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Abstract 

Video tracking and identifying unmarked moving insects 
by Zhixin Tan 

 

The quantitative measurement of animal behavior is a critical problem in many 
biological studies. Computer-assisted video tracking is among the most prominent methods for 
the measurement, especially for small animals such as insects. However, many existing video 
tracking methods cannot identify unmarked insects efficiently, which compromises the tracking 
quality. In this study, we developed a framework that involves Kalman filter, color correlogram 
comparison (idTracker), and artificial neural networks to track and identify multiple insects in 
the video, even when their trajectories are interrupted due to occlusion. We implemented and 
tested these algorithms on the videos of bumblebees, several of which showed desirable 
performances. We also evaluated the performance of different individual insect identifiers and 
proposed some directions for improvement. This study demonstrated the feasibility of this 
framework and supported the possibility of being widely used in insect behavior research.
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Video tracking and identifying unmarked moving
insects

Cyrillus Zhixin Tan

26 March 2018

The quantitative measurement of animal behavior is a critical problem in many

biological studies. Computer-assisted video tracking is among the most prominent

methods for the measurement, especially for small animals such as insects. However,

many existing video tracking methods cannot identify unmarked insects e�ciently,

which compromises the tracking quality. In this study, we developed a framework

that involves Kalman filter, color correlogram comparison (idTracker), and artificial

neural networks to track and identify multiple insects in the video, even when

their trajectories are interrupted due to occlusion. We implemented and tested

these algorithms on the videos of bumblebees, several of which showed desirable

performances. We also evaluated the performance of di↵erent individual insect

identifiers and proposed some directions for improvement. This study demonstrated

the feasibility of this framework and supported the possibility of being widely used

in insect behavior research.

1 Introduction

The behavior of animals is one of the most important phenotypes to be ob-

served and measured in many biological studies, such as genetics and neurobiology.

However, a prominent technical issue such research has been encountering is to

quantitatively measure and model the behaviors of animals. Many experiments on

insects, such as flies, bees, and mosquitos, are operated in a confined and controlled

space in the laboratory, and quantitatively measured data on the movements and

behaviors of these insects can provide valuable insights for these experiments.

Due to its cost e�ciency, accuracy and versatility, video tracking is one of the

primary solutions for tracking animal movements. Computer-assisted video track-

ing has multiple benefits over many other methods, including reliable recording,
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computer algorithms ensuring stable performance, and consistent accuracy [1].

However, video tracking on small insects faces various challenges. First of all,

video data themselves are not directly quantitative and descriptive information be-

fore they are processed and analyzed. For small flying insects, the analysis can be

more di�cult because freely moving insects can change their appearances in the

video over time [2]. When the insects move slowly and sparsely, the video analysis

can be relatively easier. Some classical tracking methods, including the Kalman

filter, provide a solid foundation for such cases and have been widely applied [3].

However, when the insects are close, and when they are touching, occluding, or

crossing over each other, it is more di�cult to keep track of all of their trajectories

and identities [4].

One possible solution to this problem is to develop a method to distinguish one

individual from another. In this way, even after an interruption of a trajectory, we

can still identify the individual and continue the tracking once it is visible again.

Many methods and frameworks have been proposed and developed to distin-

guish individual insects of the same species from each other [5]. However, many

methods require the insects to be tagged [6], and tagging the insects can be intru-

sive and can influence their behaviors. Among the existing methods of identifying

unmarked animals, the idTracker, developed by Perez-Escudero et al. [7], is one of

the more recent successful approaches. This method extracts the color correlogram

of the image of an animal as the features to characterize the individual. It has been

demonstrated to work on fish, flies, ants, and mice, but there is no published work

about implementing it on bumblebees tracking.

Another approach to identify the individuals is based on machine learning. The

idea of artificial neural networks and “deep learning” is one of the most successful

and fastest developed approaches to machine learning. Inspired by biological neural

systems, this method has been widely applied to many areas of artificial intelligence

[8]. An artificial neural network consists of multiple layers of perceptrons: an input

layer, an output layer, and several hidden layers in the middle. Each layer contains

multiple units that recombine and calculate the inputs from the last layer. The pa-

rameters of these units are learned from the input data following a general-purpose

learning procedure [9]. The convolutional neural network is a specialized kind of

neural network for processing image-like data by learning convolutional kernels it-
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eratively [10]. This technique has performed outstandingly in image classification

and identification due to its strong ability to recognize complex features from image

data or any grid-like data. However, this method has rarely been implemented to

identify flying individual insects of the same species.

In this study, we used bumblebees, Bombus impatiens, as a model organism,

tracking them in the experimental setting and keeping the identity of each individ-

ual. We implemented, tested, and evaluated the video tracking and identification

methods, including the Kalman filter, idTracker, and artificial neural networks. We

develop a framework for tracking multiple unmarked insects in a confined area.

Based on the video tracking technique, this framework first preprocesses the videos

capturing the movement of the insects and detects each individual insects in the

frame. When the insects fly rarely and their trajectories do not interfere with each

other, we apply classical tracking methods such as the Kalman filter to track them

over time. For each individual insect participating the experiment, we construct a

reference set, or training set, from the video recorded during the experiment. These

training sets are used for classification programs, such as the idTracker or the arti-

ficial neural networks, to learn the features of each individual in order to classify an

unidentified insect. In the case where a trajectory of an insect crossed another, an

insect disappears from the frame, or a new insect appears into the frame, using the

predeveloped classifier, the framework can identify which individual it is and restart

its tracking. We believe this framework will generate reliable tracking information

and provide the insect researchers a powerful tool to study insect behaviors.

2 Material and Methods

Experimental setup

All experiments performed in this study were inside a spacious flight chamber

with proper lighting from the top, as shown in Figure 1. The bottom of the chamber

was made of white acrylic sheets. Since the bees were of dark colors, the white floor

helped to increase the contrast between the bees and the background. Additional

experimental equipment used for other experimental purposes was fixed on the white

floor, such as artificial flowers in blue or yellow color and LED lights, which were

not of importance to this study. A transparent plastic sheet of 24-inch x 24-inch

was used to confine the bees to a relatively flat space close to the floor while allow
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the movement of bees to be observed from above. The transparent plastic sheet

was raised to 1 inch above the white acrylic sheet floor by several plastic columns.

Metal meshes were attached around the four edges of the transparent plastic sheet

to enclose the bees while allowing adequate air flow. During the experiment, a bee

or multiple bees of interest were released on the white acrylic sheet and covered by

the transparent plastic sheet.

Figure 1: The experimental setup

A webcam was placed above the described setup, pointing to the bees moving

area, to record videos of their motions. It was a Logitech HD Pro Webcam C920

which captures videos of 1280⇥ 720 pixels resolution in 25 frames per second. Dur-

ing the video recording, the position of the webcam was fixed to ensure consistent

reference frame among various videos. The recordings were saved as files for fur-

ther processing. Unless specified, all computer programs used to analyze the videos

in this study were written in Python 3.0, with the Open Source Computer Vision

Library, OpenCV.
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Video Preprocessing

The collected videos were first analyzed by a preprocessing program that found

the bees in the frames, as shown in Figure 2. To reduce the interference of the

additional experimental equipment, such as artificial flowers and LED lights, pixels

with strong color intensities were first masked. Strong colored pixels were identified

as those with total intensity di↵erence among three color channels (blue, green and

red) above a certain threshold (in our case, 40 out of the range of channel 256)

which depended on the lighting condition during the video shooting process.

To recognize bees in the video, the program looked for small (3 to 6 cm long),

dark blobs sitting on a white background. The frame was converted into grayscale

to simplify the image processing procedure. Since the shapes of bees appeared ir-

regularly concave in the video (consider the outstretching legs, antenna, and wings),

to enhance the performance of the blob detector, a Gaussian filter was applied to

each frame to smooth out the perimeter.

Another approach to recognize whether an object is a bee or not is to look for

the moving elements in the frame. For this purpose, a background subtractor was

applied. However, since any small lighting change will result in changes of back-

ground from one frame to the next, artifact detections would occur and, hence, it

was not su�cient to detect bees. However, by combining the blob detection and

motion detection with an AND gate, the program will only report the blobs situat-

ing on the areas where the background changes, and a more reliable bee detection

could be achieved.

Finally, we need to construct the training sets for the profiles of individual bees

for the application of the machine learning methods. For this purpose, we released

each bee separately to the flight chamber and recorded an individual bee video. The

preprocessing program could be used to recognize the bee and cropped the region

of detection to make a collection of images for this bee. The cropped images were

of the size of 40 ⇥ 40 pixels among which the actual bee occupied approximately

250 pixels. The data were all inspected and cleaned up manually to eliminate fuzzy

and wrong data points from the training sets. Some sample images of the bees are

shown in Figure 3.
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(a) The original frame (b) After masking strong colored pixels

(c) After grayscaled and Gaussian filter (d) Background subtractor mask

(e) Blob detector results (f) Blob and motion detector results

Figure 2: Frames after each step of preprocessing

Trajectory tracing and Kalman filter

For tracking the trajectories of the bees from the video data, the center point

of each detected blob is defined to be the measured position of that corresponding

bee. An issue of tracking a bee over time is to determine which detected bee in

the last frame is the identical to the ones in the current frame. To map the bees

in two consecutive frames, we assume that the two blobs with closest distance in

two adjacent frames belong to the trajectory of the same bee. However, this simple

approach is challenged by situations where a blob from the last frame is no longer

detected, or a new blob appears in the current frame, or the distance between the

mapped blobs is greater than a threshold to account for the maximum speed a bee

could possibly travel. In these cases, the old trajectory index is dropped, and the

newly detected bee is considered as the beginning of the new trajectory. A simple
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(a) (b) (c) (d)

Figure 3: Some images of bee #1 cropped by the image preprocessing program.
Among these image, (a) and (b) were selected into the training set, while (c) and
(d) were not.

greedy algorithm was implemented to realize this idea:

Input: F1:n as the 1st to n-th frame of the video, threshold

i 1;

Sp  detect(F1) ; returns a set of detected bee coordinations

foreach bee x in Sp do

x.index i;

i i+ 1;

end

for a 2 to n do

Sc  detect(Fa);

foreach bee x in Sc do

c argmin
y

(kx� yk), y 2 Sc ;

if kx� ck > threshold then

x.index i;

i i+ 1;

else

x.index c.index;

end

end

Sc  Sp;

end

For each single bee trajectory, to smoothen its curve and denoise the measure-

ments, the Kalman filter framework was implemented. Kalman filter is a hidden

Markov model-based estimator which assumes linear models and Gaussian noise
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for the temporal dynamics of the hidden state the the measurement process. At

each time frame, the hidden state estimation procedure of the Kalman filter can be

described as follows [11]:

Time update Let (xt, yt) be the position of a bee at time t. The velocity vector of

the bee, (vxt, vyt), was calculated as vxt = (xt�xt�1)⇥FR, vyt = (yt�yt�1)⇥FR,

where FR was the frame rate of the camera, and (xt�1, yt�1) was its position at

time t�1. The state vector of the bee at time t, Xt, was defined as [xt yt vxt vyt ]T .

The a priori belief of its position at time t+ 1 is

Xp
t+1 = AXt,

where A is the time update model,

A =

2

66664

1 0 1
FR 0

0 1 0 1
FR

0 0 1 0

0 0 0 1

3

77775

Given the update model A, the covariance matrix P of the stochastic process X is

updated by

P p = APAT ,

where P p denotes the updated covariance matrix.

Observation update The Kalman gain is a factor balancing the a priori belief

and the observation, Y . Given the observation noise variance R, the Kalman gain

is calculated as

K = PHT (HPHT +R)�1,

where H is the observation model that maps the state vector space to the measure-

ment vector space. In our case H is an identity matrix. The a posteriori belief can

be updated as

Xt+1 = Xp
t+1 +K(Y �HXp

t+1).

P is updated by

P = (I �KH)P p.
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idTracker and its applications to bee tracking

The idTracker was introduced by Perez-Escudero et. al. in 2014 as a method

for identifying unmarked animals [7]. Its idea is to compare the fingerprint of

images in the training set of each individual to the fingerprint of the image to be

identified. The fingerprint of an image is a modified color correlogram. To obtain

this correlogram, the algorithm compares every single pair of the pixels in the image

and counted the numbers of each (d, i1+ i2) and each (d, |i1� i2|) calculated, where
d is the distance between the two pixels, and i1 and i2 were the intensities of the

two pixels. By comparing the color correlograms of the images to be identified and

those of the reference images in the training set and looking for the most similar,

the idTracker decides the identity of the individuals in the image. To compare two

color correlograms, we subtract one from another and sum up the absolute values

of the di↵erences. However, calculating the color correlogram of an image was

computationally expensive, with a time complexity O(n4), and it is not e�cient to

run the program in Python. Therefore, to expedite the computations, a C code was

written and used for this purpose.

Individual identification with artificial neural networks

In this study, we applied an artificial neural network with only dense layers

and a convolutional neural network to the bee identity classification problem. The

architectures of the artificial neural networks used are shown in Figure 4. The ar-

chitecture of the deep neural network was as follows: since the input was a 40⇥ 40

color picture, the input layer consisted of 40⇥40⇥3 = 4800 units; the hidden layers

were two 500 unit layers and three 100 unit layers; all activation functions between

each hidden layer were rectified linear unit (ReLU) functions; the output layer used

a “one-vs-rest” classification strategy and consisted of five units corresponding to

the five recorded individuals. The activation function of the last layer was a sigmoid

function.

The architecture of the convolutional neural network used in this study was as

follows: for input, each image was 40⇥40 in size containing three channels. The first

layer was a convolutional layer which had 32 filters with kernel size 3⇥3 followed by

a max pooling layer with filter size 2⇥ 2. A same padding assured that the dimen-

sionality was kept after the convolution was applied. After the first layer, the units

were flattened and two fully connected layers of 300 and 100 units were applied.
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(a) Neural Network with only dense layers (b) Convolutional Neural Network

Figure 4: The architectures of the artificial neural networks used in this study

All activation functions were ReLU functions. The output layer consisted of five

units and was the same as in the neural network described earlier. All neural net-

works were written and trained in keras, an open source neural network library [12].

3 Results and Discussions

Video processing and training sets construction

Two kinds of videos were collected in this study: the videos with only one bee in

the frame, which were used to generate the training sets and evaluate identification

performance, and the videos with multiple bees in the frame, which were used to

test to the tracking accuracy and individual identification in a mixing setting. All

videos were first analyzed by the preprocessing program to recognize bees in the

frame. For both kinds of videos, the overall accuracy of recognition was relatively

high, which means that for most of the time, all bees in the video frame could be

recognized by the blob detector. Nonetheless, since manually marking multiple bees

in hours of video samples was quite onerous, there was no human labeled data gen-

erated in this study to be compared to, so there was no precise numerical evaluation

of the preprocessing program.

The most common false negative situations were when a bee crawled too close

to the edges of the metal meshes or next to a flower. The shadow of the meshes and

the flowers changed the lighting on the bee and the surrounding, therefore made

the blob less obvious. The most common false positive recognitions were the holes

at the centers of the artificial flowers since they also looked like black blobs in the

frame. However, we assumed that they can be easily recognized and removed in the
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data analysis step by looking for the detected blobs that do not move for the whole

time. A di↵erent approach of distinguishing moving bees from the flower holes is to

refer to the motion detector. With its help, the bee detector had a very low false

positive rate. However, this approach did not work for resting bees.

The training sets for five di↵erent bee individuals were generated from the videos

of each of its own. The images in the training set were produced out automatically

by the preprocessing program. Some low quality images were cropped by the pro-

gram when a bee flew too fast to be captured by the camera, or when a bee hung

on the meshes on the edges. These images, along with some repetitive images, were

removed from the training set manually, and the final training set sizes for the five

bees were 1011, 884, 980, 1067, and 1084, respectively..

Trajectory tracing and Kalman filter

The algorithm to match detected bees between two consecutive frames proposed

previously was tested on the videos with five bees recorded at once. In the best

case scenario, where the program never lost track of any bee, each bee got the

same index over time. Otherwise, the program would end an index when a blob

was lost and start a new index on any new blob detected. Even if the detection

was lost for only one frame, the program would still start a new index, given the

algorithm could only memorize the detection information from the last frame. Los-

ing a detection in just one frame may not be noticeable to a human watching the

video, but it was very likely in the video processing. In a test case on a one minute

video, 380 new indices were assigned for five bees, which means about 4.8% of de-

tections were lost due to various reasons. However, this algorithm had a very stable

performance among di↵erent videos and it was reliable when the bees moved slower.

The Kalman filter framework was tested on a one bee video. When the Kalman

filter was tested, the blob detector simply looked for the largest blob in the frame.

Nonetheless, the program could still lose detection in some frames, mostly because

the bee moved too fast and the camera could not capture. In this case, we increased

the observation noise variance term R in the Kalman filter so it would rely more on

the time update prediction and wait for the next detection. By comparing the raw

data and Kalman filtered data in the video, we could visually inspect that the tra-
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jectory had been successfully traced by the Kalman filter, even if several detection

were lost. A systematic quantification was not possible at this point since trajectory

extraction by a human observer to be compared to was not performed.

Individual identification with idTracker

(a) (b)

Figure 5: An image of a bee and its color correlogram

The training sets we constructed previously on the five individual bees were used

to test the performance of the idTracker. A sample color correlogram generated in

idTracker is shown in Figure 5. The idTracker was tested on identifying the bees in

the one bee videos. The confusion matrix was as follows:

2

6666664

0.973 0.007 0.020 0 0

0.465 0.077 0.323 0 0.135

0.087 0.005 0.628 0 0.281

0.277 0.012 0.518 0 0.193

0.146 0 0 0 0.854

3

7777775

and the classification accuracy was about 50.6%.

The most prominent issue was that the classifier was biased and tended to misclas-

sify other bees as bee #1, bee #3 and bee #5. The deep neural network model had

also been tried on learning the color correlograms in the idTracker, but it turned

out to be not feasible. When the data were plugged into the neural network, the

training accuracy plateaued after the second or third round of epoch at about an

accuracy of 60% and no longer improved as the training continued. Either the algo-

rithm got stuck at a local minimum, or this feature space was inadequate as it did

not carry enough information for the classification of the bees, which is consistent

with the results presented in the confusion matrix above.
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Individual identification with artificial neural networks

The artificial neural network with only dense layers and convolutional neural

network model were implemented directly to the cropped bee images training sets.

After 1500 epochs of training, the deep neural network had a cross-validation set

accuracy of about 97%, and the convolutional neural network 98%. They were

also incorporated with the video preprocessing program and tested on the one bee

videos. The confusion matrix for the deep neural network was

2

6666664

0.875 0.002 0.071 0.051 0

0.338 0.007 0.524 0.117 0.014

0.010 0.001 0.946 0.042 0.001

0.009 0.001 0.168 0.822 0

0.024 0 0.744 0.142 0.091

3

7777775

resulting in an average accuracy of 54.8%. The confusion matrix for the convo-

lutional neural network was

2

6666664

0.686 0.006 0.019 0.184 0.105

0.030 0.189 0.462 0.121 0.197

0.031 0.067 0.830 0.042 0.031

0.035 0.065 0.020 0.875 0.004

0.005 0.002 0.125 0.248 0.621

3

7777775

Giving an accuracy of 64.0%. Similar to the idTracker, they also su↵ered from

the bias issue and misclassified other bees as bee #1, bee #3 and bee #5. Addi-

tionally, although we used the “one-vs-rest” strategy, sometime multiple units in

the output layer would be activated. The discrepancy in the accuracies of identi-

fying the cross-validation sets versus identifying bee in the video was noticeable.

One possible reason for this discrepancy might be that the training set had been

“cleaned up” manually, so some cases in the videos were represented in the training

set.

4 Conclusions and future directions

In this study, we proposed a framework of tracking unmarked insects in a con-

fined and controlled experimental setting. Given very a↵ordable equipment, such as
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a webcam and a personal computer, we were able to track multiple insects steadily

even when their trajectories overlapped and interrupted. We demonstrated the fea-

sibility of this framework by developing and testing programs for each component

of the framework on bumblebees, including video preprocessing, bee detection, tra-

jectory tracing, Kalman filter for measurement denoising, the idTracker classifier,

deep neural network, and the convolutional neural network.

In our testing, the video bee detection and the Kalman filter had the expected

performances, while the others all have room for improvement. For trajectory trac-

ing, the current program only o↵ers the memory for one previous frame, so it could

not deal well with the situations where two or more consecutive frames are lost.

The identification programs, including the idTracker and the neural networks, all

su↵ered from being biased on one or two individuals, which may indicate that the

training set itself might be biased. To test this hypothesis, a di↵erent training set

on the same bees as well as new training sets on other bee individuals can be gen-

erated and tested given more time. Although a mass amount of research have been

done on supervised machine learning, based on various dataset and data quality,

the fine tuning of a machine learning program mostly still remain a case-by-case

trial-and-error process [13]. Due to time constraint, we haven’t had the chance to

pursue the ideas described above or further optimize the classifiers in this study.

The vision of this study is to test and compare di↵erent algorithms and inves-

tigate their feasibility of tracking bumblebees in the framework we proposed in a

foraging setting. There are some parts of the framework that are not yet included

in this study, such as associating all the trajectories of one identical bee together

in one file to generate the final output of the tracking. Also, in the current stage,

the programs still need some human assistance on certain steps, such as cleaning

up the training set, tuning some parameters in video preprocessing, etc, although

given a controlled, unchanging experimental setting, some of the human assistance

only need to happen once. Continuing working on this framework, we hope to de-

velop a more automatic procedure, and finally present this framework as a reliable

and integrated software package available for the community by publishing it on

GitHub.
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