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Abstract

Ranking Instagram Preferences:
Get to know your friends better through experimental mathematics

By Urshila Choubal

Ranking methods offer remarkable potential in creating and revamping recommenda-
tion systems. The task of suggesting more relevant and attractive content to users
is directly benefited by improving ranking techniques. With graph ranking as the
mathematical foundation on which recommendation systems are built, vertex pres-
tige is a critical problem to be addressed. Several models exist that rank vertices in
a graph. However, we explore the following methods: HITS, Dominant Eigenvector,
and PageRank. We aim to emulate a recommendation system by first gathering pri-
mary data from Instagram by tracking the activity of nine participants on the app.
With the help of the three ranking methods, we intend to provide our recommendation
to the participants based on having accessed their past preferences.
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Overview and Motivation

With the overwhelming amount of information available on the internet, there is an

urgent need to prioritize and efficiently streamline data for users. Recommendation

systems readily solve this problem by analyzing and filtering large volumes of dy-

namically generated data. Such systems attempt to predict a customer’s choices by

analyzing their consumption based on past preferences. Since graphs can represent

consumption data on the web, the essence of a recommendation system lies in graph

ranking and vertex prestige: both of which aim to understand the influence of each

vertex in a graph. Thus, the problem now comes down to figuring out which vertex in

the graph is of most importance to the user. Vertex ranking methods can numerically

make sense of a user’s preference, and consequently recommendation systems exploit

this technique to provide users with more relevant content. In recent years several

ranking algorithms have emerged. However, this thesis focuses on the methods of

HITS, Dominant Eigenvector and the famous algorithm PageRank used by Google.

The present work is organized as follows. In Chapter 1, we introduce the reader

to the notion of user preferences on social media. In Chapter 2, we build the math-

ematical foundations necessary to describe the methods used in our experiment. In

Chapter 3, we provide the reader with the details of the experiment we conducted in

which we design an Instagram account. We then exposed nine Emory students to the

account and collected a very specific data set. With the ranking methods discussed

in this thesis, we aimed to analyze the Instagram preferences of the participants and
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provide them with our results. We conclude with a discussion on the results we ob-

tained at the end of the experiment, and we briefly explore possible future directions

of research on this topic.
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Chapter 1

Social Media and User Preferences

1.1 Recommendation Systems

If you have ever found yourself hopping from one link to another while online shopping,

or if you have ever caught yourself scrolling through social media for hours for no

reason, it is very possible that the website or app you are viewing may be showing you

just the right content to keep you engaged. Gone are the days when online shoppers

browsed generic stock for a random item. Today, almost all service providers strive

to tailor content for their customers as much as possible to offer them a personalized

experience. So how do companies like Instagram, Amazon, Facebook, Tinder, Netflix,

and YouTube entice users with relevant content? Of course, data is half of the answer,

but you also need some sort of system to narrow down the enormous possibilities

that come with gathering massive data sets. That is precisely where recommendation

systems come into play. Very generally, a recommendation system filters the collected

data and provides tailor-made suggestions to users. This ability to gather users’

preferences benefits companies by greatly increasing revenue, customer satisfaction,

and customer retention rates. Once the recommendation system is deemed effective -

according to specific metrics - it is only a matter of time before the app “learns what



4

you like” and gives you exactly who you need: sometimes even more.

Before diving deeper into the topic that will be explored in this thesis, it is impor-

tant to broadly understand the two major paradigms of recommendations systems.

A general explanation of the two methods will also help ease into the mathematics

used to analyse the data collected during the experiment for this thesis.

(a) Collaborative filtering methods, for recommendation systems, are solely based

on past interactions between users and items in order to produce recommendations.

Such interactions are stored in a “user-item interactions matrix”. Spotify and Netflix

are some of the applications that use collaborative filtering methods. Collaborative

filtering can further be divided into

1. Item-Item Collaborative Filtering

2. User-User Collaborative Filtering

(b) Content-based methods, unlike collaborative filtering methods, rely on additional

attributes of the user and/or item to provide recommendations. User attributes

include age, gender, location, job and many more. Let us assume a content-based

movie recommendation system as an example.

The attributes of the movie The Amazing Spider-Man can include

1. Director - Marc Webb

2. Genre - Superhero

3. Cast - Andrew Garfield, Emma Stone

The recommendation system in question will possibly recommend to any user who

watches The Amazing Spider-Man movies of a similar superhero genre, movies that

feature Andrew Garfield/Emma Stone, or movies that have been directed by Marc
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Webb. The more choices the user makes on the platform, by narrowing the user/item

attributes, the more targeted results the system will produce.

1.2 Clustering and Ranking

A recommendation system ranks the user’s preferences based on a large input data set

containing the user’s past consumption choices. Exploiting a variety of mathematical

models, the system is able to provide a suggestion that it has calculated to be the

most relevant to the user. Various models use different methods to rank data in

a network. In the following work, we will refer to a network or graph indistinctly.

In our case, clustering algorithms can be employed to improve the performance of

recommendation methods in social media given the vast quantity of user-generated

content that is available online [5]. There are many ways to analyze a graph, which

depend largely on the context of the problem we are looking at. Often we try to

identify the most “important” data points in our data set: equivalently, the most

important vertices in our graph. Note that what we define as an “important” vertex

can change with context. Consider, for example, a network generated by the dozens

of flights routes of a particular airline. We may want to figure out which city is

most visited or least visited in this network. In both cases, the city (vertex) we

care to identify will be deemed as “important”. With social media, and specifically

recommendation systems, we hope to find what is most relevant to the user based on

their previous consumption choices.

In this section, the reader will be familiarized with clustering techniques as a pre-

cursor to understanding three well-known methods used to identify the most impor-

tant components of a network. In graph clustering, vertices that are closely “related”

to each other are grouped into clusters. The relation of vertices depends on the con-
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text in which the graph has been produced. Going back to the airline routes example,

two cities (vertices) can be thought of as related if there exists a flight that goes from

any one city to the other. The cities can also be “related” in other ways such as sim-

ilar flight timings or flying conditions. In general, vertices of the same cluster should

be heavily connected to other vertices within the same cluster, while being sparsely

connected to the rest of the graph [5]. Within graph clustering, we dominantly have

global clustering, local clustering, and spectral clustering algorithms. Global methods

can further be divided into iterative, divisive, and agglomerative methods.

1. Global Techniques

(a) Iterative methods generally go through each vertex in the graph and assign

them to a cluster. These decisions are usually not final and each vertex can be

revisited for assignment, aiming to improve the optimization process [5]. The

clusters can also be gradually updated when a relevant vertex is being processed.

Clusters can contain sub-clusters implying that one vertex in a cluster may also

belong to a larger cluster. For example, students are a part of a university (larger

cluster) but they also belong to the several clubs on campus (smaller clusters).

This means that graphs can have a hierarchical structure which further helps

in grouping vertices by relating vertices if they have a common ancestor cluster

[5].
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Figure 1.1: A Hierarchical Structure

(b) Divisive techniques make use of the hierarchical structure of graphs. From

the original graph, the method recursively splits clusters off in a top-down

fashion [5].

(c) Agglomerative methods can substitute divisive methods. Here, algorithms

start with an empty cluster and then add new clusters or assign processed

vertices to existing clusters. An important point in this method is that the

order in which vertices are presented to the algorithm can significantly change

the clustering output. Therefore, having the opportunity to revisit vertices

is essential. Irreversible clustering decisions can lead to sub-optimal results,

therefore most clustering techniques are able to revise their decisions in later

iterations [5].

2. Local Techniques A local clustering technique usually finds a solution con-

taining or near a given vertex without looking at the whole graph. Such an

algorithm operates by first selecting a seed vertex and then the algorithm only

operates and assigns clusters to those vertices that surround the seed vertex up

to a small maximum distance. Local algorithms can help lead to global clusters

if we run a local algorithm on each vertex and combine the results to determine

a global cluster [5].
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1.3 Instagram: the photo-video sharing app

Having addressed the almost omnipresent nature of recommendation systems, from

here on this thesis will focus on the social media giant Instagram. Founded in 2010,

Instagram is a photo-video sharing application that has gained immense popularity

since its origin. As of 2022, Instagram has close to 1.3 billion registered users, making

it one of the most frequented social media platforms. In order to better understand

the experiment conducted by the author of this work, it is necessary to understand

how the platform functions.

A first-time user, USER A, needs to create an account. The account can be

private or public. In the former case, any other user interested in seeing the shared

content must send USER A a “follow request” and wait for their permission to be

followed. In the latter, USER A can be instantly followed by anyone on the platform.

Naturally, accounts related to marketing or users promoting any kind of product (or

themselves) are usually public accounts and have many “followers”. On USER A’s

daily feed, there will be posts from accounts they follow. Users can “like” posts that

appear on their daily feed as well as post pictures from their accounts. Moreover,

Instagram allows users to “tag” other people appearing in their posts as well as tag

other accounts that may be related to their posts.

It is clear that the app has various interactive features. However, two of the most

used segments are the “Explore” page and the “Reels” tab. The Explore page is

tailored to give users the ability to discover new content that might not usually appear

on their daily feed. The Reels tab, similar to TikTok, gives access to entertaining

short videos.

Although people often inaccurately assume that there is a uniform “Instagram

Algorithm” that suggests new material to users, in reality, the content suggested to

users in each Instagram media component is managed by a distinct recommendation

system. The experiment at the core of this work will enable us to rank the preferences
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of a group of Instagram users. This will be done by applying different mathematical

techniques on the data collected by tracking the activity of the participants on Insta-

gram. With the preferences obtained as numerical results from the experiment, we

will further interview the participants to see whether they accept or reject what we

provide them with as recommendations.
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Chapter 2

Graph Ranking: Theory and

Algorithms

2.1 Preliminaries

Linear algebra plays an essential role in graph analysis. In this section we provide

the reader with basic terminology and background that will be used throughout this

work.

2.1.1 The Eigenvalue Problem

Suppose that A is an n × n matrix. A non-zero vector v that satisfies the equation

Av = λv is called an eigenvector of the matrix A. The scalar λ is the eigenvalue

associated with this eigenvector.

In other words, if A is a linear operator, the action of A on v, affects its length but

not its direction.

In order to find the eigenpairs {λi,vi} with i = 1, ..., n, we need to find the roots
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of the characteristic polynomial of A. That is we need to solve the problem

det(A− λI) = 0 (2.1)

where det(·) denotes the determinant of matrix A and I is the identity matrix. Once

we have the eigenvalues, in order to find the eigenvectors, we need to solve the linear

systems

(A− λiI)vi = 0 with i = 1, ..., n

Remark. : The matrix A− λI is singular, therefore the system has infinitely many

solutions.

Let A ∈ Rn×n be a symmetric matrix, i.e., A = AT , where AT denotes the

transpose of A. Then the eigendecomposition of A can be written as

A = V ΛV T (2.2)

where Λ is the n × n diagonal matrix whose diagonal entries are the distinct real

eigenvalues of matrix A. The matrix V = [v1,v2, · · · ,vn] is an orthogonal matrix,

implying that V TV = V V T = I, that contains as columns the n eigenvectors of A.

Although we required a symmetric matrix for the definition of eigendecomposition

above, often we will need to work with non-symmetric matrices. The eigenvalues of

a non-symmetric matrix can be complex, therefore it may be preferable to use the

singular values of a matrix that are computed using the singular value decomposition

[3].

2.1.2 Singular Value Decomposition

Singular value decomposition (SVD) is a factorization of a real, or complex, matrix

into three matrices. Unlike eigendecomposition, SVD can be applied to a rectangular,
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non-symmetric matrix and hence is more useful for data collected from real-world

scenarios.

The SVD of an n×m matrix A is given by

A = UΣV T (2.3)

In Equation (2.3), U and V are orthogonal matrices, implying that UTU = UUT = I

and V TV = V V T = I. The columns of U and V contain the left and right singular

vectors of A respectively. The diagonal entries, d1, d2 · · · , dmin(n,m), of the n × m

diagonal matrix Σ represent the singular values of A such that

d1 ≥ d2 ≥ · · · ≥ dmin(n,m) (2.4)

The singular values of A are denoted by σi, where i = 1, 2, · · · ,min(n,m). If a matrix

A is symmetric and positive definite, that is for every non-zero vector x, the scalar

xT A x > 0, then the SVD of A is the same as its eigendecomposition.

2.2 Graph Theory

2.2.1 Basic Concepts

In mathematics, graphs are structures used to model pairwise relations between ob-

jects. A graph consists of vertices (also called nodes) connected by edges (also called

links). Here are some useful definitions:

Definition 1. A graph G = (V,E) is an ordered pair of a set of vertices V = {vi}

and a set of edges E ⊆ V × V .

Definition 2. A graph is called undirected if (i, j) ∈ E implies that (j, i) ∈ E, with

i, j = 1, 2, · · · , n.
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Figure 2.1: An Undirected Graph

Definition 3. A graph is called directed if (i, j) ∈ E does not imply that (j, i) ∈ E,

with i, j = 1, 2, · · · , n.

Figure 2.2: A Directed Graph

Directed graphs, also known as digraphs, are composed of edges that have arrows.

In contrast, an undirected graph has bidirectional edges (with no arrows). In order

to be clear about the difference, let us comment on the interactions between nodes 1

and 5 in both graphs above. In Figure 2.1 there is an edge between 1 and 5 with no
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arrow. This means “1 goes into 5 and 5 goes into 1”. On the contrary, in Figure 2.2,

1 and 5 are connected through an edge with a specified direction, that is, “1 goes into

5, but 5 does not go into 1”. To understand the difference between these two types

of graphs in the real world, and to start building a connection with Instagram, let

us think of the difference between a directed and undirected edge between two users,

where the connection indicates the action of one user following another. If USER A

follows USER B but USER B does not follow USER A, we would have two nodes, A

and B, connected by an arrow that goes from A to B, but not from B to A. If USER

A and USER B follow each other, then it is enough to draw a segment from node A

to node B. It stands for a reciprocal connection between A and B.

So far, we have talked about the connection between two nodes. However, when

dealing with a graph, we may want to see if some nodes are connected with others

even in the absence of a direct edge.

A path is a finite or infinite sequence of edges which joins a sequence of vertices that

can be repeated. A walk is a sequence of directed edges i −→ i1 −→ i2 · · · −→ ik −→ j

that can be repeated. If none of the vertices i1, i2, · · · , ik are repeated, then the walk

is called a directed path.

Definition 4. A directed graph is strongly connected if for any pair of vertices,

(i, j) ∈ V , there exits a directed path from vertex i to vertex j.
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Figure 2.3: Strongly Connected Digraph

Definition 5. A directed graph is weakly connected if replacing all of its directed

edges with undirected edges produces a connected (undirected) graph.

Figure 2.4: Weakly Connected Digraph

We now require a mathematical representation of a graph.

Definition 6. The adjacency matrix A ∈ Rn,n of a graph G = (V,E) is a square

matrix whose entries are defined as follows

A(i, j) = ai,j =

 1 if (i, j) ∈ E

0 if (i, j) ̸∈ E
(2.5)
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According to the definition above, A can have only entries 0 and 1. Specifically, if

there is an edge connecting two nodes i and j, then the corresponding entry, that is

ai,j takes the value 1: it will be 0 otherwise. If the graph is undirected, the adjacency

matrix A is symmetric, that is, ai,j = aj,i for all i, j ∈ V . A is non-symmetric for a

digraph.

Due to the nature of the experiment conducted, in this thesis we will mostly deal

with digraphs, and therefore non-symmetric adjacency matrices. As an exercise, let

us write down the adjacency matrix corresponding to the digraph shown in Figure

2.2.

A =



0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0


(2.6)

A basic property associated with vertices in a graph is their degree. For an undi-

rected graph, each node has a degree d if it has d incident edges. In other words

we are counting the edges that are attached to a certain node. However, for a di-

rected graph, we must distinguish between the number of edges entering a node, the

in-degree, and the number of edges departing from a node, the out-degree. Therefore,

it is necessary to define two different matrices representing the degree of each node.

Definition 7. The in-degree of a node in a digraph, G, is the number of directed edges

coming into the node. The out-degree of a node in G is the number of directed edges

starting at (or coming out of) the node. Let us denote the corresponding in-degree

and out-degree matrices by

Din = diag(din1 , din2 , . . . , dinn ) and Dout = diag(dout1 , dout2 , . . . , doutn )
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Remark. We can observe that the row sums of the adjacency matrix A correspond

to the out-degrees of G, that is,

(A1)i = douti for i = 1, . . . , n (2.7)

The column sums of the adjacency matrix A correspond to the in-degrees of G, that

is,

(AT1)i = dini for i = 1, . . . , n (2.8)

Let us consider again the graph in Figure 2.2. In this case,

Din =



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


Dout =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1


(2.9)

We have previously introduced strongly and weakly connected digraphs. When

it becomes necessary to classify G as strongly or weakly connected, we can directly

verify some properties of the adjacency matrix. In particular, one can exploit the

reducibility of the adjacency matrix A.

Definition 8. A square matrix A is said to be reducible if there exists a permutation

matrix Π such that

Π A ΠT =

A11 A12

0 A22


where A11 and A22 are both square (that is, A is equivalent to a block triangular

structure). If there is no such Π, we say that A is irreducible.

Theorem 2.2.1. A digraph is strongly connected if and only if the corresponding
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adjacency matrix A is irreducible.

Remark. For any diagraph G = (V,E) there exists a permutation matrix Π such

that

Π A ΠT =



A11 A12 · · · · · · A1p

0 A22 · · · · · · A2p

...
...

. . .
...

...
...

. . .
...

0 0 · · · · · · App


where each diagonal block is square and irreducible.

The subgraphs of G having the adjacency matrices A11, A22, . . . , App are called

strongly connected components of G. In particular, the largest one is called the

maximal strongly connected component.

2.2.2 Graph Laplacians

Graph Laplacians are another way to represent graphs, and they are particularly

useful as a bridge between the discrete representations of a graph and continuous

representations such as vector spaces. In particular, they play a fundamental role in

clustering.

For an undirected graph G, the Laplacian is defined as

L = D − A, (2.10)

where A is the adjacency matrix of G and D is its degree matrix. As for an undirected

graph, the in-degree of each node is equal to its out-degree, hence there is only one

degree matrix D of G.

How do we define the Laplacian for a directed graph if we have two different

degree matrices to consider? While there is a unique definition for the Laplacian
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of an undirected graph, there is no such counter-part for the directed case. In the

next section we introduce two ways of defining and understanding the Laplacian of a

directed graph.

2.2.3 Laplacians for Directed Graphs

Here we describe two ways to define a Laplacian for digraphs:

• Turn a digraph into an undirected graph, by making use of a bi-partition of G.

• Renounce the symmetry and define two distinct Laplacians: the in-Laplacian

and the out-Laplacian.

1. Symmetric Laplacians via a Bipartite Model

Definition 9. An undirected graph V = (V , E) is bipartite if V = V1 ∪ V2 with

V1 ∩ V2 = ∅.

In the definition above, V1 and V2 are sets of nodes such that nodes in V1 can

only be connected to nodes in V2, and nodes in V2 can only be connected to

nodes in V1.

Remark. Any digraph on n nodes can be uniquely represented by a bipartite

graph on 2n nodes as follows: let G = (V,E) be the digraph, a bipartite graph

G = (V , E) can be constructed by defining V = V ∪V ′, where V = {1, 2, . . . , n},

V ′ = {n+ 1, n+ 2, . . . , 2n} and E = {(i, j′) | j′ = n+ j, (i, j) ∈ E}.

The figure shown below illustrates this procedure.
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Figure 2.5: A Digraph and its Bipartite Graph

The adjacency matrix for the digraph shown above is,

A =


0 1 0

0 0 0

1 1 0

 (2.11)

It is not hard to recognize that the adjacency matrix of the bipartite graph can

be written as

A =

 0 A

AT 0

 (2.12)

Thus, it is possible to define the Laplacian as L = D−A where D is the degree

matrix relative to the bipartite graph. The Laplacian, in terms of the original

adjacency matrix A and the out-degree and in-degree matrices of our original

digraph can be written as

L =

Dout −A

−AT Din

 (2.13)

Notice that L is symmetric. Therefore, using a bipartite graph, we obtain a

symmetric Laplacian for our original digraph.
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2. Non-symmetric Laplacians

We now define two distinct Laplacians: one per each degree matrix of the

digraph G.

Lin = Din − A and Lout = Dout − A. (2.14)

Here, A represents the adjacency matrix of G, Din is the in-degree matrix of G,

and Dout is the out-degree matrix of G. Since Lin and Lout are non-symmetric,

as stated previously, their eigenvalues will be complex. Consequently, we cannot

associate a physical phenomenon to this.

Before moving further with the concept of non-symmetric Laplacians, it is im-

portant to have a general understanding of the Perron-Frobenious theorem. The

study of the asymptotic behavior of matrices with non-negative entries is the

essence of Perron-Frobenious theory. The theorem explores the properties of

the spectral radius of non-negative matrices (A > 0). The spectral radius of a

square matrix A is the largest absolute value of its eigenvalues and it is often

denoted as ρ(A).

Theorem 2.2.2. Perron 1903. Let A ∈ Rn×n, A > 0. Then:

(a) ρ(A) > 1

(b) ρ(A) is an eigenvalue of A and it is simple (i.e., it has algebraic multiplicity

one)

(c) ∃x ∈ Rn, x > 0 such that Ax = ρ(A)x

(d) ρ(A) is the only eigenvalue of largest modulus

Coming back to our discussion on non-symmetric Laplacians, let us assume

that G = (V,E) is strongly connected. Then the adjacency matrix A is ir-

reducible and non-negative. By the Perron-Frobenius theorem, the spectral

radius of A is a simple eigenvalue of A and its associated eigenvector has all
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positive components. We will introduce in the section addressing PageRank

that this eigenvector, with all positive components, gives us the weights for the

importance of the nodes in G.

As a consequence of G being strongly connected, 0 is a simple eigenvalue of

Lin and Lout. Further, since G is strongly connected, Din and Dout are invert-

ible since strong connectivity implies nonzero diagonal entries for the degree

matrices. Therefore,

Lout = (I − AD−1
out)Dout and Lin = Din(I −D−1

in A) (2.15)

Now, A ≥ 0, D−1
in ≥ 0 and D−1

out ≥ 0 imply that AD−1
out and D−1

in A are both

non-negative and irreducible. Hence, by the Perron-Frobenius theorem, both

matrices have a simple dominant eigenvalue of λ = 1.

2.3 Ranking Methods Used in Our Experiment

There are various methods used to compute vertex (node) prestige, but a few of them

use the notion of nodes as hubs and authorities. In a network, a node is a hub if

it broadcasts information while an authority is a node that receives information [1].

Note, a node can be a hub and an authority. In this section we introduce three

well-known ranking methods, namely, Dominant Eigenvector, HITS, and PageRank.

2.3.1 Dominant Eigenvector

The Dominant Eigenvector method computes eigenvector centrality and prestige to

identify the most important hub or authority in a network. This approach takes into

account an intuitive way of recognizing an important node. A node is considered

important if it interacts with other important nodes, which in turn increase its pres-
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tige. Using the example of an adjacency matrix, containing zeros and ones that mean

“do not like” and “like” respectively, the first fundamental step toward the dominant

eigenvector approach was made by Seely [6]. He noted that it is important to be liked

by someone who is in turn being liked a lot by others. In other words, a node’s index

of prestige should account for the prestige of the nodes that endorse it.

The idea proposed by Seely, denoted by the function r(·), can be formalized as follows

r(v) =
∑
u∈V

A(u, v)r(u). (2.16)

Equation (2.16) corresponds to the set of |V | linear equations and can be rewritten

as

r = ATr, (2.17)

where vector r, of size |V |, stores all rank scores, and A is the adjacency matrix of

the network [5].

In order for Equation (2.17) to have a finite solution Katz proposed that matrix

A be manipulated so that every row in A has a sum equal to 1 [5]. Then, from

Equation (2.17), we can conclude that r is an eigenvector of AT with a corresponding

eigenvalue of 1. Consequently, another form of Equation (2.17) was suggested by

Bonacich [2] where it is assumed that the rank of each vertex is proportional to the

weighted sum of the vertices it is connected to. This conceptualization results in

the dominant eigenvector approach, also known as eigenvector centrality and can be

expressed as

λr = ATr (2.18)

Given (2.18), the hub and authority measures for a digraph are calculated as follows.

With the adjacency matrix A of the digraph we compute

Ax = λx (2.19)
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and

ATy = λy (2.20)

Using Equation (2.19), we compute the eigenvector of A corresponding to its largest

eigenvalue, hence called the dominant eigenvector [1]. The dominant vector then

contains the hubs scores for each node in the graph. Similarly, using Equation (2.20),

we compute the dominant eigenvector of AT which contains the authority scores for

each node in the graph.

2.3.2 HITS

Hyperlink Induced Topic Search (HITS) is a method used for link analysis. Originat-

ing from the idea of ranking and discovering web pages based on a particular search,

HITS helps us in finding relevant information based on our search requests. The idea

of the method is motivated by the fact that an ideal website should link to other

relevant sites and should also be linked to by other important sites.

HITS computes two vectors, u1 and v1, representing the scores of the nodes

as broadcasters or receivers respectively. The nodes corresponding to the maximum

scores of u1 and v1 will be the most important hub and authority. In order to compute

the ranking vectors, we can use the SVD of the adjacency matrix of a digraph as the

digraphs, and adjacency matrices, used in the experiment discussed later involve a

small data set. For larger data sets, it is important to note that using the SVD is

computationally expensive and an iterative algorithm of HITS is better suited in that

case. Let us see how all of this relates to the mathematical tools we discussed.

Let A be the adjacency matrix of the digraph G. HITS performs a Singular

Value Decomposition (SVD) of A, that is, A = UΣV T . Therefore the SVD of AT =

(UΣV T )T = V ΣUT . Here U = [u1 u2....un] is the matrix of left singular vectors of

the adjacency matrix A while V = [v1 v2....vn] is the matrix of the right singular
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vectors of A. The matrix Σ = diag(σ1, σ2, · · · , σn) is the matrix of the singular values

of A.

Let us define the hub matrix as A1 = AAT and the authority matrix as A2 =

ATA. While A is not symmetric as it corresponds to a digraph, A1 and A2 are now

symmetric. Using the SVD of A we have

A1 = AAT = (UΣV T )(V ΣUT ) = UΣ2UT (2.21)

A2 = ATA = (V ΣUT )(UΣV T ) = V Σ2V T (2.22)

Since we are interested in using the hub and authority matrices we come to the

following conclusions. Given that A = UΣV T , we can compute that AV = UΣ. Using

the left singular values, Avi = σiui [1]. Similarly for AT = V ΣUT , ATU = ΣV . Now,

using the right singular values, we compute that ATui = σivi. Since we are interested

in using the hub and authority matrices we come to the following conclusions.

ATui = σivi

AATui = A1ui

= A(σiui)

= σi(Aui)

= σi(σiui)

A1ui = σ2
i ui.

(2.23)
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Similarly,

Avi = σiui

ATAvi = A2vi

= AT (σiui)

= σi(A
Tui)

= σi(σivi)

A2vi = σ2
i vi.

(2.24)

Given the results of (2.23) and (2.24) respectively, we can conclude that ui is the ith

left eigenvector of the hub matrix A1 = AAT and vi is the i
th right eigenvector of the

authority matrix A2 = ATA. Assume i = 1, then u1 in our HITS algorithm contains

the hub scores for each node of the directed graph, and v1 contains the authority

scores for each node.

2.3.3 PageRank

PageRank is an algorithm used by Google Search to rank web pages. The PageRank

metric is a representation of how important Google thinks a particular web page is

relative to the search query. For instance, a score of 0 is associated with low-quality

websites while a score of 10 would represent the most authoritative pages on the web.

Now that we are familiar with non-symmetric Laplacians for directed graphs, we can

understand the PageRank method that was used during the experiment conducted for

this thesis. However, we need further mathematical definitions to be able to illustrate

the method.

1. Stochastic Matrices A stochastic matrix is a square matrix whose columns

are probability vectors. A probability vector is a vector whose entries are real

numbers between 0 and 1 and whose sum is 1.
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2. Markov Chain In a Markov chain, elements move from one state to another

with the same probabilities at each step in the process.

3. Transition Matrix The transition matrix for a Markov chain is a stochastic

matrix whose (i, j) entry gives the probability that an element moves from the

j-th state to the i-th state during the next step of the process.

We can now proceed with describing the PageRank method. We first normalize

our out-Laplacian. Thus we define a matrix H such that

H := I − ATD−1
out = LT

outD
−1
out (2.25)

Here, H is a column stochastic matrix, its zero eigenvalue is simple and the solution

of Hx = 0 is the stationary probability distribution of the Markov chain described by

the transition matrix ATD−1
out. The vector x in this case is also known as the PageRank

vector with all positive components that give us the scores for the importance of the

nodes in digraph G. The hub scores for each node are stored in vector x.

Remark. If there are nodes in the digraph with a zero out-degree, the corresponding

matrix H will not be stochastic. In such cases the adjacency matrix needs to be modi-

fied. Through the experiment conducted in this thesis, we came across non-stochastic

adjacency matrices. In order to convert them to stochastic ones, we replaced each

row entry of the node with a zero out-degree with 1
n
in the adjacency matrix, where

n is the number or nodes.

PageRank does not distinguish between hub and authority rankings, but we can

compute a reverse PageRank vector. To this end, we normalize the in-Laplacian.

Thus we define a matrix K such that

K := I − AD−1
in = LinD

−1
in (2.26)
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In this case as well, there exists a unique probability distribution y that satisfies

Ky = 0, which is the probability distribution of the Markov chain described by the

column stochastic matrix AD−1
in . The reverse PageRank vector y contains the au-

thority scores for each node in G.

Remark. The normalized matrices H and K can be also written in terms of the

reversed digraph G′, which is obtained from G by reversing the directions on the

edges. Given the adjacency matrix A of G, A′ = AT is the adjacency matrix of G′.

Moreover D′
out = Din and D′

in = Dout.

Therefore,

L′
out = D′

out − A′ = Din − AT = LT
in and L′

in = D′
in − A′ = Dout − AT = LT

out (2.27)

Thus

H = LT
outD

−1
out = L′

in(D
′
in)

−1 and K = LT
inD

−1
in = L′

out(D
′
out)

−1 (2.28)
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Chapter 3

An Instagram Experiment

One of the main goals of this project was to draw connections between social media

used by the author everyday and her favorite field of mathematics: linear algebra. To

make this experiment personal, we decided to involve Emory students and create our

data set, rather than referring to an available database. Therefore, the data collection

process, and its interpretation, has been an exciting and delicate procedure.

3.1 Data Collection

The primary goal behind the data collection process was to create a set of directed

graphs. They were produced by keeping track of the users’ activity on Instagram.

A secondary goal of the experiment was to figure out what Instagram content was

popular among users and what content was unpopular. The experiment then took

into account the topics of disinterest to set up a stage to facilitate the primary goal.

To this end, we created an Instagram account and asked a group of Emory students

to visit the account for 12 consecutive days. We aimed to keep a track of their habits

and preferences to obtain data that could be mathematically represented as directed

graphs. Once the graphs were created, we were able to analyze the data through

the methods we discussed in Chapter 2, that is, HITS, Dominant Eigenvector, and
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PageRank. The detailed steps of the data collection process have been outlined below.

1. Gathering participants and the primary survey

With the goal of creating a set of directed graphs, the first step was to scan the

Instagram consumption habits of different users. In order to mobilize partici-

pants for the experiment, we created the following poster.

Figure 3.1: Poster Used to Publicize the Experiment

The poster was widely broadcasted among various Emory communities, and

interested participants were instantly navigated to a primary survey titled “In-

stagram Behaviors”. Besides wanting to gain insight into the general activity

of users on Instagram, we primarily wanted to know what content was of im-

portance to the Emory community. We were also curious to know what type

of content did not interest the participants. From a list of twenty categories of

content, the survey asked participants to rank each category from one to six,

one being the most preferred, and six being the least preferred category. Out
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of the fifty-five individuals that took the primary survey, the unpopular con-

tent topics were the following eight: safety, home/culture/lifestyle, companies

and institutions, climate and animal justice, sports, social justice, education,

beauty/clothing/self care, and art. For the rest of the experiment, only nine

out of the fifty-five initial participants were included.

2. Setting up the mock Instagram account

The next step of the process involved tracking the activity of the nine core

participants on Instagram on a daily basis. In order to expose the participants

to the content they did not have an interest in, we created a mock Instagram

account named “A Roaming Numeral” which only included posts related to the

aforementioned eight topics.

Figure 3.2: Experimental Instagram Account: @aroamingnumeral

Over the span of twelve days various pictures were shared through the account,
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and participants had to engage with them on a daily basis. Using any picture,

from our main account, participants were instructed to further move onto dif-

ferent accounts from those that were tagged in our picture. The accounts that

were tagged on any post from our account were always related by content to

that post. For example, consider the post of the green drink below.

Figure 3.3: An Example of a Post from the Mock Account

The picture was originally posted by the account @itsnicethat, and in the cap-

tion we can see that three other accounts have been tagged namely @art.viewer

@colossal and @supersonicart. These three accounts are related to the account

@itsnicethat because all three promote creativity and art.

3. Participant engagement with the account

It is important to understand how a participant interacted with the mock ac-

count, and how that information was later used to create a directed graph

specific to that user. Assume a participant chose the green drink post, credited

to the account @itsnicethat, as their first post to interact with. The participant

could then choose to move onto any of the accounts we tagged in our post.

Assume they choose to have look at the account @supersonicart. Now the par-

ticipant is free to browse this account, however, they must move onto a third

account so that we have enough data to reach a conclusion. Choosing the third
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account (i.e., @thewalusogallery) had no restrictions except that it had to be

from the list of people the account @supersonicart followed. From here on the

participant is free to browse this third account, continue jumping to different

accounts, or terminate the entire process. As such the “pathway” for this set of

decisions, for this participant, would look like

@itsnicethat −→ @supersonicart −→ @thewalusogallery.

Therefore, each pathway had to have a minimum of three accounts, and the

participant was instructed to give us one pathway per day. A participant could

provide us with more than one pathway. However, in order to start a new

pathway, they had to restart the decision-making process by choosing another

basis post from our mock account. Participants usually provided us with two

to three pathways every day.

4. Data collection on Excel

For the twelve days that the experiment was conducted, an excel sheet was

updated to keep note of all the pathways taken for each of the nine core par-

ticipants. The only thing left to do was turn this data into directed graphs. In

order to create the graphs, we decided to analyze the content of the pathways.

Coming back to the example pathway

@itsnicethat −→ @supersonicart −→ @thewalusogallery,

we can see that the user initially started with an art account but ended up at an

account (@thewalusogallery) that has been enlisted under the “company” title

on Instagram since it is an art gallery. Therefore in reference to the eight topics

of disinterest mentioned earlier, the participant moved from the Art category



34

to the Companies and Institutions one. As an additional example, consider the

pathway

@trintrin −→ @fayedsouza −→ @vogueindia.

The starting account, @trintrin, posts content related to social justice, while the

last account of the pathway (@vogueindia) is related to clothing and beauty.

Therefore, in this case, the participant jumped from the topic of Social Justice

to the topic of Beauty/Clothing/Self care.

In order to rank the user’s preferences, we were interested in seeing the change

in topic that occurred in the pathways as users moved from one account to the

other and wanted to represent this clearly through a graph. For this reason

each node in our graphs represent a topic and each edge an existing pathway.

Figure 3.4: Data Collected on Day 1

3.2 Data Interpretation

The next step in the experimental process was to create directed graphs for each

participant based on the pathways they provided us with for all twelve days. However,
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this was not our original intention. Our first idea was to create one singular directed

graph that contained all the pathways that originated from five chosen pictures from

our account. As participants were allowed to pick any initial image each day, on

several occasions, various participants decided to revisit a picture they had already

chosen before leading to an entirely new pathway. While the directed graph produced

from these pathways could have given different conclusions, it later made more sense

to focus on the change in the topic of the pathways for each participant individually.

Therefore, we assigned numbers to the eight topic categories which represented

the eight nodes in each directed graph. The list was as follows:

1. Art

2. Climate and Animal justice

3. Companies and Institutions

4. Social Justice

5. Home/Culture/Lifestyle

6. Sports

7. Beauty/Clothing/Self Care

8. Education

As mentioned, the edges connecting the nodes represent the change in topic along a

user’s pathway. Consider the example shown in Figure 3.5. The arrow going from

node 4 into node 1 represents a pathway from Social Justice to Art. The line segment

between between node 4 and 5 implies that there was a pathway leading from Social

Justice (node 4) to Home/Culture/Lifestyle (node 5) at some instance, but the reverse

also took place. That is, a participant also moved from Home/Culture/Lifestyle (node
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5) to Social Justice (node 4) in some pathway. Through this process, we constructed

nine distinct directed graphs corresponding to the nine participants.

Figure 3.5: A Digraph from the Experiment

As introduced in Chapter 2, to each digraph we associate an adjacency matrix.

This is crucial to supplement the ranking techniques. Consider, again, the graph in

Figure 3.5. The corresponding adjacency matrix is

A =



0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0



(3.1)

Now that we have our adjacency matrix, we can use this as the input for the
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ranking methods discussed in chapter 2. We can visually make some conclusions about

which nodes might be considered important in our analysis, however it is necessary

to see what the rank methods determine. By importance we imply our interest in

knowing which node received the highest hub score and which node received the

highest authority score by the three methods. The ideal situation would be if our

intuitions about the directed graph in Figure 3.5 match the results of the methods.

Once the most important hub and authority nodes were determined our intention

was to provide the results to the participant and give them the opportunity to either

accept or reject our conclusions [4].

After having looked at the data from an individual perspective, we were motivated

to group individuals into categories to see which nodes were deemed important to each

group. Of the nine participants, five identified as female, while four identified as male.

To create the directed graphs associated with these two categories, we constructed two

new graphs. One, with all the choices (pathways) of the participants that identified

as female and the other with all the choices of the participants that identified as male.

Figure 3.6: Group 1: Female
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Figure 3.7: Group 2: Male

With these newly constructed graphs, we were able to compute their adjacency

matrices and run the rank methods on them. The numerical results are discussed

below. Specifically, in the following section we report the node ranking for each

participant and for the groups (males and females). Detailed results are stored in

tables in Appendix A. Each table, associated with a participant, contains the hub

and authority scores of the eight nodes as computed by HITS and then Dominant

Eigenvector. When the participants are grouped, we look at each group (female or

male) as an individual unit and make sense of the numerical results accordingly.

3.3 Numerical Results

The numerical results from the experiment include the digraph of each participant

along with an associated table containing the results. The tables below are a more

concise version of the tables available in Appendix A. The tables in Appendix A are

populated with the node rankings as well as the scores associated with each rank.

Each table below contains the hub and authority rankings as computed using HITS

and the Dominant Eigenvector approach. As previously stated, the most important
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hub and authority, as computed by the methods, are the first set of nodes in each

column. This implies that for a specific participant, these set of nodes (therefore the

respective social media category) were deemed to be important to the participant by

the methods.

1.

Figure 3.8: Directed Graph for Participant One

Table 3.1: Table 1

HITS Eig
Hub Auth Hub Auth
7 3 2 6
3 5 1 5
2 6 4 3
8 1 7 8
5 2 5 1
1 4 3 4
4 7 8 7
6 8 6 2

Figure 3.9: Directed Graph for Participant Two

Table 3.2: Table 2

HITS Eig
Hub Auth Hub Auth
8 5 1 3
7 3 2 1
1 7 3 2
2 2 4 4
5 6 5 5
4 1 6 6
3 4 7 7
6 8 8 8
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Figure 3.10: Directed Graph for Participant Three

Table 3.3: Table 3

HITS Eig
Hub Auth Hub Auth
4 3 8 3
7 8 4 8
8 7 1 7
1 5 7 4
5 2 2 6
2 4 3 5
3 6 5 2
6 1 6 1

Figure 3.11: Directed Graph for Participant Four

Table 3.4: Table 4

HITS Eig
Hub Auth Hub Auth
1 5 1 3
4 3 2 1
7 8 3 2
8 2 4 4
5 4 5 5
2 1 6 6
3 6 7 7
6 7 8 8
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Figure 3.12: Directed Graph for Participant Five

Table 3.5: Table 5

HITS Eig
Hub Auth Hub Auth
7 5 8 1
1 3 4 8
3 7 1 5
6 2 7 3
2 4 5 4
4 8 3 7
5 1 6 2
8 6 2 6

Figure 3.13: Directed Graph for Participant Six

Table 3.6: Table 6

HITS Eig
Hub Auth Hub Auth
7 3 2 3
2 5 8 5
1 4 1 1
5 2 3 2
4 1 4 4
8 6 5 6
3 7 6 7
6 8 7 8
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Figure 3.14: Directed Graph for Participant Seven

Table 3.7: Table 7

HITS Eig
Hub Auth Hub Auth
4 5 4 5
1 8 1 8
7 7 8 4
2 3 2 3
3 2 7 7
5 1 3 2
6 4 5 1
8 6 6 6

Figure 3.15: Directed Graph for Participant Eight

Table 3.8: Table 8

HITS Eig
Hub Auth Hub Auth
7 5 5 4
4 3 7 5
2 1 4 3
1 2 2 1
5 4 3 7
8 6 8 2
3 7 1 6
6 8 6 8
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Figure 3.16: Directed Graph for Participant Nine

Table 3.9: Table 9

HITS Eig
Hub Auth Hub Auth
8 5 8 5
1 3 1 1
7 1 2 3
3 4 3 2
2 8 4 4
4 2 5 6
5 6 6 7
6 7 7 8

Figure 3.17: Directed Graph for Group 1 - Female

Table 3.10: Table 10

HITS Eig
Hub Auth Hub Auth
8 5 8 5
1 3 4 3
4 8 1 2
7 2 2 8
2 7 7 4
5 1 5 1
3 4 3 7
6 6 6 6
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Figure 3.18: Directed Graph for Group 2 - Male

Table 3.11: Table 11

HITS Eig
Hub Auth Hub Auth
8 5 1 5
1 3 8 3
3 7 3 6
4 6 4 7
7 4 2 1
2 1 5 4
5 8 7 8
6 2 6 2

The experimental results, for each participant and the groups, from PageRank are

located in Appendix B.

3.4 Discussion of Our Findings

In this section we highlight some of the important observations noted from the exper-

imental results of HITS, Dominant Eigenvector, and PageRank. Before diving deeper

into these observations, we demonstrate how to analyze the results of the experiment

by using Participant One as an example.

Figure 3.8 displays the digraph of Participant One, and Table 3.1 includes the

rank of each node (social media category) on the graph as computed by HITS and

Dominant Eigenvector. We see that HITS ranks node 7 (Beauty/Clothing/Self Care)

as the most important hub and node 3 (Companies and Institutions) as the most

important authority, while Dominant Eigenvector ranks node 2 (Climate and Animal

Justice) as the most important hub and node 6 (Sports) as the most important

authority. The results for Participant One from PageRank - found in Appendix B,

Table B.1 - state that node 6 is the most important hub while node 3 is the most

important authority. By the term “most important hub” we imply that this node
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was the most significant in terms of broadcasting information while “most important

authority” refers to the node that receives the most information in the network. Now,

we focus on the nodes deemed important by HITS. It intuitively makes sense that

node 7 is the most important hub because it has 3 out-going edges: graphically, we

see that node 7 has the maximum out-degree. Whereas node 3, the most important

authority, has 3 in-coming edges: graphically, node 3 has the maximum in-degree.

Another point to recall is that good hubs point to good authorities, and vice versa.

Therefore, the results from HITS match our intuition regarding the digraph.

The fact that the methods do not agree on which nodes are the most important,

in the case of Participant One, does not imply that our findings are incorrect. The

mathematics associated with each method is significantly different, and therefore we

expect differing results. In the case of some participants, the methods did agree on

either the most important hub, authority or even both.

Since our intention was to provide participants with a recommendation based on

our findings, we chose to recommend two nodes to each participant. These two nodes

would be the most important hub, and the most important authority as determined

by HITS. Participants could accept one of the two nodes (social media categories)

or reject both. By rejection we imply that the participant chose one of the six other

social media categories, as listed in section 3.2 because they deemed that category

to be more significant to them. However, if the participant accepted any one of

our recommendations, in some sense, our experiment succeeded. Thus, in the case

of Participant One, they chose to accept our recommendation of node 3 which is

Companies and Institutions. We went through the same process for each participant

and offered our recommendation to them. Six out of the nine participants agreed with

the results of our experiment and accepted that they would in fact be most interested

in the social media category we predicted. Some of them were even surprised to see

that the data, as well as conclusions, lined up so well in comparison to their real-world
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social media behavior.

With respect to the results from when the participants were grouped into the

categories of female and male the conclusions were as follows. For Group 1 (fe-

male) all three methods agreed upon Education being the most important hub and

Home/Culture/Lifestyle being the most important authority. For Group 2 (male) the

methods determined the following:

HITS:

Most important hub = Education.

Most important authority = Home/Culture/Lifestyle.

Eigenvector:

Most important hub = Art.

Most important authority = Home/Culture/Lifestyle.

PageRank:

Most important hub = Education.

Most important authority = Companies and Institutions.
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Chapter 4

Conclusions and Future Work

Ranking methods offer significant potential in developing and improving recommen-

dation systems. Through a number of existing techniques, key insights into vertex

prestige can assist in predicting user preferences on a number of applications. Such

techniques are especially invaluable in the case of social media, retail, and e-commerce.

We began with the goal of providing recommendations to participants, after having

accessed their past consumption choices on Instagram, by designing an experiment.

With the assistance of the three ranking methods, HITS, Dominant Eigenvector, and

PageRank we were able to provide participants with suggestions related to what con-

tent they might be interested in on the app. We were partly successful in predicting

what our participants prefer in terms of social media content with six out of nine

participants accepting our recommendation.

There are a number of ways in which the experiment can be modified for further

research. Since the experiment conducted in this project was confined to a particular

environment, a natural direction for future work would be gathering and analysing

a larger and more diverse data set. A different application can be considered, along

with an intention to predict different commodities. Twitter, Netflix, Amazon, or

any website can be a possible base to develop the model. Further, the data set can
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include several individuals from various locations if the experimental set-up allowed

for a large data set.

Another possible direction for further exploration of this topic can be developing

our own ranking algorithm. The experience acquired with this experiment can be

a stepping stone to the creation of another method that computes vertex prestige.

Analyzing non-symmetric Laplacians, as discussed in Chapter 2, and their properties

is a clear starting point to building something new.
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Appendix A

Dominant Eigenvector and HITS:

Detailed Numerical Results

Table A.1: Hub and Authority Ranking: Participant One

HITS Eigenvector

Node
Hub
Score

Node
Authority
Score

Node
Hub
Score

Node
Authority
Score

7 0.750133 3 0.607227 2 0.500895 6 0.456937
3 0.481641 5 0.544643 1 0.444612 5 0.456937
2 0.354689 6 0.544643 4 0.431606 3 0.443570
8 0.268493 1 0.194942 7 0.413861 8 0.425333
5 0.086196 2 0.000000 5 0.325859 1 0.334892
1 0.000000 4 0.000000 3 0.238825 4 0.245445
4 0.000000 7 0.000000 8 0.175036 7 0.179888
6 0.000000 8 0.000000 6 0.000000 2 0.000000
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Table A.2: Hub and Authority Ranking: Participant Two

HITS Eigenvector

Node
Hub
Score

Node
Authority
Score

Node
Hub
Score

Node
Authority
Score

8 0.684689 5 0.668632 1 1.000000 3 1.000000
7 0.489996 3 0.494754 2 0.000000 1 0.000000
1 0.412833 7 0.462255 3 0.000000 2 0.000000
2 0.244086 2 0.249947 4 0.000000 4 0.000000
5 0.180611 6 0.178874 5 0.000000 5 0.000000
4 0.168747 1 0.000000 6 0.000000 6 0.000000
3 0.000000 4 0.000000 7 0.000000 7 0.000000
6 0.000000 8 0.000000 8 0.000000 8 0.000000

Table A.3: Hub and Authority Ranking: Participant Three

HITS Eigenvector

Node
Hub
Score

Node
Authority
Score

Node
Hub
Score

Node
Authority
Score

4 0.528201 3 0.644151 8 0.601501 3 0.740650
7 0.514517 8 0.499734 4 0.601501 8 0.370325
8 0.468595 7 0.351977 1 0.371748 7 0.370325
1 0.372527 5 0.313222 7 0.371748 4 0.228873
5 0.312920 2 0.242037 2 0.000000 6 0.228873
2 0.000000 4 0.165465 3 0.000000 5 0.228873
3 0.000000 6 0.165465 5 0.000000 2 0.141451
6 0.000000 1 0.000000 6 0.000000 1 0.000000

Table A.4: Hub and Authority Ranking: Participant Four

HITS Eigenvector

Node
Hub
Score

Node
Authority
Score

Node
Hub
Score

Node
Authority
Score

1 0.640832 5 0.695311 1 1.000000 3 1.000000
4 0.515409 3 0.434309 2 0.000000 1 0.000000
7 0.407254 8 0.416851 3 0.000000 2 0.000000
8 0.365125 2 0.317452 4 0.000000 4 0.000000
5 0.156578 4 0.231034 5 0.000000 5 0.000000
2 0.000000 1 0.000000 6 0.000000 6 0.000000
3 0.000000 6 0.000000 7 0.000000 7 0.000000
6 0.000000 7 0.000000 8 0.000000 8 0.000000
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Table A.5: Hub and Authority Ranking: Participant Five

HITS Eigenvector

Node
Hub
Score

Node
Authority
Score

Node
Hub
Score

Node
Authority
Score

7 0.707107 5 0.788675 8 0.539345 1 0.458160
1 0.408248 3 0.577350 4 0.539345 8 0.458160
3 0.408248 7 0.211325 1 0.333333 5 0.458160
6 0.408248 2 0.000000 7 0.333333 3 0.458160
2 0.000000 4 0.000000 5 0.333333 4 0.283158
4 0.000000 8 0.000000 3 0.206011 7 0.283158
5 0.000000 1 0.000000 6 0.206011 2 0.000000
8 0.000000 6 0.000000 2 0.000000 6 0.000000

Table A.6: Hub and Authority Ranking: Participant Six

HITS Eigenvector

Node
Hub
Score

Node
Authority
Score

Node
Hub
Score

Node
Authority
Score

7 0.622747 3 0.711581 2 0.707107 3 0.834058
2 0.523681 5 0.493242 8 0.707107 5 0.417029
1 0.457467 4 0.435294 1 0.000000 1 0.208514
5 0.270185 2 0.232335 3 0.000000 2 0.208514
4 0.218831 1 0.083089 4 0.000000 4 0.208514
8 0.088217 6 0.000000 5 0.000000 6 0.000000
3 0.000000 7 0.000000 6 0.000000 7 0.000000
6 0.000000 8 0.000000 7 0.000000 8 0.000000
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Table A.7: Hub and Authority Ranking: Participant Seven

HITS Eigenvector

Node
Hub
Score

Node
Authority
Score

Node
Hub
Score

Node
Authority
Score

4 0.698060 5 0.540224 4 0.658350 5 0.541127
1 0.625213 8 0.540224 1 0.462041 8 0.541127
7 0.349030 7 0.427472 8 0.429128 4 0.352719
2 0.000000 3 0.427472 2 0.301169 3 0.327594
3 0.000000 2 0.225502 7 0.279716 7 0.327594
5 0.000000 1 0.000000 3 0.000000 2 0.229911
6 0.000000 4 0.000000 5 0.000000 1 0.149861
8 0.000000 6 0.000000 6 0.000000 6 0.000000

Table A.8: Hub and Authority Ranking: Participant Eight

HITS Eigenvector

Node
Hub
Score

Node
Authority
Score

Node
Hub
Score

Node
Authority
Score

7 0.656539 5 0.844030 5 0.554011 4 0.568529
4 0.577350 3 0.449099 7 0.490083 5 0.539233
2 0.428525 1 0.293128 4 0.428250 3 0.403165
1 0.228013 2 0.000000 2 0.334223 1 0.342981
5 0.000000 4 0.000000 3 0.258354 7 0.325308
8 0.000000 6 0.000000 8 0.258354 2 0.000000
3 0.000000 7 0.000000 1 0.155860 6 0.000000
6 0.000000 8 0.000000 6 0.000000 8 0.000000
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Table A.9: Hub and Authority Ranking: Participant Nine

HITS Eigenvector

Node
Hub
Score

Node
Authority
Score

Node
Hub
Score

Node
Authority
Score

8 0.561901 5 0.658627 8 1.000000 5 0.816497
1 0.420060 3 0.499658 1 0.000000 1 0.408248
7 0.420060 1 0.483221 2 0.000000 2 0.408248
3 0.414099 4 0.203777 3 0.000000 3 0.000000
2 0.356447 8 0.203777 4 0.000000 4 0.000000
4 0.181204 2 0.000000 5 0.000000 6 0.000000
5 0.000000 6 0.000000 6 0.000000 7 0.000000
6 0.000000 7 0.000000 7 0.000000 8 0.000000

Table A.10: Hub and Authority Ranking: Group 1

HITS Eigenvector

Node
Hub
Score

Node
Authority
Score

Node
Hub
Score

Node
Authority
Score

8 0.578307 5 0.487747 8 0.626154 5 0.568647
1 0.492399 3 0.432050 4 0.483725 3 0.463268
4 0.492399 8 0.395169 1 0.483725 2 0.396765
7 0.281678 2 0.371712 2 0.295931 8 0.304110
2 0.223225 7 0.334831 7 0.207446 4 0.272412
5 0.172173 1 0.277172 5 0.089868 1 0.272412
3 0.104480 4 0.277172 3 0.025153 7 0.237607
6 0.104480 6 0.123879 6 0.025153 6 0.085117
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Table A.11: Hub and Authority Ranking: Group 2

HITS Eigenvector

Node
Hub
Score

Node
Authority
Score

Node
Hub
Score

Node
Authority
Score

8 0.504667 5 0.536117 1 0.501909 5 0.485375
1 0.443260 3 0.496563 8 0.465485 3 0.485375
3 0.413701 7 0.397958 3 0.396168 6 0.442455
4 0.371466 6 0.338624 4 0.387894 7 0.363710
7 0.314883 4 0.312661 2 0.341566 1 0.300095
2 0.286793 1 0.216291 5 0.263975 4 0.281088
5 0.241444 8 0.187080 7 0.194038 8 0.170829
6 0.000000 2 0.115883 6 0.000000 2 0.050212
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Appendix B

PageRank: Detailed Numerical

Results

Table B.1: PageRank Results: Participant One

PageRank

Node
Hub
Score

Node
Authority
Score

6 0.179445 3 0.203264
1 0.158762 1 0.169139
4 0.158345 8 0.153561
7 0.157876 5 0.142433
3 0.119603 6 0.142433
2 0.112984 4 0.102374
5 0.074712 7 0.068991
8 0.038273 2 0.017804
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Table B.2: PageRank Results: Participant Two

PageRank

Node
Hub
Score

Node
Authority
Score

7 0.228704 3 0.321586
3 0.193802 5 0.207048
6 0.193802 7 0.145374
8 0.155258 6 0.101322
1 0.084401 2 0.066079
4 0.070370 8 0.052863
5 0.059631 1 0.052863
2 0.014031 4 0.052863

Table B.3: PageRank Results: Participant Three

PageRank

Node
Hub
Score

Node
Authority
Score

8 0.247758 3 0.226588
4 0.146026 8 0.149312
1 0.139251 2 0.134905
7 0.121005 7 0.125737
3 0.094793 5 0.117878
6 0.094793 4 0.094303
2 0.094793 6 0.094303
5 0.061580 1 0.056974

Table B.4: PageRank Results: Participant Four

PageRank

Node
Hub
Score

Node
Authority
Score

1 0.181624 3 0.298429
3 0.168958 5 0.188482
6 0.168958 2 0.141361
2 0.168958 8 0.104712
4 0.117354 4 0.078534
8 0.082583 1 0.062827
7 0.061504 7 0.062827
5 0.050062 6 0.062827
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Table B.5: PageRank Results: Participant Five

PageRank

Node
Hub
Score

Node
Authority
Score

2 1.000000 8 0.253968
1 0.000000 1 0.190476
3 0.000000 5 0.190476
4 0.000000 3 0.142857
5 0.000000 4 0.126984
6 0.000000 7 0.095238
7 0.000000 6 0.000000
8 0.000000 2 0.000000

Table B.6: PageRank Results: Participant Six

PageRank

Node
Hub
Score

Node
Authority
Score

3 0.233063 3 0.332016
6 0.233063 5 0.169960
2 0.158103 2 0.142292
7 0.104709 4 0.110672
4 0.074243 1 0.102767
1 0.071712 8 0.047431
8 0.070268 7 0.047431
5 0.054838 6 0.047431

Table B.7: PageRank Results: Participant Seven

PageRank

Node
Hub
Score

Node
Authority
Score

4 0.225528 4 0.205696
8 0.164021 5 0.166139
1 0.147508 8 0.166139
2 0.107278 1 0.120253
3 0.093155 3 0.110759
5 0.093155 7 0.110759
6 0.093155 2 0.080696
7 0.076200 6 0.039557
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Table B.8: PageRank Results: Participant Eight

PageRank

Node
Hub
Score

Node
Authority
Score

6 0.529412 4 0.315789
8 0.470588 3 0.210526
3 0.000000 5 0.210526
1 0.000000 1 0.157895
4 0.000000 7 0.105263
5 0.000000 2 0.000000
7 0.000000 6 0.000000
2 0.000000 8 0.000000

Table B.9: PageRank Results: Participant Nine

PageRank

Node
Hub
Score

Node
Authority
Score

8 0.380330 5 0.304348
6 0.192989 3 0.246377
5 0.192989 1 0.202899
3 0.064016 8 0.057971
1 0.060472 4 0.057971
7 0.060472 2 0.043478
2 0.033669 6 0.043478
4 0.015063 7 0.043478

Table B.10: PageRank Results: Group 1

PageRank

Node
Hub
Score

Node
Authority
Score

8 0.292202 5 0.329480
1 0.215048 3 0.210983
4 0.215048 2 0.199422
2 0.148837 4 0.086705
7 0.079617 1 0.086705
5 0.038304 8 0.046243
3 0.005472 7 0.034682
6 0.005472 6 0.005780
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Table B.11: PageRank Results: Group 2

PageRank

Node
Hub
Score

Node
Authority
Score

8 0.204090 3 0.194920
1 0.196967 5 0.175428
3 0.150403 6 0.172059
4 0.149217 1 0.130146
2 0.103681 7 0.123187
5 0.098590 4 0.098550
7 0.051657 8 0.072174
6 0.045395 2 0.033536
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