
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for

an advanced degree from Emory University, I hereby grant to Emory University and

its agents the non-exclusive license to archive, make accessible, and display my thesis

or dissertation in whole or in part in all forms of media, now or hereafter known,

including display on the world wide web. I understand that I may select some access

restrictions as part of the online submission of this thesis or dissertation. I retain

all ownership rights to the copyright of the thesis or dissertation. I also retain the

right to use in future works (such as articles or books) all or part of this thesis or

dissertation.

Signature:

Ru Huang Date

Improving Multigrid Methods with Deep Neural Networks

By

Ru Huang

Doctor of Philosophy

Mathematics

Yuanzhe Xi

Advisor

James G. Nagy

Committee Member

Lars Ruthotto

Committee Member

Ruipeng Li

Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D., MPH

Dean of the James T. Laney School of Graduate Studies

Date

Improving Multigrid Methods with Deep Neural Networks

By

Ru Huang

B.S., Fudan University (P. R. China), 2016

Advisor: Yuanzhe Xi, Ph.D.

An abstract of

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mathematics

2022

Abstract

Improving Multigrid Methods with Deep Neural Networks

By Ru Huang

Multigrid methods are one of the most efficient techniques for solving large sparse

linear systems arising from Partial Differential Equations (PDEs) and graph Lapla-

cians from machine learning applications. There are two key components of multigrid,

smoothing which aims at reducing high-frequency errors on each grid level and coarse

grid correction which interpolates the solution at the coarse grid. However, finding

optimal smoothing algorithms is problem-dependent and can impose challenges for

many problems. Meanwhile, as the multigrid hierarchy is formed, coarse-grid oper-

ators have significantly more nonzeros per row than the original fine-grid operator,

which generates high parallel communication costs on coarse-levels. In this thesis,

I first propose an efficient adaptive framework for learning optimal smoothers from

operator stencils in the form of convolutional neural networks (CNNs). The CNNs are

trained on small-scale problems from a given type of PDEs based on a supervised loss

function derived from multigrid convergence theories, and can be applied to large-

scale problems of the same class of PDEs. I also propose a deep learning framework

for sparsifying coarse grid operators. Two neural networks are constructed to learn

the sparsity pattern and the corresponding values, respectively. The learned sparser

operator has the same interpolation accuracy on algebraic smooth basis. Numerical

results on challenging anisotropic rotated Laplacian problems, variable coefficient dif-

fusion problems and linear elasticity problems demonstrate the superior performance

of the proposed framework over classical hand-crafted methods.

Improving Multigrid Methods with Deep Neural Networks

By

Ru Huang

B.S., Fudan University (P. R. China), 2016

Advisor: Yuanzhe Xi, Ph.D.

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mathematics

2022

Acknowledgments

I would like to express my sincere gratitude to my advisor, Prof. Yuanzhe Xi. In

academia, Yuanzhe inspired me with new research ideas, supported my Ph.D study

and related research, helped me with the writing of this thesis. Yuanzhe has also

given me lots of opportunities to connect with experts in academy and he always

encouraged me to give talks which makes me more well-rounded as a Ph.D student.

I could not have imagined completing my degree without him.

I also want to show my great thankfulness to Dr. Ruipeng Li for his continuous

support for the related research, for his patience and motivation, for his expertise

which has improved the quality of this thesis.

I would like to thank the rest of my thesis committee: Prof. James Nagy and

Prof. Lars Ruthotto for their insightful comments and suggestions which helped me

to widen my research from various perspectives.

In addition, I would like to express my appreciation to Prof. Michele Benzi who

guided me at the beginning of my Ph.D career. His guidance helped me in all the

time of research and Ph.D life which leads me to the right track of the career path.

Finally, I would like to thank my friends and family for supporting me in life

in general, for encouraging me when I encounter difficulties, for listening to all my

complaints.

Contents

1 Introduction 1

1.1 Related work . 2

1.2 Contributions of Work . 4

1.3 Outline of Thesis . 5

2 Background on PDEs 6

2.1 Poisson’s equation . 6

2.2 Finite difference discretization . 7

3 Iterative methods for PDEs 12

3.1 Relaxation methods . 12

3.2 Polynomial based methods . 15

3.3 GMRES . 17

3.4 Multigrid methods . 18

3.4.1 Prolongation . 19

3.4.2 Restriction . 22

3.4.3 Multigrid . 25

3.5 Relationship between PDEs and CNNs 32

4 Learning deep neural smoothers 34

4.1 Learning deep neural smoothers for constant coefficient PDEs 35

4.1.1 Formulation . 35

4.1.2 Training and generalization 37

4.2 Interpretation of learned smoothers 42

4.3 Learning deep neural smoothers for variable coefficient PDEs 45

4.3.1 Parameterization with fully connected layers 47

4.3.2 Parameterization with convolutional layers 48

4.4 Numerical experiments . 49

4.4.1 Constant coefficient PDEs . 49

4.4.2 Training details . 50

4.4.3 Variable coefficient PDEs . 61

4.4.4 Incorporation with FGMRES 63

4.4.5 Comparison with Chebyshev smoothers 65

4.4.6 Comparison with GMRES smoothers 65

4.5 Conclusion . 66

5 Learning sparsified coarse-grid operator 68

5.1 Motivation . 68

5.1.1 Theoretical considerations . 70

5.2 Sparsification with machine learning 74

5.3 Numerical Experiements . 79

5.3.1 Circulant stencil . 79

5.3.2 Rotated Laplacian . 80

5.3.3 2-D elasticity problem . 84

5.4 Conclusion . 88

6 Conclusions and Future Work 90

Bibliography 92

10

List of Figures

2.1 3-point stencil . 10

2.2 5-point stencil . 11

3.1 Full coarsening . 20

3.2 Red-black coarsening . 24

3.3 Graph illustration of Multigrid V-cycle 31

3.4 Convolution . 33

4.1 Adaptive training framework . 41

4.2 Patterns of the trained kernels . 43

4.3 Patterns of the trained kernels . 44

4.4 Demonstration of weight stencils and grid points. 46

4.5 Architecture . 48

4.6 Framework . 48

4.7 Convergence factors . 55

4.8 Numbers of iterations and runtime 56

4.9 Ground truth solutions . 57

4.10 Numbers of iterations and runtime 57

4.11 Numbers of iterations and runtime 59

4.12 Numbers of iterations and runtime 60

4.13 Numbers of iterations and runtime 60

4.14 Convergence factors . 63

5.1 Matrix sparsity pattern . 69

5.2 Communication . 70

5.3 Framework . 75

5.4 Eigenvalues . 82

5.5 The approximate solution . 83

5.6 Convergence . 84

5.7 Eigenvalues . 87

5.8 The approximate solution . 88

12

List of Tables

4.1 Spectral radius . 52

4.2 Spectral radius . 53

4.3 Ideal convergence bound . 53

4.4 Ideal convergence bound . 53

4.5 Spectral radius . 54

4.6 Spectral radius . 54

4.7 Numbers of iterations . 62

4.8 Runtime . 62

4.9 Spectral radius . 62

4.10 Ideal convergence bound . 62

4.11 Numbers of iterations . 64

4.12 Run time . 64

4.13 Number of iterations . 65

4.14 Number of iterations . 66

5.1 Matrix properties . 69

5.2 Matrix properties . 76

5.3 Averaged numbers of iterations . 81

5.4 Averaged numbers of iterations . 81

5.5 ϕ for ξ = 10 . 81

5.6 ϕ for θ = π
4

. 81

5.7 Averaged numbers of iterations . 87

5.8 ϕ for elasticity . 87

1

Chapter 1

Introduction

Partial Differential Equations (PDEs) play important roles in modeling various phe-

nomena in many fields of science and engineering. Their solutions are typically com-

puted numerically when closed-form solutions are not easily available, which leads to

large-scale and ill-conditioned sparse linear systems that need to be solved. In ma-

chine learning applications such as spectral clustering, graph-based semi-supervised

learning, Markov chains and transportation network flows, solving large-scale linear

systems associated with graph Laplacians is often needed [18, 39, 49]. Hence, the

development of efficient linear solvers remains an active research area [16,45,56].

Among many numerical solution schemes, multigrid methods often show superior

efficiency and scalability especially for solving elliptic-type PDE and graph Lapla-

cian problems [9, 15, 43, 54]. Fast convergence of multigrid is achieved by exploit-

ing hierarchical grid structures to eliminate errors of all modes by smoothing and

coarse-grid correction at each grid level. Thus, the performance of multigrid meth-

ods highly depends on the smoothing property of a chosen smoother. However, the

design of optimal smoothing algorithm is problem-dependent and often too complex

to be achieved even by domain experts. On the other hand, the time complexity of

multigrid methods depends not only on convergence rate but also on the computa-

2

tional cost performed at each step. Multigrid methods suffer from increasing density

on coarse grids. Although coarse grids are smaller in size and have fewer number

of nonzero entries, the increasing number of nonzeros per row is the bottleneck in

parallel computing.

1.1 Related work

There is an increasing interest in leveraging machine learning techniques to solve

PDEs in the past few years. Several researchers have proposed to use machine learning

techniques to directly approximate the solutions of PDEs. For example, [34] first

proposed to use neural networks (NNs) to approximate the solutions for both Ordinary

Differential Equations (ODEs) and PDEs with a fixed boundary condition. Later, [51]

utilized Convolutional Neural Networks (CNNs) to solve Poisson equations with a

simple geometry and [4] extended the techniques to more complex geometries. [28,48]

applied machine learning techniques to solve high dimensional PDEs, and [57] focused

on applying reinforcement learning to solve nonlinear PDEs. [50] used parameterized

realistic volume conduction models to solve Poisson equations and [30] trained a

neural network to plan optimal trajectories and control the PDE dynamics and showed

numerical results for solving incompressible Navier-Stokes equations.

Orthogonal to the above methods, a few studies have focused on leveraging neural

networks to improve the performance of existing solvers. For example, [47] devel-

oped optimization techniques for geometric multigrid based on evolutionary compu-

tation. [38] generalized existing numerical methods as NNs with a set of trainable

parameters. [33] proposed a deep learning method to optimize the parameters of pro-

longation and restriction matrices (introduced in Section 3.4) in a two-grid geometric

multigrid scheme by minimizing the spectral radius of the iteration matrix. [25] used

NNs to learn prolongation matrices in multigrid in order to solve diffusion equations

3

without retraining and [37] generalized this framework to algebraic multigrid (AMG)

for solving unstructured problems.

Meanwhile, researchers have also explored relationships between CNNs and dif-

ferential equations to design better NN architectures. For instance, [29] designed

MgNet which uses multigrid techniques to improve CNNs. [17, 27] scaled up CNNs

by interpreting the forward propagation as nonlinear PDEs.

Here, we would like to highlight the work by Hsieh [31], which proposes to use

CNNs and U-net [42] to learn a correction term to Jacobi method for solving Pois-

son equations. This approach is shown to preserve convergence guarantees. Since

multigrid methods are known to be more scalable than Jacobi, we extend this idea

to improve multigrid methods by designing optimal smoothers in this thesis.

The problem of increasing density on coarse grids was first addressed in [19, 24].

[53, 58] control the coarse grid sparsity pattern explicitly by exploring the approxi-

mations of the fine grid operator through algebraically smooth basis vectors. [22, 52]

sparsified the coarse grid operator directly via first determining the sparsity patterns

heuristically and then computing the values based on spectral equivalence between

coarse grid operator and its sparse version. [5] proposed new algorithms for reducing

communications.

Sparsification using deep learning has been well studied in graph learning [36,61].

Graph sparsifications focus on only dropping edges in graph while not modifying the

values. The goal of graph sparsification is usually to reduce noise in the graph and lets

the graph data less sensitive to the subsequent sparse approximation operations. On

contrary, Multigrid sparsification requires not only to determine the sparsity pattern

but also compute the optimal values. Spectral equivalence is often used the key metric

in multigrid sparsification to preserve the convergence.

4

1.2 Contributions of Work

Multigrid methods have two key components, the smoothers and the coarse grid

operator. We leverage deep learning techniques to improve the efficiency of multigrid

methods by

• developing smoothers which have better convergence, and

• controlling the sparsity pattern in multigrid hierarchy to reduce cost while not

influencing convergence.

In particular, we first propose an adaptive framework for training optimized smoothers

via convolutional neural networks (CNNs), which directly learns a mapping from op-

erator stencils to the inverses of the smoothers. The training process is guided by

multigrid convergence theories for good smoothing properties on eliminating high-

frequency errors. Multigrid solvers equipped with the proposed smoothers inherit the

convergence guarantees and scalability from standard multigrid algorithms and can

show improved performance on anisotropic rotated Laplacian problems that are typi-

cally challenging for classical multigrid methods. Numerical results demonstrate that

a well-trained CNN-based smoother can damp high-frequency errors more rapidly

and thus lead to a faster convergence of multigrid than traditional relaxation-based

smoothers. Another appealing property of the proposed smoother and the training

framework is the ability of generalization to problems of much larger sizes and more

complex geometries. We then propose a deep learning framework for sparsifying the

coarse grid operator in multigrid hierarchy while not influencing the convergence to

improve the parallel efficiency in practice. We utilize two deep neural networks to

learn the desired sparsity pattern and the values respectively. We exploit sparsifica-

tion on algebraic smooth basis to train spectral equivalent sparse stencils. Numerical

results show that the proposed model can be generalized to problems of much larger

sizes and problems with different parameters. To the best of our knowledge, our work

5

is the first attempt to use CNNs to learn the smoother at each level of multigrid

with more than two levels and the first to use deep learning in multigrid sparsifica-

tion which exhibits good generalization properties to problems with different sizes,

geometries and variable coefficients.

1.3 Outline of Thesis

The thesis is organized as follows. In Chapter 2, we review the finite difference dis-

cretization scheme for numerically solving partial differential equations (PDEs). Sev-

eral iterative methods for solving sparse linear systems arise from discretized PDEs,

including relaxation methods, polynomial based methods, GMRES, and multigrid

(which is the focus of this thesis), are introduced in Chapter 3. In Chapter 4, we de-

scribe an efficient adaptive framework for learning smoothers using CNNs. In Chapter

5 we move further to use a deep learning framework to sparsify the coarse grid oper-

ator. In both Chapter 4 and Chapter 5 we mainly deal with stencil-based problems.

Conclusions and future work are described in Chapter 6.

6

Chapter 2

Background on PDEs

Partial Differential Equations (PDEs) are widely used to model real world problems

that are related to physical phenomena. However, they often don’t have closed-

form solutions and require numerical methods to obtain approximate solutions. In

this chapter, we provide a quick review of Poisson’s equation (see Section 2.1) and

the finite difference discretization scheme (see Section 2.2) for numerically solving

PDEs [44]. We also use Poisson’s equation as an example for illustrating the use of

finite difference on PDEs.

2.1 Poisson’s equation

Poisson’s equation has the following form

−∆u(x⃗) = f(x⃗), x⃗ ∈ Ω,

where Ω is a bounded domain, and ∆ is the Laplace operator defined as the sum

of second order partial derivatives of u with respect to each independent variable.

Poisson’s equation is a generalization of Laplace’s equation, which can be obtained

from Poisson’s equation by setting the right hand side function f = 0.

7

In the one dimensional case where Ω is an interval, Poisson’s equation can be

written as

−u′′(x) = f(x), x ∈ (a, b).

In the two dimensional case where Ω is an area on the 2D plane, Poisson’s equation

can be written as

−(
∂2u

∂x2
1

+
∂2u

∂x2
2

) = f(x1, x2), (x1, x2) ∈ Ω.

Three types of boundary conditions are often considered with Poisson’s equation:

1. Dirichlet condition:

u(x) = ϕ(x);

2. Neumann condition:

∂u

∂−→n
(x) = 0;

3. Cauchy condition:

∂u

∂−→n
(x) + α(x)u(x) = γ(x),

where −→n is the outward-pointing unit vector normal to the boundary surface ∂Ω.

2.2 Finite difference discretization

A popular method for the discretization of PDEs is the finite difference method, which

is based on local approximations of the partial derivatives derived from Taylor series

expansions. In this subsection, we briefly review a few finite difference schemes.

8

We first consider the one-dimensional problem with Dirichlet boundary condition:

−u′′(x) = f(x), x ∈ (0, 1)

u(0) = u(1) = 0 (2.1)

with one space variable x on the interval (0, 1). The first derivative of the function u

at the point x can be approximated by the function values at points that are closed

to x (i.e., x+ δx and x− δx) via the following approximation formulae,

• Forward difference:

(
du

dx
)(x) ≈ u(x+ δx)− u(x)

δx
, (2.2)

• Backward difference:

(
du

dx
)(x) ≈ u(x)− u(x− δx)

δx
, (2.3)

• Centered difference

(
du

dx
)(x) ≈ u(x+ δx)− u(x− δx)

2δx
. (2.4)

Similarly, the second derivative of u can be approximated by the following centered

difference formula:

(
d2u

dx2
)(x) ≈ u(x+ δx)− 2u(x) + u(x− δx)

(δx)2
.

If the difference δx is small enough, the approximations of the derivatives are close

to the ground truth values. It can be shown that forward difference scheme (2.2)

and backward difference scheme (2.3) are first order accurate whose errors are O(δx)

while centered difference scheme is second order accurate whose error is O((δx)2).

9

When solving the Equation (2.1) numerically, one usually seeks to approximate

the solution at a set of discrete points (known as mesh points) in the solution domain.

For example, a common discretization for the one-dimensional problem is to discretize

the interval (0, 1) uniformly with constant mesh size h which results in (n+2) points

with

xi = ih, i = 0, . . . , n+ 1,

so that x0 = 0, xn+1 = 1, and n = 1
h
− 1. From now on, we use ũi to denote the

approximate value of u at xi, i.e., ũi ≈ u(xi), and fi to denote f(xi).

When the centered difference formula is used to approximate the second derivative

in Equation (2.1), the ũi’s at three consecutive mesh points satisfy the following

equation:

−ũi−1 + 2ũi − ũi+1 = h2fi.

Since ũ0 and ũn+1 are determined by the boundary condition and are zero in this case,

the rest approximations at the n points can be obtained by solving the following linear

system

Aũ = f,

where

A ∈ Rn×n =
1

h2



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. 0

...
. . . −1 2 −1

0 · · · 0 −1 2


, ũ =



ũ1

ũ2

...

ũn


, and f =



f(x1)

f(x2)

...

f(xn)


.

The coefficients describing the relationships between the values of function u at

different grid points can be represented concisely with stencils. The corresponding

stencil of the above linear system is given in Figure 2.1. Note that stencils usually

10

represent the non-zero entries of each row in the coefficient matrix A except for the

rows that correspond to the boundary points.

Figure 2.1: The 3-point stencil of second derivative approximation using centered
difference formula

The two-dimensional Possion’s equation with the Dirichlet boundary condition

has the form:

−(
∂2u

∂x2
1

+
∂2u

∂x2
2

) = f(x1, x2), (x1, x2) ∈ Ω = (0, 1)× (0, 1)

u(x1, x2) = 0, (x1, x2) ∈ ∂Ω, (2.5)

where two space variables x1 and x2 are defined on a domain Ω.

Suppose the same mesh size h is used along both directions to discretize the

problem and the centered difference formula is applied to approximate second order

derivatives ∂2

∂x21
and ∂2

∂x22
. Let ũi,j denote the approximate value of u(x1i, x2j) and

fi,j = f(x1i, x2j), where

x1i = ih, x2j = jh, for i, j = 0, . . . , n+ 1,

with n = 1
h
− 1. Then the ũi.j’s at consecutive mesh points satisfy the following

equations:

ũ0,j = ũn+1,j = ũi,0 = ũi,n+1 = 0 , for i, j = 0, . . . n+ 1

−(ũi+1,j + ũi,j+1 − 4ũi,j + ũi,j−1 + ũi−1,j) = h2fi,j , for i, j = 1, . . . n.

11

This relationship can be represented with the following linear system:

Aũ = f, (2.6)

where

A =
1

h2



B −I 0 · · · 0

−I B −I
. . .

...

0
. 0

...
. . . −I B −I

0 · · · 0 −I B


,

with B and I ∈ Rn×n, and

B =



4 −1 0 · · · 0

−1 4 −1
. . .

...

0
. 0

...
. . . −1 4 −1

0 · · · 0 −1 4


.

The above linear system corresponds to the 5-point stencils given in Figure 2.2.

Figure 2.2: Left: the standard five-point stencil Right: the skewed five-point stencil

12

Chapter 3

Iterative methods for PDEs

In this chapter, we review several iterative methods for solving linear systems that

arise in the discretization of PDEs. We start with the introduction of some basic iter-

ative methods, namely, relaxation methods (Section 3.1), polynomial based methods

(Section 3.2), and GMRES (Section 3.3). Their convergence properties are also intro-

duced. We then describe multigrid methods in Section 3.4, which are the main focus

of this thesis. Convergence theories of multigrid methods will also be discussed in de-

tail as they provide the theoretical guidance for the design of the efficient algorithms

proposed in this thesis.

3.1 Relaxation methods

In this section, we review the relaxation methods for solving the linear system

Au = f, (3.1)

where A ∈ Rn×n is symmetric positive definite (SPD) and u, f ∈ Rn. Iterative

methods generate a sequence of improving approximations to the solution of (3.1),

in which the approximate solution uk at iteration k depends on the previous ones.

13

Formally, an iterative solver can be expressed as:

uk = Φ(u0, f, k), (3.2)

where the solver Φ : Rn × Rn × Z → Rn is an operator that takes the initial guess

u0, right-hand side vector f and generates uk at iteration k. Iterations based on

relaxation schemes can be written as

uk+1 = (I −M−1A)uk +M−1f

= Guk +M−1f, G = I −M−1A, (3.3)

where M is the relaxation matrix and G is the iteration matrix.

Consider the splitting of A so that A = D + L+ U , where

D =



a11 0 · · · 0

0 a22 · · · 0

...
. . .

...

0 0 · · · ann


, and L+ U =



0 a12 · · · a1n

a21 0 · · · a2n
...

. . .
...

an1 an2 · · · 0


.

Standard relaxation approaches include the weighted Jacobi method which follows

M = ω−1D,

where D is the diagonal component of A and ω is a weight between 0 and 1, and the

Gauss-Seidel method, for which

M = D − L,

where L is the strict lower triangular part of A.

14

Consider the discretization of Poisson’s equation (2.5) with the standard five point

stencil shown in Figure 2.2 on a regular grid. The iteration matrix G of the weighted

Jacobi method and Gauss-Seidel method in this case both correspond to the following

stencil: 
ω
4

ω
4

ω
4

ω
4

 .

However, weighted Jacobi method applies the stencil simultaneously for each grid

point and therefore can be implemented in parallel while Gauss-Seidel method applies

this stencil sequentially. This is because the point is updated using the updated values

of the processed points in Gauss-Seidel method and therefore Gauss-Seidel has less

parallel efficiency than Jacobi.

Denoting by ek = u∗ − uk the error at iteration k, where u∗ is the exact solution

of (3.1), it follows that ek = Gke0. Theorem 3.1.1 gives a general convergence result

for limk→∞ ek = 0.

Theorem 3.1.1 ([44, Theorem 4.1]). Denote by ρ(G) the spectral radius of G. The

iteration (3.3) converges for any initial vector u0 if and only if ρ(G) < 1.

In particular, the weighted Jacobi method converges if

0 < ω < 2/ρ(D−1A).

Notice that ρ(G) represents the asymptotic convergence rate, which, however,

does not predict error reduction for a few iterations [15] in general. When relaxation

methods are used as multigrid smoothers, they are typically applied O(1) times in

each smoothing step. Thus, a class of relaxation methods called convergent smoothers

are often used in multigrid methods in order to guarantee a fast convergence.

Definition (Convergent smoother in energy norm). Assuming A is SPD, relaxation

15

matrix M is called a convergent smoother in the energy norm if ∥Gek∥A < ∥ek∥A,∀ek,

where G = I −M−1A and ∥x∥2A = xTAx.

Theorem 3.1.2 shows sufficient and necessary conditions for having a convergent

smoother M in the energy norm and 2-norm.

Theorem 3.1.2. Assuming A is SPD, each step of iteration (3.3) is convergent in

the energy norm, i.e., ∥ek+1∥A = ∥Gek∥A < ∥ek∥A, if and only if M+MT−A is SPD.

Each step of iteration (3.3) is convergent in the 2-norm, i.e., ∥ek+1∥2 = ∥Gek∥2 <

∥ek∥2, for any ek, if and only if A−1M +MTA−1 − I is SPD.

Since ρ(G) is easier to compute than ∥G∥A and ρ(G) < 1 is a necessary condition

for both asymptotic convergence and single-iteration convergence, ρ(G) is still often

used as a metric of convergence rate of smoothers.

Though relaxation schemes can have very slow convergence when being used as a

solver for a certain class of PDE problems (e.g. elliptical PDEs), they are known to

be very efficient for smoothing the error. That is, after a few iterations, the remaining

error varies slowly relative to the mesh grid, and thus can be approximated well on a

coarser grid. This property is explored in multigrid methods as discussed in Section

3.4.

3.2 Polynomial based methods

In this section we review the polynomial based methods for solving linear systems

Au = f,

where A is a matrix of size n× n. The solution u can be approximated by

A−1f ≈ pm(A)f

16

where pm is a polynomial of degree m.

When the coefficient matrix A is SPD, the polynomial pm can be constructed by

solving the following optimization problem:

min
p

max
λ∈σ(A)

|1− λp(λ)|,

where σ(A) is the spectrum of A. The above optimization problem requires knowing

all the eigenvalues of A, which is unrealistic for most applications. Therefore, a more

viable approach is to solve the above optimization problem on a continuous interval

(a, b) that contains the spectrum of A. This leads to the following optimization

problem:

min
s

max
λ∈(a,b)

|1− λp(λ)|. (3.4)

The solution to (3.4) is the polynomial

Tk =
1

σk
Ck(

b+ a− 2t

b− a
), (3.5)

with

σk = Ck(
b+ a

b− a
),

where Ck is the Chebyshev polynomial of the first kind of degree k defined as

Ck(t) = cos [k cos−1 (t)], for − 1 ≤ t ≤ 1.

Chebyshev polynomials of the first kind can be efficiently computed through three

term recurrence. Letting θ = a+b
2

and δ = b−a
2
, the solution (3.5) to the equation

17

(3.4) can be computed as

ρk =
1

2σ1 − ρk−1

,

Tk+1(t) = ρk[2(σ1 −
t

δ
)Tk(t)− ρk−1Tk−1(t)], k ≥ 1

with initial conditions:

σ1 =
θ

δ
, σ0 = 1, T1(t) = 1− t

θ
, T0(t) = 1.

Since the Chebyshev polynomial approximation pm(A) does not require the com-

putation of inner products when being applied to vectors, they can be efficiently im-

plemented on modern heterogeneous computing architectures. The drawbacks of this

polynomial approximation is that their performance is very sensitive to the estimation

of the spectrum and might have very undesirable performance if hyperparameters are

not chosen correctly.

3.3 GMRES

When the coefficient matrix A is nonsymmetric or indefinite, Generalized Minimum

Residual Method (GMRES) method [46] is a popular method for solving the corre-

sponding linear system. Given an initial guess u0, GMRES first computes the initial

residual r0 = f − Au0. Let v = r0
∥r0∥ . At the mth iteration, GMRES computes an

approximation

um ∈ u0 +Km(A, v),

which minimizes

L(y) = ∥f − Au∥2 = ∥f − A(u0 + Vmy)∥2

18

over the Krylov subspace

Km(A, v) ≡ span{v, Av,A2v, . . . , Am−1v}.

Here

Vm = [v0, v1, . . . , vm−1]

denotes the orthonormal basis of the Krylov subspace Km.

Since the approximate solution um returned by GMRES can be written as u =

u0+pm(A)v for some polynomial pm, this shows that GMRES also implicitly defines a

polynomial approximation for A−1. Both Chebyshev polynomial and GMRES can be

used as efficient smoothers in multigrid methods for solving large scale linear systems

that are discretized from PDEs.

3.4 Multigrid methods

Multigrid methods exploit a hierarchy of grids with exponentially decreasing numbers

of degrees of freedom on coarser levels to speed up the convergence of simple iterative

methods. Since the computational cost is proportional to the problem size on each

level, the overall complexity of multigrid methods can be kept linear for solving certain

elliptic PDEs.

Smoothing and coarse-grid correction are the two main components of multi-

grid, which are designed to be complementary to each other in order to achieve fast

convergence, i.e., they aim at eliminating “high-frequency” (oscillatory) and “low-

frequency” (smooth) errors respectively, where high- and low-frequency errors usually

correspond to eigenvectors of M−1A with large and small eigenvalues. Relaxation-

based approaches such as weighted Jacobi and Gauss-Seidel are typical choices of

multigrid smoothers because these methods are inexpensive to apply and can ef-

19

fectively remove high-frequency errors for elliptic type PDEs. On the other hand,

coarse-grid correction on low-frequency errors is effective since smooth errors can be

interpolated accurately. For instance, interpolation operators in standard AMG can

interpolate constant vectors exactly, and methods like smooth aggregation AMG con-

struct interpolation matrices from the smoothed errors directly. When dealing with

hard problems such as those with irregular anisotropy, anisotropy not aligned along

the coordinate axes, or complex geometries, efficiency of traditional smoothers can

deteriorate, in which cases, stronger and often more expensive smoothers are needed

such as block smoothers [8, 21], ILU-based smoothers [59], hierarchical matrix based

smoothers [16,20] and smoothers based on Krylov methods [3,35]. Nevertheless, find-

ing robust and efficient smoothers still remains a challenging problem for multigrid.

There are many different ways to construct multigrid mesh hierarchy, depending

on specific problems. Taking the full coarsening scheme as an example, which is

illustrated in Figure 3.1 for 2D grids. Given a fine level grid, the coarse level grid

is constructed by selecting the black grid points with equal space on both x and y

dimension, the rest red grid points will be coarsened and the value will be aggregated

to the black points. The mesh size on the coarse level grid is doubled and the problem

size of the linear system is reduced by a factor of four.

Next, we review the basic ingredients in multigrid methods and relevant conver-

gence theories [44].

3.4.1 Prolongation

A prolongation operator takes a vector on the coarse level grid ΩH with mesh size H

and transforms it to a vector on the fine grid Ωh with a smaller mesh size h. One

common idea to define a prolongation operator is through linear interpolation:

IhH : ΩH → Ωh.

20

Fine Level Coarse level
Figure 3.1: Full coarsening. The fine points are red and coarse points are black. Full
weighting restriction is shown by the arrows to the coarse point at the center.

We first consider the one-dimensional case where we have n+ 2 discretization points

x0, x1, . . . , xn+1 that are equally spaced on the fine grid where x0 and xn+1 are two

boundary points and the mesh size is h. Assume n is odd so that the coarse grid

points are x0, x2, . . . , xn−1, xn+1 with mesh size 2h. Then, given a coarse grid vector

(v2hi)i=0,...,(n+1)/2 ∈ Ω2h, the fine grid vector vh = Ih2hv
2h in Ωh constructed by the

prolongation operator can be defined as follows:

 vh2j = v2hj

vh2j+1 = (v2hj + v2hj+1)/2

 j = 0, . . . ,
n+ 1

2
. (3.6)

21

The prolongation can also be written in the following matrix vector multiplication:

vh =
1

2



1

2

1 1

2

1 1

...

...

1 1

2

1



v2h.

The two dimensional case is similar, and the specific grid points can be written

as the following:



vh2i,2j = v2hij ,

vh2i+1,2j = (v2hij + v2hi+1,j)/2,

vh2i,2j+1 = (v2hij + v2hi,j+1)/2,

vh2i+1,2j+1 = (v2hij + v2hi+1,j + v2hi,j+1 + v2hi+1,j+1)/4.


,

for i = 0, . . . , n+1
2

and j = 0, . . . , m+1
2

. In 2D, the prolongation operator can be

defined as a tensor product of two one dimensional prolongation operators:

Ih2h = Ihy,2h
⊗

Ihx,2h,

where Ihx,2h denotes the prolongation in the x direction only and Ihy,2h denotes the

prolongation in the y direction only.

Similar to a finite-difference discretized linear system, the above interpolation

22

operators can also be equivalently expressed using stencils, i.e., the prolongation

stencil in 1D is:]
1
2

1 1
2

[
,

while the prolongation stencil in 2D is

1

4


1 2 1

2 4 2

1 2 1

 .

Note that the notation][means the operators should be interpreted as fan-out oper-

ations rather than fan-in.

3.4.2 Restriction

The restriction operation IHh is the inverse of prolongation, which maps a fine grid

vector vh ∈ Ωh to a coarse grid vector vH ∈ ΩH :

IHh : Ωh → ΩH .

Using the same grids as before with mesh sizes H = 2h, the restriction operator in

the one dimensional case can be written as the following matrix:

vH =
1

4



1 2 1

1 2 1

1 2 1

.

1 2 1


v2h.

23

In particular,

Ih2h = 2(I2hh)T .

The corresponding restriction stencil can be written as:

1

4

[
1 2 1

]
,

where the closed bracket means that the stencil should be interpreted as fan-in oper-

ation.

Similarly, in the two dimensional case, the restriction stencil can be written as:

1

16


1 2 1

2 4 2

1 2 1

 .

The 2D prolongation operator and the 2D restriction operator satisfy the following

relationship:

Ih2h = 4(I2hh)T .

Theorem 3.4.1 shows that the problem is defined by a 3× 3 stencil on the finest

grid, then, when using full coarsening with linear interpolation, the size of the stencils

in multigrid hierarchy will remain identical.

Theorem 3.4.1. If the stencil of the restriction operator R is 1
16


1 2 1

2 4 2

1 2 1

 and the

prolongation operator P = 4RT , and if the stencil on the fine level is


a1 a2 a3

a4 a5 a6

a7 a8 a9

,

24

then the stencil on the coarse level is
w1 w2 w3

w4 w5 w6

w7 w8 w9

 ,

where Please check the statement. you have coarse level twice no fine level.

w1 = 1/4a1 + 1/16a2 + 1/16a4 + 1/64a5,

w2 = 1/4a1 + 6/16a2 + 1/4a3 + 1/16a4 + 3/32a5 + 1/16a6,

w3 = 1/16a2 + 1/4a3 + 1/64a5 + 1/16a6,

w4 = 1/4a1 + 1/16a2 + 6/16a4 + 3/32a5 + 1/4a7 + 1/16a8,

w5 = 1/4a1 + 6/16a2 + 1/4a3 + 6/16a4 + 9/16a5 + 6/16a6 + 1/4a7 + 6/16a8 + 1/4a9,

w6 = 1/16a2 + 1/4a3 + 3/32a5 + 6/16a6 + 1/16a8 + 1/4a9,

w7 = 1/16a3 + 1/64a5 + 1/4a7 + 1/16a8,

w8 = 1/16a4 + 3/32a5 + 1/16a6 + 1/4a7 + 6/16a8 + 1/4a9,

w9 = 1/64a5 + 1/16a6 + 1/16a8 + 1/4a9.

level = 0 level = 1 level = 2
Figure 3.2: Red-black coarsening. The fine points are red and coarse points are black.

25

To show that our method is not restricted to a certain coarsening scheme, in this

thesis we also consider the red-black coarsening scheme that has a coarsening factor

about 2 shown in Figure 3.2 for the first 3 levels. Note that the coarsening on level 0

is essentially a semi-coarsening along the 45◦ angle, and on level 1, the coarsening is

performed on the 45◦-rotated meshes, which generates the grid on level 2 that amounts

to a semi-coarsening along the y-dimension. The restriction and interpolation stencils

used associated with this coarsening are given by (see [44])

1

8


1

1 4 1

1

 and
1

4


1

1 4 1

1

 .

3.4.3 Multigrid

Consider the discretized linear system

Au = f (3.7)

from the one dimensional Poisson’s equation, where

A =



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. 0

...
. . . −1 2 −1

0 · · · 0 −1 2


∈ Rn×n.

Let u be a vector whose components are sin θ, sin 2θ, . . . , sinnθ. Then matrix A

satisfies

Au = sin ((n+ 1)θ)qn + 2(1− cos θ)u,

26

where qn has 1 at the last entry and 0 elsewhere. Note that for θk = kπ
n+1

, we have

sin (n+ 1)θ = 0 for any integer k. So the eigenvalues of A are

λk = 2(1− cos θk) = 4 sin2 θk
2

with corresponding eigenvectors:

vk =



sin θk

sin 2θk
...

sinnθk


.

We now discuss the ability of smoothers to smooth errors in detail and show why

they are important in multigrid methods. Take weighted Jacobi as an example, the

relaxation step can be written as

uk+1 = (I − ωD−1A)uk + ωD−1f.

Note that for the problem considered (3.7), the diagonal matrix is in fact D = 2I.

Therefore, we can simply denote ωD−1A by ω
2
A, so the iteration matrix can be written

as:

Sω = I − ω

2
A.

Then, the eigenvalues of Sω are 1 − ω
2
λk where λk are the eigenvalues of A. Denote

the ground truth solution by u∗, then the error of the approximation at j step of the

relaxation method, denote by ej ≡ u∗ − uj, satisfies

ej = Sjωe0. (3.8)

Let’s expand the initial error vector e0 using the eigenbasis of the iteration matrix Sω

27

and coefficients ηi so that

e0 =
n∑
i=1

ηivi. (3.9)

By (3.8) and (3.9), we have

ej =
n∑
i=1

(1− ω

2
λi)

jηivi (3.10)

=
n∑
i=1

(1− 2ω sin2 iπ

2(n+ 1)
)jηivi.

From (3.10) we can see that the convergence speed is not similar for all components.

The corresponding error reduction of each component depends on the magnitude of

the eigenvalues. The components corresponding to large eigenvalues, with i > n
2
,

converge faster than the components corresponds to small eigenvalues to 0. These

components are called high frequency components and the part of the error is called

the oscillatory part because of trigonometric properties.

The relaxation methods can rapidly reduce the oscillatory part of the error corre-

sponding to the high frequency components, but they may have slow progress for the

remaining low frequency components. Multigrid methods favor the smoothing abil-

ity of relaxation methods and use them as “smoothers” to smooth the errors. The

smoothed error is then injected to a coarse grid and can be reduced further.

Now consider the fine grid Ωh, where the points on the fine grid are xhi = i ∗ h

for i = 1, . . . n + 2 with h = 1
n+1

, and n is odd. Consider the coarse grid Ω2h, where

the discretization points are x2h
i = i ∗ 2h, i = 1, . . . n+3

2
. Base on the simple fact that

x2h
i = xh2i, the components on the grids follow the following relationship:

vhk (x
h
2i) = sin (kπxh2i) = sin (kπx2h

i) = v2hk (x2h
i).

Some of the low frequency components on the fine grid become high frequency on

the coarse grid, for example, the component vhn+3
2

become the highest component

28

on the coarse grid. The error corresponding to those components can therefore be

eliminated on the coarse grid by smoothers. In fact, multigrid requires going back

and forth through the grids to obtain an accurate solution at the end.

Convergence theory of two-grid (TG) methods has been well studied [10,12,23,60]

through the error propagation operator ETG of the form:

ETG = (I −M−1A)(I − P (PTAP)−1PTA), (3.11)

where M is the smoother, P ∈ Rn×nc is the prolongation operator, PT is typically

used as the restriction operator for symmetric problems, and PTAP is the Galerkin

coarse-grid operator. In general, smaller ∥ETG∥A indicates faster convergence for

two-grid methods on Ran(P)⊥A and has the kernel space Ran(P).

In this thesis, we choose standard prolongation operators P (see [44]), and focus

on smoothers in Chapter 4 and coarse grid operators in Chapter 5. Theorem 3.4.2

summarizes the main convergence result in [23] with respect to M and P .

Theorem 3.4.2 ([23]). Assuming MT +M − A is SPD, denote M̃ by

M̃ = MT(MT +M − A)−1M, (3.12)

which is the symmetrized smoother. Let R ∈ Rnc×n be any matrix such that RP = I

and

K = max
e ̸=0

∥(I − PR)e∥2
M̃

∥e∥2A
. (3.13)

We have K ≥ 1 and ∥ETG∥A ≤ (1− 1/K)1/2 .

The quantity K in (3.13), which is the so-called weak approximation property [11],

essentially measures how accurately interpolation approximates the eigenvectors of

M−1A proportional to the corresponding eigenvalues.

Notice that compared with relaxation matrix in (3.3), efficient smoothers M in

29

(3.11) only need to eliminate errors that are A-orthogonal to Ran(P), which corre-

spond to high-frequency errors, in order to have fast convergence.

Theorem 3.4.3 ([23, Theorem 3.1]). Let R be any matrix such that RP = I and

S ∈ Rn×nf such that RS = 0, and define

K∗ = min
P

max
e ̸=0

∥(I − PR)e∥2
M̃

∥e∥2A
.

The minimum K∗ is given by

K∗ =
1

λmin((STM̃S)−1(STAS))
, (3.14)

and the corresponding minimizer is

P∗ = (I − S(STAS)−1STA)RT. (3.15)

Interpolation P∗ in (3.15) is often referred to as the ideal interpolation operator.

Note that in practice it is typically too expensive to use P∗, since (S
TAS)−1 is gener-

ally not sparse. However, it is still reasonable to use K∗ to analyze the convergence

of the smoothers. Theorem 3.4.4 gives a bound of the constant K when P ̸= P∗.

Theorem 3.4.4 ([23, Theorem 4.2]). Assuming ∥PR∥2A < η, K is as defined in

(3.13) and K∗ in (3.14), we have

K ≤ ηK∗ . (3.16)

The importance implification of Theorem 3.4.4 is that neither P∗ nor η depends

on M (whereas K∗ does), which implies that the procedure of developing smoothers

can be done independently from selecting coarse grids and computing interpolation

operators.

30

The optimal K yields an ideal uniform bound of convergence rate, which is often

used to analyze convergence rate of smoothers in two-grid methods [2], which can be

computed explicitly.

Definition (Ideal uniform bound of convergence rate). Suppose P takes the form of

P = (WI) as in standard multigrid algorithms. Let R =

(
0 I

)
and ST =

(
I 0

)
.

we define quantity β∗ such that

β2
∗ = (1− 1/K∗) = [1− λmin((S

TM̃S)−1(STAS))], (3.17)

which can be considered as the ideal uniform bound of convergence rate [23]. This

quantity is often used to analyze convergence rate of smoothers in two-grid methods

[2].

In Section 4.4, we will use (3.4.3) to measure the convergence rate of two-grid

methods with the proposed smoothers.

Extension from two-grid methods to multigrid methods is straightforward. This

can be done by recursively applying two-grid methods on the coarse-grid system, see

Algorithm 1 for a brief description of standard multigrid V-cycle. An illustration is

given in Figure 3.3. Notice that the smoother M (l) at level l is only required to elim-

inate errors that are A(l)-orthogonal to Ran(P (l)) in order to have fast convergence.

This property will be used to design efficient training strategies for learning neural

smoothers in Chapter 4.

31

Figure 3.3: Graph illustration of Multigrid V-cycle

Algorithm 1 Multigrid V-cycle for solving Au = f

1: Input: Linear system Au = f with initial guess u0. Multigrid hierarchy: for each
level l, coefficient matrix A(l), approximation u(l), right-hand side f (l), smoother
M (l) and prolongation matrix P (l), where A(0) = A, f (0) = f and u(0) = u0

2: Output: The approximated solution uk after k steps of multigrid V-cycle
3: Pre-smoothing: u(l) = u(l) + (M (l))−1(f (l) − A(l)u(l))
4: Compute fine-level residual: r(l) = f (l)−A(l)u(l), and restrict it to the coarse level:

r(l+1) = (P (l))Tr(l)

5: if l + 1 is the last level then
6: Solve A(l+1)u(l+1) = r(l+1)

7: else
8: Call multigrid V-cycle recursively with l = l + 1, f (l+1) = r(l+1) and u(l+1) = 0
9: end if
10: Prolongate the coarse-level approximation and correct the fine-level approxima-

tion: u(l) = u(l) + P (l)u(l+1)

11: Post-smoothing: u(l) = u(l) + (M (l))−1(f (l) − A(l)u(l))

The multigrid V-cycle iteration can also be regarded as the following updating

step:

uk+1 = MG(ℓ)uk, (3.18)

where we refer MG(ℓ) as the multigrid iteration matrix with ℓ+ 1 levels.

32

Starting with MG(0) = (A(0))−1 where A(0) is the problem matrix at the coarsest

level. The iteration matrix MG(ℓ) of multigrid V-cycle with ℓ + 1 levels can be

computed by the following recursion:

I(ℓ) −MG(ℓ)A(ℓ) = S(ℓ)(I(ℓ) − P (ℓ)MG(ℓ−1)R(ℓ)A(ℓ))S(ℓ), ℓ = 1, . . . , n,

where A(ℓ) is the problem matrix at ℓth level, S(ℓ) is the smoothing matrix, P (ℓ) is the

prolongation matrix and R(ℓ) is the restriction matrix. The error propagation matrix

can be written as E = I − M (ℓ)A(ℓ), then the updating scheme (3.18) converges if

ρ(E) < 1.

3.5 Relationship between PDEs and CNNs

Convolutional neural networks (CNNs) is constructed with convolutional layers, and

have been widely used in the application of image processing. Each convolutional layer

is constructed by the shared-weight architecture of convolution kernels. Convolutions

have close relationship with PDEs. In fact, many operations in PDEs can be written

as convolutions.

Let the filter be W ∈ RF×F×d = [wi,j,k] and the feature matrix be H ∈ RL×B×d =

[hi,j,k]. Then the general form for convolution with stride S is defined as [1]:

hijp =
F∑
r=1

F∑
s=1

d∑
k=1

wrskhi+r−1,j+s−1,k, (3.19)

for i = 1, 1+S, 1+2S, . . . , L−F +1, j = 1, 1+S, 1+2S, . . . , B−F +1, p = 1, . . . , d.

CNNs are well-known as shift-invariant or space-invariant neural networks, which

can efficiently aggregate local information. Some PDEs like Poisson’s equation also

consider local information because of the physical properties. Therefore, it is natural

33

to relate PDEs with CNNs. In fact, the operations involving stencils described above

in Chapter 2 can be equivalently written as convolution operations.

The linear system of a discretized PDE can be written as convolution with stride

1:

A ∗ u = f,

where A is the stencil, u ∈ Rn×n and f ∈ Rn×n. The restriction operator can be

written as convolution with stride 2 as shown in Figure 3.4.

2 5 1 2 3 1 6
4 1 2 1 1 4 2
1 6 1 3 5 1 0
0 3 1 1 0 6 1
1 4 2 3 3 4 1
6 5 3 2 1 0 4
1 1 5 1 4 6 3

0 1 0
1 0 1
0 1 0

17 8 5
11 7 6
14 8 15

5

14

Figure 3.4: An example of convolving a 7× 7 matrix by a 3× 3 kernel with stride of
2.

34

Chapter 4

Learning deep neural smoothers

As we can see from the analysis described in Chapter 3, the convergence of multigrid

V-cycle heavily depends on the choice of smoothers. Classical off-the-shelf smoothers

such as weighted Jacobi or Gauss-Seidel exhibit near-optimal performance on simple

Poisson equations and generally lose their efficiency on other types of PDEs. The de-

sign of smoothers for a certain type of PDEs is often problem-dependent and requires

expert knowledge. In this chapter, we propose an adaptive framework for learning

smoothers for both constant coefficient PDEs (Section 4.1) and variable coefficient

PDEs (Section 4.3). We use the same learning framework discussed in Section 4.1.2

for both types of PDEs. The construction of the neural smoothers is different because

of the nature of the problems. We train a single neural network to parameterize the

action of the inverse of the smoother at a given grid level for constant coefficient

PDEs discretized on structured meshes in Section 4.1.1. The learned smoothers are

represented as a sequence of convolutional layers. The interpretation of the learned

smoothers is described in Section 4.2. In Section 4.3, instead of directly parameteriz-

ing the smoothers using neural networks as in constant coefficient case, we train neural

networks which generate the weights of the smoothers in the variable coefficient case.

Numerical experiments for both constant coefficient problems and variable coefficients

35

problems are describe in Section 4.4. Concluding remarks are given in Section 4.5.

4.1 Learning deep neural smoothers for constant

coefficient PDEs

4.1.1 Formulation

We define a PDE problem as the combination of PDE class A, forcing term F and

boundary condition G. To solve the problem numerically on a 2-D square domain,

we discretize it on a regular grid of size N ×N , which leads to solving linear system

Au = f where A ∈ RN2×N2
and f ∈ RN2

. Our goal is to train neural smoothers

M (0), . . . ,M (L−1) on the first L levels of a multigrid solver that has L + 1 levels.

Without loss of generality, we assume that the multigrid solver uses the same smoother

for both the pre-smoothing and post-smoothing steps (c.f., lines 1 and 9 in Algorithm

1, respectively), and uses direct methods (e.g.LU decomposition) as the coarsest-level

solver. Denoting by Φ(0) the multigrid hierarchy from level 0, the training objective

for Φ(0) is to minimize the error

∥Φ(0)(u0, f, k)− u∗∥2, (4.1)

where u0 is a given initial guess, u∗ is the exact solution, and uk = Φ(0)(u0, f, k) is

the approximate solution by performing k steps of multigrid V-cycles with Φ(0).

Although multigrid convergence theories depend on the spectral properties of the

associated iteration matrix, it has been shown in [55] that backpropagation through

eigendecomposition is unstable. Therefore, we instead minimize the loss (4.1) since it

can be evaluated and optimized more efficiently. For example, in two-grid methods,

Φ(0)(u0, f, k)− u∗ = Ek
TGe0

36

for each exact solution u∗ and an arbitrary initial guess u0. When multiple initial

guesses are used to minimize (4.1) jointly with different iteration number k, the con-

vergence property of the trained smoother can be justified by the following theorem,

which shows that when the loss of (4.1) is small, the norm of the associated two-grid

operator, ETG, should also be small. It is easy to see that this property also holds

true for multigrid operators.

Theorem 4.1.1 ([26]). For any matrix X ∈ Rn×n and z ∈ Rn that is uniformly

distributed on unit n-sphere, we have

E(n∥Xz∥22) = ∥X∥2F .

In this thesis, we fix the PDE class A but vary the forcing term F and the

boundary condition G, and learn multigrid smoothers that are appropriate for different

PDEs from the same class. Specifically, we train the multigrid solvers on a small set

of discretized problems

D =

Q⋃
j=1

{A, fj, (u0)j, (u∗)j} (4.2)

with the presumption that the learned smoothers have good generalization properties:

they can perform well on problems with much larger grids of different geometries.

As a motivating example, we consider the following diffusion problem:

−∇ · (g∇u(x, y)) = f(x, y), (4.3)

where g is assumed to be constant in this section. We will consider the more general

form g(x, y) in the next section.

Since the stencils for discretizing (4.3) would be identical for constant g on struc-

tured meshes, the dynamics of the problems are spatial invariant and independent

of the specific location in the domain. Thus, we can parameterize the action of in-

37

verse of the smoother (M (l))−1 by one single convolutional neural network, H(l), with

only convolutional layers. This parameterization has several advantages. First, on

an N × N grid, H(l) only requires O(N2) computation and has a few parameters.

Second, H(l) can be readily applied to problems defined on different grid sizes or

geometries. Lastly, which is more important, Theorem 4.1.2 justifies the use of this

parameterization to construct convergent smoothers.

Theorem 4.1.2. For one fixed matrix A, there exists a finite sequence of convolution

kernels {ω(j)}Jj=1 such that the convolutional factorization H = ω(J) ∗ . . . ω(2) ∗ ω(1)

satisfies ∥I −HA∥A < 1 indicating H is a convergent smoother.

Proof. Based on the universality property of deep convolutional neural networks with-

out fully connected layers [62], we know that H can approximate the linear operator

A−1 to an arbitrary accuracy measured by some norms when J is large enough. Thus,

theoretically, HA can be very close to an identity mapping if parameterized properly.

Since all matrix norms are continuous and equivalent, ∥I −HA∥A can be less than 1

for certain J measured in matrix A-norm.

4.1.2 Training and generalization

In this section, we propose several strategies for training multigrid solvers using CNNs

as smoothers. We will also discuss their advantages and disadvantages.

The first training strategy is to train H(l) separately for each multigrid level

ℓ = 0, . . . , L− 1, where we construct a training set D(l) similar to (4.2) for the op-

erator A(l). That is, we train H(l) to make iteration (3.3) convergent by minimizing

the error between the approximate solution obtained at iteration k and the ground

truth solution. In particular, on each level ℓ of the multigrid hierarchy, we construct

38

an individual training set

D(ℓ) =

Q⋃
j=1

{tj}, t
(ℓ)
j = {A(ℓ), f

(ℓ)
j , (u

(ℓ)
0)j, (u

(ℓ)
∗)j},

and we minimize the following loss function:

∑
t
(ℓ)
j ∈D(ℓ),k∼U(1,b)

∥Ψ(ℓ)((u
(ℓ)
0)j, f

(ℓ)
j , k)− (u(ℓ)

∗)j∥2

where we consider the smoother

Ψ(ℓ)(u(ℓ), f (ℓ), 1) = u(ℓ) +H(ℓ)(f (ℓ) − A(ℓ)u(ℓ))

as the solver on this level. As suggested in [31], we also choose different iteration

number k, 1 ≤ k ≤ b in the training, so that H(ℓ) learns to converge at each iteration,

where larger b mimics the behavior of solving problems to higher accuracy while

smaller b mimics inexpensive smoothing steps in multigrid.

This training strategy is straightforward and the loss function is not complicated

to optimize. The trainings on different levels are totally independent and therefore

can be done efficiently in parallel. However, we found that the obtained H(ℓ) usually

do not exhibit good smoothing property of reducing high-frequency errors, especially

when H(ℓ) is a shallow neural network. This phenomenon is expected since the train-

ing strategy does not consider the underneath coarser-grid hierarchy and tries to

reduce errors over the whole spectrum of A(ℓ). In contrast, a well-trained H(ℓ) with

high complexities, deeper in the layers and larger in the convolution kernels, can ap-

proximate the action of the inverse of A(ℓ) well, but using it as a smoother is not

efficient nonetheless, and moreover, the training cost will be significantly higher. We

denote the smoothers learned by this strategy by CNN smoothers.

A second training approach is to optimize the objective function (4.1) directly over

39

M (ℓ) at all levels, ℓ = 0, . . . , L− 1. This approach targets at optimizing convergence

of the overall multigrid V-cycles and considers both the smoothing and the coarse-

grid correction. Since the entire multigrid hierarchy is considered during training, the

trained smoothers should have desired smoothing property if the global minimum of

the loss function is found. However, training the CNNs at all levels together turns

out to be prohibitively expensive. Since this approach is not robust and stable in

practice, we exclude this approach in the experiments.

To overcome the weakness of the previous two approaches, we propose an efficient

adaptive training strategy that can impose the smoothing property during training.

Instead of treating the smoothers as solvers to decrease the error at each level, for a

fixed coarsest level, we use the multigrid solver starting at the corresponding level in

the loss function.

This is done in a reverse order. The training process starts from the second coars-

est level and is repeatedly applied to the finer levels, given that the smoothers at

coarser levels have been already trained, so that solve with the coarse-grid operator

can be replaced with a V-cycle using the available multigrid hierarchy at one level

down. The adaptive training algorithm is sketched in Algorithm 2. Figure 4.1 il-

lustrates the procedure of adaptively training a 5-level multigrid solver in 4 stages,

starting at level 3. The loss is given by

L(3) =
∑
j,k

∥Φ(3)((u
(3)
0)j, (f

(3))j, k)− (u(3)
∗)j∥2,

where Φ(3) represents the two-level multigrid with levels 3 and 4. In the second stage,

the training proceeds at level 2 for CNN H(2) utilizing the underlying 2-level hierarchy

obtained from the first stage. This procedure continues until H(0) is computed at the

finest level and the entire training is completed, so the resulting multigrid hierarchy

Φ(0) can be used for solving systems of equations with A(0) ≡ A. We denote the

40

smoothers learned by this strategy by α-CNN smoothers.

Algorithm 2 Adaptive training of multigrid CNN smoothers

1: Input: Multigrid hierarchy: number of multigrid levels L+1, coarsest-grid solver
at level L, namely Ψ(L), coefficient matrix A(ℓ) where A(0) = A, and interpolation
operator P (ℓ), for ℓ = 0, . . . , L − 1. Size of training set Q. Maximum allowed
number of smoothing steps b

2: Output: Smoothers H(0), . . . H(L−1)

3: for ℓ = L− 1, . . . , 0 do
4: Construct training set:

D(ℓ) =

Q⋃
j=1

{tj}, t
(ℓ)
j = {A(ℓ), f

(ℓ)
j , (u

(ℓ)
0)j, (u

(ℓ)
∗)j}

5: Initialize the weights of H(l)

6: Perform stochastic gradient descent (SGD) to minimize loss function:∑
t
(ℓ)
j ∈D(ℓ),k∼U(1,b)

∥Φ(ℓ)((u
(l)
0)j, f

(ℓ)
j , k)− (u(ℓ)

∗)j∥2

With Φ(u0, f, 0) ≡ u0, run forward propagation by

Φ(ℓ)(u0, f, k) = Φ(ℓ)(u0, f, k − 1) + Ψ(ℓ)(rk−1),

rk−1 := f − A(ℓ)Φ(u0, f, k − 1),

Ψ(ℓ)(rk−1) = tk−1 +H(ℓ)(rk−1 − Atk−1),

tk−1 := H(ℓ)(rk−1) + P (ℓ)Ψ(ℓ+1)((P (ℓ))Tsk−1),

sk−1 := rk−1 − AH(ℓ)(rk−1),

andonly update H(ℓ) by back propagation
7: end for

41

level 4

level 3

level 2

level 1

level 0

H(3)

direct solver

H(2)

H(1)

H(0)

Stage 1 Stage 2 Stage 3 Stage 4

Figure 4.1: The proposed adaptive training strategy for k levels, which starts from
level k − 2 and proceeds upwards. When H(l) is being trained, lower level H(j), j =
l+1, . . . , k−2 are used for the solve with coarse-grid operators and remain unchanged.

Since the learned smoothers are constructed by a stack of convolutional layers

which can gather the information of the neighborhood around each grid point to

smooth the solution, this invariant property guarantee that they are not restricted to

a certain grid size or geometry.

Another appealing property of the proposed training approach is the updatability

of smoothers using neural networks. The trained smoothers can be updated in another

training process by injecting the errors that cannot be effectively reduced by the cur-

rent multigrid solver back to the training set. Specifically, to improve the smoothers

in a trained multigrid solver Φ(0), we can first apply Φ(0) to homogeneous equation

Au = 0 for k steps with a random initial vector u0 and get the approximate solution

uk, i.e., uk = Φ(0)(u0, 0, k), then inject the (restricted) residual, r
(l)
k = (P (l−1))Tr

(l−1)
k

with r
(0)
k = −Auk to the training set at each level l, and finally re-train Φ(0) as be-

fore with the new augmented training sets using the existing H(l) in the multigrid

hierarchy as the initial values.

42

4.2 Interpretation of learned smoothers

In this section, we illustrate the patterns of the learned smoothers. Notice that the

experiements conducted in this section are of visualization purpose and use a different

set of parameters as those used in the experiments in Section 4.4. We consider the

anisotropic rotated Laplacian problem (5.11) parameterized by the angle θ of the

anisotropy and conductivity ξ. We fix ξ = 100 and train smoothers for problems with

a variety of θ ∈ {0, π
12
, π
6
, π
4
, π
3
, 5π
12
, π
2
}. For each problem, we use a two-grid solver and

on the fine level we train a smoother which consists of one convolution kernel of size

9 × 9. We use linear activation in order to illustrate the action of the convolution

kernels as the smoothers. The trained convolution kernels corresponding to different θ

are shown in Figure 4.2. The results show that large values in each kernel are gathered

symmetrically about the center and the angles of the large values of each kernel also

align with the angle of the anisotropy of the problem. These patterns demonstrate

that the learned smoothing kernels are able to smooth the error in correct directions,

which can be viewed as line smoothers truncated in the convolution windows along

the direction of strong couplings in the most relevant regions.

We also increase the number of convolutional layers and study the impact of

each convolutional layer on the final smoother. For each problem, we train three

convolution kernels of size 9×9 for better visualization we use 3×3 kernels in Section

4.4 as they are more efficient in practice and show the results in Figure 4.3. The

first row shows the kernels of the first convolutional layer for each problem while the

second row and the third row show the second layer and the third layer respectively.

The kernels at different layers exhibit different patterns which indicates that each

kernel is responsible for smoothing the error in different regions. Since applying three

9× 9 convolution kernels sequentially is equivalent to applying a 25× 25 convolution

kernel, we illustrate the patterns of the effective 25× 25 kernels in the last column of

Figure 4.3. The kernels in the last column display similar patterns as in Figure 4.2

43

which perfectly align with the anisotropy of the problem.

(a) θ = 0 (b) θ = π
12 (c) θ = π

6 (d) θ = π
4

(e) θ = π
3 (f) θ = 5π

12 (g) θ = π
2

Figure 4.2: Patterns of the trained kernels for (5.11) with ξ = 100 and θ ∈
{0, π

12
, π
6
, π
4
, π
3
, 5π
12
, π
2
}. For each problem, the smoother only uses one kernel.

44

Figure 4.3: Patterns of the trained kernels for (5.11) with ξ = 100 and θ ∈
{0, π

12
, π
6
, π
4
, π
3
, 5π
12
, π
2
}. For each problem, the smoother uses three kernels. The first

three rows represent the kernels on the first, second and third layers respectively and
the last row combines the three kernels into one single kernel for each problem.

45

4.3 Learning deep neural smoothers for variable

coefficient PDEs

In this section, we extend the adaptive training framework proposed in Section 4.1

to design optimal neural smoothers for solving variable coefficient PDEs where the

coefficient function g is no longer constant:

−∇ · (g(x, y)∇u(x, y)) = f(x, y). (4.4)

To better illustrate the difficulty of dealing with variable coefficient PDEs, we

simplify our discussion and consider discretizing (4.4) using nine-point stencils with

grid spacing h. See the left subfigure of 4.4 for a demonstration of 3×3 neighborhood

of the grid point u22. The equation corresponds to the grid point u22 reads:

− 1

3h2
(g1u11 + g2u13 + g3u31 + g4u33)

− 1

6h2
((g1 + g2)u12 + (g2 + g4)u23 + (g3 + g4)u32 + (g1 + g3)u21)

+
2

3h2
(g1 + g2 + g3 + g4)u22 = f22,

which is equivalent to applying a 3 × 3 weight stencil to the 3 × 3 neighborhood of

u22 ∑
i,j

wijuij = f22, i, j ∈ {0, 1, 2},

where wij are computed according to the function g(x, y) and is shown in the right

subfigure of 4.4. When g(x, y) is constant, the coefficients wij correspond to each

interior 3 × 3 stencil are identical. Thus, we can parameterize M−1 by a single

convolutional neural network as a stack of convolution kernels {ϕi}. The weights of

each convolution kernel ϕi are shared over all grid points. However, when g(x, y) is

variant, the weight stencilsWij andWlm at two different locations can have completely

46

different dynamics (e.g. Wij can be strong in x-axis and weak in y-axis while Wlm

is strong in y-axis and weak in x-axis). In this case, a smoothing kernel H that is

learned to smooth the error at one grid point might be ineffective in smoothing the

error at another point. As a result, the optimal smoothing kernel Hij associated with

each grid point should be conditioned on the location for variable coefficient problems.

w11 w12 w13

w21 w22 w23

w31 w32 w33

(a) Weight stencil

u11 u12 u13

u21 u22 u23

u31 u32 u33

g1 g2

g3 g4

(b) Grid point

Figure 4.4: Demonstration of weight stencils and grid points.

In order to generate unshared smoothing convolution kernels which are dimension-

invariant, instead of directly learning the kernels, we propose to learn a function which

can adaptively adjust the kernels based on the spatial information. In particular, we

will design neural network architectures which can map each grid representation to

a stack of convolution kernels that can be used to efficiently smooth the error at

different locations.

To reduce confusion, we point out the main difference and connection between

the design of learning smoothers in the variable coefficient case and the constant co-

efficient case described in the previous section. In the constant coefficient case, the

α-CNN smoothers are parameterized by neural networks directly and the parameters

learned by Algorithm 2 are the parameters of the smoothers. However, in the variable

coefficient case, instead of learning the parameters of the smoothers directly, we learn

the parameters of a mapping function parameterized by the neural networks which

generates the smoothers. The smoothers generated by the mapping function in the

47

variable coefficient case have the same structure (CNN structure) as in the constant

coefficient case. In both cases, we use the same learning strategy described in Algo-

rithm 2. We discuss two different parameterization methods of the mapping function

in the following sections.

4.3.1 Parameterization with fully connected layers

In the first approach, we consider using multiple layer perceptron (MLP) to construct

the mapping from the grid representation to the smoothing convolution kernels at each

grid point. Although the stencil at each grid point has already contained the spatial

information, we find that only using the stencil information as the representation

is not sufficient enough to learn efficient smoothing kernels and the generalization

usually performs poorly. Instead, we suggest to incorporate the neighborhood in-

formation into the grid representation. More specifically, we construct each grid

representation as an 81 × 1 vector which consists of the 3 × 3 stencils in the 3 × 3

neighborhood of the current point under consideration. In this case, the feature map

M for an N × N grid has the size of N2 × 81. The mapping is then parameterized

by a fully connected neural network which takes the representation of each grid point

as input and infers the weights of the k output smoothing kernels of size 3 × 3. See

Figure 4.5 for an illustration of this architecture. To smooth the error at the central

point in the stencil, we train a fully connected neural network which takes nine 3× 3

stencils with 81 parameters in total and outputs three 3× 3 convolution kernels that

are used to smooth the error at this point. On each level of multigrid solver, we only

construct one such neural network based on the adaptive training strategy discussed

in Section 4.1.2.

48

DNN

Figure 4.5: The architecture of inferring the smoothing kernels for the central point
in the stencil. A fully connected neural network takes nine 3×3 stencils as input and
outputs three convolution smoothing kernels for the current grid point.

4.3.2 Parameterization with convolutional layers

Deep neural networks using fully connected layers often require a large amount of

parameters in order to well approximate a function and also have high training cost.

In order to reduce the training cost, instead of constructing a feature map M ∈

RN2×81 by flattening and stacking the stencils and applying fully connected neural

networks, an alternative approach is to feed into the neural network with 9 channels

with each channel corresponding to one stencil in the 3×3 neighborhood of the point

under consideration. The deep neural network is parameterized by several convolution

kernels followed by a fully connected layer. The outputs of the neural network are

k smoothing kernels. This architecture is illustrated in Figure 4.6. We will show

in numerical experiments that this approach can achieve a comparable performance

with fully connected layers but requires much fewer parameters.

conv conv fc

Stencils Smoothing kernels
Figure 4.6: The framework of constructing 3 smoothing kernels by applying two
convolutional layers and one fully connected layer to a feature map. The feature
maps have 9,6,3 and 3 channels, respectively and each channel contains kernels of
size 3× 3.

49

4.4 Numerical experiments

In this section, we provide numerical examples to demonstrate the smoothing effect

of the proposed smoothers. All of the codes were implemented in PyTorch 1.8.11 and

run on an Intel Core i7-6700 CPU. We use a batch size of 10 and employ the Adam

optimizer with a learning rate of 10−3 for 500 epochs. The neural network training

took roughly 5 hours for each constant coefficient problem and roughly 4 hours for

each variable coefficient problem.

4.4.1 Constant coefficient PDEs

We first consider the following two dimensional anisotropic rotated Laplacian prob-

lem:

−∇ · (T∇u(x, y)) = f(x, y), (4.5)

where 2× 2 tensor field T is defined as

T =

 cos2 θ + ξ sin2 θ cos θ sin θ(1− ξ)

cos θ sin θ(1− ξ) sin2 θ + ξ cos2 θ

 , (4.6)

where θ is the angle of the anisotropy and ξ is the conductivity. We discretize the

operators ∆u and uxy in (4.3) using the following stencils, where h is the grid spacing,

1

4h2


−1

−1 4 −1

−1

 and
1

2h2


−1 1

−1 2 −1

1 −1

 .

We use multigrid V-cycles to solve the resulting discretized linear system Au = f ,

where the coefficient matrix A is parameterized with (θ, ξ, n, G), where n is the

1Code for reproducing the experiments is available at https://github.com/jerryhuangru/

Learning-optimal-multigrid-smoothers-via-neural-networks.

https://github.com/jerryhuangru/Learning-optimal-multigrid-smoothers-via-neural-networks.
https://github.com/jerryhuangru/Learning-optimal-multigrid-smoothers-via-neural-networks.

50

grid size and G is the geometry of the grid. We show the robustness and efficiency

of the proposed neural smoothers on a variety of sets of parameters (θ, ξ, n,G). For

each set of the parameters, we train the neural smoothers on dataset constructed on

square domains with small grid size, and show that the trained neural smoothers can

outperform standard ones such as weighted Jacobi. Furthermore, we demonstrate

that the trained neural smoothers can be applied to solve much larger problems and

problems with more complex geometries without retraining. Since our focus of this

work is on smoothers, we adopt standard algorithms for multigrid coarsening and

grid-transfer operators.

To evaluate our method, we compare the performance of multigrid using Algo-

rithm 1 equipped with convolutional neural smoothers that are trained adaptively

(denoted by α-CNN), convolutional neural smoothers trained independently (denoted

by CNN) and weighted Jacobi smoother (denoted by ω-Jacobi) for solving a variety

of linear systems. These problems are generated by varying the parameters (ξ, θ, n,

G). The weight ω is chosen to be 2
3
by heuristics for all experiments in this thesis.

4.4.2 Training details

First, we train smoothers independently using the first strategy discussed in Section

4.1.2. For each smoother, we construct 50 problem instances of size 162. Then, we use

the adaptive training framework to train smoothers using Algorithm 2. The training

process for a 5-level multigrid has 4 stages. At each stage we construct a training

data set which contains 50 instances of the problem on each level. All stages have the

same size of the coarsest grid. In particular, under full coarsening scheme, at stage l

the problems are constructed on the (4− l)th level and have grid size of (2l+2 − 1)2.

Under red-black coarsening scheme, at stage 1 and stage 2 the problem instances have

size of 92 and at stage 3 and stage 4 the problems have size of 172. This is because

when we apply red-black coarsening to a regular grid, the grid becomes irregular,

51

therefore we need to add zeros to the irregular grid so that we can apply CNNs more

efficiently.

Neural networks We use CNNs to approximate the action of the inverse of the

smoothers. In particular, under full coarsening scheme, for both CNN and α-CNN

smoothers, H(l) is parameterized as follows:

H(l) = f
(l)
5 (f

(l)
4 (· · · (f (l)

2 (f
(l)
1)) · · ·) + f

(l)
6 , (4.7)

where each f
(l)
i is parameterized by a 3× 3 convolution kernel ϕ

(l)
i . We initialize the

weights of ϕ
(l)
1 , . . . , ϕ

(l)
5 with small values and ϕ

(l)
6 to be the inverse Jacobi stencil so

that H(l) is initialized as Jacobi. For red-black coarsening, H(l) is parameterized as

H(l) = f
(l)
2 (f

(l)
1). (4.8)

Note that we could use more convolutional layers and also, for each grid point, explore

a larger range of the neighborhood, which can typically lead to a faster convergence

rate at the price of more computational costs per iteration. The current settings are

found to give the best trade-off between convergence rate and time-to-solution.

Evaluation metrics We train the smoothers on problems with small grid sizes

where the ground truth can be easily obtained. When we test on large-scale problems,

it is time consuming to obtain the ground truth. Therefore when we evaluate the

performance, we use the convergence threshold relative residual ∥f−Aû∥2
∥f∥2 < 10−6 as

the stopping criterion which can avoid the requirement of exact solutions. We compare

both the number of iterations and the runtime for multigrid solvers using different

smoothers to reach the same accuracy. To reduce the effect of randomness, for each

test problem, we run the multigrid solvers to solve 10 problems with different random

52

right-hand sides and present the averaged numbers.

Convergence rate Since coarser problems are usually better conditioned, the

smoothers on the finest level have the biggest impact on the overall convergence.

In this experiment we compare the spectral properties of the smoothers on the finest

level. We first compare the spectral radius of the iteration matrices 3.3 constructed

by ω-Jacobi smoothers (ω is fixed at 2
3
in all experiments) and α-CNN smoothers

and summarize the results in Tables 4.1 and 4.2. These statistics are calculated on

two sets of test problems defined on one 16 × 16 grid. In the first set, θ is fixed as

0 and ξ = 100, 200, 300, 400. In the second set, ξ is fixed at 100 and θ = 0, π
12
, π
6
, π
4
.

The corresponding comparison of ideal convergence bounds (3.17) on these tests is

provided in Tables 4.3 and 4.4. Since we initialize the neural network close to Jacobi,

the training is stable. Take the rotated Laplacian problem with θ = 0 and ξ = 100

as an example. We use the same learning rate, same number of epochs and Adam

optimizer to train 20 α-CNN smoothers. The ideal convergence bound has mean of

0.7672 with standard deviation of 0.0042. The spectral radius of iteration matrix has

mean of 0.7671 with standard deviation of 0.0041. Since the deviations are typically

small, we omit report them in the rest of the section.

ξ 100 200 300 400
ω-Jacobi 0.9886 0.9886 0.9886 0.9886

Gauss-Seidel 0.9662 0.9662 0.9662 0.9662
α-CNN 0.7672 0.8060 0.8588 0.7883

Table 4.1: Spectral radius of iteration matrices 3.3 of two-grid methods using full
coarsening and ω-Jacobi with ω = 2

3
, Gauss-Seidel and 6-layered α-CNN smoothers

for rotated Laplacian problems with fixed θ = 0 and different ξ. The grid size is
16× 16.

The results in Tables 4.1, 4.2, 4.3 and 4.4 show that for each rotated Lapla-

cian problem, the convergence measures associated with α-CNN smoothers are much

smaller than those with ω-Jacobi smoothers and Gauss-Seidel smoothers which indi-

53

θ π/12 π/6 π/4
ω-Jacobi 0.9913 0.9934 0.9942

Gauss-Seidel 0.9735 0.9797 0.9823
α-CNN 0.7743 0.9652 0.9728

Table 4.2: Spectral radius of iteration matrices 3.3 of two-grid methods using full
coarsening and ω-Jacobi with ω = 2

3
, Gauss-Seidel and 6-layered α-CNN smoothers

for rotated Laplacian problems with fixed ξ = 100 and different θ. The grid size is
16× 16.

ξ 100 200 300 400
ω-Jacobi 0.9886 0.9886 0.9886 0.9886

Gauss-Seidel 0.9675 0.9675 0.9675 0.9675
α-CNN 0.7671 0.8060 0.8588 0.7883

Table 4.3: Ideal convergence bound (3.17) for the same methods and problems in
Table 4.1.

θ π/12 π/6 π/4
ω-Jacobi 0.9913 0.9934 0.9942

Gauss-Seidel 0.9748 0.9807 0.9833
α-CNN 0.7743 0.9651 0.9728

Table 4.4: Ideal convergence bound (3.17) for the same methods and problems in
Table 4.2.

54

cates a faster convergence can be achieved by multigrid solvers equipped with α-CNN

smoothers.

We use the same problem setting as the above tables. We consider the iterative

solvers xk = Gxk−1 where G is the 5-level multigrid solver. We compare the spectral

radius of the iteration matrices G of 5-level multigrid solvers equipped with differ-

ent smoothers and summarize the results in Table 4.5. The results show that the

smoothers can not only efficiently smooth the finest level errors but also have faster

convergence overall as a 5-grid solver compared to ω-Jacobi and Gauss-Seidel. Since

ω-Jacobi smoothers have better parallel efficiency than Gauss-Seidel smoothers, we

will only compare neural smoothers with ω-Jacobi smoothers in the remaining section.

ξ 100 200 300 400
ω-Jacobi 0.9853 0.9918 0.9940 0.9951

Gauss-Seidel 0.9564 0.9755 0.9820 0.9853
α-CNN 0.6816 0.8189 0.8805 0.8936

Table 4.5: Spectral radius of the iteration matrices corresponding to the 5-level multi-
grid with full coarsening and ω-Jacobi, ω = 2

3
, Gauss-Seidel and 6-layered α-CNN

smoother for (5.11) with fixed θ = 0 and different ξ. The mesh size is 16× 16.

θ π/12 π/6 π/4
ω-Jacobi 0.9436 0.8981 0.8837

Gauss-Seidel 0.8566 0.7776 0.7643
α-CNN 0.4534 0.4547 0.4216

Table 4.6: Spectral radius of the iteration matrices corresponding to the 5-level multi-
grid with full coarsening and ω-Jacobi, ω = 2

3
, Gauss-Seidel and 6-layered α-CNN

smoother for (5.11) with fixed ξ = 100 and different θ. The mesh size is 16× 16.

Smoothing property To show that our proposed method can learn the optimal

smoother with the best smoothing property, for each eigenvector v (that has the

unit 2-norm) of the fine-level operator A associated with parameters θ = 5π
12
, ξ = 100,

N = 16 on a square domain, we compute its convergence factor ∥v−H(0)(Av)∥2, where

H(0) is the smoother on the finest level. An efficient smoother should lead to small

55

convergence factors for eigenvectors associated with large eigenvalues. The results

are shown in Figure 4.7, where the eigenmodes are listed in the descending order of

the corresponding eigenvalues. The CNN smoother can reduce low-frequency errors

more rapidly than ω-Jacobi, however, both of them have comparable performance

for damping high-frequency errors. In contrast, α-CNN has the best performance,

which exhibits a superior smoothing property as the convergence factors correspond-

ing to the large eigenvalues are about 6 times smaller than those with the other two

smoothers.

1 51 91 131 171 211 251

0

0.25

0.5

0.75

1

Eigenmode index

C
on

ve
rg
en
ce

fa
ct
or

ω-Jacobi CNN α-CNN

Figure 4.7: Convergence factors of ω-Jacobi with ω = 2
3
, CNN and α-CNN smoothers

to the eigenvectors of A for (5.11) on a 16× 16 grid, where θ = 5π
12

and ξ = 100. The
eigenvectors are sorted in the descending order of the corresponding eigenvalues.

Generalization property To illustrate that our proposed method is useful, be-

sides showing the statistics, we present the actual iteration numbers and runtime for

multigrid solvers to converge. Also for a given PDE problem, we want to only train

the neural smoothers once, that is, the neural smoothers need not to be retrained

56

if we increase the grid size or change the geometry of the problem. In this experi-

ment, we first show that the trained smoothers can be generalized to different grid

sizes without retraining. We fix the parameter of the problems to be ξ = 100 and

θ = 5π
12

on one square domain. We show in Figure 4.8 that for problems of size 10232,

multigrid methods using α-CNN smoothers converge faster in terms of the number of

iterations than multigrid methods using CNN and ω-Jacobi smoothers by factors of

1.5 and 3.5 respectively. Since the cost of applying α-CNN smoothers is more than

ω-Jacobi, the time for iterations of multigrid methods using α-CNN is only faster

than that using CNN and ω-Jacobi by factors of 1.68 and 2.1, respectively.

63 127 255 511 1023

20

40

60

80

N

N
u
m
b
er

of
it
er
a
ti
on

s

ω-Jacobi CNN α-CNN

63 127 255 511 1023

0

10

20

30

N

T
im

e
(s
)

ω-Jacobi CNN α-CNN

Figure 4.8: Numbers of iterations and runtime required by multigrid with full coars-
ening to reach convergence tolerance 10−6 for solving (5.11) on 632, 1272, 2552, 5112

and 10232 grids, with parameters ξ = 100 and θ = 5π
12

on square domains.

Since CNN smoothers were trained independently, they are not as successful as

α-CNN to capture the smoothing property of reducing errors that cannot be reduced

by lower levels of multigrid. Hence, we only compare α-CNN and ω-Jacobi smoothers

in the rest of the section. Next we fix the parameters of the problems to be θ = π
4
,

ξ = 100 and show that the trained α-CNN smoothers can be generalized to problems

with two different geometries (shown in Figure 4.9) without retraining.

57

Figure 4.9: Ground truth solutions on square, cylinder and L-shaped domains.

63 127 255 511 1023

20

40

N

N
u
m
b
er

o
f
it
er
at
io
n
s

63 127 255 511 1023

0

5

10

N

T
im

e
(s
)

63 127 255 511 1023

20

40

N

N
u
m
b
er

o
f
it
er
at
io
n
s

ω-Jacobi α-CNN

63 127 255 511 1023

0

5

10

N

T
im

e
(s
)

ω-Jacobi α-CNN

Figure 4.10: Numbers of iterations and runtime required by multigrid solvers for
solving (5.11) with parameters θ = π

4
and ξ = 100 on the cylinder domain (top two

figures) and the L-shaped domain (bottom two figures).

The results for the two different domains are shown in Figure 4.10. We can see

that since we are using the convolutional layers to approximate the inverse of the

smoothers, α-CNN use the information in the neighborhood information to smooth

58

the error at each grid point and therefore without retraining, the smoother trained

on square domain can still lead multigrid methods to converge 4.1 times faster in

terms of the number of iterations and 1.5 times faster in time-to-solution on the

cylinder domain for problems of size 10232. On the L-shaped domain for the same

sized problem, the performance improvement is 4.9 times and 1.8 times faster in

terms of the number of iterations and the time for iterations. We show in Figure 4.11

that our proposed method can learn optimized smoothers for a variety of problems

given by different parameters on square domain and is not restricted to the choice of

coarsening schemes in multigrid. In particular, for θ = 5π
12
, with full coarsening, the

multigrid method using α-CNN smoothers is 19.2 times faster in terms of the number

of iterations and achieves a speedup of factor 4.4 in the time for iterations. When

red-black coarsening scheme is used, multigrid solver with α-CNN smoothers can still

require much fewer iterations than the one with ω-Jacobi by 1.9 times, and converges

about 1.3 times faster in time.

59

π/12 π/6 π/4 π/3 5π/12
0

200

400

Rotation angle θ

N
u
m
b
er

o
f
it
er
a
ti
o
n
s

π/12 π/6 π/4 π/3 5π/12

5

10

15

Rotation angle θ

T
im

e
(s
)

π/12 π/6 π/4 π/3 5π/12

50

100

Rotation angle θ

N
u
m
b
er

of
it
er
a
ti
o
n
s

ω-Jacobi α-CNN

π/12 π/6 π/4 π/3 5π/12
4

6

8

10

12

Rotation angle θ
T
im

e
(s
)

ω-Jacobi α-CNN

Figure 4.11: Numbers of iterations and runtime required by multigrid solvers for solv-
ing (5.11) with n = 5112, θ = [π

12
, π
6
, π
4
, π
3
, 5π
12
] and ξ = 100. The top and bottom two

figures show the performance with full coarsening and red-black coarsening respec-
tively.

Next, we show that a single smoother can be learnt that works for all the prob-

lems discussed above. Instead of training a smoother for each problem individually,

we construct a training set that contains the problems for θ = [π
12
, π
6
, π
4
, π
3
, 5π
12
] and

ξ = 100. We show in Figure 4.12 that the performance of a single smoother for

all the problems is slightly worse than the individual training but still outperforms

ω-Jacobi. Finally, Figure 4.13 shows the performance of a 5-level multigrid with ω-

Jacobi smoothers and α-CNN smoothers using full and red-black coarsenings with

the same problem setting as in Figure 4.11. However, 6 convolutional layers were

used with full coarsening and 2 convolutional layers with red-black coarsening. For

fair comparison in terms of computational cost per iteration, in this experiment we

run 6 Jacobi steps each iteration for full coarsening and 2 Jacobi steps for red-black

60

coarsening.

π/12 π/6 π/4 π/3 5π/12
0

100

200

Rotation angle θ

N
u
m
b
er

of
it
er
at
io
n
s

ω-Jacobi α-CNN mixed-CNN

π/12 π/6 π/4 π/3 5π/12

5

10

15

Rotation angle θ

T
im

e
(s
)

ω-Jacobi α-CNN mixed-CNN

Figure 4.12: Numbers of iterations and runtime required by multigrid solvers with full
coarsening for solving (5.11) of size n = 5112 with θ = [π

12
, π
6
, π
4
, π
3
, 5π
12
] and ξ = 100.

The smoother is trained from a dataset containing problems with different θ and ξ.

π/12 π/6 π/4 π/3 5π/12
20

40

60

80

Rotation angle θ

N
u
m
b
er

o
f
it
er
at
io
n
s

π/12 π/6 π/4 π/3 5π/12

0

5

10

Rotation angle θ

T
im

e
(s
)

π/12 π/6 π/4 π/3 5π/12

40

60

80

Rotation angle θ

N
u
m
b
er

of
it
er
a
ti
o
n
s

ω-Jacobi α-CNN

π/12 π/6 π/4 π/3 5π/12

0

5

10

Rotation angle θ

T
im

e
(s
)

ω-Jacobi α-CNN

Figure 4.13: Numbers of iterations and runtime required by multigrid for solving
(5.11) of size n = 5112 with θ = [π

12
, π
6
, π
4
, π
3
, 5π
12
] and ξ = 100. The top and bottom

two figures show the performance with full coarsening and red-black coarsening re-
spectively.

61

4.4.3 Variable coefficient PDEs

We consider the variable coefficient problem:

−∇ · ((sinκπxy + 1.1)∇u(x, y)) = f(x, y), (4.9)

which is determined by the frequency κ.

In this experiment we consider solving the problems determined by κ = 0.1, 1, 10,

and 100. For each problem we consider a 4-level multigrid solver. We use the two

approaches discussed in Section 4.3 to learn one single convolution kernel of size 3×3

used for smoothing. We use 4 fully connected layers with 40 neurons for each layer

for the first approach which has 6, 800 parameters to train in total and we denote

this approach by α-FC-CNN. We then use 3 convolutional layers which has 7, 5 and

3 channels for each layer and a fully connected layer of size 27 × 9 which has 378

parameters to train in total and we denote this approach by α-CNN-CNN. We use

Leaky ReLu activation function to perform a nonlinear mapping of the stencils to

the smoother. We train the smoothers on problems of size 31 × 31 and test the

performance on problems of size 255× 255.

We compare the iteration numbers and run time of using different approaches for

learning α-CNN smoothers with weighted Jacobi and show the results in Tables 4.7

and 4.8. We also show the spectral properties of each smoother in Tables 4.9 and 4.10

. We also show the The fully connected approach has similar performance in terms

of both iteration number and runtime compared to the convolutional approach while

having 17 times more parameters. Both α-CNN approaches can achieve 2× speedup

in terms of iteration number and 1.6× speedup in terms of runtime.

62

κ = 0.1 κ = 1 κ = 10 κ = 100
ω-Jacobi 17 17 20 63

α-CNN-CNN 6 7 11 30
α-FC-CNN 6 6 10 28

Table 4.7: Numbers of iterations required by multigrid for solving (4.9) of size n =
2552 with κ = 0.1, 1, 10, 100 using α-CNN and ω-Jacobi with ω = 2

3
.

κ = 0.1 κ = 1 κ = 10 κ = 100
ω-Jacobi 0.169 0.167 0.191 0.500

α-CNN-CNN 0.102 0.114 0.151 0.333
α-FC-CNN 0.103 0.101 0.142 0.315

Table 4.8: Run time (in seconds) required by multigrid for solving (4.9) of size n =
2552 with κ = 0.1, 1, 10, 100 using α-CNN and ω-Jacobi with ω = 2

3
.

κ 0.1 1 10 100
ω-Jacobi 0.9951 0.9955 0.9962 0.9962

α-CNN-CNN 0.9856 0.9865 0.9888 0.9887
α-FC-CNN 0.9752 0.9762 0.9796 0.9784

Table 4.9: Spectral radius of iteration matrices (3.3) of two-grid for solving (4.9) of
size n = 162 using ω-Jacobi with ω = 2

3
, α-CNN-CNN and α-FC-CNN smoothers.

κ 0.1 1 10 100
ω-Jacobi 0.9952 0.9955 0.9963 0.9962

α-CNN-CNN 0.9858 0.9867 0.9893 0.9895
α-FC-CNN 0.9753 0.9762 0.9798 0.9790

Table 4.10: Ideal convergence bound (3.17) for the same methods and problems in
(4.9).

63

Figure 4.14: Convergence factors of ω-Jacobi with ω = 2
3
, CNN and α-CNN smoothers

to the eigenvectors of A for (5.11) on a 16× 16 grid, where θ = 5π
12

and ξ = 100. The
eigenvectors are sorted in the descending order of the corresponding eigenvalues.

4.4.4 Incorporation with FGMRES

A multigrid step can also be written as an iterative step with

uk+1 = MG(uk).

In the case where linear activation is used in the network. The iteration is linear, and

the iteration is equivalent to applying a matrix

uk+1 = Guk.

Then instead of solving the linear system

Au = f,

64

we can solve the following linear system using GMRES

AGx = f

where G is the multigrid precondioner and the solution u = Gx,.

The right preconditioned GMRES is convergent only when the preconditioner G

is fixed during iteration. In the case when non linear activations are used in the

network, the multigrid iteration is not linear and the multigrid iteration MG can not

be viewed as a fixed iteration for each step and the right preconditioned GMRES

is not applicable. Nevertheless, flexible GMRES (FGMRES) can be invoked in this

case.

We use multigrid solvers as preconditioners of flexible GMRES (see [44]) on the

same group of problems as in Table 4.11. We compare the performance of using

the α-CNN smoothers trained before and using the ω-Jacobi smoothers in terms of

iteration numbers and running time. We show the results in Tables 4.11 and 4.12

that using α-CNN can achieve up to 3.36× improvement in terms of iteration number

and up to 1.5× improvement in terms of time compare to ω-Jacobi.

ξ = 100 θ = π/12 θ = π/6 θ = π/4 θ = π/3 θ = 5π/12
ω-Jacobi 37.0 30.2 28.0 30.0 37.0
α-CNN 11.0 12.0 13.0 12.0 11.0

Table 4.11: Numbers of iterations required by preconditioned FGMRES to reach
tolerance 10−6 for solving (5.11) with different θ and ξ. The grid size is 5112.

ξ = 100 θ = π/12 θ = π/6 θ = π/4 θ = π/3 θ = 5π/12
ω-Jacobi 3.48 2.86 2.74 2.65 3.46
α-CNN 2.32 2.52 2.56 2.47 2.29

Table 4.12: Run time(in seconds) required by preconditioned FGMRES to reach
tolerance 10−6 for solving (5.11) with different θ and ξ. The grid size is 5112.

65

4.4.5 Comparison with Chebyshev smoothers

In this section, we consider problem (5.11) with θ = 0 and ξ = 100. We train the

α-CNN smoothers by applying 3 convolution kernels sequentially on a 31× 31 mesh.

We compare the performance of α-CNN smoothers with Chebyshev polynomial of

degree 3 and show the results on problems of various sizes in Table 4.13. Note that

Chebyshev smoothers require estimates of spectral radius λ∗
max and are computed on

interval (γ1 × λ∗
max, γ2 × λ∗

max). The performance of Chebyshev smoothers can be

sensitive to the choice of γ1 and γ2. In our experiment, α-CNN smoothers performed

better than the Chebyshev smoothers with γ1 = 1/30 and γ2 = 1.1 that are the

default in PyAMG [41].

632 1272 2552 5112

ω-Jacobi 568.9 599.7 593.5 576.2
Chebyshev (m = 1

3
,n = 1.1) 229.6 242.8 240.0 233.0

Chebyshev (m = 1
30
,n = 1.1) 92.0 97.1 96.0 93.0

α-CNN 51.0 54.0 53.0 52.0

Table 4.13: Number of iterations required by ω-Jacobi, α-CNN smoothers and Cheby-
shev smoothers to reach the convergence tolerance 10−6 for solving the rotated Lapla-
cian problems with different grid sizes where θ = 0 and ξ = 100.

4.4.6 Comparison with GMRES smoothers

In this section, we consider the following convection diffusion problem:

−ν∆u+ v⃗ · grad(u) = f,

−ν = 10−4,

v⃗ = [vx, vy] = [100, 100].

66

We use the upwind finite difference discretization on a regular grid with uniform mesh

size h in all directions [40]. The resulting stencil is the following:


− ν
h2

− ν
h2

− vx
h

4ν
h2

+ vx+vy
h

− ν
h2

− ν
h2

− vy
h

 .

We train the α-CNN smoother by applying 2 convolution kernels sequentially to

31 × 31 problems. Since the matrix is nonsymmetric, Chebyshev smoothers cannot

be used. We show the results comparing with GMRES polynomials of degree 2 in

Table 4.14.

632 1272 2552 5112

ω-Jacobi Div Div Div Div
GMRES 30.4 28.1 37.7 52.5
α-CNN 12.0 11.1 14.0 17.3

Table 4.14: Number of iterations required by ω-Jacobi, α-CNN and GMRES
smoothers to reach the convergence tolerance 10−6 for solving the convection-diffusion
problem.

4.5 Conclusion

In this chapter we propose an efficient framework for training smoothers in the form

of multi-layered CNNs that can be equipped by multigrid methods for solving linear

systems arising from PDE problems. The training process of the proposed smooth-

ing algorithm, called α-CNN, is guided by multigrid convergence theories and have

the desired property of minimizing errors that cannot be efficiently annihilated by

coarse-grid corrections. Experiments on rotated Laplacian problems show superior

smoothing property of α-CNN smoothers that leads to better performance of multi-

grid convergence when combined with standard coarsening and interpolation schemes

compared with classical relaxation-based smoothers. We also show that well-trained

67

α-CNN smoothers on small problems can be generalized to problems of much larger

sizes and different geometries without retraining. The training cost of the proposed

approach is still much higher than using standard methods for solving a single PDE

problem or a few of them. However, in the context of solving a large number of

different problems (potentially with different grid sizes) arising from the same class

of PDEs or from the same PDE operator with various right hand sides, this high

training cost can be amortized. Moreover, with the rapid development of deep learn-

ing technologies, the training time can be further reduced and the framework will be

more practical in the future.

68

Chapter 5

Learning sparsified coarse-grid

operator

Recall in Chapter 3 we have discussed the basic ingredients, smoothers and coarse grid

operators, of multigrid methods. In Chapter 4, we have proposed an efficient adaptive

learning algorithm which can learn smoothers parameterized by neural networks that

can improve the convergence of multigrid. In this chapter, we focus on sparsifying

the coarse grid operators in order to improve the parallel scalability of multigrid

methods. This chapter is organized as follows. We describe the problem of multigrid

with increasing density in Section 5.1. We propose a machine learning framework

to control the sparsity in multigrid hierarchy without influencing the convergence in

Section 5.2. Numerical results on anisotropic rotated Laplacian problems and linear

elasticity problems are given in Section 5.3 and conclusions are given in Section 5.4.

5.1 Motivation

Although the coarse grid operators in multigrid methods have smaller sizes, they

often have a decreased sparsity.

Consider the linear system from the finite difference discretization of the 3D Pois-

69

Figure 5.1: [5] Matrix sparsity pattern using classical Multigrid method for three
levels in the hierarchy: ℓ = 0, 3, 5

son’s equation

−∆u = f (5.1)

with a 7-point stencil on a 100×100×100 grid. Figure 5.1 shows the sparsity pattern

in classical multigrid hierarchy for solving (5.1). As can be seen that the bandwidth

increases in the hierarchy. Table 5.1 shows that as the problem size decreases along

the multigrid hierarchy, the average number of nonzeros increases dramatically. This

decreased sparsity in coarse grid operators causes an increase in parallel communica-

tion costs, which leads to much longer solution time on coarse-levels than the time

spent working on the original, fine-level problem. Figure 5.2 shows the total costs

partitioned into the local computation cost and vector communication cost in multi-

grid hierarchies for solving (5.1). While having fewer nonezero entries, the increasing

density on coarse level introduces extra communication cost which leads to increasing

total cost.

level matrix size nonzeros nonzeros per row
ℓ n nnz nnz/n
0 1,000,000 6,940,000 7
1 4,190,209 9,320,600 19
2 83,338 2,775,206 35
3 13,363 745,531 67

Table 5.1: Matrix properties using classical Multigrid method for a 3D Poisson prob-
lem (5.1).

70

Figure 5.2: The local computation cost (in blue) and communication cost (in red) for
smoothed aggregation multigrid hierarchies to solve (5.1) [6].

5.1.1 Theoretical considerations

One approach to address the decreasing sparsity in multigrid methods is to simply

remove a few nonzeros in coarse grid operators. However, if some essential entries are

removed, the convergence can deteriorate. In this section, we review a few theoretical

results which study the convergence of multigrid method with sparsified coarse grid

operators. In this thesis we will focus on sparsifying stencils in stencil-based problems.

In the rest of this chapter, we will use stencils to define problems and construct

sparsifications, we will use matrices to compute eigenvalues and eigenvectors. To

avoid confusion with stencils and matrices, we will use A to denote matrices and use

A to denote corresponding stencils.

Let A be the matrix for the fine grid problem and P be the prolongation oper-

ator, denote PTAP by Ag and the sparsified Ag by Ac. Consider the two-grid error

71

propagation operator EG of the form

EG = (I −M−1A)(I − PA−1
g PTA)(I −M−1A),

where M is the smoother, P ∈ Rn×nc is the prolongation operator. Replace Ag with

Ac we have

EC = (I −M−1A)(I − PA−1
c PTA)(I −M−1A).

Spectral equivalence between Ac and Ag is often used as the metric to study the

convergence of EC. The definition of spectral equivalence between two stencils is

given as follows.

Definition. Let {Aj}j and {Bj}j be two sequences of SPD matrices associated with

Ag and Ac respectively with increasing size of Nj×Nj. If all the eigenvalues of B
−1
j Aj

satisfy:

0 < α < λ(B−1
j Aj) ≤ β < ∞

for all j where α and β are mesh independent, thenAg andAc are spectrally equivalent

stencils.

Matrices associated with spectrally equivalent stencils have similar convergence

behavior in iterative methods. Apparently, a sparser one will definitely have a smaller

computational cost at each iteration.

The following theorem shows that a structured 9-point stencil is spectrally equiv-

alent to a sparser 5-point stencil (see [7]).

Theorem 5.1.1 (Spectral equivalent stencils [7]). Let


c b c

a −2(a+ b)− 4c a

c b c



72

be an arbitrary 9-point stencil in 2D such that the associated generating symbol has

a unique single zero at the origin. The following associated 5-point stencil is spectral

equivalent: 
b+ 2c

a+ 2c −2(a+ b)− 8c a+ 2c

b+ 2c


Theorem 5.1.1 shows the possibility of replacing a dense stencil with a sparse one

without affecting the convergence of multigrid. In fact, we will show in Section 5.3

that our proposed method can reproduce almost the same results as shown in the

theorem.

The next theorem shows that two-grid convergence rate can be analyzed in terms

of the convergence rate of the standard Galerkin coarse grid and ∥I − AcA
−1
g ∥2, a

term that measures the spectral equivalence between Ac and Ag.

Theorem 5.1.2 (Conditioning and spectral radius [22]). Let BG = A(I−EG)
−1 and

BC = A(I − EC)
−1. Define

ϕ = ∥I − AcA
−1
g ∥2. (5.2)

Assume Ac and Ag are both SPD, if ϕ < 1, then:

κ(B−1
C A) ≤ (

1 + ϕ

1− ϕ
)κ(B−1

G A),

and

ρ(EC) ≤ max(λmax(B
−1
G A) · 1

1− ϕ
− 1, 1− λmin(B

−1
G A) · 1

1 + ϕ
).

The sparsification algorithm proposed in [22] is based on Theorem 5.1.2. It follows

two separate phases. In the first phase, it initializes a sparsity pattern using the

matrix graph of P and the fine grid operator A to construct sufficient connections in

Ac in order to approximate the Galerkin matrix stencil. In the second phase, it uses

73

heuristic to minimize ϕ in (5.2) in order to preserve the spectral equivalence between

Ag and Ac.

Although the condition ϕ < 1 in Theorem 5.1.2 is not a sufficient condition for

the two-grid method using Ac to converge, ϕ can still be used as a good metric to

check the spectral equivalence. This is demonstrated in the next corollary.

Corollary 5.1.3. If ϕ < 1 − λmax(B
−1
G A)/2, two-grid method with Ac converges.

Moreover, if two grid method with Ag converges and ϕ < 1/2, then two-grid method

with Ac is guaranteed to converge.

Corollary 5.1.3 gives a sufficient condition of the value (5.2) for convergence.

Finally, we provide an example to show a simple heuristic sparsification approach

by dropping small entries in the dense stencil Ag and adding the dropped entries back

to the center point might deteriorate the convergence. Note that although this simple

approach guarantees the row sums of the corresponding matrices Ac and Ag are the

same, as such Ac preserves the action of Ag on the constant vector, this might still

fail to preserve the spectral equivalence.

The example comes from the following anisotropic diffusion problem:

−uxx − ϵuyy = f.

We use standard the standard five-point finite-difference stencil:

A =


−ϵ

−1 (2 + 2ϵ) −1

−ϵ



74

Using semi-coarsening in the x direction only yields the coarse grid stencil:

Ag =


− ϵ

4
−3

2
ϵ − ϵ

4

−1
2
+ ϵ

2
(1 + 3ϵ) −1

2
+ ϵ

2

− ϵ
4

−3
2
ϵ − ϵ

4

 . (5.3)

Dropping the small values in Ac associated with ϵ results in

Ac =


0

−1
2

1 −1
2

0

 . (5.4)

However, it has been shown in [22] that the upper bound of λ(Ac
−1Ag) is mesh-

dependent. When the mesh size is small, since the value (5.2) is close to 1, in theory,

this indicates spectral in-equivalence. In practice, replacing the stencil 5.3 by the

stencil 5.4 in multigrid even leads to divergence.

The ideal sparsified stencil Aideal
c of Ag can be obtained via rediscretizing the

problem on the coarse grid for Ag:

Aideal
c =


−2ϵ

−1
2

(1 + 4ϵ) −1
2

−2ϵ

 .

As can be seen, the two small values −2ϵ still appear in the spectral equivalent stencil.

5.2 Sparsification with machine learning

In this section, we propose a machine learning framework to sparsify coarse grid

operators without affecting the convergence too much. Given the coarse grid operator

Ag, the construction of the sparse version Ac follows two phases: 1) selecting the

75

locations of nonzero entries Ac and 2) calculating the values of the nonzero entries.

We utilize one neural network for each phase. The framework of sparsifying a nine

point stencil to a five point stencil is illustrated in Figure 5.3.

DNN1

DNN2

Multiply

softmax

Figure 5.3: The framework of learning a five point stencil from a nine point stencil
using two neural networks.

The first neural network learns a nine point stencil where each entry of the stencil

represents the probability of keeping the value at the location. Set values at the

locations with highest probabilities to 1 and the values at remaining locations to 0.

This results in a mask matrix Z ∈ {0, 1}3×3. The second neural network learns the

values Y of the stencil. Then the sparse stencil Ac is computed as Y ⊙ Z.

Note that when measuring spectral equivalence, evaluating the value (5.2) on

a single mesh size is not enough, it is important that the value (5.2) is bounded

mesh-independently. To demonstrate this issue, we take the Poisson’s equation with

the 5-point stencil (5.5) as an example:

A =


−1

−1 4 −1

−1

 . (5.5)

76

The stencil on the coarse grid is:

Ag =
1

16


−1 −2 −1

−2 12 −2

−1 −2 −1

 . (5.6)

Rediscretizing the problem on the coarse grid yields

Aideal
c =

1

16


−1

−1 4 −1

−1

 . (5.7)

Let a five point stencil be defined as:

Ac =


0 −0.2615 0

−0.1622 0.7329 0

0 −0.1493 −0.1599

 . (5.8)

The value ϕ (5.2) for different grid sizes is shown in Table 5.2. We can see that the

value ϕ for (5.7) remains almost the same while the value ϕ for (5.8), smaller than

the value of (5.7) for certain grid sizes, increases rapidly as grid size increases.

Grid size 15 31 63 127
∥I − Aideal

c A−1
g ∥2 0.7451 0.7487 0.7496 0.7499

∥I − AcA
−1
g ∥2 0.4155 0.5588 0.9953 1.9429

Table 5.2: The value (5.7)
computed by Ag (5.6), Aideal

c (5.7) and Ac (5.8).

As described in Chapter 4, when applying machine learning techniques, to reduce

training cost, we train models on problems of small grid sizes and use the models on

problems of larger grid sizes. Therefore, as we can see from Table 5.2, minimizing

(5.2) on problems of size 15× 15 and 31× 31 might lead to a spectral in-equivalence

77

result. Instead of using (5.2) as the loss function, we describe a more appropriate

approach based on multigrid convergence theory. Recall that the goal of sparsification

is to replace the dense coarse grid operator Ag with one sparse one Ac without affecting

the convergence of multigrid. This can be done by enforcing similar accuracy of Ac

and Ag for the so called algebraic smooth basis vectors as explained in the next.

Consider at current multigrid step, the residual on fine grid is r = f −Ax, assume

the residual r is in the range of P with r = Prc for some coarse vector rc. Then

consider the two-grid method, if we use Ac instead of Ag to eliminate the residual r,

we have

rnew = (I − P (Ac)
−1PTA)r

= (I − P (Ac)
−1PTA)Prc

= P (I − (Ac)
−1Ag)rc

= P (Ac)
−1(Ac − Ag)rc

(5.9)

Ideally, if Acrc = Agrc, then the residual after the two-grid method is 0. Since Ac is

sparser than Ag, it is not possible to require Acrc = Agrc hold true for any vector

rc. Nevertheless, recall in multigrid methods, smoothers are applied to reduce the

high frequency errors, the remaining errors are usually smooth. Hence in literature

[14, 58], researchers suggest to define Ac such that it has similar behaviour with Ag

when being applied to algebraic smooth vectors. Such construction of Ac can yield

similar coarse grid corrections as Ag and the entire multigrid process will not be

influenced due to the use of Ac instead of Ag.

The constructions of the algebraic smooth basis usually depend on problems. In

this work we choose to use generalized eigenvectors associated with k smallest eigen-

vlues (k should be no less than the maximum nonzeros per row) as basis. These

eigenvectors are related to the sought algebraically smooth modes ([14]). The pro-

cedure for constructing algebraic smooth basis is presented in Algorithm 3.

78

Algorithm 3 Generating algebraic smooth basis

Input: Prolongation operator P , coarse grid operator Ag, number of
basis vectors: k

Output: Algebraic smooth basis vi, i = 1, . . . , k

1: Compute T = PTP
2: Compute generalized eigen pairs Agvi = λiTvi.
3: Return vi, i = 1, . . . , k with k smallest λi, i = 1, . . . , k

Given a set of algebraic smooth vectors v
(j)
i , i = 1, . . . , k for each training instance,

we minimize the loss function (5.10) to learn two neural networks fθ and gψ which

can generate the sparse stencil for unseen coarse grid stencil Ag:

L({Aj
g,Aj

c, {v
j
i }i=1,...,k}j=1...,m) =

m∑
j=1

k∑
i=1

||Aj
gv
j
i − Aj

cv
j
i ||22. (5.10)

The entire learning procedure for sparsification is summarized in Algorithm 4.

Algorithm 4 Learning to sparsify

Input: Prolongation operator P , m coarse grid stencils Aj
g (j = 1, . . . ,m),

number of basis vectors: k, sparsification ratio ρ
Output: Two neural networks fθ and gψ

1: Use Algorithm 3 to generate vji , i = 1, . . . , k for each Aj
g

2: Initialize two neural networks fθ and gψ
3: {Aj

c}j=1,...,m =Sparsify({Aj
g}j=1,...,m, fθ, gψ, ρ)

4: Perform stochastic gradient descent (SGD) to minimize loss function:

ℓ =
m∑
j=1

k∑
i=1

||Aj
gvi − Aj

cvi||22

5: Update the weights of fθ and gψ

Algorithm 5 Sparsify(Ag, fθ, gψ, ρ)

1: Compute Y = fθ(Ag) and Z = gψ(Ag)
2: Set the top ρ percent largest values in Z be 1 and the remaining values to 0
3: Compute Ac = Y ⊙ Z
4: Return Ac

79

5.3 Numerical Experiements

In this section, we provide numerical examples to demonstrate the ability of our

proposed method for sparsifying stencils. All of the codes were implemented in Py-

Torch 1.8.1 and run on an Intel Core i7-6700 CPU. The neural network training took

roughly 1 minute for each constant coefficient problem and roughly 5 minutes for

linear elasticity problem.

5.3.1 Circulant stencil

We first use a small example to show that our proposed method can reproduce the

results from Theorem 5.1.1.

We generate a random circulant matrix A corresponding to a 9-point stencil. We

use full coarsening to obtain the coarse grid operator

Ag :


−0.0081 −0.0095 −0.0081

−0.0062 0.0637 −0.0062

−0.0081 −0.0095 −0.0081

,
which satisfies the condition of Theorem 5.1.1. The spectrally equivalent stencil gby

t is

Aideal
c :


0 −0.0257 0

−0.0224 0.0962 −0.0224

0 −0.0257 0


The stencil learned by our proposed method is

Ac :


0 −0.0231 0

−0.0207 0.0874 −0.0206

0 −0.0230 0

 .

We can see that the proposed method can exactly capture the correct sparsity pattern

and learns almost the same values. When using Ag, A
ideal
c , Ac as the coarse grid

operator, two-grid method will exhibit exactly the same convergence behavior.

80

Next we test our proposed method on two classes of problems, the 2D anisotropic

rotated Laplacian problem which we have described in the previous chapter and the

2D linear elasticity problem. To evaluate our method, similar as before, we compare

the performance of using two-grid method with the dense coarse grid operator Ag

and its coarse version Ac obtained by our method. We use the convergence threshold

relative residual ∥f−Aû∥2
∥f∥2 < 10−6 as the stopping criterion.

5.3.2 Rotated Laplacian

Recall the 2D anisotropic rotated Laplacian problem:

−∇ · (T∇u(x, y)) = f(x, y), (5.11)

where 2× 2 tensor field T is defined as

T =

 cos2 θ + ξ sin2 θ cos θ sin θ(1− ξ)

cos θ sin θ(1− ξ) sin2 θ + ξ cos2 θ

 (5.12)

We first fixed ξ = 10 and test the generalization ability of our proposed method when

varying θ. We construct 4 training data points with θ = (3π
12
, 4π
12
, 5π
12
, 6π
12
). We use full

coarsening scheme which produces a 9-point stencil on the coarse grid. We then use

Algorithm 4 to train our model on problems of size 15×15 to generate sparse 5-point

stencils. Then we use Algorithm 5 to test 10 problems of size 127× 127 that are not

shown in training set with ξ = 10 and random θ on each interval. The numbers of

iterations for two-grid method to converge using Ag and Ac are summarized in Table

5.3. We can see that even when the coarse grid operator has nearly a half density as

Ag, the convergence is barely influenced.

81

ξ = 10, θ (3π
12
,4π
12
) (4π

12
,5π
12
) (5π

12
,6π
12
)

Ag 13.4 20.5 31.1
Ac 13.9 20.6 31.1

Table 5.3: Averaged number of iterations required by two-grid method for solving
(5.11) of size n = 1272 with ξ = 10 and random θ on each interval using Ag and Ac

as coarse grid operator stencils.

Then we fixed θ = π
4
and test the generalization ability of our proposed method

when varying ξ. We construct 4 training data points with ξ = 0.1, 0.13, 0.16, 0.19.

We use the same training setting as before. The numbers of iterations for two-grid

method to converge using Ag and Ac are summarized in Table 5.4. We can see that

for ξ ∈ (0.1, 0.13), even the iteration number associated with Ac is significantly larger

than that of Ag, it is acceptable since Ac only has nearly a half of the number of

nonzeros compared to Ag.

θ = π
4
, ξ (0.1,0.13) (0.13,0.16) (0.16,0.19)

Ag 13.1 11.4 10.2
Ac 17.7 11.8 10.4

Table 5.4: Averaged number of iterations required by two-grid method for solving
(5.11) of size n = 1272 with θ = π

4
and random ξ on each interval using Ag and Ac

as coarse grid operator stencils.

We also compute the values ϕ = ∥I −AcA
−1
g ∥2 (5.2) for each problem and report

the results in Tables 5.5 and 5.6. All of the values are less than 1 indicating a similar

spectrum between the learned stencil and the original stencil.

ξ = 10, θ (3π
12
,4π
12
) (4π

12
,5π
12
) (5π

12
,6π
12
)

ϕ 0.6152 0.1581 0.3157

Table 5.5: The value ϕ (5.2) for ξ = 10 and random θ on each interval.

θ = π
4
, ξ (0.1,0.13) (0.13,0.16) (0.16,0.19)

ϕ 0.3257 0.3363 0.3592

Table 5.6: The value ϕ (5.2) for θ = π
4
and random ξ on each interval.

82

In particular, we take a specific problem with ξ = 10 and θ = π
3
as an example.

We show the eigenvalues of A−1
c Ag for different mesh sizes in Figure 5.4. We can see

that the distribution of spectrum is mesh independent indicating spectral equivalence

of Ac and Ag.

Figure 5.4: The eigenvalues of A−1
c Ag with different grid sizes for solving rotated

Laplacian problem with ξ = 10 and θ = π
3
.

An example of the approximate solutions after the same number of iterations of

using two-grid method with Ag and Ac as coarse grid operator stencil is shown in

Figure 5.5.

83

Figure 5.5: The approximate solutions (left: Ag, right: Ac) after 10 iterations of two-
grid method with two coarse grid operators for solving rotated Laplacian problem
with ξ = 0.1147 and θ = π

4
.

Finally we show in Figure 5.6 the convergence of using different number of nonzeros

in Ac for the rotated Laplacian problem with ξ = 10 and θ = π
4
. Figure 5.6 shows that

the convergence of twogrid method with 5 and 6 nonzeros in Ac is similar to that with

Ag. On the other hand, the convergence of tworid method with 4 or fewer nonzeros

in Ac is much worse. This indicates 5 might be the minimum number required by Ac

for this problem.

84

Figure 5.6: The residuals of using two-grid method with different coarse grid stencils
for solving rotated Laplacian problem with ξ = 10 and θ = π

4
.

5.3.3 2-D elasticity problem

In this section we consider the 2-D linear time-independent elasticity problem. The

problem in an isotropic homogeneous medium is described by the following PDEs:

µ∇2(u) + (µ+ λ)(
∂2u

∂x2
+

∂2v

∂x∂y
) + fx = 0, (5.13)

µ∇2(v) + (µ+ λ)(
∂2v

∂x2
+

∂2u

∂x∂y
) + fy = 0, (5.14)

where u and v are the solution of x and y directions respectively, fx and fy are

forcing terms, µ and λ are Lame coefficients that are given by Young’s modulus E

and Poisson’s ratio ν:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
.

We use the following 9-point discretization stencils with a mesh size h on x direc-

85

tion and mesh size byh on y direction as described in [32].

Auu =


−λb2y−2µb2y+λ+µ

4(2λb2y+λ+4(b2y+1)µ)

(b2y−1)λ+2(b2y−2)µ

2(2λb2y+λ+4(b2y+1)µ)

−λb2y−2µb2y+λ+µ

4(2λb2y+λ+4(b2y+1)µ)

− 2λb2y+4µb2y+λ+µ

2(2λb2y+λ+4(b2y+1)µ)
1 − 2λb2y+4µb2y+λ+µ

2(2λb2y+λ+4(b2y+1)µ)

−λb2y−2µb2y+λ+µ

4(2λb2y+λ+4(b2y+1)µ)

(b2y−1)λ+2(b2y−2)µ

2(2λb2y+λ+4(b2y+1)µ)

−λb2y−2µb2y+λ+µ

4(2λb2y+λ+4(b2y+1)µ)



Auv =


3by(λ+µ)

8(2λb2y+λ+4(b2y+1)µ)
0 − 3by(λ+µ)

8(2λb2y+λ+4(b2y+1)µ)

0 0 0

− 3by(λ+µ)

8(2λb2y+λ+4(b2y+1)µ)
0 3by(λ+µ)

8(2λb2y+λ+4(b2y+1)µ)


Then the discretized linear system is

Ax =

Auu Auv

AT
uv AT

uu


ū
v̄

 =

f̄x
f̄y

 . (5.15)

The prolongation operator for linear elasticity problem is also constructed blockwisely

as: Puu Puv

PT
uv Puu

 ,

and the restriction operator R is the transpose of the prolongation operator. We use

red-black coarsening scheme for each block. The restriction and interpolation stencils

for u− u and v − v connections associated with this coarsening scheme are given by

1

8


1

1 4 1

1

 and
1

4


1

1 4 1

1

 ,

86

the restriction and interpolation stencils for u− v connection are given by

1

8


1

−1 0 −1

1

 and
1

4


1

−1 0 −1

1

 ,

and the restriction and interpolation stencils for v − u connection are given by

1

8


−1

1 0 1

−1

 and
1

4


−1

1 0 1

−1

 .

Note that as stated in [13], multigrid method requires to have one-row-sum for the

u−u and v−v interpolation weights and zero-row-sum for the u−v and v−u weights

to converge.

We choose Young’s modulus E = 10−5 and test the generalization ability of our

method for various Poisson’s ratio ν. We construct 4 training data points with ν =

0.1, 0.2, 0.3, 0.4 of size 9× 9 and choose the sparsification ratio ρ = 0.5. Note that for

linear elasticity problems, we have four blocks of stencils on the coarse grid and two

distinct stencils because of symmetry. We combine the two stencils before feeding

into the neural networks so that the framework can learn a better balance between

u − u connection and u − v connection rather than learning them separately. The

numbers of iterations for two-grid method to converge using Ag and Ac for problems

of size 65 × 65 are summarized in Table 5.7. We can see from the results that the

convergence is barely influenced.

87

ν (0.1,0.2) (0.2,0.3) (0.3,0.4)
Ag 10.1 10.2 10.6
Ac 11.0 10.7 11.5

Table 5.7: Averaged numbers of iterations required by two-grid method for solving
(5.15) of size n = 652 with random ν on each interval using Ag and Ac as coarse grid
operator stencils.

The values ϕ = ∥I − AcA
−1
g ∥2 (5.2) for each problem are shown in Table 5.8. All

of the values are less than 1.

ν (0.1,0.2) (0.2,0.3) (0.3,0.4)
ϕ 0.7014 0.6889 0.6890

Table 5.8: The value ϕ (5.2) for E = 10−5 and random ν on each interval.

We take a specific problem with ν = 0.3 and E = 10−5 as an example. We show

the eigenvalues of A−1
c Ag for different mesh sizes in Figure 5.7. We can see that the

distribution of spectrum is mesh independent indicating spectral equivalence of Ac

and Ag.

Figure 5.7: The eigenvalues of A−1
c Ag of different sizes for solving linear elasticity

problem with E = 10−5 and ν = 0.3.

88

An example of the approximate solutions after the same number of iterations of

using two-grid method with Ag and Ac as coarse grid operator stencils is shown in

Figure 5.8.

Figure 5.8: The approximate solutions (left: u, right: v, top: Ag, bottom: Ac) after
10 iterations of two-grid method with two coarse grid operators for solving linear
elasticity problem with E = 10−5 and ν = 0.1409.

5.4 Conclusion

In this chapter we propose a machine learning framework for sparsifying the coarse

grid operator Ag in multigrid methods to improve parallel efficiency. The sparsifi-

89

cation process has two major steps: choosing the sparsity pattern and deciding the

values. For each step we utilize one neural network and combine the results from the

two steps to construct Ac which has fewer number of nonzeros than Ag. We minimize

the error of applying Ag and Ac on algebraic smooth basis during training so that

multigrid with Ac, though being sparse, has similar convergence as that with Ag.

Experiments on rotated Laplacian problems and linear elasticity problems show

that our framework can sparsify the coarse grid operator by a factor of 2 while the

iteration number for multigrid method to converge remains almost the same.

90

Chapter 6

Conclusions and Future Work

Multigrid methods are one of the most efficient methods for solving large-scale sparse

linear systems arising from discretized PDEs. Error propagation operator (6.1) of

two grid is often used for convergence analysis:

ETG = (I −M−1A)(I − P (PTAP)−1PTA). (6.1)

In this thesis, we propose deep learning frameworks to learn the smoother M and the

coarse grid operator Ag = PTAP which are two key components in (6.1). In particu-

lar, we parameterize M−1 by multi-layered CNNs and propose an adaptive framework

guided by multigrid convergence theories. The training process of the proposed al-

gorithm, called α-CNN, can learn the smoothers which have the desired smoothing

property of reducing high frequency errors and lead to better convergence compared

to classical smoothers. We further improve the efficiency of multigrid methods by

sparsifying Ag. We use one deep neural network to design the sparsity pattern and

the other deep neural network to compute the values. Combining the sparsity pattern

and the values leads to Ac which is a sparser version of Ag. Multigrid methods with

trained Ac, being sparser, have similar convergence compared to multigrid methods

with Ag and therefore have better efficiency.

91

In this thesis, we have worked with stencil-based 2D problems on regular grids

such as rotated Laplacian problems and linear elasticity problems. We can also ex-

tend the frameworks to 3-D problems or other more complicated problems. Since

all the models and operations of learning can either be written as stencil-operations

or be directly applied to stencils, a more general and more challenging situation to

explore is to deal with irregular grids where stencils are not available, in which case

general linear systems need to be considered. A straightforward idea is to treat the

sparse linear systems as sparse graphs and utilize graph neural networks. Further-

more, convergence theories need to be developed when combining deep learning with

multigrid. To conclude, lots of inspiring and exciting work can be done to combine

multigrid methods with deep neural networks in the future.

92

Bibliography

[1] C. C. Aggarwal et al., Neural networks and deep learning, Springer, 10

(2018), pp. 978–3.

[2] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, Multigrid

smoothers for ultraparallel computing, SIAM Journal on Scientific Computing,

33 (2011), pp. 2864–2887.

[3] R. E. Bank and C. C. Douglas, Sharp estimates for multigrid rates of con-

vergence with general smoothing and acceleration, SIAM Journal on Numerical

Analysis, 22 (1985), pp. 617–633.

[4] J. Berg and K. Nyström, A unified deep artificial neural network approach to

partial differential equations in complex geometries, Neurocomputing, 317 (2018),

pp. 28–41.

[5] A. Bienz, R. D. Falgout, W. Gropp, L. N. Olson, and J. B. Schroder,

Reducing parallel communication in algebraic multigrid through sparsification,

SIAM Journal on Scientific Computing, 38 (2016), pp. S332–S357.

[6] A. Bienz, W. D. Gropp, and L. N. Olson, Reducing communication in

algebraic multigrid with multi-step node aware communication, The International

Journal of High Performance Computing Applications, 34 (2020), pp. 547–561.

93

[7] M. Bolten and A. Frommer, Structured grid amg with stencil-collapsing for

d-level circulant matrices, (2007).

[8] M. Bolten and K. Kahl, Using block smoothers in multigrid methods, PAMM,

12 (2012), pp. 645–646.

[9] A. Brandt, Algebraic multigrid (amg) for sparse matrix eqations, Sparsity and

its Applications, (1984), pp. 257–284.

[10] A. Brandt, Algebraic multigrid theory: The symmetric case, Applied Mathe-

matics and Computation, 19 (1986), pp. 23–56.

[11] A. Brandt, S. McCormick, and J. Ruge, Algebraic multigrid (AMG) for

sparse matrix equations, in Sparsity and its Applications, D. J. Evans, ed., Cam-

bridge University Press, Cambridge, 1985, pp. 257–284.

[12] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones,

T. A. Manteuffel, S. F. McCormick, and J. W. Ruge, Algebraic multi-

grid based on element interpolation (AMGe), SIAM Journal on Scientific Com-

puting, 22 (2001), pp. 1570–1592.

[13] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones,

T. A. Manteuffel, S. F. McCormick, and J. W. Ruge, Algebraic multi-

grid based on element interpolation (amge), SIAM Journal on Scientific Comput-

ing, 22 (2001), pp. 1570–1592.

[14] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. Mc-

Cormick, and J. Ruge, Adaptive smoothed aggregation (α sa), SIAM Journal

on Scientific Computing, 25 (2004), pp. 1896–1920.

[15] W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid tutorial,

SIAM, 2000.

94

[16] D. Cai, E. Chow, L. Erlandson, Y. Saad, and Y. Xi, SMASH: structured

matrix approximation by separation and hierarchy, Numer. Linear Algebra Appl.,

25 (2018).

[17] B. Chang, L. Meng, E. Haber, F. Tung, and D. Begert, Multi-level

residual networks from dynamical systems view, arXiv preprint arXiv:1710.10348,

(2017).

[18] H. De Sterck, T. A. Manteuffel, S. F. McCormick, K. Miller,

J. Ruge, and G. Sanders, Algebraic multigrid for markov chains, SIAM Jour-

nal on Scientific Computing, 32 (2010), pp. 544–562.

[19] H. De Sterck, U. M. Yang, and J. J. Heys, Reducing complexity in par-

allel algebraic multigrid preconditioners, SIAM Journal on Matrix Analysis and

Applications, 27 (2006), pp. 1019–1039.

[20] L. Erlandson, D. Cai, Y. Xi, and E. Chow, Accelerating parallel hierarchi-

cal matrix-vector products via data-driven sampling, in 2020 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), 2020, pp. 749–758.

[21] D. J. Evans and W. S. Yousif, The explicit block relaxation method as a grid

smoother in the multigrid v-cycle scheme, International Journal of Computer

Mathematics, 34 (1990), pp. 71–78.

[22] R. D. Falgout and J. B. Schroder, Non-galerkin coarse grids for algebraic

multigrid, SIAM Journal on Scientific Computing, 36 (2014), pp. C309–C334.

[23] R. D. Falgout and P. S. Vassilevski, On generalizing the algebraic multi-

grid framework, SIAM Journal on Numerical Analysis, 42 (2004), pp. 1669–1693.

[24] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and

W. Gropp, Modeling the performance of an algebraic multigrid cycle on hpc

95

platforms, in Proceedings of the international conference on Supercomputing,

2011, pp. 172–181.

[25] D. Greenfeld, M. Galun, R. Basri, I. Yavneh, and R. Kimmel, Learn-

ing to optimize multigrid pde solvers, in International Conference on Machine

Learning, PMLR, 2019, pp. 2415–2423.

[26] T. Gudmundsson, C. S. Kenney, and A. J. Laub, Small-sample statistical

estimates for matrix norms, SIAM Journal on Matrix Analysis and Applications,

16 (1995), pp. 776–792.

[27] E. Haber, L. Ruthotto, E. Holtham, and S.-H. Jun, Learning across

scales—multiscale methods for convolution neural networks, in Thirty-Second

AAAI Conference on Artificial Intelligence, 2018.

[28] J. Han, A. Jentzen, and E. Weinan, Solving high-dimensional partial dif-

ferential equations using deep learning, Proceedings of the National Academy of

Sciences, 115 (2018), pp. 8505–8510.

[29] J. He and J. Xu, Mgnet: A unified framework of multigrid and convolutional

neural network, Science china mathematics, 62 (2019), pp. 1331–1354.

[30] P. Holl, V. Koltun, and N. Thuerey, Learning to control pdes with dif-

ferentiable physics, arXiv preprint arXiv:2001.07457, (2020).

[31] J.-T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, and S. Ermon, Learn-

ing neural PDE solvers with convergence guarantees, in International Conference

on Learning Representations, 2019.

[32] A. Idesman and B. Dey, Compact high-order stencils with optimal accuracy

for numerical solutions of 2-d time-independent elasticity equations, Computer

Methods in Applied Mechanics and Engineering, 360 (2020), p. 112699.

96

[33] A. Katrutsa, T. Daulbaev, and I. Oseledets, Deep multigrid: learning

prolongation and restriction matrices, arXiv preprint arXiv:1711.03825, (2017).

[34] I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural networks for

solving ordinary and partial differential equations, IEEE transactions on neural

networks, 9 (1998), pp. 987–1000.

[35] P. T. Lin, J. N. Shadid, and P. H. Tsuji, Krylov Smoothing for Fully-

Coupled AMG Preconditioners for VMS Resistive MHD, Springer International

Publishing, Cham, 2020, pp. 277–286.

[36] D. Luo, W. Cheng, W. Yu, B. Zong, J. Ni, H. Chen, and X. Zhang,

Learning to drop: Robust graph neural network via topological denoising, in Pro-

ceedings of the 14th ACM International Conference on Web Search and Data

Mining, 2021, pp. 779–787.

[37] I. Luz, M. Galun, H. Maron, R. Basri, and I. Yavneh, Learning algebraic

multigrid using graph neural networks, in International Conference on Machine

Learning, PMLR, 2020, pp. 6489–6499.

[38] S. Mishra, A machine learning framework for data driven acceleration of com-

putations of differential equations, arXiv preprint arXiv:1807.09519, (2018).

[39] E. Nathan, G. Sanders, D. A. Bader, et al., Numerically approximating

centrality for graph ranking guarantees, Journal of computational science, 26

(2018), pp. 205–216.

[40] Y. Notay, Aggregation-based algebraic multigrid for convection-diffusion equa-

tions, SIAM journal on scientific computing, 34 (2012), pp. A2288–A2316.

[41] L. N. Olson and J. B. Schroder, PyAMG: Algebraic multigrid solvers in

Python v4.0, 2018. Release 4.0.

97

[42] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks

for biomedical image segmentation, in International Conference on Medical image

computing and computer-assisted intervention, Springer, 2015, pp. 234–241.

[43] J. W. Ruge, Algebraic multigrid (amg) for geodetic survey problems, in Preli-

mary Proc. Internat. Multigrid Conference, Fort Collins, CO, 1983.

[44] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial

and Applied Mathematics, second ed., 2003.

[45] , Iterative methods for linear systems of equations: A brief historical journey,

Brenner, SC, Shparlinski, I., Shu, C.-W., Szyld, DB (eds.), 75 (2020), pp. 197–

216.

[46] Y. Saad and M. H. Schultz, Gmres: A generalized minimal residual algo-

rithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7

(1986), p. 856–869.

[47] J. Schmitt, S. Kuckuk, and H. Köstler, Optimizing geometric multigrid

methods with evolutionary computation, arXiv preprint arXiv:1910.02749, (2019).

[48] J. Sirignano and K. Spiliopoulos, Dgm: A deep learning algorithm for solv-

ing partial differential equations, Journal of computational physics, 375 (2018),

pp. 1339–1364.

[49] H. D. Sterck, V. E. Henson, and G. Sanders, Multilevel aggregation

methods for small-world graphs with application to random-walk ranking, Com-

put. Informatics, 30 (2011), pp. 225–246.

[50] M. Sun, X. Yan, and R. Sclabassi, Solving partial differential equations

in real-time using artificial neural network signal processing as an alternative

98

to finite-element analysis, in International Conference on Neural Networks and

Signal Processing, 2003. Proceedings of the 2003, vol. 1, IEEE, 2003, pp. 381–384.

[51] W. Tang, T. Shan, X. Dang, M. Li, F. Yang, S. Xu, and J. Wu, Study

on a poisson’s equation solver based on deep learning technique, in 2017 IEEE

Electrical Design of Advanced Packaging and Systems Symposium (EDAPS),

IEEE, 2017, pp. 1–3.

[52] E. Treister and I. Yavneh, Non-galerkin multigrid based on sparsified

smoothed aggregation, SIAM Journal on Scientific Computing, 37 (2015),

pp. A30–A54.

[53] E. TREISTER, R. Zemach, and I. YAVNEH, Algebraic collocation coarse

approximation (acca) multigrid, in 12th Copper Mountain Conference on Itera-

tive Methods, 2012.

[54] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid, Else-

vier, 2000.

[55] W. Wang, Z. Dang, Y. Hu, P. Fua, and M. Salzmann, Backpropagation-

friendly eigendecomposition, Advances in Neural Information Processing Sys-

tems, 32 (2019).

[56] A. J. Wathen, Preconditioning, Acta Numer., 24 (2015), pp. 329–376.

[57] S. Wei, X. Jin, and H. Li, General solutions for nonlinear differential equa-

tions: a rule-based self-learning approach using deep reinforcement learning,

Computational Mechanics, 64 (2019), pp. 1361–1374.

[58] R. Wienands and I. Yavneh, Collocation coarse approximation in multigrid,

SIAM Journal on Scientific Computing, 31 (2009), pp. 3643–3660.

99

[59] G. Wittum, On the robustness of ilu smoothing, SIAM Journal on Scientific

and Statistical Computing, 10 (1989), pp. 699–717.

[60] J. Xu and L. Zikatanov, Algebraic multigrid methods, Acta Numerica, 26

(2017), p. 591–721.

[61] C. Zheng, B. Zong, W. Cheng, D. Song, J. Ni, W. Yu, H. Chen, and

W. Wang, Robust graph representation learning via neural sparsification, in

International Conference on Machine Learning, PMLR, 2020, pp. 11458–11468.

[62] D.-X. Zhou, Universality of deep convolutional neural networks, Applied and

Computational Harmonic Analysis, 48 (2020), pp. 787–794.

	Introduction
	Related work
	Contributions of Work
	Outline of Thesis

	Background on PDEs
	Poisson's equation
	Finite difference discretization

	Iterative methods for PDEs
	Relaxation methods
	Polynomial based methods
	GMRES
	Multigrid methods
	Prolongation
	Restriction
	Multigrid

	Relationship between PDEs and CNNs

	Learning deep neural smoothers
	Learning deep neural smoothers for constant coefficient PDEs
	Formulation
	Training and generalization

	Interpretation of learned smoothers
	Learning deep neural smoothers for variable coefficient PDEs
	Parameterization with fully connected layers
	Parameterization with convolutional layers

	Numerical experiments
	Constant coefficient PDEs
	Training details
	Variable coefficient PDEs
	Incorporation with FGMRES
	Comparison with Chebyshev smoothers
	Comparison with GMRES smoothers

	Conclusion

	Learning sparsified coarse-grid operator
	Motivation
	Theoretical considerations

	Sparsification with machine learning
	Numerical Experiements
	Circulant stencil
	Rotated Laplacian
	2-D elasticity problem

	Conclusion

	Conclusions and Future Work
	Bibliography

