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Abstract

Measurement error methods for unmeasured confounding and pooling
By Dane R. Van Domelen

Epidemiologists increasingly utilize existing datasets to explore exposure-disease relation-
ships. A common problem is that one or more covariates may not be available. In Chapter
1, we compare methods for handling unmeasured confounding when validation data can be
obtained. We consider propensity score calibration as well as maximum likelihood and re-
gression calibration from the measurement error literature, both of which require specifying a
model for the unmeasured confounder given exposure, disease model covariates, and perhaps
additional covariates. We apply the methods to assess whether low Vitamin D is associated
with fecundity controlling for age, overweight status, and caloric intake, by combining a
primary dataset missing caloric intake with a smaller validation dataset. We propose several
modifications to propensity score calibration to relax a critical surrogacy assumption, leading
to improved performance but nullifying an appealing identifiability property of the original
method.

In the logistic regression setting, measuring biomarkers in combined samples (“pools”)
from multiple cases or controls can lead to large gains in statistical efficiency. Two types
of error threaten validity: assay-related measurement error, and processing error caused by
forming pools. In Chapter 2, we present a likelihood approach to correct for both errors. We
assume the biomarker level given covariates is normally distributed, and measurement and
processing errors are independent, normally distributed, and not dependent on pool size. Our
approach accommodates replicate measurements, which are not required for identifiability
but improve stability. We apply our methods to a reproductive health dataset with pools of
size 1 and 2 and replicates and assess validity and efficiency via simulations.

In Chapter 3, we present a logistic regression approach and a discriminant function ap-
proach for estimating the covariate-adjusted odds ratio relating a binary outcome to a right-
skewed biomarker measured in homogeneous pools. Both assume multiplicative lognormal
(rather than additive normal) measurement and processing errors acting on the poolwise
mean and utilize constant-scale Gamma models for the biomarker level. In the motivating
example, AIC favors these models over their normal counterparts from Chapter 2, although
substantive results are similar. Our methods are implemented in the R package pooling.
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Chapter 1: Measurement error meth-

ods in the unmeasured confounding set-

ting

1.1 Introduction

We consider the situation in which an investigator wishes to fit a generalized linear model to

estimate the association between an exposure X and an outcome Y adjusted for covariates

(Z,C):

g[E(Y )] = β0 + βxX + βTzZ + βTcC (1.1)

but the dataset of interest is missing Z. This is a very common problem in observational

research, as epidemiologists often utilize existing data from large population-based studies or

disease registries to assess exposure-disease relationships (Smith et al., 2011). Perhaps more

often than not, the most relevant existing dataset to explore a particular research question

does not include data on every single variable of interest.

In such a scenario, the simplest approach is to fit Eq. 1.1 without Z and obtain what

might be termed “naive” estimates β̂∗ = (β̂∗x, β̂
∗T
c )T . These estimates are generally biased

for β = (βx,β
T
c )T , but may be informative in cases where the direction of confounding due

1



Page 2

to Z can be determined. For example, if β̂∗x is statistically and clinically significant and is

identified as a lower bound for βx, then the effect of X on Y controlling for C and Z is also

statistically and clinically significant (VanderWeele et al., 2008).

In many cases, one might prefer an unbiased and consistent method for direct estimation

of β. When validation data on (X,Z,C) are available or feasible to obtain, corrective

methods from the measurement error literature could be implemented.

One could employ variants of regression calibration (RC) used, for example, by Lyles

and Kupper (1997); Weller et al. (2007); Kipnis et al. (2012); Lyles and Kupper (2013) for

handling covariate measurement error. These methods require specifying a model for the

expected value of Z given (X,C) and perhaps additional covariates D available in both

the main study and validation study. The D here should not be confused with D = disease

status often used in epidemiology; we follow the (C,D) notation of Lyles and Kupper (2013).

In the case where Z is scalar and continuous, validation data may support a linear

regression Z|(X,D,C) ∼ (α0 + αxX + αTdD + αTcC, σ
2
δ ). If Z is skewed, an alternative

approach is to assume Z|(X,D,C) ∼ LN(α0 + αxX +αTdD +αTcC, σ
2
δ ).

In the Lyles and Kupper (2013) application of RC, the linear regression is fit via ordinary

least squares to obtain α̂, and then Eq. 1.1 is fit with E(Z|X,D,C; α̂) in place of the

unobserved Z’s. RC gives consistent estimates of β in linear regression (Carroll et al., 2006),

approximately consistent estimates in logistic regression under certain conditions (Rosner

et al., 1989; Kuha, 1994), and often performs well for other generalized linear models (Carroll

et al., 2006).

With validation data on hand, one might be comfortable fully specifying the distribution

of Z|(X,D,C), and performing a maximum likelihood (ML) analysis (Lyles and Kupper,

2013). For example, one could use a linear regression similar to RC, but with random normal

errors. Compared to RC, a two-model ML approach has some advantages (efficiency, flexi-

bility) and some disadvantages (less ease of implementation, potential numerical instability,
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extra distributional assumption).

If primary interest is in βx and X is a binary exposure, another option is propensity score

calibration, a method developed by Stürmer et al. (2005) specifically to handle unmeasured

confounding. Briefly, this would involve obtaining validation data and fitting a model for

the probability of X given the main study covariates C, a model for the probability of X

given the full covariate vector (Z,C), and a linear model relating the two. In the main

study, P̂ (X|C) is calculated for each subject, mapped to P̂ (X|Z,C), and the model for

Y is fit with X and P̂ (X|Z,C) as predictors. This method is computationally simple and

generalizes nicely to the case of several unmeasured confounders, but its validity depends

critically on a surrogacy assumption that may be difficult to assess (see Section 1.2.5, pg.

14).

Measurement error methods like regression calibration and maximum likelihood have

not typically been applied to the unmeasured confounding setting (Streeter et al., 2017;

Zhang et al., 2018). This application seems natural. However, there are some aspects of

the unmeasured confounding scenario that distinguish it from covariate measurement error.

For example, imprecise versions of true predictors are not observed; in effect, there is no

“measurement error.” As a result, validation data is useful, while replication data is not.

And because there are no imprecise versions of Z, valid estimation via ML or RC often

requires identifying variables that inform Z but not Y given (X,Z,C). Such variables are

akin to instrumental variables used for causal inference (Greenland, 2000), but their purpose

here is to provide identifiability rather than establish causality. Finally, in evaluating validity

and efficiency, the regression coefficient for the error-prone variable is of primary interest in

the measurement error setting, while a regression coefficient for a perfectly measured variable

(X) would be of primary interest in the unmeasured confounding setting.

In this chapter, we consider the use of maximum likelihood, regression calibration, and

propensity score calibration to correct for unmeasured confounding. Our motivating exam-
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ple is estimation of the covariate-adjusted log-odds ratio relating low Vitamin D to incident

pregnancy, using data from a clinical trial designed for a different purpose. A potentially

important covariate, caloric intake, was not measured for any of the 995 main study subjects,

but it was measured along with Vitamin D and other covariates in a separate study with

89 subjects. We apply the corrective methods to this motivating example, perform simula-

tions modeled after the data to assess validity and efficiency of the methods, and provide

recommendations for epidemiological research.

1.1.1 Confounding

For the most part, our focus is not on assessing causality or choosing an appropriate set of

control variables to obtain an unconfounded effect estimate. We assume that investigators

have already specified a regression model of interest, and the regression parameters represent

quantities of epidemiological interest. Still, some background information on directed acyclic

graphs, causality, and confounding is warranted.

Definition and consequences

Greenland et al. (1999) define confounding as the scenario in which the probability distribu-

tion for an outcome variable differs across levels of an exposure for reasons other than the

effects of the exposure. The variables responsible are termed confounders.

Failure to adequately control for confounding can result in various incorrect conclusions,

such as concluding that X affects Y when it truly does not, that X does not affect Y when

it truly does, finding a protective or harmful effect when the opposite is true, or over or

underestimating the true causal effect.
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Figure 1.1: Four graphs showing assumed cause and effect relationships among variables.

Directed acyclic graphs

Directed acyclic graphs or DAGs are a useful graphical tool for conceptualizing epidemiolog-

ical relationships and identifying confounders (Greenland et al., 1999). Four simple graphs

are shown in Figure 1.1 to illustrate important concepts.

The variables X, Z, and Y are termed nodes, and the lines connecting them are termed

arcs or edges. Single-headed arrows reflect the direction of assumed cause and effect rela-

tionships. For example, Figure 1.1 (A) reflects the hypothesis that X has a causal effect on

Y , and Z has a causal effect on both X and Y . Lack of a single-headed arrow from one

variable to another implies the absence of a direct effect.

A path is any unbroken route that connects nodes. A directed or causal path is one in

which each variable on the path causes the next. For example, in Figure 1.1 (A), the ZXY

path is a causal path, while the XZY path is not. The latter path is termed a backdoor

path form X to Y because it has an arrow pointing towards X.

The “directed” part of the term directed acyclic graph refers to the fact that all edges

have a single or double headed arrow. The “acyclic” part refers to the fact that no directed

path forms a closed loop. Figure 1.1 (D) is not a DAG because it has a cyclic path.

In Figure 1.1 (A), X has a direct effect on Y , or in other words X is a parent of Y and

Y is a child of X. Z has both a direct effect on Y and an indirect effect through the ZXY

path.

A variable is considered an ancestor of another if a directed path of arrows connects the



Page 6

first to the second. For example, in Figure 1.1 (A), Z is an ancestor of both X and Y and

X is an ancestor of Y . Similarly, X and Y are descendents of Z, and Y is also a descendent

of X.

To illustrate colliding, in Figure 1.1 (C), the XZY path is said to be blocked by Z, or

the path collides at Z, or Z is a collider on the path. Conversely, the XZY paths in Figure

1.1 (A) and (B) are unblocked because Z is not a collider in either case.

Two variables are marginally unassociated if there are no unblocked paths between the

two variables. If the ZX edge in Figure 1.1 (A) was not there, then X and Z would be

marginally unassociated, because the only path connecting them collides at Y .

An unblocked path must be either a directed path or a backdoor path through a shared

ancestor. The former suggests a causal effect, while the latter suggests a confounded effect.

A combination of the two can occur. For example, in Figure 1.1 (A), the unblocked XY path

indicates a causal effect of X on Y , while the unblocked XZY path indicates a confounded

association of X with Y . In other words, the association between X and Y is partially causal

and partially confounded. A crude measure of association between X and Y represents the

net result of both effects, which may be in the same or opposite directions, and may cancel

each other entirely.

A causal effect of one variable on another is said to be mediated by a third variable if

the causal path passes through that variable. For example, in Figure 1.1 (B), X has a direct

effect on Y (the XY path), but also has an indirect effect on Y through the mediator Z (the

XZY path).

DAGs: Assessing confounding

A common goal of epidemiological analysis is to estimate the total causal effect of an exposure

on an outcome. The total causal effect may include direct and indirect effects, e.g. the XY

direct effect and XZY indirect effect in Figure 1.1 (B). Once a DAG is constructed, one can
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determine whether a crude estimate of the exposure effect is potentially confounded by one

or several other variables.

After deleting all single-headed arrows coming from the exposure variable of interest, if

there are no unblocked paths from the exposure to the outcome variable, then there is no

potential confounding; otherwise, there is. This makes intuitive sense because an unblocked

path from exposure to outcome after removing exposure effects means that the variables

remain associated for reasons other than the exposure’s effect.

In Figure 1.1 (A), the crude XY association is confounded, because when you remove

the arrow emanating from X the unblocked backdoor path XZY still connects X to Y . In

Figure 1.1 (B), the crude XY association is not confounded, because when you remove the

arrows emanating from X there is no path that connects X to Y .

1.2 Methods

1.2.1 Notation

Using the nomenclature of Clayton et al. (1992), we refer to the regression model of interest

as the true disease model (TDM), and the model for the unmeasured confounder as the

measurement error model (MEM). The TDM specifies the relationship between the outcome

Y and covariates (X,Z,C,B), where X is the exposure of interest, Z is a covariate missing

in the primary dataset, C are covariates that are assumed to be related to Z, and B

are covariates that are assumed to be unrelated to Z. The MEM specifies the relationship

between Z and (X,D,C), which can be modeled using validation data. X could be absorbed

into C, but we leave it as separate to make it clear that the missing Z is a covariate rather

than an exposure of primary interest in our scenario.
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This setup differs from Weller et al. (2007) and Lyles and Kupper (2013) in the inclusion

of covariatesB which appear in the TDM but not in the MEM. Those references also focused

on the measurement error problem, in which X is the dependent variable in the MEM. It is

natural in that setting for all TDM covariates to also appear in the MEM, since covariates

unrelated to X could simply be omitted from the TDM. In our scenario, the MEM outcome

variable is Z; there could be covariates related to X and thus included in the TDM, but

unrelated to Z. Leaving such variables out of the MEM might make it easier to find validation

data, i.e. a dataset with (X,Z,D,C) rather than those variables plus B.

1.2.2 Data types

We consider scenarios in which there is a main study and a validation study. Main study

subjects are missing Z but have data on (Y,X,D,C,B). In an internal validation study, Z

is measured for a subset of main study subjects, such that all variables including the outcome

are observed: (Y,X,Z,D,C,B). In an external validation study, variables for fitting the

MEM are observed in a different group of subjects: (X,Z,D,C) are available, but not Y or

B.

Using external validation data requires a transportability assumption (Carroll et al.,

2006), which means that the MEM applicable to variables in the validation study population

is the same as that in the main study population. This assumption is typically unverifiable

and may be suspect when demographics are quite different in the two studies.
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1.2.3 Maximum likelihood

2-model ML

For main study subjects, (Y,X,D,C,B) are observed, while Z is unobserved and has to

be integrated out of the likelihood function. In the interest of specifying as few models as

possible, a two-density factorization is:

Li(θ) = f(Yi|Xi,Di,Ci,Bi)

=

∫
Zi

f(Yi, Zi|Xi,Di,Ci,Bi) dZi

=

∫
Zi

f(Yi|Xi, Zi,Ci,Bi) f(Zi|Xi,Di,Ci) dZi

(1.2)

The first term under the integral is the TDM and the second is the MEM. While there

would typically be either internal or external validation data, not both, the likelihood for

nm main study subjects, ni internal validation subjects, and ne external validation subjects

would be:

L(θ) =

(
nm∏
i=1

∫
Zi

f(Yi|Xi, Zi,Ci,Bi) f(Zi|Xi,Di,Ci) dZi

)
(

ni∏
j=1

f(Yj|Xj, Zj,Cj,Bj) f(Zj|Xj,Dj,Cj)

)
(

ne∏
k=1

f(Zk|Xk,Dk,Ck)

) (1.3)

Several notable special cases are as follows. First, if the TDM and MEM are both

normal-errors linear regressions:

TDM: Y = β0 + βxX + βzZ + βTcC + βTbB + ε, ε ∼ N(0, σ2
ε )

MEM: Z = α0 + αxX +αTdD +αTcC + δ, δ ∼ N(0, σ2
δ )

(1.4)
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Then Y |(X,D,C,B) is normal with:

E(Y |X,D,C,B) = β0 + βzα0 + (βx + βzαx)X + βzα
T
dD + (βzα

T
c + βTc )C + βTbB

V (Y |X,D,C,B) = σ2
ε + β2

zσ
2
δ

(1.5)

which means the likelihood for main study subjects in Eq. 1.2 has a closed form. Another

special case is a logistic regression TDM and linear regression MEM:

TDM: logit[P (Y = 1)] = β0 + βxX + βzZ + βTcC + βTbB

MEM: Z = α0 + αxX +αTdD +αTcC + δ, δ ∼ N(0, σ2
δ )

(1.6)

The main study likelihood is a logistic-normal integral:

∫ ∞
−∞

py(1− p)1−y 1√
2πσ2

δ

e
− 1

2σ2
δ

(Z−µz)2

dZ (1.7)

where p = logit−1(β0 + βxX + βzZ +βTcC +βTbB) and µz = α0 +αxX +αTdD+αTcC. The

integral represents P (Y = y|X,D,C,B). We consider full ML with numerical integration

as well as the probit approximation, which uses the fact that logit−1(x) ≈ Φ( x
1.7

) (where Φ(·)

is the standard normal CDF) to obtain the approximation:

P (Y = 1|X,D,C,B) ≈ et

1 + et
(1.8)

where:

t =
β0 + βxX + βzµz + βTcC + βTbB√

1 +
β2
zσ

2
δ

1.72

(1.9)

This approach has been used by other authors, with favorable results (e.g. Lyles and Kupper

(2013); Carroll et al. (2006)).
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A third special case is a log-transformed linear model for the MEM:

MEM: log(Z) = α0 + αxX + βTdD + βTcC + δ, δ ∼ N(0, σ2
δ ) (1.10)

This MEM has two advantages: it accommodates skewness in the unmeasured confounder,

and its nonlinearity permits identifiability of all TDM parameters even without any D

variables (Carroll et al., 2006).

Finally, we note that a binary Z is easy to accommodate in the 2-model ML setup, as

the integral in Eq. 1.2 becomes a summation over Z ∈ (0, 1) and numerical integration is

not needed.

After obtaining θ̂ via optimization procedures, a variance-covariance matrix, V̂ (θ̂) can be

estimated by taking the inverse of the estimated Hessian matrix of the log-likelihood function

evaluated at θ̂. Standard errors are taken as the square roots of the diagonal elements of

V̂ (β̂).

3-model ML

An alternative likelihood approach is the three-density factorization:

Li(θ) = f(Yi, Xi|Di,Ci,Bi)

=

∫
Zi

f(Yi, Xi, Zi|Di,Ci,Bi) dZi

=

∫
Zi

f(Yi|Xi, Zi,Ci,Bi) f(Xi|Zi,Ci,Bi) f(Zi|Di,Ci) dZi

(1.11)

In the second density of the final line, omitting D reflects an assumption that these

variables do not inform X given Z. This is in line with the intended role of D in the 2-

model ML scenario, in that it permits identifiability with external validation data and a

normal linear model for Z given covariates (the third density here). With internal validation

data or some other model for Z, D could be included in the model for X.
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This approach requires specifying three rather than two models, but it aligns more

squarely with a confounding-type DAG like Figure 1.1 (A), as opposed to the mediation-

type DAG like Figure 1.1 (B). If investigators are conceptualizing Z (and other covariates)

as affecting X, they might prefer specifying a model for X given covariates, and then an

additional model for Z|(D,C).

1.2.4 Regression calibration

There are two procedures commonly referred to as regression calibration (RC). We term the

two variants the “conditional expectation” view and the “algebraic” view (Rosner et al.,

1989). They give identical point estimates in certain scenarios, e.g. main study/external

validation study designs with a linear regression MEM and a single D variable (Thurston

et al., 2003). We mostly focus on the conditional expectation version, although we use the

algebraic version when the two are equivalent since it readily permits delta method-based

standard errors.

For notational convenience, here we let X be absorbed into C. Applied to unmeasured

confounding, RC requires a model for the expectation of Z given (D,C). The usual approach

is a linear regression:

E(Z) = α0 +αTdD +αTcC (1.12)

If Z is skewed, a lognormal version might be preferred:

log(Z) = α0 +αTdD +αTcC + δ, δ ∼ N(0, σ2
δ ) (1.13)

This MEM has been used in the measurement error literature for handling multiplicative

rather than additive errors (e.g. Lyles and Kupper (1997, 2013)).

For the conditional expectation RC, we use validation data to estimate the MEM param-
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eters and then fit the TDM with E(Z|D,C; α̂) in place of the missing Z’s for main study

subjects. For Eq. 1.13, Z given covariates is lognormal, so E(Z|D,C) = eα0+αTdD+αTcC+ 1
2
σ2
δ .

We use percentile bootstrap confidence intervals with 1,000 bootstrap samples (Efron and

Tibshirani, 1986).

With no D and external validation data, TDM parameters are not identifiable under Eq.

1.12 because E(Z|C; α̂) is a linear combination of (1,CT ), but are identifiable under Eq.

1.13. This coincides with the identifiability conditions for 2-model ML (see Section 1.2.3,

pg. 9).

For algebraic RC with the Eq. 1.12 MEM and scalar D, main study data are used to fit

the TDM with D in place of the missing Z to obtain β̂∗ = (β̂∗0 , β̂
∗
z , β̂

∗T
c , β̂∗Tb )T , and validation

data are used to fit the MEM and obtain α̂. The correspondence between β∗ and β, which

holds exactly for a linear TDM and approximately (under certain conditions) for a logistic

TDM, is as follows (Kuha, 1994):

β∗0 = β0 + βzα0

β∗z = βzαd

β∗c = βzα
T
c + βTc

β∗b = βb

(1.14)

which can be written as a system of equations:



1 α0 0Tkc 0Tkb

0 αd 0Tkc 0Tkb

0kc αc Ikc 0kc0
T
kb

0kb 0kb 0kb0
T
kc

Ikb





β0

βz

βc

βb


=



β∗0

β∗z

β∗c

β∗b


or Aβ = β∗ (1.15)

The A matrix is square and typically invertible, giving the RC estimator β̂ = Â−1β̂∗ =
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g(β̂∗, α̂). A variance estimator can be obtained using the delta method and the fact that

V (β̂∗, α̂) is a block-diagonal matrix with V (β̂∗) and V (α̂) on the diagonal.

For a logistic regression TDM, the RC approximation can be expected to perform well

when either (1) β2
zV (Z|D,C) is small (e.g. < 0.5) or (2) the disease is rare and Z|(D,C)

is normally distributed (Kuha, 1994).

When validation data are internal, a natural idea is to fit the disease model using the

measured Z’s for internal validation subjects and E(Z|D,C; α̂) for main study participants.

This may be inefficient because it treats Z the same whether it is observed or imputed.

Spiegelman et al. (2001) suggest a more efficient method along the lines of Greenland (1988),

but it requires that β is identifiable with external validation data. Briefly, one uses the

internal validation data to obtain a set of estimates, β̂I , then treats the validation data as

external (ignoring the Y ’s) to obtain a main study/external validation set of RC estimates,

β̂RC . Using the fact that the two estimators are asymptotically uncorrelated, the final

weighted estimates are given by β̂j = wjβ̂
RC
j + (1− wj)β̂Ij where wj =

V̂ (β̂Ij )

V̂ (β̂Ij )+V̂ (β̂RCj )
.

1.2.5 Propensity score calibration

Stürmer et al. (2005) developed propensity score calibration (PSC) to correct for unmeasured

confounding with a binary exposure and a main study/external validation study design. It

is based on the idea of controlling for confounding via a propensity score, i.e. the estimated

probability of exposure X given all covariates of interest (Z,C). The TDM is a model for

Y vs. (X,G), where G is the propensity score defined as P (X = 1|Z,C).

Validation data are used to fit a model for the gold standard propensity score

G = P (X = 1|Z,C), a model for an error-prone propensity score G∗ = P (X = 1|C), and a
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linear model relating the two that can be viewed as a MEM:

E(G) = λ0 + λxX + λg∗G
∗ (1.16)

Then, Ĝ∗ is calculated for main study subjects, mapped to Ĝ using the fitted Eq. 1.16, and

the TDM is fit with the predicted Ĝ’s in place of the G’s.

The approach is very similar to RC, with G∗ playing the role of D in that it informs

the TDM covariate G but is assumed to be independent of Y given (X,G). For intuition

on this surrogacy assumption, Stürmer et al. (2007b) state that “surrogacy is violated when

the direction of confounding in the exposure-disease association caused by the unobserved

variable(s) differs from that of the confounding due to observed variables.”

We note that the surrogacy assumption is necessary for identifiability with external vali-

dation data, because E(G|X,G∗; λ̂) is a linear combination of (1, X,G∗), so the TDM design

matrix would be less than full rank if G∗ were included. But it could be relaxed with internal

validation data by simply including G∗ in the TDM. While Stürmer et al. (2007b) present

methods to test the surrogacy assumption prior to performing PSC, we are not aware of

prior literature the performance of PSC with G∗ added to the TDM.

PSC is simple to apply and particularly appealing when there are several variables iden-

tified as potential unmeasured confounders. It is also usable in a scenario where RC and ML

lack identifiability: when validation data are external and Z given covariates is a linear model

with no D. However, it requires a binary exposure, it does not produce regression coefficient

estimates for other individual predictors (like propensity score adjustment in general), and

its performance depends on a critical surrogacy assumption.

Stürmer et al. (2005) suggest using SAS macros for regression calibration developed

by Rosner et al. (1989) to obtain point estimates and standard errors for PSC, although

bootstrapping may be more appropriate to account for the fact that the propensity scores

are estimated rather than known (Lunt et al., 2012).
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After observing generally poor performance of PSC in simulations with external validation

data, we propose a modified version that incorporates the extraD variables that ML and RC

rely on for identifiability. If D informs Z, it should also inform the gold standard propensity

score G. Adding D to the MEM allows us to include G∗ in the TDM, or in other words

relax the usual surrogacy assumption of PSC. The modified MEM is:

E(G) = λ0 + λxX + λTdD + λg∗G
∗ (1.17)

We propose an additional version of PSC for use when validation data are internal and

there is no D, aimed at avoiding regression calibration-related efficiency losses. We first

relax the PSC surrogacy assumption by including G∗ in the TDM. In fitting the TDM, main

study subjects have Ĝ∗’s but not G’s, while validation subjects have G∗’s and G’s. This

is analogous to 2-model ML and RC with Z = G, C = G∗, and no D or B. Fitting the

TDM via 2-model ML rather than RC may help to upweight the observed G’s relative to the

imputed Ĝ’s. This requires an additional assumption that the errors in 1.17 are normally

distributed. We denote this estimator PSC (ML) to reflect the fact that it utilizes ML.

Implementation details

All analyses and simulations were performed using R version 3.5.0 (R Core Team, 2015).

Our functions are included in the R package meuc (Van Domelen, 2018a), which can be

installed from GitHub by loading devtools (Wickham et al., 2018) and running:

install_github("vandomed/meuc")

For ML, likelihood functions were maximized using the R function nlminb, which uses a

quasi-Newton Raphson algorithm. Starting values were set to 0.01 for regression coefficients

and 1 or 10 for variance terms, whichever was closer to the true value; lower bounds for

variance terms were set to 0.0001. The hcubature function in the package cubature v.



Page 17

1.3-11 (Narasimhan and Johnson, 2017) was used for numerical integration; it performs h-

adaptive integration as described by Berntsen et al. (1991) and Genz and Malik (1980).

We obtained variance-covariance matrices by inverting the Hessian matrix at the MLEs,

approximating Hessian matrices numerically via the hessian function in pracma v. 2.1.1

(Borchers, 2017).

Relevant ML functions in meuc include ml logistic linear, ml linear linear,

ml logistic logistic linear, and ml linear logistic linear. The naming convention is the form

of the TDM followed by the form of the secondary model(s), so for example ml logistic linear

is for logistic regression TDM and linear regression MEM, as in Eq. 1.6.

RC is implemented in the functions rc cond exp and rc algebraic; the latter is lim-

ited to scalar D and external validation data, but produces delta method standard errors,

while the former is more general. PSC is implemented in psc cond exp, psc algebraic, and

psc algebraic d.

1.3 Results

1.3.1 Motivating example: low Vitamin D and fecundity

The Effects of Aspirin in Gestation and Reproduction (EAGeR) Study was a clinical trial

aimed at determining whether daily low-dose aspirin lowers the rate of pregnancy loss. A

total of 1,228 women age 18-40 who had one or two prior miscarriages and planned to become

pregnant again participated in the study. Further details are provided by Schisterman et al.

(2013).

The primary finding from EAGeR was that low-dose aspirin was not associated with live

birth rate or pregnancy loss (Schisterman et al., 2014). But data from the trial has been
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used to explore a variety of other research questions as well: for example, whether leptin

is associated with live birth rate (Zarek et al., 2015), and whether C-reactive protein is

associated with pregnancy loss (Mumford et al., 2015).

We are interested in testing the hypothesis that low Vitamin D is associated with lower

odds of becoming pregnant, over a time period covering six menstrual cycles, and we wish to

control for maternal age, overweight status, and caloric intake. We suspect caloric intake is

a confounder because consuming fewer calories should increase the likelihood of low Vitamin

D, but also the likelihood of deficiencies in other nutrients that may be related to odds of

becoming pregnant.

All of the variables except caloric intake are available in EAGeR. Data from a different

study, BioCycle, can serve as an external validation sample. Caloric intake was measured in

BioCycle as the average total energy intake from up to eight 24-hour dietary recalls (Gaskins

et al., 2009).

BioCycle was a longitudinal study on oxidative stress and hormone levels during the

menstrual cycle. A total of 259 women age 18-44 participated. Because this validation data

is external, we have to assume transportability, or that relationships among variables in

BioCycle participants are the same as in EAGeR participants. It is impossible to directly

test this assumption, but we can compare some basic characteristics across the two samples

(Table 1.1). Note that this comparison and all subsequent analyses are for white women only,

since budget constraints resulted in caloric intake (the suspected unmeasured confounder)

only being measured for white women in BioCycle.

The obesity rate was higher in EAGeR than in BioCycle, and EAGeR subjects averaged

a higher income. Additionally, the women in EAGeR all had one or two prior miscarriages

and were trying to become pregnant; this was not true for women in BioCycle.

The logistic regression fit for low Vitamin D and odds of incident pregnancy, adjusted

for age and overweight status, is shown in Table 1.2. Low Vitamin D was associated with
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Table 1.1: Characteristics of women in EAGeR and BioCycle.

Variable EAGeR (n = 995) BioCycle (n = 89) P

Age (years), M (SD) 28.9 (4.7) 28.5 (8.5) 0.62

BMI, n (%) 0.002

Normal weight 539 (54.2) 61 (68.5)

Overweight 231 (23.2) 22 (24.7)

Obese 225 (22.6) 6 (6.7)

Education, n (%) 0.34

High school or less 111 (11.2) 7 (7.9)

More than high school 884 (88.8) 82 (92.1)

Income, n (%) <0.001

Less than $40,000 301 (30.3) 33 (37.5)

[$40,000, $75,000) 149 (15.0) 31 (35.2)

$75,000 or more 544 (54.7) 24 (27.3)

Smoking status, n (%) 0.32

Non-smoker 891 (90.0) 83 (93.3)

Smoker 99 (10.0) 6 (6.7)
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Table 1.2: Logistic regression estimates for odds of pregnancy in EAGeR (n = 995).

Variable Beta (SE) OR (95% CI) P

Intercept 2.35 (0.46) – <0.001

Vitamin D < 30 ng/mL -0.34 (0.15) 0.71 (0.53, 0.95) 0.02

Age (years) -0.04 (0.02) 0.97 (0.94, 0.99) 0.02

Overweight -0.32 (0.15) 0.73 (0.54, 0.97) 0.03

an estimated 39% lower odds of becoming pregnant (p = 0.02).

Next, we incorporate data from BioCycle to estimate the odds ratio for low Vitamin

D after additionally adjusting for caloric intake. Applying PSC as proposed by Sturmer

et al. is straightforward, while 2-model ML, 3-model ML, and RC require specification of

measurement error models.

Because BioCycle is an external validation dataset, if the MEM is a linear regression,

2-model ML, 3-model ML, and RC require having at least one additional predictor (D) in the

MEM but not in the TDM. A log-transformed linear regression MEM would alleviate this

issue, but that was not supported by the data. In normal linear regressions for caloric intake

vs. low Vitamin D, age, and overweight status (the MEM for 2-model ML and RC), AIC

was 507.6 with the log transformation and 506.2 without. The methods could still be applied

with log-transformed MEM’s and no D, but the resulting estimates may be unreliable due to

near lack of identifiability. The ̂log-OR (95% CI) for low Vitamin D were as follows: 2-model

ML (full), 0.74 (0.31, 1.73); 2-model ML (approximate), 0.76 (0.24, 2.43); 3-model ML, 0.74

(0.34, 1.61); and RC, 64.0 (0.00, Inf). Clearly the RC estimate is not useful here.

We identified height as a potentially useful additional variable (D) for the non-log-

transformed MEM’s, on the basis that height should inform caloric intake for a given BMI

(which overweight status is based on) and can reasonably be assumed unrelated to odds of

becoming pregnant. The fitted MEM for 2-model ML and RC is summarized in Table 1.3.

Height was indeed associated with caloric intake, while low Vitamin D, age, and over-
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Table 1.3: Linear regression estimates for caloric intake in BioCycle (n = 89, R2 = 0.09).

Variable Beta (SE) P

Intercept -14.19 (12.37) 0.25

Height (cm) 0.18 (0.08) 0.02

Vitamin D < 30 ng/mL 0.70 (0.85) 0.41

Age (years) 0.06 (0.05) 0.26

Overweight 0.81 (0.92) 0.38

weight status were not; these variables were also not informative of caloric intake in a model

fit without height (all p > 0.1; not shown). The lack of an association between low Vitamin

D and caloric intake suggests caloric intake is likely not an important confounder.

The assumed models for the various corrective methods are as follows, with Y = incident

pregnancy, X = low Vitamin D, Z = caloric intake, C1 = age, C2 = overweight status, and

D = height. For 2-model ML:

TDM: logit[P (Y = 1)] = β0 + βxX + βzZ + βc1C1 + βc2C2

MEM: Z = α0 + αxX + αdD + αc1C1 + αc2C2 + δ, δ ∼ N(0, σ2
δ )

(1.18)

For 3-model ML (α’s are implied to be different from Eq. 1.18).

TDM: logit[P (Y = 1)] = β0 + βxX + βzZ + βc1C1 + βc2C2

logit[P (X = 1)] = γ0 + γzZ + γc1C1 + γc2C2

MEM: Z = α0 + αdD + αc1C1 + αc2C2 + δ, δ ∼ N(0, σ2
δ )

(1.19)

For RC:

TDM: logit[P (Y = 1)] = β0 + βxX + βzZ + βc1C1 + βc2C2

MEM: E(Z) = α0 + αxX + αdD + αc1C1 + αc2C2

(1.20)

For standard PSC (G and G∗ are gold standard and error-prone propensity scores, respec-
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Table 1.4: Logistic regression estimates for odds of pregnancy using data from EAGeR and
BioCycle. Models are also adjusted for age and overweight status.

OR (95% CI)

Vitamin D < 30 ng/mL Calories (∆ 100 kcal/day)

Naive

Covariate adjustment 0.71 (0.53, 0.95) -

Propensity score adjustment 0.71 (0.53, 0.95) -

Corrected

2-model ML (full) 0.71 (0.52, 0.97) 1.00 (0.89, 1.12)

2-model ML (approximate) 0.71 (0.52, 0.97) 1.00 (0.88, 1.12)

3-model ML 0.71 (0.52, 0.98) 1.00 (0.89, 1.12)

Regression calibration 0.71 (0.52, 0.97) 1.00 (0.88, 1.12)

Propensity score cal. 0.73 (0.47, 1.07) -

Propensity score cal. with D 0.72 (0.47, 1.03) -

tively):

TDM: logit[P (Y = 1)] = β0 + βxX + βgG

MEM: E(G) = λ0 + λxX + λg∗G
∗

(1.21)

And for PSC with surrogacy relaxed by adding height to the MEM:

TDM: logit[P (Y = 1)] = β0 + βxX + βgG+ βg∗G
∗

MEM: E(G) = λ0 + λxX + λdD + λg∗G
∗

(1.22)

Table 1.4 shows the estimated odds ratios for low Vitamin D and for caloric intake for

various corrective methods using data from both EAGeR and BioCycle. Estimates are very

similar for all methods, likely stemming from the lack of association between low Vitamin

D and the suspected unmeasured confounder, caloric intake. But the corrective methods

permitted checking for confounding due to caloric intake, while only slightly reducing the

precision of the estimated exposure effect.
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1.3.2 Simulations

Mimicking EAGeR/BioCycle (external validation)

The first set of simulations is intended to assess validity and efficiency of the various methods

under conditions mimicking EAGeR/BioCycle, but with slightly modified parameters to

induce confounding due to caloric intake. For each trial, we generate data for 995 main

study subjects and 89 external validation subjects as follows: age, C1 ∈ (18, 19, ..., 44) with

sampling probabilities equal to the sample proportions in EAGeR/BioCycle; overweight

status, C2 ∼ Bernoulli(0.45); low Vitamin D, X ∼ Bernoulli(logit−1(0.14 + 0.41C2)); and

height, D ∼ N(166.3, 6.72). The MEM for Z = caloric intake and TDM for Y = incident

pregnancy were as follows:

MEM: Z = −14.18− 1.00X + 0.18D + 0.06C1 + 0.81C2 + δ, δ ∼ N(0, 7.5)

TDM: logit[P (Y = 1)] = −0.32− 0.34X + 0.15Z − 0.03C1 − 0.32C2

(1.23)

Parameter values were set to the estimated values from 2-model ML, with the following

exceptions: the TDM coefficient for caloric intake, βz, was set to 0.15 rather than 0.00;

the MEM coefficient for low Vitamin D, αx, -1 rather than 0.70; the MEM residual error

variance, σ2
δ , 7.5 rather than 14.98 to produce a plausible range of caloric intake values; and

the TDM intercept, β0, -0.32 rather than 2.40 to maintain a pregnancy incidence of 0.73 as

it was in EAGeR. Note that the outcome is not rare, so RC performance depends on β2
zσ

2
δ

being small. That quantity is (0.152)(7.5) = 0.17, which is below the cut-off of 0.5 suggested

by Kuha (1994), so we expect good performance for RC.

With height as a surrogate, we used the algebraic version of RC with delta method

standard errors. We took a similar approach for the standard and modified PSC estimators,

where G∗ = the error-prone propensity score and D = height play the role of surrogate,
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Table 1.5: Simulation results for estimation of adjusted log-OR for low Vitamin D and
incident pregnancy with external validation data (1,000 trials, 1 with |β̂x| > 1.5 for 2-model
ML estimators excluded and 12 with |β̂x| > 1.5 for 3-model ML excluded; true log-OR =
-0.34).

Mean bias SD Mean SE MSE Coverage

Unobservable truth

Covariate adjustment -0.013 0.155 0.155 0.024 0.955

Propensity score adjustment -0.009 0.153 0.154 0.023 0.958

Naive

Covariate adjustment -0.144 0.151 0.151 0.043 0.842

Propensity score adjustment -0.142 0.150 0.151 0.043 0.844

Corrected

2-model ML (full) -0.012 0.202 0.209 0.041 0.963

2-model ML (approximate) -0.011 0.200 0.207 0.040 0.964

3-model ML -0.101 0.204 0.213 0.052 0.909

Regression calibration 0.000 0.193 0.201 0.037 0.971

Propensity score cal. -0.108 0.308 0.237 0.106 0.874

Propensity score cal. with D -0.002 0.196 0.203 0.038 0.966

respectively. Simulation results for 1,000 trials are summarized in Table 1.5.

The naive exposure estimates were biased away from the null for both covariate adjust-

ment and propensity score adjustment. The 2-model ML estimators performed well, which

is expected given that they correspond to a correctly specified likelihood; the two versions

produced very similar estimates (r = 0.9997). 3-model ML exhibited considerable bias and

was somewhat unstable, perhaps due to difficulty estimating the X|(Z,C) logistic regression

parameters with only 89 validation study subjects. RC performed very well, with no bias

and better efficiency than 2-model ML. The standard PSC without incorporating height ex-

hibited bias away from the null nearly as severe as the naive estimates, while PSC modified

with height in the MEM was unbiased and nearly as efficient as RC.

Standard deviations were only moderately larger for the corrective methods than for
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the unobservable truth estimators, suggesting that 2-model ML, RC, and PSC with D can

correct for bias associated with the unmeasured confounder in this scenario with only a

modest loss of precision relative to actually measuring Z in the main study. Estimation of

βz, on the other hand, was much less precise for the corrective methods (excluding 1 trial

with 2-model ML β̂z’s > 1.5: SD = 0.025 for unobservable truth covariate adjustment, 0.098

for 2-model ML (full), 0.094 for 2-model ML (approximate), and 0.077 for RC).

To assess performance of the methods for larger unmeasured confounding effects, we ran

additional simulations with βz ranging from -0.5 to 0.5, with β0 also adjusted to maintain

a pregnancy incidence of 0.73. Results are summarized in Figure 1.2. The 2-model ML

(approximate) estimator of βx performed well over a range of βz values, while RC exhibited

upward bias for large |βz|. The standard PSC estimator was badly biased, while PSC with

D performed reasonably well, but broke down similarly to RC for large |βz|.

While internal validation data with surrogates is not a central focus, we ran additional

simulations to quantify the efficiency gain associated with having internal rather than exter-

nal validation data in this particular scenario. In 1,000 trials with internal validation data,

the 2-model ML (approximate) estimator had fewer extreme estimates (0 vs. 1 trial with

|β̂x| > 1.5) and was more precise (SD = 0.186 vs. 0.200) than with external validation data.

Mimicking EAGeR/BioCycle (internal validation)

Next we consider a similar scenario with internal rather than external validation data. In

addition to not having to assume transportability (see Section 1.2.2, pg. 8), a key advantage

of internal validation data is not requiring D for identifiability, so we also omit D = height

from these simulations. The MEM and TDM are as follows:

MEM: Z = 14.51− 1.00X + 0.07C1 + 0.69C2 + δ, δ ∼ N(0, 7.5)

TDM: logit[P (Y = 1)] = −0.18− 0.34X + 0.15Z − 0.03C1 − 0.32C2

(1.24)
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Figure 1.2: Performance of corrective methods as βz varies (2,000 trials each).
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Table 1.6: Simulation results for estimation of adjusted log-OR for low Vitamin D and
incident pregnancy with internal validation data (1,000 trials, true log-OR = -0.34).

Mean bias SD Mean SE MSE Coverage

Unobservable truth

Covariate adjustment -0.002 0.158 0.155 0.025 0.957

Propensity score adjustment 0.000 0.156 0.154 0.024 0.958

Naive

Covariate adjustment -0.139 0.144 0.145 0.040 0.845

Propensity score adjustment -0.137 0.152 0.151 0.042 0.850

Internal validation subset

Covariate adjustment -0.047 0.592 0.561 0.352 0.952

Propensity score adjustment -0.034 0.563 0.548 0.318 0.955

Corrected

2-model ML (full) 0.006 0.204 0.206 0.042 0.966

2-model ML (approximate) 0.007 0.204 0.206 0.042 0.967

3-model ML 0.005 0.203 0.206 0.041 0.966

Regression calibration 0.014 0.198 0.216 0.039 0.959

Propensity score cal. -0.083 0.174 0.183 0.037 0.952

Propensity score cal. w/o surr. 0.008 0.200 0.219 0.040 0.959

For RC, we used the observed Z’s for internal validation subjects and Ẑ’s for main study

subjects when fitting the TDM, and used percentile bootstrap confidence intervals. We took

a similar approach for PSC, using the gold standard propensity scores for internal validation

subjects and the predicted ones for main study subjects, along with bootstrap confidence

intervals. We also included a PSC estimator with the surrogacy assumption relaxed by

including both the gold standard and error-prone propensity scores in the TDM. Results are

summarized in Table 1.6.

The internal validation subset estimators had high variability and exhibited bias away

from the null, likely stemming from the small sample size (ni = 89) and high outcome

incidence (0.73). For the corrective methods, the 2-model ML estimators performed well,
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Figure 1.3: DAG for linear regression simulations.

again as expected since they are based on a correctly specified likelihood. In contrast to

the previous scenario (Table 1.5), 3-model ML performed very similar to 2-model ML here.

RC had slight upward bias but good coverage, and was slightly more efficient than the ML

estimators. The standard PSC exhibited bias away from the null, but not as severe as in

the prior scenario; it reduced bias relative to the naive estimators considerably. PSC with

surrogacy relaxed performed similarly to ML and RC in terms of bias, efficiency, and CI

coverage.

Linear regression with 3-model setup

Next, we consider a linear regression rather than logistic regression TDM, with a 3-model

data generating process as shown in the Figure 1.3 DAG. This scenario corresponds to 3-

model ML described in Section 1.2.3 with no B or D variables.

The effect of X on Y is confounded by Z and C, and control for (Z,C) is sufficient to

remove confounding. With Z missing for main study subjects, the 2-model ML and RC

approaches of the previous section could be used as a working model for the data, while

a 3-model ML would be more in line with the relationships among variables illustrated in

Figure 1.3.
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Table 1.7: Simulation results for linear regression scenario with external validation data
(1,000 trials, true βx = 0.5).

Median bias IQR Coverage

Unobservable truth

Covariate adjustment 0.000 0.093 0.960

Propensity score adjustment 0.000 0.092 0.963

Naive

Covariate adjustment 0.209 0.097 0.188

Propensity score adjustment 0.210 0.098 0.187

Corrected

Propensity score calibration -0.104 0.513 0.873

We use the following data generating process:

C ∼ N(0, 1)

Z = 0.25C + δ, δ ∼ N(0, 1)

logit[P (X = 1)] = log(1.75)Z + log(1.25)C

Y = 0.4X + 0.5Z + 0.3C + ε, ε ∼ N(0, 0.5)

(1.25)

With external validation data, PSC is the only corrective method with identifiability;

2-model ML, 3-model ML, and RC would require at least one D variable in their respective

MEM’s. Simulation results for nm = 500 and ne = 100 are shown in Table 1.7. PSC

performed poorly, overcorrecting for the confounding effect of Z and giving very imprecise

estimates.

Results for internal validation data with nm = 500 and ni = 100 are summarized in

Table 1.8. For PSC, the first two estimators in Table 1.8 are the same as those in Table 1.6,

while the third is aimed at avoiding RC-related efficiency losses relative to ML with internal

validation data (see Section 1.2.5, pg. 14).

The correctly specified likelihood was 3-model ML, but 3-model ML and 2-model ML
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Table 1.8: Simulation results for linear regression scenario with internal validation data
(1,000 trials, 3 with non-positive definite variance-covariance matrix for PSC (ML) excluded;
true βx = 0.5)

Mean bias SD Mean SE MSE Coverage

Unobservable truth

Covariate adjustment -0.001 0.067 0.067 0.005 0.946

Propensity score adjustment -0.001 0.068 0.068 0.005 0.950

Naive

Covariate adjustment 0.207 0.067 0.067 0.047 0.122

Propensity score adjustment 0.207 0.074 0.073 0.048 0.196

Internal subset

Covariate adjustment 0.002 0.141 0.150 0.020 0.963

Propensity score adjustment 0.002 0.141 0.157 0.020 0.971

Corrected

3-model ML -0.005 0.092 0.093 0.008 0.950

2-model ML -0.006 0.092 0.093 0.008 0.959

Regression calibration -0.001 0.102 0.103 0.010 0.947

Propensity score cal. -0.041 0.168 0.174 0.030 0.985

Propensity score cal. w/o surr. -0.001 0.103 0.104 0.011 0.944

Propensity score cal. (ML) -0.006 0.092 0.093 0.009 0.956
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performed very similarly (r = 0.9983) and had almost identical performance metrics in

Table 1.8. The ML estimators had slight downward bias but were somewhat more efficient

than RC; all three had valid standard errors and good CI coverage.

The standard PSC procedure reduced bias considerably relative to the naive estimators.

However, its performance was very poor considering that it was more biased and less effi-

cient than the estimators using just the internal validation subset. PSC with the surrogacy

assumption relaxed performed well, and was very similar to RC. Implementing the PSC

procedure via ML rather than RC increased efficiency, and resulted in similar performance

to 3-model ML and 2-model ML.

The 3 trials in which PSC (ML) produced a non-positive definite variance-covariance

matrix seemed to correspond to trials in which Z by chance did not inform X, resulting in

almost perfect agreement between G∗ and G for internal validation study subjects.

A final note, RC estimates of βz were identical to βz estimates using just the internal

validation sample, while ML estimates were much more efficient (SD = 0.064 for 3-model

ML and 2-model ML, SD = 0.075 for internal validation subset).

1.4 Discussion

As analysts increasingly leverage data from existing sources to explore new research ques-

tions, the problem of unmeasured confounding is becoming more common. When a po-

tentially important confounder is missing, we propose seeking validation data and using

methods from the measurement error literature to restore validity. In our simulations, RC

and ML typically outperformed PSC, which was developed for unmeasured confounding and

also relies on validation data.

The performance of PSC in main study/external validation scenarios, which is what it

was developed for and where it offers unique identifiability, was disappointing. It reduced
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bias relative to naive estimates ignoring the missing Z in all scenarios, but sometimes only

modestly, and it sometimes overcorrected. This is consistent with previous simulation studies

involving the method (Stürmer et al., 2005, 2007b,a). In a relatively simple linear regression

scenario with internal validation data, it was biased and less efficient than simply fitting the

TDM with the internal validation data (see Table 1.8).

However, we proposed several modifications to PSC that improved its performance in

various scenarios. Each relies on relaxing the critical surrogacy assumption of PSC, i.e.

including the error-prone propensity score in the TDM in addition to the gold standard

propensity score. First, if there is a variable that can reasonably be assumed to inform Z

but not Y , as height was assumed to inform caloric intake but not odds of pregnancy in

the motivating example, then including that variable in the G|(X,G∗) measurement error

model allows G∗ to be added to the TDM. This drastically improved performance of PSC

in simulations, but also nullified a key advantage of PSC relative to ML and RC in terms of

identifiability with external validation data.

A second modification was simply including G∗ in the TDM when validation data were

internal. This scenario was examined by Stürmer et al. (2007b), who suggested two ap-

proaches for testing surrogacy: a likelihood ratio test for the regression coefficient for G∗ in

the TDM, and the proportion of the variance in Y explained by (G,G∗) that is due to G

(close to 1 favors surrogacy). We did not assess either approach, partly because our motivat-

ing example had external validation data. But considering that the standard PSC procedure

was biased in every external validation scenario we considered, it would seem advisable to

relax surrogacy whenever possible. Conversely, including G∗ in the TDM when it is not

necessary could inflate standard errors for the estimated exposure effect, especially since G

and G∗ may be highly correlated.

A third modification was fitting the TDM via ML rather than RC, again for the scenario

where validation data are internal and surrogacy is relaxed. In linear regression simulations,
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this prevented RC-related efficiency losses and led to a PSC estimator equally efficient as

ML. We suspect the same approach could prevent RC-related bias in logistic regression when

the RC conditions break down (e.g. Figure 1.2), although we did not confirm this. Using ML

for PSC estimation also permits delta method standard errors rather than bootstrapping.

This approach is not entirely justified since it treats the propensity scores as fixed, but it

worked well in our scenario (e.g. good CI coverage in Table 1.8).

In general, we favor ML over RC and PSC for adjusting for an unmeasured confounder

with validation data. First, note that PSC and RC are both limited in that they require

certain types of variables: a binary exposure for PSC, and a continuous (potentially skewed)

unmeasured confounder for RC. ML is more flexible. Second, RC is an approximate method

for TDMs other than linear regression, and may break down under certain conditions. These

are well-known for logistic regression (Kuha, 1994) but less so for other models. Theoretical

properties of PSC are not well-defined. Stürmer et al. (2007b) state that “surrogacy is a

sufficient but not always necessary condition for PSC to be valid,” while also reporting that

it “had a tendency to overadjust even in scenarios where surrogacy was met.’” Third, while

RC or a special version of it (e.g. Spiegelman et al. (2001)) is fully efficient relative to ML in

certain scenarios, we are not aware of an efficient version of RC for internal validation data

with no surrogates. This situation is more likely to occur in unmeasured confounding than

in measurement error scenarios, where there is usually an imprecise version of the missing

covariate.

Another disadvantage of PSC is that it only produces an effect estimate for one designated

exposure. In some cases, investigators may wish to interpret adjusted associations for all

of the covariates in the disease model; there may not even be a particular covariate that is

viewed as the exposure of interest.

There are some computational aspects of the PSC procedure to examine more closely in

future work. For example, the original procedure proposed by Stürmer et al. (2005) uses
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only the validation data to fit the error-prone propensity score model. But (X,C) are also

observed for main study subjects, leading to several alternatives. One could include main

study data in fitting the error-prone propensity score model, or perhaps fit the model twice,

first with validation data to estimate MEM parameters, and again with main study data to

obtain propensity scores for those subjects. Preliminary simulations suggest that fitting the

model separately leads to more precise β̂x estimates when the validation dataset is smaller

than the main dataset, while the original approach is more efficient when the validation

dataset is larger.

Identifiability is an important issue for all three of the corrective methods we examined. In

general, ML and RC have identifiability when any of three conditions are met: (1) validation

data are internal, (2) there are one or more surrogate variables D in the model for Z

(the “MEM” for 2-model ML and RC) but not in the TDM; or (3) the model for Z is

not a linear regression. For (2), we note that the surrogate could be a higher-order term

involving the TDM covariates rather than an entirely distinct variable. For example, in the

EAGeR/BioCycle analysis, if there was a significant age-by-overweight status interaction on

caloric intake, that interaction term could have been used for D rather than height. For (3),

skewness in Z could be exploited to permit identifiability, e.g. by using a log-transformed

MEM as used in the measurement error literature for handling multiplicative errors (Lyles

and Kupper, 1997). Caloric intake was not skewed in BioCycle, so we did not pursue this

approach, but it may be worth exploring in future work.

Identifiability conditions are similar for PSC if relaxing its surrogacy assumption is viewed

as a requirement for valid estimation. Surrogacy can be relaxed if validation data are internal

or there are one or more variables in the MEM for G|(X,G∗) but omitted from the TDM.

In handling covariate measurement error, there are numerous compelling reasons to prefer

internal rather than external validation data: for example, no need to assume transportabil-

ity, and more efficient estimation for the same validation study sample size (Carroll et al.,
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2006). For unmeasured confounding, identifiability without any surrogate variables is an

additional key advantage. In secondary data analysis, the validation dataset on hand will

simply either be internal or external, while in original investigations one might have con-

trol over the nature of the validation data. If a potential confounder is realized after data

collection is partly or even mostly complete, it would be extremely useful to simply start

measuring the variable for the remaining subjects, as opposed to designing a separate val-

idation study or utilizing existing validation data from another study. This will typically

require IRB approval, but perhaps only a minor modification that can be approved quickly,

depending on the nature of the variable and how it is measured.

In other cases, the optimal approach may be less clear. If an existing dataset is missing

an important covariate, one might consider designing a validation study to combine with

the primary dataset. Once the decision is made to pursue a main study/validation study

correction, it is certainly preferred to collect outcome data in the validation study if feasible.

On the other hand, while the validation dataset would be internal in the sense that it contains

outcome data, it would be external in the sense that it was collected separately, likely in a

different geographical location. So validity would still rest on a transportability assumption.

In certain circumstances, particularly when there are concerns about transportability, it may

be a better use of resources to design a new study measuring all relevant variables rather than

a validation study to complement an existing dataset. Utilizing the existing dataset would

enhance precision of parameter estimates if the assumption is met, but may compromise

validity if it is not (Carroll et al., 2006).

In summary, maximum likelihood and regression calibration approaches developed for

covariate measurement error are well suited for the unmeasured confounding problem. In

our simulations, ML and RC generally outperformed the original PSC procedure proposed by

Stürmer et al. (2005). We identified several ways to modify PSC to improve its performance,

e.g. by relaxing its surrogacy assumption and by fitting the disease model of interest via
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ML rather than RC to avoid efficiency losses. All of these methods are implemented in the

R package meuc (Van Domelen, 2018a).



Chapter 2: Estimating the covariate-

adjusted log-odds ratio for a continu-

ous exposure measured in pools and

subject to errors

2.1 Introduction

In pooling studies, a biomarker of interest is measured in combined biospecimen samples

from multiple subjects rather than for each individual (Dorfman, 1943; Chen et al., 2009).

Pooling designs may be best known for their use in determining individual-level disease status

with fewer assays, e.g. screening donated blood for hepatitis B virus (Stramer et al., 2013).

But our focus is on the use of pooling for measuring a continuous biomarker and estimating

parameters in an individual-level regression model of interest.

There are numerous reasons to consider utilizing a pooling study design. The assay of

interest may require volumes of sample greater than available for individual subjects in a

given study (Weinberg and Umbach, 1999). In a regression setting, if pools are comprised of

samples from subjects similar on relevant characteristics, a pooling design requiring many

fewer assays may offer only slightly less power than a traditional design where each subject’s

37
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Figure 2.4: Power vs. total study costs for hypothetical two-sample t-test scenario.

biomarker level is measured (Lyles et al., 2016; Mitchell et al., 2014b). A pooling design may

be able to achieve much higher power for the same budget, or the same power for a much

lower total cost.

Figure 2.4 illustrates pooling-related efficiency gains for a two-sample t-test, where the

true mean difference is 0.5, the variance of biomarker levels is 1, each assay costs $500, and

other costs per subject total $100. Achieving 80% power with individual assays requires 64

subjects per group, at a total cost of $76,800; with pools of size 10, 80% power requires

80 subjects per group, with 16 total assays and a cost of $24,000. For the same cost as

the traditional design with 80% power, pooling designs with 2, 3, and 10 members per pool

achieve powers of 95.4%, 98.7%, and >99.9%, respectively.

Pooling can be used for highly efficient estimation of the log-odds ratio relating a binary



Page 39

outcome to a continuous exposure, provided pools can be formed to be homogeneous with

respect to case status. Weinberg and Umbach (1999) provide a logistic regression model

that can be used to estimate the log-odds ratios of interest with poolwise sums rather than

individual measurements for the exposure and covariates. As they note, however, fitting this

model without accounting for errors in the biomarker measurements can lead to inconsistent

parameter estimation (Carroll et al., 2006; Fuller, 1987).

Schisterman et al. (2010) describe two types of errors that can contaminate pooled

biomarker measurements and potentially induce bias: measurement error due to assay-

related imprecision, and processing or “pooling” error due to the physical process of com-

bining samples. Processing error can be caused by imperfect lab conditions, unintentionally

unequal specimen volumes, and cross-reactions between components of blood from different

people (Schisterman et al., 2010; Weinberg and Umbach, 1999). Schisterman et al. (2010)

focused on estimating parameters of a biomarker distribution via a hybrid study design with

several different pool sizes including 1 (i.e. single measurements), using the fact that different

pool sizes are subject to different combinations of error types.

Lyles et al. (2015) adopted the Schisterman et al. (2010) framework to estimate a

covariate-adjusted log-odds ratio with poolwise data while correcting for errors. They used a

discriminant function approach, targeting the log-odds ratio of interest via a normal-errors re-

gression of the biomarker on case status and covariates rather than a logistic regression. The

individual-level discriminant function model implies a similar poolwise model, into which ad-

ditive normal errors can be incorporated, resulting in a closed-form likelihood for the pooled

observations. This approach is computationally simple and does not require homogeneous

pools, but it only produces a log-odds ratio estimate for the pooled biomarker, not for covari-

ates. The likelihood methods of Liu et al. (2017) are similar in that they model the pooled

biomarker as the dependent variable, but their focus is on outcome measurement error, as

opposed to correcting an adjusted log-odds ratio estimate for covariate errors.
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In this chapter, we follow the framework of Schisterman et al. (2010) and Lyles et al.

(2015) to extend the Weinberg and Umbach (1999) logistic regression model to accommodate

errors in the pooled exposure. We consider a hybrid study design that includes several

different pool sizes, typically including some singles. We pursue likelihood-based inference

assuming processing and measurement errors are independent and normally distributed with

0 means and variances that do not depend on the pool size. We assume processing error

affects pools of size ≥ 2 only, while measurement errors affect all observations.

While all parameters are identifiable with a design that includes at least three different

pool sizes including 1, we demonstrate that numerical stability and precision can be improved

by including a small number of replicates in the study design. By replicates, we mean specif-

ically that two assay measurements are obtained for some single-specimen pools. We apply

our methods to explore the relationship between levels of a serum cytokine during pregnancy

and odds of miscarriage, using a dataset in which cytokines were measured in pools of size

1 and 2, and in which replicates are indeed available. We include the discriminant function

approach of Lyles et al. (2015) throughout, modified slightly to accommodate replicates, and

provide accessible software for implementing both methods.

2.2 Methods

2.2.1 Poolwise logistic regression

We are interested in estimating parameters for an individual-level logistic regression model

relating a binary outcome Y to a continuous exposure X and covariates C:

logit[P (Yij = 1)] = β0 + βxXij + βTcCij (2.26)
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Here i indexes the eventual pool number (i = 1, ..., k) and j indexes membership within a

pool (j = 1, .., gi), so Yij is the case status for the jth member of the ith pool comprised of

gi members (gi ∈ 1, 2, ...). We consider a design in which each pool is homogeneous with

respect to case status, i.e. comprised of either all cases (Yi = 1) or all controls (Yi = 0).

This requires observing individual outcomes prior to forming pools in which to measure the

biomarker.

Rather than observe individual-level biomarker levels for each member of the ith pool,

Xi = (Xi1, ..., Xigi)
T , we obtain from the assay a measure of the poolwise mean X̄i =

1
gi

∑gi
j=1Xij, from which the poolwise sum can be calculated as X∗i = giX̄i (asterisks used to

represent poolwise sums throughout). Individual-level covariate values Ci = (Ci1, ...,Cigi)
T

would typically be available, but we similarly calculate poolwise sums C∗i =
∑gi

j=1Cij.

In a case-control setting with no processing error or measurement error, Weinberg and

Umbach (1999, 2014) provide the appropriate logistic regression model for estimating β =

(β0, βx,β
T
c )T based on the pooled variables:

logit[P (Yi = 1)] = qi + giβ0 + βxX
∗
i + βTcC

∗
i (2.27)

with the offset qi defined as:

qi = gilog

(
P (A|D)

P (A|D̄)

)
+ gilog

(
nD̄
nD

)
+ log

(
# case pools of size gi

# control pools of size gi

)
(2.28)

where P (A|D) and P (A|D̄) are accrual probabilities for cases and controls and nD and nD̄

are the total number of cases and controls across all pools. We note that if the disease

prevalence p is known, the formula simplifies slightly. The accrual probability for cases is

the number of cases sampled (nD) divided by the number of cases in the population (ND),

and similarly for controls, so the first term in Eq. 2.28 becomes gilog
(
nD/ND
nD̄/ND̄

)
, leading to
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the offset formula:

qi = gilog

(
1− p
p

)
+ log

(
# case pools of size gi

# control pools of size gi

)
(2.29)

If accrual probabilities and disease prevalence are unknown, one can use Eq. 2.28 with

the first term omitted. This only affects β̂0, which will typically be biased if there is case

oversampling.

2.2.2 ML for handling errors in X∗i

Following Schisterman et al. (2010), we assume the measurement obtained from the assay is

not the precise poolwise mean X̄i, but the precise poolwise mean plus a processing error εpi

(if gi > 1) plus a measurement error εmi . Letting ˜̄Xi represent the error-prone measurement,

we can write:

˜̄Xi = X̄i + εpi I(gi > 1) + εmi (2.30)

The poolwise logistic regression model Eq. 2.27 uses poolwise sums rather than means,

which can be calculated as X̃∗i = gi
˜̄Xi.

In the ith pool, we observe (Yi, X̃
∗
i ,C

∗
i ). We write the likelihood contribution as:

Li(θ) ∝ f(Yi, X̃
∗
i |C∗i ) =

∫
X∗
i

f(Yi, X̃
∗
i , X

∗
i |C∗i ) dX∗i (2.31)

Taking a classical measurement error modeling approach (Carroll et al., 2006), a convenient

factorization is:

Li(θ) =

∫
X∗
i

f(Yi|X̃∗i , X∗i ,C∗i ) f(X̃∗i |X∗i ,C∗i ) f(X∗i |C∗i ) dX∗i

=

∫
X∗
i

f(Yi|X∗i ,C∗i ) f(X̃∗i |X∗i ) f(X∗i |C∗i ) dX∗i

(2.32)
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The simplification f(Yi|X̃∗i , X∗i ,C∗i ) = f(Yi|X∗i ,C∗i ) reflects a standard non-differential error

assumption: the imprecise X̃∗i does not inform the outcome given the precise X∗i and co-

variates (Carroll et al., 2006). The result f(X̃∗i |X∗i ,C∗i ) = f(X̃∗i |X∗i ) reflects an assumption

that the errors in Eq. 2.30 are independent of covariate values.

The first term under the integral in Eq. 2.32 is already specified by Eq. 2.27. For X̃∗i |X∗i ,

if we assume εpi ∼ N(0, σ2
p) and εmi ∼ N(0, σ2

m) and these errors are independent, then by

Eq. 2.30 we have X̃∗i = gi
˜̄Xi = X∗i + giε

p
i I(gi > 1) + giε

m
i , leading to:

X̃∗i |X∗i ∼ N
(
X∗i , g

2
i σ

2
pI(gi > 1) + g2

i σ
2
m

)
(2.33)

For X∗i |C∗i , we first specify an individual-level model for Xij|Cij and then derive the

implied poolwise model. A normal linear regression is common in the measurement error

literature (Carroll et al., 2006) and convenient here because it leads to a simple poolwise

model. If we assume Xij = α0 + αTcCij + εxij, ε
x
ij

iid∼ N(0, σ2
x), then X∗i =

∑gi
j=1 Xij =

giα0 +αTcC
∗
i + εxi , ε

x
i
ind∼ N(0, giσ

2
x). Assuming εxi is independent of εpi and εmi , the third term

in Eq. 2.32 is:

X∗i |C∗i ∼ N(giα0 +αTcC
∗
i , giσ

2
x) (2.34)

With the likelihood fully specified, optimization routines can be used to obtain ML

estimates for θ = (βT ,αT , σ2
x, σ

2
p, σ

2
m)T . A variance-covariance matrix can be obtained by

numerically approximating the Hessian at θ̂ and taking its inverse. Both steps require

integrating out X∗i for each pool at each iteration.

2.2.3 Approximate ML

While numerically integrating the scalar X∗i ’s out of the likelihood function is feasible, we also

consider a closed-form approximation that will be faster and perhaps more stable. Factoring
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the likelihood slightly differently leads to an alternative to Eq. 2.32 for Li(θ):

Li(θ) =

[∫
X∗
i

f(Yi|X∗i ,C∗i ) f(X∗i |X̃∗i ,C∗i ) dX∗i

]
f(X̃∗i |C∗i ) (2.35)

The first density under the integral is specified by Eq. 2.27. For the second and third,

we first derive the joint density f(X∗i , X̃
∗
i |C∗i ). Conditioning on C∗i and using the poolwise

linear regression Eq. 2.34, we can write:

 X∗i

X̃∗i

 =

 giα0 +αTcC
∗
i

giα0 +αTcC
∗
i

+

 1 0 0

1 giI(gi > 1) gi



εxi

εpi

εmi

 (2.36)

Given the prior normality and independence assumptions, the error vector εi = (εxi , ε
p
i , ε

m
i )T is

trivariate normal. Multivariate normal theory (Seber and Lee, 2012) dictates that (X∗i , X̃
∗
i )T

is bivariate normal: X∗i

X̃∗i

 ∼ N2


 giα0 +αTcC

∗
i

giα0 +αTcC
∗
i

 ,
 giσ

2
x giσ

2
x

giσ
2
x giσ

2
x + g2

i I(gi > 1)σ2
p + g2

i σ
2
m


 (2.37)

This leads to two useful results. For the term outside the integral in Eq. 2.35:

X̃∗i |C∗i ∼ N
(
giα0 +αTcC

∗
i , giσ

2
x + g2

i I(gi > 1)σ2
p + g2

i σ
2
m

)
(2.38)

And for the second term inside the integral:

X∗i |(X̃∗i ,C∗i ) ∼ N(µ̄i, σ̄
2
i ) (2.39)
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where µ̄i = µi1 + Σi12

Σi22
(X̃∗i −µi2) and σ̄2

i = Σi11− Σ2
i12

Σi22
, with (µi1, µi2,Σi12,Σi22) apparent from

Eq. 2.37.

With Yi|(X∗i ,C∗i ) ∼ Bernoulli
(
pi = (1 + e−qi−giβ0−βxX∗

i −βTc C∗
i )−1

)
and X∗i |(X̃∗i ,C∗i ) ∼

N(µ̄i, σ̄
2
i ), the integral in Eq. 2.35 is a variant on a logistic-normal integral that arises

in logistic regression with covariate measurement error outside of pooling. A closed-form

approximation can be used to avoid numerical integration (Fuller, 1987; Lyles and Kupper,

2013). The first density under the integral in Eq. 2.35 is pyii (1− pi)1−yi where pi = H(ηi) =

eηi
1+eηi

and ηi = qi + giβ0 + βxX
∗
i + βTcC

∗
i . Replacing the logistic function H(ηi) with the

probit approximation Φ(ηi
k

), where Φ(·) is the standard normal CDF and typically k = 1.7

(Camilli, 1995), leads to:

p∗i = P (Yi = 1|X̃∗i ,C∗i ) ≈ H

qi + giβ0 + βxµ̄i + βTcC
∗
i√

1 +
β2
xσ̄

2
i

1.72

 (2.40)

Thus the closed-form expression p∗yii (1 − p∗i )
1−yi can be used to approximate the integral

in Eq. 2.35, which represents f(Yi|X̃∗i ,C∗i ). Point estimates and standard errors can be

obtained using the same procedures as for full ML.

2.2.4 Discriminant function approach

Lyles et al. (2015) developed an alternative to poolwise logistic regression for estimating the

log-OR of interest while accounting for errors. The basic idea is to estimate the covariate-

adjusted log-OR by fitting a normal-errors linear regression of X on (Y,C) rather than a

logistic regression of Y on (X,C). The assumed individual-level model is:

Xij = γ0 + γyYij + γTc Cij + εij, εij
iid∼ N(0, σ2) (2.41)



Page 46

It can be shown that the quantity γy
σ2 corresponds to the same covariate-adjusted log-OR

targeted by βx in Eq. 2.27 (Lyles et al., 2009). While the ML estimate is ̂log-ORml = γ̂y
σ̂2 ,

Lyles et al. (2015) provide a bias-adjusted version resulting from a second-order Taylor series

expansion: ̂log-ORadj = ̂log-ORml −
γ̂yV̂ (σ̂2)

(σ̂2)3
(2.42)

If Eq. 2.41 holds true for individual data, then the corresponding poolwise model for

X∗i |C∗i is:

X∗i =

gi∑
j=1

Xij = giγ0 + γyY
∗
i + γTc C

∗
i + εi, εi

ind∼ N(0, giσ
2) (2.43)

In this case, Y ∗i is the number of subjects in the ith pool with Yij = 1. This is different from

the logistic regression setup where Yi = 1 for case pools and 0 for control pools.

We again assume the assay returns the error-contaminated poolwise mean ˜̄Xi = X̄i +

εpi I(gi > 1) + εmi , from which the poolwise sum can be calculated as X̃∗i = gi
˜̄Xi = X∗i +

giε
p
i I(gi > 1) + giε

m
i . The likelihood contribution for the observed (Y ∗i , X̃

∗
i ,C

∗
i ) is:

Li(θ) ∝ f(X̃∗i |Y ∗i ,C∗i ) (2.44)

where:

X̃∗i |(Y ∗i ,C∗i ) ∼ N
(
giγ0 + γyY

∗
i + γTc C

∗
i , giσ

2 + g2
i I(gi > 1)σ2

p + g2
i σ

2
m

)
(2.45)

Our result differs in a small but important way from that of Lyles et al. (2015). They

assume that errors add to the poolwise sum X∗i , while we consider it more plausible that

they add to the poolwise mean X̄i targeted by the assay.

The likelihood can be maximized to obtain θ̂ = (γ̂T , σ̂2, σ̂2
p, σ̂

2
m)T , and V̂ (θ̂) calculated as

the inverse of the estimated Hessian at θ̂. The bias-adjusted log-OR can then be calculated

using Eq. 2.42. A delta method-based variance estimate for the MLE is V̂ ( ̂log-ORml) =
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f ′(θ̂)V̂ (θ̂)f ′(θ̂)T with f ′(θ̂) = ( 1
σ̂2 ,− γ̂y

σ̂4 ). We use this variance estimator as an approximation

for V̂ ( ̂log-OR); it should tend to be slightly conservative when used in conjunction with the

bias-corrected estimator.

2.2.5 Incorporating replicates

For both logistic regression and the discriminant function approach, all parameters are iden-

tifiable without replicates provided there are a sufficient number of unique pool sizes. There

must be at least two different pool sizes to correct for measurement error or processing er-

ror, and at least three different pool sizes including 1 to correct for both. But theoretical

identifiability does not necessarily imply stable estimation (Carroll et al., 2006). A relatively

small number of replicate measurements may help to distinguish the variance components,

particularly σ2
m. While replicates for pools of any size could be accommodated, we focus

primarily on replicate singles, where multiple assay measurements are obtained for some

single-specimen pools.

Note that obtaining multiple assays for the same subjects requires a greater volume of

biospecimen. This may not be feasible in certain scenarios, especially if pooling is utilized to

reach the minimum volume for a particular assay. Replicates would still not be completely

out of the question in these cases; whatever the minimum pool size is given available specimen

volumes, one could form pools twice that size and have sufficient volume for two assays per

pool. This is somewhat beyond our scope, and it is unclear whether two assays for the same

pool would be subject to the same or different processing errors. We return to replicate

singles.

If for the ith single (gi = 1) we obtain ki independent assay measurements, X̃i =

(X̃i1, ..., X̃iki)
T , the logistic regression likelihood contribution for the ith pool is the same

as in Eq. 2.32 (asterisks omitted since gi = 1), except X̃i is vector-valued, so the second
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term under the integral becomes f(X̃i|Xi). There is no processing error for singles, so each

X̃ij is the true biomarker level Xi plus an independent normally distributed measurement

error. This can be written as: X̃i = 1kiXi + εmi , ε
m
i

ind∼ Nki(0ki , σ
2
mIki). It follows that:

X̃i|Xi ∼ Nki(1kiXi, σ
2
mIki) (2.46)

To incorporate replicates for approximate ML, we replace X̃∗i in Eq. 2.36 with X̃i =

1ki(α0 +αTcCi + εxi ) + εmi , leading to a slightly modified version of Eq. 2.37 for (Xi, X̃i) and

subsequent results for Xi|(X̃i,Ci) and X̃i|Ci.

For the discriminant function approach, the likelihood for a single-specimen pool with ki

replicates is Li(θ) = f(X̃i|Yi,Ci). The vector of replicates X̃i can be written:

X̃i = 1kiXi + εmi

= 1ki(γ0 + γyYi + γTc Ci + εi) + εmi

= 1ki(γ0 + γyYi + γTc Ci) +

[
1ki Iki

] εi

εmi


(2.47)

The error vector εi = (εi, ε
mT
i )T is multivariate normal with mean 0ki+1 and a diagonal

variance-covariance matrix with σ2 and ki σ
2
m’s on the diagonal. Therefore:

X̃i|(Yi,Ci) ∼ Nki

(
1ki(γ0 + γyYi + γTc Ci), σ

2Jki + σ2
mIki

)
(2.48)

2.2.6 Implementation

We used R 3.5.0 (R Core Team, 2015) to develop the package pooling (Van Domelen,

2018b), which is available on GitHub and CRAN.

The functions p logreg xerrors and p dfa xerrors implement the logistic regression and
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discriminant function approaches described here. User inputs include the poolwise data,

whether to correct for measurement error, processing error, neither, or both, and other

settings such as starting values and lower/upper bounds for parameters. Outputs include

the estimated parameters, a variance-covariance matrix, and Akaike information criterion

(Akaike, 1974).

We use the nlminb function in base R to maximize log-likelihood functions. Initial values

are set to 0.01 for regression coefficients and 1 for variance components; lower bounds of

0.001 are used for the latter. Hessian matrices at the MLE’s are numerically approximated

using the hessian function from the pracma package v. 2.1.1 (Borchers, 2017). The logistic

regression function supports both full ML and approximate ML. For full ML, the hcubature

function in cubature v. 1.3-11 (Narasimhan and Johnson, 2017) is used for numerical

integration.

2.3 Collaborative Perinatal Project

The Collaborative Perinatal Project (CPP) was a multisite prospective study initiated in

1959 and aimed at identifying risk factors for maternal and infant mortality and cerebral

palsy (Hardy, 2003). A nested case-control study was later conducted to test whether serum

cytokine levels measured during pregnancy were associated with risk of spontaneous abortion

(SA) (Whitcomb et al., 2007). We use data from the follow-up study, in which cytokines were

measured in pools of size 1 and 2 using stored samples from the original study. Our research

question is whether the cytokine monocyte chemotactic protein (MCP-1 ) is associated with

risk of SA after adjusting for age, race, and smoking.

Data are comprised of 96 singles without replicates (gi = 1, ki = 1), 30 singles with two

replicates (gi = 1, ki = 2), and 280 pools of size 2 (gi = 2, ki = 1), for a total of 686 subjects

and 436 measurements.
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Before applying the corrective methods, which rely on various assumed models and dis-

tributions, we note that the mean MCP-1 was similar for cases and controls within each pool

size. For g = 1, the mean (SD) was 0.131 (0.106) for cases and 0.124 (0.137) for controls

(unequal variance t-test: p = 0.72); for g = 2, the mean (SD) for assay measurements (not

multiplied by 2) were 0.226 (0.284) for cases and 0.203 (0.233) for controls (p = 0.48). While

not adjusted for covariates, these comparisons are useful in that they provide estimates of the

crude association between MCP-1 and SA that rely on minimal distributional assumptions

and are valid despite the errors (Abrevaya and Hausman, 2004; Carroll et al., 2006).

Table 2.9 shows covariate-adjusted log-OR estimates for the corrective methods, with and

without incorporating the 30 replicates. For the no-replicates analysis, one of the two MCP-1

measurements was randomly selected for subjects with two measurements. Abbreviations

are as follows: LRF = logistic regression, full ML; LRA = logistic regression, approximate

ML; and DFA = discriminant function approach. Cell values indicate ̂log-OR (SE), AIC.

MCP-1 values were multiplied by 10 prior to fitting the models, so the ̂log-OR’s are for a

0.1-ng/mL increment. Lower AIC values indicate better fits relative to models in the same

row (Akaike, 1974).

Without replicates, either processing error or measurement error could be accounted

for, but not both. Identifiability would require a third pool size in addition to 1 and 2.

This is an important limitation because it means choosing from three candidate models

that may all inadequately correct for MCP-1 errors. AIC favored processing error only for

all three corrective methods. Measurement error only models had lower AIC than neither,

but produced implausible parameter estimates (e.g. residual error variances hitting 0.001).

Logistic regression was particularly unstable for measurement error only, as different starting

values produced very different ̂log-OR’s but similar maximized log-likelihoods. Relative to

neither error, processing only models had larger point estimates but also larger standard

errors, such that the association between MCP-1 and SA still did not approach significance.
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Table 2.9: Estimates of adjusted log-OR for MCP-1 and spontaneous abortion in CPP.
Values are ̂log-OR (SE), AIC.

Error type

Neither PE only ME only Both

Without replicates

LRF 0.012 (0.024), 2822.0 0.070 (0.114), 2697.6 -0.071 (-), 2762.4b Not identifiable

LRA n/aa 0.071 (0.115), 2697.5 -0.088 (-), 2762.4 Not identifiable

DFA 0.016 (0.025), 2277.6 0.090 (0.114), 2153.0 Inf (-), 2217.7c Not identifiable

With replicates

LRF n/ad n/ad 0.026 (0.049), 2353.8 0.046 (0.082), 2340.8

LRA n/ad n/ad 0.026 (0.049), 2353.8 0.046 (0.082), 2340.8

DFA n/ad n/ad 0.030 (0.051), 1809.5 0.050 (0.081), 1796.5

a No integral to approximate.

b σ̂2
x = 0.001. SE omitted because variance-covariance matrix not positive definite.

c σ̂2 = 0.001, causing blow-up in ̂log-OR = γ̂y/σ̂
2.

d Non-identical replicates are incompatible with no measurement error.

With replicates incorporated, the two candidate models are measurement error only and

both errors, since non-identical replicates are incompatible with no measurement error (in

Eq. 2.46, σ2
m = 0 implies X̃i1 = X̃i2 = Xi). AIC favored both errors for all three methods.

The estimated variance components for LRF were as follows: σ̂2
x = 1.580, σ̂2

p = 0.729,

and σ̂2
m = 0.108. Relatively small measurement error variance is reasonable given the high

correlation for the 30 MCP-1 replicates (r = 0.976).

Table 2.10 compares the LRF fit accounting for both error types alongside the naive

poolwise logistic regression fit treating MCP-1 values as precise poolwise sums. Both models

suggest that older age, non-white race, and current smoking are associated with higher odds

of SA. The covariate-adjusted association for MCP-1 and SA was not statistically significant

in either model, but the estimated OR was slightly higher in the error-adjusted model.
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Table 2.10: Logistic regression estimates for odds of spontaneous abortion in CPP.

Ignoring MCP-1 errors Accounting for MCP-1 errors

Variable Beta (SE) OR (95% CI) Beta (SE) OR (95% CI)

Intercept -1.565 (0.372) - -1.581 (0.374) -

MCP-1 0.012 (0.024) 1.012 (0.966, 1.060) 0.046 (0.082) 1.047 (0.891, 1.230)

Mother’s age 0.037 (0.013) 1.037 (1.011, 1.064) 0.036 (0.013) 1.037 (1.011, 1.064)

Non-white race 0.560 (0.175) 1.751 (1.242, 2.470) 0.566 (0.176) 1.761 (1.247, 2.488)

Current smoking 0.338 (0.162) 1.402 (1.021, 1.926) 0.338 (0.162) 1.402 (1.021, 1.926)

2.4 Simulation studies

We performed simulations modeled after the CPP data to assess validity and efficiency of

our methods and to explore the effect of errors on the relative efficiency of pooling designs

vs. traditional.

The main assumption underlying the discriminant function approach (X|(Y,C) is a

normal-errors linear regression) implies a logistic regression model for Y |(X,C), while the as-

sumptions underlying the logistic regression method (homogeneous pools, logistic regression

for Y |(X,C), linear regression for X|C) do not necessarily imply the discriminant func-

tion model. Our main focus is logistic regression, where odds ratios for all predictors can

be estimated, rather than just for the pooled biomarker. So we generate data under logis-

tic regression and compare parameter estimation for both methods, where the discriminant

function approach is more of a working model for the data.

Covariates generated independently of each other include mother’s age, C1ij ∈ (14, ..., 45)

with sampling probabilities matching the CPP age distribution; non-white race, C2ij ∼

Bernoulli(0.34); and smoking, C3ij ∼ Bernoulli(0.47). Using estimates from the full-ML

logistic regression with both error types and replicates, MCP-1 in 10 ng/mL (Xij) given

Cij is a linear regression with (α0,α
T
c , σ

2
x) = (0.50, 0.03,−0.17, 0.02, 1.58), and SA (Yij)
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given (Xij,Cij) is a logistic regression with (β0, βx,β
T
c ) = (−1.58, 0.20, 0.04, 0.57, 0.34). The

estimated log-OR for MCP-1 was 0.046, but we use 0.20 to simulate a moderate effect where

a 0.1-ng/mL increment in MCP-1 is similar to a 5-year increment in mother’s age in terms

of its impact on odds of SA. Finally, error variances were set to σ2
p = 0.729 and σ2

m = 0.108.

2.4.1 Validity of error-correction methods

The first set of simulations is aimed at assessing validity under a hybrid design with pools

of size 1, 2, and 3, where all parameters are identifiable even without replicates. For each

trial, we generate 686 values for (Cij, Xij, Yij) and separate the data into n1 cases and n0

controls. Within cases, we form n1

6
(rounded up) pools of size 2 and 3 and leave the remaining

observations as singles, and similarly for controls. For the pooled biomarker, we calculate

the true poolwise mean X̄i, add normal errors to obtain the imprecise poolwise mean ˜̄Xi,

and multiply by the pool size to obtain the imprecise poolwise sum X̃∗i . For scenarios with

replicates, X̃i = (X̃i1, X̃i2)T is generated by adding two independent measurement errors to

Xi.

Table 2.11 summarizes performance of the three methods alongside naive poolwise logistic

regression ignoring errors under processing error only, measurement error only, and both.

Error type here refers to both data generation and estimation, such that LRF, LRA, and

DFA are always based on correctly specified errors.

In the processing error only scenario, the naive logistic regression ignoring errors exhibited

substantial downward bias and poor CI coverage, suggesting the processing errors are too

large to ignore. The corrective methods performed reasonably well, although LRF and LRA

had some upward bias. Despite generating data under logistic regression, DFA had slightly

less bias and better efficiency than LRF and LRA.

For measurement error only, there was only a small amount of downward bias and slightly
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Table 2.11: Simulation results for estimation of adjusted log-OR for MCP-1 and spontaneous
abortion (2,500 trials each, true log-OR = 0.20).

Mean bias
(median bias)

SD (IQR) Mean SE MSE Coverage

Processing error only

Naive -0.097 0.047 0.047 0.012 0.447

LRF 0.014 0.099 0.099 0.010 0.958

LRA 0.013 0.099 0.098 0.011 0.958

DFA 0.005 0.092 0.094 0.009 0.959

Measurement error only

Without replicatesa

Naive -0.025 0.064 0.062 0.005 0.919

LRF 0.027 0.108 0.104 0.012 0.970

LRA 0.027 0.107 0.104 0.012 0.970

DFA 0.003 0.084 0.095 0.007 0.970

With replicates

LRF 0.005 0.076 0.074 0.006 0.954

LRA 0.004 0.076 0.074 0.006 0.954

DFA 0.001 0.074 0.073 0.005 0.954

Both error types

Without replicatesb

Naive (-0.106) (0.061) - - 0.355

LRF (0.062) (0.306) - - 0.987d

LRA (0.062) (0.302) - - 0.987e

DFAc (0.053) (0.290) - - 0.986

With replicates

LRF 0.014 0.103 0.103 0.011 0.962

LRA 0.013 0.102 0.102 0.011 0.962

DFA 0.005 0.095 0.098 0.009 0.964

a Excludes 2 trials in which ̂log-OR > 2 for LRF.
b Median bias and IQR reported to lessen impact of extreme estimates.
c Bias adjustment not used because it frequently flipped sign of ̂log-OR.
d Excludes 70 trials in which variance-covariance matrix was not positive definite.
e Excludes 79 trials in which variance-covariance matrix was not positive definite.
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lower than nominal coverage for the naive method, suggesting the measurement errors were

nearly small enough to ignore. Without replicates, LRF and LRA exhibited upward bias of

about the same magnitude as the naive approach, while DFA was virtually unbiased and

more efficient. The measurement error variance estimate σ̂2
m hit its lower bound in 23.5% of

trials for both LRF and LRA and 27.7% of trials for DFA. Replicates improved estimation;

for all three methods, σ̂2
m never hit 0.001, bias was reduced and efficiency improved, and CI

coverage was closer to nominal.

In the both-errors scenario, performance without replicates was poor. The corrective

methods often produced extreme estimates ( ̂log-OR outside of [-1, 1] in 13.1% of trials for

LRF, 12.6% for LRA, 13.9% for DFA) and exhibited upward median bias. At least one

variance component estimate hit 0.001 in the majority of trials for all three methods (LRF:

σ̂2
x 0.1%, σ̂2

p 16.8%, σ̂2
m 48.0%; LRA: σ̂2

x 0.1%, σ̂2
p 16.9%, σ̂2

m 47.8%; DFA: σ̂2 4.8%, σ̂2
p 20.3%,

σ̂2
m 48.2%). Adding replicates resolved this issue and drastically improved performance.

The stabilizing role of replicates in the both-errors scenario is illustrated by the ̂log-OR

histograms in Figure 2.5. While the log-OR is identifiable with pools of size 1, 2, and 3 and

no replicates, estimation is relatively unstable even for a fairly large sample size. We note

that log-OR estimates outside of [-1, 1] remained fairly common even after a 5-fold increase

in sample size to n = 3, 430 (1,000 trials: 2.9% for LRF, 3.9% for LRA, 2.9% for DFA).

DFA was more efficient than LRF and LRA across all scenarios, and additional gains may

be possible if H0 : γy = 0 rather than H0 : log-OR = γy
σ2 = 0 is used for the primary test of

association. The former is indeed a uniformly most powerful unbiased test for H0 : OR = 1

(Lyles et al., 2009). To briefly explore this, we ran an additional 2,500 trials of the processing

error only scenario from Table 2.11. Empirical power was 0.588 for LRA, 0.612 for DFA with

H0 : log-OR = 0 (bias-adjusted version), and 0.637 for DFA with H0 : γy = 0.
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Figure 2.5: Histograms of log-OR estimates in simulations with processing error and mea-
surement error (2,500 trials, true log-OR = 0.2).
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2.4.2 Robustness to non-normality of errors

We re-ran the prior simulations with errors distributed lognormal rather than normal to as-

sess robustness to non-normal errors. Processing errors were generated from LN(0.925, 0.099)

minus 2.6498 and measurement errors from LN(−0.022, 0.099) minus 1.0279, corresponding

to mean-0, skewness of 1, and variances of 0.73 and 0.11, respectively, as in the previous

normal-errors scenario. Results are summarized in Table 2.12. All three methods performed

well despite modeling right-skewed lognormal errors as normal; performance metrics were

extremely similar to the normal-errors results in Table 2.11. Performance was also similar

with errors uniformly distributed with mean 0 and variances 0.73 and 0.11 (not shown).

2.4.3 Efficiency of traditional vs. pooling designs

Next we compare the efficiency of various study designs holding the total number of assays

fixed and varying the magnitude of processing errors and measurement errors. For each

trial, we generate 50,000 (Cij, Xij, Yij) values using the same parameters as in the previous

simulations. For the traditional design, we sample 450 cases and 450 controls.

For the first pooling design (“P-1-2-3”), we sample 900 cases and form 450 pools—

150 with g = 1, 150 with g = 2, and 150 with g = 3—and similarly for controls. For

the second, more aggressive pooling design (“P-1-5”), we sample 1,650 cases and form 450

pools—150 with g = 1 and 300 with g = 5—and also for controls. In scenarios where

there is measurement error, the traditional design requires replicates for identifiability, so

we randomly select 50 observations for which to generate two exposure measurements and

50 to exclude to keep the assay count at 900. We also incorporate 50 replicate singles into

both pooling designs in scenarios with measurement error, while dropping 50 non-replicate

singles to maintain 900 total assays.
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Table 2.12: Simulation results for estimation of adjusted log-OR for MCP-1 and spontaneous
abortion, with errors distributed lognormal rather than normal (2,500 trials each, true log-
OR = 0.20).

Mean bias
(median bias)

SD (IQR) Mean SE MSE Coverage

Processing error only

Naive -0.097 0.050 0.048 0.012 0.458

LRF 0.012 0.102 0.099 0.011 0.956

LRA 0.012 0.101 0.099 0.010 0.956

DFA 0.004 0.094 0.094 0.009 0.960

Measurement error only

Without replicates

Naive -0.024 0.064 0.063 0.005 0.921

LRF 0.028 0.109 0.104 0.013 0.969

LRA 0.027 0.107 0.103 0.012 0.969

DFA 0.004 0.085 0.094 0.007 0.964

With replicates

LRF 0.006 0.077 0.074 0.006 0.950

LRA 0.006 0.077 0.074 0.006 0.949

DFA 0.003 0.074 0.073 0.006 0.951

Both error types

Without replicates

Naive (-0.106) (0.062) - - 0.362

LRF (0.067) (0.366) - - 0.984b

LRA (0.066) (0.359) - - 0.985c

DFAa (0.060) (0.348) - - 0.984

With replicates

LRF 0.016 0.109 0.104 0.012 0.959

LRA 0.015 0.108 0.103 0.012 0.959

DFA 0.007 0.100 0.099 0.010 0.956

a Bias adjustment not used because it frequently flipped sign of ̂log-OR.
b Excludes 88 trials in which variance-covariance matrix was not positive definite.
c Excludes 99 trials in which variance-covariance matrix was not positive definite.
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Figure 2.6 compares efficiencies for the traditional and pooled designs for the LRA and

DFA methods (LRF omitted; r > 0.998 for LRF and LRA in first 25 trials for all scenar-

ios). Trends for pooling vs. traditional designs were similar for LRA (left column) and

DFA (right). For processing error only, the pooling designs were highly efficient for small

processing error, but that advantage eroded and eventually reversed as σ2
p increased. For

measurement error only and both error types, the efficiency advantage was reduced with

increasing measurement error, but the pooling designs did not become clearly counterpro-

ductive even for large σ2
m. Notably, DFA was more efficient than LRA in 53 out of 54

scenarios.
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Figure 2.6: Interquartile range of log-OR estimates (5,000 trials each).
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2.5 Discussion

Weinberg and Umbach (1999) developed a homogeneous pools logistic regression model that

provides an analytic method to accompany a cost-effective pooling design, which can be used

in any scenario where outcomes are observed prior to measuring exposure (e.g. cross-sectional

and case-control studies, and cohort studies with stored specimens). However, fitting this

model without accounting for potential errors in the poolwise biomarker measurements can

lead to bias. Validity requires not only that the assay has negligible measurement error, but

also that each value it returns is exactly the arithmetic mean exposure for members of a

pool. In reality, handling and combining samples in the lab may lead to extra variability

that cannot be ignored.

In general, the corrective methods we examined to correct for errors produced valid log-

odds ratio estimates. Our updates to a proposed discriminant function approach (Lyles et al.,

2015) tended to give less biased and in some cases considerably more efficient estimates of the

exposure log-odds ratio than the newly developed logistic regression approach in simulations,

despite generating data under logistic regression. The bias adjustment incorporated into the

discriminant function approach (see Eq. 2.42) likely explains some of this difference, as

logistic regression is prone to small-sample bias away from the null (Nemes et al., 2009;

Firth, 1993). Nevertheless, we suspect analysts may still prefer logistic regression, given

that it is the more familiar and general of the two and yields log-odds ratio estimates for all

predictors rather than just the pooled biomarker. Both methods can theoretically correct for

both processing error and measurement error as long as there are at least three different pool

sizes including 1, but we find that adding replicate single measurements drastically improves

stability when both errors are present.

For logistic regression, full and approximate ML produced very similar parameter esti-

mates for the CPP dataset and had extremely similar performance in simulations. Full ML
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is much slower because it requires numerical integration for each pool at each iteration of

likelihood maximization. For our Table 2.11 simulations with both error types and replicates,

each trial took approximately 5 minutes for full ML, and only about 3 seconds for approxi-

mate ML. In practice, investigators with poolwise data could fit both versions, confirm that

estimates are similar, and report the full ML results. Comparing parameter estimates and

maximized log-likelihoods might also be helpful in detecting numerical issues with full ML

when they occur.

Our approaches are fully parametric and thus potentially susceptible to validity issues

when assumptions are violated. Simulations suggested some robustness to non-normal errors,

but the error distributions we tested were still mean-0 and additive. If normality assumptions

are clearly violated, one could consider using our full ML logistic regression framework with a

different measurement error model and/or exposure model. But alternative exposure models

(e.g. a log-transformed linear regression) will typically not have a convenient poolwise sum

result like linear regression (Mitchell et al., 2014a). The discriminant function approach could

also be used with non-normal errors, but it would likely not have a closed-form likelihood.

The discriminant function method has some appealing features in terms of study design

considerations. First, it does not require homogeneous pools—perhaps a minor point consid-

ering that pooling-related efficiency gains require homogeneous pooling. Second, it holds a

notable efficiency advantage over logistic regression, which might be even more pronounced

if one were to base inference on the regression coefficient γy rather than the log-odds ratio γy
σ2 .

As Lyles et al. (2009) point out, when the assumptions underlying the discriminant function

model are met, H0 : γy = 0 is a uniformly most powerful unbiased test for whether the

odds ratio equals 1. We indeed observed a modest gain in empirical power from targeting γy

rather than γy
σ2 (0.637 vs. 0.612) in a processing error-only simulation. The empirical power

for logistic regression was 0.588, so performing inference on γy boosted the power advantage

of the discriminant function approach from 0.024 to 0.049.
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On a related note, the idea of targeting γy via the discriminant function model motivates

a compelling study design. One could use a single pool size (ideally a large one) and not

worry about identifying each variance component. Processing and measurement errors would

simply add to the residual error variance. Inference for γy would be valid, just with reduced

power relative to processing and measurement errors not being present (Carroll et al., 2006).

The log-odds ratio itself would not be estimable, but one could use γ̂y
MSE

for a lower bound

(the MSE would overestimate σ2 due to the additional errors). A sensitivity analysis could

be used to gauge plausible values for the true log-odds ratio. This design would be simple

and likely very powerful, since there would be no need to use up assays on replicates or

smaller pool sizes included solely to help distinguish variance terms.

Our methods assume that errors in the pooled biomarker have the same form for cases and

controls. While assuming non-differential measurement error is dubious when exposure levels

are self-reported (Carroll et al., 2006; White, 2003), it seems reasonable for the assay-based

assessment we are considering. It is unlikely that assay errors would differ by case status

(differential measurement error) or that case samples and control samples might be handled

in a way that induces different amounts of extra variability to each (differential processing

error). The latter could perhaps occur in scenarios where new controls are matched to case

samples that have been stored for an extended period of time.

One way to relax the non-differential error assumption is to allow the processing and/or

measurement errors to have different variances in case pools and control pools. While this

would nullify the discriminant function approach’s advantage of not requiring homogeneous

pools, the pooling design lacks an efficiency advantage in that design anyway (Lyles et al.,

2015). We have included options to allow for differential errors in our publicly available R

functions.

A similar concern is whether it is reasonable to assume that the processing error variance

is independent of pool size. If caused by factors such as unequal specimen volumes and
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cross-reactions among samples from different subjects, it may be more pronounced in larger

pools. We suggest two potential solutions. First, one can avoid the problem entirely with

a design that includes singles and pools of just one other size, such as the P-1-5 design.

The models discussed herein would account for whatever processing error affects the pooled

observations; it would not matter whether pools of other sizes would have had larger or

smaller errors. Second, one could specify a relationship between pool size and processing

error variance. One simple approach currently supported in our R functions is to assume the

assay returns the poolwise mean plus a normal processing error times
√

gi
2
I(gi > 1) (plus

the measurement error, if applicable). This reflects an assumption that the processing error

variance increases at the same rate as the pool size, so that for example a pool with 2x

the number of members would be subject to processing error with 2x the variance. Other

more flexible approaches are also possible, such as a linear relationship between pool size

and processing error variance with a non-unity slope estimated from the data.

A brief note on identifiability in the absence of replicates is warranted, as our assessment

differs slightly from those of prior authors (Lyles et al., 2015; Schisterman et al., 2010).

Returning to the original set of assumptions (non-differential errors, processing error variance

independent of pool size), the variance of the error-prone poolwise sum biomarker level given

covariates is giσ
2
x + g2

i σ
2
pI(gi > 1) + g2

i σ
2
m. With measurement error only, two pool sizes g1

and g2 result in variances g1σ
2
x + g2

1σ
2
m and g2σ

2
x + g2

2σ
2
m, respectively. For any two distinct

pool sizes (g1, g2), these quantities are not equal nor multiples of each other, so σ2
x and σ2

m are

identified. The situation is the same with processing error only: at least two different pool

sizes are required, and neither has to be 1 (Lyles et al., 2015). With both error types, we

agree that at least three different pool sizes including 1 are required to identify all parameters

(Lyles et al., 2015; Schisterman et al., 2010). However, two pool sizes not including 1 are

sufficient to identify σ2
x and the sum (σ2

p + σ2
m), which in theory is enough to achieve the

primary goal of removing bias due to both error types. If replicate singles are included in
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the study design, identifiability is guaranteed regardless of what pool sizes are included.

The fact that two pool sizes other than 1 is sufficient to correct for both error types,

while not bothering to distinguish them, is initially encouraging. It suggests a way to get

around stability issues that arise when both errors are present and there are no replicates.

In this scenario, each poolwise measurement is subject to a normal processing error and

a normal measurement error, which can be viewed as a single mean-0 normal error with

variance σ2
p + σ2

m. This is no different than a processing error only scenario with error

variance σ2
p + σ2

m, so we might expect similar stability. Unfortunately, adequate stability

in processing error only scenarios is aided by the very presence of singles, which help to

distinguish σ2
p. In our second set of simulations, we experimented with a P-2-3 design, but

found that it was even less stable than P-1-2-3 (e.g. 52% larger IQR in 1,000 trials with

σ2
p = σ2

m = 0.1).

Next, we turn to the central question of whether pooling remains cost-effective in the

presence of errors. In a two-sample t-test scenario, a pooling design where each measurement

is the arithmetic mean for g members of a group is efficient because each measurement has

variance σ2

g
rather than σ2. The ratio of variances for pooled measurements to individual

measurements is 1
g
, so the optimal design for a fixed number of assays is one very large pool

size. Theoretically, a large enough pool size could provide power of virtually 1 for any fixed

number of assays.

With errors, the variance of each measurement in the traditional design is σ2 + σ2
m, and

in the pooling design is σ2

gi
+ σ2

p + σ2
m. The ratio is Vp:t = 1

σ2+σ2
m

(σ
2

gi
+ σ2

p + σ2
m), which is

minimized for σ2
p = σ2

m = 0. So processing error and measurement error both have the effect

of reducing the efficiency advantage of a pooling design.

If there is processing error only, Vp:t = 1
gi

+
σ2
p

σ2 , which converges to 1
gi

as σ2
p → 0, ∞ as

σ2
p →∞, and 1

gi
+ 1 as σ2

p → σ2. We note that Vp:t > 1 if σ2
p > σ2(1− 1

gi
), meaning that, for

example, if the biggest pool size possible is 5, a pooling design will be less efficient than a
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traditional one if σ2
p is more than 80% of σ2.

For measurement error only, Vp:t = (σ
2

gi
+σ2

m)/(σ2 +σ2
m) which converges to 1

gi
as σ2

m → 0,

1 as σ2
m →∞, and 0.5 < 1+gi

2gi
< 1 as σ2

m → σ2.

To summarize, for processing error only, a pooling design can become counterproductive

if σ2
p is nearly as large or larger than σ2, but for measurement error only, a pooling design

should remain more efficient even if σ2
m is as large as σ2. With both errors, results are

generally the same as for processing error only, but the added measurement error will make

any efficiency advantage smaller than it would have been with only processing error and the

same σ2
p.

While our analytic framework is somewhat different (i.e. the models are more involved,

covariates are present, and the variance terms have to be estimated), our simulations (see

Figure 2.6) mostly agreed with efficiency results predicted by the above t-test-based argu-

ments.

In summary, we have provided a method to correct for errors that can compromise validity

of homogeneous pools logistic regression. The pooling design should remain cost-effective in

situations where the assay is expensive and relatively precise, and careful handling can keep

processing errors to a minimum. In future work, we plan to further generalize the methods

presented here to accommodate non-normal errors and skewness in the pooled biomarker.

Developing methods to handle potential sources of bias in pooling studies should lead to

more feasible implementation of this very promising study design.



Chapter 3: Gamma models to accom-

modate a skewed exposure measured

in pools and subject to multiplicative

errors

3.1 Introduction

In the logistic regression setting where measuring a continuous exposure requires an expensive

assay, a pooling study design can be extremely cost-effective (Weinberg and Umbach, 1999;

Mitchell et al., 2014b,a; Lyles et al., 2016). We consider a design in which the assay is

applied to pooled rather than individual biospecimen samples, with each pooled sample

comprised of an equal volume from some number of like participants with respect to case

status (i.e. all cases or all controls). Assuming the assay returns the mean biomarker level

for members of each pool, the logistic regression model provided by Weinberg and Umbach

(1999, 2014) can be used to estimate the log-odds ratios of interest with poolwise sums rather

than individual-level data.

However, two types of error may affect pooled biomarker measurements and induce bias if

ignored. Measurement error is extra variability due to assay imprecision, and processing error

67
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is extra variability due to physically combining biospecimens into pools (Schisterman et al.,

2010). In a hybrid design that includes some single-specimen pools, measurement error would

impact all measurements, while processing error would only affect multi-specimen pools.

While measurement error could be assumed non-existent or negligible in scenarios where the

assay is known to be very accurate, it seems generally dubious to assume no processing error.

That would require precise formation of exactly equal-volume pools and minimal changes

in the pooled biomarker concentration caused by cross-reactions from mixing biospecimens

from different subjects.

Following the framework of Schisterman et al. (2010), Lyles et al. (2015) used maximum

likelihood to estimate the covariate-adjusted log-odds ratio for a pooled biomarker subject

to processing error and measurement error. They used a discriminant function approach in

which the exposure log-odds ratio is estimated not from a logistic regression, but from a

linear regression of the exposure on case status and covariates. The primary assumptions

were as follows: (1) exposure level given case status and covariates is normally distributed

with homoscedastic errors; (2) measurement errors and processing errors are additive, inde-

pendent, normally distributed with mean 0 and variances independent of pool size; and (3)

measurement errors affect all measurements, while processing errors only affect pools of size

2 or larger. Advantages of this approach include its computational simplicity, its applica-

bility to designs with homogeneous or heterogeneous pools with respect to case status, the

availability of a small-sample bias correction, and the ability to correct for both error types

without replicate assay measurements, provided there are at least three different pool sizes

including pools of size 1. A notable disadvantage is that it produces an odds ratio estimate

for the pooled biomarker, but not for covariates.

In Chapter 2, we relied on similar error assumptions as Schisterman et al. (2010) and

Lyles et al. (2015) to correct for assay errors in fitting the Weinberg and Umbach (1999)

poolwise logistic regression model. Taking a classical measurement error modeling approach
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(Carroll et al., 2006), we wrote the likelihood contribution for the ith pool as the product

of three densities—case status given biomarkers and covariates, error-prone biomarker given

true biomarker, and true biomarker given covariates—with the unobserved true biomarker

level integrated out.

An important limitation of the Lyles et al. (2015) approach and our logistic regression

methods from Chapter 2 is that they fail to address two common features of biomarker

distributions: skewness and positivity (Frerichs et al., 1976; Mendall et al., 1996). In this

chapter, we address this limitation by providing Gamma-based analogues to both of these

approaches.

In considering how to adapt our logistic regression approach, a natural idea is to assume a

linear model for the log-transformed biomarker level given covariates, and perhaps lognormal

multiplicative errors rather than normal additive errors. A linear model for log-biomarker

level given covariates implies a linear model for the sum of the log-biomarker levels for

members of a given pool vs. summed covariates. But the summed log-biomarker level for

each pool cannot be recovered from the poolwise mean, which is what the assay is assumed

to target.

We consider an alternative approach with a more convenient poolwise-sum result: a

Gamma regression model for exposure given covariates, along with multiplicative lognormal

errors. Following the “alternate Gamma model” approach from Mitchell et al. (2015), we

assume that the biomarker given covariates is Gamma distributed with constant scale pa-

rameter and shape parameter log-linear in covariates. Under this setup, each covariate is

linearly related to the log of the expected value of the biomarker, and the variance of the

biomarker level is directly proportional to the expected value.

Assuming independence among members of a pool, the corresponding model for poolwise

sum biomarker level given summed covariates is Gamma with the same scale parameter as for

individual-observations and shape parameter the sum of the individual-level shape parame-
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ters (Lehmann and Casella, 2006). Unlike the log-transformed linear regression, this result is

compatible with observed data, provided individual-level covariates are available. We further

assume multiplicative lognormal errors, using a generally similar set of assumptions as in

previous work (Schisterman et al., 2010; Lyles et al., 2015). We accommodate replicate assay

measurements, which are again not strictly required for identifiability but may help stabilize

ML estimation. A notable feature of the Gamma setup is that the log-odds ratios are theo-

retically identifiable even if there are no replicates and only one pool size. This stems from

the fact that observing the product of a Gamma variable and a lognormal variable permits

estimating their separate parameters, while observing the sum of two normal variables does

not.

To adapt the Lyles et al. (2015) discriminant function approach, we modify the framework

of Whitcomb et al. (2012) to include covariates and errors. We use a similar Gamma model

as for the logistic regression approach just described, but for biomarker level given case status

and covariates rather than just covariates. The scale parameter is assumed to be constant

within cases and within controls, and the shape parameter log-linear in case status and

covariates. This implies that the log-odds ratio of interest varies with the biomarker level

and covariate values. However, in the special case where the shape-parameter coefficient for

case status is 0, the log-odds ratio reduces to the difference in the inverse scale parameters

for controls and cases. Thus, one can test whether the relevant coefficient is 0, and then

either report the estimated log-odds ratio and standard error, or use graphical methods to

visualize the non-constant effect. This is analogous to the normal discriminant function

approach, where different residual error variances for cases and controls corresponds to a

second-order effect on log-odds of disease (Cornfield et al., 1962; Lyles et al., 2009).

The Gamma discriminant function setup lends itself to pooled data because of the pool-

wise sum result for Gamma variates. If the model holds for individual-level biomarker levels,

then a very similar model applies to the summed biomarker level. The setup also permits in-
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corporating errors; we pursue the same multiplicative lognormal error structure as proposed

for the Gamma logistic regression.

Our motivating example is the same as in Chapter 2: estimation of the covariate-adjusted

odds ratio relating levels of a cytokine to odds of spontaneous abortion (SA). We use AIC to

confirm better model fit for the Gamma analogues of the Chapter 2 methods and perform

simulations to confirm validity, assess the degree to which AIC can identify the correct model,

and gauge whether estimation is reasonably stable in scenarios where the Gamma models

are uniquely identifiable.

3.2 Methods

3.2.1 Scenario

The goal is to estimate the log-OR relating Y to X adjusted for C using poolwise data.

As in Chapter 2, we consider a design in which the ith pool is comprised of gi cases or

controls. Let Yi = 1 for case pools and 0 for control pools. The assay is assumed to target

the mean biomarker level for members of each pool, X̄i = 1
gi

∑gi
j=1Xij, from which the sum

can be calculated as X∗i = giX̄i. We assume individual-level covariates are available, say

Ci = (Ci1, ...,Cigi)
T , as well as summed covariates C∗i =

∑gi
j=1Cij.

Rather than observing the precise X̄i, we assume the assay produces an error-contaminated

version ˜̄Xi affected by processing error and/or measurement error. To allow for replicates,

suppose there are ki ≥ 1 such measurements, such that we observe ˜̄X i = ( ˜̄Xi1, ...,
˜̄Xiki)

T

and can calculate the sums X̃∗i = (X̃∗i1, ..., X̃
∗
iki

)T . In this case, replicates are not necessarily

single-specimen pools; if gi > 1, we assume the ki measurements are affected by the same

processing error εpi .
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3.2.2 Logistic regression methods

Homogeneous pools logistic regression

Absent errors, Weinberg and Umbach (1999) showed that the appropriate logistic regression

model for analyzing poolwise data based on observed (Yi, X
∗
i ,C

∗
i ) values is:

logit[P (Yi = 1)] = qi + giβ0 + βxX
∗
i + βTcC

∗
i (3.49)

where the offset is given by:

qi = gilog(
P (A|D)

P (A|D̄)
) + gilog(

nD̄
nD

) + log(
# case pools of size gi

# control pools of size gi
) (3.50)

Further details on the offset were provided previously (see Section 2.2.1, pg. 40).

General likelihood setup

Regardless of the form of X|C and whether errors are assumed to be additive or mul-

tiplicative, the likelihood contribution for the ith pool given the observed (Yi, X̃
∗
i ,Ci) is

Li(θ) ∝ f(Yi, X̃
∗
i |Ci). This can be factored as:

Li(θ) =

∫
X∗
i

f(Yi|X̃∗i , X∗i ,Ci) f(X̃∗i |X∗i ,Ci) f(X∗i |Ci) dX
∗
i

=

∫
X∗
i

f(Yi|X∗i ,C∗i ) f(X̃∗i |X∗i ) f(X∗i |Ci) dX
∗
i

(3.51)

The first term simplifies as above based on two results: in the poolwise logistic regression

model Eq. 3.49, individual-level Cij’s are not needed, only the summed C∗i ’s; and we make

a standard assumption that the imprecise X̃∗i does not additionally inform Y given the true

X∗i and C∗i . For the second term, we assume that errors are unrelated to covariate values.
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In Eq. 3.51, the first density is specified by Eq. 3.49, while the second and third require

additional assumptions for the errors and biomarker.

Additive errors, normal biomarker

This approach, which we term “NLR” for normal logistic regression here, is described in the

previous chapter. Briefly, we assume the error structure:

˜̄X i = 1kiX̄i + 1kiε
p
i I(gi > 1) + εmi (3.52)

With normality and independence assumptions on the errors, the second term in Eq. 3.51

is given by:

X̃∗i |X∗i ∼ Nki

(
1kiX

∗
i , g

2
i σ

2
pI(gi > 1)Jki + g2

i σ
2
mIki

)
(3.53)

For the third term, a normal linear regression for the individual data leads to:

X∗i |Ci ∼ N(giα0 +αTcC
∗
i , giσ

2
x) (3.54)

Multiplicative errors, Gamma biomarker

Next we propose a Gamma X|C logistic regression approach (“GLR”), motivated by the

possibility of skewed, strictly positive biomarkers, for which the NLR assumptions may not

be justified. The likelihood Eq. 3.51 still applies, but we use different models for the second

and third densities. Rather than mean-0 normal errors acting additively on the poolwise

means, we assume mean-1 lognormal errors acting multiplicatively (Carroll et al., 2006).

The analogue of Eq. 3.52 is:

˜̄X i = εmi (εpi )
I(gi>1)X̄i (3.55)

with the error assumptions εmi
ind∼ LNki(−

σ2
m

2
1ki , σ

2
mIki), ε

p
i
iid∼ LN(−σ2

p

2
, σ2

p), and εmi ⊥⊥ εpi .

To determine the form of X̃∗i |X∗i , first note that X̃∗i = gi
˜̄X i = εmi (εpi )

I(gi>1)X∗i . The prod-
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uct of the independent lognormal error terms, εi = εmi (εpi )
I(gi>1), is multivariate lognormal:

εi ∼ LNki

(
1ki

[
−1

2
(σ2

pI(gi > 1) + σ2
m)

]
, σ2

pI(gi > 1)Jki + σ2
mIki

)
(3.56)

So X̃∗i |X∗i is also multivariate lognormal:

X̃∗i |X∗i ∼ LNki

(
1ki

[
log(X∗i )− 1

2
(σ2

pI(gi > 1) + σ2
m)

]
, σ2

pI(gi > 1)Jki + σ2
mIki

)
(3.57)

which can be viewed as a multiplicative lognormal analogue of Eq. 3.53.

For X|C, we assume a constant-scale Gamma model:

Xij|Cij ∼ Gamma
(
αij = eα0+αTcCij , βij = b

)
(3.58)

This implies E(Xij|Cij) = αijβij = beα0+αTcCij , or that there is a monotone, nonlinear

relationship between each covariate and the expected value of the biomarker. It also implies

V (Xij|Cij) = αijβ
2
ij = b2eα0+αTcCij , which means V (Xij) = bE(Xij|Cij), or the variance is

directly proportional to the mean.

The sum of independent Gamma variables with shape parameter αj and the same scale

parameter β is Gamma(
∑

j αj, β), so the poolwise sum biomarker level is distributed:

X∗i |Ci ∼ Gamma

(
αi =

gi∑
j=1

eα0+αTcCij , βi = b

)
(3.59)

and the likelihood Eq. 3.51 is completely specified.
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3.2.3 Discriminant function methods

General likelihood setup

For a discriminant function analysis, the log-OR of interest is targeted via a model for the

continuous variable given the outcome and covariates, X|(Y,C). The likelihood contribution

for the ith pool given the observed (Yi, X̃
∗
i ,Ci) is Li(θ) ∝ f(X̃∗i |Yi,Ci), which can be

factored:

Li(θ) =

∫
X∗
i

f(X̃∗i , X
∗
i |Yi,Ci) dX

∗
i

=

∫
X∗
i

f(X̃∗i |X∗i ) f(X∗i |Yi,Ci) dX
∗
i

(3.60)

Additive errors, normal biomarker

The normal discriminant function approach (“NDFA”) was described in Chapter 2. Briefly,

X̃i|X∗i is the same as for NLR (Eq. 3.53), and for X∗i |(Yi,Ci) we assume:

X∗i |(Yi,Ci) ∼ N
(
giγ0 + γy(giYi) + γTc C

∗
i , giσ

2
yi

)
(3.61)

Note that we use giYi here rather than Y ∗i for ease of notation, since we are assuming

homogeneous pools. The residual error variance σ2
yi

is σ2
1 for cases and σ2

0 for controls.

Previously we assumed σ2
1 = σ2

0 = σ2, which leads to a constant log-OR scenario, but here

we consider the possibility of different error variances for cases and controls. Applying Bayes

rule to the individual-level model, with subscripts omitted for simplicity, P (Y = 1|X,C) =

f(X|Y=1,C)P (Y=1|C)
f(X|C)

and P (Y = 0|X,C) = f(X|Y=0,C)P (Y=0|C)
f(X|C)

. Thus:

logit[P (Y = 1|X,C)] = logit[P (Y = 1|C)] + log[f(X|Y = 1,C)]− log[f(X|Y = 0,C)]

= d+X2

(
1

2σ2
0

− 1

2σ2
1

)
+X

(
γy
σ2

1

+ (γ0 + γTc C)(
1

σ2
1

− 1

σ2
0

)

)
(3.62)
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where d is logit[P (Y = 1|C)] plus constant terms involving (γT , σ2
0, σ

2
1). For a 1-unit increase

in X, the log-OR is:

log-OR =
γy
σ2

1

+

(
1

σ2
0

− 1

σ2
1

)(
X − γ0 − γTc C +

1

2

)
(3.63)

which simplifies to γy
σ2 when σ2

1 = σ2
0 = σ2. For σ2

1 6= σ2
0, the log-OR varies with X as well as

C. In that case, one could visualize the association by plotting the log-OR vs. X over the

range of X in the data, with C held fixed at certain covariate values (e.g. means), or for

several sets of covariate values. Confidence bands based on the delta method could also be

included. For ̂log-OR = f(θ̂) = f(γ̂, σ̂2
1, σ̂

2
0), the Jacobian derivatives are:

∂f(θ)

∂γ0

=
1

σ2
1

− 1

σ2
0

∂f(θ)

∂γy
=

1

σ2
1

∂f(θ)

∂γTc
=

(
1

σ2
1

− 1

σ2
0

)
CT

∂f(θ)

∂σ2
1

=
1

σ4
1

(
X − γ0 − γy − γTc C +

1

2

)
∂f(θ)

∂σ2
0

= − 1

σ4
0

(
X − γ0 − γTc C +

1

2

)
(3.64)

Multiplicative errors, Gamma biomarker

For a Gamma discriminant function approach (“GDFA”), we use the same multiplicative

error assumptions as for GLR, such that X̃i|X∗i is given by Eq. 3.57. For X∗i |(Yi,Ci), we

assume the following individual-level model:

Xij|(Yij,Cij) ∼ Gamma
(
αij = eγ0+γyYij+γ

T
c Cij , βij = byij

)
(3.65)
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If the ith pool is comprised of gi cases or controls, then a similar Gamma model applies to

X∗i |(Yi,Ci):

X∗i |(Yi,Ci) ∼ Gamma

(
αi =

gi∑
j=1

eγ0+γyYi+γ
T
c Ci , βi = byi

)
(3.66)

This model is compatible with data on hand, which is assumed to include individual-level

covariates. Note that the above result requires that members of a pool have the same scale

parameter, which means pools have to be homogeneous with respect to case status. This

was not a requirement for NDFA.

For the log-OR implied by this model, applying Bayes rule and taking the logit leads to:

logit[P (Y = 1|X,C)] = d+ log(x)
(
eγ0+γy+γTc C − eγ0+γTc C

)
+ x

(
1

b0

− 1

b1

)
(3.67)

The log-OR for a 1-unit increase in X is:

log-OR =
1

b0

− 1

b1

+ log

(
X + 1

X

)
eγ0+γTc C(eγy − 1) (3.68)

which simplifies to 1
b0
− 1

b1
when γy = 0. For γy 6= 0, the same approach could be taken as

for NDFA: plot the log-OR vs. X over the range of X in the data, at fixed C values, and

including confidence bands. The Jacobian derivatives are:

∂f(θ)

∂γ0

= log

(
X + 1

X

)
eγ0+γTc C(eγy − 1)

∂f(θ)

∂γy
= log

(
X + 1

X

)
eγ0+γy+γTc C

∂f(θ)

∂γTc
= log

(
X + 1

X

)
eγ0+γTc C(eγy − 1)CT

∂f(θ)

∂b1

=
1

b2
1

∂f(θ)

∂b0

= − 1

b2
0

(3.69)
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3.2.4 Implementation

We use similar computational methods for all four corrective methods. NDFA is unique in

that it has a closed-form likelihood; the others require numerical integration. For NLR, we

use the full ML approach rather than approximate ML. We use the R function hcubature in

cubature v. 1.3-11 (Narasimhan and Johnson, 2017) for numerical integration, the function

hessian in pracma v. 2.1.1 (Borchers, 2017) for approximating Hessian matrices, and the

function nlminb in base R for maximizing likelihoods.

We added several functions to our R package pooling (Van Domelen, 2018b) to imple-

ment the methods in this chapter. The functions p logreg xerrors and p logreg xerrors2 are

for NLR and GLR, and the functions p dfa xerrors and p dfa xerrors2 are for NDFA and

GDFA, respectively.

For the discriminant function methods, there is an option for whether to assume a con-

stant log-OR, e.g. set σ2
1 = σ2

0 for NDFA and γy = 0 for GDFA. There is also an option

to perform a likelihood ratio test to formally test these hypotheses. Additionally, when the

log-OR is not assumed constant, the functions plot dfa and plot dfa2 can be used to graph

the estimated log-OR vs. biomarker level at fixed covariate values.

3.3 Results

3.3.1 Motivating example

We used the same dataset as in Chapter 2, from the Collaborative Perinatal Project (CPP),

to explore whether the cytokine monocyte chemotactic protein (MCP-1 ) is associated with

risk of spontaneous abortion (SA) controlling for mother’s age, race, and current smoking.
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Given that the 126 single-specimen pools are not subject to processing error, and the 30

replicates suggest a relatively small amount of measurement error (Figure 3.7, left), a his-

togram of the singles should give a reasonable indication of the marginal MCP-1 distribution

(Figure 3.7, right). The data are more compatible with lognormal and Gamma distributions

than normal.

Figure 3.7: Agreement between two MCP-1 measurements for 30 single-specimen pools (left)
and histogram of all 126 singles (right) in CPP.

Table 3.13 summarizes model fits for the two logistic regression models, using all avail-

able data including replicates and modeling both error types. Covariates C1-C3 represent

mother’s age, non-white race, and current smoking; X represents the pooled exposure MCP-

1, multiplied by 10 so that the log-OR is for a 0.1-ng/mL increment. The β’s are logistic

regression coefficients in Eq. 3.49, α’s are coefficients in the X|C models (i.e. Eq. 3.54 and

Eq. 3.59), b is the scale parameter in the Gamma X|C model (Eq. 3.59), σ2
x is the residual

error variance in the normal X|C model (Eq. 3.54), and (σ2
p, σ

2
m) are the processing and

measurement error variances, respectively.
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Table 3.13: Logistic regression estimates for odds of spontaneous abortion in CPP. Values
are point estimates (SE).

(AIC = 2340.8) (AIC = 1787.5)

Naive Normal logistic regression Gamma logistic regression

β0 -1.57 (0.37) -1.58 (0.37) -1.60 (0.39)

βx 0.01 (0.02) 0.05 (0.08) 0.05 (0.12)

βc1 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)

βc2 0.56 (0.18) 0.57 (0.18) 0.57 (0.18)

βc3 0.34 (0.16) 0.34 (0.16) 0.34 (0.16)

α0 - 0.50 (0.38) 0.38 (0.26)

αc1 - 0.03 (0.01) 0.01 (0.01)

αc2 - -0.17 (0.17) -0.33 (0.11)

αc3 - 0.02 (0.16) -0.01 (0.09)

b - - 0.69 (0.08)

σ2
x - 1.58 (0.21) -

σ2
p - 0.73 (0.18) 0.62 (0.09)

σ2
m - 0.11 (0.03) 0.02 (0.01)

AIC favored GLR over NLR. The estimated log-OR was higher for NLR and GLR than

for the naive poolwise logistic regression fit ignoring errors, but still not significantly different

than 0. The other logistic regression coefficients were virtually identical for the three meth-

ods. Both NLR and GLR suggested much more severe processing errors than measurement

errors.

Notably, if the replicate MCP-1 measurements had not been included, the NLR model

could not be fit with both error types, while the GLR model could. Identifiability for NLR

requires at least three different pool sizes including 1; the CPP data only has pools of size 1

and 2. GLR fit without replicates gave a somewhat larger log-OR estimate (β̂x = 0.08, SE =

0.12) and very different variance estimates (σ̂2
p = 0.17, σ̂2

m = 0.42) compared to the fit with

replicates. It is unclear whether GLR’s identifiability is practical in this scenario, given the

different (σ2
p, σ

2
m) estimates and NLR’s instability without replicates in Chapter 2 (Figure
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Table 3.14: Discriminant function estimates for odds of spontaneous abortion in CPP. Values
are point estimates (SE).

(AIC = 1796.5) (AIC = 1242.9)

Normal discriminant function Gamma discriminant function

γ0 0.50 (0.38) 0.41 (0.26)

γy 0.08 (0.13) -

γc1 0.02 (0.01) 0.01 (0.01)

γc2 -0.19 (0.17) -0.34 (0.11)

βc3 0.01 (0.16) -0.02 (0.09)

b1 - 0.72 (0.09)

b0 - 0.67 (0.09)

σ2 1.58 (0.21) -

σ2
p 0.73 (0.18) 0.62 (0.09)

σ2
m 0.11 (0.03) 0.02 (0.01)

log-OR 0.05 (0.08) 0.10 (0.13)

2.5), in what seemed to be an easier identifiability scenario with three pool sizes. It may

be that GLR’s unique identifiability is not practical when the pooled biomarker is close to

being normally distributed (Carroll et al., 2006). We explore this issue later via simulations.

Table 3.14 summarizes fits for the two discriminant function methods, under the assump-

tion that the log-OR is constant with X. Results were similar to Table 3.13 in that AIC

values favored the Gamma approach over normal, and neither suggested a significant asso-

ciation for MCP-1. Also mirroring the logistic regression results, GDFA parameters were

identifiable without replicates ( ̂log-OR = 0.08, SE = 0.11, σ̂2
p = 0.12, σ̂2

m = 0.44), while

NDFA parameters were not.

The constant log-OR models reported in Table 3.14 are the result of restrictions corre-

sponding to testable hypotheses. For NDFA, the log-OR is constant if the residual error

variance in the X|(Y,C) model is the same for cases and controls, i.e. under H0 : σ2
1 = σ2

0.

For GDFA, it is constant under H∗0 : γy = 0. Likelihood ratio tests did not reject H0
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(D = 0.85, p = 0.36) or H∗0 (D = 0.91, p = 0.34) in models fit with replicates and both

error types.

Despite little evidence to favor the non-constant log-OR models, we plotted the estimated

log-OR vs. MCP-1 based on these fitted models for the four combinations of the two binary

covariates and mother’s age held fixed at 26 years. These plots are shown in Figure 3.8,

with the x-axis corresponding to the range of MCP-1 values for the 126 singles (0.02 to 6.75,

median = 1.025). The graphs suggest a harmful effect at low MCP-1 levels and a protective

effect at higher levels; however, the confidence bands are compatible with no association over

the entire range.

In summary, the Gamma models fit the CPP data better than the corresponding normal

models, and were unique in that they could be fit without replicates. Substantive results

were similar for all four methods: the estimated log-OR is small, there is little evidence of

an association between MCP-1 and risk of SA, and poolwise MCP-1 measurements seem to

be more severely impacted by processing error than by measurement error.

3.3.2 Simulations

The purpose of the first simulation study is to confirm validity of the Gamma methods and

assess robustness of the four methods under model misspecification. Data were generated

under either GLR or GDFA, mimicking the CPP data and estimated parameters, and the

log-OR estimated based on the data-generating model as well as the three others.

For each trial under GLR, individual-level covariates (C1 = mother’s age, C2 = non-white

race, C3 = current smoking) were generated independently for 686 subjects as follows: C1 ∈

(14, ..., 45) with sampling probabilities equal to the CPP proportions; C2 ∼ Bernoulli(0.34);

and C3 ∼ Bernoulli(0.47). Individual-level X (MCP-1 ) were then generated from Eq. 3.58

with α0 = 0.38, αc = (0.01,−0.33,−0.01)T , b = 0.69, and Y (SA) generated from Eq.
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Figure 3.8: Estimated log-OR (95% confidence band) vs. MCP-1 from fitted normal (top)
and Gamma (bottom) discriminant function models in CPP.
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2.27 with β0 = −1.60, βx = 0.15 (increased from β̂x = 0.05), βc = (0.04, 0.57, 0.34)T .

Observations were then split into n1 cases and n0 controls. The n1 cases were randomly

formed into n1

3
(rounded up) pools of size 2 and the rest left as singles, and similarly for the

n0 controls. Poolwise means X̄i were then calculated, multiplied by lognormal processing

errors with σ2
p = 0.62 (if gi = 2) and lognormal measurement errors with σ2

m = 0.02, and

multiplied by gi to produce imprecise poolwise sums X̃∗i . For 30 randomly selected pools,

X̃i = (X̃i1, X̃i2)T was generated from the same process but for two independent measurement

errors rather than one.

For GDFA,C was generated via the same process, Y |C based on a logistic regression with

β∗0 = −1.64 and β∗c = (0.04, 0.57, 0.36)T , and X|(Y,C) based on Eq. 3.65 with γ0 = 0.41,

γy = 0, γc = (0.01,−0.34,−0.02)T , b1 = 0.7449 (increased from b̂1 = 0.72 to induce a log-OR

of 0.15), and b0 = 0.67. Poolwise data was generated via the same process as above, again

with σ2
p = 0.62 and σ2

m = 0.02.

Results are summarized in Table 3.15. For data generated under GLR, the naive poolwise

logistic regression (i.e. ignoring processing error and measurement error) underestimated the

true log-OR and had poor CI coverage. The correctly specified GLR estimator appeared vir-

tually unbiased with nominal coverage; GDFA performed about the same as GLR. NLR

and NDFA performed surprisingly well despite assuming additive normal rather than mul-

tiplicative lognormal errors; they were unbiased, only slightly less efficient than the Gamma

methods, and had close to nominal coverage. These trends were nearly identical for data

generated under GDFA. For data generated under GLR, AIC favored GLR over NLR in

every trial; for data generated under GDFA, AIC favored GDFA over NDFA in every trial.

The next set of simulations is aimed at gauging whether the Gamma models’ unique

identifiability absent replicates is practically useful. We consider the CPP scenario: pools

of size 1 and 2 and poolwise biomarker measurements subject to multiplicative lognormal

processing errors and measurement errors. Data were generated under GLR and GDFA in
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Table 3.15: Simulation results for estimation of adjusted log-OR for MCP-1 and spontaneous
abortion (500 trials each, true log-OR = 0.15).

Mean bias SD Mean SE MSE Coverage

Data generated GLRa

Naive -0.104 0.053 0.050 0.014 0.443

GLR 0.006 0.125 0.127 0.016 0.966

NLR 0.003 0.132 0.134 0.017 0.966

GDFA 0.002 0.123 0.125 0.015 0.962

NDFA 0.001 0.128 0.132 0.016 0.966

Data generated GDFA

Naive -0.105 0.053 0.049 0.014 0.388

GLR 0.002 0.124 0.124 0.015 0.962

NLR 0.001 0.137 0.131 0.019 0.944

GDFA 0.000 0.121 0.121 0.015 0.956

NDFA 0.000 0.135 0.130 0.018 0.942

a Excludes 3 trials in which variance-covariance matrix for NLR was not

positive definite.
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Table 3.16: Simulation results for estimation of log-OR with pools of size 1 and 2, with and
without replicates (500 trials each, true log-OR = 0.15).

Gamma logistic regression Gamma discriminant function

Mean

bias

Median

bias

CI

coverage

Median

CI width

Mean

bias

Median

bias

CI

coverage

Median

CI width

n = 686

No replicates 0.006a -0.007a 0.976a 0.573a 1.113c 0.033c 0.942c 0.553c

30 replicates -0.004a -0.009a 0.970a 0.547a 0.021c 0.013c 0.954c 0.521c

n = 2,000

No replicates 0.003b 0.004b 0.952b 0.323b 0.003d 0.004d 0.958d 0.307d

30 replicates 0.001b 0.001b 0.950b 0.318b 0.002d 0.001d 0.954d 0.303d

a Excludes 2 trials with non-positive definite variance-covariance matrix.

b Excludes 1 trial with non-positive definite variance-covariance matrix.

c Excludes 2 trials with non-positive definite variance-covariance matrix.

d Excludes 5 trials with non-positive definite variance-covariance matrix.

the same manner as in previous simulations, but for various sample sizes, with and without

the 30 replicates. After initially observing good performance without replicates despite σ̂2
m

frequently hitting the lower bound of 0.001, simply because the measurement error was small

enough to ignore, we increased σ2
m from 0.02 to 0.2 and decreased σ2

p from 0.62 to 0.42. In

trials where σ̂2
p or σ̂2

m hit 0.001, processing error-only and measurement error-only models

were fit, and the one with the lower AIC selected. Results are summarized in Table 3.16.

Overall performance was surprisingly good for the no-replicates estimators, perhaps with

the exception of the n = 686 GDFA scenario, where there was mean bias due to 8 trials wherêlog-OR was outside of (−1, 1). Confidence intervals were wider without replicates, but not

much, especially for n = 2, 000. The measurement error variance estimate σ̂2
m occasionally

hit 0.001 for the no replicates scenarios (2.8% of trials for GLR and n = 686, 4.3% of trials

for GDFA and n = 686, and 0.3% of trials for GDFA and n = 2, 000).

Lastly, we compare efficiency of a pooling vs. traditional design for the same number of

total assays in a no measurement error (processing error only) scenario, where the pooling
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design is perhaps most appealing. We generated individual-level data under the Gamma

discriminant function model with n = 686 and split the data into cases and controls. For the

pooling design, we formed n1

4.5
(rounded up) case pools of size 4 and left the remaining cases

as singles, and similarly for controls, to produce approximately 2x as many pools of size 4

as pools of size 1. For the traditional design, we randomly sampled the same number of

cases and controls as there were case pools and control pools in the same trial and obtained

individual-level X values, which were precise since singles are not affected by processing

error. Figure 3.9 shows that the pooling design was more efficient for small σ2
p, but that

efficiency advantage eroded and eventually reversed as σ2
p was increased. This is consistent

with Chapter 2 efficiency results under additive normal processing errors (see top panel of

Figure 2.6).

3.4 Discussion

We have developed two Gamma model-based methods for estimating the adjusted log-odds

ratio relating a binary outcome to a continuous exposure measured in pools and subject

to errors. This work integrates the poolwise logistic regression approach of Weinberg and

Umbach (1999) with the error modeling assumptions of Schisterman et al. (2010) and the

discriminant function ideas of Lyles et al. (2015) and Whitcomb et al. (2012). Accommo-

dating skewed, positive biomarkers should broaden the scope of scenarios where a highly

cost-effective homogeneous pools study design can be utilized.

First, we wish to emphasize the utility of our methods, which could appear narrowly

focused (homogeneous pools design + skewed biomarker + errors). The homogeneous pools

design is compelling as it offers potentially large gains in statistical power over a traditional

design (e.g. Figure 3.9 with σ2
p = 0). Absent errors, there would be no need to worry about

the distribution of the pooled biomarker; one could simply fit the Weinberg and Umbach
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Figure 3.9: Boxplots of log-OR estimates for pooling and traditional designs (500 trials each,
true log-OR = 0.15).

(1999) poolwise logistic regression model, or use one of the discriminant function approaches.

However, while assay measurement error may be negligible in certain scenarios, we believe

negligible processing error is a strong and seldom justifiable assumption. In our motivating

example, the estimated processing error variance was indeed too large to ignore. Thus,

we feel that performing valid inference with poolwise data will almost always require error

modeling. Our Gamma-based methods extend prior approaches to accommodate skewed

biomarkers, which tend to be much more common than normally distributed biomarkers.

Our methods are also not limited to the pooling scenario for which they were developed.

A special case for all four methods is all gi = 1, a traditional design with no pooling.

Thus, our R functions apply to a wide range of scenarios for estimating exposure-disease
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associations. They can handle pooling or traditional designs with or without covariates, for

a normal or skewed exposure measured precisely or with errors (additive or multiplicative),

incorporating replicates if available, and either assuming a constant odds ratio or allowing

it to vary with exposure level and covariates.

One potential problem with the logistic regression methods is that they are based on

a likelihood function that assumes prospective sampling. The Y |(X,C) part is not prob-

lematic, given the Prentice and Pyke (1979) results, but the X|C model could be affected

by case-oversampling. That is, even if the individual-level X|C model (linear regression

for NLR, constant-scale Gamma for GLR) are correctly specified for the population, that

relationship may not hold within cases and within controls, and thus may not hold in a

case-control study where the proportion of cases is far higher than in the population. Guolo

(2008) suggests that using the prospective likelihood is valid if the specified distribution for

the error-prone covariate (X|C in our case) is correct in the case-control sampling scheme,

which is intuitive. Specifying and assessing a model for an imperfectly measured exposure

is typically one of the hardest parts of a measurement error correction (Carroll et al., 2006).

But a unique feature of the pooling context is that if there is processing error only, the

singles are actually precisely measured, and thus the X|C model can be directly assessed

with that data. So our logistic regression methods should be valid in case-control studies,

provided the X|C model is supported by the data on hand, which can be directly assessed

in certain cases. The discriminant function methods are based on models for X|(Y,C) and

are therefore unaffected by sampling rates for Y .

While both processing error and measurement error have the effect of reducing the effi-

ciency advantage of a pooling design vs. a traditional design, processing error is particularly

worrisome because it can render the pooling design counterproductive. In fact, this may have

occurred in our motivating example. The GDFA model gave σ̂2
p = 0.62, and in simulations

mimicking the CPP data the pooling design was less efficient than traditional for σ2
p ≥ 0.5
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(Figure 3.9). Absent errors, pooling designs offer gains in statistical efficiency limited only

by the number of samples that can be feasibly combined in the lab. With processing error,

if σ2
p is large enough, the pooling design may be less efficient than traditional for the same

number of assays regardless of how large the pools are. Adaptive study designs could be

considered, whereby a pooling study is initiated, but a stopping rule is in place to transition

to all g = 1 if it becomes clear that σ2
p is prohibitively large.

From a study design standpoint, in cases where obtaining replicates is feasible, we cur-

rently favor one large pool size in addition to singles with replicates, as opposed to three

different pool sizes including singles (Schisterman et al., 2010). The main reason is to avoid

potential validity issues that could arise if the error variances are in fact not independent of

pool size, which seems particularly plausible for processing errors. Additionally, when condi-

tions are favorable for pooling (e.g. σ2
p not too large; per-assay costs >> per-subject costs),

larger pools may be much more informative of parameters of interest. In a P-1-2-3 design,

for example, replacing the pools of size 2 with pools of size 3 will often lead to improved

power. The pools of size 2 serve a purpose—they help distinguish the variance terms—but

replicates accomplish this more directly. There may be counterexamples where relying on

different pool sizes is more cost-effective than including replicate singles and one large pool

size, but we suspect these are rare.

In future applied work, it will be valuable to search for ways to minimize processing

errors and determine whether certain types of biospecimens (blood, saliva, etc.) are more or

less susceptible to these errors. On the statistical side, the assumption that the processing

error variance is constant with pool size needs to be vetted and perhaps modified, as it seems

likely that larger pools would have larger errors. This is a key assumption that affects iden-

tifiability requirements and efficiency results. Additionally, it would be useful to develop less

parametric approaches for improved robustness, ideally relaxing distributional assumptions

on the errors and not having to specify the exposure given covariates distribution.



Chapter 4: Future work

4.1 Propensity score calibration with multiple

confounders

The PSC procedure introduced by Stürmer et al. (2005) is compelling, and it would seem

to be extremely well-suited for handling multiple unmeasured confounders when validation

data are internal. A likelihood approach would typically require assuming multivariate nor-

mality of the unmeasured confounders or specifying a series of models for each unmeasured

confounder (Spiegelman et al., 2000); multivariate versions of RC are available but require

continuous variables (Rosner et al., 1990). PSC would require its usual three models: a logis-

tic regression for the error-prone propensity score, a logistic regression for the gold standard

propensity score, and a linear model relating them. We would anticipate valid estimation via

PSC if the surrogacy assumption is relaxed, which internal validation data permits. Further,

bias and/or efficiency losses from the RC procedure could likely be avoided by performing

PSC via ML, while sacrificing some computational convenience.
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4.2 Conditional logistic regression with pooling

Pooling-related gains in statistical efficiency are very exciting, and we look forward to de-

veloping additional methods to ensure validity of pooling designs while perhaps even further

increasing efficiency. One way to do this is to adapt our error correction methods to condi-

tional logistic regression, where pools are still homogeneous with respect to case status, but

each case pool is comprised of cases that are covariate-matched to members of a correspond-

ing control pool. Saha-Chaudhuri et al. (2011) developed a conditional logistic regression

model for pooling that could be modified to include measurement and processing errors. The

main difference from our logistic regression methods is that the integral is two-dimensional

rather than one-dimensional, because the unit of observation is each matched case/control

pool, and the precise summed biomarker level is unobserved for both pools. Numerical in-

tegration will be time-consuming, but can be avoided in the additive normal errors case

by using the probit approximation for the logistic-normal integral (Carroll et al., 2006).

Although not described fully here, we have implemented the approach in our R package

pooling, with replicates also supported.

4.3 Paired t-test designs

Alternatively, we note that analyzing matched case-control data via a paired t-test rather

than conditional logistic regression could motivate a simple and very powerful study design.

This assumes that matching is done on all covariates, as opposed to having additional model

covariates. With a single pool size, each pooled measurement would be subject to measure-

ment and processing errors of the same magnitude. The usual paired t-test would be valid

(Carroll et al., 2006), with the additional errors simply detracting from the power of the test
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relative to the errors being absent. There would seem to be numerous advantages to this ap-

proach: simplicity, by only requiring one pool size and permitting a standard t-test analysis;

robustness, as the t-test would be valid regardless of the biomarker and error distributions

(assuming a reasonable sample size); and efficiency, as it would not be necessary to use up

assays on smaller pools or replicates to help distinguish variance terms. Notably, this design

would permit estimating the difference in mean biomarker levels for cases and controls, but

not the odds ratio.

4.4 Expanding suite of pooling functions

In future work, we plan to broaden the scope of our pooling package to include functions

for analyzing a wider range of poolwise data. This is especially important for measurement

error corrections, where it is not possible to utilize standard procedures like PROC GLM in

SAS or glm in R with appropriately specified weights or offsets. We focused solely on logistic

regression here, but similar methods could be implemented for continuous outcomes, e.g. for

a linear regression or a constant-scale Gamma disease model. In either case, the variable

subject to pooling and errors could be a predictor or the outcome. Pooling does not offer

efficiency gains in all scenarios, but there are other reasons to utilize pooling, so it would be

useful to accommodate as many scenarios as possible whether they correspond to efficient

study designs or not.

4.5 Tools for designing pooling studies

We believe that developing tools for designing pooling studies, e.g. calculating sample size

and choosing appropriate (maybe optimal) pool sizes, will help make the methods more
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accessible. Such calculations are not straightforward, particularly for the hybrid design

proposed by Schisterman et al. (2010) and utilized in our approaches. Even a seemingly

conservative approach, like calculating n for 80% power for a traditional design and then

deploying a pooling study with n total assays and an equal number of pools of size 1, 2, and 3,

may not be justified. Depending on the variance of measurement errors (σ2
m) and processing

errors (σ2
p), the pooling design may be less efficient than the traditional for those pool sizes,

leading to inadequate power with n assays. This may or may not be a rare occurrence; it

seemed to occur in our motivating example.

One approach is to again consider a matching design with a single pool size and a paired

t-test analysis. In that scenario, it is easy to calculate sample size and power, but doing so

requires specifying σ2
m and σ2

p. The former may be feasible based on technical documentation

from the assay manufacturer or prior literature, while σ2
p would be hard to predict. Perhaps

a conservative choice could be something like one-half the variance of the biomarker level.

But the specified values for σ2
m and σ2

p also dictate the optimal pool size, so a conservative

choice for σ2
p may lead to a poor choice for the pool size. We are currently developing web

apps for visualizing design aspects of pooling studies, which will hopefully help investigators

make design choices while also anticipating potential consequences of larger than expected

processing error.



Appendix: R code for motivating ex-

amples

Chapter 1

# Install and load meuc package

install_github("vandomed/meuc")

library("meuc")

# Fit corrective methods for Table 1.4 - note that main and ext are data

# frames containing EAGeR and BioCycle data, respectively

# 2-model ML (full)

ml2.full <- ml_logistic_linear(

main = main,

external = ext,

y_var = "pregtest",

z_var = "cal.100",

d_vars = "height",

c_vars = c("vitd.below30", "age", "overweight"),

approx_integral = FALSE,

control = list(trace = 1, rel.tol = 1e-9)

)

# 2-model ML (approximate)

ml2.approx <- ml_logistic_linear(

main = main,

external = ext,

y_var = "pregtest",

z_var = "cal.100",
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d_vars = "height",

c_vars = c("vitd.below30", "age", "overweight"),

approx_integral = TRUE,

control = list(trace = 1, rel.tol = 1e-9)

)

# 3-model ML

fit.ml3 <- ml_logistic_logistic_linear(

main = main,

external = ext,

y_var = "pregtest",

x_var = "vitd.below30",

z_var = "cal.100",

d_vars = "height",

c_vars = c("age", "overweight"),

estimate_var = TRUE,

control = list(trace = 1, rel.tol = 1e-9)

)

# Regression calibration

rc <- rc_algebraic(

main = main,

external = ext,

y_var = "pregtest",

z_var = "cal.100",

d_var = "height",

c_vars = c("vitd.below30", "age", "overweight"),

tdm_family = "binomial"

)

# Propensity score calibration

psc <- psc_cond_exp(

main = main,

external = ext,

y_var = "pregtest",

x_var = "vitd.below30",

gs_vars = c("cal.100", "age", "overweight"),

ep_vars = c("age", "overweight"),

tdm_family = "binomial",

boot_var = TRUE, boots = 1000

)

# Propensity score calibration with D
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psc.d <- psc_algebraic_d(

main = main,

external = ext,

y_var = "pregtest",

x_var = "vitd.below30",

d_var = "height",

gs_vars = c("cal.100", "age", "overweight"),

ep_vars = c("age", "overweight"),

tdm_family = "binomial",

boot_var = TRUE, boots = 1000

)

Chapter 2

# Install and load pooling package

install_github("vandomed/pooling")

library("pooling")

# Fit models for Table 2.9 - note that cpp.df is a data frame containing

# CPP data, and mcp1_10x.reps is a list containing one MCP-1 measurement

# for pools without replicates and two MCP-1 measurements for pools with

# replicates

# LRF without replicates and neither error

lrf.woreps.neither <- p_logreg_xerrors(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = cpp.df$mcp1_10x,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "neither",

control = list(trace = 1, rel.tol = 1e-9)

)

# LRF without replicates and PE only

lrf.woreps.pe <- p_logreg_xerrors(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = cpp.df$mcp1_10x,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "processing",
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approx_integral = FALSE,

control = list(trace = 1, rel.tol = 1e-9)

)

# LRF without replicates and ME only

lrf.woreps.me <- p_logreg_xerrors(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = cpp.df$mcp1_10x,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "measurement",

approx_integral = FALSE,

control = list(trace = 1, rel.tol = 1e-9)

)

# LRA without replicates and PE only

lra.woreps.pe <- p_logreg_xerrors(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = cpp.df$mcp1_10x,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "processing",

approx_integral = TRUE,

control = list(trace = 1, rel.tol = 1e-9)

)

# LRA without replicates and ME only

lra.woreps.pe <- p_logreg_xerrors(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = cpp.df$mcp1_10x,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "measurement",

approx_integral = TRUE,

control = list(trace = 1, rel.tol = 1e-9)

)

# DFA without replicates and neither error

dfa.woreps.neither <- p_dfa_xerrors(

g = cpp.df$g,

y = cpp.df$SA,

xtilde = cpp.df$mcp1_10x,

c = cpp.df[, c("m_age", "nw", "smoke")],
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errors = "neither",

control = list(trace = 1, rel.tol = 1e-9)

)

# DFA without replicates and PE only

dfa.woreps.pe <- p_dfa_xerrors(

g = cpp.df$g,

y = cpp.df$SA,

xtilde = cpp.df$mcp1_10x,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "processing",

control = list(trace = 1, rel.tol = 1e-9)

)

# DFA without replicates and ME only

dfa.woreps.me <- p_dfa_xerrors(

g = cpp.df$g,

y = cpp.df$SA,

xtilde = cpp.df$mcp1_10x,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "measurement",

control = list(trace = 1, rel.tol = 1e-9)

)

# LRF with replicates and ME only

lrf.wreps.me <- p_logreg_xerrors(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = mcp1_10x.reps,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "measurement",

approx_integral = FALSE,

control = list(trace = 1, rel.tol = 1e-9)

)

# LRF with replicates and both errors

lrf.wreps.both <- p_logreg_xerrors(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = mcp1_10x.reps,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "both",

approx_integral = FALSE,
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control = list(trace = 1, rel.tol = 1e-9)

)

# LRA with replicates and ME only

lra.wreps.me <- p_logreg_xerrors(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = mcp1_10x.reps,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "measurement",

approx_integral = TRUE,

control = list(trace = 1, rel.tol = 1e-9)

)

# LRA with replicates and both errors

lra.wreps.me <- p_logreg_xerrors(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = mcp1_10x.reps,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "both",

approx_integral = TRUE,

control = list(trace = 1, rel.tol = 1e-9)

)

# DFA with replicates and ME only

dfa.wreps.me <- p_dfa_xerrors(

g = cpp.df$g,

y = cpp.df$SA,

xtilde = mcp1_10x.reps,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "measurement",

control = list(trace = 1, rel.tol = 1e-9)

)

# DFA with replicates and both errors

dfa.wreps.both <- p_dfa_xerrors(

g = cpp.df$g,

y = cpp.df$SA,

xtilde = mcp1_10x.reps,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "both",

control = list(trace = 1, rel.tol = 1e-9)
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)

Chapter 3

# Fit models for Table 3.13

# Naive logistic regression

naive <- p_logreg(

g = cpp.df$g,

y = cpp.df$SA_onezero,

x = cpp.df[, c("mcp1_10x", "m_age", "nw", "smoke")]

)

# Normal logistic regression

nlr <- p_logreg_xerrors(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = mcp1_10x.reps,

c = cpp.df[, c("m_age", "nw", "smoke")],

errors = "both",

approx_integral = FALSE,

control = list(trace = 1, rel.tol = 1e-9)

)

# Gamma logistic regression

glr <- p_logreg_xerrors2(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = mcp1_10x.reps,

c = c.list,

errors = "both",

control = list(trace = 1, rel.tol = 1e-9)

)

# Gamma logistic regression without replicates

glr.woreps <- p_logreg_xerrors2(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = cpp.df$mcp1_10x,

c = c.list,
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errors = "both",

control = list(trace = 1, rel.tol = 1e-9)

)

# Fit models for Table 3.14

# Normal discriminant function

ndfa <- p_dfa_xerrors(

g = cpp.df$g,

y = cpp.df$SA,

xtilde = mcp1_10x.reps,

c = cpp.df[, c("m_age", "nw", "smoke")],

constant_or = TRUE,

errors = "both",

control = list(trace = 1, rel.tol = 1e-9)

)

# Gamma discriminant function

gdfa <- p_dfa_xerrors2(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = mcp1_10x.reps,

c = c.list,

constant_or = TRUE,

errors = "both",

control = list(trace = 1, rel.tol = 1e-9)

)

# Gamma discriminant function without replicates

gdfa.woreps <- p_dfa_xerrors2(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = cpp.df$mcp1_10x,

c = c.list,

constant_or = TRUE,

errors = "both",

control = list(trace = 1, rel.tol = 1e-9)

)

# Normal discriminant function with non-constant OR

ndfa.nonconstant <- p_dfa_xerrors(

g = cpp.df$g,

y = cpp.df$SA,
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xtilde = mcp1_10x.reps,

c = cpp.df[, c("m_age", "nw", "smoke")],

constant_or = FALSE,

errors = "both",

control = list(trace = 1, rel.tol = 1e-9)

)

# Gamma discriminant function with non-constant OR

gdfa.nonconstant <- p_dfa_xerrors2(

g = cpp.df$g,

y = cpp.df$SA_onezero,

xtilde = mcp1_10x.reps,

c = c.list,

constant_or = FALSE,

errors = "both",

control = list(trace = 1, rel.tol = 1e-9)

)

# Log-OR vs. MCP-1 plots for Figure 3.8

library("ggplot2")

# Normal discriminant function

p.ndfa <- plot_dfa(

estimates = ndfa.nonconstant$estimates,

varcov = ndfa.nonconstant$theta.var,

xrange = c(0.02, 6.75),

xname = "MCP-1 (ng/mL) x10",

cvals = list(c(26, 0, 0), c(26, 0, 1), c(26, 1, 0), c(26, 1, 1)),

set_labels = c("NW = 0, Smoking = 0",

"NW = 0, Smoking = 1",

"NW = 1, Smoking = 0",

"NW = 1, Smoking = 1")) +

labs(title = "Estimated log-OR from normal discriminant function") +

theme_bw(base_size = 15)

plot(p.ndfa)

# Gamma discriminant function

p.gdfa <- plot_dfa2(

estimates = gdfa.nonconstant$estimates,

varcov = gdfa.nonconstant$theta.var,

xrange = c(0.02, 6.75),

xname = "MCP-1 (ng/mL) x10",

cvals = list(c(26, 0, 0), c(26, 0, 1), c(26, 1, 0), c(26, 1, 1)),
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set_labels = c("NW = 0, Smoking = 0",

"NW = 0, Smoking = 1",

"NW = 1, Smoking = 0",

"NW = 1, Smoking = 1")) +

labs(title = "Estimated log-OR from Gamma discriminant function") +

theme_bw(base_size = 15)

plot(p.gdfa)
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