 

Altogether, the correlation between transcriptional state and compartmental domains suggests a 

fundamental and conserved principle of chromatin organization across Eukarya. 
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Figure 4.1. Drosophila has Fine-Scale Compartments 

A.    Left: Normalized Hi-C map of Kc167 cells at 10 kb resolution. Right: Pearson Correlation 

matrix of Hi-C. The eigenvector and H3K27ac and H3K27me3 ChIP-seq are above the Hi-C 

plot. 

B.    ChIP-seq for 12 different histone modifications, ATAC-seq, and GRO-seq compared to the 

Hi-C eigenvector. A slice of the distance normalized Hi-C matrix (observed/expected) is shown 

corresponding to Chr3R:12.5 Mb – 15.5 Mb (horizontal) and Chr3R:12.5 Mb-13.5 Mb (vertical). 

C.   Active and inactive chromatin correspond to A and B compartments. Average histone 

modification profiles over A and B compartments. Color coding of ChIP-seq for histone 

modifications/variants is indicated. 

D.   Compartmental interactions defined by HiChIP. Contact map showing differential contacts 

for H3K27ac vs H3K27me3 HiChIP visualized by Juicebox. 

See also Figures 4.S1 and Table 4.S1-S2. 
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Figure 4.2 Compartments Explain Domain Organization in Drosophila 

A.    Contact domains in human cells show enriched interaction signal between borders 

(arrowheads). Normalized Hi-C map of GM12878 cells at 5 kb resolution. 

B.    Contact domains in Drosophila do not show enriched interaction signal between borders 

(arrowheads). Normalized Hi-C map of Kc167 cells at 5 kb resolution (left) and 500 bp 
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resolution (right). The A/B compartmental interactions computed by H3K27ac vs H3K27me3 

HiChIP are shown above. Lines indicate borders. 

C.   Human CTCF motif orientation has a directional bias, while Drosophila does not. Total 

interactions as log2 ratio of right/left reads for each distance on right (red) or left (blue) oriented 

bound CTCF motifs in GM12878 cells (top) or Kc167 cells (bottom). 

D.   HiChIP for phosphorylated RNAPIISer2 captures active compartments. Raw HiChIP signal 

for phosphorylated RNAPIISer2 (red) overlaying Hi-C signal (blue). Gene annotations, GRO-

seq, H3K27ac, and H3K27me3 ChIP-seq are shown below. 1 kb HiChIP indicates 

H3K27ac/H3K27me3 HiChIP compartmental interaction preference. 

E.    Individual genes can form mini-domains. RNAPII ChIA-PET signal in 1 kb bins (top right). 

Hi-C signal in 1 kb bins (bottom left). GRO-seq and gene annotations are shown above. 

F.    Distance normalized Hi-C signal at 1 kb resolution is plotted between distinct transcription 

start sites (TSSs) within the same compartment. Height and color (blue to red) correspond to 

the relative median observed/expected Hi-C signal. Nodes indicate 1 kb windows from -5 kb to 

+5 kb surrounding the TSS. Expression level defined by no GRO-seq signal (No Expression) 

and quartiles of GRO-seq signal. p-value < .05 for each center point (Wilcoxon test compared to 

no GRO-seq). 

G.   Transcriptional states correspond to Hi-C domains. Transcriptional state domains identified 

by GRO-seq (black triangles) overlaying Kc167 Hi-C at 1 kb resolution. GRO-seq and gene 

annotations are shown below. 1 kb HiChIP indicates compartmental interaction preference. 

See also Figure 4.S2-S3 and Table 4.S3. 
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Figure 4.3 RNAPII Depletion Alters Drosophila Chromatin Organization 

A.    Heat shock decreases domain formation. Hi-C heatmap of log2 ratio of heat shocked to 

control cells (CTL). Gene annotations, control and heat shocked RNAPII ChIP-seq signal are 

shown above. 1 kb HiChIP indicates compartmental interaction preference. 
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B.    Inhibition of transcription decreases domain formation. Hi-C heatmap of log2 ratio of 

triptolide treated (TRP) to control cells (CTL). Gene annotations, control and triptiolide treated 

RNAPII ChIP-seq signal are shown above. 1 kb HiChIP indicates compartmental interaction 

preference. 

C.   Inhibiting transcription decreases contacts in A compartmental domains. Hi-C median 

metaplot comparing contacts in A and B domains in triptolide treated (TRP) vs control cells 

(CTL). 

D.   Hi-C median metaplot A compartmental domains with large decreases in RNAPII after 

triptolide treatment; i.e. triptolide sensitive domains (TSDs). 

E.    Decreases in intra-domain contacts in A and B compartments and in triptolide sensitive 

domains (TSD) after triptolide treatment. Boxes depict median and interquartile range. 

F.    Ratio of inter-compartmental contact counts in triptolide (TRP) vs control (CTL) treated 

cells. Boxes depict median and interquartile range. 

G.   Ratio of RNAPII ChIP-seq or ATAC-seq signal in triptolide sensitive domains (TSDs) or 

other A compartmental domains (nonTSDs). Boxes depict median and interquartile range. 

See also Figure 4.S4. 
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Figure 4.4 Architectural Proteins Insulate Gene-to-Gene Interactions 

A.    HiChIP for CP190 captures active compartments. HiChIP signal for CP190 (red) overlaying 

Hi-C signal (blue). Gene annotations, GRO-seq, H3K27ac, and H3K27me3 ChIP-seq are shown 

below. 1 kb HiChIP indicates compartmental interaction preference. 

B.    Heatmaps of Hi-C directionality anchored and ordered by APBS occupancy (left) or GRO-

seq signal (right) show switches in directionality (blue to red). 

C.   Heatmap of APBSs within 250 bp of a highly expressed TSS ordered by APBS occupancy. 

Low occupancy sites (<= 3 proteins bound) are indicated for comparison with Figure 4.4B. 

D.   Heatmap of APBSs at least 20 kb away from a highly expressed gene ordered by APBS 

occupancy. High occupancy sites (>= 5 proteins bound) are indicated for comparison with 

Figure 4.4B. 

E.    Distance normalized Hi-C signal at 1 kb resolution is plotted between distinct transcription 

start sites (TSSs) from the top two GRO-seq quartiles. Low, mid, and high APBSs are defined 

as the maximum APBS cluster site between genes divided into those containing below 5, 5-8, 

and above 8 architectural proteins, respectively. Height and color (blue to red) correspond to the 

relative median observed/expected Hi-C signal. Vertices indicate 1 kb windows from -5 kb to +5 

kb surrounding the TSS. p-value < .05 for center point of low APBS compared to high APBS 

(Wilcoxon text). 

F.    Neighboring genes are insulated by APBSs. Hi-C metaplot of highly expressed neighboring 

genes separated by low and high occupancy APBSs. 

See also Figure 4.S3 and Table 4.S3. 
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Figure 4.5 Transcriptional States Explain 3D Chromatin Interactions throughout Eukarya 

A.    Transcription based simulated contact maps predict Hi-C structures. Contact heatmaps at 5 

kb resolution using actual Hi-C data (left) and simulated data based on GRO-seq signal only 

(right). Repetitive/non-mappable regions are shaded grey. Shown below are APBS occupancy 

counts, GRO-seq, and gene annotations. 

B.    APBS-based simulated contact maps do not fully explain Hi-C heatmaps. Contact 

heatmaps at 5 kb resolution using actual Hi-C data (left) and simulated data based on APBS 

occupancy only (right). Repetitive/non-mappable regions are shaded grey. Shown below are 

APBS occupancy counts, GRO-seq, gene annotations. 
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C.   GRO-seq and APBS-based simulated contact maps recapitulate domains and 

compartments in Drosophila melanogaster. Contact heatmaps at 5 kb resolution using actual Hi-

C data (left) and simulated data based on GRO-seq and APBS occupancy (right). 

Repetitive/non-mappable regions are shaded grey. Shown below are APBS occupancy counts, 

GRO-seq, and gene annotations. 

D.   Spearman correlation of 5 kb bins of actual Hi-C with simulated Hi-C incorporating APBS 

occupancy, GRO-seq signal, or both. 

E.    Simulated contacts recapitulate small and large structures. Actual Hi-C (bottom) compared 

to simulated data (top). TADs are shown in black. 

F.    Drosophila expression varies sharply throughout the genome. Log2 RNA-seq profile of a 1 

Mb region in Drosophila melanogaster. 

G.   Arabidopsis expression is linearly constant throughout the genome. Log2 RNA-seq profile of 

a 1 Mb region in Arabidopsis thaliana. 

H.   Arabidopsis expression profile contributes to lack of visible domain architecture. Contact 

heatmaps at 10 kb resolution using actual Hi-C data (left) and simulated data based on RNA-

seq data (right). RNA-seq and gene annotations are shown below. 

I-L. Large inactive regions form domain structures throughout Eukarya. Contact heatmaps at 10 

kb resolution using actual Hi-C data (left) and simulated data based on RNA-seq data (right). 

RNA-seq and gene annotations are shown below. Sections of the genome with large inactive 

regions were selected for A. thaliana (I), P. falciparum (J), N. crassa (K), and C. elegans (L). 

See also Figure 4.S5. 
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Figure 4.6 Compartments are Fine-scale Structures in Human Cells 
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A.    Compartment identification using an A-B index obtained at 5 kb and previously reported 

compartments at 100 kb, showing identification of smaller A (green) and B (purple) 

compartments. Gene annotations are shown above and to the left. Left: Hi-C map at 5 kb 

resolution. Circle indicates a CTCF loop, black arrow indicates a distinct compartment switch 

within a CTCF loop, green arrow indicates inter-A compartment interactions. Right: Pearson 

correlation map showing A and B associations. 

B.    Compartmentalization subdivides low-resolution TADs. Black squares denote TAD calls at 

40 kb(Moore et al., 2015). Blue square denotes area depicted to the right at higher resolution. 

C.   High resolution TAD calls identify small domains. Black squares denote high resolution TAD 

calls. Circles denote CTCF loops. 

D.   Compartments create domains in humans. Boundary score at compartmental switches 

more than 50 kb from a CTCF loop anchor. The median profile is shown above. 

See also Figure 4.S6. 
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Figure 4.7 Transcriptional States and CTCF Loops Contribute to Formation of Domains in 

Human Cells 

A.    Transcriptionally active regions form domains distinct from CTCF loops. Scaled meta-plot 

of Hi-C interactions at transcriptionally active regions (left) compared to CTCF loops (right). 

B.    Hi-C heatmap of GM12878 cells at 5 kb resolution. A region where transcriptional activity 

matches border formation better than CTCF looping (circle) is shown. Blue line indicates CTCF 

loop anchor. Gene annotations, CTCF forward (red) and reverse (blue) motif orientation, and 

GRO-seq are shown below. 

C.   Hi-C heatmap comparing GM12878, IMR90, K562, NHEK, and HeLa cells. Tracks 

comparing GRO-seq/RNA-seq and CTCF occupancy in each cell line are shown below. Red 

rectangle indicates differentially expressed region. 
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D.   Transcriptional activity corresponds to domain formation. Scaled meta-plots of distance 

normalized (observed/expected) Hi-C contacts surrounding transcriptionally active regions in 

IMR90 that are transcriptionally inactive in GM12878 (top) or vice versa (bottom). Metaplot of 

GRO-seq signal in GM12878 (green) and IMR90 (pink) for differentially called regions is shown 

on the left. 

E.    Transcriptional activity and CTCF looping explains chromatin architecture. Actual Hi-C 

contact map for a region of chromosome 4. Gene annotations, GRO-seq, and CTCF ChIP-seq 

signal tracks are shown below. Arrows indicate lines of interactions at CTCF anchors. 

F.    CTCF looping alone cannot explain chromatin organization. Simulation created using 

CTCF-loop information only. 

G.   Transcription alone cannot explain chromatin organization. Simulation created using GRO-

seq signal correlation as the probability of two sites interacting. 

H.   Transcription and CTCF both contribute to chromatin organization. Simulation created using 

CTCF-loop information as well as GRO-seq signal as a measurement of transcriptional activity. 

Contacts are a feature of CTCF loops and the correlation in GRO-seq between loci. 

See also Figure 4.S7. 

Supplemental Figures 
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Figure 4.S1 Related to Figure 4.1  
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A.  Comparison of depth between the highest resolution Drosophila (green) and human 

(blue) Hi-C datasets at each distance. 

B.  A and B compartments have distinct GRO-seq signal. Log2 GRO-seq signal in 10 kb 

windows on A (green) and B (brown) compartments. Boxes depict median and interquartile 

range. 

C. A and B compartments have distinct transcription factor signal. Log2 ATAC-seq signal 

corresponding to short protected fragments (<= 115 bp) in A (green) and B (brown) 

compartments. Boxes depict median and interquartile range. 

D. Active and inactive chromatin correspond to A and B compartments. Average histone 

modification profiles over A and B compartments. Color coding of ChIP-seq for histone 

modifications/variants is indicated. 

E.  Hi-C PCA and eigenvector decomposition failed to identify small compartments. 

Distance normalized Hi-C (observed/expected). Tracks show H3K27ac ChIP-seq, H3K27me3 

ChIP-seq, and the Hi-C eigenvector. Track with 10 kb HiChIP depicts the preference of each 

site to interact in H3K27ac or H3K27me3 HiChIP. 

F.  H3K27ac and H3K27me3 are good measures of A and B compartments. Log2 

H3K27ac/H3K27me3 ChIP-seq signal on A and B compartments. Boxes depict median and 

interquartile range. 

G. Most of the Drosophila genome is contains either H3K27ac or H3K27me3. Percentage 

of 1 kb bins with enriched ChIP-seq signal for either H3K27ac (green), H3K27me3 (purple), or 

neither (grey). 
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H. H3K27ac and H3K27me3 capture A and B compartmental interactions, respectively. 

Interaction counts of inter-A (green) and inter-B (brown) compartments as log2 ratio between 

HiChIP for H3K27ac and H3K27me3. 

I.   H3K27ac and H3K27me3 HiChIP combined recapitulates Hi-C interactions. Correlation 

between the merged HiChIP data and Hi-C. Distance normalized (observed/expected). Color 

range white to red indicates low to high density of data points. 

J.  H3K27ac and H3K27me3 HiChIP combined does not capture centromeric interactions. 

Hi-C compared to H3K27ac/H3K27me3 combined HiChIP across chromosome 3. ChIP-seq 

signal for H3K27ac, H3K27me3, H3K9me2, and H3K9me3 are shown below. 

K.  Compartmentalization occurs at 1 kb resolution. Distance normalized Hi-C 

(observed/expected). Tracks show H3K27ac ChIP-seq, H3K27me3 ChIP-seq (below), and the 

Hi-C eigenvector (above). The preference of each bin to interact in H3K27ac or H3K27me3 

HiChIP computed at 10 kb and 1 kb resolution is shown. Arrows indicate compartmental 

switches discovered at 1 kb resolution at a small active site depleted for interactions with the 

surrounding inactive region. Circle indicates enriched interactions between the small active 

region and a nearby active region. Green box indicates compartmental switch missed by the 

eigenvector. 
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 Figure 4.S2 Related to Figure 4.2 

A. Drosophila loops do not form domain corners. Distance normalized Hi-C depicting a loop 

(circled).  
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B. CTCF orientation does not determine domain corners in Drosophila. Percentage of 

domains with border associated CTCF motifs in each orientation for GM12878 cells and 

Drosophila Kc167 cells. Arrows indicate CTCF motif orientations. 

C. Hi-C maps with previously identified TAD calls (black) (Hou et al., 2012) shown at 1 kb 

resolutions. GRO-seq, HiChIP determined compartmental associations, and gene annotations 

are shown below. TAD calls from an independent source are also shown (bottom) (Ulianov et 

al., 2016). 

D. Hi-C map of nc14 embryos with previously identified TAD calls (black) (Hug et al., 2017) 

shown at 5 kb resolution. RNAPII ChIP-seq signal and the compartmental associations 

(eigenvector) are shown below. 

E. RNAPII is enriched throughout alternating domains. RNAPII ChIP-seq (RPKM) signal 

across neighboring domains. 

F. Hi-C maps with compartmental domains (black) shown at 1 kb resolution. GRO-seq, 

HiChIP determined compartmental associations, and gene annotations are shown below.  
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Figure 4.S3 Related to Figure 4.2 and Figure 4.4 

A.  RNAPII HiChIP heatmap. GRO-seq, HiChIP determined compartmental associations, 

and gene annotations are shown below. 
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B.  Active compartments are composed of elongating RNAPII. Categorization of contacts 

from HiChIP for RNAPIISer2ph and the enrichment within A and B compartments. 

C. Individual genes can form mini contact domains. RNAPIISer2ph HiChIP (top right) 

compared to Hi-C signal (bottom left). GRO-seq and gene annotations are shown above and to 

the left. 

D. Individual genes can form mini-domains. RNAPII ChIA-PET (left) and RNAPIISer2ph 

HiChIP (right) signal compared to Hi-C signal in 250 bp bins. GRO-seq and gene annotations 

are shown above. 

E.  RNAPII ChIA-PET displays gene-loops. Median metaplot of RNAPII ChIA-PET signal on 

genes. 

F.  Gene loops correspond to expression. Percentage of significant TSS-TTS interactions 

found by RNAPII ChIA-PET on genes without any GRO-seq signal (0) and in each quartile of 

expression (1-4). 

G. GRO-seq borders correlate with Hi-C domain borders. Median distance normalized 

(observed/expected) Hi-C signal surrounding identified GRO-seq domain borders. 

H. Sizes of Drosophila domains. Boxplot of the sizes of compartmental domains (orange) 

and domains called from GRO-seq data (pink). Boxes depict median and interquartile range. 

I.   CP190 HiChIP heatmap. GRO-seq, HiChIP determined compartmental associations, 

and gene annotations are shown below. 

J.  CP190 interactions are in active A compartments. Categorization of contacts from 

HiChIP for CP190 and the enrichment within A and B compartments. 
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K.  Transcription corresponds to APBS occupancy. Boxplot of GRO-seq levels categorized 

by architectural protein occupancy within 250 bp of the TSS. Boxes depict median and 

interquartile range. 

L.  High occupancy APBSs do not demarcate Hi-C domain borders. Median distance 

normalized (observed/expected) Hi-C signal surrounding identified high occupancy (>= 5 protein 

occupancy) APBSs at least 20 kb away from highly expressed TSSs. 

M. A compartments are further decayed by APBS occupancy. Median metaplot of A-A 

compartmental interactions for those separated by low (left) and high (right) APBSs. 
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Figure 4.S4 Related to Figure 4.3 

A.  Effect of heat shock on RNAPII. RNAPII ChIP-seq signal at peaks in control (CTL) vs 

heat shock. 
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B.  Effect of triptolide on RNAPII. RNAPII ChIP-seq signal at peaks in control (CTL) vs 

triptolide treatment (TRP). 

C. Comparison of high and low triptolide treatment on domain formation. Differential Hi-C 

signal (triptolide/control) for Kc167 cells with high treatment levels (top left) compared to nc14 

with low treatment levels (Hug et al., 2017) (bottom right). 

D. Treatment with higher concentration of triptolide for longer times correlates with a 

greater decrease in domain structure. Intra domain contact differences (triptolide/control) in A 

and B compartments in KC167 cells vs nc14 embryos(Hug et al., 2017) with different treatment 

conditions. Boxes depict median and interquartile range. 

E.  Higher triptolide treatment causes greater changes to RNAPII occupancy at peaks. 

RNAPII ChIP-seq differential signal (triptolide/control) in Kc167 cells vs nc14 embryos (Hug et 

al., 2017) with different treatment conditions. Boxes depict median and interquartile range. 

F.  Low triptolide treatment conditions have little effect on RNAPII within genes. Genes with 

RNAPII peaks in control were plotted for their total RNAPII signal in the control (CTL) vs 

triptolide (TRP). Data from Hug et al. were used (Hug et al., 2017). Line indicates slope of 1. 

Grey, yellow, and red dots represent genes with less than 2, 2-4, and greater than 4-fold 

decrease in RNAPII ChIP-seq signal respectively. Black circles indicate genes tested by RT-

PCR in Hug et al. 

G. Effect of triptolide on chromatin accessibility. ATAC-seq signal (fragments <= 115 bp) on 

peaks in in control (CTL) vs triptolide treatment (TRP). 
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Figure 4.S5 Related to Figure 4.5 

A.    GRO-seq and APBS based simulated contact maps precisely recapitulate domains and 

compartments at 5 kb resolution. Contact heatmap at 5 kb resolution using actual Hi-C data 
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(top) and simulated data based on GRO-seq and APBS occupancy (bottom). 300 kb of chr2L 

are shown. 

B.    GRO-seq and APBS based simulated contact maps precisely recapitulate domains and 

compartments at 1 kb resolution. Contact heatmap at 1 kb resolution using actual Hi-C data 

(top) and simulated data based on GRO-seq and APBS occupancy (bottom). 300 kb of chr2L 

are shown. 

C.   GRO-seq and APBS based simulated contact maps recapitulate domains and 

compartments. Contact heatmaps at 5 kb resolution using actual Hi-C data (top) and simulated 

data based on GRO-seq and APBS occupancy (bottom). 

D-H. Actual Hi-C compared to simulated data. Density scatter plot showing the ratio of actual 

Hi-C reads over the simulated reads (x-axis) for each genomic distance (y-axis) for D. 

melanogaster (D), A. thaliana (E), P. falciparum (F), N. crassa (G), C. elegans (H). Reads were 

normalized by distance decay values. Vertical lines indicate a 2-fold change. 
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Figure 4.S6 Related to Figure 4.6 
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A.    Large compartments are a result of read binning. Distance normalized Hi-C 

(observed/expected) in GM12878 cells at 1 Mb (left) and 100 kb (right) resolution. Tracks with 1 

Mb eigenvector, 100 kb compartments, and GRO-seq are shown above. 

B.    Validation of the A/B index compartmental refinement method. Drosophila tracks comparing 

the A-B index to the eigenvector or 1 kb HiChIP compartment calls. 

C.   Transcriptional activity corresponds to fine-scale compartments. Log2 GRO-seq compared 

to A-B index. Color gradient indicates density of points. 

D.   TAD calls at saturation. TAD calls in GM12878 cells at 50 kb resolution. 

E.    TADs are comprised of compartmental interactions. Percentage of TADs with more than 1 

compartment switch within the domain. Previously called (at 100 kb resolution - blue) and newly 

called (at 5 kb resolution – orange) compartments are shown. 

F.    CTCF loops correlate with borders. Heatmap displaying the border strength for 100 kb to 

either side of left and right CTCF loop anchors. Average profiles are shown above. 

G.   TAD borders correspond to loops and compartments. Number of TAD borders coinciding 

with loops, compartmental switches, or both. p < .001 for loop anchors and compartments via 

random permutation test. 
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Figure 4.S7 Related to Figure 4.7 

A.    Transcriptional activity correlates with the formation of domains. Hi-C heatmaps for 

GM12878, IMR90, K562, NHEK, and HeLa cells. Tracks comparing GRO-seq/RNA-seq and 

CTCF occupancy between the different cell lines are shown below. Red rectangle indicates 

differentially expressed region. 

B.    Compartmental domains underlie CTCF loops. Hi-C heatmap for GM12878 cells displaying 

a large region with CTCF loops and no compartmental domains (transcriptional desert), as well 
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as a region with compartmental domains and CTCF loops. Gene annotations, CTCF ChIP-seq, 

GRO-seq, and fine-scale compartment identification tracks are shown above and to the left. 

 

  

  

 
H3K27ac Rep1 HiChIP H3K27ac Rep2 HiChIP 

Sequenced Read Pairs 100,225,894 22,784,945 

 Normal Paired  80,184,199 (80.00%) 18,663,253 (81.91%) 

 Chimeric Paired  1,066 (0.00%) 119 (0.00%) 

 Chimeric Ambiguous  2,002 (0.00%)  390 (0.00%) 

 Unmapped  20,038,627 (19.99%)  4,121,183 (18.09%) 

 Ligation Motif Present  31,666,024 (31.59%) 8,548,749 (37.52%) 

Alignable (Normal+Chimeric 

Paired)  80,185,265 (80.00%)  18,663,372 (81.91%) 

Unique Reads  68,648,039 (68.49%)  17,945,684 (78.76%) 
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PCR Duplicates  11,536,419 (11.51%)  716,899 (3.15%) 

Optical Duplicates  807 (0.00%)  789 (0.00%) 

Library Complexity Estimate 251,239,520 236,654,145 

Intra-fragment Reads  889,140 (0.89% / 1.30%)  1,627,771 (7.14% / 9.07%) 

Below MAPQ Threshold 

 18,799,325 (18.76% / 

27.39%)  4,793,044 (21.04% / 26.71%) 

Hi-C Contacts 

 48,959,574 (48.85% / 

71.32%)  11,524,869 (50.58% / 64.22%) 

 Ligation Motif Present 

 12,269,091  (12.24% / 

17.87%)  3,604,694 (15.82% / 20.09%) 

 3' Bias (Long Range)  85% - 15%  78% - 22% 

 Pair Type %(L-I-O-R)  25% - 25% - 25% - 25%  25% - 25% - 25% - 25% 

Inter-chromosomal 

 2,632,278  (2.63% / 

3.83%)  786,657 (3.45% / 4.38%) 
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Intra-chromosomal 

 46,327,296  (46.22% / 

67.49%)  10,738,212 (47.13% / 59.84%) 

Short Range (<20Kb) 

 23,349,446  (23.30% / 

34.01%)  5,133,320 (22.53% / 28.60%) 

Long Range (>20Kb) 

 22,975,053  (22.92% / 

33.47%)  5,604,850 (24.60% / 31.23%) 

Combined Contacts: 

60,484,443     

 
   

 Table S1 Related to Figure 1 

HiChIP and ChIA-PET mapping statistics performed in Kc167 cells to the dm6 genome for 

H3K27ac. 

   

 

H3K27me3 Rep1 

HiChIP 

H3K27me3 Rep2 

HiChIP 

H3K27me3 Rep3 

HiChIP 

Sequenced Read 

Pairs 86,473,347 22,785,730 73,918,791 
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 Normal Paired 68,220,334 (78.89%) 19,171,480 (84.14%) 

54,625,690 

(73.90%) 

 Chimeric Paired 1,421 (0.00%) 259 (0.00%) 302 (0.00%) 

 Chimeric 

Ambiguous 2,149 (0.00%)  640 (0.00%)  1,308 (0.00%) 

 Unmapped 18,249,443 (21.10%)  3,613,351 (15.86%) 

 19,291,491 

(26.10%) 

 Ligation Motif 

Present 27,127,062 (31.37%) 5,362,368 (23.53%) 

31,273,691 

(42.31%) 

Alignable 

(Normal+Chimeric 

Paired) 68,221,755 (78.89%)  19,171,739 (84.14%) 

 54,625,992 

(73.90%) 

Unique Reads 18,003,439 (20.82%)  11,579,237 (50.82%) 

 46,920,236 

(63.48%) 

PCR Duplicates 50,217,579 (58.07%)  7,591,992 (33.32%) 

 7,704,177 

(10.42%) 

Optical Duplicates 737 (0.00%) 510 (0.00%) 1,579 (0.00%) 
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Library Complexity 

Estimate 18,462,085 17,270,710 174,978,194 

Intra-fragment 

Reads 

304,152 (0.35% / 

1.69%) 

 340,787 (1.50% / 

2.94%) 

 1,328,032 (1.80% 

/ 2.83%) 

Below MAPQ 

Threshold 

6,606,156 (7.64% / 

36.69%) 

 4,286,041 (18.81% / 

37.01%) 

 17,587,159 

(23.79% / 37.48%) 

Contacts 

11,093,131 (12.83% / 

61.62%) 

 6,950,409 (30.51% / 

60.04%) 

 28,005,045 

(37.89% / 59.69%) 

 Ligation Motif 

Present 

2,951,454 (3.41% / 

16.39%) 

 1,306,510 (5.73% / 

11.28%) 

 9,483,361 

(12.83% / 20.21%) 

 3' Bias (Long 

Range) 84% - 16%  74% - 26%  78% - 22% 

 Pair Type %(L-I-O-

R)  25% - 25% - 25% - 25% 

 25% - 25% - 25% - 

25% 

 25% - 25% - 25% 

- 25% 

Inter-chromosomal 

975,417 (1.13% / 

5.42%) 

 534,655 (2.35% / 

4.62%) 

 1,839,742 (2.49% 

/ 3.92%) 



109 
 

 
 

Intra-chromosomal 

10,117,714 (11.70% / 

56.20 %) 

 6,417,754 (28.17% / 

55.42%) 

 26,165,303 

(35.40% / 55.77%) 

Short Range 

(<20Kb) 

 3,935,392 (4.55% / 

21.86%) 

 3,103,851 (13.62% / 

26.81%) 

 11,830,360 

(16.00% / 25.21%) 

Long Range 

(>20Kb) 

 6,180,938 (7.15% / 

34.33%) 

 3,313,884 (14.54% / 

28.62%) 

 14,334,925 

(19.39% / 30.55%) 

Combined 

Contacts: 

46,048,585       

      

 

Table 4.S2 Related to Figure 4.1 

HiChIP and ChIA-PET mapping statistics performed in Kc167 cells to the dm6 genome for 

H3K27me3. 

 

Experiment 

description 

 RNAPIISer2ph 

HiChIP Rep 1 

 RNAPIISer2ph 

HiChIP Rep2 

RNAPII ChIA-

PET CP190 HiChIP 
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Sequenced Read 

Pairs 34,167,551 73,194,819 33,708,212 112,982,203 

 Normal Paired 

 30,167,498 

(88.29%) 

 62,999,182 

(86.07%) 

 21,050,572 

(62.45%) 

 89,231,912 

(78.98%) 

 Chimeric Paired  2,513 (0.01%)  425 (0.00%) 

 3,821,972 

(11.34%)  9,957 (0.01%) 

 Chimeric 

Ambiguous  901 (0.00%)  1,219 (0.00%) 

 7,570,272 

(22.46%)  2,803 (0.00%) 

 Unmapped 

 3,996,639 

(11.70%) 

 10,193,993 

(13.93%) 

 1,265,396 

(3.75%) 

 23,737,531 

(21.01%) 

 Ligation Motif 

Present 

 5,724,083 

(16.75%) 

 17,071,721 

(23.32%)  88,205 (0.26%) 

 23,426,133 

(20.73%) 

Alignable 

(Normal+Chimeri

c Paired) 

 30,170,011 

(88.30%) 

 62,999,607 

(86.07%) 

 24,872,544 

(73.79%) 

 89,241,869 

(78.99%) 

Unique Reads 

 23,764,884 

(69.55%) 

 57,498,996 

(78.56%) 

 14,769,195 

(43.81%) 

 62,817,133 

(55.60%) 
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PCR Duplicates 

 6,403,207 

(18.74%) 

 5,498,867 

(7.51%) 

 10,098,920 

(29.96%) 

 26,424,013 

(23.39%) 

Optical 

Duplicates  1,920 (0.01%)  1,744 (0.00%)  4,429 (0.01%)  723 (0.00%) 

Library 

Complexity 

Estimate 60,608,219 339,548,156 21,598,913 119,190,245 

Intra-fragment 

Reads 

 1,320,369 

(3.86% / 5.56%) 

 3,619,547 

(4.95% / 

6.29%) 

 7,539,437 

(22.37% / 

51.05%) 

 9,756,188 

(8.64% / 15.53%) 

Below MAPQ 

Threshold 

 6,546,934 

(19.16% / 

27.55%) 

 13,203,639 

(18.04% / 

22.96%) 

 1,431,119 

(4.25% / 9.69%) 

 15,674,333 

(13.87% / 

24.95%) 

Contacts 

 15,897,581 

(46.53% / 

66.90%) 

 40,675,810 

(55.57% / 

70.74%) 

 5,798,639 

(17.20% / 

39.26%) 

 37,386,612 

(33.09% / 

59.52%) 

 Ligation Motif 

Present 

 2,148,740  

(6.29% / 9.04%) 

 7,427,401  

(10.15% / 

12.92%) 

 35,778  (0.11% 

/ 0.24%) 

 6,873,662  

(6.08% / 10.94%) 
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 3' Bias (Long 

Range)  80% - 20%  73% - 27%  51% - 49%  79% - 21% 

 Pair Type %(L-I-

O-R) 

 25% - 25% - 

25% - 25% 

 25% - 25% - 

25% - 25% 

 25% - 25% - 

25% - 25% 

 25% - 25% - 

25% - 25% 

Inter-

chromosomal 

 1,027,932  

(3.01% / 4.33%) 

 1,332,949  

(1.82% / 

2.32%) 

 281,654  

(0.84% / 1.91%) 

 950,358  (0.84% 

/ 1.51%) 

Intra-

chromosomal 

 14,869,649  

(43.52% / 

62.57%) 

 39,342,861  

(53.75% / 

68.42%) 

 5,516,985  

(16.37% / 

37.35%) 

 36,436,254  

(32.25% / 

58.00%) 

Short Range 

(<20Kb) 

 8,921,240  

(26.11% / 

37.54%) 

 24,659,290  

(33.69% / 

42.89%) 

 4,893,337  

(14.52% / 

33.13%) 

 26,353,410  

(23.33% / 

41.95%) 

Long Range 

(>20Kb) 

 5,935,988  

(17.37% / 

24.98%) 

 14,683,333  

(20.06% / 

25.54%) 

 623,626  

(1.85% / 4.22%) 

 10,074,135  

(8.92% / 16.04%) 

Combined 

Contacts: 

56,573,391    
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Table 4.S3 Related to Figure 4.2 and Figure 4.4 

HiChIP and ChIA-PET mapping statistics performed in Kc167 cells to the dm6 genome for 

RNAPIISer2ph, CP190, and RNAPII. 

 

Methods 

Contact for Reagent and Resource Sharing 

Requests for further information or reagents should be directed to the corresponding author, 

Victor Corces, Email: vgcorces@gmail.com, Phone: 404-727-4250, Fax: 404-727-2880. 

Experimental Model and Subject Details 

Kc167 cells (female embryonic) were obtained from the Drosophila Genomics Resource Center 

(DGRC) and grown at 25°C in Hyclone SFX insect culture media (GE Healthcare). 

Method Details 

Hi-C, ChIA-PET, and HiChIP Library Preparation and Processing 

Hi-C heatmaps were Knight-Ruiz (KR) normalized and visualized by Juicer and Juicebox 

(Durand et al., 2016b, 2016a). Resolution estimate was calculated exactly as described (Rao et 

al., 2014). Hi-C meta-plots were created using custom scripts; scores were set from zero to one 
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equaling the highest and lowest values within a plot or across plots in a set. All Hi-C datasets 

from other organisms were reprocessed and normalized using the Juicer pipeline. 

ChIA-PET libraries were prepared as previously described (Goh et al., 2012). HiChIP libraries 

for CP190 and RNA Polymerase II phosphorylated in serine 2 were prepared as described with 

minor modifications (Mumbach et al., 2016). 100 x 10^6 Kc167 cells at 80% confluency were 

crosslinked in 1% formaldehyde for 10 min at room temperature, after which cells were 

incubated in 0.2 M glycine for 5 min to stop the reaction. Cells were pelleted and resuspended 

in 500 µl cold Hi-C lysis buffer (10 mM Tris-HCl pH8, 10 mM NaCl, 0.2% Igepal CA-630, and 1x 

Protease Inhibitor (Roche 11873580001) and incubated on ice for 1 h. Nuclei were pelleted at 

2500 rcf for 5 min at 4°C, resuspended in 100 µl 0.5% SDS, and incubated for 5 min at 65°C. 

We then added 290 µl of H2O and 50 µl of 10% Triton X-100, incubated samples for 15 min at 

37°C. 50 µl of 10x DpnII buffer and 200 u of DpnII (NEB R0543) were added and samples were 

digested overnight at 37°C with rotation. 

After digestion, samples were incubated at 65°C for 20 min to inactivate DpnII, and each was 

divided into two reactions and allowed to cool to room temperature. Biotin fill-in was done with 

22.5 µl of water, 1.5 µl each of 10 mM dTTP, dATP, and dGTP, 15 µl of 1 mM biotin-16-dCTP 

(Jena Bioscience JBS-NU-809-BIO16), and 8 µl of 5 u/µl DNA polymerase I Large (Klenow) 

fragment (NEB M210). This reaction was placed at 37°C for 1.5 h, after which samples were 

ligated for 4 h at room temperature with addition of 663 µl H2O, 120 µl 10x NEB T4 DNA Ligase 

buffer, 100 µl 10% Triton X-100, 12 µl 10 mg/ml BSA, and 5 µl 400 u/µl T4 DNA Ligase (NEB 

M0202). 

Following ligation, nuclei were pelleted and resuspended in 200 µl cold Nuclei Lysis Buffer (50 

mM Tris-HCl pH 9, 10 mM EDTA, 1% SDS, and 1x Protease Inhibitors) with incubation on ice 

for 20 min. After incubation we added 100 µl cold IP Dilution Buffer (0.01% SDS, 1.1% Trition X-
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100, 1.2 mM EDTA, 16.7 Tris-HCl pH 8, 16.7 mM NaCl, and 1x Protease Inhibitors) and 

sonicated to approximately 250 bp fragments. Cell debris was pelleted and the supernatant was 

transferred into a new 1.5 ml tube for immunoprecipitation. 

Each sample was precleared before immunoprecipitation by taking 10 µl Protein A and 10 µl 

Protein G magnetic beads, washing 3x in 0.5% BSA in 1x PBS, followed by incubation with 10 

µl pre-immune rabbit serum in 500 µl 0.5% BSA/PBS for 4 h at 4°C with rotation. Afterward 

beads were washed with 1 ml 0.5% BSA/PBS for 2 min at room temperature, followed by 2 

washes in 1 ml IP Dilution Buffer, and resuspension in 300 µl cold IP Dilution Buffer. Beads with 

each antibody were also prepared the same way. 

Chromatin was diluted 5-fold with cold IP Dilution Buffer and incubated with pre-clear beads for 

1-2 h at 4°C with rotation. The unbound portion was then transferred to antibody-coated beads 

and incubated overnight at 4°C with rotation. After IP, samples were washed 3x with low Low 

Salt Buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA pH 8, 20 mM Tris-HCl pH 8, 150 mM 

NaCl), 2x with High Salt Buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA pH 8, 20 mM Tris-HCl 

pH 8, 500 mM NaCl), 2x with LiCl Buffer (10 mM Tris-HCl pH 8, 1 mM EDTA, 0.25 M LiCl, 1% 

Igepal CA-630, 1% DOC), and 1x with TE buffer. 

DNA was eluted 2x using 150 µl freshly prepared IP elution buffer (0.1 M NaHCO3, 1% SDS) for 

10 min at room temperature, followed by 5 min at 37°C and transferring to a new tube, 

combining eluates. For crosslink reversal we added 20 µl 5 M NaCl, 8 µl 0.5 M EDTA and 16 µl 

1 M Tris-HCl pH8, incubating 1.5 h at 68°C. Afterwards we added 8 µl proteinase K and 

incubated at 50°C for 2 h. After allowing samples to reach room temperature, we precipitated 

DNA in ethanol with Sodium Acetate, resuspending in 300 µl 10 mM Tris-Cl pH 8.5. 

To enrich for ligation events we prepared Streptavidin beads by washing in 400 µl TWB (5mM 

Tris-HCl pH 7.5, 0.5 mM EDTA, 1 M NaCl, 0.05% Tween 20) and resuspending in 300 µl of 2x 
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Binding Buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 2 M NaCl). Beads were added to the 

sample and incubated at room temperature for 15 min with rotation. Samples were then washed 

2x in TWB and the standard Hi-C library preparation was followed (Rao et al., 2014). 

Sequenced reads were mapped to the Drosophila dm6 genome, further processed to remove 

duplicates and self-ligations using the Juicer pipeline, and visualized using Juicebox(Durand et 

al., 2016a, 2016b). Statistics for each library can be found in Tables 4.S1-S3. The overlap of 

HiChIP and compartments was computed by the sum of reads divided by the total number of 

possible bins in each category. Significant interactions were calculated using MICC (He et al., 

2015). 

  

Domains and Compartments 

Identification of Drosophila TADs and domains has been described previously (Cubeñas-Potts 

et al., 2016; Hou et al., 2012; Ulianov et al., 2016) as were GM12878 TADs and smaller contact 

domains (Moore et al., 2015; Rao et al., 2014). Hi-C directionality index (DI) was calculated as 

previously described (Dixon et al., 2012) using the equation: 

To compensate for the smaller genome and smaller domain structures seen in D. melanogaster, 

we calculated A and B using interactions more than 5 kb but less than 100 kb from each 250 bp 

bin throughout the genome. Directionality index based domains were called following a hidden 

Markov model. 

Drosophila compartments were identified from the eigenvector computation and Pearson 

correlation matrices as previously reported (Lieberman-Aiden et al., 2009) using Juicebox. 

Profiles of different histone modifications across compartments were calculated using ngsplot 

(Shen et al., 2014). 
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To calculate the correlation between Hi-C and histone modification HiChIP, samples were read 

normalized by random picking and H3K27ac and H3K27me3 were combined using Juicebox. 

Distance normalized interaction signals (observed/expected) within each 10 kb bin were then 

compared to Hi-C and tested by a Pearson correlation. Compartments mapped using HiChIP 

were identified by computing the preferential contacts of each row in the matrix with H3K27ac or 

H3K27me3 such that each bin was given a value of log2(H3K27ac/H3K27me3) contacts. 

Compartments were then identified from this relative association by a hidden Markov model. 

Differences in intra-domain and compartmental interactions after triptolide were calculated by 

the sum of 1 kb resolution interactions more than 2 kb apart. 

Human compartments were called by creating a 5 kb by 125 kb matrix and measuring the 

median log2 distance normalized interaction score with previously defined lower resolution A 

and B compartments (Rao et al., 2014). An A-B index was then created by subtracting the A 

and B scores. This index represents the comparative likelihood of a sequence interacting with A 

or B. 5 kb bins with positive values (more association with A) were called as high-resolution A 

compartments, while 5 kb bins with negative values (more association with B) were called as 

high-resolution B compartments. Overlap of CTCF loops and compartmental switches with TAD 

borders was calculated for each border with a feature within 40 kb of the border and p-values 

were calculated by permutation test. 

Transcriptional state domains were obtained using a hidden Markov model of GRO-seq data 

binned at 1 kb resolution (Core et al., 2012; Kwak et al., 2013). This utilized a Gaussian 

distribution to classify each 1 kb bin as an active or inactive state. Transcriptional domains were 

determined as regions without transcriptional state switches and regions less than 2 kb were 

merged into the neighboring domains. Differential active domains between GM12878 and 

IMR90 cells were identified as those with average signal across the region greater than 1 RPKM 

in one cell type but less than 0.5 RPKM in the other.  
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ChIP-seq Datasets 

Architectural protein binding sites were individually identified by MACS (Zhang et al., 2008). A 

200 bp region around the summit was used to combine peaks from all ChIP-seq data-sets. 

Unique peaks were kept, and overlapping regions were merged placing the center point as the 

new summit. A second filter was then used to determine occupancy such that RPM normalized 

read counts were three-fold higher than IgG on the combined peak list. Individual architectural 

proteins used for APBS occupancy were BEAF32, CAPH2, Chromator, CP190, CTCF, DREF, 

Fs(1)h-L, L3mbt, Mod(mdg4), Nup98, Rad21, SuHw, TFIIIC, and Z4. Overlap with promoters 

was determined if the 200 bp region lay within 50 bp of the TSS. 

ChIP-seq libraries for histone modifications were prepared and processed in Kc167 cells as 

previously described (Cubeñas-Potts et al., 2016) and included ChIP-seq for H3K36me3, 

H3K9me3, H4K16ac, H4K20me1, H2Bub, H3.3, and H2A.Z. ChIP-seq for H3.3 was done in a 

Kc167 line expressing V5-tagged H3.3 (Wirbelauer et al., 2005). 

To calculate the fraction of the Drosophila genome bound by H3K27me3 and/or H3K27ac we 

used input normalized signal levels at H3K27ac peaks to estimate the background signal of 

H3K27me3. This was done by dividing the genome into 1 kb bins and counting RPM normalized 

reads in each ChIP-seq and input dataset. The threshold above which most H3K27ac peaks 

contained H3K27ac but not H3K27me3, and where non-peaks contained the reverse, was used. 

 ATAC-seq 

Kc167 cells grown to exponential stage were treated with DMSO or triptolide as previously 

described (Li et al., 2015). 200,000 ctrl and treated cells were collected and processed using the 

Fast-ATAC protocol (Corces et al., 2016). Briefly, cell pellets were resuspened in 50 µl Tn5 
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transposase mixture (0.01% digitonin for permeabilizing cell membrane, 2.5 µl Tn5, 25 µl TD 

buffer), and incubated at 30°C for 20 min with occasional shaking. After reaction, cells were 

cooled on ice and DNA was purified using the Minelute Kit (Qiagen). 25 µl of eluted DNA were 

used for real time PCR amplification in the reaction mixture (2x KAPA HiFi mix and 1.25 µM 

indexed primers) using the following conditions: 72°C for 5 min; 98°C for 30 sec; and 10-11 

cycles at 98°C for 10 sec, 63°C for 30 sec, and 72°C for 1 min. Reads were trimmed of 

adapters, mapped to the Drosophila dm6 genome, deduplicated, and separated into short 

(<=115 bp) and long fragments (180-247 bp) to obtain transcription factor and nucleosome 

profiles, respectively. Peaks were identified using MACS2. 

 RNA-seq and GRO-seq Analysis 

Transcriptional quartiles were taken by counting reads within the first 100 bp of genes, and 

removing genes with no reads as a separate set to reduce repetitive biases. Distance 

normalized Hi-C contacts at 1 kb resolution were calculated surrounding the TSS and TTS or 

the TSS of another gene. The median of each bin was then taken and plotted as a heatmap or a 

3D surface plot using the Lattice wireframe R package. 

 HiC Simulations 

Simulation in Drosophila Cells: 

The Drosophila simulated Hi-C matrices were created without any knowledge of three-

dimensional contact or domain structure, using only information from GRO-seq and APBS 

occupancy (ChIP-seq). Simulated contacts between two bins relied on their correlation in 

transcriptional activity. We noted from Hi-C contact maps that active compartmental interactions 

were generally stronger than inactive compartmental interactions, thus actively correlating bin 

scores were increased. These contacts were then reduced based on their distance and the 
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number of architectural proteins lying between them. To recapitulate the noise of Hi-C data, we 

added matrix blurring and randomly added contacts following a Poisson and gamma 

distribution. Simulated contact maps without APBS incorporation (GRO-seq alone) were created 

by an equal decay rate across bins in lieu of APBS insulation. Simulated contacts without 

transcriptional activity (APBS alone) were created by replacing all transcriptional activity with 

null values. Simulated contact heatmaps for A. thaliana, P. falciparum, N. crassa, and C. 

elegans were done solely with transcriptional information. 

Simulated read counts for each 1kb interaction bin in the two-dimensional Hi-C matrix were 

generated using a model that incorporates GRO-seq data and Architectural Protein Binding 

Sites (APBSs) produced from ChIP-seq peaks of individual architectural proteins. Empirical 

cutoffs for highly active regions (ac – active cutoff) and inactive regions (ic – inactive cutoff) 

were determined (1000 and 100 reads per kb respectively) and log10 read counts were taken as 

the respective value between the two and converted to a probability value with the formula: 1 – 

((grocount – ic) / (ac – ic)). This maps all possible read counts to values between 0 and 1, with 0 

being active and 1 being inactive. 

For each pair of bins the transcriptional activity values determined above were used to create a 

correlation value using the following formula. The formula computes the similarity or correlation 

C between the two values and thus will be 0 when one bin is active and the other inactive, but 1 

when both bins are active or both bins are inactive. Ax and Ay represent individual GRO-seq bin 

values calculated above. 

C = 1 - (Ax - Ay)
2 

A second step increases the score of bins where both anchors have some activity, doubling the 

score in the case where both anchors are fully active. 
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C' = C * (min(Ax,Ay) + 1) 

APBSs were used to determine the insulation between 2 bins by tallying the number of ChIP-

seq peaks of each protein in all the bins between any two anchors. B is the number of APBS 

peaks in each 1kb section of the genome. I is equal to the total number of APBS ChIP peaks 

between the interacting bins. 

Ix,y = Bi   

Each APBS peak is treated as equally important by the simulation. Ten APBS peaks in a single 

bin will have the same total effect on insulation as ten peaks spread across multiple bins. A 

constant, ⍺, was chosen to reflect the insulation of each bound protein. The simulations use a 

value of 0.982. This constant is raised to the power of the total number of intervening 

architectural proteins to calculate an insulation score, K, between 0 and 1. 

Kx,y = αIx,y 

The insulation score is used to modify the correlation score, causing a distance decay, which is 

sharper or more gradual depending on the density of the architectural proteins. β is a constant 

that is modified by the correlation and insulation scores of each x, y pair in the matrix. The 

simulations use a value of 40 for β. 

Mx,y = β * Kx,y * C' 

An additional distance-dependent factor was added to each interacting bin. The closer the two 

anchors the larger the value added to represent the distance decay seen in most Hi-C data. 

This decay follows the power law frequently observed in Hi-C datasets with a decay rate of -0.8. 

A constant, θ, was set equal to 300 to reproduce the large number of reads near the diagonal of 

the Hi-C matrix. 
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M'x,y = Mx,y + θ * (y – x + 1)-0.8 

To more closely represent the realities of Hi-C data the matrix was blurred. Each bin was 

averaged with its surrounding bins in the matrix in order to smooth the data. A window size, w, 

represents the width of the blurring and was set to 3. The averaging step was carried out twice. 

M''x,y =( M'i,j ) / w
2 

To achieve a source of random fluctuation in the data, a Poisson and gamma distribution were 

used to add random values to each bin. A gamma distribution with shape of 0.02 and scale of 

10 added values to each bin creating a minority of bins with much higher than average values 

and a poisson distribution was used to randomize all values slightly. 

M'''x,y = Poisson(M'x,y + Gamma(0.02, 10)) 

Simulated contact maps without APBS incorporation (GRO-seq alone) were created by an equal 

decay rate across bins in lieu of APBS insulation. Simulated contacts without transcriptional 

activity (APBS alone) were created by replacing all transcriptional activity with null values. 

Correlations between actual and simulated Hi-C contact maps were done at 5 kb resolution. 

Distance normalized interactions crossing over, but not landing within the bin, were counted and 

then normalized by the sum of the interaction counts in each set. These scores were used to 

create Spearman correlation values. Separately, the smoothed scatter plot was created by 

taking each distance normalized signal between bins at 5 kb resolution comparing actual to 

simulated counts. 

Simulation in Human Cells: 
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To simulate the human genome Hi-C map at 5 kb resolution we generated the CTCF and 

transcription regulated components independently and overlaid them for the 54-75 MB region on 

Chromosome 4 along with a genomic background function. 

For the transcriptional segregation component of the combined model, as well as for the stand-

alone model, the transcription level of each 5 kb bin was determined by Gro-seq data from 

GM12878 (GSM1480326) and was mapped to values between 0 and 1 in the same way as 

other simulations resulting in a correlation score C. A second step again increased the score of 

bins where both anchors had some activity, doubling the score in the case where both anchors 

are fully active giving C'. In lieu of APBS insulation a constant power law decay with the 

exponent -0.7 was used to decrease interaction by genomic distance. Β was set to 50. The 

transcriptional component of the simulation at a bin is thus described by the following equation 

where the bin of the upstream anchors is u and the downstream anchor is d. 

Mx,y = β * (d – u + 1)-0.7 * C' 

To complete the transcriptional segregation model the genomic background function was added 

with θ set equal to 100. 

M'x,y = Mx,y + θ * (y – x + 1)-1  

To generate the CTCF mediated component of the simulation, CTCF loops in the 54-75 MB 

section of Chromosome 4 were annotated manually as computational methods were unable to 

completely annotate CTCF loops in the region. We approximate the effects of each CTCF loop 

on the simulation by three patterns: increasing score in all bins between the two anchors, strong 

lines from each CTCF anchor in the orientation of its interacting partner, and a peak of 

interactions at the intersection of the two anchors. 
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The strength of the domains and the lines is modified by the distance between the two CTCF 

anchors divided by a constant larger than the largest distance between CTCF loops, 800. 

D = 0.2 * (d - u) / 800 

D Is thus a constant between 0 and 0.2 correlated with the distance of the CTCF loop. D 

weakens the strength of long range loops in relation to short range loops. All interaction bins 

within the domain bounded by the CTCF anchors are scored by the following function: 

Mx,y = β * (y – x + 1)-0.7 - D 

To recreate the lines extending from the diagonal of the matrix to the CTCF loop we use L to 

represent the width of the line, thicker near the diagonal and tapering towards the CTCF loop 

defined by: 

L = 100 * (y - x + 1)-0.4 

Any values of L smaller than 2 are replaced by 2. Each x,y bin within L distance of the line is 

scored by the following equation where K is the distance between the bin and the center of the 

line. 

Mx,y = θ * (y - x + 1)-0.6 - D * (K+1)-0.2 

To produce a peak of interactions at the CTCF loop every x,y bin within 10 bins of the center of 

the peak, u,d is scored as below. First an expected value E is computed: 

E= θ  * (y – x + 1)-1 

O corresponds to the observed/expected value of the peak of the loop and is used to calculate 

the final value of the bin below. 
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Mx,y=  E + E * O * (|d - y| + |u - x| + 1)-1.5 

These three features produce the CTCF component of the Hi-C simulations. Where they 

overlap, the feature that produces the maximum score is used. 

Lastly a genomic background function is added to account for uniform genomic background. 

M'x,y = Mx,y + θ * (y – x + 1)-1 

The matrix is then convolved with a Gaussian kernel of size 20 to simulate blurring due to linear 

proximity. A level of randomized ligations are then added to account for technical effects using a 

combination of Gamma and Poisson distributions to produce the final matrix. 

M''x,y = Poisson(Max(0,(M'x,y+ Gamma(0.02,4) - Gamma(0.02,4)))) 

Quantification and Statistical Analysis 

         Significant differences at center points between interaction metaplots were performed 

using a Wilcoxon signed-rank test as described in the figure legends. Significance was 

determined at p < .05. 

Data and Software Availability 

HinfI and DpnII Hi-C datasets for Kc167 cells have been deposited in the Gene Expression 

Omnibus (GEO) under the ID code GSE80702. ATAC-seq, ChIA-PET, HiChIP, and ChIP-seq 

data are available under the ID code GSE89244. 
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Chapter 5: Dynamic compartmentalization formed by 

conserved forces 

Michael H. Nichols and Victor G. Corces 

Manuscript in preparation. 

 

Abstract 

 

Chromatin is organized in the nucleus into compartmental domains defined as sequences 

containing proteins capable of mediating interactions among themselves. While these self-

interacting contact domains are one of the most prominent features of genomic organization at 

the chromosome scale, we lack a nuanced understanding of the different types of 

compartmental domains present in chromosomes and a mechanistic understanding of the 

forces responsible for their formation. In this study, we compared different cell types to identify 

distinct paradigms of compartmental domain formation in human tissues. We identified and 

quantified compartmental forces correlated with histone modifications characteristic of 

transcriptional activity as well as previously underappreciated roles for compartmental domains 

correlated with the presence of H3K9me3, H3K27me3, or none of these histone modifications. 

We present a simple computer simulation model capable of simulating compartmental 

organization based on the biochemical characteristics of independent chromatin features. This 

model allows for dissection and quantification of chromatin features correlated with 

compartmental organization. Using this computational model, we show that the underlying 

forces responsible for compartmental domain formation in human cells are conserved and that 

the diverse compartmentalization patterns seen across cells are due to differences in chromatin 

features. We extend these findings to Drosophila to suggest that the same fundamental forces 
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are at work beyond humans. These results offer mechanistic insights into the fundamental 

forces driving genomic compartmentalization. 

 

Introduction 

 

The highly organized nature of the eukaryotic nucleus has been evident since experiments 

using immunofluorescence microscopy to determine the subnuclear distribution of various 

proteins and histone modifications showed the existence of various types of nuclear bodies. 

These nuclear locations, where proteins with the same functional properties accumulate, have 

been described more recently as biomolecular condensates created as a consequence of liquid-

liquid phase separation due to the presence of high concentrations of multivalent proteins bound 

to DNA and RNA, dividing the nucleoplasm into functionally distinct compartments (Banani et al. 

2017). Some of these nuclear bodies appear to be involved in RNA-processing or sequestration, 

but others, such as the nucleolus, contain chromatin. These bodies represent distinct nuclear 

environments that regulate exposure of the DNA to various proteins of the nucleoplasm and are 

therefore essential to controlling the activity of genes. For example, active genes are present in 

hubs termed transcription factories where transcribed genes aggregate together with the 

transcriptional machinery (Jackson et al. 1993). Features of chromatin that are associated with 

transcriptional silencing also cluster with each other. Polycomb bodies form from the 

agglomeration of PRC1 and PRC2 protein complexes that epigenetically silence genes, in part 

by the trimethylation of H3K27 (Pirrotta and Li 2012). Additionally, transcriptionally silenced 

pericentric heterochromatin colocalizes within the nucleus to form chromocenters in some cells, 

strongly enriched for HP1a and H3K9me3 (Wang et al. 2019). Several studies have now shown 

the ability of several chromatin components to drive liquid-liquid phase separation in vitro and in 

vivo, H3K9me3 and HP1 together produce heterochromatin compartmentalization, as well as 
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the intrinsically-disordered regions found in PRC1,  RNA Polymerase II and transcription factors 

(Wang et al. 2019; Plys et al. 2019; Ladouceur et al. 2020; Boijja et al. 2018).  

 

With the advent of Hi-C it has become possible to query the organization of the entire genome 

at the sequence level simultaneously (Lieberman-Aiden et al. 2009). Hi-C identifies all 

interactions in the genome after fixation with formaldehyde. The precise mechanism of 

formaldehyde cross-linking is not well understood, but it may involve amino acid side chains 

modified with imine groups that dimerize in order to form a cross-linked product (Tayri-WIlk, 

2020). This reaction is thought to be slow and requires the two reacting groups to be close and 

stationary relative to each other. This mechanism implies that proteins and DNA need to 

intimately interact with each other in order to be cross-linked by formaldehyde and that mere 

proximity in the nuclear space is not sufficient to observe interactions in Hi-C data, a conclusion 

that guides interpretation of Hi-C contact information. The resulting contact frequency maps 

prominently display self-associating domains formed by short-range interactions among 

contiguous segments of the genome and can be visualized as “triangles” present at the diagonal 

of Hi-C heatmaps. Classically, these contact domains are called compartments and 

Topologically Associating Domains (TADs). The difference between these two types of domains 

is not functional but rather refers to the computational approach used to define them. 

Compartments are defined by Principal Component Analysis (PCA), normally using Hi-C data 

binned at 0.5-1.0 Mb resolution and, as a consequence, are normally considered to be larger 

than 1 Mb in size. Compartments can contain sequences in an active (A) or silenced (B) 

transcriptional state and they interact with other compartments in the same state to give the 

plaid pattern observed in Hi-C heatmap. As a consequence, the term “compartment” is used to 

refer to both the self-interacting contact domains present at the diagonal as well as the 

ensemble of all the inter-domain interactions among all the domains in the same transcriptional 

state. To avoid confusion, we will use the term “compartmental domains” to refer to self-
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interacting contact domains present at the diagonal of Hi-C heatmaps and “compartment” to 

refer to all interactions among compartmental domains in the same transcriptional state. 

Different from compartmental domains, TADs are defined using algorithms that detect switches 

in the directionality of interactions. Analysis of Hi-C data at 1 kb resolution indicates that TADs 

actually correspond to two different types of domains--CTCF loops and compartmental domains 

(Rowley and Corces 2018). CTCF loops are formed by the interruption of cohesin extrusion due 

to the presence of convergent CTCF-bound sites. CTCF loops can be visualized in Hi-C 

heatmaps by strong punctate signals at the summit of the domain, whereas compartmental 

domains lack this signal. CTCF loops disappear from Hi-C heatmaps obtained in cells depleted 

of CTCF whereas compartmental domains remain. Furthermore, compartmental domains are 

present in regions of the genome containing sequences in the same active or inactive 

transcriptional state, and can be identified by PCA using 5-10 kb bin sizes. Neighboring regions 

in separate compartmental domains interact less frequently and represent a compartmental 

switch or border. In this way, the compartmentalization of the genome creates both local 

compartmental domains and distant compartmental interactions. 

 

As described above, compartmental domains can be captured by PCA of the Pearson 

correlation maps of each chromosome. The first principal component (PC1) or eigenvector 

captures the dimension with the highest variance. Using this vector the genome can be divided 

into two classes. These classes generally differentiate between transcriptionally active and 

inactive genomic regions, and so are called A and B respectively.  This categorization performs 

well across mammalian cell types and thus the compartmentalization of the genome is generally 

thought of as binary. However, epigenetic information suggests that the transcriptional state of 

the genome is more complex, and that the two-state classification is an oversimplification. 
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While PCA remains the standard and most common method for calling compartmental domains, 

some analyses have more closely examined compartmentalization using more sophisticated 

techniques. The use of a Hidden Markov Model to cluster interchromosomal interactions 

resolved 6 subtypes of compartmental domains in GM12878 cells, of which two are enriched in 

different active and four contain inactive chromatin features, including post-translational histone 

modifications, replication timing, and measures of nucleolar and lamin association (Rao et al. 

2014)(Rao 2014). Previous work in Drosophila has shown that the majority of compartmental 

organization can be recapitulated using a measure of transcriptional activity indicating a direct 

correlation between chromatin state and compartmental domains (Rowley et al. 2017). Other 

studies have also successfully used polymer simulations to reproduce the compartmental 

organization of the genome using chromatin-defined states. PCA-derived compartment calls in 

diverse cell lines and tissues invariably find A/B compartmentalization patterns, but the 

epigenetic features enriched in those A/B patterns can differ between cell-types. Notably, 

several studies have found the heterochromatin associated histone modification H3K9me3 

strongly enriched in B compartments (Falk et al. 2019). However, this modification was only 

found enriched in a single subcompartment (B4) in GM12878 cells, which was predominantly 

found only on chromosome 19 (Rao et al. 2014). Additionally, the binary A/B 

compartmentalization of the genome is far simpler than what would be predicted from 

microscopic analyses of nuclei where a large variety of biomolecular condensates composed of 

different epigenetic features have been observed. 

 

Here we examine two cell types, GM12878 and HCT116, with divergent compartmental 

definitions in an attempt to better understand the different patterns of compartmental domains 

seen between different human cells and investigate the potential role of the forces responsible 

for this aspect of genomic organization, with the goal of reconciling observations derived from 

Hi-C analyses and microscopy-based studies. The results suggest a consistent model of 
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genomic organization and offers insights into the mechanistic underpinnings of 3D genomic 

compartmentalization. 

 

Results 

 

Dynamic compartmentalization across human cells 

 

To better understand the mechanisms underlying the formation of compartmental domains  and 

their compartmental interactions, we compared high-resolution Hi-C datasets from two cell types 

– the lymphoblastoid GM12878 cell line and colorectal carcinoma HCT116 cells. We took the 

Pearson correlation of the distance-normalized interaction maps in order to display the 

correlation of interactions of each bin with each other bin. This method can be used to visualize 

compartmental domains and their interactions because genomic regions in the same 

compartment will have highly correlated interaction frequencies and will have a high score in the 

correlation map. Figures 5.1A and 5.1B show the Pearson correlation maps for chromosome 4 

of GM12878 and HCT-116, respectively. This chromosome shows very different organizations 

between the two cell lines. Both possess clear compartmental domains along the diagonal of 

the map and compartmental interaction patterns as seen by the plaid pattern away from the 

diagonal. However, the locations and strength of these compartmental domains and the distal 

compartmental interactions between these domains are very different. We sought to explore 

whether differences in the epigenetic profiles of the chromosomes of these cell types could 

explain their distinct compartmentalization patterns. We compared the distribution of H3K27ac, 

which is correlated with transcriptional activity, H3K27me3, which is correlated with 

transcriptional silencing, and H3K9me3, which is also correlated with transcriptionally inactive 

sequences, to the Pearson correlation maps in these cells. We also performed PCA and show 
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the first principal component (PC1) in both cell lines (Figures 5.1A,B). Remarkably, GM12878 

and HCT-116 show very different distributions of H3K9me3. In HCT-116 cells, large H3K9me3-

rich domains correlate with prominent compartmental domains that are strongly correlated with 

each other in their Hi-C interaction frequencies. GM12878, on the other hand, lacks these large 

H3K9me3-rich domains and correspondingly lacks the prominent compartmental domains 

associated with them. 

 

To quantify these observations, we used PC1 to call A and B compartments in GM12878 and 

HCT-116 cells, and measured the relative enrichments of chromatin features on their 

chromosomes (Figure 5.1C). In GM12878 cells, A/B compartmentalization strongly follows 

transcriptional activity/inactivity, with histone modifications associated with active transcription 

such as H3K27ac, H3K4me, and H3K36me3 all enriched in the A compartment and depleted in 

the B compartment of chromosome 4, while modifications associated with silenced chromatin 

such as H3K27me3 show an inverse pattern. In HCT116 cells, however, A compartments in 

chromosome 4 are not strongly enriched for histone modifications associated with 

transcriptional activity, including Gro-seq, which is a direct measure of transcription (Figure 5.1C 

and Supplemental Figure 5.1A). Instead, binary compartmental delineation using PC1 divides 

the chromosome into a transcriptionally inactive H3K9me3-rich portion and the remainder, 

which consists of both transcriptionally active as well as inactive regions. In contrast, H3K9me3 

in chromosome 4 of GM12878 is enriched in the A compartment and presents very differently 

on the chromosome as sporadic peaks rather than contiguously enriched domains. 

 

Given that the B compartment in chromosome 4 of HCT-116 cells is depleted of transcriptionally 

active sequences, we asked why its corresponding A compartment is not strongly enriched for 

transcribed sequences. A simple explanation for this phenomenon is that transcriptionally 

inactive regions of HCT-116 not containing H3K9me3 correlate more closely in their interaction 
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frequencies with transcriptionally active regions. Thus, the A compartment in these cells as 

defined by PCA is composed of a conglomeration of all H3K9me3-poor chromatin, both 

transcriptionally active and inactive, leading to only a mild enrichment for active marks.  

 

To examine more closely the mechanisms underlying the formation of compartmental domains 

we focused on a 65-95 Mb region on chromosome 4 and used a resolution of 25 kb to call 

compartments using PCA (Figures 5.1E and 5.1F). In HCT-116 cells, this region contains 

instances of all 4 clusters found in chromosome 4. Compartmental domains present in the A 

compartment defined by PCA in GM12878 cells are highly enriched in H3K27ac with respect to 

those in the B compartment, whereas H3K27me3 and H3K9me3 are similarly enriched in both A 

and B compartments (Figures 5.1E and 5.1G). However, in HCT-116 cells there is a clear 

enrichment of both H3K9me3 and H3K27me3 in the B compartment corresponding to 

compartmental domains and interactions absent in GM12878 cells (Figures 5.1F and 5.1G). 

These findings, showing differential enrichment of active and repressive histone modifications in 

the A and B compartments in different cell lines, are surprising, since it is generally assumed 

that the A compartment contains transcriptionally active genes and the B compartment is 

enriched in silenced sequences. This suggests that the canonical binary classification of A and 

B compartments is insufficient to represent the properties and mechanisms by which 

compartmental domains form in these cells.  

 

Conserved principles underlie dynamic compartmentalization 

 

To further explore the complex compartmentalization logic observed in GM12878 and HTC-116 

cells, which appears to follow different rules in the two cell lines and cannot be explained by a 

simple binary division of PC1, we employed the unsupervised k-means clustering algorithm to 

identify compartmental clusters in both cell types. The primarily binary A/B organization of 
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chromosome 4 in GM12878 cells obtained by PCA can be reproduced by two clusters obtained 

via unsupervised k-means clustering (Figures 5.1A and 5.1E). However, four clusters are 

required to produce a meaningful classification of chromosome 4 that correlates with the Hi-C 

heatmap in HCT-116 cells (Figures 5.1B and 5.1F). As expected, one of these four clusters 

corresponds directly to H3K9me3-rich regions whereas a second one correlates strongly with 

H3K27ac. Surprisingly, the two other clusters are both transcriptionally inactive with distinct 

chromatin features, one highly enriched for H3K27me3, and the last lacking all three histone 

modifications (Figures 1D and 5.1H). Only H3K9me2 is enriched in this compartment 

(Supplemental Figure 5.1A). Therefore, chromosome 4 in HCT-116 appears to have four distinct 

compartmental domains. Interactions among each type give rise to the complex plaid pattern in 

the Hi-C heatmap, forming compartment A (transcriptionally active), B (H3K27me3-rich), C 

(H3K9me3-rich), and D (enriched in H3K9me2 but depleted of standard active and silencing 

histone modifications). We note that the enrichments of epigenetic features in chromosome 4 A 

and D clusters of HCT-116 cells correspond well to the A and B compartments of chromosome 

4 in GM12878 cells, with the exception of H3K9me3 enrichment in the A compartment of 

GM12878 (Figures 5.1C and 5.1D). 

 

We then sought to understand why H3K9me3 is enriched in different compartmental domains in 

HCT-116 versus GM12878 cells. The distribution of H3K9me3 in these two cell types is very 

different, with GM12878 chromosomes typically having narrow peaks of signal whereas HCT-

116 chromatin tends to have large consistently-enriched plateaus. At least two possible 

hypotheses could explain these different distribution patterns. One possibility is that H3K9me3 

regions compartmentalize differently in the two cell types due to different nuclear environments 

determined by cell identity and physiology. A second explanation is that H3K9me3 regions 

compartmentalize differently due to distinct distributions of this histone modification as a 

consequence of transcriptional differences between the two cell types. Analysis of chromosome 
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19 offers an opportunity to distinguish between these two possibilities, since this chromosome 

contains large domains of H3K9me3 in both GM12878 and HCT-116 cells. Chromosome 19 of 

GM12878 cells shows a strong correlation between the presence of H3K9me3 and the 

formation of strong compartmental domains (Figure 5.1I), as was seen on chromosome 4 of 

HCT-116 cells, and these H3K9me3 compartmental domains are similar in chromosome 19 of 

both cell types (Figure 5.1J). The similarity between H3K9me3 domains in chromosome 19 of 

GM12878 and HCT-116 cells suggests that the nuclear environment is not responsible for the 

differences observed in other chromosomes. Strikingly the histone modification profiles and the 

A/B compartments defined by PC1 also closely match between the two cell lines (Figure 5.1K). 

k-means clustering was then performed in both cell-types with 3 clusters as chromosome 19 

lacks large regions devoid of any signals, which would fall into the D cluster. The resulting 

cluster calls closely match each other (Figure 5.1L). The high correspondence in k-means 

cluster definitions is mirrored by the relative signal enrichments in each cluster. In contrast to 

chromosome 4, the compartments called by PCA and by k-means showed similar enrichments 

for various histone modifications in chromosome 19 (Figure 5.1L and Supplemental Figure 

5.1C). The alignment of chromosome 19 in both - histone modification profiles and 

compartmental organization - in HCT-116 and GM12878 fits a model where these histone 

modifications, or a chromatin feature correlated to them, drive chromosomal 

compartmentalization, and that the underlying forces driving compartmentalization are 

consistent between these cell types. We suggest that the diverging compartments seen in 

chromosome 4 are the result of distinct chromatin profiles and that the resulting conflicting 

histone modification enrichments for the A and B compartments of chromosome 4 between 

these cell lines do not reflect differences in the underlying chemistry driving 

compartmentalization. We suggest that the enrichment of H3K9me3 in the active compartment 

of GM12878 chromosome 4 can be explained as the inability of small narrow peaks of 

H3K9me3 to drive compartmentalization against entropic mixing. Their proximity to other active 
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compartmentalizing features may further inhibit their self-segregation. Alternatively, since these 

short regions containing H3K9me3 are much smaller than the 25 kb bins used to perform the 

clustering analyses, it is possible that compartmental calls performed at a resolution higher than 

the size of these H3K9me3 regions would place these sequences in the same compartment as 

the large H3K9me3-containing large blocks. This possibility highlights the potential biases 

introduced by the resolution used in the analyses when interpreting Hi-C data. 

 

We considered whether either of these cell lines perhaps exemplify an outlier unrepresentative 

of normal human tissues and thus we investigated H3K9me3 distribution in numerous 

immortalized and primary human cells. We found that neither H3K9me3 pattern observed in 

GM12878 and HCT-116 cells is unrepresented in other cell types or in primary tissues but rather 

exemplifies two ends of a continuum of H3K9me3 present across human cells (Supplemental 

Figure 5.1 D,E). These findings reveal that H3K9me3 domains are highly dynamic and 

represent significant changes in compartmentalization patterns across development. 

 

Compartmental domains correlate directly with chromatin features 

 

With the understanding that binary models are insufficient to represent human 

compartmentalization and that the forces responsible for the formation of compartmental 

domains appear to correlate closely with chromatin features, particularly transcriptional activity 

and H3K9me3, we sought to visualize and quantify the forces driving compartmentalization. To 

this end, we sorted the Pearson correlation map of chromosome 14 from HCT-116 cells by 

various features (Figure 5.2A). These assemblies are produced by reordering the rows and 

columns of the correlation matrix so that instead of being placed in their natural order bins are 

arranged by increasing signal of the chosen feature. This allows us to compare the ability of a 

particular sequence to form a specific type of compartmental domain with its epigenetic 
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features. This approach also provides a means of visualizing the frequency of interactions within 

and among compartmental domains or “compartmentalization strength”. Sorting by PC1 values 

we observe a clear segregation of chromosome 14 into three compartments A, B, and C (Figure 

5.2B). Surprisingly, this indicates that PC1, while typically used to delineate binary 

compartments, could be used to call more compartmental domain types with different 

thresholds. Chromosome 14, like chromosome 19, largely lacks regions that would fall into the 

D compartment. Sorting the chromosome by H3K9me3 reproduces the compartmentalization of 

the H3K9me3 rich C compartment as well as the first principal component itself, however, it was 

unable to distinguish between the A and B compartments (Figure 5.2C). Sorting by H3K27ac as 

a marker of transcriptional activity also results in compartmental segregation, although this is 

less precise (Figure 5.2D). This is likely a function of H3K27ac signal lacking the consistency 

and continuity of H3K9me3 domains within transcriptionally active regions. Sorting by 

H3K27me3 organized only the regions most enriched for H3K27me3 and was unable to 

organize the rest of the chromosome (Figure 5.2E). Together these results show that covalent 

histone modifications strongly correlate with and are predictive of compartmental organization. 

 

An unusual feature of chromosome 14 is the existence of a trimodal distribution of H3K9me3 

(Supplemental Figure 5.2A). While most chromosomes in HCT-116 cells possess a bimodal 

distribution of H3K9me3 signal leading to H3K9me3 rich and poor regions, chromosomes 13 

and 14 have distinct strong and weak H3K9me3 domains (Figure 5.2A). Comparing their 

correlations in the sorting of chromosome 14 by H3K9me3 shows that weak-H3K9me3 and 

strong-H3K9me3 regions correlate better with regions of similar strength. This phenomenon, 

along with the varying correlation strength seen in the heatmaps obtained by sorting various 

features, suggests that compartmentalization is more accurately thought of as a quantitative 

rather than a categorical feature of the genome and that classification of chromatin into 
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categories is a simplification that neglects the effects of varying epigenetic signal strengths in 

the formation of compartmental domains. 

 

Sorting by a single signal does not result in perfect compartmentalization because multiple, 

independent forces drive the process of compartmental domain formation and long-range 

interactions among domains of the same type. The most significant of these forces may be 

those involved in interactions between sequences containing H3K9me3 and proteins and 

histone modifications associated with active transcription. We favor a model of 

compartmentalization in which the genome is organized by multiple independent forces directly 

correlated with chromatin features that attract and repel each other.  

 

Independent contributions of chromatin features can reproduce compartmental organization 

 

We next sought to test our hypothesis that formation of compartmental domains and 

establishment of long-range interactions among domains of the same type is driven by the 

independent contributions of chromatin features. To approach this question, we created a 

machine learning model to reproduce Hi-C interaction maps using epigenetic features. Results 

described above suggest that the presence of H3K27ac as an indicator of transcriptionally 

active regions, H3K27me3 and H3K9me3 as indicators of different types of silenced sequences, 

or the absence of these three modifications can account for all possible compartmental domains 

present in chromosomes of human cells. To enable comparison across cell types and 

experiments we first binned these three epigenetic signals into quantiles at 100 kb resolution. 

For each normalized signal, an algorithm then learned using a Maximum Likelihood Estimation 

approach an attraction-repulsion relationship for each pair of quantiles. This attraction-repulsion 

mapping effectively represents the average enrichment or depletion between all bins with the 

corresponding level of signal. The estimated contact frequency in the simulated map is then 
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derived by the simple addition of the estimated effect of each signal and multiplied by a 

distance-dependent constant representing the average interaction frequency at each genomic 

distance (Figure 5.3A). This relatively straightforward model, which is only capable of 

representing the independent attractive and repulsive forces of each chromatin feature, tests to 

what extent this framework is capable of recapitulating the 3D organization of the genome 

represented by the compartmental domains and their interactions. 

 

The averaged attraction-repulsion relationships learned from every chromosome of HCT-116 

are shown (Figure 5.3B). The learned relationship between the levels of a specific histone 

modifications and the interaction frequency of the corresponding sequence is similar to that 

observed experimentally described above (Figures 5.2C-2E). Genomic regions high in a given 

histone modification show increased interactions with other regions high in that same mark. The 

model learns and predicts that pairs of regions in which one is high in such a signal and the 

other low will not be attracted and have reduced interaction frequency. The minimal model using 

three histone modifications, H3K27ac, H3K27me3, and H3K9me3, is able to recapitulate most 

aspects of 3D genome organization while remaining easy to interpret. All three signals show a 

degree of attraction between the highest quantile bins, as seen by the enrichment in the bottom 

right of the attraction-repulsion maps, as well as repulsion between the highest and lowest 

quantiles as seen by the depletion in the upper right and bottom left corners (Figure 5.3B). 

Importantly the strength and nature of these maps differed significantly indicating the forces 

driving compartmentalization differ for each feature. H3K9me3 maps show strong attraction 

amongst the most enriched quarter of the genome, which strongly repels the rest of the genome 

equally. This shows there exists a single critical threshold of H3K9me3 density and quantity and 

reflects the generally bimodal distribution of this modification in HCT-116. H3K27ac, on the 

other hand, shows the greatest attraction between the highest quantiles with a more gradual 

reduction in attraction with reduced signal. H3K27me3 primarily shows only attraction between 
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the highest quantiles of signal and otherwise contributes little to the organization of the genome. 

When interpreting this information, it is important to consider that the distributions of these three 

histone modifications are inter-related, and that regions of the genome lacking one of the 

modifications may contain one of the other two. 

 

Simulations were generated at 100 kb resolution using the average of the attraction-repulsion 

maps learned from every chromosome except the one being simulated. A comparison of 

observed and simulated maps reveals close agreement on the majority of large compartmental 

features (Figure 5.3C,D). We quantified the accuracy of the model using the Pearson 

correlations between the observed and simulated maps after dividing by the average distance. 

Due to the power-law decay of interaction frequency with respect to distance in Hi-C maps any 

simulation which accurately reproduces this decay will have a high correlation. As this would not 

represent the ability of the model to reproduce compartmental organization, we normalized for 

distance to eliminate the natural correlation driven by the accurate representation of the 

distance decay. Simulations of chromosomes using the average maps derived from all other 

chromosomes varied in correlation by chromosome, but generally performed well with 

correlations in the range 0.5-0.7. Using this same methodology to compare biological replicates 

of a Hi-C experiment resulted in similar ranges of correlation scores across the chromosomes 

(Supplemental Figure 5.3C). The fact that Hi-C maps can be predicted by only modeling the 

attraction and repulsion of chromatin features against themselves suggests a direct role in these 

features, or a chromatin component correlated with these features, in compartmentalizing the 

nucleus. 

 

Conserved forces give rise to diverse genomic organizations 
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Given the accuracy of our model in reproducing the 3D organization of HCT-116 cells, we then 

applied the same model to GM12878 cells. These cells have different distribution of H3K9me3, 

and their 3D genome organization as seen in PCA enrichment analysis is also different (Figure 

5.1C). We found that, with the exception of H3K9me3, the attraction-repulsion maps learned in 

GM12878 were strikingly similar to those learned in HCT-116 (Figure 5.4A). The incongruence 

of H3K9me3 attraction-repulsion maps between these cell types was expected as the 

distribution of this signal is very different between most of their chromosomes. These maps are 

also able to reproduce the Hi-C interaction maps of other chromosomes of GM12878 as we 

have shown in HCT-116 (Figure 5.4B, Supplemental Figure 5.4A,B). However, simulating 

chromosome 19, which is unique in GM12878 due to its large H3K9me3 domains was less 

successful when using the attraction-repulsion maps learned from the rest of the chromosomes, 

with the simulation failing to capture the role of H3K9me3 in compartmentalization (Figure 

5.4C). Pearson correlations between the real and simulated maps were substantially lower than 

the simulations of HCT-116, most likely due to the absence of the strong organizing feature of 

H3K9me3 (Supplemental Figure 5.4C). Nevertheless, the similarity between the attraction-

repulsion maps of chromosomes from these two cell types suggests that attraction-repulsion 

maps learned in one cell type can accurately model the organization of another cell-type. If true, 

this would indicate that the fundamental forces underlying compartmentalization are largely 

conserved across human cell types and that dynamic compartmentalization is a consequence of 

differences in the distribution of histone modifications and their associated proteins. 

 

We then used the attraction-repulsion maps learned from HCT-116 chromosomes to simulate 

the 3D organization of GM12878 chromatin, and found a high correspondence between the 

observed and simulated maps (Figure 5.4D, Supplemental Figure 5.4D,E). This is remarkable 

given that the Hi-C interaction maps of most chromosomes between these cell types are very 

different. This ability for compartmental forces learned from one cell type to successfully predict 
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compartmentalization in another indicates that the same underlying forces directly correlated 

with chromatin features are largely conserved between these two cell types. This is further 

support that the radical differences between the respective Hi-C maps of these cell lines are a 

consequence of different chromatin features, primarily the presence and absence of large 

H3K9me3-rich domains.  

 

As the simulation of chromosome 19 of GM12878 cells using attraction-repulsion maps learned 

with the rest of the chromosomes was poor, we asked whether chromosome 19 could be better 

simulated by the attraction-repulsion relationships learned from HCT-116 than from GM12878. 

The histone modification profiles of chromosome 19 in GM12878 cells, particularly the presence 

of large H3K9me3 domains, more closely resemble the patterns seen in most chromosomes of 

HCT-116 cells (Figure 5.1G). Indeed, the simulation of chromosome 19 is significantly more 

accurate using HCT-116 attraction-repulsion maps (Figure 5.4E). In agreement, the Pearson 

correlations between the observed and simulated maps of chromosome 19 are higher when 

simulated with HCT-116 (Supplemental Figure 5.4F). These results again support the idea that 

the 3D organization of chromosomes is a consequence of the distribution patterns of one-

dimensional epigenetic information. 

 

Transcriptional activity and H3K9me3 also compartmentalize the Drosophila genome  

 

Given the ability of our model to reproduce the 3D organization of multiple human cell types 

from a single universal set of attraction-repulsion maps we sought to determine how applicable 

this model could be outside of humans. Our previous foundational work showed that 

transcriptional activity was predictive of compartmental organization in multiple representative 

Eukaryotic genomes (Rowley, 2017). We hypothesized that, just like in humans, the same 

forces responsible for compartmental domain formation and the establishment of distinct 
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nuclear compartments via interactions among compartmental domains with the same epigenetic 

features may be at work in other organisms. Thus, we applied our model to explore whether the 

distribution of H3K27ac, H3K27me3, and H3K9me3 could reproduce the 3D organization of the 

Drosophila genome for which high-resolution Hi-C data is available. 

 

Hi-C maps from Drosophila Kc cells were simulated using the attraction-repulsion model. Due to 

the higher read count and smaller genome size we were able to simulate the genome at 10 kb 

resolution. A small modification was made to the model to limit the simulation to less than 2 Mb 

as Drosophila compartmental domains are smaller than those of mammals and long-range 

interactions among domains decay rapidly beyond this distance. While distinct, the learned 

attraction-repulsion maps resemble those learned in human cells (Figure 5.5A). The model 

learned attraction between features with similar histone modifications and repulsion between 

genomic regions with dissimilar ones. This indicates that, just as in humans, these chromatin 

features or others strongly correlated with them drive the formation of compartmental domains 

and their interactions. These observations suggest a universal model of compartmentalization in 

which the fundamental underlying forces driving this process are conserved between 

organisms. 

 

As Drosophila only has two autosomes of significant size we simulated each chromosome with 

the attraction-repulsion maps of the other. The resulting simulations largely reproduce the 

compartmental patterning of these chromosomes (Figure 5.5B, C). Moreover, high resolution 

maps indicate that the simulation reproduces short range interactions within compartmental 

domains.   
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Discussion 

 

Interphase chromosomes of vertebrates are generally thought to be organized into large 

domains whose sequences can be in one of two states--active or inactive. Within these large 

domains are smaller TADs, some of which are flanked by CTCF sites in convergent orientation, 

and therefore correspond to CTCF loops formed by cohesin extrusion, whereas others lack 

CTCF at their boundaries and are thus formed by different, unknown mechanisms. Smaller 

domains termed sub-TADs can also be observed within TADs. Results reported here address 

the question of what the unit of eukaryotic chromosome organization is and how we can explain 

its formation using known biochemical and biophysical forces operating in the nucleus. Answers 

to this question provided by chromosome conformation studies should account for results 

obtained using microscopy or biochemical approaches. However, results from Hi-C studies 

seem to contradict well-established concepts in nuclear biology. First, non-transcribed regions 

of the genome do not simply interact with each other, as one would conclude from the 

checkerboard pattern observed in Hi-C heatmaps representing long-range interactions among 

sequences located in the B compartment. Rather, non-transcribed regions in the genome 

contain either H3K27me3/PCR1/PCR2, H3K9me3/HP1, or lack any characterized histone 

modifications. Immunofluorescence localization experiments show that Pc-containing regions 

interact with each other to form Pc bodies, both in Drosophila and mammals (Pirrotta and Li 

2012). The same is true for regions containing H3K9me3 and HP1 that form chromocenters and 

actively transcribed regions to form transcription factories (Jackson et al. 1993). Furthermore, 

recent results indicate that multivalent proteins present in these three types of genomic regions 

are able to form biomolecular condensates by liquid-liquid phase separation. Therefore, 

compartmental domains and their interactions detected by Hi-C must be more complex than is 

generally assumed and this complexity must reflect existing observations from microscopy and 

biochemistry. 
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Results presented here reveal an underappreciated diversity of compartmental domains, the 

conserved forces underlying their establishment, and the long-range interactions responsible for 

the formation of nuclear compartments. Multiple independent forces organize the genome into 

compartments. Transcriptional activity and H3K9me3 correlate with the strongest of these 

forces. H3K27me3, while weaker, also correlates directly with compartmental patterns. Finally, 

sequences lacking any of these histone modifications and enriched in H3K9me2 represent a 

fourth class of sequences that form their own independent compartment. The dynamic nature of 

these chromatin features across cell types allows for dynamic compartmentalization during cell 

differentiation. 

 

While both transcriptional activity and H3K9me3 have been previously reported as highly 

correlated with the formation of nuclear compartments, here we show that each of the 

biochemical forces associated with the presence of these histone modifications drives 

compartmentalization independently and can do so in the absence of the other (Lieberman-

Aiden et al. 2009; Falk et al. 2019). Previous in-depth Hi-C analyses of GM12878 cells 

suggested a unique H3K9me3-correlated compartmentalization of chromosome 19 and 

categorized it as a subcompartment of inactive B chromatin (Rao et al. 2014). Here we show 

that this compartment, while unique in GM12878, is widespread in other cell lines and is the 

strongest compartmentalizing force wherever large domains of H3K9me3 are found. On 

chromosomes where large H3K9me3-rich domains exist the segregation between these 

domains and the rest of the H3K9me3-poor chromosome represent the strongest feature of the 

Hi-C maps. As such, using PCA to delineate binary compartments on the Pearson correlation 

maps divides the genome into H3K9me3-rich and poor, rather than along the expected lines of 

transcriptional activity. The inclusion of H3K9me3-poor transcriptionally inactive regions into the 
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A compartment defined by PCA in these cells leads to incompatible and confusing definitions of 

genomic compartments between cell lines and tissues. 

 

While PCA is a powerful tool to investigate compartments the first principal component (PC1) is 

canonically reduced to a binary classification of compartments that we have shown is 

inadequate to represent compartmentalization of the genome. We suggest shifting away from 

naive unsupervised classification techniques in single cell lines to a categorization informed by 

the breadth of organizational diversity seen across human samples, which will improve the 

accuracy and generalizability of future studies. Our findings fit a model of compartmentalization 

where attraction of similar chromatin states drives interactions between them to the exclusion of 

other chromatin types. The dependence of H3K9me3 compartmentalization in GM12878 cells 

on the levels of this modification, where small discrete peaks fail to strongly compartmentalize 

through most of the genome while large domains seen on chromosome 19 do, suggests the 

existence of a compartmentalization threshold. The forces driving compartmentalization must 

overcome the entropy of mixing in the nucleus and, therefore, some minimum quantity of 

compartmentalizing signal must exist below which the attractive forces at work are insufficient to 

overcome entropy. We propose that the distinctive patterns of H3K9me3 in GM12878 reflect this 

threshold where the punctate peaks seen in most of the genome fail to strongly 

compartmentalize while in the same nuclear environment the larger domains present in 

chromosome 19 do. As further evidence of the quantity-dependent nature of 

compartmentalization, several chromosomes in HCT-116 possess both weak and strong 

H3K9me3 domains, which correspondingly compartmentalize weakly and strongly. These 

findings suggest that compartmentalization is more accurately represented as a continuum, 

where each sequence is driven to interact according to the strength, corresponding to the 

quantity, of chromatin forces driving it, rather than discrete chromatin types.  
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Our model provides insight into the fundamental mechanisms of genomic organization. That the 

compartmentalization of the genome can be predicted using just a few histone modifications 

strongly implies that these chromatin features are either directly or indirectly responsible for the 

separation of chromatin types in the genome. Our finding that the patterns of attraction and 

repulsion are largely consistent between cell types with divergent compartments shows that 

these underlying forces behave consistently and that the fundamental forces shaping chromatin 

organization are steady between cells. The ability of the same model to reproduce the 

organization of Drosophila chromosomes suggests that the attraction and repulsion of chromatin 

by the independent contributions of compartmentalizing forces may be a universal driver of 

compartmentalization across Animalia. Taken together, our results reshape our understanding 

of human compartments from largely static, binary classes to a highly dynamic and quantitative 

continuum. The widespread use of canonical A/B compartmentalization is largely a product of 

the pioneering work done in GM12878, but which does not reflect the epigenetic diversity of 

human cell types. Informing future analyses of compartments with this understanding and 

approaching compartmental organization from the perspective of chromatin state driven 

attraction and repulsion will allow for reproducible and comparable definitions of compartments 

across human tissues and beyond to other organisms. 

 

Figures 
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Figure 5.1. Divergent compartmentalization between GM12878 and HCT-116 

Pearson correlations of distance normalized Hi-C interaction frequency map of various regions 

in GM12878 and HCT-116. On top of each Hi-C map from top to bottom: fold-change over 

control shown above for H3K27ac (red), H3K27me3 (blue), H3K9me3 (green); PC1 (black), and 

k-means cluster classifications A (red), B (blue), C (green), D (black). 

A) GM12878’s chromosome 4. 

B) HCT-116’s chromosome 4. 

C) Fold-enrichment of each histone modification within each compartment defined by PCA 

chromosome 4.  

D) Fold-enrichment of each histone modification within each compartment defined by k-means 

clustering on chromosome 4.  

E) GM12878’s chromosome 4 65-95Mb. 

F) HCT-116’s chromosome 4 65-95Mb.  

G) Fold-enrichment of each histone modification within each compartment defined by PCA on 

chromosome 4 65-95Mb.  

H) Fold-enrichment of each histone modification within each compartment defined by k-means 

clustering on chromosome 4 65-95Mb.  

I) GM12878’s chromosome 19. 

J) HCT-116’s chromosome 19. 

 K) Fold-enrichment of each histone modification within each compartment defined by PCA on 

chromosome 19. 

L) Fold-enrichment of each histone modification within each compartment defined by k-means 

clustering on chromosome 19. 
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Figure 5.2. Chromosome sortings of HCT-116 chromosome 14. 

Pearson correlations of distance normalized Hi-C interaction frequency map of HCT-116’s 

chromosome 14. On top of each Hi-C map from top to bottom: fold-change over control shown 

above for H3K27ac (red), H3K27me3 (blue), H3K9me3 (green); PC1 (black), and k-means 

cluster classifications A (red), B (blue), C (green). 

A) Chromosome 14 in its natural order. 

B) Chromosome 14 sorted according to PC1 from lowest to highest.  

C) Chromosome 14 sorted according to H3K9me3 from lowest to highest.  

D) Chromosome 14 sorted according to H3K27ac from lowest to highest.  

E) Chromosome 14 sorted according to H3K27me3 from lowest to highest.  
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Figure 5.3. Histone modifications can predict compartmentalization using learned attraction-

repulsion relationships.  
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A) Log(observed/expected) of Hi-C interaction maps of HCT-116 chromosome 4 65-95Mb. . 

Bottom left triangles are observed Hi-C interactions maps while upper right triangles are the 

simulation using only the components shown above as tracks. From left to right H3K27ac (red), 

H3K9me3 (green), H3K27me3 (blue), and all three combined.  

B) Average of attraction-repulsion relationship map learned by Maximum Likelihood Estimation 

from every chromosome of HCT-116 for H3K27ac. 

C) Average of attraction-repulsion relationship map learned by Maximum Likelihood Estimation 

from every chromosome of HCT-116 for H3K27me3. 

D) Average of attraction-repulsion relationship maps learned by Maximum Likelihood Estimation 

from every chromosome of HCT-116 for H3K9me3. 

E) Comparison of HCT-116 chromosome 14 logged Hi-C interaction maps. The bottom left 

triangle is observed and the upper right triangle is simulated. 

F) Comparison of HCT-116 chromosome 19 logged Hi-C interaction maps. The bottom left 

triangle is observed and the upper right triangle is simulated. 
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Figure 5.4. Attraction-repulsion relationships are consistent across cell types. 
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A) Average of attraction-repulsion relationship map learned by Maximum Likelihood Estimation 

from every chromosome of GM12878 for H3K27ac. 

B) Average of attraction-repulsion relationship map learned by Maximum Likelihood Estimation 

from every chromosome of GM12878 for H3K27me3. 

C) Average of attraction-repulsion relationship map learned by Maximum Likelihood Estimation 

from every chromosome of GM12878 for H3K9me3. 

D) Comparison of GM12878 chromosome 14 logged Hi-C interaction maps. The bottom left 

triangle is observed and the upper right triangle is simulated using . 

E) Comparison of GM12878 chromosome 19 logged Hi-C interaction maps. The bottom left 

triangle is observed and the upper right triangle is simulated using attraction-repulsion maps 

learned from GM12878. 

F) Comparison of GM12878 chromosome 14 logged Hi-C interaction maps. The bottom left 

triangle is observed and the upper right triangle is simulated using attraction-repulsion maps 

learned from HCT-116. 

G) Comparison of GM12878 chromosome 19 logged Hi-C interaction maps. The bottom left 

triangle is observed and the upper right triangle is simulated using attraction-repulsion maps 

learned from HCT-116. 
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Figure 5.5. Attraction-repulsion relationships explain compartmentalization in Drosophila 

A) Average of attraction-repulsion relationship map learned by Maximum Likelihood Estimation 

from chromosomes 2 and 3 of Kc167 for H3K27ac. 

B) Average of attraction-repulsion relationship map learned by Maximum Likelihood Estimation 

from chromosomes 2 and 3 of Kc167 for H3K27me3. 

C) Average of attraction-repulsion relationship map learned by Maximum Likelihood Estimation 

from chromosomes 2 and 3 of Kc167 for H3K9me3. 
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D) Comparison of Kc167 chromosome 2 5-6.8 Mb logged Hi-C interaction maps. The bottom left 

triangle is observed and the upper right triangle is simulated using attraction-repulsion maps 

learned from Kc167 chromosome 3. 

E) Comparison of Kc167 chromosome 3 5-6.8 Mb logged Hi-C interaction maps. The bottom left 

triangle is observed and the upper right triangle is simulated using attraction-repulsion maps 

learned from Kc167 chromosome 2. 

 

Supplemental Figures 
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Supplemental Figure 5.1. A) Fold-enrichment of each chromatin feature within each 

compartment defined by PCA or k-means clustering on chromosome 4.  

 B) Fold-enrichment of each chromatin feature within each compartment defined by PCA or k-

means clustering on chromosome 4 65-95Mb.  C) A Fold-enrichment of each chromatin feature 

within each compartment defined by PCA or k-means clustering on chromosome 19.  D) 
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H3k9me3 fold-change over control tracks for a variety of human cell lines and tissues on 

chromosome 4. E) H3k9me3 fold-change over control tracks for a variety of human cell lines 

and tissues on chromosome 19. 

 

 

Supplemental Figure 2. A) 100 kb bin histogram of the distribution of H3K9me3 on 

chromosome 4 in GM12878. B) 100 kb bin histogram of the distribution of H3K9me3 on 

chromosome 4 in HCT-116. C) 100 kb bin histogram of the distribution of H3K9me3 on 

chromosome 14 in GM12878. D) 100 kb bin histogram of the distribution of H3K9me3 on 

chromosome 14 in HCT-116. E) 100 kb bin histogram of the distribution of H3K9me3 on 
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chromosome 9 in GM12878. F) 100 kb bin histogram of the distribution of H3K9me3 on 

chromosome 9 in HCT-116.  

 

 

Supplemental Figure 5.3. A) Comparison of HCT-116 chromosome 4 logged Hi-C interaction 

maps. The bottom left triangle is observed and the upper right triangle is simulated. B) 
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Comparison of HCT-116 chromosome 8 logged Hi-C interaction maps. The bottom left triangle 

is observed and the upper right triangle is simulated. C) Pearson correlation values comparing 

the observed and simulated maps of HCT-116 for each chromosome. D) Pearson correlation 

values comparing the two HCT-116 Hi-C replicates. 

 

 

Supplemental Figure 5.4. A) Comparison of GM12878 chromosome 4 logged Hi-C interaction 

maps. The bottom left triangle is observed and the upper right triangle is simulated. B) 

Comparison of GM12878 chromosome 8 logged Hi-C interaction maps. The bottom left triangle 

is observed and the upper right triangle is simulated. C) Pearson correlation values comparing 
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the observed and simulated maps of GM12878 for each chromosome. D) Comparison of 

GM12878 chromosome 4 logged Hi-C interaction maps. The bottom left triangle is observed 

and the upper right triangle is simulated using attraction-repulsion maps learned from HCT-116. 

E) Comparison of GM12878 chromosome 8 logged Hi-C interaction maps. The bottom left 

triangle is observed and the upper right triangle is simulated using attraction-repulsion maps 

learned from HCT-116. 

F) Pearson correlation values comparing the observed and simulated maps of GM12878 using 

attraction-repulsion maps learned from HCT-116 for each chromosome. 

 

 

Supplemental Figure 5.5. Pearson correlation values comparing the observed and simulated 

maps of Drosophila Kc cells for each chromosome. 

 

 

Methods  

ChIP-seq quantile normalization: 

We used fold-change over control with both replicates combined were used in a bigwig format. 

100 kb bins with no reads mapped in any ChIP-seq were excluded from analysis. We 
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normalized the remaining bins into twenty discrete quantiles according to their signal compared 

genome-wide. 

 

Hi-C Quality Control: 

Hi-C maps generated from reads with quality score >Q30 were used. Genomic bins were 

removed from the maps and all subsequent analyses according to several criteria calculated on 

each chromosome. Bins which were removed from ChIP-seq quantiles were also removed from 

the Hi-C. Bins that had a total read sum greater than 3 standard deviations above or less than 3 

standard deviations below the average bin read sum were dropped. Bins with non-zero 

interactions with bins with non-zero interactions greater than 3 standard deviations above or 

less than 3 standard deviations below the average bin were dropped.  

 

Hi-C Normalization and Pearson correlation: 

Hi-C maps were balanced using Knight-Ruiz normalization. For some techniques such as 

Pearson correlation analysis the Hi-C maps needed to be distance normalized which was done 

by dividing each interaction by the average of all interactions at that distance. This produces an 

observed/expected value for all interaction bins. Pearson correlations of Hi-C maps were then 

generated from these distance normalized matrices.  

 

Hi-C Principal Component Analysis and Compartment calls: 

Principal Component Analysis was performed on the chromosomal Pearson correlation maps. 

The first principal component (PC1) is defined as the eigenvector with the largest eigenvalue. All 

bins with positive values in PC1 were assigned to one compartment while all negative values 

were assigned to the other. The compartment with the largest enrichment for Gro-seq signal 

was defined as the A compartment and the other B. 
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Hi-C k-means clustering: 

To dissect this complex compartmentalization we employed the unsupervised k-means 

clustering algorithm to identify clusters in both cell types. We used MiniBatchKMeans from 

scikit-learn’s machine learning library with varying numbers for k depending on the features of 

the given chromosome. Clustering was performed on the Pearson correlation maps of each 

chromosome separately and clusters were identified as A,B,C, and D by their enrichments for 

H3K27ac, H3K27me3, H3K9me3, and H3K9me2 respectively. 

  

Compartmentalization by Independent Forces to Simulate Interaction Maps 

To enable comparison across cell types and experiments we first binned all epigenetic signals 

into quantiles at a 100 kb resolution. For each normalized signal, we then learned, using a 

Maximum Likelihood Estimation approach, an attraction-repulsion relationship for each pair of 

quantiles. This attraction-repulsion mapping effectively represents the average enrichment or 

depletion between all bins with the corresponding level of signal. The model then predicts the 

number of reads at each bin by summing the attraction-repulsion scores for each signal and 

multiplying by a constant distance factor to account for the power law decay of genomic 

interactions.  

 

We model the compartmentalization of the genome as the independent contributions of 

individual 1D epigenetic signals and use a machine learning method Maximum Likelihood 

Estimation (MLE) to learn the relationship between the signals and interaction frequencies in the 

Hi-C map. In this way we hope to quantify the nuclear forces driving compartmentalization. Our 

model treats each epigenetic signal as an independent but additive effect on Hi-C interaction 

frequency according to the equation: 

 

𝐸𝑖𝑗  =  1 + 𝐻3𝐾27𝑎𝑐𝑖𝑗  +  𝐻3𝐾27𝑚𝑒3𝑖𝑗  +  𝐻3𝐾9𝑚𝑒3𝑖𝑗 
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Where the expected interaction frequency E between any two genomic loci i and j is the sum of 

each signal’s weight effect. Using MLE we find the optimal values of each signal’s weights such 

that the expected result E is as close to the observed value as possible. This produces a trained 

model that can reproduce the 3D organization of the genome from 1D epigenetic signals by 

quantifying the expected contributions of each correlated compartmentalizing force. 

 

We use the Maximum Likelihood Estimation approach to optimize the values of a vector 𝛃 

where each entry in 𝛃 corresponds to an entry in the attraction-repulsion maps such that for all 

possible pairs of quantiles for each of the three chromatin signals H3K27ac, H3K27me3, and 

H3K9me3, there is a corresponding weight in 𝛃. We then construct a sparse matrix X where 

each row corresponds to an interaction bin in the flattened Hi-C matrix and each column a 

weight in 𝛃. Each row in X is zeros except in the 3 columns corresponding to the entries in 𝛃 

that describe the pair of genomic bins’ signal quantiles. If we take an observed Hi-C map which 

has been normalized for distance by dividing by the expected value at each distance, which we 

term y, the model’s approximation of the normalized observed map is then: 

 

𝑦 = 1⃗ + 𝑋 β 

 

Treating the normalized interaction frequency as a normal distribution we derive a likelihood 

function the log of which we will maximize to optimize the weights of 𝛃 in a Maximum Likelihood 

Estimation approach: 

β =  𝑎𝑟𝑔 max
β

−∑(y𝑖  − 1⃗ + 𝑋𝑖β)2
𝑁

𝑖=1
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Where N is the total number of unique interacting bins in the linearized Hi-C matrix excluding 

each genomic bin’s interactions with itself. To optimize the parameters of 𝛃 we iteratively solve 

starting with initial values of 0 for all weights in 𝛃. We use the Newton-Raphson method to 

update the weights by gradient descent. With each iteration we account for one final feature of 

the Hi-C matrix. Due to the colocalization of compartmentalizing features along the chromosome 

the frequency of intra-compartmental interactions is enriched at short ranges. Two genomic bins 

within a megabase are more likely to be enriched for compartmental interactions than two bins 

many megabases apart. This bias leads to aberrant distance normalization, and so the distance 

normalization is updated after each iteration to account for the average compartmental 

enrichment the model predicts at each distance. The distance normalization is divided by the 

average enrichment so that it more accurately reflects the true effect of distance on interaction 

frequency. 

 

Drosophila simulation 

The Drosophila simulation works identically to the simulation in humans except for a limit on the 

maximum size of bins that are considered for the analysis. We excluded all interaction bins 

further than 2 megabases apart as the compartmental signal beyond this distance was 

substantially weaker. 

 

Simulation Pearson Correlation Analysis 

Simulations were generated at 100 kb resolution using the average of the attraction-repulsion 

maps learned from every chromosome except the one being simulated. We quantified the 

accuracy of the model using the Pearson correlations between the observed and simulated 

maps after dividing by the average distance. Due to the power law decay of interaction 

frequency with respect to distance in Hi-C maps any simulation which accurately reproduces 

this decay will have an extremely high correlation. As this would not represent the model’s 
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capacity to reproduce compartmental organization we normalized for distance to eliminate the 

natural correlation driven by the accurate representation of the distance decay.  
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Chapter 6: Discussion 

 

Conclusions 

 

The folded structures of the cardinal biological polymers DNA, RNA, and proteins are essential 

to their function. DNA, as the largest and most disordered of these polymers, poses 

considerable obstacles to the analysis of its structure. Despite this, we have elucidated at least 

two conserved independent processes that influence DNA folding in the genome (Rowley et al. 

2017). The first, a loop extrusion process by which loops are enlarged by the DNA motor activity 

of members of the SMC family (Nichols and Corces 2015; 2018). Condensin compacts 

chromosomes by extruding loops during mitosis whereas cohesin constantly extrudes loops 

along chromosomes during interphase. In vertebrates, CTCF appears to act as a unidirectional 

border to cohesin complexes and thereby forms loops between its oriented binding sites 

(Nichols and Corces 2015). Beyond these most basic concepts, we know little about this 

process. The DNA motor activity of these complexes has been confirmed experimentally but we 

only have vague models, such as the tethered inchworm, for the mechanism by which these 

complexes extrude DNA (Nichols and Corces 2018). Moreover, in the case of cohesin, we lack 

compelling theories for why interphase loop extrusion occurs. This energy-intensive process 

must play an essential role in the nucleus to justify its existence. CTCF and enhancer-promoter 

loops may be one mechanism by which loop extrusion serves to regulate transcription, but thus 

far perturbations of these systems have had only minor effects on transcription in cell lines, 

despite leading to cell senescence and death (Rao et al. 2017; Nora et al. 2017). CTCF binding 

sites and associated loops are frequently cell-type specific, pointing towards a role for these 

loops in transcriptional regulation. 
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The second independent principle driving the organization of the genome is 

compartmentalization. The basic concept of functionally related nuclear components 

colocalizing was seen in the first observations of membraneless nuclear bodies. Advanced 

techniques that can determine the localization of chromatin have extended this model to 

encompass colocalization of functionally related chromatin. We now know that 

compartmentalization of a genomic locus directly corresponds to the chromatin features present 

there (Rowley et al. 2017). However, just as with loop extrusion, we still know relatively little 

about the mechanisms that give rise to these structures or their functional implications. While 

the canonical, binary A/B compartmentalization correlated with transcriptional activity can be 

found throughout human tissues and indeed all eukaryotic genomes it is becoming increasingly 

clear that this is only one major axis of chromatin segregation. Transcriptionally inactive regions 

rich in H3K9me3, H3K27me3, or neither histone modification possess distinct 

compartmentalization patterns, suggesting distinct transcriptionally inactive compartments. The 

purpose of this segregation is as yet unclear, however, that these patterns are highly dynamic 

across human tissues suggests they play an important role in transcriptional regulation and 

differentiation (Rowley et al. 2017).  

 

Future directions 

 

The ability to capture the conformation of all of the chromatin in a population of cells has opened 

the door to the structural analysis of the DNA polymer. The most significant interaction patterns 

in these stochastic conformations have now been identified. We can explain the large majority 

of the structural organization of the genome as the function of loop extrusion and/or 

compartmentalization. But while we understand roughly what these patterns are, we lack a 

mechanistic understanding of how these forces work and why they are conserved features of 
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genomes. Future work must investigate genomic organization from these two ends. A finer 

understanding of the mechanistic details will surely shed light on the downstream roles this 

organization plays. Vice versa, theoretical breakthroughs on the purpose of the organization will 

produce testable hypotheses regarding the mechanism. 

 

Answering the outstanding mechanistic questions pertaining to loop extrusion will require 

structural and functional dissections of these complexes. Paramount to understanding this 

process is determining how ATP hydrolysis driven conformational changes produce directed 

movement on the DNA polymer to extrude loops. Secondary questions involve the regulatory 

processes that constrain extrusion, including CTCF’s unidirectional barrier function. To better 

understand the consequences of loop extrusion and CTCF barriers, more careful perturbations 

must be undertaken to quantify the effect of these processes on enhancer-promoter looping and 

transcriptional regulation. Introducing human CTCF barriers to genomes lacking CTCF loops 

also presents a novel opportunity to see the effects of this organization. 

 

An equally important approach will be understanding the role of cohesin’s interphase loop 

extrusion and CTCF oriented loops in genomic regulation. One popular theoretical model is that 

CTCF loops form insulated neighborhoods that promote enhancer-promoter interactions within 

the loop and inhibit interactions across the loop (Hnisz et al., 2016). Several findings at specific 

genomic loci support this model (Lupiáñez et al., 2015; Williamson et al., 2019). However, from 

Hi-C analysis we know that the quantitative enrichment of interaction frequency inside and 

outside of loops is relatively minor. Moreover, genome-wide perturbation of looping has only 

shown relatively minor effects on transcriptional levels genome wide suggesting extrusion is not 

indispensable for mediating enhancer-promoter interactions (Nora et al., 2017; Rao et al., 2017; 

Vian et al., 2018). Where CTCF loops do strongly influence interaction frequencies, is at the 

loops themselves. CTCF binding sites are enriched in promoter regions and may serve to form 
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direct loops to enhancers. CTCF sites are found in numerous important genomic regions with 

distinct spatial arrangement such as the Hox, Protocadherin, and Immunoglobulin loci where 

they appear to serve specific and distinct roles (Ba et al., 2020; Guo et al., 2012; Heger et al., 

2012). Understanding CTCF’s specific roles in these distinctly tractable loci will be a key means 

of understanding its general function genome wide. These loci also provide opportunities to 

understand the evolutionary origins of CTCF looping and thus potentially its function. The Hox 

locus in Drosophila has conserved CTCF binding sites like those found in the mammalian loci, 

however Drosophila CTCF lacks an interaction orientation bias. CTCF’s role as insulator and 

architectural factor in the absence of the formation of oriented loops is an important missing 

piece to understanding this protein and genomic organization at large. 

 

Significant theoretical work has led to several models of compartmentalization. In vitro 

experiments have demonstrated the ability of various nucleoplasm and chromatin components 

to self-segregate. This evidence is still circumstantial as we lack efficient methods to perturb 

nuclear compartmentalization. The depletion of key compartmental components or disruption by 

other means will illuminate the physical nature of these biomolecular condensates. Additionally, 

techniques that allow for the assessment of chromatin conformation simultaneously with 

chromatin constituents such as HiChIP and SPRITE, provide an avenue to determine the 

important epigenetic components of these compartments (Mumbach et al. 2016; Quinodoz et al. 

2018). 

 

Theoretical justification for why compartmentalization is such a prominent feature of nuclear 

organization appears relatively straightforward but has been difficult to experimentally test. 

Compartmental segregation as a mechanism for improving the efficiency of genomic functions 

by increasing local concentrations of needed components as well as limiting those functions 

spatially as a means of regulation is conceptually attractive. However, we lack sophisticated 

https://www.zotero.org/google-docs/?broken=IXGddD
https://www.zotero.org/google-docs/?broken=IXGddD
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methods to perturb compartmentalization in the nucleus without significantly disrupting normal 

function. One surprising avenue of investigation into nuclear compartmentalization of chromatin 

could be elucidating the principles underlying compartmentalization in prokaryotes where 

circular chromosomes in the cytoplasm nonetheless show compartmental interaction patterns 

by Hi-C (Le et al., 2013). Dissecting the organization of these organisms that lack both nuclear 

envelopes and histones may provide key insights into the origins of compartmental organization 

and the mechanisms by which is it achieved (Heger et al., 2012). 

 

As we learn more about the mechanisms and functions of genomic architecture the importance 

of DNA structure will become clearer. That these organizational principles are simultaneously 

highly evolutionarily conserved, and yet significantly differ in presentation between human 

tissues, indicates they play an essential role in the genome that we do not yet fully understand. 

 

References 

 

Ba, Z., Lou, J., Ye, A.Y., Dai, H.-Q., Dring, E.W., Lin, S.G., Jain, S., Kyritsis, N., Kieffer-Kwon, 

K.-R., Casellas, R., Alt, F.W., 2020. CTCF orchestrates long-range cohesin-driven V(D)J 

recombinational scanning. Nature 1–6. https://doi.org/10.1038/s41586-020-2578-0 

Guo, Y., Monahan, K., Wu, H., Gertz, J., Varley, K.E., Li, W., Myers, R.M., Maniatis, T., Wu, Q., 

2012. CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter 

choice. PNAS 109, 21081–21086. https://doi.org/10.1073/pnas.1219280110 

Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E., Wiehe, T., 2012. The chromatin insulator 

CTCF and the emergence of metazoan diversity. PNAS 109, 17507–17512. 

https://doi.org/10.1073/pnas.1111941109 



174 
 

 
 

Hnisz, D., Day, D.S., Young, R.A., 2016. Insulated Neighborhoods: Structural and Functional 

Units of Mammalian Gene Control. Cell 167, 1188–1200. 

https://doi.org/10.1016/j.cell.2016.10.024 

Le, T.B.K., Imakaev, M.V., Mirny, L.A., Laub, M.T., 2013. High-resolution mapping of the spatial 

organization of a bacterial chromosome. Science 342, 731–734. 

https://doi.org/10.1126/science.1242059 

Lupiáñez, D.G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, 

H., Opitz, J.M., Laxova, R., Santos-Simarro, F., Gilbert-Dussardier, B., Wittler, L., 

Borschiwer, M., Haas, S.A., Osterwalder, M., Franke, M., Timmermann, B., Hecht, J., 

Spielmann, M., Visel, A., Mundlos, S., 2015. Disruptions of Topological Chromatin 

Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions. Cell 161, 1012–

1025. https://doi.org/10.1016/j.cell.2015.04.004 

Mumbach, Maxwell R., Adam J. Rubin, Ryan A. Flynn, Chao Dai, Paul A. Khavari, William J. 

Greenleaf, and Howard Y. Chang. 2016. “HiChIP: Efficient and Sensitive Analysis of 

Protein-Directed Genome Architecture.” Nature Methods 13 (11): 919–22. 

https://doi.org/10.1038/nmeth.3999. 

Nichols, Michael H., and Victor G. Corces. 2015. “A CTCF Code for 3D Genome Architecture.” 

Cell 162 (4): 703–5. https://doi.org/10.1016/j.cell.2015.07.053. 

———. 2018. “A Tethered-Inchworm Model of SMC DNA Translocation.” Nature Structural & 

Molecular Biology 25 (10): 906–10. https://doi.org/10.1038/s41594-018-0135-4. 

Nora, E.P., Goloborodko, A., Valton, A.-L., Gibcus, J.H., Uebersohn, A., Abdennur, N., Dekker, 

J., Mirny, L.A., Bruneau, B.G., 2017. Targeted Degradation of CTCF Decouples Local 

Insulation of Chromosome Domains from Genomic Compartmentalization. Cell 169, 930-

944.e22. https://doi.org/10.1016/j.cell.2017.05.004 

Quinodoz, Sofia A., Noah Ollikainen, Barbara Tabak, Ali Palla, Jan Marten Schmidt, Elizabeth 

Detmar, Mason M. Lai, et al. 2018. “Higher-Order Inter-Chromosomal Hubs Shape 3D 



175 
 

 
 

Genome Organization in the Nucleus.” Cell 174 (3): 744-757.e24. 

https://doi.org/10.1016/j.cell.2018.05.024. 

Rao, S.S.P., Huang, S.-C., Glenn St Hilaire, B., Engreitz, J.M., Perez, E.M., Kieffer-Kwon, K.-R., 

Sanborn, A.L., Johnstone, S.E., Bascom, G.D., Bochkov, I.D., Huang, X., Shamim, M.S., 

Shin, J., Turner, D., Ye, Z., Omer, A.D., Robinson, J.T., Schlick, T., Bernstein, B.E., 

Casellas, R., Lander, E.S., Aiden, E.L., 2017. Cohesin Loss Eliminates All Loop 

Domains. Cell 171, 305-320.e24. https://doi.org/10.1016/j.cell.2017.09.026 

Rowley, M. Jordan, Michael H. Nichols, Xiaowen Lyu, Masami Ando-Kuri, I. Sarahi M. Rivera, 

Karen Hermetz, Ping Wang, Yijun Ruan, and Victor G. Corces. 2017. “Evolutionarily 

Conserved Principles Predict 3D Chromatin Organization.” Molecular Cell 67 (5): 837-

852.e7. https://doi.org/10.1016/j.molcel.2017.07.022. 

Vian, L., Pękowska, A., Rao, S.S.P., Kieffer-Kwon, K.-R., Jung, S., Baranello, L., Huang, S.-C., 

El Khattabi, L., Dose, M., Pruett, N., Sanborn, A.L., Canela, A., Maman, Y., Oksanen, A., 

Resch, W., Li, X., Lee, B., Kovalchuk, A.L., Tang, Z., Nelson, S., Di Pierro, M., Cheng, 

R.R., Machol, I., St Hilaire, B.G., Durand, N.C., Shamim, M.S., Stamenova, E.K., 

Onuchic, J.N., Ruan, Y., Nussenzweig, A., Levens, D., Aiden, E.L., Casellas, R., 2018. 

The Energetics and Physiological Impact of Cohesin Extrusion. Cell 173, 1165-

1178.e20. https://doi.org/10.1016/j.cell.2018.03.072 

Williamson, I., Kane, L., Devenney, P.S., Flyamer, I.M., Anderson, E., Kilanowski, F., Hill, R.E., 

Bickmore, W.A., Lettice, L.A., 2019. Developmentally regulated Shh expression is robust 

to TAD perturbations. Development 146. https://doi.org/10.1242/dev.179523 

 


