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Abstract 

 

Development and Evaluation of External and Internal Methods for Assessing Exposures to 

Traffic Related Air Pollution 

By Donghai Liang 

Introduction  

 

Short- and long-term exposures to traffic pollution have been linked to numerous adverse health 

endpoints. While various approaches have been proposed to model traffic exposures and 

corresponding health response, few have systematically examined how well these approaches 

reflect actual and biologically-relevant exposures along a complete emissions-to-dose pathway.  

The overarching goal of this dissertation is to develop and evaluate external and internal methods 

for assessing exposures to traffic related air pollution (TRAP). To achieve this goal, two large 

prospective panel-studies were conducted.  In the first study, the Dorm Room Inhalation to Vehicle 

Emissions (DRIVE) study, I examined spatiotemporal variability trends and assessed the potential 

for bias and errors when using a roadside monitor as a primary traffic pollution exposure surrogate, 

in lieu of more spatially-refined, proximal exposure indicators (Aim1). Using data from the 

DRIVE study, I also examined the feasibility of using high-resolution metabolomics (HRM) as means 

of assessing internal exposures, through the identification of traffic pollution-related metabolites 

(Aim 2). Finally, in the second study, the Atlanta Commuters Exposure (ACE-2) study, I applied 

high-resolution environmental metabolomics to examine and develop metabolic signals that are 

most predictive of TRAP exposure or the corresponding effects, and to investigate the potential 

effect modification of asthma on modifying the metabolic responses to TRAP exposures (Aim 3). 

Methods  

For Aim 1, I measured several single TRAP indicators with high spatial and temporal resolution 

at six indoor and outdoor sites ranging from 0.01 to 2.3 km away from a major highway artery. I 

examined spatiotemporal variability trends of these TRAP indicators and estimated errors when 

using a roadside monitor as a primary traffic pollution exposure surrogate for use in epidemiologic 

studies. For Aim 2, 54 students living in dormitories either near (20 m) or far (1.4 km) from the 

highway conducted personal sampling and contributed bio samples (plasma and saliva) during the 

DRIVE study. Untargeted HRM were used to identify potential metabolic pathways associated 

with traffic-related air pollutants in the panel. For Aim 3, we conducted extensive exposure 

assessment on 27 air pollutants during each commute session and conducted high-resolution 

metabolomics profiling on blood samples from the commuters prior to and after the commute in 

ACE-2 study. I further evaluated metabolite and metabolic pathway alternations using an 

untargeted metabolome-wide association study (MWAS) framework with pathway analyses and 

chemical annotation. 

Results  

In Aim 1, Pollutant levels measured during DRIVE showed a low impact of this highway hotspot 

source. Patterns of correlation among the sites also varied by pollutant and time of day. Pronounced 

attenuation of observed changes in health effects were found when using measured pollutant from 

the near-road monitor as a surrogate for true exposure, and the magnitude varied substantially over 

the course of the day. In Aim 2, I identified and verified biological perturbations associated with 

primary traffic pollutant, including arginine, histidine, γ-linolenic acid, and hypoxanthine. 



 
 

Observed response was consistent with endogenous metabolic signaling related to oxidative stress, 

inflammation, and nucleic acid damage and repair. In Aim 3, I observed significant and robust 

metabolic perturbations associated with TRAP exposure among commuters in ACE-2 study.  I 

confirmed the chemical identity of 45 unique metabolites enriched in these metabolic pathways, 

including inflammatory amino acids such as arginine, histidine, and methionine. Many of these 

molecules were not only associated with multiple TRAPs, but also responded differentially among 

asthmatic and healthy participants. 

Conclusions  

Collectively, the aims and analyses for this dissertation centered on a highly chemically-speciated 

set of external and internal measurements of traffic pollution, in a range of near road 

microenvironments. Caution should be taken when using near-road monitoring network 

observations, alone, to investigate health effects of traffic pollutants.  Using the high-resolution 

environmental metabolomics platform, we observed significant and robust metabolic perturbations 

associated with TRAP exposure in two independent panels.  I identified xenobiotic-mediated 

oxidative stress and acute inflammatory response related pathways and metabolites. These results 

motivate future studies geared towards development of metabolic markers for reflecting TRAP 

exposures, their corresponding effects, and the asthma etiology. 
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INTRODUCTION 
 

The association between ambient air pollution and excess morbidity and mortality has been well-

established over several decades (Brunekreef and Holgate 2002; Dockery et al. 1993; Kampa and Castanas 

2008; Pope III et al. 2002; Schwartz and Dockery 1992; Wilson and Spengler 1996). Traffic emissions is a 

significant source of urban air pollution and has been linked to both short-term and long-term adverse health 

effects (Kim et al. 2004; Künzli et al. 2000; Laumbach and Kipen 2012; Zmirou et al. 2004). Although 

many epidemiologic studies have found positive associations with traffic exposure, less is known about the 

specific components of traffic that impact health. Thus, improving exposure assessment to TRAP is 

particularly critical for developing more targeted regulation to better protect public health (Health Effects 

Institute 2010). Similar to other major air pollution sources, unbiased estimates of risk associated with 

traffic emissions is heavily dependent on accurately characterizing both exposure and health along a 

complete dose-to-response pathway. For primary traffic emission exposures, in particular, an added 

challenge lies in its chemical and physical heterogeneity, consisting of hundreds of different organic and 

inorganic components. While near-road monitoring offers opportunities for conducting direct 

measurements of freshly emitted traffic-related pollution, it is unclear how well these sites reflect near-road 

levels at varying proximities to the traffic source. Specifically, despite the recent progress in assessing the 

spatial representativeness of urban air quality monitoring stations (Santiago et al. 2013; Martín et al. 2015), 

questions remain regarding the comparability of spatiotemporal variability patterns of primary pollutants 

from traffic at near-road sites to those at varying distances from highways (Batterman et al. 2014b; 

Beckerman et al. 2008; Zhu et al. 2002), and whether these near-road measurements offer accurate means 

of assigning population exposures to traffic pollution. An additional concern relates to the use of outdoor 

monitors as surrogates of exposure for the general population that spends the majority (>85%) of their time 

indoors (Lim et al. 2012). Precise and accurate population exposure assignment is essential for quantifying 

and limiting measurement errors in epidemiologic studies, which stem both from the lack of spatial 
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representativeness in outdoor monitors as well as indoor-outdoor exposure discrepancies (Dionisio et al. 

2014; Zeger et al. 2000).  

Beyond the challenges involving external characterization of traffic pollution mixtures, measuring 

internal, biologically-relevant exposures and corresponding responses also remains difficult, due to the lack 

of sensitive biomarkers, individual susceptibility, impact of the pre-existing condition, and complexity of 

numerous endogenous pathways that may mediate the responses. Given their ability to conduct accurate 

assessment on both external exposure and internal responses, panel-based exposure studies have proved to 

be an effective platform to investigate the health effects of traffic pollution in humans using realistic 

exposures mixtures (Delfino et al. 2006; Delfino et al. 2008; McCreanor et al. 2007; Sarnat et al. 2012). 

Nevertheless, results from these previous panel-based studies have been inconsistent, with plausible 

findings on responses associated with inflammation and oxidative stress in some studies (Riediker et al. 

2004; Zuurbier et al. 2010) and null responses in others (Chiu et al. 2016; Wu et al. 2014), mainly due to 

the lack of robust and specific biomarkers that accurately reflect TRAP exposure or the corresponding 

effects (Rylance et al. 2013).  

Environmental metabolomics, involving the identification and quantitation of thousands of metabolites 

associated with endogenous and exogenous processes, holds promise as a powerful tool to improve internal 

exposure estimation to complex environmental mixtures (Bundy et al. 2009; Lankadurai et al. 2013; Miller 

and Jones 2014; Simpson and McKelvie 2009; Viant 2008). Analytical and scientific uncertainties in its 

application (Hines et al. 2007; Morrison et al. 2007), however, have limited its use for measuring individual 

sources, such as primary traffic pollution. Moreover, considerable questions remain concerning specific 

metabolites and pathways most predictive of TRAP exposure and the adverse responses, as well as the 

potential effect modification of pre-existing condition on modifying the responses to TRAP exposure. 

To address these knowledge gaps associated with measuring exposure and response to primary traffic 

pollution, two large prospective panel-studies were conducted. The first study, the Dorm Room Inhalation 

to Vehicle Emissions (DRIVE) study, focused on examining the spatiotemporal variability trends of 



3 
 

traditional single TRAP indicators and assessed the potential for bias and errors when using a roadside 

monitor as a primary traffic pollution exposure surrogate, in lieu of more spatially refined, proximal 

exposure indicators (Aim1). In addition, high-resolution environmental metabolomics was conducted to 

identify traffic pollution-related pathways and metabolites in the DRIVE study (Aim 2). The second study, 

the Atlanta Commuters Exposure (ACE-2) study, applied high-resolution environmental metabolomics to 

examine and develop metabolic signals that are most predictive of TRAP exposure or the corresponding 

effects, and to investigate the potential effect modification of asthma on modifying the metabolic responses 

to TRAP exposures (Aim 3).  

 

DISSERTATION AIMS 

Overarching Aim: To improve understanding of TRAP exposures and health effects using high-

dimensional external and internal data on TRAP mixtures and metabolomics. 

Aim 1 examines the spatiotemporal variability trends of traditional single TRAP indicators and assesses the 

potential for bias and errors when using a roadside monitor as a primary traffic pollution exposure surrogate, 

in lieu of more spatially refined, proximal exposure indicators. 

 

Aim 2 examines whether differences in exposures to primary traffic pollution are associated with 

corresponding metabolomics changes in a panel of human participants living at different proximity to 

congested highway. 

 

Aim 3 examines and develops metabolic signals that are most predictive of TRAP exposure or the 

corresponding effects, and investigates the potential modification of metabolic responses to TRAP 

exposures by asthma status. 
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    Collectively, the aims and analyses for this dissertation center on a highly chemically-speciated set of 

external and internal measurements of traffic pollution, in a range of near road microenvironments. The 

overarching goal will be to empirically validate the use of differing approaches for estimating primary 

traffic emission exposures. These analyses serve to clarify emission-to-exposure pathway dynamics, 

characterize the spatiotemporal variability of traditional single TRAP indicators in a changing environment, 

and examine the suitability of using near road indicators as primary traffic exposure surrogates in panel-

based and small cohort epidemiological studies. In addition, in examining the link between these metrics 

and corresponding internal metabolic profiles, I anticipate highly novel results that may lead to the 

development of new biologically based primary traffic indicators. Ultimately, the results from this 

dissertation may inform more targeted regulation of traffic related pollution with the ultimate goal of 

reducing the public health burden attributable to air pollution. 
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CHAPTER 1 

Errors associated with the use of roadside monitoring in the estimation of acute traffic 

pollutant-related health effects 

Donghai Liang, Rachel Golan, Jennifer L Moutinho, Howard H Chang, Roby Greenwald, Stefanie E 

Sarnat, Armistead Russell, Jeremy A Sarnat 
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ABSTRACT  

Near-road monitoring creates opportunities to provide direct measurement on traffic-related air 

pollutants and to better understand the changing near-road environment. However, how such observations 

represent traffic-related air pollution exposures for estimating adverse health effect in epidemiologic studies 

remains unknown. A better understanding of potential exposure measurement error when utilizing near-

road measurement is needed for the design and interpretation of the many observational studies linking 

traffic pollution and adverse health.  

The Dorm Room Inhalation to Vehicle Emission (DRIVE) study conducted near-road measurements 

of several single traffic indicators at six indoor and outdoor sites ranging from 0.01 to 2.3 km away from a 

heavily-trafficked (average annual daily traffic over 350,000) highway artery between September 2014 to 

January 2015. We examined spatiotemporal variability trends and assessed the potential for bias and errors 

when using a roadside monitor as a primary traffic pollution exposure surrogate, in lieu of more spatially-

refined, proximal exposure indicators.   

Pollutant levels measured during DRIVE showed a low impact of this highway hotspot source. Primary 

pollutant species, including NO, CO, and BC declined to near background levels by 20 to 30 m from the 

highway source. Patterns of correlation among the sites also varied by pollutant and time of day. NO2, 

specifically, exhibited spatial trends that differed from other single-pollutant primary traffic indicators. This 

finding provides some indication of limitations in the use of NO2 as a primary traffic exposure indicator in 

panel-based health effect studies. Interestingly, roadside monitoring of NO, CO, and BC tended to be more 

strongly correlated with sites, both near and far from the road, during morning rush hour periods, and more 

weakly correlated during other periods of the day. We found pronounced attenuation of observed changes 

in health effects when using measured pollutant from the near-road monitor as a surrogate for true exposure, 

and the magnitude varied substantially over the course of the day. Caution should be taken when using 

near-road monitoring network observations, alone, to investigate health effects of traffic pollutants.   

KEYWORDS 

Measurement Error; Traffic-related Air Pollution; Air Pollution Epidemiology; Pollutant Spatial 

Gradients; Acute Health Effects 
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INTRODUCTION 

Epidemiologic evidence exists linking traffic-related air pollution (TRAP) with a range of acute and 

chronic health effects, with particular concern for those living in close proximity to heavily-trafficked 

roadways (Health Effects Institute 2010; Künzli et al. 2000). The recent establishment of an EPA-supported 

near-road monitoring network, was aimed to improve assessment of exposure to primary traffic emissions 

for urban populations, especially for individuals living near highways (Batterman 2013). The 75 near-road 

monitoring sites are mostly located within 30 meters of highly-trafficked highways. 

While near-road monitoring offers opportunities for conducting direct measurements of freshly-emitted 

traffic-related pollution, it is unclear how well these sites reflect near-road levels at varying proximities to 

the traffic source. Specifically, despite the recent progress in assessing the spatial representativeness of 

urban air quality monitoring stations (Santiago et al. 2013; Martín et al. 2015), questions remain regarding 

the comparability of spatiotemporal variability patterns of primary pollutants from traffic at near-road sites 

to those at varying distances from highways (Batterman et al. 2014b; Beckerman et al. 2008; Zhu et al. 

2002), and whether these near-road measurements offer accurate means of assigning exposures to traffic 

pollution. An additional concern relates to the use of outdoor monitors as surrogates of exposure for 

population that spend the majority (>85%) of their time indoors (Lim et al. 2012). Precise and accurate 

exposure assignment is essential for quantifying and reducing measurement errors, which stem both from 

the lack of spatial representativeness in outdoor monitors as well as indoor-outdoor exposure discrepancies 

(Dionisio et al. 2014; Zeger et al. 2000).  

Epidemiologic studies utilizing panel-based and small cohort study designs have been particularly 

useful for examining short-term health effects of air pollution exposures within near-road settings, given 

their ability to measure a range of exposure and health endpoints on an individual-level (Delfino et al. 2006; 

Delfino et al. 2008; McCreanor et al. 2007; Sarnat et al. 2012). For these study designs, in particular, inter-

individual variability in mobility and activity patterns can result in varying times spent near traffic pollution 

sources. The ability to monitor study participants at closer proximities may, consequently, be especially 
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important for accurately modeling differing levels of exposure to TRAPs and reducing exposure 

misclassification. Adding to this challenge is the growing evidence that the near-road environment is 

changing rapidly (Blanchard et al. 2013a, b; Henneman et al. 2015; Vijayaraghavan et al. 2014), due mainly 

to general reductions in primary automotive emissions. Today, primary traffic source contributions, fate 

and transport dynamics, and exposure factors for primary traffic pollutants likely differ from those reported 

historically. Zhai et al. (2017), for example, estimated that mobile source PM impacts decreased by about 

30% between 2002 and 2013 in Georgia (Zhai et al. 2017), while national reductions in on road emissions 

decreased 49% (U.S. EPA).  NOx emissions decreased 51% in Georgia and 45% nationally during the same 

period. Substantial gaps exist in our understanding of how TRAPs vary in space and time in this changed 

near-road environment and whether near-road measurements can represent exposure to primary traffic 

emissions for broader population. 

To address these research gaps and more closely examine emerging trends related to characterizing 

traffic pollution exposures, we conducted the Dorm Room Inhalation to Vehicle Emissions (DRIVE) study, 

an extensive near-road field-monitoring campaign. The focus of DRIVE centered around a prominent near-

road environment in Atlanta, GA, with the goal of understanding the impact of a highway on its adjacent 

environment, and the potential implications for conducting and interpreting traffic pollution epidemiology 

for individuals living within this setting. The current analysis, specifically, assesses relationships between 

outdoor and indoor primary traffic exposure indicators within an approximate 5 km2 spatial domain. To 

address the above research gaps, we report spatiotemporal variability patterns at sites within this domain 

and present findings from a simulated panel-based epidemiologic study of individuals living in close 

proximities to these sources.  

METHODS 

The DRIVE study was conducted on and around the Georgia Institute of Technology (GIT) campus in 

Atlanta, GA, at outdoor and indoor monitoring sites adjacent to one of the most heavily trafficked highway 

arteries in the US (a section of highway, where Interstates 75 and 85 merge in a 16-lane corridor with 
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average annual daily traffic over 350,000 vehicles). Intensive field sampling was conducted from 

September 2014 to January 2015. This location was, in many ways, ideal for an examination of traffic 

emission impacts within an urban near-road domain, given our ability to conduct simultaneous 

measurements at multiple monitors at varying linear distances from this major traffic source.  

Sampling was conducted at six dedicated monitoring sites (four outdoor and two indoor) ranging from 

less than 0.01 to 2.3 km away from the highway (Figure 1.1). The main near-road sampling site (‘Roadside’ 

or RDS) consisted of a highly instrumented trailer with an inlet at a distance of 10 m from the closest 

highway center lane. Urban background outdoor pollutant concentrations away from the road were 

collected at the Southeastern Aerosol Research and Characterization (SEARCH) network at the Jefferson 

Street center monitoring site (CMS) located 2.3 km west of the highway (Hansen et al. 2006). 

Measurements from the Jefferson Street CMS have been used previously to generate population exposure 

estimates in analyses examining short-term associations between air pollution and daily morbidity (Darrow 

et al. 2008; Darrow et al. 2011; Metzger et al. 2003a; Metzger et al. 2003b; S Sarnat et al. 2008; SE Sarnat 

et al. 2008; Sarnat et al. 2010; Strickland et al. 2010; Tolbert et al. 2000) and is generally considered to be 

representative of Atlanta urban background pollutant concentrations and composition (Edgerton et al. 2005; 

Liu et al. 2005; Solomon et al. 2003). Two additional outdoor sites, along with two indoor sites, were 

located at the two student dormitories on the GIT campus: the ‘Near Dorm’, approximately 20 m west of 

the highway, and the ‘Far Dorm’, approximately 1.4 km west of the highway.   

Primary instrumentation 

 

We measured pollutants to provide information related to the particulate and gaseous composition of 

primary traffic emissions and characterize the regional pollution. The pollutants we measured included 

traditional single-species traffic-related indicators: black carbon (BC), carbon monoxide (CO), nitric oxide 

(NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), and fine particulate matter or particles with diameters 

less than 2.5 micrometers (PM2.5) (See Appendix, Table S1.1 and S2 for a complete list of measured 

pollutants). BC, CO, NO, NO2 and NOx were measured continuously or semi-continuously at each sampling 
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location. In addition to these measurements, we conducted quartz and Teflon filter-based measurements for 

particle mass integrated over 48h durations. A total of 55 instruments were deployed, providing air pollutant 

concentration data at time scales from minutes to weekly means (Appendix Table S1.1). The RDS, which 

served as the roadside reference monitor, was instrumented with the widest range of samplers as well as a 

meteorological station. The sampling height for the RDS monitoring station was 3 m off the ground, and 4 

m for the meteorological station. At the Near Dorm site, instrumentation was placed in a dorm room, which 

was used as an administrative office, situated adjacent to occupied student rooms. At the Far Dorm site, 

sampling was conducted in an unoccupied bedroom of a two-bedroom suite. Sampling equipment located 

inside each dorm were identical (Appendix Table S1.1) and a three-way valve was used to alternate 

sampling between indoor and outdoor air. The outdoor sampling inlet tube was located approximately 0.5 

m off the ground for the Near Dorm and 1.5 m off the ground for the Far Dorm. The indoor sampling inlet 

tube was raised approximately 0.25 m off the flooring for both of the dormitories. 

All field instrumentation used to measure continuous pollutant concentrations were evaluated, 

refurbished if needed, and calibrated prior to field sampling. In order to compare concurrent pollutant 

measurements across the multiple sampling sites and ensure accurate concentrations during the sampling 

period, instruments measuring the same pollutant parameters were also co-located both before and after the 

sampling period and consistently calibrated throughout the 13-week field sampling period. Final 

concentration data reported were adjusted based on the time-weighted average of the calibration curves and 

the collocated measurements. 

Data analysis 

  

We compared the traditional single-pollutant TRAP indicators, BC, CO, NO, NO2, and PM2.5, across 

the six monitoring sites: the RDS site, near dorm residence outdoor site (NRO), near dorm residence indoor 

site (NRI), far dorm residence outdoor site (FRO), far dorm residence indoor site (FRI), and the urban 

background Jefferson Street center monitoring site (CMS). We computed descriptive statistics for each of 

the traffic indicators over these six monitoring sites, on both hourly and daily temporal averaging scales. 
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We conducted additional inter-site correlation analyses examining the Spearman’s correlation between 

pollutant concentrations (24h and 1h means) measured at RDS and each of the other non-RDS sites, given 

the non-normality of the pollutant distributions. 

Assessment of TRAP spatiotemporal variability 

 

 We considered the following regression model for examining spatiotemporal variability in pollutant 

levels among the outdoor monitoring sites: 

Log (Ratiost) = β1Distancest + β2Zst + β3Distancest ∗ Zst + θt + εst                        (Eq. 1.1) 

 

where Ratiost denotes the log ratio of the pollutant concentration measured at site ′s′ during hour ′t′ to the 

pollutant concentration at the RDS site during hour ′t′. Here ′s′ indexed the three additional outdoor 

monitoring locations: NRO, FRO, and CMS. ′β1′ is the coefficient for the proximity from the monitoring 

site s to the RDS site (distance).   ′β2′ is the coefficient for factor Zst including time period of the day 

(categorical), temperature, wind speed, relative humidity, wind direction (categorical), day of the week 

(categorical) and traffic counts. These factors were included in separate models predicting the ratios for 

each pollutant. Interactions between distance from the monitoring site to the RDS site (i.e. the spatial 

gradient) and each factor, represented by ′β3′,  was also examined to quantify the effect modification by 

each factor on the distance-driven gradient on TRAPs and we scaled it into percentage decrease in outdoor 

pollutant concentration for greater physical interpretability (per 200 meters). Finally, ′θt′ is the time-

specific random intercepts used to capture potential variations in each sampling dates not explained by 

′Zst′; and εst represents residual normally-distributed random error.  

Panel study measurement error simulation 

 

 For the purpose of the current analysis aims, impact of measurement error was calculated for each 

TRAP when using the level at RDS as an error-prone surrogate of the pollutant level at other non-RDS 

sites. For each TRAP, we considered measurements at each of the non-RDS location (i.e., NRI, NRO, FRI, 

FRO, and CMS) as true exposures (measured without error), while measurements at RDS site served as the 
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exposure surrogate assigned to a hypothetical participant in an epidemiologic survey. Measurement error, 

thus, may be introduced due to the presence of pollutant spatial gradients or additional microenvironmental 

contributions not reflected within the surrogate metric. We quantified measurement error, 𝛅, as the absolute 

difference between the RDS measurements and each of the other five non-RDS sites measurements, and 

generated the following measurement error terms:  δCMS, δNRO,  δNRI, δFRO  and  δFRI . For example, 

measurement error due to the spatial difference between central monitoring site (which represents urban 

background), and near-road site (which represents traffic emission) was represented as δCMS = CMS −

RDS. Mean and variance were also calculated for these five types of measurement errors for all five TRAPs: 

BC, CO, NO, NO2, and PM2.5. 

To examine the impact of measurement error when using near-road measurements on estimating the 

health responses associated with traffic emissions within a small panel study, we used empirical health 

response estimates of a widely used biomarker, forced expiratory volume in 1 second (FEV1), which was 

associated with pre-post exposure to traffic emission in a highly cited small panel study in London 

(McCreanor et al. 2007). We averaged the percent change (health responses estimates from McCreanor et 

al. 2007) of FEV1 after exposure to TRAPs and used β = -0.41 for percent change in FEV1 per interquartile 

range (IQR) increase in each of the TRAPs for the simulation. Linear regression models were used to 

simulate FEV1: 

E(Yt) = ∝  + β1pollutioni,t+ εt        (Eq. 1.2) 

 

where  Yt is the percent change in FEV1 on day t. For each pollutant i, daily averages (24-hr average) of 

same-day concentrations were used. Percent changes in health outcomes were drawn from Gaussian 

distributions and fitted using the simulated true exposures (each of the non-RDS measurements) or the 

error-prone exposures (RDS measurements) with two linear models: one using the simulated true exposure, 

and another using the error-prone exposure. Simulations were run 1,000 times in each scenarios and impact 

of measurement error were calculated (Appendix A).  We should emphasize that for each of these simulated 

models, we view the TRAP pollutant metric as merely serving as an indicator of some component of 
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primary traffic pollution observed to be causally associated with respiratory response. For example, models 

including CO as the TRAP indicator, should not necessarily be interpreted as reflecting a true causal 

association between CO and FEV1. Rather, for this model, CO is serving as a general indicator of exposure 

to this multipollutant source.  

     Since numerous panel-based epidemiologic designs measure pollutant levels over short periods of time 

(e.g., 1h means) to assess associations involving hyper-acute biological responses (Golan et al. 2017; 

McCreanor et al. 2007; Shields et al. 2013), it is possible that exposure measurements may also be prone 

to errors over this temporal scale. Thus, we also simulated and characterized hourly-resolved impact of 

measurement error for each of the five TRAPs (Appendix A). All statistical analyses were completed in R, 

version 3.3.1 (R Foundation for Statistical Computing; http://www.r-project.org/).  

RESULTS 

Analytic time series, where valid measurements were available across the six monitoring sites, varied 

by pollutant, and ranged between 48 and 121 sampling-days (Appendix Table S1.2). Mean pollutant 

concentrations measured at the RDS site were typically elevated above the urban background level; 

however, concentrations were not as high as those reported in previous near-road field studies (Beckerman 

et al. 2008; Kozawa et al. 2009; MacNaughton et al. 2014). The key pollutant species measured at the near-

road site were NO, NO2, CO, BC, and PM2.5, with mean concentrations (standard deviation) over the entire 

study period of 20.9 (15.6) ppb, 30.3 (10.9) ppb, 0.43 (0.14) ppm, 1.9 (1.0) μg/m3, and 7.9 (2.7) μg/m3, 

respectively (Appendix Table S1.3).  

Spatial gradient analysis.  

 

With the exception of NO2 and PM2.5, all of the measured pollutants exhibited pronounced gradients of 

decreasing concentration with distance from the highway, with steepest gradients shown within the first 20 

meters (Figure 1.2, Appendix Table S1.3). We observed a mean difference of 200 ppb for CO, 0.8 µg/m3 

for BC, and 17 ppb for NOx, between the RDS and FRO sites. Conversely, NO2 spatial gradients were not 

http://www.r-project.org/
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apparent within the 1.3 km DRIVE sampling domain, with mean NO2 levels approximately 30.3 ppb at the 

RDS site and 21.6 ppb at the FRO site. There was some indication of lower mean NO2 levels at the urban 

background site (CMS), located 2.3 km from the highway, with levels averaging 14.5 ppb during DRIVE 

sampling.  

We examined diurnal concentration profiles for each pollutant at the varying sampling locations (Figure 

1.3). We observed RDS peak CO concentrations at 7 am, followed by peaks occurring slightly later in the 

morning, between 8 and 9 am, at sampling locations further away from the highway, highlighting dispersion 

and transport processes near the highway. Similar to CO, morning peak concentrations at the RDS site for 

ambient NO occurred mainly around 7 am and reached a daily maximum of about 35 ppb. Steep gradients 

were observed within 30 m of the highway in the BC concentrations at the RDS site, with 0.5 μg/m3 greater 

than all the other sites. For BC, while no spatial gradient was observed between the NRO and FRO sites, 

all sites exhibited similar diurnal profiles with a pronounced concentration peak between 7 am and 10 am, 

and another less pronounced peak during the evening.  

Inter-site Spearman’s correlations (rS) were used to examine how well temporal variability at the RDS 

site reflected corresponding variability of the pollutants at varying distances from the highway (Table 1.1). 

When assessing 24h-integrated pollutant concentrations, correlations varied considerably by distance to the 

highway and pollutant. Generally, NO2 concentrations measured at the RDS were more strongly correlated 

across the sampling domain than BC, CO, and NO, with observed Spearman’s correlations greater than 0.7 

between the RDS site and the other ambient sites for NO2. For BC, CO, and NO, we observed stronger 

correlations with the RDS site for sites closer to the RDS than for those further away (correlation of 0.6-

0.8 between RDS and NRO, and 0.3-0.5 between RDS and FRO, respectively). Hourly-resolved correlation 

analysis showed that the strengths of linear association varied markedly throughout the day (Figure 1.4). 

This was most apparent for the primary traffic pollutant NO, where correlations between RDS and all other 

sites were strong through the sampling domain during rush hour periods (6 – 10 am), but declining in 

strength (rS: 0.0 – 0.3) between 12 pm and 8 pm between RDS and FRO.  
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Spatiotemporal regression model analysis  

 

To further quantify the degree of pollutant spatial heterogeneity, including factors contributing to 

variations in the gradients, we conducted regression analyses modeling the log ratio of the pollutant 

concentration measured at all other sites to that measured at the RDS site as a function of distance to the 

RDS site (Table 1.2 and Appendix Table S1.5). We specifically examined temporal, meteorological, and 

traffic count as potential modifiers of an observed distance-driven concentration gradient. As expected, 

results show that ‘distance’ from the highway served as a robust independent predictor of the pollutant 

spatial gradient, with negative associations observed for all pollutants; here, larger estimates for percentage 

decrease indicate a more pronounced spatial gradient (or decay) in pollutant concentrations with increasing 

distance from the highway.  

Most factors we examined also served to modify pollutant spatial gradients. For example, we found 

significant modification by time of day, with the most pronounced gradients (i.e., with largest percentage 

decrease estimates) occurring during mid-day hours (10 am- 3 pm) across pollutants. Additionally, for all 

pollutants, ‘midnight’ and ‘early morning’ periods (12 am -5 am) exhibited the most gradual pollutant decay 

(i.e., with smallest percentage decrease coefficients).  

Hourly-resolved spatial gradients were further modified by wind speed and traffic count at the highway 

(Table 1.2). Interaction terms for wind speed were consistently larger than 1% for decrease in 

concentrations for all pollutants, indicating that hours with higher wind speed exhibited a stronger spatial 

decay gradient. Interaction terms between ‘distance’ and traffic count were also significant for CO spatial 

gradient (0.23% decrease in concentrations per 200 meters), showing that spatial gradients were more 

pronounced during hours with higher traffic counts (10 am- 3pm). Across pollutants, the impact of 

‘distance’ was generally strongest for NO compared to other pollutants, suggesting that NO concentrations 

exhibited stronger spatial gradients compared to the other pollutants, a finding which is consistent with the 

rapid oxidation of NO to other NOx species (e.g., NO2). 

Measurement error simulation analysis 
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We then used the empirical findings from the spatial- and temporal variability analyses to model 

potential bias that may occur when using the pollutant concentration from the RDS monitor as an exposure 

surrogate for a small panel study setting, compared to more spatially-refined, proximal exposure measures. 

Generally, we observed magnitudes of error increasing with increasing distance from the highway 

(Appendix Table S1.4), resulting in greater relative attenuation in the estimation of pre-post changes in 

FEV1 (Table 1.3). With CO as an example, we estimated that using CO at RDS as an exposure surrogate, 

in place of the assuming true NRO CO concentrations, located 20m from the highway, introduced 18.1% 

attenuation in the model effect estimates, and 49.2% attenuation in effect estimates when using RDS in lieu 

of FRO CO levels. Assuming a true effect estimate to be a -0.41% decrease in FEV1 per IQR increase in 

pollutant concentration (McCreanor et al. 2007), our observed attenuation levels when using RDS 

measurements translate to reduced FEV1 underestimated to -0.34%, -0.21%, and -0.26% for NRO, FRO, 

and CMS, respectively. This trend was consistent across all pollutant species. Further, greater attenuation 

generally existed when we assumed the indoor measurements to be the true exposures. For the models that 

account for indoor-outdoor differences due to pollutant infiltration, the magnitude of observed attenuation 

in the simulated epidemiologic models also varied by pollutant species, with less attenuation for CO and 

NO2 (34% and 49% at FRO respectively) compared to BC (68% at FRO).  

We also examined the presence and effect of hourly-resolved measurement error on observed pollution-

FEV1 associations. Results from these models have implications for panel-based epidemiologic studies 

which assess both pollutant levels and acute responses over short durations (i.e., hourly), and may be more 

susceptible to rapidly-changing errors resulting from diurnal pollutant spatiotemporal variability patterns. 

Four ambient sites were selected for this analysis, including RDS (as the reference site), NRO, FRO, and 

CMS. As shown in Figure 1.5, for these models, percent attenuation due to measurement error estimates 

were lowest during morning rush hour (8 am) at all of the sites (e.g., percent attenuation for models 

including CO was 9.2%, 18.2% and 27.1% for NRO, FRO, and CMS respectively). During other hours, in 

contrast, moderate to high attenuation was observed in the βs ( β1 in Eq. 1.2) , especially during the 
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afternoon hours (i.e. percentage attenuation = 43.8%, 77.1% and 65.6% at 4 pm for NRO, FRO, and CMS 

respectively). 

 

DISCUSSION 

We conducted the Atlanta DRIVE study, in part, to comprehensively characterize a traffic pollution 

hotspot adjacent to a residential area and assess how patterns of TRAP spatiotemporal variability may affect 

exposure assignment and health risk estimation within epidemiological study designs examining short-term 

exposure and acute response. The current analysis is particularly pertinent given the fact that in the US 

alone, more than 45 million people live, work, or attend school within 100 meters of a major road (US 

EPA), along with the recent establishment of a comprehensive US network of near-road monitors to better 

characterize this microenvironment (Batterman 2013).  

Broadly, the results from the over 2,800 hours of measurements collected during DRIVE study period 

point to complex and highly dynamic conditions within and adjacent to this near-road microenvironment, 

intersected by one of the largest and most trafficked highways in the US (Darnell 2017; Ultee 2016). Based 

on these measurements, we offer several key findings with implications for both assigning exposure and 

estimating health response associated with TRAP.  

Firstly, the measured concentrations of traditional primary traffic indicators, BC, CO, and NO, 

were low relative to historic levels. While still elevated above background levels, the impact of the highway 

on the adjacent sampling domain was less pronounced than reported in numerous prior investigations at or 

near this site (Baldasano et al. 2003; Cohan et al. 2007; Hu et al. 2010; S Sarnat et al. 2008). Moreover, 

during four months of continuous sampling, we measured pollutant concentrations decreasing rapidly with 

increasing distance from the highway. BC, CO, and NO levels all declined to near background levels within 

20 to 50 m from the highway. Spatial gradients varied substantially during the course of a day, with greater 

primary impacts from the highway occurring during morning rush hour periods. Notably, the heterogeneous 

spatial variability patterns were also reflected in varying strength of temporal correlation throughout the 
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day. Daily correlations were largely driven by morning rush hour (7 – 9 am) values, with substantially 

weaker roadside to near-road correlations occurring during other hours of the day. For NO, in particular, 

roadside concentrations were virtually uncorrelated with corresponding NO levels at many of the other sites 

between 3 and 8 pm. These are periods of higher thermally-driven turbulence and dispersion. Further, 

regression analysis found that distance from highway was a dominant explanatory variable. While neither 

of these findings is wholly unexpected, the degree of reduced correlation during the afternoon is important 

in terms of interpreting how well near-road observations reflect temporal variability patterns in other 

locations.  

The DRIVE results suggest that the spatial environment over which a near-road monitor can be 

used to assess temporal variability patterns in TRAP concentrations is limited. Thus, for epidemiological 

studies that specifically model highly resolved exposure and response, it may not be sufficient to rely on 

near-road monitoring as an exposure surrogate.  Reduced correlation may be due, in part, to site-specific 

instrument uncertainty or other unspecified pollutant contributions at a given site, but the trend to weaker 

linear associations during the afternoon for all the single-pollutant primary traffic indicators at the more 

distant monitors suggests that additional observations and/or modeling tools should be used to characterize 

pollutant dynamics over such scales if a study is relying on capturing the temporal exposure trends (Santiago 

et al. 2017; Sanchez et al. 2017). Collectively, the spatiotemporal analysis findings highlighted the changing 

impact of the highway source on the adjacent domain during the course of a day. 

A final, somewhat unexpected, key finding related to differences in the spatiotemporal behavior of 

NO2, as compared to that of other single-pollutant traffic indicators. During DRIVE sampling, NO2 levels 

did not exhibit as strong a spatial gradient as for CO and BC. Absolute NO2 concentrations were moderately 

homogeneous from the RDS site to the FRO site due, in part, to kinetic limitations in the photochemical 

reactions required to convert the NO-dominant primary NOx, emitted from automobiles, to NO2. It is 

possible that some of the stoichiometric dynamics involved are related, more broadly, to the lower primary 

traffic emissions associated with a changing near-road environment. The NO2 findings from the DRIVE 

study provide some indication that this historic traffic indicator may serve as a less useful surrogate of 
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traffic than the other primary single-pollutant indicators, NO, CO, or BC, given its divergent near-road 

spatiotemporal variability patterns. The decrease in primary NO2 associated with tailpipe emissions likely 

contribute to its reduced utility as a source indicative tracer. A detailed analysis into the role and behavior 

of NO2 within the DRIVE sampling is being conducted.  

With these findings, it is, thus, reasonable to question how well roadside monitors reflect adjacent 

pollutant concentrations within a range of near-road proximities, as well as their utility as potential exposure 

surrogates within epidemiologic studies examining health effects near busy roads. Exposure surrogates that 

are not representative of population or individual exposures may result in exposure misclassification, 

leading to biased or uncertain estimates of risk (Batterman et al. 2014a; Kioumourtzoglou et al. 2014). To 

investigate this issue, we conducted a simulation examining short-term primary traffic pollution exposure 

(i.e., daily and hourly) and acute respiratory response (i.e., changes in FEV1) modeled on the design used 

in the influential Oxford Road study (McCreanor et al. 2007). Specifically, we were interested in evaluating 

the potential impact of spatiotemporal variability in this setting and how those patterns propagate through 

a panel-based epidemiologic study.  

Broadly, we observed substantial attenuation in the observed β estimates across simulated models with 

different primary TRAPs. Importantly, attenuation was substantial even for models that assumed true 

exposure to be the concentration measured at NRO site, located only 10m from the RDS site. In each of 

these cases, we should note that the attenuation in the β’s can be interpreted as underestimated association 

of health response. For instance, a moderate attenuation in the β coefficients of 30%.means that IQR 

increases in TRAP are truly associated with a corresponding 0.29% decrement in FEV1 as compared to the 

observed 0.41% decrement. Additionally, for CO, NO, and BC, we observed that indoor environments 

exhibited greater attenuation in β compared to the corresponding outdoor environments, due to the 

variability in the infiltration of ambient air pollutants into the indoor environment and the contribution of 

indoor pollution sources. 

Our findings showing diurnal variations in roadside to near road pollutant correlations, suggest further 

that the suitability of a roadside monitor as an accurate exposure surrogate may also be contingent on the 
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timing of the measurement periods during the course of a day. Protocols that measure pollutants and health 

endpoints in varying exposure windows from day to day, may lead to the introduction of differing degrees 

of error. The trend of weaker linear associations during the afternoon for all the TRAPs at the more distant 

monitors with RDS measurements suggests that additional observations and/or modeling tools should be 

used to characterize pollutant dynamics over such scales if a study is relying on capturing the accurate 

temporal exposure trends. 

It is important to emphasize that variations in diurnal correlation patterns, however, are not necessarily 

captured when using 24h-integrated exposure metrics. As a consequence, panel studies that rely on hourly 

and sub-daily exposure metrics (McCreanor et al. 2007; Sarnat et al. 2014; Zhang et al. 2009; Ladva et al. 

2017), exhaled nitric oxide (McCreanor et al. 2007; Sarnat et al. 2014; Sarnat et al. 2012; Zhang et al. 2009), 

and heart-rate variability (de Paula Santos et al. 2005; Schwartz et al. 2005; Shields et al. 2013), may also 

be prone to measurement error due to the temporal variability of pollutant.  

Results from the hourly-resolved simulations confirm that the impact of measurement error varies 

substantially by time of day. The modeled effect estimates reflect this spatiotemporal variation between the 

highway and the adjacent site, when errors are propagated through an epidemiologic model commonly used 

in panel-based designs. During morning rush hours, when the impact of traffic sources was most 

pronounced across a relatively large spatial domain (> 1000 m), near-road measurements were more 

appropriate for reflecting levels of primary traffic across near-road environments, with relatively low 

attenuated impact on our selected health endpoints. This was not the case, however, during other periods of 

the day, when locations far away from the traffic sources would exhibited moderate to high percent 

attenuation in simulated FEV1. Thus, for panel or small cohort studies involving participants living near 

busy highways, similar to the DRIVE study participants, these findings suggest that decisions regarding 

temporal averaging time (e.g., 24h, 1h, or moving averages) may be critical for accurately modeling true 

health effect associations.  

Several inherent limitations in this analysis warrant attention. First, as with any monitoring study 

conducted within a single geographic domain, it is difficult to generalize the current findings to other near-
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road environments. Moreover, the DRIVE sampling domain is idiosyncratic in that the section of the I-75/I-

85 highways that intersect the study location, includes a higher proportion of light duty gasoline vehicles 

compared to heavy duty diesel vehicles than many highways. Additionally, the DRIVE sampling was 

conducted during a 4-month period. Meteorological factors, which will affect photochemistry-driven 

pollutant formation and other transport processes, were, correspondingly, limited to conditions and seasonal 

patterns similar to those during DRIVE field sampling. It is worth noting, however, that the sampling start 

and end dates were intentionally designed to maximize variability in meteorological conditions, and 

sampling did occur in a wide range of temperature (-2 to 26 °C), relative humidity (32% to 99%), wind 

(0.21 to 2.55 m/s), and precipitation conditions (0 to 25.4 mm/hr). In addition, the pollutant levels we 

measured during this extensive monitoring period were consistent with measurements from the US EPA’s 

near-road monitoring network pollutant trends analysis and emissions estimates (Blanchard et al. 2013a; 

EPA 2015).  

Second, although our findings may be generally applicable to domains with predominantly traffic-

related local sources, the impact of the traffic emissions was low, which is a key finding we attribute to a 

changing near-road environment. The extent of the attenuation between use of data from the near-road 

monitoring site compared to more proximal residential locations might, consequentially, vary substantially 

for regions with relatively higher traffic emissions (i.e. developing countries with rapidly growing vehicle 

fleets). In our analysis, we assumed the congested I-75/I-85 highway to be the predominant source of TRAP 

and calculated the distance from each residence site to the highway as the proximity between the exposure 

source and the contact. While contribution from local arterial sources may have masked the true gradients 

of TRAPs, the total traffic volumes at the local arterial roadways surrounding the far resident location were 

much less compared to the highway (annual average daily traffic of 6,990 and 353,700 respectively). 

Finally, for our simulated epidemiologic analyses, we only consider single pollutant as the predictor for the 

simplicity of interpretation, while inclusion of multiple pollutants, with correlated measurement error, in 

the models simultaneously might introduce additional insights (Dionisio 2016). 
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CONCLUSIONS 

 

To our knowledge, this is among the first studies to quantify the effects of measurement error due to 

spatial and temporal variation of TRAPs and examine how well a near-road monitoring site can serve as a 

proxy to estimate traffic pollutant related health effects in epidemiology studies. Pollutant levels measured 

during DRIVE showed a relatively low impact of the 16-lane interstate highway compared to historic near-

road field data. Spatial gradients of TRAPs varied substantially during the course of a day, with greater 

primary impacts from the highway occurring during morning rush hour periods. NO2, specifically, exhibited 

spatial trends that differed from other single-pollutant primary traffic indicators. This finding provides some 

indication of limitations in the use of NO2 as a primary traffic exposure indicator in panel-based health 

effect studies. We found pronounced attenuation of observed changes in health effects when using measured 

pollutant level from the near-road monitor as a surrogate for true exposure. Moreover, the extent of 

attenuation associated with increasing distance from the traffic hotspot varied across pollutant species and 

over the course of the day. Together, results from the DRIVE monitoring and simulated epidemiologic 

analyses indicate that for panel-based studies, the use of near-road measurements as surrogates of exposure 

to primary traffic pollution may result in substantial under-estimates of health response and potential risk. 

We observed this to be true for even sites located within 20 m of the highway sources and increasing with 

distance from the highway and within indoor environments. Collectively, these results provide indication 

that caution should be taken when using near-road monitoring network to investigate health effects of traffic 

pollutants in future studies.   
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CHAPTER 1 TABLES AND FIGURES 

 

Table 1.1. Inter-site Spearman’s correlations for each single traffic pollutant indicators between road site 

monitor (RDS) and each of the other non-RDS monitoring sites 

 

 

 

 

 

Acronym: RDS, Road site; NRO, Near-road residence outdoor; NRI, Near-road residence indoor; FRO, Far-road 

residence outdoor; FRI, Far-road residence indoor; CMS, Center monitoring site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 BC CO NO NO2 NOx PM2.5 

 rRDS−NRO 0.59 0.66 0.75 0.79 0.85 0.90 

 rRDS−NRI 0.52 0.67 0.53 0.72 0.80 0.65 

 rRDS−FRO 0.39 0.50 0.41 0.81 0.61 0.93 

rRDS−FRI 0.34 0.52 0.34 0.79 0.62 0.91 

 rRDS−CMS 0.64 0.48 0.55 0.70 0.64 0.94 
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Table 1.2. Effect modification by various factors on the percentage decrease in outdoor pollutant 

concentrations per 200 meters away from the near road monitoring site ^ 

 
BC CO NO NO2 

Categorical Factors#     

Time Period      

      Morning Rush Hour (6am-9am) 3.63% 6.37%* 9.08%**  4.69%  

      Mid-day (10am-3pm) 5.19%** 9.66%** 15.24%*  8.68%**  

      Evening Rush Hour (4pm-7pm) 3.63%&,** 7.64%&,** 17.12%&,**  4.71%&,**  

      Late Evening (8pm-11pm) 3.05% 6.57%* 12.50%**  3.68%**  

      Midnight & Early Morning (12am-5am) 2.63%** 5.58%** 11.13%**  3.65%**  

Wind Direction (relative to RDS site)      

      Westerly 3.78%&,** 7.73%&,** 16.59%&,**  8.70%&,**  

      Northerly 0.91%* 4.21%** 3.80%**  2.47%**  

      Easterly (towards GIT campus) 3.03% 6.15%* 10.94%**  4.02%**  

      Southerly 5.27% 8.07% 15.80%  6.60%**  

Date of Week      

      Weekday 3.30%&,** 7.11%&,** 12.46%&,**  4.67%&,**  

      Weekend 4.14%* 6.92% 15.01%**  5.64%**  

Continuous Factors## 

Temperature (per 10 F) -0.15% 0.87%** 1.77%** 1.28%**  

Relative Humidity (%) 0.06%** -0.02%* -0.05%** -0.05%**  

Wind Speed (mph) 0.54%** 1.57%** 2.87%** 1.00%**  

Traffic Counts (per 1,000) 0.18%** 0.23%** 0.12%  0.28%**  

^ Modification assessed using distance*factor product terms, with each factor tested in different models;  
# Categorical factor results present the effect of distance (per 200 meters from highway) on pollutant 

concentrations for each level of the factor; ## Continuous factor results present the interaction term parameter 

estimate;  
& Reference category showing magnitude and significance of ‘distance’ main effect (note: results for other 

levels of each category present the magnitude of the ‘distance’ effect and whether the effect is significantly 

different from the reference category); ** p-Value <0.001; * p-Value<0.05. 
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Table 1.3. Percentage of attenuation of percent change in FEV1 in a simulated panel study* (N=60) between road site monitor (RDS) and 

each of the other monitoring sites. 

Monitori

ng Sites 

Distan

ce to RDS 

(in meters) 

BC (ug/m3) 

N=39 

CO (ppm) 

N=77 

NO (ppb) 

N=77 

NO2 (ppb) 

N=77 

PM2.5
# (ug/m3) 

N=28 

Assumed true effect estimate β= -0.41 per IQR increase in pollutant concentration 

βerr

or  

%Attenua

tion 

βerr

or 

%Attenua

tion 

βerr

or 

%Attenua

tion 

βerr

or 

%Attenua

tion 

βerr

or 

%Attenua

tion 

 δNRO 10 -

0.144 

64.9% -

0.336 

18.1% -

0.351 

14.4% -

0.331 

19.2% -

0.546 

-33.3% 

δNRI 10 -

0.158 

61.5% -

0.315 

23.1% -

0.157 

61.6% -

0.401 

2.2% -

0.450 

-9.9% 

δFRO 1,390 -

0.159 

61.2% -

0.208 

49.2% -

0.271 

34.0% -

0.277 

32.5% -

0.628 

-53.2% 

δFRI  1,390 -

0.131 

68.1% -

0.215 

47.6% -

0.124 

69.9% -

0.347 

15.4% -

0.534 

-30.2% 

 δCMS 2,290 -

0.215 

47.5% -

0.266 

35.2% -

0.322 

21.5% -

0.195 

52.5% -

0.566 

-38.0% 

 

Acronym: RDS, Road site; NRO, Near-road residence outdoor; NRI, Near-road residence indoor; FRO, Far-road residence outdoor; FRI, Far-road residence 

indoor; CMS, Center monitoring site; IQR, interquartile range. 

* The small panel study was simulated based on previous field study (McCreanor et, al. 2007). Post-exposure changes in FEV1 was simulated using a single 

pollutant linear model with a percent change of -0.41 and 1.05 per interquartile range. 

# Only 48 hour integrated sampling of PM2.5 was available for RDS. A total of 28 samples were available. 
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Figure 1.1. Map of sampling locations for the DRIVE study on the campus of the Georgia Institute of Technology (GIT) in Atlanta, GA. The section 

of highways represents where Interstates 75 and 85 come together, with more than 350,000 vehicles passing by every day. Roadside site serve as a 

near-road-monitoring site and Jefferson St site was a center monitoring site that was 2.3 km away from this traffic hotspot. Two additional outdoor 

sites, along with two indoor sites, were located at the two student dormitories: ‘Near Dorm’, approximately 20 m west of the highway, and ‘Far 

Dorm’, approximately 1.4 km west of the highway.   
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Figure 1.2. Boxplots presenting the distribution of BC, CO, NO, NO2, NOx, and PM2.5 concentrations during September 8th, 2014 to January 5th, 

2015 at outdoor and indoor sampling locations, ordered in increasing distance from the highway source: (1) RDS: Near-highway stationary site 

[10m], (2) NRO: Near Dorm outside [20 m], (3) NRI: Near Dorm inside [20 m], (4) FRO: Far Dorm outside [1.4 km], (5) FRI: Far Dorm inside [1.4 

km], and (6) CMS: urban background [2.3 km]. The horizontal line within the box indicates the median, boundaries of the box indicate the 25th- and 

75th -percentile, the whiskers are the 5th and 95th percentile, and the “•” marked in the box indicates the mean. 



33 
 

 

Figure 1.3. Diurnal profile plots presenting mean hourly concentrations of BC, CO, NO, and NO2 at outdoor and indoor sites during September 8th, 

2014 to January 5th, 2015: (1) RDS: Near-highway stationary site [10m], (2) NRO: Near Dorm outside [20 m], (3) NRI: Near Dorm inside [20 m], 

(4) FRO: Far Dorm outside [1.4 km], (5) FRI: Far Dorm inside [1.4 km], and (6) CMS: urban background [2.3 km]. 

RDS (10m) NRO (20m) NRI (20m) FRO (1.4km) FRI (1.4km) CMS (2.3 km) 
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Figure 1.4. Spearman correlations (y-axis) between measurements at the RDS site and all other sites by hour of the day (x-axis). 
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Figure 1.5. Hourly percentage of attenuation of percent change in FEV1 associated with mean hourly CO level in a simulated panel study* (N=60) 

between road site monitor (RDS) and each of the other monitoring sites.  

*Hourly post-exposure changes in FEV1 was simulated using a single pollutant linear model with a percent change of -0.41 per interquartile range of CO. 
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CHAPTER 1 SUPPLEMENTAL MATERIALS 

Table S1.1.  Summary of measurements conducted at each monitoring location.  

Tier Site Pollutant Instrument Model Frequency (n=target sample #) 

 RDS CO Thermo 48i  Continuous 

Outdoor  NO-NO2 Teledyne 200A Continuous 

  PM2.5 BC Magee Scientific Aethalometer Continuous 

   PM2.5 Mass  Gravimetric Integrated (48-hr) - 2/wk 

  NRO, FRO CO Teledyne 300E Continuous 

  NO-NO2 Thermo 42C Low Source Continuous 

  PM2.5 BC microAeth AE51 Continuous 

   PM2.5 Mass Gravimetric Integrated (48-hr) - 2/wk 

  CMS CO                                                        *  Continuous 

   NO-NO2 * Continuous 

   PM2.5 BC * Continuous 

   PM2.5 Mass * Continuous 

 NRI, FRI CO Teledyne 300E Continuous 

Indoor  NO-NO2 Thermo 42C Low Source Continuous 

  PM2.5 BC microAeth AE51 Continuous 

   PM2.5 Mass Gravimetric Integrated (48-hr) - 2/wk 

 

Acronym: RDS, Road site; NRO, Near-road residence outdoor; NRI, Near-road residence indoor; FRO, Far-road residence outdoor; FRI, Far-road residence indoor; CMS, Center 

monitoring site. 

 

*Info on the instrument model used in the center monitoring site was unavailable. 
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Table S1.2. Instrumentation used at each sampling location and completeness of each data parameter. 

Sampling Site 
Distance from 

Highway 
Black Carbon 

Carbon 

Monoxide 
NO-NO2-NOx PM2.5 Mass Weather Data 

Near Highway 10 m X/O 

79%/78% 

X 

76% 

X 

93% 

O 

78% 

X 

61% 

Near Dorm 20 m X/O 

34%/94% 

X 

77% 

X 

82% 

O 

94% 

-- 

Far Dorm 1.4 km X/O 

34%/100% 

X 

66% 

X 

65% 

O 

100% 

-- 

Jefferson St. 2.3 km X 

100% 

X 

92% 

X 

92% 

-- X 

96% 

X = Continuous, completeness based on ratio of hours with valid data and total hours from Sept 8th to Jan 5th (n = 2880 hours); O = Integrated 48-hour, 

completeness based on ratio of 48-hr periods with valid data and target number of 48-hr periods during Sept 8th to Jan 5th (n = 26 periods); -- = parameter not 

measured 

 

 

 

 

 



38 
 

Table S3. Descriptive statistics of average traffic pollutant concentrations across multiple monitoring sites 

Monitoring 

Sites 

Distance to 

Highway (in 

meters) 

BC (ug/m3) CO (ppm) NO (ppb) NO2 (ppb) PM2.5
# (ug/m3) 

N=39 N=77 N=77 N=77 N=28 

Mean±SD IQR Mean±SD IQR Mean±SD IQR Mean±SD IQR Mean±SD IQR 

RDS 10 1.9±1.0 1.2 0.43±0.14 0.18 20.9±15.6 15.5 30.3±10.9 16.6 7.9±2.7# 3.4 

NRO 20 0.8±1.0 0.8 0.35±0.13 0.13 16.6±16.8 11.3 25.2±9.4 12.0 11.3±4.2 5.5 

NRI 20 0.8±0.6 0.6 0.33±0.13 0.14 7.6±8.9 5.7 29.2±15.9 19.0   9.3±4.1 5.4 

FRO 1,400 0.7±0.6 0.8 0.22±0.13 0.12 12.8±16.1 18.5 21.6±4.6 7.1 12.1±4.6 5.4 

FRI 1,400 0.6±0.5 0.7 0.21±0.13 0.12   4.6±11.8 8.3 26.4±8.2 12.3 10.4±4.4 4.4 

CMS 2,300 1.0±0.6 0.7 0.29±0.14 0.15 15.7±19.3 17.2 14.5±6.3 9.3 10.7±4.0 5.8 

 

Acronym: RDS, Road site; NRO, Near-road residence outdoor; NRI, Near-road residence indoor; FRO, Far-road residence outdoor; FRI, Far-road residence indoor; CMS, Center 

monitoring site; IQR, interquartile range. 

# Only 48 hour integrated sampling of PM2.5 was available for RDS. A total of 28 samples were available. 
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Table S4. Descriptive statistics of absolute differences on traffic pollution exposures between road site monitor (RDS) and each of the other 

monitoring sites. 

Monitoring 

Sites 

Distance to 

RDS 

(in meters) 

BC (ug/m3) CO (ppm) NO (ppb) NO2 (ppb) PM2.5
# (ug/m3) 

N=39 N=77 N=77 N=77 N=28 

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance 

 δNRO 10 -1.14 1.29 -0.08 0.00 -4.31 25.17 -5.13 50.74 3.37 4.25 

δNRI 10 -1.15 0.69 -0.11 0.00 -13.33 86.30 -1.07 138.35 1.38 9.71 

δFRO 1,390 -1.17 0.74 -0.22 0.01 -8.17 131.59 -8.68 57.26 4.26 5.24 

δFRI  1,390 -1.28 0.82 -0.22 0.01 -16.33 148.76 -3.86 37.32 2.48 4.92 

 δCMS 2,290 -0.88 0.59 -0.14 0.01 -5.21 128.89 -15.78 47.39 2.85 2.89 

 

Acronym: RDS, Road site; NRO, Near-road residence outdoor; NRI, Near-road residence indoor; FRO, Far-road residence outdoor; FRI, Far-road residence indoor; CMS, Center 

monitoring site. 

# Only 48 hour integrated sampling of PM2.5 was available for RDS. A total of 28 samples were available. 
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Table S5. Effect modification by various factors on the percentage decrease in outdoor pollutant concentrations per 200 meters away from the near road 

monitoring site ^ 

 
BC CO NO NO2 

Categorical Factors#     

Time Period  R2=0.30 R2=0.27 R2=0.29 R2=0.37 

      Morning Rush Hour (6am-9am) 3.63% 

(2.66%, 4.58%) 

6.37%* 

(5.56%, 7.16%) 

9.08%**  

(7.03%, 11.09%) 

4.69%  

(2.67%, 6.71%) 

      Mid-day (10am-3pm) 
5.19%** 

(4.40%, 5.98%) 

9.66%** 

(9.00%, 10.31%) 

15.24%*  

(13.60%, 16.84%) 

8.68%**  

(7.15%, 9.23%) 

      Evening Rush Hour (4pm-7pm) 
3.63%&,** 

(3.03%, 4.23%) 

7.64%&,** 

(7.15%, 8.13%) 

17.12%&,**  

(15.93%, 18.29%) 

4.71%&,**  

(3.55%, 5.87%) 

      Late Evening (8pm-11pm) 
3.05% 

(2.25%, 3.84%) 

6.57%* 

(5.90%,7.24%) 

12.50%**  

(10.84%, 14.13%) 

3.68%**  

(2.88%, 4.48%) 

      Midnight & Early Morning (12am-5am) 
2.63%** 

(1.88%, 3.38%) 

5.58%** 

(4.95%, 6.21%) 

11.13%**  

(9.55%, 12.68%) 

3.65%**  

(2.70%, 4.60%) 

Wind Direction (relative to RDS site) R2=0.32 R2=0.23 R2=0.30 R2=0.38 

      Westerly 
3.78%&,** 

(2.27%, 5.26%) 

7.73%&,** 

(6.58%, 8.87%) 

16.59%&,**  

(13.87%, 19.23%) 

8.70%&,**  

(7.87%, 9.52%) 

      Northerly 
0.91%* 

(-1.74%, 3.49%) 

4.21%** 

(2.23%, 6.14%) 

3.80%**  

(-1.60%, 8.91%) 

2.47%**  

(0.95%, 3.96%) 

      Easterly (towards GIT campus) 
3.03% 

(1.48%, 4.56%) 

6.15%* 

(4.94%, 7.34%) 

10.94%**  

(796%, 13.84%) 

4.02%**  

(3.12%, 4.90%) 

      Southerly 
5.27% 

(3.70%, 6.82%) 

8.07% 

(6.83%, 9.28%) 

15.80%  

(12.89%, 18.62%) 

6.60%**  

(5.70%, 7.49%) 

Date of Week R2=0.29 R2=0.25 R2=0.27 R2=0.36 
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      Weekday 
3.30%&,** 

(3.02%, 3.58%) 

7.11%&,** 

(6.88%, 7.35%) 

12.46%&,**  

(11.87%, 13.06%) 

4.67%&,**  

(4.49%, 4.86%) 

      Weekend 
4.14%* 

(3.59%, 4.70%) 

6.92% 

(6.45%, 7.38%) 

15.01%**  

(13.88%, 16.12%) 

5.64%**  

(5.30%, 6.60%) 

Continuous Factors## 

Temperature (per 10 F) 

R2=0.29 R2=0.24 R2=0.29 R2=0.38 

-0.15% 

(-0.37%, 0.08%) 

0.87%** 

(0.70%, 1.04%) 

1.77%** 

(1.32%, 2.23%) 

1.28%**  

(1.15%, 1.41%) 

Relative Humidity (%) 

R2=0.29  R2=0.23 R2=0.26 R2=0.35 

0.06%** 

(0.04%, 0.07%) 

-0.02%* 

(-0.03%, 0.00%) 

-0.05%** 

(-0.08%, -0.02%) 

-0.05%** 

(-0.06%, -0.05%)  

Wind Speed (mph) 

R2=0.29 R2=0.25 R2=0.27 R2=0.36 

0.54%** 

(0.33%, 0.74%) 

1.57%** 

(1.40%, 1.74%) 

2.87%** 

(2.44%, 3.30%) 

1.00%**  

(0.87%, 1.12%) 

Traffic Counts (per 1,000) 

R2=0.33 R2=0.26 R2=0.27 R2=0.39 

0.18%** 

(0.12%, 0.23%) 

0.23%** 

(0.19%, 0.28%) 

0.12%  

(-0.01%, 0.24%) 

0.28%** 

(0.25%, 0.32%)  

^ Modification assessed using distance*factor product terms, with each factor tested in different models;  
# Categorical factor results present the effect of distance (per 200 meters from highway) on pollutant concentrations for each level of the factor; ## Continuous 

factor results present the interaction term parameter estimate;  
& Reference category showing magnitude and significance of ‘distance’ main effect (note: results for other levels of each category present the magnitude of the 

‘distance’ effect and whether the effect is significantly different from the reference category); ** p-Value <0.001; * p-Value<0.05. 
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Appendix A 

Simulating impact of measurement error within a small panel epidemiologic framework.  

Small panel studies have been particularly useful for examining short-term pollutant exposures and 

acute biological responses by measuring a range of clinical and sub-clinical exposure and health endpoints 

on an individual-level. Given that small panel studies assign individual exposure level by obtaining 

measurements from central, urban or near-road monitoring sites, exposure measurement error may be 

introduced due to the spatial variability of the pollutants and differences between monitored concentrations 

and personal exposure, thus potentially impacting the effect estimate of pollutant on biological response. 

For the purpose of the current analysis aims, impact of measurement error was calculated for each of the 

TRAPs when using the level at RDS as an error-prone surrogate of the pollutant level at other non-RDS 

sites. It is important to note that no assumption was made between the true health risk associated and any 

of the specific single traffic pollutant; each single traffic pollutant may serve as an indicator of either the 

true causal agent, a causal mixture, or the traffic source itself that cause the adverse health effects. We 

defined exposure error, 𝛅, as the absolute difference between two exposure metrics on the same time scale 

(daily or hourly). The RDS measurements were compared to each of the other five exposure metrics to 

generate the following five exposure error terms:  δCMS, δNRO,  δNRI, δFRO and δFRI. The exposure error due to 

the spatial difference between central monitoring site and near-road traffic hotspot was represented 

by  δCMS = CMS − RDS , given that our near-road monitoring site captures traffic impacts, while the 

measurement at CMS represents urban background average. Similarly, there were exposure errors 

introduced due to the distance between near-road traffic hotspot and the outdoor environment at the two 

residence sites, which were represented by  δNRO = NRO − RDS  and  δFRO = FRO − RDS  respectively. In 

addition, exposure error was also introduced when the microenvironment changed from ambient to indoor, 

where residents spent 90% of their time every day. These exposure errors are presented by δNRI = NRI −

RDS and  δFRI = FRI − RDS for the two residential sites respectively. Mean and variance were calculated for 

these five types of exposure errors for all five pollutants. 
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For each pollutant, we viewed pollutant level measured at each of the non-RDS location (NRI, NRO, 

FRI, FRO, and CMS) as true exposure (measured without error).  Pollutant level measured at RDS site 

served as the exposure that would be used to conduct a health study; exposure error is introduced because 

of spatial gradient or with additional discrepancies due to microenvironment. To simulate true daily 

exposures for each pollutant at various non-RDS locations, we randomly sampled, with replacement, the 

pollutant levels measured at each site during the four-month DRIVE field campaign. Then to simulate daily 

RDS exposures, we used a linear model fitted between each non-RDS site and the RDS site; for example, 

for NDO serving as the true exposure, the model is given by 

RDSt̃ = θ1,NDO + θ2,NDO ∗ NDOt +  εNDO,t    (Eq. S1) 

where t indexes day; and θ1  and θ2  represent additive and multiplicative error between the two 

exposure metrics; and εNDO,t are independent normal residual errors. The above model parameters were 

estimated using NDOt and RDSt measurements from DRIVE. For each Monte Carlo simulation, an error-

prone exposure mean for each day was simulated by using the true exposures at each of the non-RDS sites 

as the predictor (i.e., NDO) and a realization of the coefficients (θ1 and θ2) drawn from their asymptotic 

bivariate normal distribution. Finally, a daily residual error (εt) was subsequently drawn from a univariate 

normal distribution, and then added with the mean to obtain the full error-prone near-road exposure value.   

To examine the impact of measurement error in estimating the health responses associated with traffic 

emissions in small panel study, we utilized health response estimates of a widely used biomarker, first force 

expiratory volume (FEV1), which was associated with pre-post exposure to traffic emission from a highly 

cited small panel study (McCreanor et al. 2007) for the health response simulation. We averaged the percent 

change (health responses estimates in J. McCreanor et al. 2007) of FEV1 after exposure to traffic pollutants 

(EC, NO2, and PM2.5) and used β=-0.41 for percent change in FEV1 per IQR increase in each of the single 

pollutant for the simulation. Linear regression models were used to simulate FEV1: 

E(Yt) = ∝  + β1pollutioni,t+ εt        (Eq. S2) 
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where  Yt is the percent change in FEV1 on day t. For each pollutant i, daily averages (24-hr average) 

of same-day concentrations were used. For each pollutant, we viewed pollutant level measured at each of 

the non-RDS location (NRI, NRO, FRI, FRO, and CMS) as true exposure (measured without error). 

Impact of measurement error was estimated via simulation.   Percent changes in health outcomes were 

drawn from Gaussian distributions and fitted using the simulated true exposures or the error-prone 

exposures with two linear models (Eq. S2): one using the simulated the true exposure, and another using 

the error-prone exposure. This resulted in two sets of estimated β:  β̂ true  and  β̂error. The above 

simulation was run 1,000 times for each pollutant and non-RDS site. In order to determine if the presence 

of measurement error induces bias and a loss of precision, the mean over the 1,000 estimates for each β 

was calculated and used as the overall point-estimate associated with each pollutant pair and measurement 

error scenario. As an example, the effect estimate β for the main pollutant i in the true exposure scenario, 

was calculated as: 

      β true = exp (
∑ β̂true,n

N
n=1

N
)          (Eq. S3) 

Similarly, the β for the error-prone scenario was calculated as: 

    β error = exp (
∑ β̂error,n

N
n=1

N
)          (Eq. S4) 

where n index the simulation iteration and N = 1,000. Percentage of Bias of the β for each single 

pollutant at each non-RDS site was calculated. For pollutant i at site s in the error-prone scenario, we define: 

                                           % Biass,i = (1 −  
βerror,i

(−0.41)
 ) ∗ 100%              (Eq. S5) 

where βerror is defined in Equation S4.  

     Since some small panel-based epidemiologic designs measured pollutant level over a short period of 

time (1-hour average, etc) when the biological responses were collected, the exposure measurement in this 

epidemiologic setting might also be prone to temporal variability of traffic pollutants. Thus, we also 
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characterized hourly-resolved percent attenuation for each of the five single pollutants. The methods 

remained the same as described above in both models, except that to calculate the hourly percentage of 

attenuation, we used hourly pollutant concentration instead of 24-hr average pollutant concentration. 
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Use of High-Resolution Metabolomics for the Identification of Metabolic Signals 
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ABSTRACT 

High-resolution metabolomics (HRM) is emerging as a sensitive tool for measuring environmental 

exposures and biological responses. The aim of this analysis is to assess the ability of high-resolution 

metabolomics (HRM) to reflect internal exposures to complex traffic-related air pollution mixtures.  

We used untargeted HRM profiling to characterize plasma and saliva collected from participants in the 

Dorm Room Inhalation to Vehicle Emission (DRIVE) study to identify metabolic pathways associated with 

traffic emission exposures. We measured a suite of traffic-related pollutants at multiple ambient and indoor 

sites at varying distances from a major highway artery for 12 weeks in 2014. In parallel, 54 students living 

in dormitories near (20 m) or far (1.4 km) from the highway contributed plasma and saliva samples. 

Untargeted HRM profiling was completed for both plasma and saliva samples; metabolite and metabolic 

pathway alternations were evaluated using a metabolome-wide association study (MWAS) framework with 

pathway analyses.  

Weekly levels of traffic pollutants were significantly higher at the near dorm when compared to the far 

dorm (p<0.05 for all pollutants). In total, 20,766 metabolic features were extracted from plasma samples 

and 29,013 from saliva samples. 45% of features were detected and shared in both plasma and saliva 

samples. 1,291 unique metabolic features were significantly associated with at least one or more traffic 

indicator, including black carbon, carbon monoxide, nitrogen oxides and fine particulate matter (p < 0.05 

for all significant features), after controlling for confounding and false discovery rate. Pathway analysis of 

metabolic features associated with traffic exposure indicated elicitation of inflammatory and oxidative 

stress related pathways, including leukotriene and vitamin E metabolism. We confirmed the chemical 

identities of 10 metabolites associated with traffic pollutants, including arginine, histidine, γ-linolenic acid, 

and hypoxanthine.  

We identified and verified biological perturbations associated with primary traffic pollutant. Observed 

response was consistent with endogenous metabolic signaling related to oxidative stress, inflammation, and 

nucleic acid damage and repair. Collectively, the current findings provide support for the use of untargeted 

HRM in the development of metabolic biomarkers of traffic pollution exposure and response. 

KEYWORDS 

High Resolution Metabolomics; Traffic Related Air Pollution; Metabolic Perturbations; Oxidative Stress; 

Inflammation; Biomarkers 
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INTRODUCTION 

Recent interest in air pollution health effects and regulatory intervention has shifted towards adopting 

multipollutant perspectives (Greenbaum and Shaikh 2010; Johns et al. 2012; Mauderly et al. 2010; Solomon 

et al. 2012; Vedal and Kaufman 2011). For highly heterogeneous sources, including traffic-related air 

pollution (TRAP), a multipollutant framework provides new opportunities to characterize biologically-

relevant exposures. Improving exposure assessment to traffic emissions is particularly critical given the 

abundance of observational and controlled studies reporting associations between traffic sources and 

numerous adverse health effects (Health Effects Institute 2010).  

High resolution metabolomics (HRM), involving the identification and quantitation of thousands of 

metabolites associated with endogenous and exogenous processes, holds specific promise as a powerful 

tool to improve internal exposure estimation to complex environmental mixtures (Bundy et al. 2009; 

Lankadurai et al. 2013; Miller and Jones 2014; Simpson and McKelvie 2009; Viant 2008). We (Ladva et 

al. 2017), and others (Breitner et al. 2016; Martens et al. 2017; Menni et al. 2015; Surowiec et al. 2016; 

Vlaanderen et al. 2017), have begun to examine the capability of HRM to capture metabolomic 

perturbations following exposures to ambient air pollutants. Currently, analytical and scientific 

uncertainties in HRM application, however, have limited its use for measuring the response to exposures 

from individual sources, such as TRAP (Hines et al. 2007; Morrison et al. 2007). Moreover, most 

environmental HRM applications, to date, have either been conducted in cohorts of several thousand or in 

smaller panels of individuals exposed to highly elevated concentrations of specific chemicals in 

occupational settings.  

To address these research gaps and uncertainties, we conducted the Dorm Room Inhalation to Vehicle 

Emission (DRIVE) study.  DRIVE was an intensive 12-week filed study that focused on assessing a 

complete emission-to-exposure pathway of traffic pollution. The present analysis utilized the extensive 

repeated biomonitoring (plasma and saliva) in a panel of 54 college students living in dormitories either 
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near (20 m) or far (1.4 km) from the highway. We used untargeted metabolomics-wide association analyses 

to assess whether changes in specific metabolic profiles in plasma or saliva samples are observed in relation 

to TRAP. Comprehensive pathway analysis and chemical validation were conducted to identify specific 

metabolic patterns and to further investigate potentially biologically relevant indicators to primary traffic 

exposures. In examining the link between TRAPs and corresponding internal metabolic profiles, we aimed 

to generate results that lead to the development of new biologically based primary traffic indicators. Such 

indicators could inform more targeted regulation of traffic-related pollution with the ultimate goal of 

reducing the public health burden attributable to air pollution. 

METHODS 

We conducted the DRIVE study to measure traditional and multipollutant traffic indicators along an 

emissions-to-dose exposure pathway. The centerpiece of this study was an intensive field sampling 

campaign that took place between September 8th, 2014 and January 5th, 2015. As part of this campaign, we 

measured a suite of traffic- and non-traffic-related pollutants at 6 outdoor and 2 indoor monitoring sites on 

the campus of the Georgia Institute of Technology (GIT) in Atlanta, GA, adjacent to the Downtown 

Connector (‘the Connector’), one of the most heavily trafficked highway arteries in the US (Fig 1). While 

numerous smaller roadways surround the GIT campus, the Connector is the dominant mobile emissions 

source, with an annual average daily traffic (AADT) count of 305,365 vehicles during 2014, approximately 

15 times that of the adjacent roads.  

In addition to the field sampling, we recruited 54 GIT students living in one of two dormitories, located 

at different proximities from the highway, to participate in repeated personal biomonitoring. The current 

analysis examined a subset of the measurements collected, specifically those related to traffic pollution 

indicators in these study participants and corresponding metabolic response. 
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Exposure assessment 

 

Measurements included, but were not limited to, several, ubiquitous primary traffic-related pollutants 

using a range of sampling platforms. A detailed description of the DRIVE study design, as well as the 

sampling methods can be found elsewhere (Sarnat submitted; Liang submitted). For the current analysis, 

we used exposure measurements conducted at two student dormitories located at different proximities from 

the highway, including two outdoor sites and two indoor sites: ‘Near Dorm’, approximately 20 m west of 

the Connector, and ‘Far Dorm’, approximately 1.4 km west of the Connector (Figure 2.1).  

Sampling instrumentation located inside each dorm was identical, and utilized a three-way valve to 

alternate sampling between indoor and outdoor air. A complete list of the instruments used to conduct the 

exposure assessment is provided as Supplemental Material. Broadly, at each sampling location, we 

measured a suite of traditional primary traffic-related pollutants continuously including black carbon (BC), 

carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), and nitric oxides (NOx). In addition to 

the continuous and semi-continuous measurements, we conducted 48-hour quartz and Teflon filter-based 

measurements for particle mass. A total of 10 instruments were utilized, providing air pollutant 

concentration data at time scales from minutes to averages of over a week. All field instrumentation used 

to measure continuous pollutant concentrations were evaluated, refurbished if needed, and calibrated prior 

to field sampling. In order to compare concurrent pollutant measurements across the multiple sampling sites 

and ensure accurate concentrations during the sampling period, instruments measuring the same pollutant 

parameters were also co-located both before and after the sampling period and consistently calibrated 

throughout the 13-week intensive field sampling period. Calibration was done by varying the blend of 

pollutant gas from a cylinder of known concentration with a cylinder of zero air at given flow rates (Bios, 

DryCal). Instrument collocations were conducted, for continuous NO-NO2-NOx, CO, and integrated PM2.5 

mass and reflectance over a multi-day period, both before and after field sampling to assess method 

precision and potential instrument offset. 
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In the Near Dorm, we placed sampling instrumentation in a first-floor dorm room that was being used 

as an administrative office. The room had a microwave, dorm-size refrigerator, and a small space heater 

running periodically. The Near Dorm building was five stories high, built in 1961, and most recently 

renovated in 2002. The first floor was used for administrative offices and the top four floors were occupied 

student rooms (typically two students per room). Each floor of the Near Dorm was laid out similarly with 

about 12 double rooms (11’ x 15’) and a single shared bathroom. Each floor also had a single larger utility 

room (33’ x 15’); used as a conference room on the first floor, an exercise room on the second floor, and a 

kitchenette on the third through fifth floors. The outdoor and indoor sampling inlet tubes were located 

approximately 0.5 and 0.25m off the ground, respectively 

In the Far Dorm, we conducted sampling in one-half of a two-bedroom suite on the first floor of the 

five-story building built in 1984. There were seven suites on each floor and each suite shared a bathroom. 

Each floor also shared a small kitchen. The room used for sampling within the suite was not occupied during 

the study. The outdoor sampling inlet tube was 2 m off the ground and the indoor sampling inlet tube was 

raised 0.25 m off the linoleum flooring for all continuous instrumentation. Integrated, filter-based 

measurements were collected about 1.5 m off the floor, which was about the height of the window used for 

the outdoor sampling inlet. Both buildings used two-pipe heating and air conditioning systems that 

transitioned or started according to ambient air temperatures. Less heated water was produced elsewhere 

for heating when the outside air temperature was above 55 degrees, and less chilled water was produced 

for air conditioning when the temperature was below 65. The Near Dorm system made this transition 

automatically, while the Far Dorm system required manual conversion between A/C and heating.  

Panel study recruitment 

 

We conducted a nested panel study (from Sept 8th to Dec 15th, 2014) as a component within the indoor 

and outdoor monitoring campaign. We recruited a cohort of students living in the same dormitories that 

housed the indoor Near Dorm and Far Dorm sampling instrumentation. Recruitment occurred on-site during 

a 3-week period to accommodate dorm move-in dates and the start of the fall school semester, and was 
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conducted by researchers in accordance to pre-established protocols and the Institutional Review Board at 

GIT. Recruitment flyers were posted in each of the dorms and a series of informational sessions were given 

at each of the dorms in early August 2014. Of the 28 and 38 students who signed consent forms to participate 

from the Near Dorm and Far Dorm, respectively, 26 from the Near Dorm and 31 from the Far Dorm were 

enrolled based on an assessment of the participant’s availability during the semester and likely compliance 

with the study protocol. During the 12-week sampling period, 2 participants from the Near Dorm and 1 

from the Far Dorm dropped out of the study. No specific reasons were given for the attrition. In total, 54 

students participated in the panel study.  

Participants were given a baseline questionnaire detailing socio-demographic information, preliminary 

health, and typical time-activity patterns. Time-activity pattern data were collected through portable global 

positioning system (GPS) trackers that were distributed to a subset of participants (N=6) each week. The 

collected GPS data aided in quantifying time spent in various microenvironments and proximity to traffic 

sources as potential modifiers of personal exposures.  

Biomonitoring and High-Resolution Metabolomics 

 

All 54 students participated in the environmental metabolomics analysis by contributing up to four 

(monthly) venous blood and twelve (weekly) saliva samples. In total, 175 plasma and cell samples (average 

of 3.3 repeated samples per participant) and 621 2-ml vials of saliva (average of 11.5 repeated samples per 

participant) were collected. Metabolomics analyses were conducted on the monthly blood samples and 

saliva samples collected at the same time (collected on September 19th, October 24th, Nov 14th, and 

December 5th 2014). For each sample, 5 µL were injected and analyzed using liquid chromatography–mass 

spectrometry (LC/MS) techniques (Thermo Scientific™ Q Exactive™ HF hybrid quadrupole-Orbitrap). 

Each sample was analyzed in triplicate. Two technical columns, hydrophilic interaction liquid 

chromatography (HILIC) with positive ionization mode and C18 hydrophobic reversed-phase 

chromatography with negative ionization mode, were used to enhance the coverage of metabolic feature 

detection. Two quality control pooled reference plasma samples (referred to as NIST, from National 
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Institute of Standards and Technology, and QSTD, from Equitech) (Simon-Manso et al. 2013) were 

included at the beginning and end of each analytical batch of 20 samples for normalization, control for 

background noise, batch evaluation, and post hoc quantification. Raw data files obtained from the LC/MS 

instrument were converted into .mzML files using ProteoWizard. Two R packages, apLCMS and 

xMSanalyzer, were used to extract metabolic features with data quality control assessment and batch effect 

correction (Uppal et al. 2013; Yu et al. 2009).  Several stringent criteria were applied to minimize the chance 

of degeneracy and false positive discovery. Only metabolites exhibiting a median coefficient of variation 

(CV) among the triplicate less than 30% and Pearson correlation greater than 0.7 were included in further 

analyses. Finally, all the metabolites needed to present in at least 15% of all samples (by biological media) 

to be included in final statistical analyses; these criteria were established in order to enhance generalizability 

and to reduce the possibility that the association between metabolic signals and traffic pollutant levels (the 

main predictor of interest, see below) were unduly influenced by individual samples or participants. 

Following this quality assessment, the triplicate measures of each extracted features of each sample were 

averaged and a log2 transformation was performed.  

Data Analysis 

 

For the primary statistical analysis, we followed an untargeted Metabolome-Wide Association Study 

(MWAS) workflow, where metabolic profiles were analyzed without prior knowledge of their chemical 

identity. Linear mixed effect models were conducted to assess associations between metabolite feature 

intensity (i.e., relative concentration) and levels of traffic related pollutants, controlling for random subject 

effects. Since nested personal exposure assessment showed that students from both dorms tended to spend 

the majority of their time in or around their respective dormitories (57% for Near Dorm students; 61% for 

Far Dorm students), we selected measurements from these locations as a priori surrogates of actual personal 

pollutant exposures. We used the weekly average outdoor or indoor level of each of the six traditional 

single-species air pollutants (BC, CO, NO, NO2, NOX, and PM2.5) TRAP at the dormitory locations as the 

primary exposure indicator of interest. Models had the following form: 
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𝑌𝑖𝑗𝑡 = 𝜇 + 𝜃𝑖 + 𝛽1𝑗𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑖𝑘𝑡 + 𝛽2𝑗𝐷𝑜𝑟𝑚𝑖 + 𝛽3𝑗𝐴𝑔𝑒𝑖 + 𝛽4𝑗𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽5𝑗𝐵𝑀𝐼𝑖 +

+𝛽6𝑗𝑅𝑎𝑐𝑒𝑖 + 𝛽7𝑗𝑀𝑜𝑣𝑖𝑛𝑔𝑑𝑎𝑦𝑠𝑖𝑡 + 𝛽8𝑗𝑇𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡𝑠𝑖𝑡 + 𝜀𝑖𝑗𝑘𝑡     (Eq. 2.1) 

where  𝑌𝑖𝑗𝑡  refers to intensity (i.e., relative concentration) of metabolic feature 𝑗  for participant 𝑖  on 

sampling date 𝑡 . Separate models were conducted for each metabolic feature, from each of the four-

biomatrix technical columns (plasma HILIC positive ions column, plasma C18 negative ions column, saliva 

HILIC positive ions column, and saliva C18 negative ions column). 𝜇 is the fixed-effect intercept and a 

random effect 𝜃𝑖 is included to control for potential between participant variation. 𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑖𝑘𝑡 refers to 

the weekly average outdoor or indoor level of the traffic related pollutant 𝑘  at the dorm location for 

participant 𝑖 on biosampling date 𝑡. 𝐷𝑜𝑟𝑚𝑖  refers to the dorm location for participant 𝑖, accounting for 

potential differences in the non-traffic-pollutant-related factors among the participants from the two dorms. 

Other covariates were included to control for potential between participant differences, including age, 

gender (categorical), body mass index (BMI; continuous), and race (categorical). We also controlled for 

𝑀𝑜𝑣𝑖𝑛𝑔𝑑𝑎𝑦𝑠𝑖𝑡, the total number of days between the biosample collection date and the date that participant 

𝑖 moved into the dorm; and 𝑇𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡𝑠𝑖𝑡, the time point order (i.e., month number for plasma or saliva) 

when the biosample was collected from participant 𝑖  on biosampling date 𝑡 . 𝜀𝑖𝑗𝑘𝑡  represents residual 

random normal error.  

Hypothesis tests to identify differentially expressed features associated with specific traffic related 

pollutant levels (by biomatrix column) were corrected for multiple comparisons using the Benjamini-

Hochberg false discovery rate (FDRB-H) procedure at a 0.05 false positive (i.e., Type I error) threshold. 

Results were presented using Manhattan plots, which plot the retention time of each metabolic feature on 

the x-axis against the negative logarithm of its p-value for 𝛽1 from Equation 1 on the y-axis. The significant 

metabolic features (FDRB-H<0.05) associated with traffic-related pollutants were then used to conduct the 

pathway enrichment and metabolite annotation analyses. 
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Metabolic Pathway Enrichment Analysis and Metabolite Annotation 

 

Pathway identification and module analysis were performed for significant metabolic features using 

mummichog (v. 1.0.5), a novel bioinformatics platform that infers and categorizes functional biological 

activity directly from mass spectrometry output, without prior metabolite validation (Amorim et al. 2013 

134; Li et al. 2013). Mummichog analyses were conducted separately for each set of significant features 

from each of the 24 indoor/outdoor TRAP linear mixed models in the HILIC and C18 columns. An adjusted 

p-value per pathway was calculated from resampling the reference input file in mummichog using a gamma 

distribution which penalizes pathways with fewer reference hits, and assigning greater significance to 

pathways with more reference hits (Li et al. 2013). We classified pathways with adjusted p-values of <0.05 

for at least three of the TRAPs models, and with at least 4 features from the experimental data matched 

with pathway metabolites. To further minimize the possibility of false positive discovery, candidate 

pathways were re-run using a subset of 6 most common forms out of the 16 standard adduct forms in 

mummichog (For HILIC positive ion mode, only the following adducts were considered: M[+], M+H[+], M-

H2O+H[+], M+Na[+], M+K[+], M+2H[2+],  and M(C13)+2H[2+]; For C18 negative ion mode, only the 

following adducts were considered: M-H[-], M+Cl[-], M+ACN-H[-], M+HCOO[-], M(C13)-H[-], M-H2O-H[-], 

and M+Na-2H[-]). We presented final results in a metabolic-pathway-TRAPs heat map, with each cell of 

the heat map representing a statistical association between each of the metabolic pathways and each of the 

corresponding indoor/outdoor TRAPs.  

Metabolic features that were significantly associated with TRAPs (FDRB-H<0.05) and also significantly 

enriched in a relevant pathway (p<0.05) using mummichog were annotated by matching mass m/z value 

for adducts commonly formed to the METLIN (https://metlin.scripps.edu/index.php), ChemSpider 

(http://www.chemspider.com/), Human Metabolome Database (HMDB), and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) (http://www.genome.jp/kegg/pathway.html) databases, using a mass error 

threshold of 10 ppm. Tentative matches were further screened on their retention time, isotope patterns, and 
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peak quality by manually examining the extracted ion chromatograph (EIC). The remaining candidate 

features were selected for final chemical identification via Tandem Mass Spectrometry (MS/MS).  

RESULTS 

We collected 175 plasma and cell samples and 204 saliva samples during four time points, spaced 

approximately 21-35 days apart from each other, throughout the study from the 51 DRIVE participants 

providing blood and saliva specimens. With the exception of indoor PM2.5, mean indoor and outdoor levels 

for all the pollutants were significantly higher in the Near Dorm compared to the Far Dorm during the entire 

study period, indicative of a substantial contrast in the potential exposure level to TRAPs among the two 

groups of study participants (t-test: p <0.05) (Table 2.1 and Table S2.1).  Baseline information collected 

from each participant at the commencement of sampling showed generally similar demographic 

characteristics among participants in both dorms, although there was a greater relative number of 

sophomore (i.e., 2nd year) students living in the Far Dorm compared to the Near Dorm (42.9% vs 8.7%, 

respectively) (Table 2.1). The total number of days the participants spent in their respective dorms prior to 

the first plasma collection were comparable in both dorms (86 vs 55 days, p>0.05).  

Among the 54 participants, continuous GPS data were collected from 43 participants; 21 participants 

from the Near Dorm and 22 from the Far Dorm, over the course of 12 sampling weeks. As expected, there 

was a clear bimodal distribution between participants from the two dorms of time spent in closer proximity 

to the highway (Figure S2.2), supporting an observation that much of the students’ time was spent within 

or near their respective dorms.  

After data quality filtering, we extracted 20,766 metabolic features from plasma samples (13,419 in 

HILIC plasma column and 7,347 in C18 plasma column) and 29,013 from saliva samples (21,313 in HILIC 

plasma column and 7,700 in C18 plasma column). The median CV across the triplicate for each metabolic 

feature was 24.8%, indicating good overall data quality.  A moderate fraction of features (6,667 in HILIC 

column and 2,812 in C18 column) were identified in both plasma and saliva samples (Figure S2.1). 
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Spearman correlation coefficients between these shared feature intensities identified in both plasma and 

saliva were 0.53 in the HILIC and 0.58 in the C18 column (across all four sampling time points: p-value < 

0.0001, for all pairwise correlations). Correlations were stronger among the metabolic features with CVs 

less than 10% (0.64 in HILIC; 0.68 in C18). In addition, more than 45% of the extracted ions were found 

to have m/z matches (< 10 ppm) with metabolites identified in either the Human Metabolome Database 

(HMDB) or the USEPA’s Mobile Air Toxics database. 

We conducted and analyzed 48 sets of MWAS models (12 indoor/outdoor TRAPs among metabolic 

features in 2 biomatrices, each with 2 technical columns). In total, 847 and 444 unique metabolic features 

were associated with at least one or more of the indoor or outdoor TRAPs in the HILIC- and C18-plasma 

columns, respectively (FDRB-H < 0.05). There were a similar number of significant metabolic features found 

in both columns for saliva samples (HILIC-saliva = 1,320 features; C18-saliva = 399 features) (Table 2.2 

and Figure S2.3a-S2.3d).  

We further screened each of the significant features based on their spectrum peak quality and purity by 

manual examination of their respective extracted ion chromatographs (EICs). By including only those 

spectra with unambiguous EIC peaks (63% to 95% in each biometric-technical column), we reduced the 

possibility of erroneously identifying a unique feature as multiple metabolites; an error known as 

degeneracy (Mahieu and Patti 2017). Using mummichog, we examined whether the features that were 

significantly associated with TRAPs co-occurred as enriched metabolites within specific metabolic 

pathways.  

The results indicated that over 24 metabolic pathways were significantly associated with at least three 

or more TRAPs in plasma samples (adjusted p<0.05, calculated by mummichog), using either the HILIC 

or C18 column  (Figure 2.2a). A similar number of significant metabolic pathways (N=23) were identified 

in saliva samples using both technical columns (Figure 2.2b). Broadly, approximately eight pathways 

consistently appeared to be significantly elicited across varying indoor or outdoor TRAPs models, in both 

plasma and saliva samples and technical columns. These include pathways predominantly associated with 
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xenobiotic-mediated oxidative stress and acute inflammatory response, such as leukotriene metabolism, 

vitamin E metabolism, and cytochrome P450 (Chow 1991; Dahlén et al. 1981; Gonzalez 2005; Henderson 

1994; Morgan 1997; Singh et al. 2005). The leukotriene metabolism and vitamin E pathway, identified 

within these analyses, consistently appeared to be those pathways most strongly associated with a majority 

of the TRAPs, in each of the four biomatrices technical columns. Based on the strength and consistency of 

the mummichog results in showing these TRAP-related associations, we selected to focus on annotating 

the constituent metabolic features within these pathways, with the aim of validating the untargeted 

metabolomic observations.  

As a means of providing additional confidence in the biochemical plausibility of the mummichog output, 

we excluded 34 less common (i.e., less plausible) identified adduct forms for subsequent validation. Using 

identified metabolite data available in KEGG, ChemSpider, HMDB, and a curated database of air toxics 

published by the US Environmental Protection Agency, we putatively matched 17 and 11 unique metabolic 

features within the leukotriene pathway and vitamin E metabolism, respectively (m/z difference < 

10ppm)(Table S2.2a- S2.3d). These tentatively matched features were each significantly associated with 

multiple indoor or outdoor TRAPs, and exhibited relatively pure spectrum peaks with common adduct 

forms.   

Putatively matched metabolites participating in the leukotriene pathway included leukotriene B4 

(LTB4), leukotriene D4 (LTD4) and leukotriene E4 (LTE4), as well as their metabolic precursors, 12-oxo-

LTB4, 20-OH-LTB4 and 20-oxo-LTE4. Also, identified within this pathway were metabolic indicators of 

lipid oxidation, such as 6-trans-LTB4, 12-oxo-20-dihydroxy-LTB4 and 18-carboxy-dinor-LTE4. In 

addition, several features were tentatively matched with other leukotriene related metabolites, including 

10,11-dihydro-12R-hydroxy-LTC4, and 12-oxo-c-LTB3. Tentatively matched metabolites in the vitamin E 

pathway included multiple dehydrogenation carboxy products, or dehydrogenation precursors of 

tocotrienols and tocopherols, which maintain primary vitamin E antioxidant activities. Notably, most of the 

features that matched with pro-inflammatory-related metabolites were significantly and positively 
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associated with the TRAPs in the MWAS models; with significant and negative associations for those 

features linked to antioxidant processes. 

Finally, we conducted tandem mass spectrometry to confirm the chemical identity of these unknown, 

yet putatively matched metabolic features that were both associated with the measured TRAPs as well as 

those enriched within TRAP exposure-relevant metabolic pathways.  In total, we identified 10 metabolites 

using MS/MS (Table 2.3), 9 of which were indicative of endogenous metabolic signals, including arginine, 

histidine, γ-linolenic acid, and hypoxanthine. As noted, we observed consistent significantly negative 

associations (β < 0) between these anti-inflammatory metabolites with levels of TRAPs, while significantly 

positive association (β > 0) between TRAP and corresponding oxidative or pro-inflammatory metabolites.  

DISCUSSION  

Untargeted omics-based methods represent promising, yet still uncertain, means for measuring 

exposure and response to thousands of xenobiotic agents (Ellis et al. 2012; Park et al. 2012; Walker et al. 

2016). To date, most examples of using environmental metabolomics have either been in cohorts of several 

thousand individuals (Ganna et al. 2016; Pallister et al. 2016), in smaller human panels exposed to highly 

elevated concentrations of specific chemicals in occupational settings (Dudka et al. 2014; Romano et al. 

2012; Z Wang et al. 2015; Wei et al. 2013), or in cross-sectional designs (Li et al. 2017; Surowiec et al. 

2016; Vlaanderen et al. 2017). Here, we specifically assessed whether changes in specific metabolic profiles 

associated with realistic environmental exposures, were discernable in plasma and saliva samples measured 

repeatedly in a relatively small, healthy, young adult panel. To our knowledge, this analysis constituted the 

single largest prospective longitudinal assessment examining traffic pollution related perturbations of the 

human metabolome.  

Among the most pronounced and consistent findings from the MWAS mixed effect modeling and 

mummichog pathway enrichment analyses was that cumulative exposure to elevated levels of TRAPs over 

a multi-month period was associated with perturbations in several key biological pathways (Figure 2.2a-
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2.2b). Of added importance was that the identification of the specific elicited pathways were robust to the 

various indoor and outdoor TRAP models, biomatrices, and in both technical columns. Moreover, a 

majority of the identified pathways are biologically plausible mediators of TRAP-related acute oxidative 

stress and inflammatory response (Baja et al. 2010; Chuang et al. 2007; Kelly 2003; Lodovici and Bigagli 

2011; Nel et al. 2001). Among the pathways, those involved in leukotriene and vitamin E metabolism, in 

particular, consistently exhibited the strongest associations with most of the measured TRAPs in both saliva 

and plasma samples.  

Leukotrienes, synthesized from arachidonic acid by arachidonate 5-lipoxygenase, are a family of active 

eicosanoid inflammatory mediators formed by leukocytes, mastocytoma cells, macrophages, and other 

tissues and cells in response to immunological and non-immunological stimuli (Hammarström 1983). 

Actively involved in asthmatic and allergic reactions and sustaining inflammatory reactions, leukotrienes 

are powerful biological signals, the overproduction of which is the major cause of inflammation in asthma 

and allergic rhinitis (Nelson et al. 2008; Salmon and Higgs 1987). Particularly, the dihydroxy fatty acid 

LTB4, synthesized by leukotriene A4 (LTA4) hydrolase from LTA4, is a potent chemoattractant and 

proinflammatory mediator that recruits cells from the immune system to produce inflammation and induces 

the release of lysosomal enzymes by neutrophils (Cotran et al. 1999; Devchand et al. 1996; Ford-

Hutchinson et al. 1980). Numerous in vitro and in vivo studies have shown that LTB4 increases the 

generation of reactive oxygen species (ROS) and promotes leukocyte adherence (Biselli et al. 1996; Salas 

et al. 1999; Steiner et al. 2001). Moreover, perturbations in LTB4 in exhaled breath condensate have been 

linked to elevated NO2 (Hüls et al. 2017; Vossoughi et al. 2014), ozone (Alfaro et al. 2007), and cigarette 

smoking (Carpagnano et al. 2003).  

In the DRIVE MWAS models, we observed consistent, robust and positive associations between 

features putatively matched with LTB4 and multiple indoor or outdoor TRAPs, including BC, CO, NO and 

PM2.5. In contrast, LTE4, the final cysteinyl leukotriene involved in inflammation within this pathway (Lee 

et al. 1983), is another important leukotriene synthesized and converted from LTA4. Compared to LTB4, 
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LTE4 is more stable, making it the dominant leukotriene accumulating in various biologic fluids, including 

breath condensation, plasma, and urine (Sala et al. 1990). Previously, urinary LTE4 levels were found to 

be positively associated with PM2.5 among asthmatic children (Rabinovitch et al. 2006). Similarly in DRIVE 

study, significant positive associations were found between NO and features putatively matched with LTE4 

in saliva samples among healthy participants. In addition, 15 primary metabolites or lipid oxidation 

metabolites of LTB4, LTD4 or LTE4 were putatively matched with the features that were significantly 

associated with multiple TRAPs (Appendix Table S2.2a-S2.2d), indicating the potential of further 

developing these pro-inflammatory metabolites as biomarkers to TRAPs. Furthermore, we demonstrated 

that the perturbations in leukotrienes related metabolites associated with exposure to air pollutants are 

observed among healthy people and not only in individuals with pre-existing disease such as asthma 

(Rabinovitch et al. 2006). In another recent study, we putatively identified 20-OH-LTB4 as a primary factor 

in leukotriene-mediated response in a panel study of car commuters consisting of both asthmatic and healthy 

participants (Ladva submitted). 

Vitamin E, on the other hand, is a potent fat-soluble antioxidant that protects cells from oxidative 

damage (Brigelius-Flohe and Traber 1999; Cerecetto and Lopez 2007; Rigotti 2007). Acting as a peroxyl 

radical scavenger, vitamin E disables the generation of damaging free radicals, interrupts the propagation 

of reactive oxygen species, protects lipids and prevents the oxidation of polyunsaturated fatty acids (Choe 

and Min 2009; Traber and Stevens 2011; Whitney and Rolfes 2012). Previously, nutritional research has 

revealed the protective role of vitamin E in preventing or minimizing free-radical damage associated with 

specific diseases and lifestyle patterns, including protection against ambient PM2.5 or ozone induced 

inflammatory response and oxidative stress (Bo et al. 2016; Menzel 1979; Packer 1991; Salvi 2007). In our 

study, 11 features were matched with vitamin E metabolites, mostly the dehydrogenation carboxy products, 

or precursors of dehydrogenation of tocotrienols and tocopherols, and the intensities of these antioxidants 

significantly decreased as levels of TRAPs increased (Appendix Table S2.3a-S2.3d). 
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We believe the MWAS modeling and tandem MS analyses lend additional coherence to the pathway 

enrichment findings. Most of the 10 metabolites we validated (70%) were endogenous molecules that 

participate in oxidative stress, acute inflammatory response, and DNA damage and repair processes. The 

findings also provide preliminary support for these validated metabolites as potential novel biomarkers of 

TRAP exposures. Arginine, specifically, is an α-amino acid that produces NO endogenously in the airways 

via NO synthase (Silkoff et al. 2000), with decreased levels associated with airway hyperresponsiveness, 

due to the augmentation of arginase induced by exposure to air pollution (North et al. 2011). 

Correspondingly, in our samples, we identified plasma arginine and found it to be significantly and 

inversely associated with measured BC and NOx levels. Another promising metabolite we identified in 

DRIVE study is histidine, a semi-essential amino acid needed in humans. Histidine is the precursor to 

histamine (TABOR 1954), a vital and well-known inflammatory agent in immune responses, including the 

airway hyper responsiveness (Hospers et al. 2000; Liu et al. 1990). Previously in a study on examining the 

serum amino acid profiles in obese and non-obese women, both histidine and arginine were found to be 

negatively associated with inflammation and oxidative stress (Niu et al. 2012). Consistently in DRIVE, we 

observed a significant negative association between histidine and outdoor PM2.5 level.       

We also validated plasma hypoxanthine, a naturally occurring purine derivative that protects against 

oxidant-induced cell injury by inhibiting activation of nuclear poly (ADP-ribose) polymerase (Durkacz et 

al. 1980; Szabó 1998; Szabó and Dawson 1998). In a recent study, Vlaanderen et al also reported blood 

hypoxanthine perturbations associated with exposure to air pollutants, following 18 hours of exposure 

(Vlaanderen et al. 2017). In our study, hypoxanthine was significantly and positively associated with both 

indoor and outdoor CO levels. Finally, we identified -linolenic acid (GLA) in plasma, which is an 

essential inhibitor in the biosynthesis of LTB4, which was putatively identified in this and in previous 

studies (Horrobin 1992; Mancuso et al. 1997). Here, too, the negative observed relationship between GLA 

and PM2.5 levels is biochemically coherent, indicative of its inverse relationship with LTB4 expression. 

Collectively, we view these validated results as comprising a small, yet promising additional step in the 
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development of specific molecular markers for TRAP exposure. Towards this end, future work should focus 

on replicating the present findings, as well as in identifying metabolite biomarkers concomitantly expressed 

across multiple biomatrices, rather than metabolites enriched in a single matrix and columns.  

Of all the extracted metabolic features, roughly 45% were matched, by m/z ratio and identified within 

both the plasma and saliva samples. Correlation coefficients among the shared features ranged from 0.5 - 

0.9, which is consistent with our previous findings of moderate-to-strong correlation between saliva and 

plasma, observed in a pilot study comparing metabolic profiles in multiple biomatrices (Ladva et al. 2017). 

Moreover, more than 10 significant metabolic pathways elucidated in mummichog were shared by both 

saliva and plasma. Taken together, these results provide additional support for the possibility that saliva 

samples may serve as an alternative sensitive, and less invasive, biomatrix for metabolomics analysis.  

Although somewhat unexpected, we also identified bis(2-ethylhexyl) phthalate (DEHP) using tandem 

mass spectrometry, an exogenous air pollutant identified in the EPA air toxic compounds metabolic 

database. DEHP was significantly and positively associated with multiple TRAPs within the MWAS 

results, including BC, CO and NO. DEHP is commonly found indoors as a ubiquitous chemical plasticizer 

component, which may also be found from the emissions of volatile organic compounds from the interior 

materials within new vehicles, according to a recent study (Faber et al. 2013). A less well-known source of 

DEHP, however, is road dust (Omar et al. 2007; Wang et al. 2013), which may explain its association with 

our pollutant traffic indicators within the MWAS results.  

We used an MWAS approach where we modeled each of six single-pollutant indicators, independently, 

as surrogates of exposure to primary traffic pollution, known to be a highly heterogeneous mixture. The 

observed metabolic perturbations, thus, do not necessarily indicate a causal associations with that specific 

modeled indicator. It is possible, and perhaps likely, that changes are associated with multiple, correlated 

pollutants within a complex traffic mixture. It makes sense, therefore, that 30%-40% of the significant 

features in the MWAS models were associated with at least two or more individual traffic pollutant 

indicators.  
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Collectively, our study design and approach resolved statistically robust metabolic differences with 

changes in TRAP exposures. Despite this, several possible caveats, inherent in many omics-based analyses 

and small panel designs, deserve specific attention.  Although we designed this study to recruit panels of 

students from both dorms that were demographically balanced, this was largely a convenience sample with 

some notable discrepancies between students in the two locations (Table 2.1). Students in the Near Dorm, 

on average, moved into their dorm rooms earlier than students in the Far Dorm, potentially contributing to 

differences in exposure and, perhaps, corresponding metabolomic expression. Similarly, the Far Dorm 

panel included a greater fraction of second-, as compared to first-year students. These differences in the 

two panels, where differences in time spent on campus and exposure to either traffic or other unspecified 

environmental factors (e.g., diet, indoor pollutants), may have truly been the factors responsible for the 

observed metabolomic differences in these profiles. To account for this, the MWAS regression models 

included terms to address these potential between participant differences, including age, sex, BMI, race, 

person-days within a dorm location, as well as dorm location itself, as a means of controlling for non-traffic 

related environmental factors that might differ among these two subpanels(Walker et al. 2016). Results 

from sensitivity analyses of the MWAS output were consistent and robust to model specification and 

inclusion of these covariates.  

There is also a possibility that findings from small panels may be unduly influenced by individual 

observations. Most of the 100 to 1000 unique metabolic features significantly associated with at least one 

or more TRAPs, however, were prevalent in at least 38% of the participants, suggesting that the differences 

were not driven by extreme response in relatively few participants. Similarly, in highly multidimensional 

analyses, there is an increased risk of multiple comparisons and Type I errors. To address this, we applied 

several stringent criteria when conducting mummichog, including excluding model findings with FDRB-H 

significance greater 0.05, as well as restricting output to a subset of the six most abundant adducts in each 

ionization mode. By contrast, previous studies using similar environmental metabolomics methods set 

significance cut offs at FDR corrected p-values of less than 0.20, and included all 16 ion derivative and 
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adduct forms when matching the unknown features to the existing metabolic databases (Chandler et al. 

2016; Tebani et al. 2017; Vlaanderen et al. 2017), thus increasing the risk of false positive discovery.  

 

CONCLUSIONS 

Recent advances in HRM support its use as a highly sensitive platform, capable of identifying thousands 

of small molecules, produced both endogenously and exogenously. We view the results from this study as 

providing further evidence of HRM’s ability to elucidate biologically-relevant pathways associated with 

exposures to key environmental pollutants and sources. Our results were broadly consistent with the limited 

number of similar studies, which have examined perturbations in the human metabolome and ambient air 

pollution, in showing broad metabolomic perturbation associated with several oxidative stress and 

inflammatory pathways (Li et al. 2017; Surowiec et al. 2016; Vlaanderen et al. 2017). Most intriguingly, 

however, were results from our MWAS models, which point to the potential of HRM as tool for biomarker 

discovery. Here, we identified and validated several metabolites in plasma and saliva that were directly 

associated with external traffic pollution measurements in our panel. Collectively, the current findings 

support the use of environmental metabolomics, as a sensitive means for conducting air pollution exposure 

and epidemiologic analyses, in panel-based designs.  
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CHAPTER 2 TABLES AND FIGURES 

 

Table 2.1. Traffic pollutant levels and baseline demographic information of the participants in the 

personal exposure sampling session over the data collection period. 

 

 

Variable Overall Near Dorm Far Dorm  
   

Traffic Pollutant levels#    

  BC (μg/m3),  Mean (SD)      --         0.88 (0.90)     0.78 (0.60) 

  CO (ppb),  Mean (SD)      --          343 (122)        209 (132) 

  NO (ppb),  Mean (SD)      --         15.9 (14.9)        12.2 (16.0) 

  NO2 (ppb),  Mean (SD)      --         23.3 (9.6)      21.4 (4.7) 

  NOx (ppb),  Mean (SD)      --          39.2 (22.4)        33.7 (19.3) 

  PM2.5 (μg/m3),  Mean (SD)      --          11.1 (5.5)      11.0 (5.9) 

    

Demographic Characteristics   n = 51 n = 23 n = 28 

  Age, Mean (SD) 19.3 (0.9) 19.2 (0.9) 19.4 (0.8) 

  BMI (SD) 23.3 (3.0) 22.7 (3.1) 23.9 (2.9) 

  Gender, n (%) 
   

Female 24 (47) 11 (48) 13 (46) 

Male 27 (53) 12 (52) 15 (54) 

  Academic Year, n (%) 
   

Freshman 29 (57) 16 (70) 13 (46) 

Sophomore 14 (27) 2 (9) 12 (43) 

Junior 7 (14) 4 (17) 3 (11) 

Senior 1 (2) 1 (4) 0 (0) 

  Days in Dorm prior to first plasma collection (SD) 69 (119) 86 (161) 55 (67) 

  Time Spent Outdoors*, n (%) 
   

Less than 1 hour 4 (8) 2 (9) 2 (7) 

1-2 hours 21 (42) 11 (48) 10 (37) 

3-4 hours 18 (36) 8 (35) 10 (37) 

5 hours or more 7 (14) 2 (8) 5 (19) 

  Time Spent in Vehicle*, n (%) 
   

Less than 1 hour 20 (40) 8 (35) 12 (44) 

1-2 hours 27 (54) 14 (61) 13 (48) 

3-4 hours 2 (4) 1 (4) 1 (4) 

5 hours or more 1 (2) 0 (0) 1 (4) 
 #24-hour average outdoor levels  

*Daily self reported average of time-activity patterns prior to DRIVE study. 
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Table 2.2. Number of significant features (FDRB-H<0.05) associated with TRP in multiple biomatrices-technical columns 

Biomatrices &  

Technical 

Column 

Total number 

of features 

extracted 

BC CO NO NO2 NOX PM2.5 Number 

of unique  

features* Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor 

HILIC-Plasma 13,419 182 174 138 143 198 178 153 168 124 132 214 203 847 

C18-Plasma 7,347 90 102 76 77 73 83 101 109 88 88 101 119 444 

HILIC-Saliva 21,313 312 336 185 186 237 263 235 234 238 246 371 359 1,320 

C18-Saliva 7,700 94 102 67 67 70 90 86 77 68 75 99 105 399 

* Number of unique metabolic features that were statistically significantly (FDRB-H<0.05) associated with at least one or more TRPs 

Acronym: TRP, traffic-related pollutant; FDRB-H , false discover rate correction using the Benjamini-Hochberg procedure ; BC, black carbon; CO, carbon 

monoxide; NO, nitric oxide; NO2, nitrogen dioxide; NOx, nitrogen oxide; PM2.5, fine particulate matter. 
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Table 2.3. Chemical identity of the metabolic features significantly associated with TRP (FDRB-H<0.05) verified by MS/MS in DRIVE 

study 

m/z RT (s) MS/MS Match Adduct Form Associated TRP Biomatrix Column 

137.0463 44.2   HYPOXANTHINE M+H[1+] 
Indoor:     CO (β= 0.007) 

Outdoor:  CO (β= 0.007) 
HILIC-Plasma 

279.2324 26.0   GAMMA-LINOLENIC ACID   M+H[1+] Indoor:     PM2.5 (β= -0.337) HILIC-Plasma 

348.0709 147.6 
  ADENOSINE 5'-

MONOPHOSPHATE 
M+H[1+] 

Indoor:     CO (β= 0.003) 

                  NO (β= 0.022) 

Outdoor: CO (β= 0.003) 

                  NO (β= 0.033) 

HILIC-Plasma 

391.2848 25.5   BIS(2-ETHYLHEXYL)PHTHALATE M+H[1+] 

Indoor:     CO (β= 0.001) 

                  NO (β= 0.063) 

Outdoor:  BC (β= 0.599) 

                  CO (β= 0.006) 

                  NO (β= 0.081) 

HILIC-Plasma 

112.0511 50.0   CYTOSINE M+H[1+] Indoor:     NO2 (β= 0.084) HILIC-Saliva 

116.0711 112   L-PROLINE M+H[1+] Outdoor:  NO2 (β= -0.093) HILIC-Saliva 

156.0773 98.3-101.0   L-HISTIDINE M+H[1+] Outdoor:  PM2.5 (β= -0.305) HILIC-Saliva 

89.0239 22.2-22.9 
  (S)-LACTATE 

  GLYCERALDEHYDE 
M-H[1-] Outdoor:  PM2.5 (β= -0.093) C18-Plasma 

173.1039 23.3   L-ARGININE M-H[1-] 

Indoor:     BC (β= -0.615) 

                  NOX (β= -0.024) 

Outdoor:  NOX (β= -0.027) 

C18-Plasma 

223.0719 24.6   3-HYDROXYKYNURENINE M-H[1-] Outdoor:  BC (β= -1.416) C18-Saliva 

Acronym: m/z, mass to charge ratio; RT, retention time; TRP, traffic-related pollutant; BC, black carbon; CO, carbon monoxide; NO, nitric oxide; NO2, nitrogen 

dioxide; NOx, nitrogen oxide; PM2.5, fine particulate matter. 
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Figure 2.1. DRIVE study location. Yellow dash line denotes the I75/I85 interstate highways. Near Dorm is located only 20 meters away from the 

highway, while Far Dorm is 1,400 meters away from the highway. 
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Figure 2.2a. Metabolic pathways associated with ≥ 3 TRP exposure indicators in plasma. Cells were shaded according to the strength (i.e. p-

value) of the association between each of metabolic pathways (KEGG) and significant features (FDRB-H<0.05) that were associated with each 

indoor/outdoor single traffic pollutant indicator. Pathways are ordered according to the total number of the significant pathway-traffic pollutant 

associations (p<0.05) in the HILIC column (positive ion mode) and the C18 column (negative ion mode).    

*For HILIC positive ion mode, only the following adducts were considered: M[1+], M+H[1+], M-H2O+H[1+], M+Na[1+], M+K[1+], M+2H[2+],  and M(C13)+2H[2+] 

  For C18 negative ion mode, only the following adducts were considered: M-H[-], M+Cl[-], M+ACN-H[-], M+HCOO[-], M(C13)-H[-], M-H2O-H[-], and M+Na-2H[-] 

^Total number of metabolites within the specific metabolic pathway 

#Number of metabolic features in the samples with m/z matched to the metabolites within the specific metabolic pathway 

In Out In Out In Out In Out In Out In Out In Out In Out In Out In Out In Out In Out

Leukotriene metabolism 52 5

Vitamin E metabolism 33 3

Drug metabolism - cytochrome P450 44 3

Urea cycle/amino group metabolism 39 3

Glycine, serine, alanine and threonine metabolism 51 4

Methionine and cysteine metabolism 45 4

Purine metabolism 50 4

Glycosphingolipid biosynthesis - ganglioseries 15 1

Porphyrin metabolism 28 2

Vitamin A (retinol) metabolism 25 2

Aspartate and asparagine metabolism 61 5

Butanoate metabolism 27 3

Vitamin B1 (thiamin) metabolism 10 2

Alanine and aspartate metabolism 21 2

Bile acid biosynthesis 57 4

Prostaglandin formation from dihomo gama-linoleic acid 6 1

Glutathione metabolism 12 1

Starch and sucrose metabolism 14 1

Arginine and proline metabolism 35 4

Phytanic acid peroxisomal oxidation 13 2

Tyrosine metabolism 89 3

Pyrimidine metabolism 49 2

Glycosphingolipid metabolism 35 1

Vitamin B9 (folate) metabolism 15 1

BC CO NO NO2 NOx PM2.5 BC NOx PM2.5

Total 

features in 

pathway

KEGG Pathways CO NO NO2Overlapping 

features

HILIC Plasma* C18 Plasma*

P-Value: 0                              0.05                               0.10                              0.15                               0.20                                                                                                                                                     1 

^ # 
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Figure 2.2b. Metabolic pathways associated with ≥ 3 TRP exposure indicators in saliva. Cells were shaded according to the strength (i.e. p-

value) of the association between each of metabolic pathways (KEGG) and significant features (FDRB-H<0.05) that were associated with each 

indoor/outdoor single traffic pollutant indicator. Pathways are ordered according to the total number of the significant pathway-traffic pollutant 

associations (p<0.05) in the HILIC column (positive ion mode) and the C18 column (negative ion mode).    

*For HILIC positive ion mode, only the following adducts were considered: M[1+], M+H[1+], M-H2O+H[1+], M+Na[1+], M+K[1+], M+2H[2+],  and M(C13)+2H[2+] 

  For C18 negative ion mode, only the following adducts were considered: M-H[-], M+Cl[-], M+ACN-H[-], M+HCOO[-], M(C13)-H[-], M-H2O-H[-], and M+Na-2H[-] 

^Total number of metabolites within the specific metabolic pathway 

#Number of metabolic features in the samples with m/z matched to the metabolites within the specific metabolic pathway 

In Out In Out In Out In Out In Out In Out In Out In Out In Out In Out In Out In Out

Leukotriene metabolism 48 5

Vitamin E metabolism 33 3

Pyrimidine metabolism 48 3

Vitamin B9 (folate) metabolism 19 2

Blood Group Biosynthesis 7 1

Di-unsaturated fatty acid beta-oxidation 11 1

Glycosphingolipid biosynthesis - ganglioseries 16 1

Glycosphingolipid biosynthesis - globoseries 9 1

Glycosphingolipid biosynthesis - lactoseries 6 1

Glycosphingolipid biosynthesis - neolactoseries 7 1

Keratan sulfate biosynthesis 6 1

N-Glycan biosynthesis 17 1

O-Glycan biosynthesis 6 1

Aminosugars metabolism 33 2

Glycosphingolipid metabolism 34 2

Omega-3 fatty acid metabolism 15 2

Polyunsaturated fatty acid biosynthesis 11 1

Putative anti-Inflammatory metabolites formation from EPA 17 1

Butanoate metabolism 28 1

Glycerophospholipid metabolism 40 3

Mono-unsaturated fatty acid beta-oxidation 10 1

Saturated fatty acids beta-oxidation 22 2

Tryptophan metabolism 59 3

PM2.5PM2.5 BC CO NO NO2 NOxPathways

Total 

features in 

pathway

Overlapping 

features

HILIC Saliva C18 Saliva

BC CO NO NO2 NOx

P-Value: 0                              0.05                               0.10                              0.15                               0.20                                                                                                                                                     1 

# ^ 
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CHAPTER 2 SUPPLEMENTAL MATERIALS 

 

Table S2.1. Mean indoor and outdoor levels of TRPs at Near Dorm and Far Dorm during the study period 

Pollutant 
Indoor Outdoor 

Near Dorm Far Dorm Near Dorm Far Dorm 

BC (μg/m3) 0.78 ± 0.55 0.61 ± 0.53 0.88 ± 0.90 0.78 ± 0.60 

CO (ppb) 321 ± 121 204 ± 128 343 ± 122 209 ± 132 

NO (ppb) 7.4 ± 7.9 4.1 ± 11.3 15.9 ± 14.9 12.2 ± 16.0 

NO2 (ppb) 26.8 ± 14.8 26.1 ± 8.2 23.3 ± 9.6 21.4 ± 4.7 

NOx (ppb) 34.1 ± 21.4 30.2 ± 17.3 39.2 ± 22.4 33.7 ± 19.3 

PM2.5 (μg/m3) 8.9 ± 4.7 9.9 ± 5.5 11.1 ± 5.5 11.0 ± 5.9 

Acronym: TRP, traffic-related pollutant; BC, black carbon; CO, carbon monoxide; NO, nitric oxide; NO2, nitrogen dioxide; NOx, nitrogen oxide; PM2.5, fine 

particulate matter. 
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Table S2.2a. Tentative match of the plasma metabolic features associated with TRP to the metabolites within Leukotriene pathway using 

HILIC column with positive ion mode 

m/z RT (s) Tentative Match Adduct Form Associated TRP Also found in 

168.1135 51.6 

  12-oxo-leukotriene B4 

  5-oxo-6-trans-leukotriene B4 

  5-oxo-6E-12-epi- leukotriene B4 

 

M(C13)+2H[2+] 

 

Indoor:     CO 

C18-Plasma 

HILIC-Saliva 

C18-Saliva 

336.2319 52.6 

  Leukotriene B4 

  5(S)-HPETE 

  6-trans-leukotriene B4 

6E-12-epi- leukotriene B4 

  20-hydroxy-10,11-dihydro-leukotriene B4 

  6,7-dihydro-5-oxo-leukotriene B4 

  6,7-dihydro-5-oxo-12-epi- leukotriene B4 

  10,11-dihydro-12-oxo- leukotriene B4   

M[1+] 

M+H[1+] 

M-H2O+H[1+] 

M+H2O+H[1+] 

 

Indoor:     CO, NO, PM2.5 

Outdoor:  BC, CO, PM2.5 
C18-Saliva 

358.2129 46.0 

  6-trans-leukotriene B4 

6E-12-epi-leukotriene B4 

  6,7-dihydro-5-oxo-leukotriene B4 

  6,7-dihydro-5-oxo-12-epi-leukotriene B4 

  10,11-dihydro-12-oxo-leukotriene B4 

M+Na[1+] 

 
Outdoor: CO  

360.2246 30.0 

  10,11-dihydro-leukotriene B4 

  10,11-dihydro-12-epi-leukotriene B4 

  6,7-dihydro-12-epi-leukotriene B4 

  6,7-dihydro-leukotriene B4 

M+Na[1+] 

 

Indoor:     BC, NO, NOX 

Outdoor:  BC, NO, NOX 
 

388.1831 23.1   12-oxo-20-dihydroxy-leukotriene B4 M+Na[1+] 
Indoor:     CO 

Outdoor:  CO, NO 
 

450.1929 160.2   20-carboxy-leukotriene E4 M-H2O+H[1+] 

Indoor:      BC, NO2, 

PM2.5 

Outdoor:   BC, NO2 

 

Acronym: m/z, mass to charge ratio; RT, retention time; TRP, traffic-related pollutant; BC, black carbon; CO, carbon monoxide; NO, nitric oxide; NO2, nitrogen 

dioxide; NOx, nitrogen oxide; PM2.5, fine particulate matter. 
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Table S2.2b. Tentative match of the plasma metabolic features associated with TRP to the metabolites within Leukotriene pathway using 

C18 column with negative ion mode 

m/z RT (s) Tentative Match Adduct Form Associated TRPs Also found in 

336.1519 182.4   omega-carboxy-trinor-leukotriene B4 M(C13)-H[-] 
Indoor:     CO, NO2, NOX 

Outdoor:  CO, NO, NO2, NOX 
 

373.2254 199.6 

  12-oxo-leukotriene B4 

  5-oxo-6-trans-leukotriene B4 

  5-oxo-6E-12-epi-leukotriene B4 

M+ACN-H[-] Outdoor:   NOX ,PM2.5 

HILIC-Plasma 

HILIC-Saliva 

C18-Saliva 

382.1413 216.7   12-oxo-20-carboxy-leukotriene B4 M+Na-2H[-] Outdoor:   BC C18-Saliva 

622.2786 195.4   10,11-dihydro-12R-hydroxy-leukotriene C4 M-H2O-H[-] 
Indoor:      NO2, NOX 

Outdoor:   NO2, NOX 
C18-Saliva 

638.2741 204.0   12-oxo-c-leukotriene B3 M-H[-] 
Indoor:      NO, NO2, NOX 

Outdoor:   BC, NO2, NOX 
HILIC-Saliva 

Acronym: m/z, mass to charge ratio; RT, retention time; TRP, traffic-related pollutant; BC, black carbon; CO, carbon monoxide; NO, nitric oxide; NO2, nitrogen 

dioxide; NOx, nitrogen oxide; PM2.5, fine particulate matter. 
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Table S2.2c. Tentative match of the saliva metabolic features associated with TRP to the metabolites within Leukotriene pathway using 

HILIC column with positive ion mode 

m/z RT (s) Tentative Match Adduct Form Associated TRPs Also found in 

249.1349 95.4   Leukotriene D4 M+2H[2+] Indoor:     BC  

349.2020 172.4 

  20-oxo-leukotriene B4 

  12-oxo-20-hydroxy-leukotriene B4 

  20-carboxy-10,11-dihydro- leukotriene B4 

M[1+] 

M-H2O+H[1+] 
Indoor:     NO 

HILIC-Plasma 

C18-Plasma 

C18-Saliva 

376.0926 136.7   18,20-dioxo-20-CoA-leukotriene B4 M(C13)+3H[3+] 
Indoor:      NO, NO2 

Outdoor:   NO, NO2 

 

440.1751 116.8   18-carboxy-dinor- leukotriene E4 M+H[1+] Indoor:      PM2.5  

452.2124 172.9   20-oxo-leukotriene E4 M[1+] Outdoor:   PM2.5  

478.2059 137.7   Leukotriene E4 M+K[1+] Outdoor:   NO  

602.1245 198.2   16,18-oxo-18-CoA-dinor- leukotriene E4 M(C13)+2H[2+] Outdoor:   PM2.5  

639.2783 23.8   12-oxo-c- leukotriene B3 M[1+] Indoor:      PM2.5 C18-Plasma 

1229.2781 207.6 
  CoA-20-carboxy-18-oxo- leukotriene E4 

  18(R)-hydroxy-20-oxo-20-CoA- leukotriene E4 

M(C13)+H[1+] 

M[1+] 
Indoor:      NOX 

 

Acronym: m/z, mass to charge ratio; RT, retention time; TRP, traffic-related pollutant; BC, black carbon; CO, carbon monoxide; NO, nitric oxide; NO2, nitrogen 

dioxide; NOx, nitrogen oxide; PM2.5, fine particulate matter. 
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Table S2.2d. Tentative match of the saliva metabolic features associated with TRP to the metabolites within Leukotriene pathway using 

C18 column with negative ion mode 

m/z RT (s) Tentative Match Adduct Form Associated TRPs Also found in 

371.2005 195.0 
  Leukotriene B4 

  5(S)-HPETE 
M+Cl[-] 

Indoor:      CO, PM2.5 

Outdoor:   CO 

HILIC-Plasma 

 

373.2248 211.3 

  12-oxo-leukotriene B4 

  5-oxo-6-trans-leukotriene B4 

  5-oxo-6E-12-epi-leukotriene B4 

M+ACN-H[-] 
Indoor:      CO 

Outdoor:   CO 

HILIC-Plasma 

C18-Plasma 

HILIC-Saliva 

387.1951 193.3   20-hydroxy-leukotriene B4 M+Cl[-] 
Indoor:      BC 

Outdoor:   BC 
 

407.1714 196.7   12-oxo-20-carboxy-leukotriene B4 M+HCOO[-] Outdoor:   PM2.5 HILIC-Plasma 

661.2647 182.5   10,11-dihydro-12R-hydroxy-leukotriene C4 M+Na-2H[-] Indoor:      BC C18-Plasma 

Acronym: m/z, mass to charge ratio; RT, retention time; TRP, traffic-related pollutant; BC, black carbon; CO, carbon monoxide; NO, nitric oxide; NO2, nitrogen 

dioxide; NOx, nitrogen oxide; PM2.5, fine particulate matter. 
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Table S2.3a. Tentative match of the plasma metabolic features associated with TRP to the metabolites within Vitamin E metabolism using 

HILIC column with positive ion mode 

m/z RT (s) Tentative Match Adduct Form Associated TRP Also found in 

168.1135 51.6 7'-carboxy-gama-chromanol M(C13)+2H[2+] Indoor:     CO 
C18 Plasma 

C18 Saliva  

348.2264 26.6 7'-carboxy-alpha-chromanol M+H[1+] 
Indoor:     CO, NO 

Outdoor:  CO, NO 
 

413.2673 28.1 11'-carboxy-alpha-tocotrienol M[1+] 
Indoor:     NO 

Outdoor:  BC 
HILIC Saliva 

476.2879 26.0 13'-carboxy-alpha-tocotrienol M+Na[1+] 
Indoor:     NO, NO2, NOX 

Outdoor:  NO, NO2, NOX 
 

Acronym: m/z, mass to charge ratio; RT, retention time; TRP, traffic-related pollutant; BC, black carbon; CO, carbon monoxide; NO, nitric oxide; NO2, nitrogen 

dioxide; NOx, nitrogen oxide; PM2.5, fine particulate matter. 
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Table S2.3b. Tentative match of the plasma metabolic features significantly associated with TRP (FDRB-H<0.05) to the metabolites within 

Vitamin E metabolism using C18 column with negative ion mode 

m/z RT (s) Tentative Match Adduct Form Associated TRP Also found in 

373.2254 199.6 7'-carboxy-gama-chromanol M+ACN-H[-] Outdoor:  NOX, PM2.5 
HILIC Plasma 

C18 Saliva  

409.2381 184.9 9'-carboxy-alpha-chromanol M+Na-2H[-] Outdoor:  BC C18 Saliva 

439.2759 202.1 11'-carboxy-gama-tocotrienol M+ACN-H[-] 
Indoor:     NOX 

Outdoor:  NOX 
 

Acronym: m/z, mass to charge ratio; RT, retention time; TRP, traffic-related pollutant; BC, black carbon; CO, carbon monoxide; NO, nitric oxide; NO2, nitrogen 

dioxide; NOx, nitrogen oxide; PM2.5, fine particulate matter. 
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Table S2.3c. Tentative match of the saliva metabolic features significantly associated with TRP (FDRB-H<0.05) to the metabolites within 

Vitamin E metabolism using HILIC column with positive ion mode 

m/z RT (s) Tentative Match Adduct Form Associated TRP Also found in 

384.1730 50.0 7'-carboxy-alpha-tocotrienol M+K[1+] 
Indoor:     BC, PM2.5 

Outdoor:  BC, PM2.5 
 

390.1552 186.5 7'-carboxy-gama-tocotrienol M+NaCl[1+] 
Indoor:     PM2.5 

Outdoor:  PM2.5 
 

415.2824 72.4 11'-carboxy-alpha-tocotrienol M(C13)+H[1+] 

Indoor:     BC, CO,PM2.5 

Outdoor:  BC, CO, NO, 

PM2.5 

HILIC Plasma 

462.2761 33.1 13'-carboxy-gama-tocotrienol M+Na[1+] Outdoor:  PM2.5 C18 Saliva 

Acronym: m/z, mass to charge ratio; RT, retention time; TRP, traffic-related pollutant; BC, black carbon; CO, carbon monoxide; NO, nitric oxide; NO2, nitrogen 

dioxide; NOx, nitrogen oxide; PM2.5, fine particulate matter. 
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Table S2.3d. Tentative match of the saliva metabolic features significantly associated with TRP (FDRB-H<0.05) to the metabolites within 

Vitamin E metabolism using C18 column with negative ion mode 

m/z RT (s) Tentative Match Adduct Form Associated TRP Also found in 

373.2248 211.3 7'-carboxy-gama-chromanol M+ACN-H[-] 
Indoor:     CO 

Outdoor:  CO 

HILIC Plasma 

C18 Plasma  

409.2374 174.5 9'-carboxy-alpha-chromanol M+Na-2H[-] 
Indoor:     BC 

Outdoor:  BC 
HILIC Plasma 

439.3194 250.2 13'-hydroxy-alpha-tocotrienol M-H[-] 
Indoor:     BC 

Outdoor:  BC, NO2 
 

454.2750 198.6 13'-carboxy-gama-tocotrienol M-H+O[-] 
Indoor:     NO, NO2, NOX 

Outdoor:  NO, NO2, NOX 
C18 Plasma 

460.2970 203.1 13'-hydroxy-alpha-tocotrienol M+Na-2H[-] Outdoor:  PM2.5  

Acronym: m/z, mass to charge ratio; RT, retention time; TRP, traffic-related pollutant; BC, black carbon; CO, carbon monoxide; NO, nitric oxide; NO2, nitrogen 

dioxide; NOx, nitrogen oxide; PM2.5, fine particulate matter. 
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Figure S2.1 Number of features extracted in saliva and plasma samples. 7,347 and 7,700 metabolic features were reliably extracted in plasma 

and saliva samples respectively using C18 column with negative ion mode, where 2,812 features were detected in both plasma and saliva samples. 

In HILIC column with positive ion mode, 13,419 and 21,313 metabolic features were reliably extracted, among which 6,667 features were 

detected in both plasma and saliva samples. 

 

 

 

 

 

 

 

 

Metabolites extracted by C18 (negative ion mode) Metabolites extracted by HILIC (positive ion mode) 

Plasma 

4535 

Saliva 

4888 2812 

Plasma 

6752 

Saliva 

14646 6667 



89 
 

 

Figure S2.2. Percentage of time spent by linear distance to the highway, by dorm participants. Green bars represent distribution of time 

among students living in the Near Dorm (20m from the highway); blue bars represent distribution of time among students living in the Far Dorm 

(1.4 km from the highway). 
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Figure S2.3a. Manhattan plots of associations between changes in plasma feature intensities with level of traffic-related pollutants using 

the HILIC column with positive ion mode.  X-axis denotes the retention time of the metabolic features (in seconds). Y-axis denotes the negative 

log-10 value of the p-value from the association between intensity of each metabolic feature and level of traffic related air pollutant using the 

mixed effect model.  847 unique metabolic features were statistically significantly (FDRB-H <0.05) associated with at least one or more TRPs in the 

plasma samples using the HILIC column with positive ion mode. 

* FDRB-H, false discover rate correction using the Benjamini-Hochberg procedure 

FDRB-H* < 0.05                                       FDRB-H* < 0.10                                  FDRB-H* < 0.20 
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Figure S2.3b. Manhattan plots of associations between changes in plasma feature intensities with level of traffic-related pollutants using 

the C18 column with negative ion mode.  X-axis denotes the retention time of the metabolic features (in seconds). Y-axis denotes the negative 

log-10 value of the p-value from the association between intensity of each metabolic feature and level of traffic related air pollutant using the 

mixed effect model.  444 unique metabolic features were statistically significantly (FDRB-H <0.05) associated with at least one or more TRPs in the 

plasma samples using theC18 column with negative ion mode. 

* FDRB-H, false discover rate correction using the Benjamini-Hochberg procedure 

FDRB-H* < 0.05                                       FDRB-H* < 0.10                                  FDRB-H* < 0.20 
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Figure S2.3c. Manhattan plots of associations between changes in saliva feature intensities with level of traffic-related pollutants using the 

HILIC column with positive ion mode.  X-axis denotes the retention time of the metabolic features (in seconds). Y-axis denotes the negative 

log-10 value of the p-value from the association between intensity of each metabolic feature and level of traffic related air pollutant using the 

mixed effect model.  1,320 unique metabolic features were statistically (FDRB-H <0.05) significantly associated with at least one or more TRPs in 

the saliva samples using the HILIC column with positive ion mode. 

* FDRB-H, false discover rate correction using the Benjamini-Hochberg procedure 

FDRB-H* < 0.05                                       FDRB-H* < 0.10                                  FDRB-H* < 0.20 
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Figure S2.3d. Manhattan plots of associations between changes in saliva feature intensities with level of traffic-related pollutants using the 

C18 column with negative ion mode.  X-axis denotes the retention time of the metabolic features (in seconds). Y-axis denotes the negative log-

10 value of the p-value from the association between intensity of each metabolic feature and level of traffic related air pollutant using the mixed 

effect model.  399 unique metabolic features were statistically (FDRB-H <0.05) significantly associated with at least one or more TRPs in the saliva 

samples using the C18 column with negative ion mode. 

* FDRB-H, false discover rate correction using the Benjamini-Hochberg procedure 

FDRB-H* < 0.05                                       FDRB-H* < 0.10                                  FDRB-H* < 0.20 
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CHAPTER 3 

Differential Oxidative Stress and Inflammatory Related Acute Metabolic Responses to 

Traffic-Related Air Pollution in a Panel of Commuters with and without Asthma 

Donghai Liang, Chandresh Ladva, Rachel Golan, Tianwei Yu, Stefanie Ebelt Sarnat, Roby Greenwald, 

Karan Uppal, ViLinh Tran, Che-Jung Chang, Dean Jones, Armistead Russell, Jeremy A. Sarnat 
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ABSTRACT 

Improving exposure assessment to traffic-related air pollution (TRAP) is particularly critical for 

developing more targeted regulations to better protect public health. Environmental metabolomics has 

emerged as a promising tool for estimating internal exposure to complex TRAP mixtures.  However, 

considerable questions remain concerning specific metabolites most associated with TRAP, as well as the 

potential modification of the metabolic responses to TRAP exposure by pre-existing health conditions.  

To address these knowledge gaps, we conducted the Atlanta Commuters Exposure (ACE-2) study, a 

randomized, crossover panel study of asthmatic and healthy commuters, where each participant conducted 

a scripted highway commute and was randomized to either a scripted side-street commute or clinic exposure 

session. We measured a suite of 27 pollutants during each exposure session and conducted high-resolution 

metabolomics profiling on blood samples from the commuters prior to and after each exposure session. We 

evaluated metabolite and metabolic pathway alternations using an untargeted metabolome-wide association 

study (MWAS) framework with pathway analyses and chemical annotation.  

Most of the measured pollutants were higher during the highway commute compared to the side street 

commute and clinical session (p < 0.05). In total, 17,586 and 9,087 metabolic features were extracted from 

the plasma samples, in both the negative and positive ionization modes, respectively. 494 and 220 unique 

metabolic features were associated with at least 3 or more of the 27 pollutants in the negative and positive 

ionization modes, respectively (p<0.05), when controlling for potentially confounding and false discovery. 

Pathway analysis indicated elicitation of several inflammatory and oxidative stress related metabolic 

pathways, including leukotriene, vitamin E, cytochrome P450, and tryptophan metabolism. We confirmed 

the chemical identity of 45 unique metabolites enriched in these metabolic pathways, including 

inflammatory amino acids such as arginine, histidine, and methionine. Many of these molecules were not 

only associated with multiple pollutants, but also differentially expressed between asthmatic and healthy 

participants.  



96 
 

Using a high-resolution environmental metabolomics platform, we observed significant and robust 

metabolic perturbations associated with numerous TRAP pollutants.  We identified xenobiotic-mediated 

oxidative stress and acute inflammatory response related pathways and metabolites. These results motivate 

future studies geared towards development of metabolic markers for reflecting TRAP exposures, their 

corresponding effects, and the asthma etiology. 
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INTRODUCTION 

Traffic related air pollution (TRAP) comprises over 25% of urban fine particulate matter (PM2.5) and  has 

been linked to numerous adverse health outcomes, including excess cardiorespiratory mortality, and 

hospitalizations (Brook et al. 2010; Chen et al. 2008; Health Effects Institute 2010). Although many 

epidemiologic studies report positive associations between traffic exposures and adverse response, less is 

known about the specific components of traffic that may be causally responsible for these observations. 

Thus, improving exposure assessment to TRAP is particularly critical for developing more targeted 

regulations aimed at reducing the health burden associated with this pollutant source (Health Effects 

Institute 2010). For primary traffic emission exposures, in particular, an added challenge lies in its chemical 

and physical heterogeneity, consisting of hundreds of different organic and inorganic components. 

Moreover, measuring internal, biologically-relevant exposures and corresponding responses is also 

challenging, due to the lack of sensitive and specific TRAP biomarkers, inter-individual heterogeneity in 

pharmacokinetics, and the complexity of numerous endogenous pathways that may mediate response.   

High-resolution metabolomics, involving the quantitation and identification of thousands of metabolic 

features associated with exogenous exposure and endogenous processes, has emerged as a powerful tool to 

improve internal exposure estimation to complex environmental mixtures (Bundy et al. 2009; Lankadurai 

et al. 2013; Miller and Jones 2014; Simpson and McKelvie 2009; Viant 2008). Previously, we and other 

groups have demonstrated the capability of environmental metabolomics to capture internal metabolic 

signals upon exposures to ambient air pollutants (Breitner et al. 2016; Ladva et al. 2017; Martens et al. 

2017; Menni et al. 2015; Surowiec et al. 2016; Vlaanderen et al. 2017). Despite this, considerable questions 

remain concerning specific metabolites and pathways most influenced by TRAP exposures and the adverse 

responses, as well as the potential modification of metabolic responses to TRAP exposures by pre-existing 

health conditions. 
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To address these issues, we leveraged data from an analysis of TRAP exposure and metabolic response 

from the Atlanta Commuters Exposure (ACE-2) study, a randomized, crossover panel study of asthmatic 

and healthy commuters. Given their ability to provide accurate assessment of both external exposure and 

internal response, panel-based studies have proven to be an effective platform to investigate TRAP health 

effects (Delfino et al. 2006; Delfino et al. 2008; McCreanor et al. 2007; Sarnat et al. 2012). Nevertheless, 

results from previous targeted, panel-based studies have been inconsistent in identifying specific 

components of traffic that may be causally responsible for these observations. (Riediker et al. 2004; 

Zuurbier et al. 2010) and null responses in others (Chiu et al. 2016; Wu et al. 2014). These inconsistencies 

are perhaps largely due to the lack of robust and specific biomarkers that accurately reflect TRAP exposure 

or the corresponding effects (Rylance et al. 2013). In previous ACE-2 findings (Ladva et al., 2018), we 

observed a modest, transient systemic inflammatory and acute respiratory response (using several known 

traditional biomarkers) following on-road commutes and in association with several common traffic 

pollutant components. In addition, perturbations of the metabolome were found to be associated with in-

vehicle particulate exposure and traditional markers of inflammation. For this analysis, we build on the 

initial metabolomics analyses of the ACE-2 panel and conducted comprehensive biological pathway 

analysis and chemical identification, to further understand the metabolic signals most influenced by TRAP. 

In addition, here we also examine potential modification of metabolic responses to TRAP exposures by 

asthma status. 

METHODS 

    We conducted the Atlanta Commute Exposure study phase 2 (ACE-2), a randomized, crossover panel 

study of 60 adults (18-39), asthmatic and healthy, with extensive assessment of in-vehicle environmental 

exposure and repeated measurements on numerous health endpoints from 2011 to 2013 in Atlanta, GA. The 

study design, participant demographic characteristics, recruitment and exclusion criteria has been 

previously detailed (Golan et al. 2017; Krall et al. 2018; Vreeland et al. 2017). Briefly, we randomly 
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assigned 59 ACE-2 participants to participate in two exposure sessions, exactly 7 days apart, including a 

highway commute and either a surface street commute or a clinic visit. We conducted each exposure session 

during the morning rush hour (7 am to 9 am). Specifically, highway commutes took place on Interstate 285 

(I-285), a relatively congested highway encircling Atlanta (2016 annual average daily traffic (AADT): 

203,000). We conducted the surface street exposure session on side streets within close proximity to Emory 

University (2016 AADT: 10,400-25,800). The clinic visit sessions was conducted in a dedicated, internal 

patient examination room within the Emory Environmental Health Laboratory. The highway and surface 

street commute sessions spanned driving distances of approximately 50 km and 30 km, respectively, with 

participants driving their personal vehicles, and study staff as passengers. During the clinic visit, 

participants were seated in the clinic for the duration of the session. The study protocol and all aspects of 

human subjects’ participation were approved and supervised by the Emory University Institutional Review 

Board. 

Exposure Assessment 

A detailed description of the ACE-2 sampling methods can be found elsewhere (Golan et al. 2017; Krall 

et al. 2018; Vreeland et al. 2017). For the current analysis, we selected three groups of source-specific 

traffic-related air pollutants (TRAPs) a priori based on the source apportionment analyses conducted in a 

previous publication (Krall et al. 2018), including crustal, primary tailpipe traffic, and non-tailpipe traffic. 

These souce-specific pollution factors consisted of particle-bound polycyclic aromatic hydrocarbons (pb-

PAH), particle number concentration (PNC), fine particulate matter (PM2.5), and noise, using both time-

integrated and continuous instrumentation. Although noise is not a traditional air pollution indicator, we 

chose to include it in the analyses given that it has been previously suggested as an independent risk factor 

and potential confounder of the health effects attributed to traffic emissions (Babisch 2005; Boogaard et al. 

2009). In addition, we examined a range of size- and chemically resolved particulate components, including 

19 metals that were detected at least 60% of all collected filter samples, as well as black carbon (BC), 

elemental carbon (EC), organic carbon (OC), and water soluable organic carbon (WSOC).  
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Biomonitoring and High-Resolution Metabolomics 

     Among the 59 adults that participated in the scripted commutes, 45 (21 healthy and 24 asthmatic) 

contributed venous blood prior to and after each sampling session. In total, we collected and analyzed 140 

plasma and cell samples (average of 3.1 repeated samples per participant) using established protocols (Go 

et al. 2015; Ladva et al. 2017). We treated each sample with two volumes of acetonitrile and analyzed in 

triplicate using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) techniques (Dionex 

Ultimate 3000; ThermoScientific QExactive). We used C18 hydrophobic reversed-phase chromatography 

with positive and negative electrospray ionization (ESI) modes, at 70,000 full width at half maximum 

resolution over a mass-to-charge ratio (m/z) range of 85 to 1250, to enhance the coverage of metabolic 

feature detection. We applied two quality control pooled reference plasma samples, which included NIST 

1950 (Simon-Manso et al. 2013) and pooled human plasma purchased from Equitech Bio, at the beginning 

and end of each analytical batch of 20 samples for normalization, control of background noise, batch 

evaluation, and post hoc quantification. Following instrument analyses of all samples, we converted raw 

data files into .cdf files using ProteoWizard and extracted metabolic signals using apLCMS with 

modifications by xMSanalyzer with data quality control assessment and batch effect correction (Uppal et 

al. 2013; Yu et al. 2009). Detected signals (‘metabolic features’) were uniquely defined by their mass-to-

charge ratio (m/z), retention time and ion intensity. For further analyses, we only included metabolic 

features detected in >20% of all plasma samples, with median coefficients of variation (CV) among 

technical replicates <30% and Pearson correlation >0.7. Following quality assessment, replicate samples 

were averaged and averaged intensities were log2 transformed. 

Statistical Analysis 

We conducted the primary statistical analysis following an untargeted Metabolome-Wide Association 

Study (MWAS) workflow, where metabolic features were analyzed without prior knowledge of their 

chemical identity. We conducted linear mixed effect models to assess associations between post minus pre 

changes in metabolite feature intensity (i.e., relative concentration) and corresponding pollutant 
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concentrations during the exposure session. The average concentration of each of the traffic metrics, 

including pbPAH, PNC, PM2.5 mass concentration, noise, and 23 speciated particulate components, from 

each sampling session, was used as the primary exposure metric in single pollutant models. Models testing 

the main effect for each metric had the following form:  

∆𝑙𝑜𝑔2𝑌𝑖𝑗𝑡 = 𝜇 + 𝜃𝑖𝑗 + 𝛽1j𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑖𝑘𝑡 + 𝛽2j𝐴𝑠𝑡ℎ𝑚𝑎𝑖 + 𝛽3j𝑊𝑒𝑒𝑘𝑖𝑡 + 𝛽4j𝐴𝑔𝑒𝑖 + 𝛽5j𝐺𝑒𝑛𝑑𝑒𝑟𝑖 +

𝛽6j𝑅𝑎𝑐𝑒𝑖 + 𝛽7j𝐵𝑀𝐼𝑖 + 𝛽8j𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑜𝑔2𝑌𝑖𝑗𝑡 + 𝜀𝑖𝑗𝑘𝑡     (Eq. 3.1) 

where ∆𝑙𝑜𝑔2𝑌𝑖𝑗𝑡 refers to the log post- and pre- exposure changes in intensity for metabolic feature 𝑗 

for participant 𝑖 on sampling date 𝑡. Separate models were conducted for each metabolic feature, from each 

ionization mode (plasma C18 positive ionization column, and plasma C18 negative ionization column). 𝜇 

is the fixed-effect intercept and a random effect 𝜃𝑖 is included to control for unspecified between-participant 

heterogeneity. 𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑖𝑘𝑡  refers to the average concentration of the traffic related pollutant 𝑘  for 

participant 𝑖 during the sampling session on sampling date 𝑡. 𝐴𝑠𝑡ℎ𝑚𝑎𝑖 refers to whether participant 𝑖 had 

self-reported mild-to-moderate asthma or not. We included other covariates to control for potential 

between-participant differences, including age (continuous), gender (categorical), body mass index (BMI; 

continuous), and race (categorical, White, Asian, and Other). We also controlled for 𝑊𝑒𝑒𝑘𝑖𝑡, whether the 

exposure session corresponded to the first or second week of the commuter’s participating the protocol on 

sampling date 𝑡; and 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐿𝑜𝑔2𝑌𝑖𝑗𝑡 , the baseline intensity for metabolic feature 𝑗 for participant 𝑖 prior 

to the commute on sampling date 𝑡. 𝜀𝑖𝑗𝑘𝑡  represents residual random Normal error.  

To further examine potential effect modification of asthma status on the pollutant-metabolic feature 

associations, we stratified the study population into 1) participants with asthmatic and 2) participants 

without asthma. The main effects of each of the traffic exposure metrics on the metabolomic profiles for 

each subgroup were examined using the following model, run for each asthma status subgroup separately:  

∆𝑙𝑜𝑔2𝑌𝑖𝑗𝑡 = 𝜇 + 𝜃𝑖 + 𝛽1j𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑖𝑘𝑡 + 𝛽2j𝑊𝑒𝑒𝑘𝑖𝑡 + 𝛽3j𝐴𝑔𝑒𝑖 + 𝛽4𝑗𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽5𝑗𝑅𝑎𝑐𝑒𝑖 +

𝛽6𝑗𝐵𝑀𝐼𝑖 + 𝛽7𝑗𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑜𝑔2𝑌𝑖𝑗𝑡 + 𝜀𝑖𝑗𝑘𝑡        (Eq. 3.2) 
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Finally, we tested the effect modification by asthmatic status formally, using the model: 

∆𝑙𝑜𝑔2𝑌𝑖𝑗𝑡 = 𝜇 + 𝜃𝑖𝑗 + 𝛽1j𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑖𝑘𝑡 + 𝛽2j𝐴𝑠𝑡ℎ𝑚𝑎𝑖 + 𝛽3j𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑖𝑘𝑡 ∗ 𝐴𝑠𝑡ℎ𝑚𝑎𝑖 +

𝛽4j𝑊𝑒𝑒𝑘𝑖𝑡 + 𝛽5j𝐴𝑔𝑒𝑖 + 𝛽6j𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽7j𝑅𝑎𝑐𝑒𝑖 + 𝛽8j𝐵𝑀𝐼𝑖 + 𝛽9j𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑙𝑜𝑔2𝑌𝑖𝑗𝑡 + 𝜀𝑖𝑗𝑘𝑡  (Eq. 3.3) 

We corrected hypothesis tests to identify differentially expressed features associated with specific 

traffic-related pollutant levels (by each ionization mode) for multiple comparisons using the Benjamini-

Hochberg false discovery rate (FDRB-H) procedure at a 5% false positive (i.e., Type I error) threshold.  

Metabolic Pathway Enrichment Analysis and Metabolite Annotation 

We used metabolic features that were statistically associated with traffic pollutants to conduct pathway 

enrichment and metabolite annotation analyses. Pathway identification and module analysis were 

performed for metabolic features meeting the 5% FDR threshold using mummichog (v. 1.0.5), a 

bioinformatics platform that infers and categorizes functional biological activity directly from mass 

spectrometry output, without prior metabolite validation (Amorim et al. 2013 134; Li et al. 2013). We 

conducted mummichog analyses separately for each set of significant features (FDRBH < 0.05) from each 

of the 27 TRAP-specific linear mixed models, by each ionization mode (i.e., mummichog analyses up to 

54 sets of significant features). We selected pathways with adjusted p < 0.05 for at least three of the TRAPs 

models, and with at least four features from the experimental data matched with pathway metabolites. To 

further minimize the possibility of false positive discovery, we re-run the candidate pathways using a subset 

of 6 most common forms out of the 16 standard adduct forms in mummichog (For the C18 positive 

ionization mode, only the following adducts were considered: M[+], M+H[+], M-H2O+H[+], M+Na[+], M+K[+], 

M+2H[2+], and M(C13)+2H[2+]; for the C18 negative ionization mode, only the following adducts were 

considered: M-H[-], M+Cl[-], M+ACN-H[-], M+HCOO[-], M(C13)-H[-], M-H2O-H[-], and M+Na-2H[-]). We 

presented results in a metabolic-pathway-TRAPs heat map, with each cell of the heat map representing a 

statistical association between each of the metabolic pathways and each traffic indicator. We compared the 



103 
 

top TRAP pathways in the asthmatic subgroup with the ones in the non-asthma subgroup using a Venn 

diagram. 

We selected the metabolic features that were significantly associated with a TRAP (FDRB-H<0.05) in the 

whole population or in either subgroup, and also significantly enriched in a relevant pathway (p<0.05) using 

mummichog for chemical annotation. Each metabolic feature were annotated by matching mass m/z value 

for adducts commonly formed to the METLIN (https://metlin.scripps.edu/index.php), ChemSpider 

(http://www.chemspider.com/), Human Metabolome Database (HMDB), and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) (http://www.genome.jp/kegg/pathway.html) databases, using a mass error 

threshold of 10 ppm. We further screened these tentative matches on their retention time, isotope patterns, 

and peak quality by manually examining the extracted ion chromatograph (EIC). Finally, we confirmed a 

select number of annotated metabolites by comparison of accurate mass m/z, retention time and ion 

dissociation patterns to authentic chemical reference standards analyzed using the identical method and 

instrument parameters via tandem mass spectrometry. 

 

RESULTS 

Among the 59 adults who participated in the ACE-2 study, 21 healthy and 24 asthmatic participants 

provided venous blood specimens prior to and after each sampling session during the study period. We 

collected 140 plasma and cell samples throughout the study (average of 3.1 repeated samples per 

participant). As expected, mean levels of pb-PAH, PNC, PM2.5, and noise were significantly higher during 

highway commute sessions as compared to surface street commutes and clinic visits. With the exception of 

WSOC, mean levels for all organic components of PM2.5, along with several metal components, were 

significantly higher in the highway, indicative of a substantial contrast in the potential exposure level to 

particulate exposure among the three exposure scenarios (p <0.05, Table 3.1). Baseline information 

obtained from each participant during the study showed generally similar demographic characteristics 
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among participants with or without asthma, although those with asthma were generally younger than the 

non-asthmatic participants (p < 0.05, Table 3.2).  

In total, we extracted 9,087 metabolic features from the positive ionization mode and 17,586 features 

from the negative ionization mode. The median CV across the triplicate samples for each feature was 23.5% 

and 25.4% in positive and negative ionization modes, respectively, indicative of good overall data quality. 

42% of the extracted ions were found to have m/z matches (< 10 ppm) with metabolites identified in either 

the Human Metabolome Database (HMDB) or the USEPA’s Mobile Air Toxics database. 

To test the main effect of pollutant exposure on corresponding metabolic changes, we ran 54 sets of 

MWAS models (27 individual pollutants of metabolic features in 2 ionization modes). Significant metabolic 

features among these models ranged from 45 to 576 features (FDRB-H < 0.05, Table S3.1). Specifically, 

elemental carbon, a traditional maker of diesel vehicles, and vanadium, a metal specie from primary tailpipe 

according to the source apportionment analyses in ACE-2 study, had the largest number of metabolic 

associations. In total, 494 and 220 unique metabolic features were associated with at least 3 or more of the 

27 pollutants in the negative and positive ionization modes, respectively (FDRB-H < 0.05). We found a 

similar number of significant features associated with the pollutants in both the asthmatic subgroup and 

healthy subgroup, 40.1% of which were shared by both subgroup, while 36.6% were observed only in 

asthmatic subgroup and 23.3% observed only in healthy subgroup. Numerous metabolic features differed 

significantly by asthma disease status, indicative of effect measure modification. Among the MWAS 

models, the number metabolic features that were either higher or lower in participants with asthma ranged 

from 63 to 861 (FDRB-H < 0.05, Table S3.1).  

Using mummichog, we further examined whether these significant features associated with TRAPs co-

occurred as enriched metabolites within specific known metabolic pathways. In the main effect model 

(Eq.1), 13 metabolic pathways in negative ionization mode and 10 metabolic pathways in positive 

ionization mode were significantly associated with at least 20% of all TRAPs in plasma samples (adjusted 

p<0.05, Figure 3.1). Broadly, five pathways consistently appeared to be significantly perturbed across 
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varying pollutant models, in both ionization modes. These included pathways predominantly associated 

with xenobiotic-mediated oxidative stress and acute inflammatory response, such as leukotriene 

metabolism, vitamin E metabolism, cytochrome P450, pyrimidine metabolism, and tryptophan metabolism 

(Capuron et al. 2011; Chow 1991; Dahlén et al. 1981; Gonzalez 2005; Henderson 1994; Hotamisligil 2006; 

Mackay et al. 2006; Morgan 1997; Singh et al. 2005; Stoy et al. 2005). The mummichog pathway results 

were robust to stratification by asthma status (Figure 3.2). Pathways found to be perturbed in the participants 

with asthma exclusively (N=11), tended to be those heavily related to acute inflammatory processes, 

including arginine and proline metabolism, as well as the tyrosine metabolism. Similar results were 

obtained when examining the effect modification of asthmatic status (Eq. 3.3) in modifying the pollutant-

metabolome associations, where these oxidative stress or inflammatory responses related pathways again 

appeared to be the top significant pathways, especially for the primary tailpipe source (Figure 3.3). Based 

on the strength and consistency of the mummichog results in showing these pollutant-related associations, 

we focused on annotating constituent metabolic features within these pathways, with the aim of validating 

the untargeted metabolomic observations.  

We screened each of the pollutant-driven metabolic features for spectrum peak quality and purity by 

manual examination of their respective extracted ion chromatographs (EICs). To reduce the possibility of 

false positive discovery, we included only spectra with unambiguous EIC peaks (35% and 32% in negative 

and positive ionization modes, respectively). Finally, we selected those putatively matched features that 

were both associated with the measured TRAPs and enriched within TRAP exposure-relevant metabolic 

pathways for chemical identity validation. We matched metabolic feature peaks by accurate mass and 

retention time to authentic reference standards in an in-house library tandem mass spectrometry run under 

identical experimental conditions.  In total, we confirmed the chemical identity of 26 metabolic features in 

the negative ionization mode and 24 in the positive ionization mode via MS/MS matching (Table 3.3a and 

3.3b, Figure S3.1a and S3.1b). 92% of these verified metabolites were indicative of endogenous metabolic 

signals related to oxidative stress, inflammatory responses, and nucleic acid damage and repair. For these 
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50 validated metabolites, we observed consistent significant and negative associations (β < 0) between anti-

inflammatory molecules and corresponding pollutant levels and significant and positive associations (β > 

0) between oxidative or pro-inflammatory metabolites and corresponding pollutant levels (Table 3.3a and 

3.3b). Notably, 25 validated metabolites were found exclusively to be associated with pollutant exposure 

among participants with asthma, while 7 unique metabolites were found among participants without asthma. 

Specifically, inflammatory and oxidative stress related amino acids, including arginine, histidine, and 

methionine, were consistently associated with vanadium, elemental carbon, cobalt, and cerium in both 

negative and positive ionization mode. Several other amino acids related to inflammation and oxidative 

stress were also identified, including glutamic acid, serine, proline, valine, leucine, lysine, phenylalanine, 

and tyrosine, each showing biologically plausible strong associations with numerous TRAPs. In addition, 

we validated a number of intermediate molecules generated from these essential amino acids, some of 

which were also verified in our recent TRAP metabolomics analyses. These included 3-hydroxykynurenine, 

hypoxanthine, 5-oxo-proline, and adenosine 5'-monophosphate. Moreover, the direction and strength of 

these associations differed substantially by asthma status, indicative of the effect modification of asthmatic 

status on modifying the impact of pollutant exposures on the inflammatory and oxidative stress related 

metabolic responses (Figure 3.4). Furthermore, these validated metabolites were closely linked and 

connected in several inflammatory and redox pathways, elucidating the potential molecular mechanisms on 

traffic-related air pollution toxicity (Figure 3.5). 

DISCUSSION 

Globally, commuters on average spend approximately one hour and nine minutes within a vehicle each 

day (Dalia Research et, al. 2017), when concentrations of TRAP frequently exceed ambient levels and 

represent a large fraction of total daily exposure levels (Adams et al. 2001; Golan et al. 2018; Patton et al. 

2016). We examined whether perturbations in the plasma metabolome were detectable following short-

term exposures to elevated in-vehicle pollutant levels. To our knowledge, the current analysis is among the 



107 
 

largest prospective longitudinal assessment examining metabolomic changes related to traffic pollution 

exposures. 

A key finding from the current analyses was the identification of several biological pathways which were 

consistently associated with elevated pollutant levels.  These significant pathways were associated with 

more than 25% of the 27 pollutants across both negative and positive ionization mode, in both the whole 

panel and in asthma-stratified analyses (Figure 3.1 and Figure 3.2). Many of the identified pathways, 

including leukotriene, cytochrome P450, vitamin E, tyrosine, methionine, and tryptophan metabolism, are 

biologically plausible mediators of TRAP-related acute oxidative stress and inflammatory response, which 

had been closely linked to acute cardiorespiratory responses.  

The identification of these specific pollution-mediated pathways mirror results in our and other previous 

findings (Ladva et al. 2017; Vlaanderen et al. 2017). In a recent analysis of 54 healthy college students 

living close to a major urban highway (Liang et al. submitted), we identified several oxidative stress and 

inflammation-related pathways that were significantly associated with TRAP using high-resolution 

environmental metabolomics, where leukotriene, vitamin E, and cytochrome P450 metabolic pathways 

showing the strongest associations with multiple TRAP indicators such as BC, NO, and PM2.5. Similarly, 

in a small panel of 31 healthy volunteers exposed to ambient air pollution for 5h, Vlaanderen et al., reported 

metabolic perturbations within 8 pathways, including tyrosine and tryptophan metabolisms. 

The current findings also point to substantial differences in pollutant-metabolic responses by asthma 

status. In particular, leukotriene metabolism, an active inflammatory mediatory pathway, was consistently 

the most prominent pathways found among participants showing strongest associations with the main effect 

for many of the measured TRAPs, and the magnitude of the perturbations differed substantially among 

asthmatic and healthy participants. As a family of active eicosanoid mediators synthesized from the 

oxidation of arachidonic acid endogenously, leukotrienes are considered the major cause of inflammation 

in asthma and allergic rhinitis (Nelson et al. 2008; Salmon and Higgs 1987). In another panel of healthy 

participants living in close proximity to a major urban roadway (Liang et al. submitted), we demonstrated 
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that perturbations in leukotriene related metabolites were linked to cumulative exposure to elevated TRAPs, 

including BC, CO, NO and PM2.5. In the current MWAS models, we also observed consistent and robust 

associations between features putatively matched with leukotriene metabolism and numerous TRAPs, 

including those from the primary tailpipe (e.g. PAH, BC, and OC), crustal (e.g. Al, Ca and Mg), and non-

tailpipe source (e.g. Co, Fe, and Mn). Moreover, the strength and magnitude of the associations between 

these features and TRAPs significantly differed among asthmatic and healthy participants, indicative of a 

biologically plausible role of pre-existing condition in modifying the inflammatory responses to TRAPs 

exposure. Similar pattern of differentiated responses were also observed among putatively matched features 

enriched in other inflammatory pathways, including arginine, proline, as well as tyrosine metabolism 

(Figure 3.2 and Figure 3.3). 

In addition to inflammation, oxidative stress-related pathways were also shown to be strongly  associated 

with in-vehicle pollution among the ACE-2 participants. Key oxidative stress mediators within these related 

metabolic pathways included cytochromes P450, terminal oxidase enzymes in electron transfer chains 

(Gonzalez 2005); vitamin E, a potent fat-soluble antioxidant that protects cells from oxidative damage 

(Singh et al. 2005); and tryptophan, an α amino acid and essential precursor to the neurotransmitter 

serotonin and the hormone melatonin (Stoy et al. 2005). Notably these proteins and amino acids have been 

linked to exposure to air pollution in in vivo or in vitro models (Kampa and Castanas 2008), including 

finding where tyrosine and hypoxanthine were found to be associated with short term exposure to air 

pollutants among healthy volunteers using a similar untargeted high-resolution metabolomics approach 

(Vlaanderen et al. 2017). In our results, features putatively matched within the tryptophan and vitamin E 

metabolic pathways showed substantial difference in responses to TRAP exposure among asthmatic 

participants compared with healthy participants, highlighting a potential mechanistic basis for asthma as a 

factor enhancing susceptibility to pollutant-mediated oxidative stress response.    

 Adding to the coherence of the pathway analysis were feature annotation results. Importantly, most of 

the metabolites we validated were endogenous molecules involved in acute inflammatory response, 
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oxidative stress, and DNA damage and repair processes. These validated features were prevalent and 

detectable in most (i.e,. at least 85%) of the biosamples, had triplicate COVs less than 5%, and exhibited 

relatively pure EIC peaks. Together, these characteristics support their use as potential, sensitive biomarkers 

of TRAP exposures.  

Several amino acids, in particular, showed robust associations with the same suite of TRAPs, including 

EC, vanadium, and cerium, in both negative and positive ionization mode, with substantially differential 

responses among asthmatic and healthy participants. Specifically, arginine, an essential α-amino acid 

related to endothelial function, inflammation, and airway hyperresponsiveness, has been previously 

reported to be inversely associated with elevated level of air pollution (Silkoff et al. 2000). Here, we also 

observed consistent negative associations between arginine intensity and concentrations of EC and 

vanadium. Furthermore, we observed these strength and magnitude of these associations were substantially 

different among the asthmatic participants and healthy participants, where over 90% of the asthmatic 

participants had decreased arginine level to elevated vanadium, while opposite trend was observed among 

healthy participants.  

We found similar trends for histidine, another semi-essential amino acid and precursor to histamine 

(TABOR 1954). Histidine is a well-known inflammatory agent involved in immune responses, including 

airway hyperresponsiveness (Hospers et al. 2000; Liu et al. 1990). Previously, decreased levels of histidine 

were found to be significantly associated with inflammation and oxidative stress among groups with pre-

existing conditions, such as obesity (Niu et al. 2012). Consistently in our study, we found negative 

association between histidine and levels of vanadium, specifically among the asthmatic participants, while 

the responses in histidine were generally positively associated with pollutant concentrations. We also 

identified methionine in both ionization modes, with differential responses to TRAPs exhibited between 

asthmatic and healthy participants. Methionine is an essential amino acid that promotes reactive oxygen 

species (ROS) production endogenously. A recent study has revealed that increased methionine 

supplementation in diet increases mitochondrial DNA oxidative damage in animal model, indicative of its 
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hepatotoxicity (Gomez et al. 2009). In ACE-2 asthmatic participants, we observed increased level of 

methionine associated with elevated cobalt and cerium concentrations during commute. 

Aside from these largely endogenous metabolites, we also identified alpha-hydroxyisobutyric acid, a 

metabolite of exogenous chemical methyl tert-butyl ether (MTBE). MTBE is a gasoline additive commonly 

used as an oxygenate to raise the octane number. In a Swedish study where four men were exposed to 

MTBE for 2 hours, metabolites of MTBE were characterized in humans for the first time where analysis of 

blood and urine samples indicated the presence of MTBE metabolites alpha-hydroxyisobutyric acid 

(Voelker 1999). In our ACE-2 samples, we observed significant associations between alpha-

hydroxyisobutyric acid and five PM2.5 metal components, including lead, arsenic, barium, phosphorus, and 

antimony. 

We believe the collective validation of many of these metabolic features using our untargeted 

metabolomic approach, elucidates a systemic molecular network, of acute traffic-related air pollution 

toxicity (Figure 3.5). At the center of this network were the perturbations in the arginine metabolism, where 

in ACE-2 study, elevated TRAP levels may induce augmentation of arginase, leading to increased level of 

proline and polyamines converted from arginine, resulting in decreased intensities in arginine and its 

precursors, including citrulline, glutamate, and 5-oxoproline. As reported in numerous in vitro and in vivo 

models (Morris et al. 2004; Newaskar et al. 2011; North et al. 2013; Wood et al. 2007), increased levels of 

proline and polyamines may eventually lead to airway hyperresponsiveness and remodeling, as well as 

asthma. Meanwhile, we observed increased pollutants associated with decreased intensities of norvaline, a 

key inhibitor of arginase to correct endothelial dysfunction (Pokrovskiy et al. 2011). Moreover, it is possible 

that enhanced arginase activity would compete with nitric oxide synthase (NOS) in arginine metabolism 

(Kim et al. 2009; Xu et al. 2004), leading to reduced bioavailability of endogenously produced nitric oxide. 

Correspondingly, the amount of creatine produced from arginine, a widely studied anti-oxidant (Guoyao 

and Morris 1998; Lawler et al. 2002), also decreased.  
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We believe that a concurrent mechanism, possibly identifiable in our findings, may be that increased 

ROS and inflammatory mediators (i.e. leukotrienes) induced by TRAP exposure lead to the imbalance of 

the equilibrated redox environment, contributing to NOS uncoupling and inhibition. The oxidative 

inactivation on NOS could result in increased bioavailability of nitric oxide and NOS-NO signaling 

dysregulation (Farah et al. 2018), leading ultimately to multiple adverse health effects including myocardial 

remodeling (Burger et al. 2009; Saraiva et al. 2005; Yasmin et al. 1997), endothelial dysfunction (Davignon 

and Ganz 2004; Förstermann et al. 2017), and chronic lung diseases (Grasemann et al. 2011; Holguin 2013; 

Pifferi et al. 2007). Throughout this process, in-vehicle pollutant exposure might also diminish the 

antioxidant effect of NOS on xanthine oxidoreductase (XOR) inhibition. XOR catalyzes the oxidation of 

hypoxanthine to xanthine and the oxidation of xanthine to uric acid, generating potent ROS such as 

superoxide (Kelley et al. 2010; Vorbach et al. 2003). In homeostatic conditions without abnormal 

environmental stress, neuronal NOS (nNOS) inhibits XOR to maintain NOS activity (Farah et al. 2018), 

while the loss of nNOS inhibition of XOR-derived ROS would lead to oxidative-stress-mediated 

uncoupling of the residual endothelial NOS (eNOS) (Idigo et al. 2012). In our results, we consistently 

observed elevated TRAP exposure associated with decreased intensities of key components in the XOR 

pathways, including AMP, hypoxanthine and xanthine. In addition, several precursors of glutathione, an 

essential antioxidant of preventing damage to important cellular components caused by reactive oxygen 

species (Ceballos-Picot et al. 1996), were found to decrease as TRAP levels increased in ACE-2 study, 

including choline, cystine, 5-oxoproline, and glutamate.  

Despite these biologically plausible and statistically robust results, specific attention should be given 

to possible caveats inherent in many omics-based analyses and small panel designs, including our own. In 

conducting our MWAS modeling, we used each of the 27 TRAP single-pollutant indicators, independently, 

as surrogates of exposure to primary traffic pollution, a highly heterogeneous mixture. Thus, an observed 

metabolic perturbation associated with a particular TRAP indicator may not necessarily indicate a causal 

association between the metabolic feature with that specific modeled indicator. Instead, such change may 



112 
 

be more likely associated with multiple, correlated pollutants within a complex traffic mixture, which is 

demonstrated by the fact that over 60% of the significant features in the MWAS models were associated 

with at least three or more individual TRAP indicators. Nevertheless, we did observe that some pollutant 

were more strongly predictive of metabolic perturbations than the others. Among the validated metabolites, 

primary tailpipe related TRAP indicators, including EC, particle-bound polycyclic aromatic hydrocarbons, 

and vanadium. In particular, vanadium, a metal component of PM2.5, emitted from fossil fuel combustion 

and has unknown but potentially adverse health impacts, as well as elemental carbon, a traditional marker 

of diesel vehicles. Here, we found over 10 inflammatory related amino acids and molecules, including 

histidine, arginine, and cysteine, showing significant and robust associations with vanadium and elemental 

carbon among asthmatic participants, indicative the potential role of primary tailpipe exposure in triggering 

the inflammatory reactions and etiology of asthma.  

Additionally, although the demographic characteristics among participants with or without asthma were 

generally similar, the asthmatic participants were on average 4 years younger than the non-asthmatic 

participants (Table 3.2), which may contribute to differences in corresponding metabolomic expression, 

and may have been contributed to some of the observed metabolomic differences in these profiles. To 

account for these between participant differences, we added terms in the MWAS regression models, 

including age, gender, BMI, race, and the baseline intensity of each metabolic feature for each participant. 

In addition, we conducted sensitivity analyses on model specification and inclusion of these covariates, and 

the results were consistent and robust to model specification and inclusion of these covariates.  

It is worth noting that most of the validated metabolites were ubiquitous signals present in at least 85% 

of the samples, indicating that the observed significant perturbations to TRAP exposure were not 

necessarily driven by idiosyncratic response among a few individuals. Moreover, these results were 

generally consistent with the results observed between ACE-2 and another panel TRAP-metabolomics 

study (Liang et al., submitted) we recently conducted with a similar sample size. Given the highly 

multidimensional nature of this analysis, there is an inevitable increased risk of false positive discovery (i.e. 
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Type 1 error) due to the multiple comparisons. Along with using the Benjamini-Hochberg procedure to 

minimize false positive results, we screened each of the candidate significant features based on the quality 

and purity of their spectrum peak by manual examination of their respective EICs. For the mummichog 

pathway analyses, previous studies tend to set significance cut offs at FDR corrected p-values of less than 

0.20, and included all 16 ion derivative and adduct forms when matching the unknown features to the 

existing metabolic databases, thus increasing the risk of false positive discovery (Chandler et al. 2016; 

Tebani et al. 2017). In contrast, we applied several stringent criteria when conducting mummichog, 

including excluding model findings with FDRB-H significance greater 0.05, as well as restricting output to 

a subset of the six most abundant adducts in each ionization mode.  

CONCLUSIONS 

Using a high-resolution environmental metabolomics platform, we detected numerous significant 

metabolic perturbations associated with in-vehicle exposures during commuting.  Pathway analyses further 

elucidated a number of pathways predominantly associated with xenobiotic-mediated oxidative stress and 

acute inflammatory response, including leukotriene metabolism, vitamin E metabolism, cytochrome P450, 

pyrimidine metabolism, and tryptophan metabolism. In addition, the features enriched in these pathways 

responded differentially among asthmatic and healthy participants, indicative of their potential roles in 

asthma etiology. Our results were broadly consistent with the limited number of similar environmental 

metabolomics studies. Most interestingly, we were able to identify and validated 45 unique metabolites, 

many of which were not only significantly associated with multiple TRAP indicators, but also responded 

differently among participants with and without asthma. These confirmed metabolites were closely linked 

and connected in several inflammatory and redox pathways, elucidating the potential molecular 

mechanisms on traffic-related air pollution toxicity. Collectively, the current findings support the potential 

to develop some of these promising metabolic markers for reflecting TRAP exposures, their corresponding 

effects, and the asthma etiology. 
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Table 3.1. In-vehicle traffic related pollutant levels by commute exposure scenarios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acronym: pb-PAH, particle-bound polycyclic aromatic hydrocarbons; PM2.5, fine particulate matter; EC, elemental carbon; OC, organic carbon; WSOC, water 

soluble organic carbon; BC, black carbon. * denotes p < 0.05 for Analysis of Variance 

Pollutant 
% of 

Missing 

Exposure Scenarios 

Highway (N=35) Side Street 

(N=21) 

Clinic 

(N=14) 

Particle Number Counts (#/m3)* 4% 34800 ± 12900 15300 ± 5980 2440 ± 3800 

Noise (Dba)* 8% 68.6 ± 2.7 65.6 ± 1.9 48.2 ± 11.4 

pb-PAH (µg/m3)* 25% 114 ± 30.5 89.8 ± 9.3 11.5 ± 17.9 

PM2.5 (µg/m3)* 3% 16.7 ± 6.4 15.5 ± 8.1 4.5 ± 1.5 

Organic Components of PM2.5 (µg/m3)     

    EC * 24% 2.85 ± 1.21 1.09 ± 0.60 0.21 ± 0.14 

    OC * 28% 7.66 ± 1.98 7.05 ± 1.45 4.55 ± 0.50 

    WSOC  37% 8.48 ± 3.75 8.49 ± 4.11 7.04 ± 1.55 

    BC * 8% 5.57 ± 2.34 2.50 ± 1.31 0.32 ± 0.12 

Metal Components of PM2.5 (ng/m3)     

    Magnesium (Mg) 22% 8.70 ± 8.02 6.96 ± 5.94 11.7 ± 25.2 

    Aluminum (Al) 10% 29.4 ± 28.7 28.8 ± 19.4 16.2 ± 18.5 

    Phosphorus (P)* 9% 3.79 ± 2.91 4.09 ± 2.21 1.82 ± 1.92 

    Potassium (K) 19% 21.8 ± 18.3 21.1 ± 15.5 9.36 ± 8.12 

    Calcium (Ca) 17% 41.6 ± 32.6 36.1 ± 28.9 34.7 ± 54.7 

    Titanium (Ti) 24% 8.41 ± 8.15 9.96 ± 9.65 4.95 ± 4.20 

    Vanadium (V)* 4% 0.34 ± 0.21 0.28 ± 0.20 0.12 ± 0.14 

    Chromium (Cr) 40% 1.22 ± 1.09 1.15 ± 0.79 1.08 ± 0.90 

    Manganese (Mn) 11% 1.50 ± 1.40 1.44 ± 1.01 0.66 ± 0.70 

    Iron (Fe)* 12% 176 ± 171 159 ± 122 57 ± 69 

    Cobalt (Co) 20% 0.03 ± 0.02 0.02 ± 0.02 0.02 ± 0.02 

    Nickle (Ni) 40% 0.57 ± 0.60 0.77 ± 0.78 1.28 ± 1.05 

    Zinc (Zn) 26% 5.89 ± 3.89 6.37 ± 6.15 4.89 ± 6.50 

    Arsenic (As)* 4% 0.35 ± 0.22 0.46 ± 0.46 0.12 ± 0.07 

    Cadmium (Cd) 4% 0.02 ± 0.03 0.03 ± 0.03 0.02 ± 0.02 

    Antimony (Sb) 6% 2.46 ± 3.39 2.30 ± 2.56 0.72 ± 0.94 

    Barium (Ba) 12% 18.1 ± 18.1 18.7 ± 22.6 6.1 ± 7.9 

    Cerium (Ce) 22% 0.16 ± 0.36 0.21 ± 0.53 0.04 ± 0.03 

    Lead (Pb)* 10% 0.45 ± 0.45 1.21 ± 1.98 0.35 ± 0.39 
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Table 3.2: Study Population Demographic Characteristics 

 Study population by asthma status 

 Asthmatic (N=24) Non-asthmatic (N=21) 

Age*, Mean ± SD 24.2 ± 4.0 28.4 ± 5.4 

Gender, n (%)   

    Male 10 (41.7%) 11 (52.4%) 

    Female 14 (58.3%) 10 (47.6%) 

BMI, Mean ± SD 23.2 ± 3.3 23.6 ± 3.7 

Race, n (%)   

    White 14 (58.3%) 15 (75.0%) 

    Asian 6 (25.0%) 3 (15.0%) 

    Other 4 (16.7%) 2 (10.0%) 

* denotes p < 0.05 for Student’s t test or Chi-square test 
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Table 3.3a. Chemical identity of the metabolic features significantly associated with TRAP (FDRB-H<0.05) in negative ionization mode 

verified by matching MS/MS verified metabolites library in DRIVE study 

m/z RT (s) MS/MS Match Population Pathway Associated TRP 

103.0385 82.8 alpha-hydroxyisobutyric acid asthmatic propanoate metabolism 
As (β= -1.14); Ba (β= -0.07); P (β= -0.12);  

Pb (β= -0.91); Sb (β= -0.47) 

109.0280 90.8 Catechol all 
PAH degradation; 

dioxin degradation 

EC (β= 0.07); Co (β= 35.5); K (β= 0.06); 

P (β= 0.12); Zn (β= 0.12) 

115.0021 78.7 
maleic acid 

fumarate 
all 

tyrosine metabolism; arginine biosynthesis; 

oxidative phosphorylation 

OC (β= 0.46); Co (β= 12.3); K (β= 0.01);  

Zn (β= 0.05) 

128.0339 85.6 5-oxo-proline all 
glutathione metabolism;  

d-glutamine and d-glutamate metabolism 

Ni (β= -0.22); As (β= -0.64); Zn (β= -0.13);  

Ba (β= -0.07); OC (β= -0.15); PM2.5 (β= -0.04) 

129.0542 105.8 
4-methyl-2-oxopentanoic acid 

3-methyl-2-oxopentanoic acid 
all 

valine, leucine and isoleucine degradation; 

glucosinolate biosynthesis 
Ce (β= 0.37); Cr (β= 0.11) 

130.0859 94.5 Leucine asthmatic valine, leucine and isoleucine degradation OC (β= -0.24) 
131.0448 135.6 3-ureidopropionate asthmatic pyrimidine metabolism EC (β= -0.74); V (β= -0.98) 

146.0446 114.1 
glutamic acid 

n-methyl-d-aspartic acid 
all 

glutathione metabolism;  

d-glutamine and d-glutamate metabolism 
EC (β= -0.51); OC (β= -0.26); CPC (β= -0.05) 

148.0425 92.8 Methionine all 
cysteine and methionine metabolism 

glucosinolate biosynthesis 
Ce (β= 0.44); EC (β= 0.08) 

151.0250 89.6 Xanthine asthmatic purine metabolism EC (β= -1.26) 

153.0180 88.2 dihydroxybenzoic acids all 
benzoate degradation; phenylalanine, 

tyrosine and tryptophan biosynthesis 
EC (β= -0.38); CO (β= -5.18); 

154.0609 112.1 Histidine asthmatic histidine metabolism EC (β= -0.73); V (β= -0.65) 

155.0105 69.0 Orotate asthmatic pyrimidine metabolism V (β= -1.18) 

161.0443 110.0 3-hydroxy-3-methylglutarate asthmatic leucine degration EC (β= -0.71) 

165.0546 83.4 3-2-hydroxyphenyl-propanoate asthmatic 
phenylalanine metabolism; polycyclic 

aromatic hydrocarbon degradation 
PAH (β= -0.01) 

167.0199 76.2 Urate asthmatic purine metabolism EC (β= -0.22) 

173.1031 145.2 Arginine asthmatic arginine and proline metabolism EC (β= -0.91); V (β= -0.81) 

175.0237 81.4 
ascorbate 

d-glucuronolactone 
healthy 

ascorbate and aldarate metabolism; 

glutathione metabolism 
P (β= -0.16) 

180.0655 88.0 Tyrosine asthmatic tyrosine metabolism Co (β= 5.60); EC (β= -1.30, 0.27) 

187.1329 92.1 10-hydroxydecanoate healthy saturated fatty acids metabolism Ni (β= -0.25) 

209.0294 161.3 
d-saccharic acid 

galactarate 
asthmatic ascorbate and aldarate metabolism PAH (β= -0.01); EC (β= -0.49) 

223.0739 78.5 3-hydroxykynurenine healthy tryptophan metabolism Cr (β= 0.41) 

327.2331 564.5 docosahexaenoic acid asthmatic biosynthesis of unsaturated fatty acids Zn (β= -0.24) 

346.0554 147.2 adenosine 5'-monophosphate all purine metabolism Co (β= -18.0); WSOC (β= -1.39) 
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391.2849 104.8 
chenodeoxycholate 

deoxycholate 
all bile acid biosynthesis; bile secretion EC (β= 0.15); Al (β= 0.01); K (β= 0.02) 

464.3014 85.2 glycocholate asthmatic bile acid biosynthesis; bile secretion PAH (β= -0.02); Ce (β= -0.85) 

 

Acronym: m/z, mass to charge ratio; RT, retention time; TRAP, traffic-related air pollutant; pb-PAH, particile-bound polycyclic aromatic hydrocarbons; EC, 

elemental carbon; OC, organic carbon; WSOC, water soluble organic carbon; BC, black carbon; BC, black carbon; Mg, magnesium; Al, aluminium; P, phosphorus;  

K, potassium; Ca, calcium; Ti, titanium; V, vanadium; Cr, chromium; Mn, manganese; Fe, iron; Co, cobalt; Ni, nickle; Zn, zinc; As, arsenic; Cd, cadmium; Sb, 

antimony; Ba, barium; Ce, cerium; Pb, lead. 
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Table 3.3b. Chemical identity of the metabolic features significantly associated with TRAP (FDRB-H<0.05) in positive ionization mode 

verified by matching MS/MS verified metabolites library in DRIVE study 

m/z RT (s) MS/MS Match Population Pathway Associated TRP 
94.0655 447.4 aniline all aminobenzoate degradation Ce (β= -0.29 ); 

96.0447 427.0 2-hydroxypyridine all nicotinate and nicotinamide metabolism Co (β= 6.96); Zn (β= 0.04) 

104.1073 76.4 choline all 
glycine, serine and threonine metabolism 

glycerophospholipid metabolism 

V (β= -0.58); Ce (β= -0.44); EC (β= -0.08); 

Ni (β= -0.29) 

105.0654 71.0 2,3-diaminopropionic acid healthy d-glutamine and d-glutamate metabolism Cr (β= 0.07); WSOC (β= 0.06) 

106.0501 118.9 serine asthmatic glycine, serine and threonine metabolism EC (β= -0.88); V (β= -0.74) 

114.0664 84.0 creatinine asthmatic arginine and proline metabolism EC (β= 0.32) 
116.0708 63.5 proline asthmatic arginine and proline metabolism EC (β= 0.45) 

118.0863 95.1 
valine 

norvaline 
all 

valine, leucine and isoleucine degradation 

arginine and proline metabolism 
Ce (β= -0.32); EC (β= -0.88) 

132.0767 104.0 creatine asthmatic arginine and proline metabolism EC (β= -1.10) 

132.1018 71.1 leucine asthmatic valine, leucine and isoleucine degradation Ni (β= 0.29) 

137.0456 83.6 hypoxanthine asthmatic purine metabolism 
Ba (β= -0.07); Cd (β= -297.9); Mn (β= -0.51);  

P (β= -0.19); PM2.5 (β= -0.06); Sb (β= -0.55) 

142.0264 139.2 
ethanolamine phosphate 

phosphorylcolamine 
all 

glycerophospholipid metabolism 

sphingolipid metabolism 
CPC (β= 0.03); WSOC (β= -0.37); As (β= -1.05); 

144.0807 88.9 naphthylamine all xenobiotics by cytochrome p450 OC (β= -0.07); Ce (β= -0.37) 

147.1127 78.7 lysine asthmatic lysine biosynthesis and degradation EC (β= -0.73); V (β= -1.14) 

148.0603 120.4 
glutamic acid 

methyl-d-aspartic acid 
healthy 

glutathione metabolism;  

d-glutamine and d-glutamate metabolism 
CPC (β= -0.04) 

150.0582 111.2 methionine asthmatic cysteine and methionine metabolism Co (β= 6.11) 

154.0498 131.0 

3-hydroxyanthranilate 

3-amino-4-hydroxybenzoic acid 

3-amino-5-hydroxybenzoic acid 

all 
tryptophan metabolism; 

aminobenzoate degradation 

PAH (β= 0.03); CPC (β= 0.04); 

PM2.5 (β= 0.09); Cr (β= 0.91) 

156.0766 111.5 histidine asthmatic histidine metabolism V (β= -1.06) 

166.0861 84.5 phenylalanine healthy 
phenylalanine, tyrosine and tryptophan 

biosynthesis 

Al (β= -0.01); Ce (β= -0.38); Co (β= -5.33);  

Mg (β= -0.02); Mn (β= -0.11) 

171.0054 107.9 
glyceraldehyde 3-phosphate 

diethyl acetal 
all 

fermentation and glycolysis of 

carbohydrates 
EC (β= 0.31); Pb (β= 0.16) 

175.1188 130.4 arginine asthmatic arginine and proline metabolism EC (β= -1.13); V (β= -0.97) 

176.1028 96.1 citrulline asthmatic arginine biosynthesis EC (β= -1.07) 

204.1229 78.4 o-acetyl-l-carnitine healthy insulin resistance Zn (β= -0.02) 

241.0309 130.7 
gluconic acid 

cystine 
all 

pentose phosphate pathway 

cysteine and methionine metabolism 
 V (β= -0.57) 
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Acronym: m/z, mass to charge ratio; RT, retention time; TRAP, traffic-related air pollutant; pb-PAH, particile-bound polycyclic aromatic hydrocarbons; EC, 

elemental carbon; OC, organic carbon; WSOC, water soluble organic carbon; BC, black carbon; BC, black carbon; Mg, magnesium; Al, aluminium; P, phosphorus;  

K, potassium; Ca, calcium; Ti, titanium; V, vanadium; Cr, chromium; Mn, manganese; Fe, iron; Co, cobalt; Ni, nickle; Zn, zinc; As, arsenic; Cd, cadmium; Sb, 

antimony; Ba, barium; Ce, cerium; Pb, lead. 
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Figure 3.1 Metabolic pathways associated with ≥ 5 TRAP exposure indicators in all ACE-2 participants. Cells were shaded according to the 

strength (i.e. p-value) of the association between each of metabolic pathways (KEGG) and significant features (FDRB-H<0.05) that were associated 

with each single traffic pollutant indicator. Pathways are ordered according to the total number of the significant pathway-traffic pollutant 

associations (p<0.05) in the C18 column negative ionization mode and positive ionization mode.    

*For HILIC positive ion mode, only the following adducts were considered: M[1+], M+H[1+], M-H2O+H[1+], M+Na[1+], M+K[1+], M+2H[2+],  and M(C13)+2H[2+] 

  For C18 negative ion mode, only the following adducts were considered: M-H[-], M+Cl[-], M+ACN-H[-], M+HCOO[-], M(C13)-H[-], M-H2O-H[-], and M+Na-2H[-] 
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Figure 3.2 Top Metabolic pathways associated with TRAP exposure indicators in asthmatic and healthy participants. The metabolic 

pathways (KEGG) presented in the Venn diagram were the top significant pathways (associated with at least 25% of the TRAP indicators), where 

significant features (FDRB-H<0.05) that were associated with single traffic pollutant indicator were enriched. 9 pathways were found in both 

asthmatic and health participants, while 11 unique pathways were identified only in asthmatic participants and 10 only in healthy participants.    
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Figure 3.3 Metabolic pathways associated with significant effect modification of asthmatic status on TRAP-metabolic feature association. 

Cells were shaded according to the strength (i.e. p-value) of the association between each of metabolic pathways (KEGG) and features that were 

associated with significant effect modification of asthmatic status on the associations between each single traffic pollutant indicator and feature 

internsity (FDRB-H<0.05). Pathways are ordered according to the total number of the significant pathway-traffic pollutant associations (p<0.05) in 

the C18 column negative ionization mode and positive ionization mode.    

*For HILIC positive ion mode, only the following adducts were considered: M[1+], M+H[1+], M-H2O+H[1+], M+Na[1+], M+K[1+], M+2H[2+],  and M(C13)+2H[2+] 

  For C18 negative ion mode, only the following adducts were considered: M-H[-], M+Cl[-], M+ACN-H[-], M+HCOO[-], M(C13)-H[-], M-H2O-H[-], and M+Na-2H[-] 
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Figure 3.4 Differential associations between TRAP indicators and Arginine, Histidine, and Methionine among the asthmatic and healthy 

participants. Ion(-), metabolic features extracted using the negative ionization mode; Ion(+), metabolic features extracted using the positive 

ionization mode. Negative associations were presented in blue lines and positive associations were presented in red lines. 
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Figure 3.5 Potential molecular mechanisms on traffic-related air pollution toxicity elucidated using untargeted high-resolution 

metabolomics on the ACE-2 participants. Molecules in green denoted the metabolites detected and confirmed in the ACE-2 samples. Negative 

associations with elevated TRAP were presented in blue arrows and positive associations were presented in red arrows. Acronym: TRAP, traffic-

related air pollutant; ROS, reactive oxygen species; NOS, nitric oxide synthases; XOR, xanthine oxidoreductase; IL-4, the interleukin 4; IL-10, the 

interleukin 10; TNF α, tumor necrosis factor alpha. 
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CHAPTER 3 SUPPLEMENTAL MATERIALS 
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Table S3.1 Number of significant features associated with TRAPs in each sets of MWAS models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Ion(-), features extracted (N=17,586) using the negative ionization mode; Ion(+), features extracted (N=9,087) using the positive ionization mode 

Traffic related air pollutants 
Main Effect Asthmatic participants Healthy participants 

Effect modification 

of asthmatic status 

Ion(-)* Ion(+) Ion(-) Ion(+) Ion(-) Ion(+) Ion(-) Ion(+) 

Particle Counts 177 71 123 51 248 104 657 189 

Noise  173 77 150 56 287 122 477 178 

pb-PAH  133 71 178 63 786 397 187 106 

PM2.5  157 58 128 45 227 86 286 100 

Organic Components of PM2.5          

    EC  576 226 324 155 616 874 244 85 

    OC  242 79 73 26 553 180 335 122 

    WSOC  131 69 146 57 120 44 480 242 

    BC  188 80 149 54 230 92 239 112 

Metal Components of PM2.5          

    Magnesium (Mg) 145 55 81 39 334 120 311 157 

    Aluminium (Al) 201 104 134 56 335 143 480 178 

    Phosphorus (P) 190 83 110 55 320 94 402 177 

    Potassium (K) 119 77 130 63 269 89 491 220 

    Calcium (Ca) 114 56 76 30 229 84 270 107 

    Titanium (Ti) 116 45 74 35 323 121 163 63 

    Vanadium (V) 569 193 370 157 995 400 261 111 

    Chromium (Cr) 288 101 141 56 464 242 861 325 

    Manganese (Mn) 123 47 75 31 244 85 292 131 

    Iron (Fe) 141 66 79 29 241 82 337 164 

    Cobalt (Co) 154 87 100 56 307 151 424 255 

    Nickle (Ni) 205 81 208 98 349 160 720 300 

    Zinc (Zn) 166 92 169 83 620 266 499 266 

    Arsenic (As) 193 85 102 34 304 95 313 127 

    Cadmium (Cd) 181 79 92 35 219 93 442 158 

    Antimony (Sb) 126 54 69 45 195 84 193 73 

    Barium (Ba) 179 82 80 24 198 73 350 215 

    Cerium (Ce) 224 99 118 58 682 298 248 142 

    Lead (Pb) 173 77 131 55 216 66 615 245 
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Figure S3.1a Extracted ion chromatographs (EICs) of the verified metabolic features in the negative ionization mode 
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Figure S3.1b Extracted ion chromatographs (EICs) of the verified metabolic features in the positive ionization mode 
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CONCLUSIONS 

    To our knowledge, DRIVE study is among the first studies to quantify the effects of measurement error 

due to spatial and temporal variation of TRAPs and examine how well a near-road monitoring site can serve 

as a proxy to estimate traffic pollutant related health effects in epidemiology studies. Pollutant levels 

measured during DRIVE showed a relatively low impact of the 16-lane interstate highway compared to 

historic near-road field data. Spatial gradients of TRAPs varied substantially during the course of a day, 

with greater primary impacts from the highway occurring during morning rush hour periods. NO2, 

specifically, exhibited spatial trends that differed from other single-pollutant primary traffic indicators. This 

finding provides some indication of limitations in the use of NO2 as a primary traffic exposure indicator in 

panel-based health effect studies. Pronounced attenuation of observed changes in health effects was found 

when using measured pollutant level from the near-road monitor as a surrogate for true exposure. Moreover, 

the extent of attenuation associated with increasing distance from the traffic hotspot varied across pollutant 

species and over the course of the day. Together, results from the DRIVE monitoring and simulated 

epidemiologic analyses indicate that for panel-based studies, the use of near-road measurements as 

surrogates of exposure to primary traffic pollution may result in substantial under-estimates of health 

response and potential risk. This was observed to be true for even sites located within 20 m of the highway 

sources and increasing with distance from the highway and within indoor environments. Collectively, these 

results provide indication that caution should be taken when using near-road monitoring network to 

investigate health effects of traffic pollutants in future studies.   

Recent advances in HRM support its use as a highly sensitive platform, capable of identifying thousands 

of small molecules, produced both endogenously and exogenously. The metabolomics analyses results from 

DRIVE study provided further evidence of HRM’s ability to elucidate biologically-relevant pathways 

associated with exposures to key environmental pollutants and sources. The DRIVE results were broadly 

consistent with the limited number of similar studies, which have examined perturbations in the human 
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metabolome and ambient air pollution, in showing broad metabolomic perturbation associated with several 

oxidative stress and inflammatory pathways. Most intriguingly, however, were results from the DRIVE 

MWAS models, which point to the potential of HRM as tool for biomarker discovery. Here several 

metabolites were identified and validated in plasma and saliva that were directly associated with external 

traffic pollution measurements in DRIVE panel. Collectively, the current findings support the use of 

environmental metabolomics, as a sensitive means for conducting air pollution exposure and epidemiologic 

analyses, in panel-based designs.  

Using the same high-resolution environmental metabolomics platform on ACE-2 study, thousands of 

significant and robust metabolic perturbations were found to be associated with TRAP exposure during 

commuting. Pathway analyses further elucidated a number of pathways predominantly associated with 

xenobiotic-mediated oxidative stress and acute inflammatory response, including leukotriene metabolism, 

vitamin E metabolism, cytochrome P450, pyrimidine metabolism, and tryptophan metabolism. In addition, 

the features enriched in these pathways responded differentially among asthmatic and healthy participants, 

indicative of their potential roles in asthma etiology. Our results were broadly consistent with the limited 

number of similar studies. More interestingly, we identified and validated 45 unique metabolites, many of 

which were not only significantly associated with multiple TRAP indicators, but also responded differently 

among participants with and without asthma. Most intriguingly, these confirmed metabolites were closely 

linked and connected in several inflammatory and redox pathways, elucidating the potential molecular 

mechanisms on traffic-related air pollution toxicity. Collectively, the current findings support the potential 

to develop some of these promising metabolic markers for reflecting TRAP exposures, their corresponding 

effects, and the asthma etiology. 

 

 

 

 


