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Abstract 

Incremental sense weight training for contextualized word embedding interpretation 

By Xinyi Jiang  

 

In this work, we propose a new training procedure for learning the importance of dimensions of 

word embeddings in representing word meanings. Our algorithm advanced in the 

interpretation filed of word embeddings, which are extremely critical in the NLP filed due to the 

lack of understanding of word embeddings despite their superior ability in progressing NLP 

tasks. Although previous work has investigated in the interpretability of word embeddings 

through imparting interpretability to the embedding training models or through post-

processing procedures of pre-trained embeddings, our algorithm proposes a new perspective to 

word embedding dimension interpretation where each dimension gets evaluated and can be 

visualized. Also, our algorithm adheres to a novel assumption that not all dimensions are 

necessary for representing a word sense (word meaning) and dimensions that are negligible get 

discarded, which have not been attempted in previous studies. 
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Chapter 1

Introduction

Word embeddings, representations of words produced based on their

distributional semantics and context, has been an valuable tool utilized in

various NLP tasks. With the training of relevant models on a large-size corpus,

word embeddings capture characteristics of words in dense vectors with rich

semantic and syntactic information. Such representations will later be used

in the downstream Natural Language Processing (NLP) tasks, which advance

the progress of other NLP tasks compared to sparse vector of Bag-Of-Word

methods. However, the dense quality of embeddings has also made it hard to

interpret meanings associated with each dimension, making word embeddings

black-box-like. Also, with the development of contextual word embedding

models, the word embedding dimension size has increased from around 300 to

2000, due to the performance gain caused by the increase of dimensions size.

As a result, the work of interpreting word embeddings has become more critical
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as more factors are involved. In this work, we propose a novel algorithm for

learning and understanding the value of word embedding dimensions. The

following sections give an overview of the problem description, motivation,

objectives and related works relating to this thesis.

1.1 Problem Description

There has not yet been a consensus on the evaluation and interpretation of

word embeddings. There are mainly two types of assessments: intrinsic evalu-

ations and extrinsic evaluations. Intrinsic evaluations often investigate the

nature of semantics by comparing embedding relations and human cognitive

sciences, which include both conscious and subconscious sciences [3, 26, 7].

Meanwhile, extrinsic evaluations focus on the engineering perspective where

word embeddings are used as input to downstream tasks and evaluate the

performance of embeddings on specific tasks [3]. On the other hand, the

task of imparting interpretability has been tackled in various ways in the

literature. Some researchers modified the training processes of embeddings to

encourage interpretable dimension embedding learning [24, 20], while others

suggested mapping from uninterpretable embedding to embeddings with more

interpretable dimensions [2, 10].
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Although the approaches mentioned above provide better understandings

and interpretations to the word embeddings, many intrinsic evaluations have

become ineffective due to the emergence of context-based word embeddings,

which required contextual information as input. Moreover, we want to explore

the possibilities of interpreting word embedding dimensions directly rather

than trying to modify the current dimensions. This thesis aims to evaluate

and understand context-based word embedding, mainly in the field of word

sense disambiguation. We offer a hypothesis that some dimensions do not play

a role in representing a word sense. In this work, we propose an algorithm

to analyze and visualize the functionalities of specific dimensions to word

meanings.

1.2 Motivation

There are three main reasons to work on the task of word embedding evaluation

and interpretation. First, word embeddings are widely used in almost all NLP

tasks, and as already illustrated in previous works, the quality of meaningful

representations of words have a big impact on the performances of models for

NLP tasks [36, 1, 6]. Considering the importance of word embeddings, it is

intrinsically intriguing in investigating what information is being captured in
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the embeddings.

Second, we plan to aim our project direction to word sense detailed

evaluations. With emerging context-based word embeddings which take

sentences as inputs, embeddings are highly contextualized. Based on the

knowledge that humans understand language and distinguish senses based on

the contextual information implied, we would like to investigate in how much

sense contextual information is contained in the word embeddings.

Third, although embedding models usually offer options to generate em-

beddings with a wide range of word embedding dimension sizes, there has

not been full understandings of the functionality of specific dimensions. Most

studies in the word embedding interpretability field have been done using

either statistical methods or modifications to the embedding training proce-

dures to generate more interpretable word embeddings [51, 20]. However, in

this work, we want to approach the problem of interpretability from a different

perspective to have the machine learn to understand specific dimensions in

word embeddings.



5

1.3 Objectives

The primary goal of this thesis is to advance the research in the word embed-

ding evaluation and interpretation field. The concrete objectives are listed

below:

• evaluate the ability to learn sense information by analyzing sense groups

and similarity tests of context-based word embedding models.

• impart interpretability to embedding dimensions by proposing a new

algorithm for determining the importance of word embedding dimensions

• evaluate the algorithm by masking out unimportant dimensions of word

embeddings and testing the properties of masked word embeddings

1.4 Related Works

In this section, we will introduce works that have been done to impart in-

terpretability to word embeddings. In the early works, Murphy et al.(2012)

suggested a variant of sparse matrix factorization, called Non-Negative Sparse

Embedding (NNSE), which can generate highly interpretable word repre-

sentations [29]. Based on NNSE, Jang and Myaeng introduced a method

analyzing dimensions characterizing categories by linking concepts with types
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using HyperLex datasets [48] and comparing dimension values within concept

groups with the average of dimension values within category groups [17]. Ma-

trix factorization techniques were also used to extend Skip-Gram models [26]

by applying a projected gradient from non-negative matrix factorization

(NMF) [22] to modify the learning process of Skip-Gram [24]. Thus the modi-

fied model encourages learning of interpretable word embeddings since NMF

only forbid combinations of addition operations over subtraction operations,

which result in an embedding that is part-based [24]. Other work [20] also

invested in the interpretability topic by extending current embedding models

of Glove [34]. Via mapping group label information obtained from Rogets

Thesaurus, the words belonging to certain groups, are encouraged to learn an

elevated amount in the dimensions that correspond to the group [20]. Other

works make use of pre-trained embeddings and apply post-processing tech-

niques to acquire embeddings with more interpretability. Researches [53, 33]

used matrix transformation methods on pre-trained embeddings. The ap-

proach in [53] utilized canonical orthogonal transformations to map current

embeddings to a new vector space where the meanings of components are

more interpretable. Similar to the work of [53], Park, Bak and Oh(2017)

proposed an approach that rotates pre-trained embedding by minimizing
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the complexity function so that the dimensions after rotation become more

interpretable [33]. Another type of methods apply sparse encoding techniques

on word embeddings and map them to sparse vectors [45, 2]. [43] directly

analyzes dimensions of embeddings using eigenvector analysis.
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Chapter 2

Background

2.1 Word embedding extraction

Word embedding extraction has been one of the leading research topics in

natural language processing. By using language modeling and feature learning

techniques, including neural networks, words get mapped to vectors, which are

called word embeddings. Based on the idea that ”a word is characterized by the

company it keeps” [13], word embeddings aim to incorporate more syntactic

and semantic information by training on large natural language corpora.

Different from the Vector Space Model [21] before, word embeddings are

dense vectors with a much smaller dimension size. Popular word embedding

models include Word2Vec [26], FastText [18], GloVe [34]. All Word2Vec,

FastText and GloVe take words as inputs and perform mapping in a dictionary

way where one word has a definite embedding stored and programs access
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embeddings by looking up the word in the dictionary. These models prose a

problem where each word only has one embedding while polysemy is common,

where a word has multiple meanings. Context-based models: ELMo [36],

Flair [1] and BERT [6] models, on the contrary, produce an embedding for

each occurrence of a word. Sentences are taken as inputs in this case, and

the output word embedding is highly contextualized.

2.2 Embedding evaluations

Embedding evaluations can be divided into two main categories: intrinsic

evaluations and extrinsic evaluations. Intrinsic evaluations investigate in the

nature of semantics, usually through comparison with embedding relationships

and human cognitive sciences while extrinsic evaluations tend to apply embed-

dings to downstream tasks and evaluate the performance of embeddings on

specific tasks. The following two sections will introduce widely-used intrinsic

evaluation methods and extrinsic evaluation methods separately.

2.2.1 Intrinsic evaluations

Intrinsic evaluations focus mainly on word embedding intrinsic qualities as

well as how well embedding relations relate to human cognitions.
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Word semantic similarity test is one of the most widely used intrinsic

evaluations. Datasets were collected from human evaluators, who, given pairs

of words, were asked to access the similarity of two words within a pair.

Similarities calculated by distance within word embeddings of word pairs from

the same datasets were compared with the human judgement results. Many

datasets have been developed for similarity tests, including WordSim-353 [12]

and SimVerb-3500 [15].

Another popular intrinsic evaluation is word analogy test, which was pop-

ularized by the word2vec word embedding model [26]. The main assumption

is that arithmetic operations on word embeddings can solve analogy problems.

Meanly, given four words x,x′, y and y′, if the relationship between x and x′

is the same as the relationship between y and y′, it is believed that y′ can be

predicted by x+x′− y. One popular example would be given the embeddings

of King, Man, Queen, then Women embedding can be predicted by king +

man - queen. Popular datasets for analogy tests contain Google Analogy [12]

and SemEval-2012 [19].

Other intrinsic evaluations include subconscious intrinsic evaluations.

Subconscious intrinsic evaluations are evaluations where human cognitive

assessments are caught in a subconscious level. For instance, eye movement
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data evaluations compare the features extracted from the eye movement

data and word pair embeddings [44]. Subconscious evaluations also include

semantic priming, which is based on the assumption that if a word is preceded

by a semantically related word, then a human will tend to read the word

faster. Word semantic relations are evaluated based on the time people spent

reading the word, given the previous one [7].

2.2.2 Extrinsic evaluations

Extrinsic evaluations measure the capability of word embeddings to be applied

as the input vector for machine learning algorithms in downstream NLP tasks.

In theory, word embeddings can be used in almost any NLP tasks. For example,

the General Language Understanding Evaluation (GLUE) benchmark is one

of the popular framework for extrinsic evaluations, which is a collection of

various natural language understanding tasks, with relevant datasets [49].

2.2.3 Intrinsic and extrinsic evaluations

Several studies have also investigated in the relationship between intrinsic

evaluation and extrinsic evaluation performances of word embeddings [40, 25,

5]. Rogers et al. (2018) included more intrinsic properties of words extracted

from sources of WordNet [11], Wiktionary, and BabelNet [30] in evaluation
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relationship experiments, compared to the previous works.

2.3 Sense Vector extraction

A sense is one of the meanings of a word. For humans, the contexts of a

word hint us which sense it is in particular sentences. Thus, word senses and

concepts play an essential role in linguistic understanding. The task of sense

vector extraction is to generate a meaningful representation for each sense.

The early stages of works explored clustering techniques [42, 16, 39] before

assigning of sense representations. Other techniques that adopt distributional

models from word embeddings to sense embeddings have also been explored.

Neelakantan et al. (2015) was the first to extend a word embedding model,

Skip-Gram model [26] to develop a multi-sense model [31]. The model was

introduced as Multiple-Sense Skip-Gram. In this method, the contexts of a

word are represented as a centroid for clustering and word vector gets updated

as the clustering groups get updated with the new addition of contexts[31].

Later works [23, 32] further incorporate topic information to the training of

embeddings.

Another significant section of embedding extraction is based on outside

sources such as WordNet [11] and Wikipedia. Models integrate additional
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semantic information of senses from lexical resources during training [46, 50].

Using word sense graph WordNet provides, other models use random graph

walks on WordNet synsets (units that represent senses) and compute a

representation for each synset [37, 38]. Rothe and Schtze (2014) proposed a

different method for generating synset embeddings in the same vector space

as the word embeddings by utilizing an autoencoding framework [41]. Faruqui

el at. (2015) introduced a method called retrofitting [9] where during training

based on semantic graph is to encourage similarity between a words vector

and vectors with senses connected in the graph and the method of retrofitting

is further utilized in [8, 9].

2.4 Neural Networks

2.4.1 Convolutional Neural Network

Convolutional Neural Network (CNN) was initially used for image processing

and were responsible for major breakthroughs in image classification. Through

a series of convolution and pooling operations, CNN selects specific features

and end up keeping the most salient ones. When CNN gets applied to NLP,

convolution operations usually slide over full rows of the input matrix. By

doing so, features such as n-grams information can get learned easily by CNN.
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2.4.2 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks are a specific type of Recurrent

Neural Networks (RNN), designed for long-term dependencies. RNN is an

artificial neural network with nodes connected along a temporal sequence.

Thus RNN nodes can retain information from previous nodes, thus capturing

sequential information. LSTM networks are a specific type of RNN where

cells are gated to control the flow of information. As humans read languages

in a timely manner, it seems only natural to consider sequential information

in NLP tasks. As a result, applications of LSTM in NLP tasks have exhibited

great successes.

2.4.3 Transformer

The paper “Attention is All You Need” [47] first proposed the idea of the

transformer. It is a neural network architecture based on an attention

mechanism. The attention mechanism is used as a way for the model to focus

on relevant information based on what it is currently processing.
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Chapter 3

Qualitative Evaluation of

Contextual Word Embeddings

During our journey in the exploration of word embeddings, we have

pursued in multiple directions and in this section, approaches that have been

undertook will be elaborated.

3.1 Embedding Model Structures

This work explores three popular word embedding algorithms with various

dimensions: ELMo [36], Flair [1] and BERT [6]. ELMo model is learned

functions of a deep word-level bidirectional LSTM language model with

character level convolution networks along with a linear projection output

layer [36], as displayed in the lower half of figure 3.1 before the embedding

is put into the sequence tagging model. FLAIR model is character-level

bidirectional LSTM language model on sequences of characters [1]. The hidden
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state after the token’s last character in the forward layer is concatenated with

the state before the token’s first character in the backward layer to generate

the final output of the token’s word representation [1]. Figure 3.2 shows the

extraction for contextual embedding for the word Washington” in the network.

BERT has a model architecture of a multi-layer bidirectional transformer

encoder [6], shown in figure 3.3b. Figure 3.3a presents the structure of a

transformer, which makes use of attention mechanisms and learns contextual

relations between words.

3.2 Evaluations on Conversational Dataset

3.2.1 Dataset

The conversational dataset that is utilized is the Friends TV show transcript1.

The Friends TV show transcript is a multiparty dialogue data with speaker

name annotated, which contains the scripts from the ten seasons of the Friends

TV show. Each season contains 24 episodes with around 6,000 utterances. The

corpus, in total, includes 67,373 utterances, 126,059 sentences and 1,110,936

tokens. The training, validation and test set were split on a 19:2:3 ratio where

for each season, the first 19 episodes were used as the training set, the 20 and

1https://github.com/emorynlp/character-mining
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Figure 3.1: Overview of a sequence tagging model with the bottom part
representing ELMo embedding structure (before the top bi-RNN networks
are applied) [35]

.

Figure 3.2: Extraction of a contextual string embedding for a word (Washing-
ton) in a sentential context in Flair model. From the forward language model
(shown in red), output hidden state is extracted after the last character in
the word. From the backward language model(shown in blue), the output
hidden state is extracted before the first character in the word. Both output
hidden states are concatenated to form the final embedding [1]

.
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(a) BERT model architecture [6]
(b) The architecture of a trans-
former [47]

Figure 3.3: BERT model structure

21 episodes as the validation set and the last 3 episodes as the test set.

3.2.2 Embedding Models Used

The test on conversational datasets involved two embeddings: ELMo and Flair.

The ELMo model has a structure of 2 layers of bidirectional LSTM with a

hidden state size of 1028 and an output projection size of 128. Concatenating

the output of the forward layer and backward layer results in an output

embedding dimension size of 256. The average embedding of the three

output layers were used. This approach also worked with the Flair model

of 1 layer of bidirectional LSTM with a hidden size of 1028, producing
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an output embedding dimension size of 2048. The models were prepared

two ways on our dataset: trained and tuned. Trained models were directly

trained on the conversational dataset, and tuned model are word embedding

models originally trained on a large dataset (1-billion-word corpus) and tuned

(continue training) on our conversational dataset.

3.2.3 Approach

The first evaluation method that we have tested on contextualized word

embeddings were qualitative evaluations of contextualized word embeddings

on conversational datasets. In our approach, we generated context-based

word embeddings of Flair models and ELMo models and calculated the cosine

similarity score between every pair of tokens in the corpus. Afterwards, the

pair-wise cosine similarity scores of all possible pairs of words are calculated

and ranked. The pairs that are at the top are later extracted. One additional

test done was affinity propagation clustering on both of the flair models to

see if meaningful clusters are able to be grouped.

3.2.4 Result

A part of the results for the similarity tests are shown in Table 3.1, which

included the word pairs that have the highest embedding similarities and
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excluded interjection word pairs. One common pattern that we noticed in the

similarity rankings is that for all the models, the interjection word pairs take

up a large proportion in the top rankings. Meanly, words that show emotions,

such as “ahhhhh” and “ohhhhh”. The main reason that they get ranked high

in the similarity test is that they have a high frequency of appearance in the

conversational dataset and due to their simple morphological structure, same

characters lead to more similar word embeddings. The next pattern that we

noticed is that the tuned embeddings have a more stable word embedding

pairs in the top, where words with similar semantic properties appear together

while in the trained models, word pairs with similar morphological structures

are ranked high on the list. For example, in the Flair trained model, the

“preparation presentation” word pair gets ranked with highest similarity which

is not that similar in word semantic meaning while “realise realize” appears in

the top rankings of the tuned model, which have a closer semantic relation. In

order to test if the tuned models are highly influenced by the word morphology,

we applied spearman’s correlation test on the Levenshtein distance of word

pairs and their cosine similarity scores. The correlation coefficient resulted in

0.000748 and 0.001497 for the Flair trained model and ELMo trained model

accordingly. Thus, the conclusion can not be drawn that the word embedding
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model trained on small conversational dataset is heavily influenced by the

word morpogoical properties. Another pattern that we noticed is that the

ELMo model tends to be able to pick out name relations as the top pairs

compared to the Flair models. Table 3.2 shows some clusters in the affinity

propagation cluster results on Flair models. It can be seen that both the

trained word embedding model and tuned model can capture the morphology

information well where words with the same suffix such as “ing” and “s” get

clustered together and the tuned model have a tendency to have clusters

with common topics such as ”far Over over down past around” in the table,

which contain relative location information and were not necessarily alike in

their forms. In general, the results of this test corresponds to what people

have been believing in that when word embedding models get trained on a

large corpus, the model is more generalized and robust in their applications.

We can see from the experiment results that common information is being

retained in the word embeddings and in the next section, we will take an

approach in word embedding dimension perspective to investigate how the

dimensions affect the common information in the embeddings.
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Trained Tuned

Flair

preparation presentation
2 1
explanation explosion
connection collection
intimidating interesting
description decision
confidence coincidence

1 2
realise realize
he she
could can
are were
They You
somebody someone

ELMo

Barber Farber
Tribbiani Trrrribbiani
Yeller Geller
Lou You
The She
Bing Ring
friend girlfriend

a an
why Why
Where where
Of of
The the
What what
If if

Table 3.1: top ranking results for similarity tests

Flair

Trained

forgot forgive follow forgotten forget

whoever however whenever whatever

really finally

talking telling thinking calling taking

Tuned

gets announces brings starts takes saves wins goes pulls

choosing trying hoping deciding trying working starting

far Over over down past around

travel journey walk ride

Table 3.2: some clusters in the affinity propagation clustering results



Chapter 4

Representation of Sense

Dimensions in Word

Embeddings

4.1 Models used

In this work, we used pre-trained models provided by ELMo, Flair and BERT.

We experimented on several ELMo model: model with 2 layers of bidirectional

LSTM with a hidden state size of 1028 and an output projection size of 128;

model with 2 layers of bidirectional LSTM with a hidden state size of 2048

and an output projection size of 256; model with 2 layers of bidirectional

LSTM with a hidden state size of 4096 and an output projection size of

512 [36]. The resulting output embedding size is twice of the output size

23
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since the output of forward-direction network and backward-direction are

stacked to form the final output embedding, resulting in word embedding

dimensions of 256, 512 and 1024. Since the output of ELMo model is a linear

combination of three states in the neural network states and our experiments

did not contain a downstream task to tune the combination, we tested the

output of given by the three states separately and the average of three states

output. The three states are the output of the convolutional network, the

output of the first LSTM layer and the output of the second LSTM layer.

All of the ELMo models were trained on 1 Billion Word Language Model

Benchmark which contains approximately 800M tokens crawled from news

data [36, 16].

BERT models with embedding dimension of 768 and 1024 were investigated.

The first model has 12 transformer layers with a hidden dimension of 768, and

attention head size of 12 and second has 24 transformer layers with a hidden

size of 1024 and attention head size of 16 [1]. Both models were trained on

Wikipedia (2.5B words) with BookCorpus (800M words) over a long time

with 1M update steps [1, 52]. In this work, we used the output of the second

to the last layer as the output embedding.

Flair models with dimension size of 2048 and 4096 were included in this
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work as well. Both were trained on a 1-billion word corpus [4] with both

being one layer bidirectional LSTM model.

4.2 Datasets

Datasets used in the experiments include SemCor [27] and SCWS [16]. SemCor

is a semantically annotated corpus where the tokens in the corpus were

manually annotated with WordNet 1.6 senses [11]. SemCor corpus consists

of 352 texts from English Brown Corpus [14], containing 360,000 words with

over 200,000 annotated [27]. SCWS is a dataset that contains 2003 word

pairs along with their sentential contexts and human ratings on paired word

similarities [16].

4.3 Methods

Several intrinsic tests have been applied to the embeddings. Given dataset

SemCor [27], embeddings are generated and grouped according to their tagged

senses. The average embeddings of a group is treated as the center of the

group. Then the average of the average Normalized Euclidean Distance

between every word pair in each group were measured, along with the average

Normalized Euclidean Distance between every word pair of the centers. Also,
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the average of the average cosine similarity score between every word-pair

within each group and the average cosine similarity is calculated between

every word pair of the center embeddings. This test is designed to measure

the within-group distance and between-group distance of embedding models,

relating to the distribution of embeddings depending on sense information

learned by the model.

By using the dataset of SCWS [16], similarity evaluation is applied to the

word embeddings where a Spearman rank-order correlation coefficient was

calculated between cosine similarities of word embeddings and human ratings

given by the dataset. The goal of this test to evaluate word embeddings

capability of capturing sense relationships.

4.4 Algorithm based on PCA

Given embedding groups classified by their senses, we believe that with

the large dimension size, not all dimensions are equally important in their

word sense information representation. This PCA approach is inspired by

the paper ”All-but-the-Top: Simple and Effective Postprocessing for Word

Representations” as an idea was brought up in the paper that the word

embeddings are not zero-mean and they usually contain commmon components
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which were extracted using PCA approaches [28]. As a result, we tried an

algorithm based on PCA where for each sense group, the average mean is

first calculated and subtracted from the sense group. Then the top d+2

PCA components are extracted with d being a set parameter. The algorithm

finishes by adding the projected components to the average of the sense group

and output the vector. The evaluation methods that we applied to the PCA

algorithm is similar to the one that will be mentioned in the evaluation of our

last algorithm. Basically, each sense group center is calculated by averaging

post-processed vectors. Then the cosine similarity between pair-wise sense

centers are compared with the path similarity of word senses provided by

WordNet using Spearman’s rank correlation test. The result of the correlation

test is illustrated in Table 4.1. As shown in the table, although the correlation

score increased by 3 ELMo models with a dimension size of 512, there failed

to show a general performance improvement in all the models. Thus, we

decided to take a more experimental approach by having the machine to try

different combinations of dimensions in testing which ones have a more crucial

role in the sense groups.
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Algorithm 1 PCA for extracting common elements in sense groups

Input Given Sense Group S, embeddings v(w),{w,w ∈S}, and threshold
parameter d.
calculate the mean vector.
µ← 1

|S|
∑

w∈S v(w), ṽ(w)← v(w)− µ
Step 1: Compute the top d+1 PCA components
Step 2: Get the common embedding
v′(w)← µ+

∑d
i=1(u

T
i ṽ(w)ui)

Output v′(w)

Model Dim Out ρPCA ρmean ∆ρ

BERT 768 -2 0.56530 0.591308 -0.026008
BERT 1024 -2 0.40665 0.475711 -0.069061
ELMo 256 0 0.55436 0.608066 -0.053706
ELMo 256 1 0.64007 0.633749 0.006321
ELMo 256 2 0.68201 0.652321 0.029689
ELMo 256 av 0.64918 0.635427 0.013753
ELMo 512 0 0.59265 0.644203 -0.051553
ELMo 512 1 0.73306 0.597286 0.135774
ELMo 512 2 0.74948 0.671543 0.077937
ELMo 512 av 0.72212 0.64714 0.07498
ELMo 1024 0 0.60177 0.672977 -0.071207
ELMo 1024 1 0.62365 0.686678 -0.063028
ELMo 1024 2 0.69659 0.721001 -0.024411
ELMo 1024 av 0.61454 0.699179 -0.084639

Table 4.1: Spearman’s Correlation Coefficient for PCA algorithm: Dim is
the embedding dimension; Out is the output layer; ρPCA is the correlation
coefficient for embedding sense group centers after PCA algorithm is applied
with the sense relationships; ρmean is the correlation coefficient for the original
embedding sense group centers with the sense relationships; ∆ρ is the difference
between ρPCA and ρmean (∆ρ = ρPCA − ρmean).
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4.4.1 Our Algorithm

Based on the assumption that with a large dimension size as 1000, not every

embedding dimension plays a role in contributing to each sense group. Here we

propose a new method for determining the importance of specific dimension

in determining senses in word embeddings by introducing a new algorithm

for learning the significance of each dimension in word embeddings. Given

the sense groups obtained from the SemCor dataset, the objective function in

this algorithm is to maximize the average cosine similarity between all the

word pairs in each sense group. At first, a weight matrix with the dimension

of word embedding is initialized for each sense. Each dimension of this weight

matrix represents the importance of a specific dimension to the sense. Later

on, the weight matrices are put into training by the objective function defined.

During the training procedures, a mask matrix is generated with parameter

N dimensions to be masked. Then the mask matrix is applied to the weight

matrix, and the average cosine similarity of each group gets calculated. The

gradient of the algorithm is defined to be the difference between the current

similarity score and the previous similarity score times the masked dimensions.

The weight matrix is updated during training with the gradient and learning

rate.
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The generation of the mask matrix involves two phases. In the first phase,

the algorithm randomly generates N positions to be masked to ensure enough

dimensions have been covered. After a certain number of epochs, the training

enters a second phase where an exploration-exploitation policy is employed.

The policy states that there is a chance of for the N numbers to be randomly

generated and for the rest of the 1 - α chance, N numbers are randomly

generated based on a weight which is the negated and normalized weight

matrix. This policy results in the situation that the dimensions with higher

wight have a smaller chance of getting masked. Also, l1 regularization is

applied to the gradient to encourage feature selection, and Adagrad algorithm

is used to advance convergence. Pseudo-code for the proposed algorithm

is demonstrated below, where n is the determined number of epochs for

exploration, λ the parameter for l1 regularization and ε a small number to

prevent zero denominator in Adagrad.

After the weights are learned for word embedding dimensions, we pick out

the ones with low importance and test if the rest of the dimensions are enough

to represent the sense group. Therefore, the remaining dimensions of the

word embedding should be the mere parts in the group of word embeddings

for representing that certain word sense. We propose to use the mean of
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the vectors with remaining dimensions of the same sense group as the sense

vector of that group.

Algorithm 2 algorithm for learning dimension weights

for each sense group SG do
initialize weights w, learning rate γ0, Adagrad weights matrix gti
initialize Spre ←

∑
vi,vj∈SG,i 6=j Cosine(vi, vj)

for each epoch i do
if i < n then

randomly generate N
N1, · · · , NN

else
generate N numbers according to explore-exploitation policy
N1, · · · , NN

end if
mask arrays on dimensions N1, · · · , NN

Scur ←
∑

vi,vj∈SG,i6=j Cosine(vi, vj)

grad = (Spre − Scur) ∗ (w − 1)− λ ∗ sign(w)
gti += grad2

w ← w + grad ∗ γi
ε+
√
gti

end for
end for
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Chapter 5

Test and Evaluation

5.1 Test Results

After the normalized Euclidean distances and cosine similarities were evalu-

ated on word embedding groups sorted by word senses of the SemCor corpus,

a relative distance was calculated by dividing the average within-group Eu-

clidean distance by the average between-group Euclidean distance and a

relative similarity by dividing the average within-group Cosine similarity

score by the average between-group cosine similarity score. The results for

the relative distances of ELMo models are shown in figure 5.1a and it can

be noticed that the closer the output layer is to the input layer, the smaller

relative distance the embedding groups have. Similarly, figure 5.1b presents

the relative similarity score of Elmo models, where the closer the output

layer is to the input layer, the larger similarity score the embedding groups
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have. Figure 5.1c shows the Spearman Rank-Order Correlation Coefficient ρ

for the SCWS dataset. The result adheres to the last result that the layer

closer to the input layer has a better performance, except that ELMo model

(1024) has a slightly small coefficient in the first layer than the second with a

difference less than 0.0005. In addition, the performance is better in this test

for embeddings with an increasing dimension size.

Figure 5.2 demonstrates the relative Euclidean distance and relative

similarity on SemCor corpus with the correlation test on SCWS dataset

results for the two BERT models. The BERT models displayed an interesting

pattern where they have a higher within-group distance than between-group

distance with a relative distance value bigger than 1 and a lower within-group

similarity than between-group cosine similarity with a relative similarity value

smaller than 1.

Table 5.1 contains all the test results for Euclidean distances and cosine

similarities on SemCor corpus, and Spearman correlation coefficients on SCWS

dataset. Despite the larger within-group distance than between-group distance,

both BERT models still outperformed the FLAIR models in the coefficient

test and BERT model with a dimension of 768 ranks 6 in the coefficient test.

One possible explanation is that with the attention mechanism of Bert, as
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each word embedding is highly contextualized, there is a higher chance of

learning sense relation information than sense discriminating information.

Also, contrary to a performance increase in the other two models with rise

of dimension size in the coefficient task, BERT resulted in a decrease of the

correlation coefficient. However, since only two models of BERT are tested

here, more tests need to be done to come to an see if increasing embedding

dimension results in increasing noises in the BERT embedding.
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(a) Relative average distances on Sem-
Cor Sense Groups for ELMo models.
Relative average distance is calculated
by average within-group Euclidean
distance divided by average between-
group Euclidean distance.

(b) Relative cosine similarity scores
on SemCor Sense Groups for ELMo
models. Relative cosine similarity is
calculated by average within-group
similarity score divided by average
between-group similarity score.

(c) Correlation test for correlation coeffi-
cient ρ on SCWS dataset for ELMo mod-
els
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Figure 5.2: Relative average distance, relative average similarity on SemCor
Sense Groups and correlation test for correlation coefficient ρ on SCWS
dataset
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Model Dim Out Ave Dis C Dis Ave Cos C Cos ρSCWS

BERT 768 -2 34.3856 19.30123 0.497062 0.683877 0.647989

BERT 1024 -2 39.74155 21.47615 0.58236 0.864297 0.594294

ELMo 256 0 10.20746 17.06137 0.596261 0.058296 0.647328

ELMo 256 1 17.01257 15.38437 0.511956 0.283216 0.63676

ELMo 256 2 18.35877 12.79827 0.451013 0.429331 0.560226

ELMo 256 av 17.06634 14.2695 0.493568 0.341095 0.62173

ELMo 512 0 13.58388 23.34382 0.595626 0.0423 0.670698

ELMo 512 1 24.3524 20.71935 0.541471 0.439504 0.646561

ELMo 512 2 26.29227 17.36125 0.440618 0.463392 0.586672

ELMo 512 av 24.49851 19.42738 0.493186 0.403634 0.650462

ELMo 1024 0 18.40521 31.8018 0.592719 0.035835 0.679799

ELMo 1024 1 34.63281 27.59308 0.478008 0.356505 0.680234

ELMo 1024 2 37.62374 23.28052 0.39284 0.421985 0.601395

ELMo 1024 av 34.65655 26.45345 0.454141 0.347544 0.67123

Flair 2048 -1 49.67542 38.48288 0.559736 0.508835 0.555379

Flair 4096 -1 71.76762 52.52496 0.433499 0.332308 0.498259

Table 5.1: Test results with model, embedding dimension size (Dim), output
layer (Out), average of group average pair-wise Normalized Euclidean Distance
(Ave Dis), average of pair-wise center vector Euclidean Distance (C Dis),
Average of group average pair-wise cosine similarity (Ave Cos), average of
pair-wise center vector cosine similarity (C Cos) and Spearman’s coefficient
on SCWS dataset (ρSCWS)

5.2 Evaluation of Algorithm

Figure 5.3 and figure 5.4 are examples generated by visualizing the dimension

weights for sense “obtain.v.01”, which has a definition of “come into possession
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of”, and sense “have.v.01”, which has a meaning of “have or possess, whether

in concrete or abstract way”, after applying our algorithm on the ELMo

model with a dimension of 512, using the second layer as the output layer.

As shown in the graph, the value of dimensions varies with some dropped

to 0. The values of dimension weights can be interpreted as the value of

that certain dimension in representing the current sense “obtain.v.01”. The

red line in the graph is the threshold where every dimension with weights

below the threshold will be masked out, which is set to 0.6 here. Figure 5.3

and figure 5.6 show the mean word embedding of sense group “obtain.v.01”

and “have.v.01” with orange dots representing the dimensions that have been

masked out to 0.

Figure 5.7 and figure 5.7 are graphs based on the ELMo embedding model

with a dimension size of 512 and the third network layer as the output layer.

Figure 5.7 is a graph of 20 selected sense groups with 100 embeddings each.

Figure 5.8 is a graph of 20 selected sense groups with 100 embeddings each

and the dimensions of the embedddings with a weight value smaller than

0.5 is masked to 0. Both of the two figures are being projected from 512

dimensions to 2 dimensions using Linear Discriminant Analysis. It can be

seen that taken into account of the scale size, the clusters generated after
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Figure 5.3: Dimension weights visualization for sense group“obtain.v.01” in
ELMo embeddings (512 dimensions and second output layer)

Figure 5.4: Dimension weights visualization for sense group “have.v.01” in
ELMo embeddings (512 dimensions and second output layer)



40

Figure 5.5: mean embedding of sense group “obtain.v.01” in ELMo embed-
dings (512 dimensions and second output layer) with orange dots representing
the dimension values masked out to 0

Figure 5.6: mean embedding of sense group “have.v.01” in ELMo embeddings
(512 dimensions and second output layer) with orange dots representing the
dimension values masked out to 0
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dimensions are masked out are of a smaller distance than the original ones.

Although the original embeddings show a large distance between three main

cluster of clusters, the processed embeddings demonstrated a better separation

of cluster groups when the original one generates a cluster group where all

clusters are interlaced with each other.

To evaluate the quality of weights learned by our algorithm, we masked

out dimensions of embeddings with relatively low weight value in sense groups

and performed the following evaluations to compare with the unmasked

embeddings: pair-wise cosine similarity within each sense group and the

Spearman’s Rank-Order Correlation Coefficient ρ between the cosine similarity

of sense vectors extracted and path similarity scores provided by WordNet.

The path similarity score is based on the shortest path that connects the senses

based on a hypernym/hyponym relationship [11]. The mean embeddings of

each sense group are extracted as the sense embeddings and a number of

thresholds for weights were tested to find an optimum threshold for masking

dimensions. Table 5.2 contains the results of embedding weights trained after

1000 epochs with the average number of dimensions that get masked out in

sense groups and evaluation scores for unmasked and masked embeddings in

correlation test and cosine similarity test. As can be seen in the table 5.2,
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Figure 5.7: Graph of 20 selected sense groups with 100 embeddings each for
embedding model of ELMo and a dimension size of 512 (third output layer).
The projection of dimensions from 512 to 2 is done by Linear Discriminant
Analysis.

Figure 5.8: Graph of 20 selected sense groups with 100 embeddings each
for embedding model of ELMo and a dimension size of 512 (third output
layer) with dimensions with a weight smaller than 0.5 being masked to 0.
The projection of dimensions from 512 to 2 is done by Linear Discriminant
Analysis.
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after masking out the dimensions, the cosine similarity and sense vector

correlation did not vary much, and some of the scores increase, which proves

that the embedding dimensions that are masked out do not contribute to the

representation of the sense groups.

From table 5.2, it can be noticed that for certain models such as ELMo

(second output layer) and Flair model, with the insignificant embedding

dimensions masked out, the model sense group shows a better ability for

representing the sense relationships. For instance, the correlation coefficient

ρ increased from 0.266 to 0.369 in ELMo model with 256 dimension size

(average embedding) after an average number of 199 dimensions get masked

to 0 throughout the sense groups. Even if the dimension mask does not

increase the word sense correlations, the correlation performances were not

significantly influenced. This result proves our assumption that there are

some dimensions in the embeddings that are negligible in representing senses,

which applies to all word embedding models and verifies that our algorithm

does learn the importance of different dimensions in sense groups. Overall,

we can also see that the average cosine similarity within sense groups increase

significantly after the dimensions are masked out for all the embedding models,

which in addition proves that our algorithm is guided to learn the dimension
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weights based on the objective function given. Taking a more detailed look

at each embedding models, we can conclude that in both BERT models,

over 100 dimensions can be masked out without substantially influencing the

performance of both tasks. For the ELMo models, the number of embeddings

that we can discard increases with the dimension size and with the distance

of the output layer to the input layer. One other thing to notice is that the

number of dimensions able to be masked out in the second output layer for

ELMo models is approximate over half of the embedding size. This result

also corresponds to our result from the preliminary test where ELMo model

output layers performances were ranked 1 > 2 > 3, while in this test, the

dimension numbers to be masked out are ranked as follows: 3 > 2 > 1. The

more dimensions which can be masked out means that more insignificant

dimensions exit in layer 3 than layer 2, thus creating more noise in the tests

in the last section. In general, BERT models have less embedding dimensions

to be masked out than ELMo and Flair models.

Another pattern that we notice in the experiment results is that the verb

sense groups tend to have less number of dimensions getting masked out. Less

trivial dimensions could be caused by the fact that verb sense groups have

more possible forms of words belonging to the same group. Table 5.3 contains
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Model Dim Out Dimmasked ρunmasked ρmasked cosunmasked cosmasked

BERT 768 -2 125 0.26814 0.26286 0.4971 0.5187
BERT 1024 -2 146 0.27423 0.26575 0.5811 0.5983
ELMo 256 0 95 0.12016 0.16017 0.5959 0.6134
ELMo 256 1 105 0.30903 0.37377 0.5119 0.5787
ELMo 256 2 218 0.2852 0.3042 0.4507 0.6914
ELMo 256 av 199 0.26553 0.36945 0.4932 0.6729
ELMo 512 0 136 0.17058 0.17336 0.5957 0.6051
ELMo 512 1 181 0.27967 0.25318 0.5414 0.5908
ELMo 512 2 281 0.29577 0.36943 0.4404 0.5346
ELMo 512 av 207 0.2949 0.30047 0.4930 0.5470
ELMo 1024 0 179 0.18504 0.17263 0.5930 0.5945
ELMo 1024 1 198 0.30897 0.30175 0.4783 0.4971
ELMo 1024 2 608 0.28406 0.30675 0.3927 0.4915
ELMo 1024 av 406 0.28331 0.27204 0.4542 0.5086
Flair 2048 -1 670 0.24891 0.28516 0.5560 0.6084

Table 5.2: Cosine similarity and correlation test results for unmasked and
masked word embeddings: embedding model (Model), dimension size (Dim),
output layer (Out), the average number of dimensions that are masked to zero
in embedding sense groups (Dimmasked), the correlation coefficient of original
embedding sense group centers and sense relations (ρunmasked), the correlation
coefficient of embedding sense group centers with dimensions masked to 0
(ρmasked), the average within-group cosine similarity for the original embed-
dings (cosunmasked) and the average within-group cosine similarity after the
dimensions are masked out (cosunmasked).
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Model Dim Out Sense Nmasked Sense Nmasked Sense Nmasked

BERT 768 -2 ask.v.01 75 three.s.01 208 man.n.01 58
BERT 1024 -2 ask.v.01 40 three.s.01 211 man.n.01 116
ELMo 256 0 ask.v.01 78 three.s.01 182 man.n.01 242
ELMo 256 1 ask.v.01 78 three.s.01 99 man.n.01 212
ELMo 256 2 ask.v.01 241 three.s.01 243 man.n.01 212
ELMo 256 av ask.v.01 155 three.s.01 120 man.n.01 227
ELMo 512 0 ask.v.01 103 three.s.01 28 man.n.01 295
ELMo 512 1 ask.v.01 144 three.s.01 105 man.n.01 156
ELMo 512 2 ask.v.01 334 three.s.01 300 man.n.01 311
ELMo 512 av ask.v.01 205 three.s.01 122 man.n.01 317
ELMo 1024 0 ask.v.01 174 three.s.01 44 man.n.01 331
ELMo 1024 1 ask.v.01 60 three.s.01 106 man.n.01 220
ELMo 1024 2 ask.v.01 568 three.s.01 827 man.n.01 708
ELMo 1024 av ask.v.01 181 three.s.01 351 man.n.01 426
Flair 2048 -1 ask.v.01 193 three.s.01 862 man.n.01 1883

Table 5.3: embedding models with specific word embedding sense groups
(Sense) and the embedding dimension numbers masked out in according
groups (Nmasked): “ask.v.01” is a verb word sense with a meaning of “inquire
about”; “three.s.01” is an adjective word sense with a meaning of “being one
more than two”; “man.n.01” is a noun word sense with a meaning of “an
adult person who is male (as opposed to a woman)” [11].

the number of dimensions that get discarded with some of the common sense

groups. The sense ”ask.v.01” in the table has a definition of ”inquire about”

and have some possible forms including ”ask”, ”inquire” and ”enquire”.
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Chapter 6

Conclusion

This paper demonstrates a novel approach to word embedding interpreta-

tion. Mainly focused on context-based word embeddings ability to distinguish

and learn relationships in word senses, we first approached the subjective by

conducting analysis on the pre-trained word embeddings in their distribution

given sense groups. The second part of this study proposes an algorithm

for learning and visualizing the importance of dimension weights in sense

groups. After training the weights for word dimensions, the dimensions with

a less importance were masked out and tested using two evaluations. A

conclusion can be drawn from the results that there are some dimensions that

do not contribute to the representation of sense groups and our algorithm

can distinguish the importance of dimensions.
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6.1 Limitation and Future Work

There are several limitations to this work. First, for the evaluation of the sense

vectors, the path similarity provided by the WordNet [11] may not be the

best to fit human judgements. Second, the current tests were limited by the

dataset corpus we used. For future works, the algorithm can be extended to

the extraction of sense vectors although currently the number of sense vectors

generated are constrained by the size of the annotated corpus. Also, the

applications of the algorithm can theoretically be applied to other grouped

embeddings where words may be grouped by topics and concepts, which

would require more explorations and fine tunings from the current model.
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Imparting interpretability to word embeddings. CoRR, abs/1807.07279,

2018. URL http://arxiv.org/abs/1807.07279.

[21] Thomas K. Landauer. A solution to plato ’ s problem : The latent

semantic analysis theory of acquisition , induction , and representation

of knowledge. 1997.



54

[22] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by

non-negative matrix factorization. Nature, 401:788–791, 1999.

[23] Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. Topical

word embeddings. In Proceedings of the Twenty-Ninth AAAI Confer-

ence on Artificial Intelligence, AAAI’15, pages 2418–2424. AAAI Press,

2015. ISBN 0-262-51129-0. URL http://dl.acm.org/citation.cfm?

id=2886521.2886657.

[24] Hongyin Luo, Zhiyuan Liu, Huan-Bo Luan, and Maosong Sun. Online

learning of interpretable word embeddings. In EMNLP, 2015.

[25] Oren Melamud, David McClosky, Siddharth Patwardhan, and Mohit

Bansal. The role of context types and dimensionality in learning word

embeddings. CoRR, abs/1601.00893, 2016. URL http://arxiv.org/

abs/1601.00893.

[26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey

Dean. Distributed representations of words and phrases and their compo-

sitionality. CoRR, abs/1310.4546, 2013. URL http://arxiv.org/abs/

1310.4546.

[27] George A. Miller, Martin Chodorow, Shari Landes, Claudia Leacock, and



55

Robert G. Thomas. Using a semantic concordance for sense identification.

In HLT, 1994.

[28] Jiaqi Mu, Suma Bhat, and Pramod Viswanath. All-but-the-top: Sim-

ple and effective postprocessing for word representations. CoRR,

abs/1702.01417, 2017. URL http://arxiv.org/abs/1702.01417.

[29] Brian Murphy, Partha Talukdar, and Tom Mitchell. Learning effective

and interpretable semantic models using non-negative sparse embedding.

In Proceedings of COLING 2012, pages 1933–1950. The COLING 2012

Organizing Committee, 2012. URL http://aclweb.org/anthology/

C12-1118.

[30] Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic

construction, evaluation and application of a wide-coverage multilingual

semantic network. Artif. Intell., 193:217–250, December 2012. ISSN

0004-3702. doi: 10.1016/j.artint.2012.07.001. URL http://dx.doi.org/

10.1016/j.artint.2012.07.001.

[31] Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew

McCallum. Efficient non-parametric estimation of multiple embeddings



56

per word in vector space. CoRR, abs/1504.06654, 2015. URL http:

//arxiv.org/abs/1504.06654.

[32] Dai Quoc Nguyen, Dat Quoc Nguyen, Ashutosh Modi, Stefan Thater,

and Manfred Pinkal. A mixture model for learning multi-sense word

embeddings. In Proceedings of the 6th Joint Conference on Lexical

and Computational Semantics (*SEM 2017), pages 121–127, Vancou-

ver, Canada, August 2017. Association for Computational Linguistics.

doi: 10.18653/v1/S17-1015. URL http://www.aclweb.org/anthology/

S17-1015.

[33] Sungjoon Park, JinYeong Bak, and Alice Oh. Rotated word vec-

tor representations and their interpretability. In Proceedings of the

2017 Conference on Empirical Methods in Natural Language Process-

ing, pages 401–411, Copenhagen, Denmark, September 2017. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/D17-1041. URL

http://www.aclweb.org/anthology/D17-1041.

[34] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:

Global vectors for word representation. In Empirical Methods in Natural



57

Language Processing (EMNLP), pages 1532–1543, 2014. URL http:

//www.aclweb.org/anthology/D14-1162.

[35] Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell

Power. Semi-supervised sequence tagging with bidirectional language

models. CoRR, abs/1705.00108, 2017. URL http://arxiv.org/abs/

1705.00108.

[36] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,

Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contex-

tualized word representations. CoRR, abs/1802.05365, 2018. URL

http://arxiv.org/abs/1802.05365.

[37] Mohammad Taher Pilehvar and Nigel Collier. De-conflated semantic

representations. CoRR, abs/1608.01961, 2016. URL http://arxiv.org/

abs/1608.01961.

[38] Mohammad Taher Pilehvar and Roberto Navigli. From senses to texts:

An all-in-one graph-based approach for measuring semantic similarity.

Artif. Intell., 228:95–128, 2015.

[39] Joseph Reisinger and Raymond J. Mooney. Multi-prototype vector-space

models of word meaning. In Human Language Technologies: The 2010



58

Annual Conference of the North American Chapter of the Association for

Computational Linguistics, pages 109–117. Association for Computational

Linguistics, 2010. URL http://aclweb.org/anthology/N10-1013.

[40] Anna Rogers, Shashwath Hosur Ananthakrishna, and Anna Rumshisky.

What’s in your embedding, and how it predicts task performance. In

Proceedings of the 27th International Conference on Computational Lin-

guistics, pages 2690–2703, Santa Fe, New Mexico, USA, August 2018.

Association for Computational Linguistics. URL http://www.aclweb.

org/anthology/C18-1228.

[41] Sascha Rothe and Hinrich Schütze. Autoextend: Extending word embed-

dings to embeddings for synsets and lexemes. In Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and

the 7th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pages 1793–1803, Beijing, China, July 2015.

Association for Computational Linguistics. doi: 10.3115/v1/P15-1173.

URL http://www.aclweb.org/anthology/P15-1173.

[42] Hinrich Schütze. Automatic word sense discrimination. Comput.



59

Linguist., 24(1):97–123, March 1998. ISSN 0891-2017. URL http:

//dl.acm.org/citation.cfm?id=972719.972724.

[43] Jamin Shin, Andrea Madotto, and Pascale Fung. Interpreting word

embeddings with eigenvector analysis. 2018.

[44] Anders Søgaard. Evaluating word embeddings with fmri and eye-

tracking. In Proceedings of the 1st Workshop on Evaluating Vector-

Space Representations for NLP, pages 116–121. Association for Com-

putational Linguistics, 2016. doi: 10.18653/v1/W16-2521. URL

http://aclweb.org/anthology/W16-2521.

[45] Anant Subramanian, Danish Pruthi, Harsh Jhamtani, Taylor Berg-

Kirkpatrick, and Eduard H. Hovy. SPINE: sparse interpretable neural

embeddings. CoRR, abs/1711.08792, 2017. URL http://arxiv.org/

abs/1711.08792.

[46] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi

Choudhury, and Michael Gamon. Representing text for joint embedding

of text and knowledge bases. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, pages 1499–1509.



60

Association for Computational Linguistics, 2015. doi: 10.18653/v1/

D15-1174. URL http://aclweb.org/anthology/D15-1174.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. CoRR, abs/1706.03762, 2017. URL http://arxiv.org/

abs/1706.03762.
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