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Inference, Dynamics, and Coarse-Graining
of Large-Scale Biological Networks

By Joseph L. Natale

Theoretical, experimental, and computational developments throughout the past
three decades have rendered biological network modeling a powerful mainstay in the
toolsets of physicists studying biology (and vice versa). Principal among experimental
advancements are the multitude of so-called “-omics” techniques for gathering high-
resolution, system-wide activity data at microscopic scales; on the computational side,
they are the complementary abilities to manage and analyze far larger sets of data
than ever before. The marriage of these endeavors, in the form of automated net-
work inference, or “reverse-engineering”, has provided an unprecedentedly thorough
characterization of small-scale biological systems, but remains costly and ill-equipped
to predict the properties or behaviors of those same systems at larger scales. Here
we review over two decades’ worth of work on network reconstruction, with an eye
toward what new knowledge this exciting subfield has brought to modern biology, and
then proceed to ask whether the typical products of the reverse-engineering endeavor
might not be supplanted by more coarse-grained representations of biological data.
Garnering inspiration from dynamical systems theory and statistical mechanics, we
first study a random recurrent network model whose dynamics are amenable to a
surprisingly compact description in terms of the system’s attractors. Then, following
classical renormalization group methods in physics, we develop a general framework
by which to pass from microscopic to macroscopic descriptions of a network even
when the underlying interactions are not yet known. Our generic approach is able
to extract appropriate large-scale degrees of freedom, and reproduce other previously
established results, for a well-known system in physics. We describe an algorithm
that can be applied directly to system-wide activity data, in the hope of obviating
the need for explicit network inference as a preliminary step toward learning new
biology.
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2.1 Examples of biological systems whose constituent interactions have been

modeled using networks. (a) The regulation of gene transcription by tran-

scription factors and other enzymes. For example, in the classic lac repressor

circuit [60], when lactose concentration is high and glucose concentration is

low, genes for metabolizing lactose are strongly activated. Activities in this

case might consist of microarray data for each mRNA species; the network

shows the logic (AND) of the system. (b) Neuronal co-activation networks

can be measured by computing correlations between spike patterns. In this

case, the network graphs are weighted, and weights may represent correla-

tions. (c) Spatially proximal amino acids tend to co-evolve, as they often

participate in bonds that are vital to the structure and function of the pro-

tein they form. Here activity values are discrete, assuming one of 20 values

to identify the amino acid at each site; the network represents bonds that

are inferred to exist by noting which site pairs are highly correlated across

similar proteins in different organisms. (d) Complex predator-prey interac-

tion dynamics can be cast in a network form as well. Here activation data

represent the populations of each species, and connections are labeled with

inferred parameter values for the governing population dynamics equations. 11



2.2 Simple directed network motifs help illustrate basic problems in directed net-

work reconstruction. This list is not intended to be comprehensive, but to

address some simple yet important scenarios. Links can represent mechanis-

tic interactions or effective relations (i. e., information transfer). Nodes rep-

resent stochastic or deterministic activation variables, which can be either

continuous or discrete. Here, dashed links represent spurious (erroneously

inferred) interactions, dark nodes represent unobserved (hidden) variables,

and the small square in f) refers to a computation that involves more than

two nodes (in this case, a third-order interaction). a) The simplest scenario:

a directed link between two nodes. b) A bidirectional coupling models a

simple system with feedback (e. g., the predator-prey system of Fig. 2.1).

c) A hidden common drive (dark node) to two observed nodes results in a

correlative relation between those nodes. If care is not taken, this can be

confounded with a direct causal interaction. d) A situation similar to that

of c), with the difference that measurements of all three nodes are accessible.

Näıve pairwise methods infer a spurious link between the initial and final

nodes in the feedforward chain. Multivariate methods are required in this

scenario to infer the correct links. e) In the case of a hidden node relaying

the causal interaction, network reconstruction methods may infer the cor-

rect direction of interaction, but the inferred links will be effective rather

than strictly causative since an intervention at the hidden node can disrupt

the interaction. f) The logic gate XOR entails a higher-order interaction.

The output is 0 if both input nodes carry the same value, and 1 if they are

different: simultaneous knowledge of the states of both nodes is required to

determine how each of the inputs affects the output. This is a classical ex-

ample of a scenario where X and Y carry synergistic (as opposed to unique,

or redundant) information [267]. . . . . . . . . . . . . . . . . . . . . . . 41



3.1 Sample bump state in a system with N = 212. The scale bar indicates

the synaptic cutoff distance ξ, below which G appears fully connected.

Inset : All the neural activities through time. Most of the trajectories

remain near zero, and cannot be visually distinguished. Stimulation is

shown as a gray block of width ∆t = 5τ . . . . . . . . . . . . . . . . . 62

3.2 Mutual information as a function of rounding precision in the center-of-

excitation values {~xCOE(T )}. Saturation occurs by four decimal places,

but in what follows we keep two places to ensure the precision of ~xCOE is

not finer than the inter-neuron separation λ. The changes the capacity

by less than a factor of 2. . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 The different attracting bumps observed over the k · ntrials computa-

tional experiments are distributed in such a way that they span the

majority of the plane. Bump centers are shown as blue dots; radii for

their surrounding gray circles are ≈ Reff. Dotted lines are periodic

boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Varying ξ reveals a broad plateau over which the mutual information

remains within a single bit of its maximum value. At either extreme of

ξ the information falls to zero as connectivities become too sparse or

too dense to support the type of spatial memory discussed throughout.

The black curve represents the information log2
L2

πReff
corresponding to

our original, näıve estimate of C, with Reff(ξ) adjusted to match the

typical values given by Gaussian fits to ∼ 1000 bumps. Note that the

black curve, representing ξ < λ, exists only outside the shaded gray

box because the bumps that did localize for small ξ were too few to

measure Reff(ξ) accurately. . . . . . . . . . . . . . . . . . . . . . . . . 77



3.5 In the neighborhood of ρ = ξ = 0.06L, the mutual information does

not vary significantly. We verified that the system tends to fall into the

same attractor regardless of the specific value of ρ until a large percent-

age of neurons are stimulated, thereby activating the aforementioned

“preferred” or global states. At roughly the same value after which see

a decrease in information with the cutoff distance, we observe a drop in

information with ρ. This continues monotonically until ρ > 50λ, after

which stimulations leads only to excitations below the activity threshold. 78

4.1 Upper left : Magnetization per spin; Upper right : Energy per spin;

Lower left : Susceptibility; Lower right : Heat Capacity; Red vertical

line: Tc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
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4.5 This plot shows the maximal information value I(σ∗i ;σ
∗
j (i
∗)) used to

select X across all iterations of the algorithm on a mixed-temperature

data set, relative to the the bounding and average information values

at the corresponding values of `. Specifically, the “Maximum” curve

records the highest mutual information value observed at the corre-

sponding scale (it is computed from the same matrix I(σi, σj), but

using a different Matlab function); the “Minimum” curve records the

lowest value of I(σi, σj) at a particular scale, using a Matlab function

analogous to that for the “Maximum” curve. Similarly, the “Mean”

and “Median” curves are different averages computed using the same

data. The behavior of I(X1, X2) between ` ≈ 0.5 and ` ≈ 8 suggests a

power-law scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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N
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Chapter 1

Old Problem, New Solutions;

New Problems, Old Solution

Like all models, biological networks [1, 2] are abstractions. Built to capture select

aspects of a system’s properties or behavior, the most fitting measure of their success

is not whether they are “correct,” but whether they are useful [3, 4].

Like other decorated scientific frameworks [5, 6], biological networks have proven

useful in many of the roles for which they were intended. Like many others [7, 8, 9],

they have often proved even more successful in serving functions well outside their

originally intended purposes. Yet network representations of living systems demand

attention not due to their similitudes with other models, but because they are unique.

For instance, biological networks are children of the twenty-first century: only in

the presence of modern experimental technology can one sustain ambitions of building

comprehensive interaction maps for processes on molecular, cellular, organismal, and

population levels. Moreover, such models are not mere databases; over the past few

years, the systems biology community has figured out how to analyze their structures

to enable powerful predictions about the underlying systems, sometimes with clinical

relevance (as in the emerging subfield of network medicine [10]).
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Of particular interest to the theoretical physics community is the possibility of

using biological networks to make generalizable statements about the way information

is stored and transmitted among the components of living systems. Such problems,

poised at the multitudinous interfaces between physics and biology, also echo a deeper

relationship between these two disciplines: while at present it might seem hyperbolic

to parallel the distillation of Hooke’s Law, or even Newtonian gravitational theory,

with recent developments in systems biology, the refinement of an ability to quantify

regularities from within the contemporary deluge of complex, seemingly disparate

data is the precise object of pursuit in certain cross-disciplinary endeavors [11]. Some

prominent figures in ongoing interdisciplinary efforts express hope that their work will

unveil quantitative theories, or even universal laws for the biological sciences [12].

Theoretical physics and biology do share a history of distinguished collaborative

success, including three joint Nobel awards in “Physiology or Medicine” [13, 14, 15].

Yet in utilizing large-scale network models to glean glimpses of how biological theories

might look, much remains to be learned by both camps. The physicist, skilled with

his array of mathematical hammers, has an onus to be cautious in pounding “nails”

when exploring the myriad (ostensibly, unique [16]?) complexities of life. Likewise,

specialists working in particular areas of biology must consider general patterns even

where it requires them to loose some of the details that set their systems apart.

With time, the lines dividing the traditional experience of both parties continue

to blur. The newer concerns, addressed by all parties, are about how to best describe

or treat the system at hand; the range of applicability of the suite of tools available;

and what new tools must be developed to answer previously unanswerable questions.

What specific kinds of difficulties does the study of large-scale networks bring?

First, there is the problem of constructing or inferring an appropriate network model

in the first place – and, having done so, knowing both how to interpret such a large-

dimensional object and what it will be used for. In general, whole-network inference
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is also computationally costly; it is not always clear that reverse-engineering, for all

the effort it entails, is necessarily the best approach for certain categories of problems.

A subsequent difficulty is that, while biological networks necessarily describe inter-

actions on particular (typically, small) scale, the predictions we (as a community) are

most interested in are often aspects of the underlying system’s gross behavior – the

output of some circuit, a decision which is reached by an animal – that manifest only at

larger scales, or even span multiple length scales [17]. Such “macroscopic” properties

and behaviors are often simpler, in the sense of affording lower-dimensional descrip-

tions, than the “microscopic” interactions which comprise the individual-component,

network-level account of the system... yet it is hard to tell when this is the case, and

no general method exists by which to ascertain whether an inferred network might

might encode low-dimensional collective behaviors or emergent properties.

Finally, there is the more difficult issue of bridging the gap between observation

scales: even for systems which are known to admit “simple” macroscopic descriptions,

how can we find an appropriate set of variables or features by which to summarize

the large-scale behaviors from knowledge only of the microscopic details? Can (and

should) large, complex network models themselves be systematically coarse-grained,

as is sometimes done for statistical models in physics? This topic is – and promises

to remain – of major interest in the machine learning community. Unsurprisingly,

relationships between fundamental aspects of feature learning and model reduction

in machine learning and their counterpart endeavors in theoretical physics are more

than skin-deep [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Still, subtle differences

in the guiding philosophies on each side prevent the näıve application or exchange of

methods. While parallel developments may yet converge, another possibility is that

some biological systems can be assigned simple models without ever having to infer

full-scale networks in the first place. Can one adapt the abstraction level for biological

models from the inception to match the intrinsic complexity of the data at hand [11]?
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Thesis Statement and Summary of Dissertation Contents

Academic disciplines [...] define themselves either by their objects of study

or by their style of inquiry. Physics [...] is firmly in the second camp [12].

This Dissertation is an attempt to rethink aspects of the contemporary approach

to “Big Data” biology, from the perspective of a theoretical physicist. Its core question

is: can we divine simple descriptions of would-be complex network models in biology,

without having to first understand all their constituent details? Or, do there exist

coarse summaries, some combinations of these constituents, that serve better than the

traditional fundaments for making certain types of predictions about living systems?

The following three Chapters comprise three interrelated projects, responding in

turn to each of the broad challenges mentioned above – inferring complex network

structures, approximating their dynamics with simple descriptors, and compressing

biological data to obviate the need for full-scale inference – in the context of concrete

physical or biological problems. In each, I emphasize a different way of thinking about

biological networks, and tackle a different problem-solving scenario by borrowing tools

and ideas from theoretical physics and related disciplines (these are, predominantly,

statistical mechanics, information theory, and machine learning). I have focused

primarily on problems in neuroscience, where increasingly large portions of in vivo

cellular networks can be monitored [31]. This has prompted many scientists to try

their hands at mapping large circuits in excruciating detail [32, 33, 34] and (somewhat

ironically) a few others – myself included – to inquire whether single-cell activities

are in fact the most logical choice for describing the rich functionalities of brains.

Our treatment begins by reviewing a resounding success. The technologies that

have made network reconstruction possible have solved an old, outstanding problem:

we can now measure and monitor thousands of biological species, simultaneously.

In Chapter 2, we survey the broad classes of modern, activity data-driven methods
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for learning the network structures of interactions between the (typically, microscopic)

biological elements – who talks to whom, and who controls whom? Algorithms with

a high degree of automation have generated significant excitement in all the so-called

“-omics” subdisciplines, where reconstruction approaches often share similarities with

previously established protocols, like system identification methods in engineering.

While the typical products or outputs of network inference tasks vary according to

the computational equipment used and the prediction types intended, an astounding

repertoire of data types, methodologies, and obstacles encountered by practitioners

(both conceptual and practical) is highly conserved throughout fields. Thus, once we

understand how relationships can be reliably inferred from data, we critically examine

the progress and goals of this burgeoning, cross-concentration endeavor, grouping all

examples collectively under the popular, umbrella term reverse-engineering.

A recurring theme within Chapter 2, both explicitly in the discussion of particular

algorithms and implicitly in the general philosophy of biological network inference, is

the notion of locality. Physicists will recognize this storied concept as one of their most

basic assumptions about Nature. Sometimes locality assumes a concrete guise, as in

the inference of site bonds between nearby amino acids from observable correlations

between variable parts of the sequence that ultimately code for a particular protein

shape. At other times it enters more abstractly. For example, one can consider

interactions which are “local” in the sense that they couple only a handful of elements,

regardless of distance in real (or any metric) space. For example, a certain gene might

interact with only tens of others (out of tens of thousands of possible interactions).

The locality of interactions recurs as an important theme throughout the Dissertation,

playing a major role in Chapter 3 and forming the basis for discussion in Chapter 4.

The critical analysis in Chapter 2 concludes with the distinct assertion that the

increasingly powerful network inference algorithms we see becoming more widespread

in certain fields [35] are not always the best tools even for their own jobs. Where
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intuition or transparency about the motion of a system as a whole is required, whole-

network reconstructions can become unwieldy hindrances that hamper progress. To

replace full-scale reverse-engineering for such applications, we call for new approaches

that are able to detect the functional units, or moving parts, that determine a system’s

behavior at large scales. Ideally, we would do this without partitioning or coarse-

graining inferred network models directly, since (to paraphrase Vapnik in The nature

of statistical learning theory), it makes little sense to solve this “hard” problem only

to simplify it for the purpose of solving an “easy” one [36].

Thus to progress in our central problem of moving from network microscopy to

macroscopic dynamics, our new goal will be to ascertain system’s gross functionality

without having to infer a network model “from scratch” in the first place. Two ways

in which this might be done are 1) finding approximate, low-dimensional descriptions

of a system’s behavior in terms of its dynamical attractors and 2) coarse-graining data

directly, prior to constructing a network representation, to infer an effective model at

the desired scale of inquiry. These are the bases of Chapters 3 and 4, respectively.

In Chapter 3, we study a system whose constituent interactions are in no obvious

way reducible, but whose dynamics across large scales may be nonetheless cast in a

straightforward form involving groups of simultaneously active system components.

Specifically, we examine a simple network model describing a neural system, com-

prised of synapses whose strengths are random and an overall firing activity that is

regulated by global inhibition. This model is spatially extended, and its excitation

modes have a natural geometrical interpretation that may be of interest in modeling

neural aspects of spatial navigation in animals. When stimulated locally, the system

attracts to one of a discrete set of constant-firing states that can be predicted with

high accuracy from knowledge of the spatial region in which stimulation occurred.

Locality enters in two ways in Chapter 3. First, synaptic efficacies, representing

strengths for the interactions between our model neurons, are chosen to be short-
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ranged and therefore spatially “local.” Second, our low-dimensional characterization

of the system’s dynamical behavior – a simple decoder whose input-output relations

realize one way of storing spatial memories – turns out to involve the participation of

only a small subset of a system’s components for each attracting state. In particular,

locating (or decoding) the region of stimulation entails tracking the firing rates of just

a few highly active neurons, without careful calculation of their real-valued rates.

Finally, Chapter 4 addresses the problem of constructing simple, large-scale repre-

sentations for complex systems in a more generic and formal environment. Inspired by

renormalization group approaches from statistical physics, we develop an automated

coarse-graining algorithm for learning effective summaries of “Big” activity data that

do not depend on prior knowledge of the system’s topological network structure. Our

framework generalizes the familiar real-space renormalization procedures, recovering

a system’s behavior at large scales without any need to specify its microscopic dy-

namics in advance, nor even the subsets of activity variables which are are sufficiently

“local” to engage in physical interactions. We test this novel method on a 2D Ising

model, for which both the microscopic interactions and macroscopic degrees of free-

dom are known, and find that it reproduces key aspects of the established RG flow.

Thus, at the climax, we propose to address the relatively new problem of how to sift

through more data and more network complexity than ever in biology by reviving

and generalizing into compatible form a classic, “old hat” methodology from physics.

Since the material in Chapter 2 is introductory, serving as the foundation for the

subsequent projects, its length is greater (and its tone less technical) than the sequels.

This academic review-style commentary was also published, with minimal differences,

as a chapter in a recent textbook on Quantitative Biology [37]. Accompanying the

main text (here included as an Apppendix) was a miniature, project-oriented problem

that was developed and written in conjunction with my coauthors, D. Hofmann and

D. G. Hernández, under the supervision of my Ph.D. Advisor, Ilya Nemenman.
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Chapter 2

Reverse-Engineering Biological

Networks from Large Data Sets

This contents of this Chapter initially appeared as an invited contribution

to the text “Quantitative Biology: Theory, Computational Methods and

Examples of Models” (edited by B. Munsky, W. S. Hlavacek, and L. S.

Tsimring, MIT Press, 2018). It was published there as Chapter 11, with my

coauthors David Hofmann, Damián G. Hernández and Ilya Nemenman,

under the same title; electronic pre-prints are also accessible as Natale,

Joseph L., et al. “Reverse-engineering biological networks from large data

sets.” See arXiv:1705.06370 (2017) and bioRxiv (DOI 10.1101/142034).

I was directly responsible for preliminary research on over 200 reverse-

engineering algorithms, creating captioned figures, the structural organi-

zation of the sections, and delegating sections to my coauthors. Sections

2.1 (with I.N. contributing heavily to subsection 2.1.1 and 2.1.2), 2.2, the

introductory paragraphs of Section 2.3, and 2.4 were my own; I established

the vision and contents (including early drafts) for – and contributed edi-

torially to the final drafts of – Sections 2.3.1 (D.G.H.) and 2.3.2 (D.H).
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Much of contemporary systems biology owes its success to the abstraction of a

network, the idea that diverse kinds of molecular, cellular, and organismal species

and interactions can be modeled as relational nodes and edges in a graph of depen-

dencies. Since the advent of high-throughput data acquisition technologies in fields

such as genomics, metabolomics, and neuroscience, the automated inference and re-

construction of such interaction networks directly from large sets of activation data,

commonly known as reverse-engineering, has become a routine procedure.

Whereas early attempts at network reverse-engineering focused predominantly on

producing maps of system architectures with minimal predictive modeling, recon-

structions now play instrumental roles in answering questions about the statistics

and dynamics of the underlying systems they represent. Many of these predictions

have clinical relevance, suggesting novel paradigms for drug discovery and disease

treatment. While existing review articles have focused their attention predominantly

on the implementation details and effectiveness associated with individual network

inference algorithms, here we examine the emerging field as a whole.

We first summarize several key application areas in which inferred networks have

made successful predictions. We then define and delineate the major classes of reverse-

engineering methodologies, emphasizing that the type of prediction that one aims to

make dictates the algorithms one should employ. We conclude by discussing whether

recent breakthroughs justify the computational costs of large-scale reverse-engineering

sufficiently to admit it as a mainstay in the quantitative analysis of living systems.

2.1 Lay of the land

Biological systems on all levels of organization, from cells to brains and to populations,

are comprised of ensembles of interactions among smaller constitutive components [38,

39, 40]. These interactions are typically very specific, and highly coordinated spatially
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and temporally [41, 42, 43, 44, 45]. Involving not just pairs, but also larger groups

of components acting in concert [46, 47, 48, 49, 50, 51], they are responsible for

the rich diversity of complex phenomena and behaviors that make living systems

work. Although often prohibitively numerous to model individually (though see [52]),

these components and their corresponding interactions can be represented formally

as graphs [53], known colloquially as biological networks [54, 55, 1, 56, 57, 58, 40, 59].

The variables in such networks (also called nodes) typically represent biochemical

or ecological species, cells, or even amino acid residues when one is interested in the

biophysics of proteins. The links among the nodes represent interactions, such as

chemical transformations, catalysis, and binding; cooperative or predator-prey rela-

tions among species; electrical and chemical communication among cells; or geometric

proximity among amino acid residues (Fig. 2.1).

To answer many questions in modern data-rich biology, an intermediate step often

involves the reconstruction of such networks from empirical data. The data typically

consist of joint samples of activities (often referred to as expressions, frequencies,

abundances, or population sizes, depending on the context) of a large number of

components measured in different biological contexts. Problems of this kind pervade

the quantitative life sciences on all physical scales, even if they take different forms

and use different languages across scientific disciplines.

At the smallest scale is the problem of inference of physical contacts for amino acids

in a protein fold [61, 62, 63], which is a network representation of the 3D structure of

the protein. Predicting such networks from the co-occurence of amino acids promises

the ability to design proteins with specific functional properties. At the cellular level,

different genes activate or suppress the activities of other genes, forming networks of

genetic regulatory interactions [64, 65]. Similarly, metabolites transform into each

other, catalyzed by various enzymes; these form metabolic networks [58, 66, 67], as

well as networks that combine both protein and metabolic modalities. Protein signal-
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Figure 2.1: Examples of biological systems whose constituent interactions have been mod-
eled using networks. (a) The regulation of gene transcription by transcription factors and
other enzymes. For example, in the classic lac repressor circuit [60], when lactose concen-
tration is high and glucose concentration is low, genes for metabolizing lactose are strongly
activated. Activities in this case might consist of microarray data for each mRNA species;
the network shows the logic (AND) of the system. (b) Neuronal co-activation networks can
be measured by computing correlations between spike patterns. In this case, the network
graphs are weighted, and weights may represent correlations. (c) Spatially proximal amino
acids tend to co-evolve, as they often participate in bonds that are vital to the structure
and function of the protein they form. Here activity values are discrete, assuming one of 20
values to identify the amino acid at each site; the network represents bonds that are inferred
to exist by noting which site pairs are highly correlated across similar proteins in different
organisms. (d) Complex predator-prey interaction dynamics can be cast in a network form
as well. Here activation data represent the populations of each species, and connections are
labeled with inferred parameter values for the governing population dynamics equations.

ing networks characterize the structure of decision-making and information processing

in individual cells [68, 69, 70, 71, 72]. The accurate reconstruction of different types

of these cellular networks is expected to lead to successful interventions that cure

some of the most debilitating diseases [73].

On the scale of the nervous system, one often reverse-engineers neural circuits [74,

75, 76, 77, 32] and, on a larger scale, functional connectivity networks between brain

regions [78, 79, 80, 81, 82]. The structure of the latter has been shown to be valuable
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as a diagnostic tool for some psychiatric diseases [83], and there is mounting evidence

that the former can be “reprogrammed” via external interventions to repair damaged

circuits [84]. Finally, on the largest scales, one can reconstruct networks of interac-

tions among members of a particular species [85, 86, 87], or different species in an

ecosystem [88, 89, 90, 91, 92, 93]. This knowledge may help in forecasting ecological

catastrophes [94, 95] and addressing the spread of infectious disease [? ] (or other

epidemics [96]).

In all of these fields, data share similar properties, and data sets often have similar

sizes. This imposes uniformity not only on the question of network inference itself,

but also on the obstacles and algorithmic approaches that underlie reconstruction

efforts across multiple biological domains. Inference methods designed for one system

type ([97], [98], and [99]) can often be adapted to accommodate others ([100, 101,

102], [103, 68, 104], and [75, 105], respectively). Moreover, morally equivalent methods

have been developed in nominally unrelated fields [106] – or else borrowed explicitly

from established disciplines, such as systems identification techniques migrating to

network biology from engineering [107, 108]).

An additional reason for the cross-pollination among the subfields of biological

networks inference is that, like in other parts of bioinformatics, the field has benefited

from advances in machine learning and related Big Data computational tools. In

their turn, as is often true of mathematical approaches, these tools are applicable

across multiple traditional biological subdisciplines, and hence provide for natural

theoretical bridges not only among life-sciences subfields, but also to a “network” of

other quantitative disciplines (physics, statistics, and computer science) [109].

However, one cannot embrace the unembraceable. Thus in this review, we will

focus almost exclusively on applications of networks inference to the systems biology

of the cell [110, 111, 112], and will mention bridges to other fields only briefly and

haphazardly, leaving the reader certainly thirsty for more. Starting with a few of the
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references that we mention, as well as using Google Scholar (another network, this

time of citations), is an easy way to quench this thirst!

Before proceeding any further, it is certainly worth warning the reader that the

explosive growth of the field of biological network inference has covered with a thick

blanket of journal articles some treacherous rocks. A few of them are very dangerous,

and can, in principle, sink the field if not addressed thoughtfully. Specifically, while

fully automated network inference has become a routine procedure, it is not immedi-

ately clear that the large-scale reconstruction of entire networks from high-throughput

data will necessarily result in tangible insights or actionable understanding about bi-

ological systems. One reason is that most reconstructions are not experimentally

verified, remaining in the literature as collections of information (or misinformation)

of dubious quality. Another comes from the fact that it is still not clear what new

knowledge entire-network inference yields, besides proposing potential interactions

for experimental verification. If a goal of the field is to predict response of biological

systems to yet-unseen exogenous perturbations, then the bridge between a network

graph and such predictive knowledge will have to be built eventually, but it is not

there yet in most practical applications. Most importantly, it is usually unclear what

insights are delivered by large-scale networks, or how to interpret the typical product

of the reconstruction enterprise – Lander’s infamous “hairball” of decontextualized

interactions [113]. One can even argue that exhaustively enumerating interactions is

not inherently more insightful than cataloging the original experimental data, and

both should give way to studying the system’s emergent properties [114]. Having

now warned the reader, we leave these important, foundational questions aside for

the remainder of the review (save the Discussion).

2.1.1 Scale of the biological network inference problem

Network reverse-engineering is typically done in the “low-hanging fruit,” Big Data
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regime. Here the data sets are large, but the number of unknowns is even larger: not

all the unknowns can be learned reliably.

While reconstructions can be performed using different data types [115, 110], here

we are concerned with approaches that are based exclusively on biological activity

measurements. Suppose we have a network consisting of p nodes (e. g., a group of

p interacting genes or neurons), and n simultaneous measurements of some activity

variable for each of these nodes (which for our purposes fully characterizes the bio-

logical states of the nodes at a given moment in time). The activity variables can

be binary (as in the characterization of whether a gene is on or off, or whether a

neuron is spiking or not at a given time) or real-valued (gene expression levels, or

firing rates for neurons). In other words, the total amount of available data is ∼ np.

The goal is to identify links between pairs of the p nodes (or more generally, higher

order interaction structures) from patterns in their activities. If we focus on pairwise

interactions among the nodes only, then the number of unknowns is ∼ p2. Thus the

amount of data per unknown is α ∼ np/p2 = n/p.

In the classical statistics regime, the amount of data is typically asymptotically

large compared to the number of unknowns, α � 1. In contrast, network inference

usually proceeds in the regime where p � 1, with typical p ∼ 102 . . . 103. For gene

expression and other high throughput cellular data, in particular, it is not uncommon

to have p ∼ 104. Other fields are catching up [116, 117]. The number of measurements

is also typically large, n � 1. We can consider n < p, as in most genetic data, or

n > p (but not n� p), as in many neuroscience applications. More generally, n ∼ p,

so that α ∼ 1, representing a qualitative departure from the classical statistics regime.

The situation gets even worse when we remember that the total number of pa-

rameters characterizing all (higher-order) interactions in a network scales as the total

number of states that the network can be in (i. e., 2p for binary nodes, or 2pS for

continuous ones, where S is the entropy of each node measured at the experimental
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resolution). Thus in the most general case, for biological network inference, α� 1. It

is clear then that, just like in most other Big Data applications, the problem cannot

be solved completely, with all interactions identified. Thus networks inference nec-

essarily is a “low-hanging fruit” problem, where the limited data allows us to focus

only on the most salient features of the studied systems. This also means that, in any

quantitative assessment of the quality of network reconstruction methods, we should

focus a lot more on the precision (absence of false positives) of a method, rather than

on its sensitivity (absence of false negatives), since the sensitivity of essentially any

method on realistic data would be tiny.

2.1.2 Different ideologies for inference

In biological network inference, one can think of reconstructing actual physical inter-

actions among the nodes or coarse-grained, phenomenological surrogates. We focus

exclusively on the latter.

The notion of network inference may evoke the idea of reconstructing actual physi-

cal interactions among network nodes. For example, a regulatory interaction between

two genes might mean the direct binding of a transcription factor protein, translated

from one of these genes, to a specific part of the DNA sequence that controls the

expression of the other gene [101]. We refer to the reconstruction of such physical,

microscopically accurate interactions as the inference of mechanistic networks. In con-

trast, the majority of reconstruction methods focus (explicitly or not) on the inference

of effective interaction networks [118], which keep track of purely phenomenological

interactions. These may or may not be mechanistically accurate, but are sufficient

to reproduce various statistics of the observed variables. Such effective interactions

may correspond to subsets of the interactions in mechanistic networks. They may

be compact, coarse-grained averages of some microscopic quantities. Or they may be

entirely macroscopic properties that have remote and complicated relationships with
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the microscopic, mechanistic interactions.

One can focus on effective network inference for purely pragmatic reasons: as

discussed above, even high-throughput data is insufficient to infer all the contributing

actors in a complex system, and effective interactions may simply be the low-hanging,

accessible fruit. In contrast to this pessimistic view, one may argue that every level of

description requires its own proper degrees of freedom for efficient representation [114,

119, 11], and that the distinction between mechanistic and effective networks is not

that clear-cut.

To wit, even mechanistic biophysical interactions are themselves effective inter-

actions, just at a different scale. For example, the bonds between amino acids that

form at protein-protein interfaces consist of electrostatic forces between constituent

molecules. These forces can then be broken down in terms of quantum interactions

between elementary particles, at which point the notion of an amino acid has long

since disappeared. Likewise, the fact that communication between synapsing neurons

requires the diffusion of neurotransmitters across the synapse undermines the notion

that neurons can ever truly be in a direct, mechanistic contact. We are sympathetic

with this viewpoint, which treats the distinction between mechanistic and effective

networks less as a dichotomy than as a spectrum. In what follows, we cast the issue in

terms of modeling assumptions: what is the appropriate set of nodes and interactions

to answer the specific questions being asked while working at the desired scale?

Our perspective notwithstanding, a few authors have distinguished explicitly be-

tween these two ideologies (see [120] as the originator of the “physical” vs. “influence”

network terminology, and [81] for a more fine-grained distinction among different

types of effective networks in the brain). Many other sources refrain from making

such explicit distinctions, presumably either for expedience in exposition or because

they take seriously the aforementioned notion of pursuing the most efficient or use-

ful description at a given level of study, regardless of the biological implementation
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details at other levels. While we remain agnostic to the particular reasons for the

tendency of reverse-engineering literature to avoid making this distinction at the out-

set, we lament the absence of explicit declarations of the intended level of description

when elaborating a new algorithm by the majority of publications. By default, in

this Chapter, we focus on effective inference methods, for which authors do not make

an effort to understand whether there is a mechanistic basis for inferred interactions,

stating any exceptions at the outset when they appear.

2.1.3 Goals of this Chapter

We are now in a position to state our intended goals for this Chapter. In the following

sections, we review relatively recent (within the last two decades) attempts at network

inference, contending:

1. The aptness and success of a given inference method depend on the ultimate

purpose of performing network reconstruction. One must first establish what

kinds of predictions are desired (i. e., what does one seek to learn [1] using the

network?), and only then decide which algorithm to use.

2. Large-scale network reverse-engineering has many fruitful applications, but it

is not always the necessary – or not necessarily the best – approach for making

certain kinds of predictions.

Note that we deal exclusively with inference methods that produce networks con-

taining at most pairwise interactions. While the joint probability distribution for p

discrete or continuous stochastic activation variables in a stationary state {gi} can

be expanded [99] most generally as

P ({gi}) ∝ exp

[
−

p∑
i

hi(gi)−
p∑
i,j

Jij(gi, gj)−
p∑

i,j,k

φijk(gi, gj, gk)− ...

]
, (2.1)
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where functions hi, Jij, and φijk denote first-, second-, and third-order interactions,

respectively, it is clear from the considerations of Section 2.1.1 that reliable estimation

for terms of higher order than Jij is prohibitively difficult. In addition, we review only

the algorithms that attempt to infer static values for Jij under the assumption that

the system is in (near-)stationary conditions, although some authors have attempted

to estimate networks whose topologies are dynamically evolving [121, 122].

The progression of the Chapter is as follows. First, we examine highlights of

the many places where network inference has been used to advance new knowledge

in contemporary systems biology and establish novel paradigms in modern medicine.

Then we proceed to delineate and explicate several types of inference methods, briefly

describing the operation of several representative algorithms for each of the classes we

name. We conclude with a brief outlook of where the field might be headed. However,

these concluding comments should be taken with a lot of caution, since “it is difficult

to make predictions, especially about the future.”

2.2 Roles for reverse-engineering in systems biol-

ogy research

The reverse-engineering of large-scale networks by means of automated algorithms has

become such a routine procedure that it has spawned a research field of its own. Why

is the task of learning networks from data considered so important?

The modern imperative to generate comprehensive parts lists for large biological

systems [58] is epitomized in what one author somewhat flippantly calls “the giant

maps of metabolic pathways that many molecular biologists pin to their walls” [123].

Such diagrams encode and illustrate visually the entirety of observable interactions of

a particular type in a specific system. Since the mid-2000s, attempts to generate such
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maps have been pursued vigorously by researchers in various disciplines, but the most

prominent and systematic efforts have come from the network inference Challenges

of the Dialogue on Reverse-Engineering Assessment and Methods (DREAM) initia-

tive [124, 35]. Contestants participating in these ongoing Challenges submit network

reconstructions, inferred by original algorithms operating on standardized data, for

comparison against (experimentally) established sets of interactions in benchmark

networks.

The top-scoring networks in early competitions achieved respectable accuracies,

despite the difficulties associated with defining “gold standard” benchmarks and eval-

uation metrics [124, 125]. However, they also lacked the ability to provide intuition

(beyond structural insights) about the systems they described. As static pictures of

interaction architectures, they had limited ability to predict a system’s behavior. The

pattern of assembling a large, intricate network as the end goal, with no intention

to use it as a tool for prediction – as in the iconic but largely uninformative hairball

of Ref. [113] – thematized DREAM competitions roughly until 2014, nearly a decade

after one reviewer declared the field to be “still in [its] ‘natural history’ phase” [39].

The emphasis of DREAM competitions has since shifted, mirroring changes in

the attitude of the reverse-engineering community as a whole. Recent competitions

have more strongly favored predictive modeling, with inferred networks serving not

as ends in themselves, but as coarse summaries of high-dimensional data – a special

type of statistic – to aid in projecting how the behavior or components of a system

will change (as a function of time, due to changes in its environment, etc.).

This movement away from using learned topologies as a signal that the “work

is done,” and instead toward viewing the entire process of network inference as an

intermediate step in an fully-fledged research pipeline [126], is also supported by

theoretical work. In particular, it has been argued that structure alone provides

insufficient information to achieve an adequate degree of control over the underlying
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system’s dynamics [127]. In fact, the object of interest is not always a network’s

structural complexity (density of connections), but its dynamical complexity (the

number of fixed points it can accommodate), which depends on other parameters

beyond structure, such as its connection strengths. Indeed, only the latter is closely

tied to the viability of a network architecture in the context of evolution [128].

The field’s transition – from descriptive to predictive – is a natural one, and in-

deed reminiscent of the progression in other branches of science. While it is not

completely clear why there was this prolonged period of exploration without model-

ing, it is plausible that reverse-engineers first needed to convince themselves that (1)

networks can, indeed, be accurately reconstructed from activity data alone, and (2)

the achieved reconstructions are statistically significant and reproducible. Further-

more, experimental tools for administering systematic perturbations to the networks

under study took a while to develop, so that the need to predict dynamical responses

to perturbations had not emerged for a while. As confidences in the statistical power

of reverse-engineering grew, and new experimental tools were developed, the next

level of questions naturally emerged. It is in answering this next level of questions

that network reconstructions have found their broad spectrum of highly nontrivial,

often unique, and even central roles in modern systems biology. For the remainder of

this section, we survey several key application areas, focusing on the most impactful

types of predictions that reconstructions are capable of generating.

2.2.1 Predictions regarding individual nodes or interactions

Reconstructions can help identify intervention targets or functionally similar cohorts

of biological species.

The advent of modern, high-throughput data acquisition techniques transformed

the enterprise of network reconstruction from a painstaking, often collaborative pro-

cess into an exercise in algorithmic design. Verifying the existence of a single interac-
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tion no longer demands corroboration by multiple independent research efforts, and

connections can now be inferred in parallel directly from a single set of data. An oft-

cited consequence of this change of pace contends that modern reverse-engineering

dramatically increases the rate at which hypotheses about potential interactions can

be generated. To this end, whole-network reconstructions allow us to rapidly eluci-

date both the presence and nature of individual interactions, as well as predict the

function of individual nodes from knowledge about their neighbors [129, 130].

Inference methods designed for the express purpose of proposing novel interac-

tions for experimental verification [131, 99] have confirmed previously established

gene targets [108] and identified novel targets for known transcription factors and

drugs [132, 133]. Known broadly as statistical or association methods (see “Who

talks to whom,” Section 2.3.1), algorithms in this class have also discovered entirely

new interactions [132, 134, 135, 47, 48, 136, 137], with previously unknown gene in-

teractions often being verified experimentally [138, 139]. In a multi-algorithm litmus

test, several of these methods were capable of inferring missing links in artificially

corrupted, incomplete versions of established pathways [140].

Network-based strategies for the prediction of protein function [141] generalize

more traditional approaches, such as clustering analyses [129], that have been used

to classify genes and proteins according to their role at either the physiological or the

network level. Individual gene clusters correspond to distinct functional groups in

some systems [142]. They can be used to infer roles for unclassified elements according

to the guilt-by-association (GBA) heuristic (i. e., assigning functions similar to those

of nearby neighbors in the interaction space).

Clustering alone cannot produce a full interaction map, and its applicability is

limited because its underlying assumptions are not universal among biological sys-

tem types [143, 144] (GBA may be more valid for protein-protein interactions than

gene-gene interactions, since the latter entail more latent or intervening steps). Nev-
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ertheless, clustering is still useful in modern reverse-engineering, predominantly in

the data-processing phase that often precedes the inference of full interaction archi-

tectures [145]. Clustering the data prior to inference greatly restricts the search space

by providing an effective prior to bias the set of candidate interactions. On the other

hand, the same idea can also be used to coarsen inferred networks: “module-based”

inference techniques [146] have identified entire groups of genes that are function-

ally related [147]. We will return to this idea of identifying coarse functional and

conceptual (as opposed to simply structural) units in the Discussion.

2.2.2 Insights from the statistical properties of network en-

sembles

Certain structural statistics differentiate real biological systems from other kinds of

complex networks.

While the rapid verification of microscopic interactions undeniably constitutes an

improvement in the pace of discovery, it does not by itself generate categorically

new kinds of knowledge. Systems biology is “more than an accelerated program

of molecular biology” [113], and the relatively new tools of reverse-engineering must

prove their worth by helping to play a part in that grander enterprise. This is reflected

in the possibility of using reconstructions to make predictions not only about single

nodes and individual connections, but about the statistical properties of network

ensembles.

Work in this direction has produced various insights about what distinguishes bi-

ological systems and endows them with their unique characteristics among complex

networks. For instance, it has been shown that the most highly connected nodes

in protein networks are likely to be essential [148] for survival [149, 150]. Moreover,

nodes with an exceptionally high degree (i. e., number of connections), called hubs, at-
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tach preferentially to nodes with low degree while tending to avoid one another [151].

This property, in part, underlies the widely observed modular organization of cellular

systems: an efficient coding scheme in which network partitions include only compo-

nents involved in related processes. This discourages overlap and ensures that (on

average) no single node participates in too many processes [71]. This forms the basis

for one type of biological robustness [152].

Certain modular structures recur with disproportionately high frequencies in bio-

logical systems (with respect to their chance rate of appearance in a random graph [53]).

Known as motifs [57, 153], they can endow the network with vital control and design

features, such as positive or negative feedback, and are often conserved throughout

evolution [154, 155, 156]. Studying the appearance rates of motifs across different

networks can help clarify the functional “purpose” they satisfy within a given net-

work.

While a node’s degree is its most fundamental attribute, studying other network

parameters has also led to key insights. The betweenness centrality [53] for nodes

in protein interaction networks has been observed to be even more highly correlated

with protein essentiality than the degree [157]. Moving beyond individual nodes, it

has been argued that the full degree distribution is approximately scale-free [56] for

many systems, providing deep architectural support for the robustness of biological

systems to noise and perturbations, at both environmental and genetic levels [158]

(yet see [159] for a cautionary note about the associated power-law distributions).

In network medicine [10], clinically relevant predictions can often be made from

such high-level statistics, irrespective of whether interactions can be enumerated ex-

haustively or determined at a fine-grained level. For instance, the aforementioned

correlation between a node’s degree and its essentiality for survival begets the notion

that candidate drug targets can often be ruled out immediately if they are too highly

connected, such that using them risks compromising the rest of the network [160].
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While one should not focus exclusively on the architectural aspects of dynami-

cally engaged networks [128], even microscopic statistics can sometimes go beyond

structure to tell rich stories about the behavior of the underlying system. Maxi-

mum Entropy [161, 162] methods [106] (see Section 2.3.1) have been used to learn

the effective coupling constants that connect neurons in the retina [74, 163], where

the inferred values suggest that these networks naturally reside in the neighborhood

of a critical point in their parameter spaces [164]. This might afford such networks

an essentially optimal capacity for stimulus representation, as well as information

storage and transmission [165, 166] (though see [167] for an alternative viewpoint).

For the amino acid interaction networks that keep track of where bonds form during

protein folding, the same methods corroborate the idea that geometrically proximal

residues tend to coevolve [63] by showing that bond locations can be identified using a

simple statistic on the ensemble of viable protein sequences (in this case, correlations

between the activations of site pairs).

2.2.3 Using statistics to characterize or classify individual

networks

Ensemble statistics can help identify defective or emergent properties in a network.

Sometimes, statistical surmises can be used to make statements about the typical-

ity of a particular network. An approach known as differential networking (so named

to contrast with differential expression, a popular type of approach to activation data

in gene networks) has been increasingly used for this purpose.

For example, Refs. [168, 169] discuss the idea of using topological characteristics to

solve supervised classification problems, such as determining whether a given network

comes from a healthy or a pathological organism. This possibility is explored explicitly

in [83], which nominates several criteria (reduced clustering and “small-worldness,”
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reduced probability of high-degree hubs, and increased robustness) as those which

are markedly altered in patients with schizophrenia. The reconstruction method

developed in [170] was able to identify genes that are either known tumor drivers,

associated with biological processes relevant to disease, or correlated with patient

prognosis for various types of cancer by examining how pathological networks differ

from their counterparts in “normal” tissue. Changes in hub structure have also been

used to forecast the survival outcome for breast cancer patients [171].

It is worth pointing out that the aforementioned Maximum Entropy methods [106]

provide, in some sense, a complementary approach to ensemble statistics. Rather

than addressing only aspects that networks have in common (or can be averaged

over), these approaches are predicated on exploiting the intrinsic variability at the

micro-scale in an attempt to reproduce what is conserved at the macro-scale. This

is especially useful wherever diverse microscopic network connectivity structures are

known to produce indistinguishable behavior at coarser resolutions, as in protein

folding: there is no one-to-one mapping between amino acid sequence and tertiary

structure, but an entire distribution of microscopic parameters – a wide variety

of equally viable amino acids sequences – that code for roughly the same protein

shape [172, 173, 174, 61]. Knowing this, one can easily imagine how running Maxi-

mum Entropy methods in reverse can help determine, for example, whether a given

amino acid interaction network represents a viable protein. The same might be said

for evaluating the typicality of an inferred retinal network, by measuring properties

like criticality [175, 176] (NB: for a selection of competing viewpoints on the criticality

of neuronal networks, consult the aforementioned [167], as well as [177, 178, 17, 179]).

2.2.4 Predicting how a given network will respond to per-

turbations

Reconstructions help identify and quantify response patterns in novel conditions.
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Network models capture and summarize complex dependencies the among states of

biological components, often allowing one to predict how a system will change its state

or behavior with changes in the biological environment (i. e., modifications affecting

the state of one or more nodes or interactions). Commonly studied perturbations

can be local [180] (e. g., knockout of a single gene, as in the simulation of deleteri-

ous mutations), multifactorial (affecting many elements) [181], or fully global [182]

(applying a drug to slightly suppress the firing of all neurons in a circuit), and the

system’s responses can be investigated at local or global levels as well. For instance,

one might inquire about the effect of a drug or a mutation on the expression of a

single gene, or the success or failure of signal propagation from start to end through

a perturbed pathway.

The types of responses that are interesting to researchers vary widely, and range

across a spectrum of detail. The simplest and the coarsest entail qualitative pre-

dictions: for example, is the activation state of a given node affected by a specific

perturbation? Progressing to a more quantitative picture, one can try to predict

the actual post-perturbation values for affected nodes, as in the prediction of gene

expression levels following a knockout event [183]. At the finest granularity, models

incorporating time-series measurements can be used to forecast the transient behavior

for such a gene as it approaches a new steady-state expression level.

Recent DREAM Challenges have provided a testing ground for algorithms aiming

to make these types of predictions. The DREAM4 Predictive Signaling Network Mod-

eling Challenge [184] instructed contestants to predict phosphoprotein measurements

“using an interpretable, predictive network”1, and the bonus round of that year’s in-

silico Challenge [186, 187, 180] asked competitors explicitly to predict the system’s

1http://dreamchallenges.org/project/dream4-predictive-signaling-network-modeling.
The solution presented in [184] infers a network using Boolean truth tables, one of the most popular
approaches during the early stages of automated network inference [185]. This approach has since
fallen out of favor, yielding to the more sophisticated methods we discuss in Section 2.3, but
Bayesian networks are often still discretized to Boolean values for convenience.

http://dreamchallenges.org/project/dream4-predictive-signaling-network-modeling
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responses to “novel” perturbations that were not encountered in the training data.

The DREAM7 Network Topology and Parameter Inference Challenge [140] specified

the prediction of perturbation outcomes using gene regulatory network models as a

separate step from inferring their topologies.

As we discuss later, prediction of time-course trajectories requires directed net-

works, but the converse is not true: directional links can sometimes be inferred from

static data. On the level of qualitative predictions, the linear dynamical systems

approach of [108] was able to deduce the targets of novel perturbations in a system

of nine genes using only steady-state values of their expression levels, following a

series of highly controlled perturbations (and the knowledge of which genes were tar-

geted during the perturbations). We consider this result to be particularly important,

for two reasons. First, it challenged previously expressed (and still later-held [188])

ideas by successfully determining a directed network, despite the fact that the ap-

plied perturbations elicited statistically significant changes in the activations of all

nodes. Second, later improvements extended the abilities of the algorithm therein

to determine which species were “hit” by applied perturbations even without spec-

ifying as inputs which genes were targeted during the data acquisition phase [189],

reinforcing the idea that M static, independent, but carefully selected perturbation

measurements can substitute for a series of time-course measurements taken at M

intervals [190].

2.2.5 Representing the joint probability distribution for ob-

servables

A network model can be interpreted as shorthand for a joint probability distribution.

Activation values for each node depend on those of many others, rendering graph-

ical models particularly convenient representations of their joint activities. Graphs
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can explicitly encode the statistical dependencies among different activation variables

as connection weights, with the states of connected nodes given not by a stochastic

transfer function, but by conditional probabilities.

A type of directed acyclic graph (DAG) known as a Bayesian network is a weighted

construction whose connection strengths are typically learned [191] via Bayesian in-

ference (i. e., computing the posterior probabilities for a set of candidate DAGs, and

selecting the member with the highest value, etc.) Undirected variants, which commu-

nicate only binary dependency information via the presence or absence of symmetric

links are popular in different applications. When activities are assumed to deviate

normally from baseline values (an assumption that greatly simplifies the inference

process), they are known as Gaussian graphical models [192].

Connection weights in a Bayesian network can be scaled so as to represent a

proper, normalized probability distribution. Adjusted to match that of the observed

data, the weights in such a dependency graph become an explicit encoding of the

system’s joint statistics. Bayesian networks satisfy a Markov property, such that

the activity value distribution for a given node depends only on the values of its

immediate predecessors (these activities are often discretized as binary variables for

mathematical convenience, so the resulting graph neatly keeps track of the probability

that a downstream node in the inferred network will be active if its predecessors

are active). This directed conditional dependency structural arrangement offers a

conceptually accessible and intuitive view of the system, although the presence of

directed connections between two nodes does not mean there is a direct physical

(i. e., mechanistic) or causal link between the corresponding species [193].

One of the most important and unique applications of network inference, this

compact representation of probability distributions permits the quantitative predic-

tion for nodal activity values, in both static and dynamic contexts. Probabilistic

graphical models are particularly useful in putting numbers on answers to questions
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like “What is the probability of this protein being active, given that a particular stim-

ulant is present?” or its converse: “What is the probability of the stimulant having

been present, given that the expression level of this gene is high?” [194]. We discuss

methods for inferring both types of probabilistic graphical models named here, and

their limitations (including their ability to infer causality), in Section 2.3.

2.2.6 Reconstructions as a part of the Big Picture

Inferred network models can be combined with existing and new methods as one part

of a larger repertoire for investigating many facets of living systems.

Reconstructions are increasingly combined with other tools and prior biological

knowledge to form integrated frameworks for discovery. Some reverse-engineering

approaches attempt to incorporate prior knowledge explicitly into the inference pro-

cess for individual networks [195, 196, 197, 198, 199, 200], including one study which

advocates the use of undirected gene networks (gleaned from functional association

databases) as priors to enhance the inference of mechanistic, causal gene regulatory

networks [201].

Other applications use networks to cross-reference, corroborate, or pre-screen evi-

dence for predictions about specific systems. For example, the “network approach” to

genome-wide association studies (GWAS) and disease gene prioritization is reviewed

in [129], and the use of networks for the prediction of protein functions (in the gen-

eral sense, not restricted to physical binding), evolutionary studies of pathogenic and

non-pathogenic strains, and the bidirectional interactions between host and pathogen

are reviewed for the specific context of infectious disease in [130].

We have already mentioned the work [126], which uses Bayesian networks in tan-

dem with support vector machines to predict the toxicity of various chemicals in a

supervised setting. Yet we believe the most pivotal roles to be played by reconstructed

networks are those which completely change the way we think about biological phe-
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nomena, specifically by offering new ways to predict system-wide behaviors. Such

a revolution is already underway in medicine: the treatment of various diseases is

no longer unilaterally viewed from within the “one-gene, one-drug” paradigm, and

it is gradually becoming the new standard to view related autoimmune disorders as

emanating from a network of maladies with the same root causes [202, 203, 204].

2.3 Two different meanings of phenomenological

“reconstruction”

We distinguish two principal categories for phenomenological network inference, ac-

counting for methods that produce undirected and directed graphical models.

Algorithms in our first category define an inferred interaction as an irreducible

statistical dependency among nodes, typically quantified by some measure of the sim-

ilarity among the activation profiles of different nodes. This is a structure-only ap-

proach, and should be used when it is only necessary to reconstruct the overall net-

work topology – in other words, for applications for which it is sufficient to know “who

talks to whom.” In some cases, topological maps can be augmented with weights that

ascribe an effective strength or confidence level to the inferred interactions [205, 174].

Algorithms in our second category define interactions in terms of asymmetric

relations capable of describing not only which nodes participate in an interaction,

but also “who controls whom.” Previous classification schemes have considered the

inference of unweighted, directed links as a separate endeavor from discovering quanti-

tative input-output relationships between nodal activities [206], or further distinguish

algorithms that detect the sign of interactions without an explicit direction [207, 208].

However, since both the types of data and the processing techniques needed to infer

all these kinds of graphs are similar, we treat them on equal footing.
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2.3.1 Who talks to whom? Presence, absence of undirected

links

The most basic question that one can answer in the course of network reconstruction

is whether a given subset of nodes can be characterized as interacting – in other

words, who talks to whom? Since our focus here is on the unsupervised inference of

interaction networks directly from activation data, any notion of “interaction” that

we consider must depend on these activations alone. A natural definition for the

existence of an interaction among species is the presence of statistically significant

correlations among their respective activation states. Such a choice results in an

undirected network with symmetric (though possibly weighted) connections.

In practice, pairwise statistical dependencies are typically quantified by introduc-

ing a similarity metric, such as the first-order Pearson correlation. The Pearson

correlation coefficient is a normalized, pairwise dependency measure bounded by the

interval [−1, 1]. Positive (negative) values indicate an increasing (decreasing) linear

relationship. While its value is always zero for statistically independent variables, a

vanishing Pearson correlation cannot rule out nonlinear correlations. Conversely, in

the absence of nonlinear effects, finite sampling can cause independent variables to

appear correlated, so that connections can be inferred where no otherwise discernible

interaction exists. To avoid inferring such spurious interactions, one must apply a

threshold to filter raw correlation values.

When nonlinear effects cannot be ignored, one can quantify statistical dependen-

cies using information-theoretic measures [209, 210, 211], which generalize the notion

of correlation to such nonlinear cases. D’Haeseleer et al. [212] were the first to em-

ploy the mutual information to uncover gene-to-gene dependencies, while Butte et al.

applied mutual information “relevance networks” [213] to propose single-gene deter-

minants of anticancer agent susceptibility [214] for experimental verification. Mutual

information-based methods must still contend with the same sampling and bias prob-
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lems faced by linear correlation coefficients, and therefore also require thresholding.

Even under conditions of perfect sampling, neither Pearson correlations nor the

mutual information can disambiguate so-called direct interactions from indirect in-

teractions – statistical dependencies that are already accounted for by links involving

other species. Note that this notion of “indirect” is distinct from its usage in the

context of mechanistic networks. There, “direct” typically refers to physical contact,

which often occurs between nodes whose activations are not included in the network

model (unobserved, latent, or marginalized degrees of freedom in the system). Here

instead we are concerned with statistical redundancies within the set of observed

activation variables. For example, consider the case of three genes in a regulatory

cascade: X → Y → Z. Inference methods based on measuring correlations between

the associated activation variables would find a link between X and Z, which is in-

direct, in the sense that it is not actually needed to account for the joint statistics of

X, Y , and Z.

While sometimes inconvenient, indirect links are not always superfluous. They

are useful when probing the network at the single-node level, as when trying to

discover a previously unknown member in an established pathway, propose a novel

interaction for experimental verification, or predict the overall effect on the activation

state of one node by perturbing another. On the other hand, in applications for

which inferred networks must be treated as whole entities (e. g., when they encode

normalized probability distributions; see MaxEnt methods described below), this sort

of redundancy can be minimized by examining conditional dependency structures.

There exist several approaches to studying conditional dependencies. The most

intuitive is to work explicitly with either partial correlation coefficients [131] or the

conditional mutual information [215, 216, 47, 48, 217] between two activation variables
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X and Y , given another variable (or set of variables) Z:

I(X;Y |Z) = I(X;Y, Z)− I(X;Z), (2.2)

where I(X,Z) is the mutual information between X and Z. In principle, one can

refine a reconstruction by removing links between any pair of species X and Y that

are associated with statistically insignificant values of I(X;Y |Z). However, reliable

estimation of this quantity is much more difficult than it is for the pairwise quantities,

such as I(X, Y ), since it requires sufficiently dense concurrent sampling of at least

three variables.

In order to dispose of indirect links without incurring the aforementioned estima-

tion problems, some algorithms make additional assumptions and thus append ancil-

lary filtering steps to the basic mutual information-based procedure. For instance, the

Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) [132, 99]

invokes the Data Processing Inequality [210] to delete the weakest link in every closed

triplet of nodes (this would be an exact step if the studied network was a tree). The

Context Likelihood of Relatedness (CLR) method [134] determines the presence or

absence of a link by assessing its strength against all other mutual information scores

computed for that graph, as a background significance threshold. MRNET [218]

builds a network iteratively, including a link between two variables if one is both a

good predictor of the other and yields information that is non-redundant with that

provided by the previously inferred links.

An alternative approach to solving the conditional independence problem is to use

full probabilistic models that allow conditioning on the complete set of marginals,

rather than requiring the progressive computation of higher-order partial correla-

tions [217]. In particular, if a set of continuous, real-valued activation variables are

(assumed to be) normally distributed, one can condition a single interaction on the
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full set of remaining variables. In this case the statistical independence of any two

nodes can be ascertained by examining the elements of the inverse of the covariance

matrix: Σ−1
ij = 0 if and only if i and j are conditionally independent, given all other

variables. An important facet of such multivariate Gaussian distributions is that they

correspond to the least constrained, maximum-entropy models that satisfy the full

set of first and second-order marginals for continuous variables [162, 106]. These first

two moments correspond to the individual means and the pairwise correlations, which

are usually well measured even in sparsely sampled data sets.

Beyond Gaussian variables, the Maximum Entropy principle has been a success-

ful modeling approach in neuroscience [74, 219, 220, 221], natural images [222], the

inference of gene networks (from expression data) [223] and signal transduction net-

works (from phosphorylation proteomics data) [224], and the prediction of amino acid

contacts in proteins [172, 225, 173, 226], multidrug effects [227], protein structural at-

tributes [62], antibody diversity [228], and even the dynamics of flocking birds [229].

The joint probability distribution for a Maximum Entropy model has a particular

form, known in statistical mechanics as the Boltzmann distribution. If we ask to

match only the empirical means 〈xi〉 and pairwise correlations 〈xixj〉 to those of the

observed data, the distribution with maximal entropy is

P (~x) =
1

Z
exp

(∑
i

hixi +
∑
ij

Jijxixj

)
. (2.3)

Here parameters hi and Jij are known as the fields and the couplings, respectively,

and Z is the partition function (compare to the full expansion in Section 2.1.3).

For discrete variables, the Maximum Entropy model retains the form of Eq. (2.3),

but is known as the Ising model (for binary variables) or Potts model (for categorical

variables with more than two accessible states). In the discrete case, fitting the

parameters {hi, Jij} is highly nontrivial. Many methods exist, but their effectiveness

depends on the system size and the density of its interactions, as well as on other
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properties [230, 231, 232, 233, 234]. One algorithm worth mentioning is the adaptive

cluster expansion, which was developed in the context of the MaxEnt problem [234,

235]. It is closely related to information-theoretic approaches, being equivalent to

relevance networks [213] for clusters of size two, and similar to conditional mutual

information methods for clusters of size three.

Due to the limitations of finite sampling, both solving for the inverse of the covari-

ance matrix and learning the parameters of an Ising model can constitute ill-posed

problems. One way to avoid this is to impose a regularization [236], which invokes ad-

ditional constraints on the interaction coefficients to ensure that the inference problem

is well-defined – and moreover, that the inferred network generalizes well to unseen

data. Regularization is often done in one of two common ways: either the interac-

tions coefficients are assumed to be small (for example, using an L2 norm) [235] or

the interaction structure of the system is presumed to be sparse, so that the overall

number of the interactions is small (this may be done explicitly by specifying the

number of non-zero coefficients [108] or by invoking an L1 norm [233]).

Frequently cited as the rationale behind these regularization procedures is the

inherent sparsity of natural networks [237, 149, 238]. Indeed, for protein studies, the

nodes in networks used to describe tertiary protein structure represent real amino

acids in the three-dimensional space; they can therefore be connected to only a small

subset of all possible neighbors. Similarly, the number of transcription factors that

can influence a given gene’s expression levels is limited by the physical extent and

arrangement of its promoter sequence. While the general ubiquity of sparseness in

biological systems is debated [103], the enforcement of sparsity constraints can be

justified as a purely pragmatic measure in the “low-hanging fruit” inference regime.
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2.3.2 Who controls whom? Causal relations, directed links

Directed network inference differs in an important way from that of undirected, sym-

metric, mutual-influence graphs: since questions of causality (or, more generally, the

flow of information) are built not upon a single, universally agreeable concept like

statistical correlation – but rather on more subtle, less straightforward notions like

control – there exist many diverse criteria for establishing directed connections. Each

method has its own operating definition of what counts as an interaction, and how

to infer its direction.

Though disparate, the aforementioned definitions can be conveniently divided into

approximately two subclasses, depending on the intended application of the inference

procedure. In certain cases, it is enough to know the direction or causal sense of an in-

ferred interaction. For example, will silencing a certain gene or disabling a particular

neuron result in a collapse of the entire system? Can the intracellular concentration

of a reactant be increased by introducing more of the product? Answers to questions

like these do not require numbers, entailing purely qualitative predictions. On the

other hand, if the goal is to use a reconstructed network to predict the amount by

which one gene’s expression level increases when two other genes are suppressed, di-

rected connections must be weighted by quantitative values representing the effective

strengths of interactions. We describe methods of both types, leaving it as an exer-

cise for the reader to think about when a directed topology suffices, and when it is

necessary to infer fully signed and weighted graphs.

Before we delve into specific methods, we advise the reader to tread with caution.

The particular definitions of directed influence we explore in the following methods

do not always correspond to our intuitive and/or mathematically formal notions of

causality. As a result, producing a graph with directed links does not automatically

satisfy a reverse-engineer’s desire to uncover system-wide causes in an ontological

sense, and should not be treated as such despite one’s instincts. Instead, great care
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needs to be taken with each method in order to ensure that all idiosyncratic con-

straints are met, and to avoid generalizing or extrapolating beyond the predictive

power of each algorithm.

To expound on this point, it is worth asking at the outset whether it is even

possible to infer causal information from passive observations of activation vari-

ables [239, 240]. It has long been understood [241] that proximal causal relations

can be inferred reliably when the observer is able to interact with the system in

accordance with a principled protocol (as is done in many controlled experimental

interventions [242, 243], including genetic knockouts [180, 183] and multifactorial

perturbations [181, 244]). While this is old news to engineering audiences, it has also

been shown that causal information (or at least a lower-bound estimate of causal

effects) can be extracted from purely observational data when the equivalence class

for the fully directed graph can be ascertained first [245, 246]2.

We mention again a surprising corollary of this result that directed influence (a

less stringent condition – and slightly less nebulous concept – than causal influence)

can often be established without time series data, using only static measurements.

Where there was once a prevalent belief in the reverse-engineering community that

the inference of directed edges requires temporal data [99], there is now a tradition of

algorithms which accept static data as inputs [242, 103, 107, 108, 248, 249, 250, 251].

For coherence, we focus predominantly on methods that operate on time-series data.

We organize this subsection as follows. We first make a few general remarks about

the inference of directed interaction patterns. We then explore a class of methods

which presume that the measured activities can be treated as deterministic variables

that change smoothly in accordance with a particular, predetermined quantitative

2Once the equivalence class is determined, formal causality detection methods can be subse-
quently applied to estimate the full causal graph. We refer curious readers to [241, 247] for a wealth
of both philosophical explications and more rigorous treatments of algorithms designed explicitly to
detect causality in its many guises.
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law. Afterwards we switch to model-free deterministic methods, for which there is

no need to specify a mathematical form or law in advance in order to detect interac-

tions. We then treat the more general situation, in which activations are regarded as

stochastic variables. Again we start with methods requiring a parameterized model

and conclude with a discussion of stochastic model-free methods.

A näıve but conceptually intuitive approach to inferring directed connections is to

take the presence of strong temporal correlations between the trajectories of different

activity variables as evidence for a (casual) interaction between the corresponding

species. It is common for changes in one activity variable to succeed that of another

in time (consider a gene whose expression level is observed to increase consistently

in response to the elevation of another), but the proxy of temporal precedence is not

robust as a criterion for declaring control relations [92] because it also appears in the

absence of causal influence. Despite its limitations, this strategy, combined with a

projection method known as multidimensional scaling [97] in an algorithm entitled

“Correlation Metric Construction,” was originally used to infer the first steps of the

glycolytic pathway [252] and more recently applied to study the pharmokinetics of

the anticancer drug Gemcitabine [253].

In physics and engineering, signed and directed connections are often used to

encode the weighted coupling constants that appear in systems of differential equa-

tions [254]. To write down such a system, one needs to first have in mind a partic-

ular quantitative form for a dynamical law, according to which activations will be

presumed to interact. One then fits the model parameters, typically with some op-

timization or statistical learning technique that takes time series data as input, and

reports the learned values as the weights for the corresponding connections, sometimes

adding additional, unobserved, hidden variables in the process [11].

The inherent directionality of this method, which works best for small systems

(p ∼ 10), can be understood immediately by examining the matrix Jij of pairwise
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interactions in Eq. (2.4) below: since this matrix is not constrained to be symmetric,

couplings between two species can differ in the forward and backward directions.

For continuous activation variables {xi}, many popular models can be subsumed as

special cases of the general form (though see [255, 11] for alternative forms):

dxi(t)

dt
= fi

(
xi +

p∑
j

Jijxj + ui + ξi

)
, (2.4)

which includes at most pairwise interactions of strengths {Jij} between all element

pairs i and j. Here the functions {fi} can be chosen according to the desired level of

computational complexity (controlled by the amount of data available) or biochemical

detail, or both. In the reverse-engineering of biological networks, many early appli-

cations were linear activation models [256, 257, 258, 259], for which fi(x) ∝ x. The

sum determines the net (excitatory and inhibitory) effect on the activation of node

i at time t, given its interactions with all other elements j. The next term accounts

for external driving of the node, (i. e., any extrinsic perturbation that increases or

decreases its activation value by an amount ui(t)), and ξi(t) represents noise.

Linear, “additive” regulatory models are based on the assumption that dynamical

systems can be linearized about their steady-states. They are relatively easy to fit

in sparsely sampled conditions, especially when the terms in Eq. (2.4) are discretized

to form a linear difference equation [258, 260]. Early work countered undersampling

by augmenting the number of data points for multilinear regression via nonlinear

interpolation [257], or imposing sparsity constraints on singular decomposition algo-

rithms [107]. Another approach to decreasing the number of interactions that must be

inferred is to first cluster the nodes [145]. In any case, data are typically taken during

the system’s approach to steady-state conditions (whether its natural equilibrium or

another fixed point of its dynamics) after a perturbation.

A straightforward modification of the basic linear model, realized by overlaying
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the sum in Eq. (2.4) with a sigmoidal threshold function, leads to one version of

the artificial neural network construction. Early methods based on neural networks

were used to infer interactions between individual [261] and aggregate “genes” which

encompass multiple degrees of freedom at the biological level [259]. Modern improve-

ments use multilayer perceptrons [262]. Early neural-inspired architectures known as

gene circuits [263] have also been used to infer mechanistic interactions [264].

Nonlinear models are attractive because they can capture more sophisticated dy-

namical behaviors than their linear counterparts (e. g., oscillations and multistabil-

ity). Nonlinear reverse-engineering schemes based on mass-action kinetic laws like

Michaelis-Menten or Hill equations [57] are also used in reconstruction [265, 266].

An important causal inference method based on the assumption of an underly-

ing deterministic system, but which does not require the definition of an explicit

dynamical model, is the convergent cross-mapping (CCM) approach [92]. As noted

in [268], an essentially identical method had been developed earlier to study syn-

chronization in chaotic dynamical systems [269]. The method draws from Takens’

theorems [270], which provide both the conceptual framework and mathematical

justification for a brand of state space reconstruction – reverse-engineering of the

phase-space portrait for a dynamical system – known as delay embedding. Consider

a multidimensional dynamical system, a special case of the general form (2.4) whose

parameters are fixed, and whose temporal evolution x(t) is confined to a subspace

determined by a d-dimensional attractor [271]. Under very general conditions, the

attractor’s state space can be reconstructed [270] from measurements of a single time

series {xt, xt+τ , xt+2τ , . . .}, sampled at an interval τ . The number of consecutive time

points needed to span the reconstruction space is given by the attractor dimension d;

both τ and d are often found using Ragwitz’ criterion [272], but alternative methods

have been proposed as well [273, 274].

Delay embedding refers to the entire process of defining these two parameters
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Network Motifs

a) Directed link

b) Bidirectional link

c) Common drive e) Hidden intermediate

f) Higher-order (XOR)Spurious relationd)

e) Hidden intermediate

Figure 2.2: Simple directed network motifs help illustrate basic problems in directed net-
work reconstruction. This list is not intended to be comprehensive, but to address some
simple yet important scenarios. Links can represent mechanistic interactions or effective
relations (i. e., information transfer). Nodes represent stochastic or deterministic activation
variables, which can be either continuous or discrete. Here, dashed links represent spuri-
ous (erroneously inferred) interactions, dark nodes represent unobserved (hidden) variables,
and the small square in f) refers to a computation that involves more than two nodes (in
this case, a third-order interaction). a) The simplest scenario: a directed link between
two nodes. b) A bidirectional coupling models a simple system with feedback (e. g., the
predator-prey system of Fig. 2.1). c) A hidden common drive (dark node) to two observed
nodes results in a correlative relation between those nodes. If care is not taken, this can be
confounded with a direct causal interaction. d) A situation similar to that of c), with the
difference that measurements of all three nodes are accessible. Näıve pairwise methods infer
a spurious link between the initial and final nodes in the feedforward chain. Multivariate
methods are required in this scenario to infer the correct links. e) In the case of a hidden
node relaying the causal interaction, network reconstruction methods may infer the correct
direction of interaction, but the inferred links will be effective rather than strictly causative
since an intervention at the hidden node can disrupt the interaction. f) The logic gate XOR
entails a higher-order interaction. The output is 0 if both input nodes carry the same value,
and 1 if they are different: simultaneous knowledge of the states of both nodes is required to
determine how each of the inputs affects the output. This is a classical example of a scenario
where X and Y carry synergistic (as opposed to unique, or redundant) information [267].

and arriving at a reconstruction space onto which the time series can be mapped. It

provides the substrate for causal inference via CCM as follows. For any two measured

times series {xt} and {yt}, the variables x and y are said to be causally linked if they

belong to the same underlying dynamic system (i. e., the time series they represent

are samples from the same attractor [270, 92, 271]). The direction of an interaction

between x and y variables can be estimated by 1) using delay embedding to obtain

reconstruction manifolds Mx and My for xt and yt, respectively [271]; 2) projecting
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one of the variables, say x, onto the other manifold – hence the name cross-mapping

– and using the resulting, projected values to predict the values taken by the original

time series (which converge to the measured values for a large enough number of

samples); and 3) measuring (with any suitable measure, e. g. RMSE or correlation

function) the deviation of the predicted values {x̂t} from the actual values {xt}. A

causal interaction is declared if the prediction quality does not decay to zero for a

growing number of samples.

In the original work, Sugihara et al. [92] did not analyze thoroughly the influence

of noise on reconstruction. Indeed, Takens’ original theorems allow for noise in the

measurement procedure only (i. e., intrinsic stochasticity is prohibited; the breakdown

of inference based on CCM in the presence of intrinsic noise has been demonstrated

explicitly [275, 276, 277], and a thorough analysis of state space reconstruction in the

presence of noise can be found in [272]). Nevertheless, artificially added measurement

noise can actually improve the detection of causality [278].

Several other considerations must be taken into account when inferring causal

relations by means of CCM. First, it seems that the outcome is quite sensitive to the

sampling methods used to obtain training data (for example, eliminating nonstation-

arity on the way to the attractor is key) [268]. Second, CCM fails to infer the accurate

coupling strengths and even the direction of causal interaction when time series are

synchronous [277]. Third, it has been shown that the predictions made by CCM do

not always conform to our intuitive notions of causality, even for certain rudimentary

systems like a simple resistor-inductor (R-L) circuit with a sinusoidal driving voltage,

where CCM does not unequivocally determine the causal dependence of the current

on the voltage [275]. Finally, Cobey and Baskerville [276] provide a thorough numer-

ical analysis of the limits of CCM, suggesting that the standard approach is generally

prone to failure if the system dynamics are oscillatory and proposing a modification

in the algorithm to alleviate this shortcoming [276].
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For stochastic activations, early attempts to reconstruct the directionality of inter-

actions included autoregressive models [279, 280], but autoregression by itself makes

no assertions about causality. However, a method due to Granger [281] combines au-

toregression with the aforementioned notion of temporal precedence to infer quantify

a robust stand-in for causality – namely, Weiner’s predictability [282]. The framework

for Granger Causality (GC) is built upon two central assumptions [283]:

1. The cause x occurs before the effect y.

2. The causal series {xt} contains unique information about the time series being

caused {yt} that is not available in any other series {wt}.

More generally, {wt} represents the entirety of processes that can influence {xt} and

{yt}. In the ideal scenario, for which these three variables together contain “all the

information available in the universe at time t” [283] (i. e., in the closed system under

investigation), GC guarantees that one can reconstruct the direction of the causal

relationship between x and y. By definition, a variable x “Granger-causes” variable

y if knowledge of past values of both x and y reduces the variance of the prediction

error for y, in comparison with the history of y alone. Typically, these predictions are

carried out via linear regression, and the direction of causality is decided by statistical

tests on the variances of the respective residuals (prediction errors). However, this

implicitly assumes (at most) linear relations between variables. Nonlinear extensions

of GC exist, but these extensions can be more difficult to use in practice and their

statistical properties are less well understood [284, 285, 286, 287, 288].

Granger causality can be extended to multivariate scenarios [289] as well, although

finding Granger-causal links among all possible candidate interactions then becomes

a combinatorially hard problem. For the particular case of inferring causal relations

between the activity of distinct brain areas (using electroencephalograms or local

field potential time series), it has been found to be of crucial importance to employ
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a multivariate approach rather than bivariate techniques [290].

A more general approach to the reverse-engineering of directed links between

stochastic variables is to learn an explicit model for the joint probability distribution

of the observed activities. This approach, based on probabilistic graphical models, was

discussed earlier for undirected networks. For the directed case, one can define a class

of models known as Bayesian networks [291, 292, 293, 294] which decompose the joint

distribution into separate factors representing conditional probabilities. Edges are

drawn starting from the nodes corresponding to variables being conditioned on (called

the “parents”) and ending on the conditioned variables (the “children”) [294, 241].

Since the joint distribution of a Bayesian network is an exact product of conditional

probabilities, the resulting graphical structure is a directed acyclic graph (DAG). Thus

in order to be eligible for representation by a Bayesian network, systems need to satisfy

the necessary criteria for forming a DAG. If the phenomenon in question is known

to encompass cyclic dependencies (e. g., autoregulation pathways in gene regulatory

networks, or autapses in neuronal networks), the only recourse is to “unroll” the cyclic

dynamics in time, forming a dynamic Bayesian network [295, 193, 296, 297, 298]. The

performance of dynamic Bayesian nets has been been compared directly against that

of Granger causality [299], and favorably so when the observed time series are shorter

than a certain length (NB: In general, findings like these should be taken with a grain

of salt, since 1) they could be artifactual results that depend on idiosyncratic features

of the data, and 2) notions of error and accuracy tend to rest on the existence of

a reference network containing only the “correct” edges, which is in our opinion a

dubious concept; see comments on evaluation metrics in the Discussion. In [299], the

authors are clear in their admission that “the causal relationship derived from these

two approaches could be different, in particular when we face the data obtained from

experiments,” in accordance with our introductory statements about the nonuniform

definitions of causality that are assumed by different methods.).
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With the conditional probability framework in place, one needs to select 1) a

quantitative form for the underlying model that parameterizes the conditional prob-

abilities, 2) a scoring or objective function that quantifies the quality of fit, and 3)

an optimization or search routine by which to learn the parameters values that ex-

tremize the objective function. An example of such a parameterization, used quite

frequently in the literature, is again that of linear regression [191, 294]. The choice

of a specific parametric representation of conditional probabilities is often dictated

by our knowledge or assumptions about the domain (prior knowledge) [300], or prag-

matic principles favoring computationally simple models (Occam’s razor). Standard

objectives are the maximization of the likelihood function [295] or posterior proba-

bility distribution [191], as well as the Bayesian Information Criterion (BIC) [297],

which penalizes for large numbers of parameters. Since the optimization search is

an NP-hard problem [292, 294], exact methods are often computationally infeasible,

so one often reverts to heuristics like greedy hill-climbing (which adds, deletes, or

reverses edges to encourage maximal ascent in the objective score [301]), stochastic

hill-climbing, or Monte Carlo methods [302].

An impressively comprehensive and thorough body of work regarding the concept

of causality and its formal description via Bayesian nets has been provided by their

originator, Judea Pearl [241]. Pearl introduces a conceptual framework called the

do-formalism (known variously as the do-calculus, the intervention-calculus, etc.),

which formally describes the use of experimental interventions to ascertain a causal

structure. In the do-formalism, p(y|do(x)) denotes conditioning on a variable x that is

experimentally controlled rather than simply measured (i. e., observed passively). In

other words, this notation distinguishes the more familiar observational conditioning

p(y|x) from “interventional conditioning” [303, 182].

While correlation does not in general imply causal influence, Pearl reveals spe-

cific cases for which the conditional probability distribution – reflecting associative
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dependencies – is equivalent to that which denotes the corresponding mechanistic

dependencies: in such situations, interventions which manipulate the values of parent

nodes are clearly and unambiguously seen to have direct effects on the children, and

the Bayesian graph is therefore also the correct casual graph.

It is often difficult to satisfy all the criteria for modeling a causal system with

DAGs. In certain circumstances, it is easier to work with model-free stochastic

frameworks, such as that of the transfer entropy (TE). TE was introduced twice

independently, by the physicists Schreiber [304] and Paluš [305], and has since proven

to be a versatile and useful tool for inferring the direction of information transfer in

neuroscience [306, 307, 308], physiology [274, 309], climatology [310, 311, 312] and

economics [313, 314]. TE is simply the conditional mutual information (2.2) between

a target variable Y and the entire history of values assumed by a source variable X,

given the history of the target:

T (X → Y ) = I(Xt−;Yt|Yt−). (2.5)

Here the arrow denotes the direction of information transfer (i. e., X informs Y )

and Xt− and Yt− respectively denote the histories of the corresponding stochastic

processes up to, but not including, t; Yt denotes the value taken by the target variable

at time t. Conditioning on the history of the target ensures that only those bits of

information that are unique (in the sense discussed earlier for Granger Causality; for

a formal treatment see [315, 267]) to the source variable are considered.

Like all information-theoretic measures, TE and its surrogates [92] suffer from

the curse of dimensionality because of the need to estimate entire probability dis-

tributions (discrete variables) or probability densities (continuous variables) for long

time series and many variables. For discrete variables, the simplest estimation pro-

cedure entails simply counting frequencies to produce a histogram that approximates
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the desired distribution. A substantially more accurate estimation of information-

theoretic quantities for discrete variables (especially if the data set is small) can be

obtained by computing entropies directly with the NSB estimator [316, 317]. In the

continuous case, a standard approach is to bin the data, rendering the distribution

effectively discrete and therefore amenable to histogram methods. While less “data

hungry” alternatives exist for continuous variables (such as kernel estimators [318]),

they suffer from the same systematic estimation biases that are associated with his-

togram methods [319], and may even reverse the inferred direction of information

flow [320]. Nearest neighbor estimators [319, 308] are some of the most commonly

used in practice. In all cases, statistical testing against surrogate data or empirical

control data [321] is recommended to help ameliorate the bias problem.

An approach to dimensionality reduction based on the concept of Markov chains

has been proposed for the estimation of TE [311]. This approach is particularly

useful in the case of delayed coupling between variables [322]: estimation of the

delay time can prevent the inclusion of unnecessary time steps when tracking the

history of the source variable (i. e., Xt− in Eq. (2.5)), which can clearly reduce

the dimensionality of the latent representation. Finally, the curse of dimensionality

can also be alleviated by first constructing an explicit, low-dimensional model of the

time series (and hence, parameterizing the probability distribution). For the simplest

case – linear dependence between X and Y with additive Gaussian noise – it has

been shown analytically that TE will always recover the same network as Granger

Causality, up to a constant factor [323].

Since some authors speak loosely about inferring causality when computing the

TE or related quantities like the directed information [137], we reiterate that, al-

though causal interaction is a necessity for information transfer, the converse is not

true: information transfer, as quantified by TE and other information-theoretic func-

tionals, does not imply underlying causal interactions. In fact, we caution readers
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that some methods for the detection of causal or directed influence have been rou-

tinely applied in ways that differ markedly from the intentions of their originators.

For instance, the directed information was initially designed to infer achievable in-

formation rates on a known communication channel with feedback [324], rather than

the inference of directed networks (for a thorough discussion, see [308]). However,

TE specifically has been extended using the aforementioned do-formalism in a new

procedure known as information flow [241], a more appropriate measure for inferring

causality under certain constraints [303, 325]. Notably, this measure can correctly

resolve the connectivities of an XOR circuit (see Fig. 2.2f)) even in special scenarios

where the conditional mutual information fails [303], a fact overlooked by authors

who have contended that conditional mutual information is sufficient for this purpose

(see, for instance, the argument in [216]). Finally, we note that TE and similar meth-

ods have not achieved widespread implementation for large systems (p � 1) due to

the aforementioned, intrinsic difficulty of estimating information theoretic measures

in high dimensional spaces. Multivariate approaches to TE estimation and related

methods are a subject of ongoing research.

2.4 Discussion

Since the year 2000, some thirty review articles that we know of have been published

on the inference of gene networks alone (in addition to those referenced or mentioned

throughout, see [326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339,

340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353]), and an increasing

number have begun to specialize on the unique challenges faced by network reverse-

engineers rather than merely listing different algorithms [354, 355, 356, 357, 129,

358, 65, 359]. One DREAM report [35] notes that the number of PubMed articles

on reverse-engineering had doubled each year for over a decade through 2009, and
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“novel” algorithms (new twists on the same foundational principles we outline above)

continue to emerge even as we write [360, 361].

Has this explosive growth in the number of reverse-engineering algorithms and

studies helped carve out a niche for large-scale reverse-engineering in contemporary

systems biology repertoires? Or has a staunch directive on the reconstruction of entire

microscopic networks actually encumbered and obfuscated our understanding of the

working principles that underlie these complex systems?

One major impediment to assessing the promise of reverse-engineering algorithms

stems from the way in which they are assessed: we observe a rampant, pervasive,

and potentially counterproductive tendency to draw direct, quantitative comparisons

between reconstructions produced by different algorithms. In other words, despite the

commoditization of network inference tools, there is still no consensus on the correct

way to evaluate reconstruction results [124] – and perhaps for good reason! In the

context of effective network inference, the notion that reconstructions can be checked

for accuracy contradicts our very premise, that algorithms both among and within

each of the classes we have described make diverse assumptions about what should

count as an interaction. Recent work [125, 362] notwithstanding, we believe this issue

continues to be confounded by a repeated mismatch between algorithms and metrics

(as in the use of the area under receiver-operator characteristic curves, an intrinsically

inconsistent measure [363] that presupposes the existence of a valid confusion matrix,

to give an overall rank or “score” to effective reconstructions [355, 364, 365]).

The methods in different classes also differ in more concrete ways: they vary in

the extent to which they can infer strengths, signs, and directions for the interactions

they detect. This might be thought of as a “feature, not a bug” of reverse-engineering

technologies: having a selection of versatile algorithms, each tailored to particular

situations or designed with different inference goals in mind, increases the chances

that researchers can make use of reverse-engineering algorithms. Yet the question of
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whether systems biologists should persist in pursuing whole-network reconstruction

as a go-to modality or learning tool hinges not solely on whether the inference goals

are achieved by the time the smoke clears, but on the attainment of a reasonable

tradeoff between the computational effort consumed by inference algorithms and the

(ideally, unique) benefits they afford to researchers.

Do the spectrum and short history of network inference successes live up to such

high hopes? Along these lines, we have argued that reverse-engineering over the past

two decades has played at least five distinct research roles – the acceleration of hy-

pothesis generation and verification at the single-node/single-interaction level, the

illumination of statistical properties that render biological networks unique among

complex systems, the diagnosis of individual networks as either typical or perturbed

(paralleled by the use of within-class variation to make theoretical statements about

the system), the prediction of how the activities in a given network will respond to ex-

ogenous perturbations, and the compact encoding of joint probability distributions –

that go far beyond the trivial task of piecing together which of a set of observed system

elements engage in physical contacts or the transfer of biologically relevant informa-

tion. The roles we have identified represent a far cry from the (three) uses of effective

influence networks – identification of functional modules, probing the response to per-

turbations, and helping determine the underlying mechanistic interactions – named

by the authors of Ref. [64] ten years ago.

While it is impossible to say which of recent attempts to use networks as com-

pressed “statistics” to help make (quantitative or qualitative) predictions will have

the biggest impact down the road, it is clear that new precedents for the prediction

of drugs targets and systemic responses in network medicine [133] point to a signif-

icant departure from the more traditional, reductionist ways of thinking. The con-

sequences here will almost certainly include dramatic impacts on the ways medicine

is practiced in the lifetime of the reader. With this example in mind, we reiterate
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our assertion that reverse-engineering yields its most succulent fruit when it is used

to augment other methods of expanding our understanding of how living systems

work, rather than employed disposably as an end goal in itself. Indeed, changes in

the ways network inference has been used over time seem to be in accordance with

this sentiment: whereas in 2003 the field was still firmly entrenched in its “pattern-

detection phase” [366] (to better understand the state of the art at that time, we rec-

ommend [1]), it was around the time of publication of [35] in 2009 that the DREAM4

Challenges first introduced predictive modeling tasks as part of the main competition.

Indeed, the DREAM competitions play a unique part in the reverse-engineering

culture. They not only echo changes in the field’s priorities but also inform them:

they have helped set the precedent in establishing inferred networks as tools for

making predictions (as in the DREAM8 prompt to anticipate the responses of cellular

signals to yet-unseen perturbations [367]). More radically, some of the most recent

Challenges go as far as skipping the hitherto-canonical intermediate step of network

inference entirely, asking competitors to infer macroscopic properties or outcomes

using wholly different types of data [368]. While we clearly do not advocate for the

complete abandonment of automated, network-scale reverse-engineering from large

data sets, we do view the foundation’s decreasing reliance on methods which require

the construction of a detailed microscopic model prior to making inference about the

macroscopic system as a progressive step. In fact, we contend that, given suitable

alternatives, whole-network reverse-engineering may not be justified in every case.

If the reverse-engineering of entire microscopic networks is not always the right

tool for the job, what might be done instead? As a starting point, we suggest asking:

• Given a reverse-engineered network, can we find any further compressions of

that network that still preserve information about (i. e., are equally good at

predicting) the macroscopic properties and observables it encodes?



52

• Can we identify any coarse functional units (perhaps with their own set of

interaction rules and dynamics) that might supplant individual nodes and edges

as the elements of a common parlance for the study of living systems?

For instance, might more appropriate “parts lists” for biological systems consist

not of individual species’ activations, but of larger physical or conceptual elements

(e. g., negative feedback loops and operons) with their own dynamical interaction

laws? Alternatively, attractors of the dynamics of biological networks may serve as

more laconic descriptors of the networks than interactions among the nodes them-

selves [369, 51]. These possibilities may also be motivated via historical analogy:

renormalization group theory in physics [370] has offered a systematic way to deduce

an appropriate new vocabulary (and the corresponding syntax) when one changes

the physical scale at which a system is to be observed. The effective interaction

rules which emerge (say, the interactions between groups of Ising spins) are not al-

ways easily reducible to the familiar dynamics of microscopic activation variables (the

nearest-neighbor interactions associated with individual spins), but which nonetheless

account accurately for their effects at the new scale.

A recent line of work, inspired directly by statistical physics, formalizes the argu-

ment that only a small subset of parameter combinations are easily learnable from

data, and therefore that only certain (combinations of) microscopic parameters can

be relevant in determining a complex system’s macroscopic or emergent proper-

ties [371, 19, 372, 373]. By systematically integrating out “sloppy” parameters or

parameter combinations, whose values remain relatively unconstrained, one can as-

semble coarse, parsimonious models in terms of the remaining “stiff” parameters that

serve as effective, low-dimensional compressions of a system’s microscopic statistics.

Answers to the second question – that of finding higher-level explanatory struc-

tures in terms of which system’s behavior can be understood – have been explored

since the inception of “module-based” inference [151, 154]. In fact, newer and more
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powerful tools have sparked a resurgence [374, 375, 376, 146] of this approach. Around

the same time, it was demonstrated that the flow of information in development,

from promoter sequence to expression, can be reliably understood in terms of coarse,

multiple-sequence patterns called graph-mers [377] that encompass entire sequence

motifs. Ultimately, we believe that it will be work in directions such as these, which

involve gross reconceptualizations regarding the fundamental actors in the biological

dynamics, that will supersede whole-network reverse-engineering.

If the end goal of emulating physics-style modeling is prediction, the penultimate

is certainly intuition and conceptual understanding. We entertain phenomenological

approaches like those which focus on attractor dynamics (Chapter 3) and renormaliza-

tion (Chapter 4) because they promise to yield interpretable models, not intractably

large sets of detailed equations. Yet we still stress that, while searching for modular-

ity and simple descriptions entails an invocation of the engineering mindset that has

informed systems biology since its inception, the principles of good biological design

often differ markedly from what works in that context; an open mind is necessary to

dream up fitting new constructs. Whatever the case, we are confident that it is only

by focusing on phenomenological (rather than microscopic) accuracy that we can de-

liver a satisfying confutational blow to famous Rutherford’s quip that “all sciences are

either physics or stamp collecting” [378] and begin removing the major impediments

to the advancement of formal theories in biology [12].
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Chapter 3

Precise Spatial Memory in Local

Random Networks

While developing the background on biological network models, their inference, and

the diverse categories of predictive roles in which they have served, we paused briefly

from discussing their typical use – recording the relationships between microscopic

activity variables – to reflect on the idea of using the same kinds of models to describe

the relationships between higher-level, phenomenological variables.

We concluded our reverse-engineering overview in Chapter 2 with an important

observation: in order to maximally benefit from the network abstraction, we may need

(counterintuitively) to discourage wholesale network inference for its own sake and

focus instead on how to efficiently represent the underlying systems. For situations

in which the objects of interest are predictions regarding the dynamical behavior of a

system, or a subset of its activity variables, we noted that one way to do this would

involve the attractors associated with the system’s dynamics. The example we pursue

here, in Chapter 3, is inspired by computational models of spatial working memory.

Self-sustained, elevated neuronal activity persisting on time scales of ten seconds or

longer is thought to be vital for aspects of working memory, including brain represen-
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tations of real space. The paradigm of continuous-attractor neural networks [379, 380],

one of the most well-known modeling frameworks for persistent activity, have been

able to model several crucial aspects of such spatial memory. Many of these models

tend to require highly regular or structured synaptic architectures. In contrast, here

we study a geometrically-embedded network model with a local but otherwise random

connectivity profile which, when combined with a global regulation of the system’s

firing rate, produces localized, finely spaced discrete attractors that effectively span

a 2D manifold. The main idea is that, although the random network has no obvious

compression or simplifying features beyond its sparseness, it nonetheless exhibits a

surprisingly low-dimensional dynamical input-output relation with few attractors.

Specifically, we demonstrate how the set of attracting states can reliably encode a

succinct representation of the spatial locations at which the system receives external

input, accomplishing spatial memory via attractor dynamics despite the lack of ex-

plicit fine-tuning or simplifying symmetries at the level of its (synaptic) interaction

architecture. We measure the network’s storage capacity and find that the retriev-

able positions are nearly equivalent to a full tiling of the plane, something typically

achievable only with translationally invariant neuronal connections. Thus, despite

emitting what would seem to be a complicated series of activity measurements – and,

presumably, a rather complex effective network structure, according to many of the

inference methods introduced in Chapter 2 – the system admits a coarse description.

The following, written under the supervision of H. George E. Hentschel

and Ilya Nemenman, has previously appeared as the electronic pre-print

Natale, J.L., et al. “Precise Spatial Memory in Local Random Networks.”

arXiv preprint arXiv:1911.06921 (2019). It is also accessible via BioRXiv,

with pre-print identifier 10.1101/845156. It is currently in revision for

publication in the American Physical Society journal Physical Review E.
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3.1 Introduction

Biological implementations of working memory bridge the gap between two fundamen-

tally disparate time scales: single neurons process information in ∼ 10−3s, whereas

organisms interact with their external environments over durations of ∼ 1s or longer.

For species from fruit flies to primates, this extension of time scales is reflected at

the neural level by elevated spiking activity that persists while a particular memory

is being accessed [381].

These excitations tend to be highly localized: for various types of working memory

tasks across brain regions, firing rates for only a subset of selectively receptive neurons

appear to become elevated [382, 383, 384, 385]. Traditionally, these units are con-

sidered to be responsible for maintaining the memory, and their so-called persistent

activity, which can last anywhere from tens of seconds to several minutes, is thought

to underlie a multitude of well-studied neural computations [386] (see Ref. [387] for

an alternative viewpoint). While the mechanistic drivers of persistent activity are

not fully understood – both single-cell and network-level explanations have been pro-

posed over the last several decades, but their relative contributions remain under

debate [388] – attractor neural network models have provided phenomenological de-

scriptions of persistent firing states as fixed points or stable manifolds of the neural

dynamics [389, 390, 391].

Attractor neural networks were first developed within the context of discrete,

long-term associative memory, where each attracting state in a multistable system

represented a distinct, stored memory [392]. Continuous-valued variants have since

been able to model transient memories, like the firing activity responsible for main-

taining an animal’s eye position between saccades in one dimension [389] or its heading

direction in a 2D environment [393]. To be useful in this context, attractor networks

must typically incorporate highly structured or precisely tuned connection topologies.

For instance, the synaptic connectivity matrices in Ref. [389] satisfy stringent spec-
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tral tuning properties that allow certain firing patterns to persist indefinitely. This

need for nontrivial structure is quite general: it allows models of persistent activity to

ensure the requisite balance between excitation and inhibition, which in turn renders

a circuit capable of memory [388].

Recently, a biological instance of continuous attractor dynamics was traced to a

circuit in Drosophila that respects one version of these topological constraints [394].

It has been suggested that the fly computation derives from high-level network prop-

erties – topological configuration, local excitation, and long-range inhibition – rather

than “fine-scale” details like synaptic weights [395]. Yet it is not clear that networks

with random weights, or unstructured connectivities, can perform similar computa-

tions. Indeed, random excitatory-inhibitory networks have been shown to be capable

of various complex computations, including conjunctive encoding for input classifica-

tion [396] and, in the balanced case, emergent selectivity in the context of evidence

integration tasks [397].

In this article, we ask how well a minimally structured, randomly weighted network

model can perform a spatial memory task of the kind previously thought [398] to need

tuned, regular topologies. To do this, we study the firing-rate dynamics of a system

with local but otherwise random connections. The network is spatially extended,

and we show that it is able to encode the locations of external stimuli as elevated

firing activity in the region near stimulation. In other words, it is capable of spatial

memory. We introduce this system in Section 3.2, and computationally measure its

capacity for distinguishing different stimulation locations in Section 3.3. We conclude

by discussing how the model relates to previous work, and how it might be extended,

in Section 3.4. Our intent is not to model any specific biological system, but to

demonstrate how computations similar to those of persistent, continuous attractors

are theoretically possible in random networks whose overall excitation and inhibition

are balanced at a global (not single-neuron [399, 400]) level.
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3.2 Model and Methods

The network G = ({i}, {Jij}) consists of N excitatory rate neurons [389, 401], em-

bedded on a two-dimensional manifold [402]. Specifically, we consider a square plane

of side length L, and connections {Jij} pointing from neuron j to neighbor i (i, j =

1 . . . N). We choose a set of spatial point coordinates X = {(x1, y1), ..., (xN , yN)},

where each pair ~xi = (xi, yi) is an independent random sample from the bivariate

uniform distribution on the interval [0, L]. This system has uniform spatial density

σ = N
L2 , which is equivalent to L√

N
≡ λ as the average inter-neuron separation.

With matrix elements {dij} representing the Euclidean distances between neurons

i and j, we assign a nonzero value to the synapse strength Jij if dij < ξ, where ξ � L.

We prohibit autapses, or self-loops, and invoke periodic boundary conditions in the

calculation of dij. For convenience and uniformity, we present all results using the

reference plane [0, L]×[0, L]. In all that follows, L = 1 and ξ = 0.06L unless otherwise

specified. We also choose N = 212, which fixes λ ≈ 0.016(L) ≈ 0.26ξ.

Choosing a value for ξ which is small relative to L ensures that connections remain

short-ranged, and that the resulting network is sparse. We argue later that choosing

a set of connections {Jij} that is too short or too long-ranged diminishes the ability of

the network to support multiple nontrivial memory states. Quantitatively, since each

neuron i interacts with ∼ πξ2σ downstream neighbors, a typical network realization

G encompasses ∼ πN2 (ξ/L)2 synapses, or about 1% of all possible connections.

The connection strengths, or synaptic efficiacies, are

Jij =

 ∼ P (µ, σ), dij < ξ and j 6= i,

0, dij ≥ ξ or j = i,
(3.1)

where each Jij is an independent draw from P (µ, σ), representing a lognormal distri-

bution (as argued for in Ref. [403] and elsewhere; we explored other distributions, but
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found no qualitative differences in the results). Since by definition lognormal random

variables are positive definite, Jij > 0 for all outgoing connections: all neurons are

excitatory. In what follows, µ = −0.702 and σ = 0.8752 (by convention, these param-

eters refer to the associated normal distribution). These values were taken from fits

done during experimental investigations of neural circuit properties in the rat visual

cortex [403].

As emphasized above, persistent activity typically demands a fine balance between

excitation and inhibition, while our connectivities encompass no explicit inhibition.

Therefore, we choose to model inhibition indirectly, imposing its main effect – which

we assume is to stabilize the system’s total firing activity to a constant value [404, 405]

– directly. In particular, we insert a term into the usual nonlinear firing-rate equa-

tions [389, 401] to represent nonlocal inhibitory interactions. In summary, in the ab-

sence of synaptic or external inputs, the firing-rate activity ri(t) decays exponentially

over the intrinsic time scale τ . Otherwise, ri(t + dt) is determined by integrating a

nonlinear function of combined input currents
∑

j Jijrj(t) the from upstream neigh-

bors j and external drive Ii(t) over the short interval dt � τ . Thus, for constant

a > 0,

τ
dri
dt

= −ri + aN

(
hi∑
j hj

)
, (3.2)

hi = f

(∑
j

Jijrj + Ii(t)

)
. (3.3)

This system will ultimately approach a steady state for which
∑

i ri(t � τ) =

aN : global inhibitory interactions, implemented by the second, “activation,” term in

Eq. (3.2), create the desired balance. This can be verified by solving for the steady-

state conditions dri
dt

= 0. The parameter a in Eqs. (3.2-3.3) can be thought of as the

system’s baseline firing level (the rate at which all neurons would fire if they were to

fire at equal rates in the steady state). A complementary interpretation, related to
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the fraction of active cells in the steady state, will be addressed in detail later. We

set a = 0.02 and, without loss of generality, choose τ = 1 so that time is measured in

unit of τ .

Finally, we adopt for the nonlinearity a version of the firing-rate function intro-

duced by Ref. [393],

f(x) = α ·
{

ln [1 + ln (1 + eβ(x−γ))]
}δ
, (3.4)

with α = 18, β = 0.5, γ = 16, and δ = 1.5. We selected these values to place

activations {hi} in a biological range (tens or less, if measured in Hz) for arguments

x > 0 spanning two orders of magnitude, with f(0) ∼ 10−4 ≈ 0. The reason for the

choice given by Eq. (3.4) is that the gain of this curve increases at a value away from

zero, and that its behavior in the limit of large inputs is nonsaturating over two orders

of magnitude in x. These attributes are intended to better approximate the biological

reality [406], as compared with the sigmoidal thresholding functions commonly used in

artificial networks (which tend to feature inflection points near values corresponding

to zero net input). We note that both of these properties are also satisfied by the

ReLu (Rectified Linear unit) activation function [407], also commonly used in machine

learning.

For a realization G with dynamics given by Eqs. (3.2-3.3), we would like to quantify

how this system performs as a spatial memory architecture. In particular, if a group

of neurons local to an arbitrary region of the plane is stimulated externally, can the

system sustain a persistent representation of their coordinates? How many distinct

stimulation sites can the system reliably encode?

To measure the number of resolvable sites, we perform ntrials “external stimulation”

computational experiments, sequentially, in Matlab. First, we initialize the system,

creating a network realization G by selecting values for the neuron positions X and
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connection strengths {Jij}. We then set the firing rates of all neurons i = 1 . . . N to

ri(0) = a and evolve Eqs. (3.2-3.3) from t = 0 to t = 100τ , well beyond the point at

which the individual firing rates stabilize, using the built-in Runge-Kutta (4,5) solver

with Ii(t) = 0. The result can be a strong excitation, confined to a local region of

the plane, or a fully delocalized firing state in which all neurons participate with rates

near a. In either case, the rates do not change in time (this holds even if the system

is initialized randomly, with rates that sum to the steady-state value aN , instead of

uniformly).

To ensure that the system can switch out of this state, we perform a single exter-

nal stimulation, abitrarily targeting the visual center of the plane, according to the

following protocol. With the aformentioned state serving as our initial condition, we

locate all neurons contained within an “input” patch of area πρ2 (for now, we choose

ρ = ξ = 0.06L) centered at ~xstim = (0.5, 0.5). For this subset of system elements only,

we set

Ii(t) = A (1−Θ(t−∆t)) =

 A, t < ∆t,

0, t ≥ ∆t,
(3.5)

where Θ(t) denotes the Heaviside step function, and ∆t = 5τ . We again solve

Eqs. (3.2-3.3), integrating until T = 40τ , sufficient time for the network to reach

a persistent state.

We then repeat this protocol for ntrials iterations, each time sampling a random

position ~xstim = (xstim, ystim) from a uniform grid of 104 finely-spaced points super-

imposed on the plane (that is, separated by dL = 10−2L), to serve as the set of

stimulation centers. The resulting state {ri(t = T )} then becomes the new initial

condition for the following trial, representing re-stimulation and new memory forma-

tion. We set ntrials = k · (L/dL)2, partitioning stimulations into k successive groups

of (L/dL)2 trials that are each composed of independent random permutations of the

full list of available gridpoints {xstim}.
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3.3 Results

3.3.1 Network supports multiple stable attractors

Upon stimulation, the system initialized as above tends to develop a localized exci-

tation in the vicinity of ~xstim, which quickly coalesces into a roughly circular “bump”

of activity [408, 391, 409]. Figure 3.1 depicts a representative bump in a system of

size N = 212 at T = 40τ . The inset reproduces the firing-rate trajectories for t ≤ T ,

showing that all rates have stabilized to their final values by T .

Figure 3.1: Sample bump state in a system with N = 212. The scale bar indicates
the synaptic cutoff distance ξ, below which G appears fully connected. Inset : All the
neural activities through time. Most of the trajectories remain near zero, and cannot
be visually distinguished. Stimulation is shown as a gray block of width ∆t = 5τ .

While it is free to migrate or spread about ~xstim during and after stimulation,

this activity bump typically assumes a stable shape and location on the plane by
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the same time T . Analogous behaviors are observed when the system is stimulated

from within a previously activated stable state. Then, activities associated with

any preexisting bump are rapidly attenuated due to the global inhibition, typically

returning to baseline activity values by ∆t. Generally, given a sufficiently strong input

current amplitude A and adequately long stimulation time ∆t, an activity bump will

form in any general region of the plane and remain thereafter in the vicinity of ~xstim.

In simulation, our model seems to support only one spatially localized excitation

under steady-state conditions, even if stimulated briefly at two locations simultane-

ously. At least qualitatively, this might be understood by analogy with a simpler

system consisting of just two units, representing distant regions of strong firing. If

each unit acts according to Eqs. (3.2-3.3) – loosely, as a self-excitatory, positive-

feedback system, with a global inhibition that enters via the normalization hi/
∑

j hj

– it is easy to imagine that their mutual feedback will lead to a single unit dominating

(we ignore oscillations, since the feedback would need to be precisely tuned in order

for these to appear). While it is not immediately clear from these equations that

simultaneous activation at many locations will not lead inevitably to delocalized ex-

citations or multiple small bumps, we are not focused on this here, precisely because

we are interested in situations for which there is exactly one driving input at any

given moment in time – and only one recent memory, as in the experimental system

of Ref. [394]. Thus, as a rule of thumb, we say that the system supports a single

bump at any given time [394], in any general spatial region of the plane.

How large are these activity bumps? Although they are not perfectly circular, we

observe that excitations do take on a typical size for a fixed cutoff distance ξ. We

can therefore speak about an effective bump radius Reff. A simple way to measure

Reff would be to choose a firing-rate threshold above which neurons will be considered

active, and compute the radius for the equivalent circular area πR2
eff occupied by this

subset of system elements on the plane. Ideally, though, we would like to choose a
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criterion that is relatively insensitive to the cutoff distance. Fitting two-dimensional

Gaussian curves to the spatial firing-rate distributions associated with each bump

and measuring 2Reff as the full width at half maximum, as done recently for the

experimental system of Ref. [394], yields Reff(ξ = 0.06L) ≈ 0.78ξ ≈ 0.05L. In other

words, the bump radius is on the order of the cutoff distance. We expect this to be

a generic result.

Taking the ratio Reff

λ
≈ 2.99, we see that typical activity bumps are also large in

comparison with the inter-neuron separation λ, as well as the distance dL = 10−2L

between adjacent gridpoints. This has an important consequence. If the system is

stimulated at a point within (or too near) the area associated with an active bump,

it may revert to the originally active bump state instead of evoking a new memory.

This is particularly true if either the input time ∆t or amplitude A are insufficiently

large, but can occur more generally due to the fact that our random connectivity

matrix lacks precise translational symmetry. This allows certain bumps to emerge as

preferred states, which are more strongly favored than others (this limits the network

representational capacity, as we determine quantitatively later). Nevertheless, the

system does appear to select from a discrete, finite set of constant firing-rate states

for the parameter values (λ = N−
1
2 , ξ ≈ 3.84λ) defined above.

In summary, for sufficiently strong input, we observe:

1. Local stimulation can cause the system to develop stable bumps in essentially

any region of the plane;

2. The system seems able to transition, smoothly and repeatably, from sustaining

one bump state to another (switch between multistable firing patterns);

3. Independent stimulations centered at different gridpoints can result in nearly

indistinguishable memory bumps.

We take these observations together as the earmarks of dynamical attracting be-
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havior – in particular, the system acts as a discrete approximation to a 2D plane

attractor. We identify each achievable bump state with a stored, retrievable memory.

By definition, an attracting state persists until stimulation evokes a new bump, so

we say that the system stores spatial memories encoding the location at which it was

most recently stimulated.

Since the basins of attraction (from within which stimulation at different ~xstim

values consistently leads to the activation of specific memories) are not infinitely small

but instead appear finite, the system cannot remember arbitrary positions on the

plane. It is then natural to ask how many unique spatial locations can be distinguished

by a given realization of the synaptic structure. That is, the resolution with which

~xstim can be decoded requires quantification.

3.3.2 Spatial memories span the entire plane

How many distinct stimulation locations ~xstim might we anticipate a realization G

to resolve? We expect this capacity to depend largely on gross statistics like the

average size of the attracting basins, rather than on details of the instantial arrange-

ment of neuron positions and synaptic connections associated with a given system

configuration.

Since the dynamical equations (3.2-3.3) are deterministic, the attracting state

evoked by stimulation at a given site should be unique, apart from the aforemen-

tioned dependencies on the initial state and input-current parameters. This variation

can even be minimized: the stronger the external inputs, the more reliably we can

anticipate that the system will find an attractor in the vicinity of the stimulation loca-

tion, independent of where it is currently excited. Thus all that remains to determine

the exact set of attractors supported by a given configuration G are the the coupling

strengths. Accordingly, we expect that the bumps to which excitations attract will

be almost exclusively a function of the (quenched) random variable Jij.
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We coarsely estimate the system’s capacity as follows. Assuming homogeneous

basins of attraction and one-to-one retrieval within a basin, the number of reliably

stored memories will be equal to the number of basins that fit on the plane. Dividing

the L × L space into equally-sized square sections of width 2R−2
eff implies, for our

parameter values, ∼ 102 distinct, nonoverlapping basins that span the 2D space.

Thus our baseline will be ∼ 100 bumps, touching tangentially.

A preliminary step towards more accurately quantifying the number of stimulation

locations that the system can reliably encode is simply enumerating all the unique

attractors activated during a given series of ntrials stimulations. This allows us to con-

ceptualize the capacity in terms of input (stimulation site) to output (bump location)

relations. For each stimulation, we track the center of excitation ~xCOE(t) =
∑

i′
ri′ (t)~xi′
aN

among cells i′ which we identify as actively participating. Instead of accommodating

for the uncertainties associated with Gaussian fits, here we employ simple threshold-

ing to identify active units, for two principal reasons. First, even the fixed-threshold

criterion ri > 10a predicts the number of active neurons to within 10 units of the

amount given by the participation number pν = (
∑N

i=1 r
ν
i )2/

∑N
i=1 r

2ν
i , and it exhibits

similar qualitative behavior across the surprisingly large range of cutoffs from roughly

zero to 10λ. In addition, this criterion was found to predict coordinates for the exci-

tations that coincide well with the measured Gaussian peaks.

For large cutoffs, it is possible that even a fairly nonrestrictive threshold can

exclude relatively strongly firing neurons: our constraint
∑

i ri(t) = a implies that

firing activity within a given bump decreases as bumps increase in size, which is

precisely what we observed to happen as we increase ξ. Excitations encompassing

zero active neurons were to be assigned a special value of ~xCOE(t), allowing us to count

them separately toward the capacity, but this was not observed for the ξ = 0.06L

presented below. We enumerate all distinct bumps by counting the unique values of

~xCOE(T ) observed, to within a specific resolution (we discuss the importance of this
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resolution below). For ntrials large, this number should approach the cardinality of

the set of possible memories. The next step will be to quantify how many – or with

what fidelity – distinct values of the gridpoint coordinates ~xstim can be discriminated

by these enumerated attractors.

We measure the capacity for a given realization G as follows. Although each site

in the set of (L · dL)−2 = 104 available stimulation gridpoints is visited ntrials

L·dL−2 = k

times each in each series of stimulation events, averaging over all possible initial

conditions for each gridpoint would require too much time. Here we choose k = 10

to further mitigate finite-sampling errors due to the situation described above, in

which stimulation near a highly active bump simply reverts the system back to that

previous attractor after a transient. We also choose to work with an information-

theoretic capacity metric, to treat the inherently nonuniform stochasticity associated

with the “stimulus-response” records in a natural framework.

Specifically, we measure the mutual information [410] between random variables

~xstim and ~xCOE(T ) for a realization G. To do this, we obtain the frequencies of occur-

rence for all observed stimulation locations {~xstim} and bump centers {~xCOE(T )}, over

a set of ntrials stimulation events. We then use these frequencies as the maximum-

likelihood estimates of the corresponding probabilities to form the “plug-in” or näıve

estimators for the relevant entropies [411, 412, 413], from which we can calculate the

mutual information MI ({~xstim}, {~xCOE) (T )}. Since asking how many different at-

tractors were observed for each stimulation position is equivalent to asking how many

different stimulation positions lead to the same attractor (i.e., the mutual information

is symmetric), we choose the latter. Finally, from the mutual information, we define

the capacity

C = 2MI({~xstim},{~xCOE(T )}). (3.6)

Since the information is measured over discrete states, we must discretize the the

values of ~xCOE(T ) by rounding them to an appropriate resolution. As seen in Fig. 3.2,
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truncating ~xCOE(T ) to two decimal places still represents 87.5% of the maximum

information, or ≈ 6.25 bits. Assuming that the system cannot track bump centers to

a precision better than these two decimal places – roughly the theoretical separation

between neurons – we arrive at C ≈ 76 distinct stimulation regions for the values of

L, λ, ξ and ρ used throughout.

In other words, on average, G is able to store and reliably retrieve a number of

memories approximately equal to our näıve, baseline estimate. Unlike in that coarse

estimation, we did not require bumps to be nonoverlapping in measuring the capacity

– yet the system’s recall ability turns out to be nearly as accurate as a fully deter-

ministic discriminator that simply decides in which Reff × Reff-sized, homogeneous

division of the plane the last stimulation occurred. Thus the information-theoretic

capacity, measured to two decimal digits precision in ~xCOE(T ), is also consistent with

a typical size for the attracting basins which matches Reff for stable bumps. Further-

more, we observe that the retrievable memories span more or less the entire spatial

extent of the L×L plane. This can be readily observed in Fig. 3.3, which depicts the

set {~xCOE} of unique bumps accounted for over a course of ntrials stimulations for one

network realization.

3.3.3 Mutual information is near-optimal for a broad range

of parameter values

The cutoff distance is an important length scale in the system. The structure of

the network depends crucially on ξ, allowing us to go from completely unconnected

neurons in the extreme of ξ = 0 to the fully-connected network for ξ = L. It is

important to understand how ξ affects our main findings – in particular, the existence

of localized excitations, and the number of memories G can support.

For the unconnected case ξ = 0, we have {Jij} = 0. In the absence of recurrent

connections (besides the implicit inhibition), all neurons respond independently to
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Figure 3.2: Mutual information as a function of rounding precision in the center-
of-excitation values {~xCOE(T )}. Saturation occurs by four decimal places, but in
what follows we keep two places to ensure the precision of ~xCOE is not finer than the
inter-neuron separation λ. The changes the capacity by less than a factor of 2.

their respective external inputs Ii(t): that is, the {ri} obey a simplified version of

Eqs. (3.2-3.3). In order to write down the dynamics in this case, we first note that

neurons outside the stimulation patch have activations hi = f(0) ≈ 0 for both t < ∆t

and t ≥ ∆t. These units at first experience an exponential decay in their firing

activities and then approach the steady-state value ri(t� ∆t) = a. The ∼ πN(ρ/L)2

neurons encompassed by the stimulation patch also approach a constant value. To

show this, we note that each of the units in this latter subset sees the same input

hi = f [A (1−Θ(t−∆t))], so that the ratio hi(t)/
∑

j hj(t) stays constant. Therefore
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Figure 3.3: The different attracting bumps observed over the k · ntrials computational
experiments are distributed in such a way that they span the majority of the plane.
Bump centers are shown as blue dots; radii for their surrounding gray circles are
≈ Reff. Dotted lines are periodic boundaries.

we can remove the nonlinearities entirely and write

dri
dt

= −ri + I ′i(t), (3.7)

I ′i(t) =


a
πρ2 , t < ∆t,

a, t ≥ ∆t.
(3.8)

Then, in the long-time limit, the unconnected system relaxes to the trivial stable state

{ri(t� τ)} = a, in which all neurons fire at the same, baseline rate. It cannot sustain

any excitations that can be decoded as memories. In the other extreme, ξ → L, it
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seems unlikely that a fully-connected network can support any localized excitations.

We quantify the precise dependence of our findings on the value of the cutoff

distance in Fig. 3.4. We generated this plot by progressively decreasing ξ for an

initial, fully-connected realization G. Here we chose k = 1, stimulating at the first

104 of the 105 sites used to generate Fig. 3.2, and rounded the measured information

values to a precision of two decimal places in ~xCOE as decided above. Clearly, the

mutual information quickly drops to zero below the inter-neuron separation λ. This

means that the system attains only states that are delocalized – effectively all neurons

contribute to the excitation, but none exceed the threshold ri > 10a to be considered

“active” – which we identify as the single, trivial state.

At the other extreme, the mutual information returns to zero for large values of

ξ. This can be explained in terms of the circumstances discussed in Section 3.3.1, in

which it becomes difficult for the network to switch out of its preferred states. As the

cutoff distance increases above ξ ≈ 7λ (or ≈ 5λ for the stricter threshold of ri = 50a),

more neurons are directly involved in sustaining a given excitation, and the structure

of the basins of attractions changes so as to accommodate fewer feasible memories.

As in the case of insufficient stimulation time or amplitude, the success or failure

of a given stimulation in evoking a nearby bump is somewhat history-dependent (in

the sense that some memories might be retrievable from some initial states but not

certain preferred states), but invariably the system comes to favor a single state in the

limit that the network becomes fully connected. For the 10a threshold, the network

cannot reliably store any spatial memories for roughly ξ > 0.16L ≈ 10λ.

Between these two extremes, there is an optimal value ξ∗ ≈ 0.02L, for which the

greatest number of stimulation gridpoints can be distinguished. Moreover, start-

ing at this value, there is a plateau in the system’s accuracy from roughly ξ =

0.02L . . . 0.11L ≈ λ . . . 7λ, across which the mutual information varies by only ∼ 1 bit.

More precisely, the gap between the highest and lowest points on the 10a-threshold
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curve of Fig. 3.4 corresponds to the difference between resolving C ≈ 156 and C ≈ 72

distinct stimulation sites. These values are of the same rough order of magnitude,

and their average is nearly equal to our very first baseline estimate of 100 distinct,

homogeneous basins. We note in particular that the cutoff distance ξ = 0.06L used

throughout the rest of the paper is nominally three times larger than ξ∗, but different

by less than the aforementioned bit in terms of information.

In principle, the capacity should also depend on how reliably the system accesses

its attractors for (or indeed, whether the set of accessible attractors changes with)

different values of the size of the input patch, ρ. Figure 3.5 records the dependence of

the mutual information on ρ. Outside this range, the system will attract to (possibly

different) preferred states, but between roughly 2λ and 6λ we observe that the system

attracts to the same bump state regardless of the specific value of ρ (not explicitly

depicted). This gives the appearance that the system really is tracking the stimulation

centers in computing its final states, at least for input patch sizes in this range.

To the extent that different proxies for ~xCOE agree, this suggests that the system

does in fact encode a coarse representation of the stimulation location – the bump

centers of excitations – rather than tracking high-dimensional quantities like the real-

valued firing rates. That is, although an experimental system wired according to

our prescription for {Jij} could indeed store information in individual firing rates for

other purposes, we are not merely imposing but discovering that the low-dimensional

summary variable ~xCOE is sufficient to predict the stimulation region to a considerable

accuracy. Another step toward testing this hypothesis would be to systematically map

the basins of attraction for a given realization G, and check whether the steep decrease

shown in Fig. 3.5 occurs when the stimulation patch grows large enough to extend

into multiple basins besides that of the targeted memory.

Together, the above results suggest that our randomly-weighted network can sus-

tain local excitations for a range of parameter values. In general, these excitations
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can serve reliably as spatial memories encoding the system’s most recent stimulation

location if the number of neurons activated via stimulation and local synaptic input

is small relative to the system size N . This can be achieved by choosing ξ less than

approximately O(10λ), which ensures that a given neuron synapses with anywhere

from roughly π(λ)2σ . . .π(10λ)2σ ≈ 100 . . . 102 neighbors.

3.4 Discussion

We have showed that short-range, but otherwise unstructured connectivities can sup-

port spatial memory via persistent firing if the overall activity of the network is

constrained through excitation-inhibition balance. The spatial regions that can be

remembered (discriminated) with high-fidelity effectively tile our L × L planar sec-

tion, with a resolution of O(λ−1) distinct sites, roughly equivalent to the number of

nonoverlapping memories that span the same area. This performance corresponds to

an information-theoretic capacity that scales as C ∝
√
N/L, or C ∝

√
σ in terms

of the neuron density, which can be checked experimentally by testing larger system

sizes.

Since the inter-neuron separation sets the scale of the problem at the outset, it is

not necessarily surprising that the optimal cutoff distance ξ∗ ≈ λ. What is unexpected

in our results is the fact that a spatial memory spanning a two-dimensional manifold

can be achieved without explicit tuning of synaptic connections. This is reinforced

by the fact that we observe not just an isolated peak at ξ∗, but a broad plateau of

near-optimal cutoff distances.

While it is traditionally maintained [388] that only tuned connectivity profiles

can produce continuous attractors, the idea that random networks support memory

on short time scales is not altogether new [414, 415, 416, 398]. Indeed, recent work

argues that quasi-random topologies, refined via a non-linear Hebbian learning rule,
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can give rise to attractor dynamics in the specific context of persistent neural activ-

ity as a substrate for working memory [417]. Here, we are interested in using such

random networks to store spatial memories that effectively span a continuous mani-

fold [418]. In addition, we accomplish spatial memory using a random network, which

emphatically requires no learning.

Similarly, distance-dependent topologies [419] have been implemented in previous

models, including the seminal work on continuous neural attractors [408], yet we are

aware of only two related studies that link sparse, short-range (1D nearest-neighbor)

connections formally to the localization of firing-rate excitations [420, 421]. As we

do, both respect Dale’s Principle [422] for the signs of synaptic connections only

indirectly [423] and explore random weights. While it may be interesting to explore

the spectra of our {Jij} in the context of Anderson localization or the notion of

“spatially structured” disorder developed in [421], a more obvious generalization of

our model would be to relax the hard-threshold cutoff condition to a connection

probability. For example, we could set Jij ∝ e−|~xi−~xj |/ξ, or another function of dij =

‖~xi − ~xj‖ (see, for example, the related work of Refs. [424, 425, 426, 427]).

A drawback to our model, in the form presented here, is that the system of

Eqs. (3.1-3.5) incorporates no explicit noise terms. Fundamental to our results is the

firing-rate constraint
∑

i ri(t) = aN , an imposition which corresponds only approxi-

mately to the biological reality for real circuits (as in [394]). In our future work, we

propose to replace the constant parameter a by a Gaussian process α(t) = a + η(t).

We expect that, for small amounts of noise, the system will retain its qualitative be-

havior, but with a reduced capacity. On the other hand, for η(t) with large variance,

it is possible that the system will fail to store memories with high fidelity due to

longer bump excursions or delocalization, or entirely as with ξ and ρ.

If these assumptions regarding the inclusion of noise are found to hold, it would

be interesting to explore noise parameters that place the firing-rate variability in a
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regime consistent with previous experiments [406, 388] while respecting our sparsity

constraints. Yet we reiterate that our goal is not to model any known experimental

system. Indeed, whether or not our model relates to specific, observable experimen-

tal systems remains to be seen. In anticipation of such in vivo analogs, we offer

the following predictions regarding which features of our model might be used to

infer whether short-range, randomly weighted connections drive a given instance of

persistent activity.

First, in the best case scenario, novel technologies may allow researchers to probe

structural properties directly. This promises a trivial way of checking whether synap-

tic matrices are untuned, as in Eq. (3.1), and is already underway for the fly [428,

33, 429]. While the emerging picture for Drosophila is one of decidedly nonrandom

connectivity, this may not hold for significantly larger organisms. Indeed, the number

of possible synapses in a neural system scales as O(N2). Thus genetic encoding of

precise values for some billions of pairwise connections even in modestly sized ver-

tebrates is simply not feasible. On the other hand, it is plausible that regularity

appears at the level of local rules superimposed on essentially random connectivities,

as in canonical microcircuit models [430], which would be consistent with our setup.

In the absence of structural information, the firing-rate activities themselves can

also help support or reject our model. Since most classic continuous-attractor ar-

chitectures have translationally invariant connections, they are able to host bumps

at virtually any location [431]. Our {Jij}, on the other hand, lack such a symme-

try. This leads to discrete attractors [432] with variable spacing and portions of the

plane that cannot be reliably encoded. Such “discrete approximations” to attracting

manifolds have even been touted as more robust than their continuous counterparts,

for example to perturbations in the synaptic weights [433]. It would be interesting

to quantify the fraction or extent of the plane that the system can remember in the

presence of the aforementioned noise.
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In addition, while continuous attractor models accommodate a degree of drift

or diffusion for activity bumps following their settlement upon the manifold [434],

tracking ~xCOE(t) reveals that excursions in our random networks occur predominantly

before t = T ; see the inset of Fig. 3.1. Thus, comparing the observed distribution of

displacements, between the tested ~xstim values and the corresponding ~xCOE(t) could

also distinguish our model.

Finally, the raw activity measurements {ri(t)} are also subject to what is known as

network reverse-engineering, or automated inference methods that operate directly on

data to reconstruct network interaction structures [37]. Although we do not advocate

applying out-of-the-box algorithms to glean structural information in general, there

do exist certain signatures and gross statistics which can be used to differentiate truly

random graphs from more complex or subtle architectures at a coarse level [53].

Our model is one of many that attempt to capture the ability of different neural

systems to support localized excitations that encode real-valued quantities. Here,

we eschew structured topographic mappings [394] in favor of a random connectiv-

ity that we find to be capable of storing similar neural representations. Whether

or not in vivo circuits conforming to the specifications of our model are found ex-

perimentally to underlie one of these interesting systems, in our view such random,

balanced excitatory-inhibitory networks should still be taken seriously as null models

for recurrent neural computation [397].
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Figure 3.4: Varying ξ reveals a broad plateau over which the mutual information
remains within a single bit of its maximum value. At either extreme of ξ the informa-
tion falls to zero as connectivities become too sparse or too dense to support the type
of spatial memory discussed throughout. The black curve represents the information
log2

L2

πReff
corresponding to our original, näıve estimate of C, with Reff(ξ) adjusted to

match the typical values given by Gaussian fits to ∼ 1000 bumps. Note that the
black curve, representing ξ < λ, exists only outside the shaded gray box because the
bumps that did localize for small ξ were too few to measure Reff(ξ) accurately.
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Figure 3.5: In the neighborhood of ρ = ξ = 0.06L, the mutual information does not
vary significantly. We verified that the system tends to fall into the same attractor
regardless of the specific value of ρ until a large percentage of neurons are stimulated,
thereby activating the aforementioned “preferred” or global states. At roughly the
same value after which see a decrease in information with the cutoff distance, we
observe a drop in information with ρ. This continues monotonically until ρ > 50λ,
after which stimulations leads only to excitations below the activity threshold.
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Chapter 4

Coarse-Graining and

Renormalization without Locality

In Chapter 3, we explored a network model that affords a compact reduced description

by virtue of encompassing only a few dynamical attractors, all of which live on a low-

dimensional manifold. Far from a situation in which the firing activity of every neuron

is of equal importance in determining the system’s large-scale behavior, knowing the

region of stimulation to a reasonable precision (determined by the system’s intrinsic

length scales) gave an accurate summary of the resulting spatial activity pattern.

We treated in the underlying network model in Chapter 2 as if it came to us

via reverse-engineering: its randomly distributed, effective connection strengths sug-

gested no obvious compressibility, but its dynamical constraints, originating from

unobserved elements, ensured that the system could only exist in a handful of states,

in the large (time) scale limit. In theoretical physics, the constraints on a system’s

Hamiltonian that are provided by symmetries (“invariances” to translation, rotation,

etc.) and locality (in Chapter 3, the short interaction range and small numbers of

actively participating neurons in a given memory state) are what limit the number of

possible interactions and behaviors. Without such constraints, there is no guarantee
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that most traditional physical models would even be tractable.

Thus, even the most intricate physical models in physics are expected to attain

a degree of elegance or simplicity merely by virtue of accommodating the underlying

symmetries of the systems they describe. Yet complex systems generally – including

biological networks – do not as readily admit simplification in this manner [435, 372,

11]. What might be learned from traditional approaches to dimensionality reduction

in theoretical physics to inform how to coarse-grain systems that do not as readily

admit simplification merely by means of invariance and locality arguments?

In this final Chapter, we attempt to realize our goal of reducing the complexity

associated with models of biological systems in a more general and formal manner.

Inspired by classical results from theoretical physics, and again with applications like

neural activities in mind, here we examine one way of deducing, directly from data, a

compressed descriptions of the large-scale behavior associated with a complex system,

without first supposing an explicit form for the underlying interactions or inferring

them in advance. We outline how one might expect to obtain a satisfying reduction for

a well-studied model, without deferring to its known symmetries or spatial structure

for guidance. The idea we espouse is to progressively combine or coarsen a system’s

short-range, microscopic degrees of freedom while preserving – indeed, rendering more

salient – those features that are relevant to determining its statistics at macroscopic

scales (here, “microscopic” refers to a resolution on the level of the individual activity

variables of Chapter 2, while “macroscopic” corresponds to coarsened variables that

each summarize a number of microscopic variables on the order of the system size).

This practice was introduced to statistical physics some four decades ago [436, 437],

and continues to be developed [438], under the name renormalization group.

Renormalization group (RG) theory describes how to systematically coarse-grain

physical models and calculate, among other quantities, critical scaling behaviors.

The RG approach has been immensely successful for systems where interactions are
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known to possess a high degree of symmetry at the microscopic level that effectively

reduces the number of parameters that can contribute to the system’s behavior in the

ultraviolet limit. In this final Chapter, we develop a method, analogous to real-space

RG techniques and inspired in part by recent demonstrations that low-dimensional

descriptions of of certain biological systems may be within reach [371, 373, 439], that is

capable of coarse-graining and detecting infra-red behavior directly from experimental

data – without explicit reference to known symmetries or (spatial) locality.

Specifically, our information-theoretic approach replaces the usual variational RG

objective of minimizing the change in free energy between the microscopic and coars-

ened systems with an equivalent optimization that preserves a system large-scale

statistics. In order to retain the original philosophy and operational criteria of the

variational renormalization group [440], we coarse-grain (compress) subsets of sys-

tem elements that are maximally proximal in information space, sequentially, until

all identifiably “short” scales in that space are eliminated. We demonstrate that a

coarse-graining transformation defined by an Information Bottleneck compression is

fully equivalent to the usual RG map that preserves the information, at each coarse-

graining step, about the system’s statistics next-shortest scale.

Through repeated applications of the aforementioned transformation, we observe

a qualitative analog of the known renormalization group flow for measurable quan-

tities associated a “network” of Ising spins embedded on a two-dimensional, square

lattice [441] – a canonical model for the real-space RG. After showing viability of

our data-driven approach, we mention how one could have used this generic method

to infer the correlation length (i.e., effective temperature) and the corresponding,

“large-scale” degrees of freedom for this system from data alone.

The material in this Chapter, written under the supervision of K. Michael

Martini and Ilya Nemenman, represents a work in preparation for sub-

mission to the American Physical Society journal Physical Review E.
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4.1 Introduction

The properties attributed to a physical system depend on the scale, at which that

system is observed. In many familiar cases, the dominating forces or effects that

govern a system at microscopic scales tend to cancel out [370], or else become un-

observable [371], at some larger scale. For instance, minute fluctuations in the local

magnetization of a bulk ferromagnetic material far below its Curie point do not de-

stroy the crystal’s long-range order. Conversely, collective phenomena and emergent

complexity [114, 442] ensure that novel interactions and behaviors can yet appear in

larger-scale representations of systems whose microscopic dynamics are governed by

seemingly simple rules. These two intimately related observations together lead to

Kadanoff and Goldenfeld’s maxim [119]: one should not, in general, attempt to model

bulldozers with quarks, but instead tailor descriptions of nature to accommodate the

specific scales at which one intends to make predictions.

In statistical mechanics and quantum field theory, the renormalization group

(RG) [443, 444] provides systematic ways to interpolate between different observation

scales, identifying the phenomenological variables (i.e., relevant interactions or scal-

ing fields and coarse-grained degrees of freedom) that capture a system’s dynamics or

behavior at new resolutions. Real-space RG techniques [445, 438] proceed from sets of

finely resolved, spatially-dependent degrees of freedom or statistical fields that com-

prise a system’s microscopic Hamiltonian to appropriate sets of macroscopic variables

via iterative transformations.

Formally, the first step in such an RG procedure entails “integrating out” or

combining those degrees of freedom that are associated with the shortest scale of

interaction in the system. These deprecated degrees of freedom are replaced, accord-

ing to some coarse-graining rule, with a lower-dimensional set of summary variables.

Such a rule allows one to preserve information about the system’s long-wavelength

statistics – macroscopic thermodynamic observables – by ascribing effective interac-
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tion strengths to those coarse-grained variables, with values that leave unchanged the

free energy of the original system.

This compression-like process constitutes one RG step, and can be repeated un-

til all length scales shorter than the system’s intrinsic correlation length have been

eliminated. Ideally, it is iterated only until functional forms for the RG recursion

relations, or “flow” equations (which describe how the Hamiltonian transforms under

repeated compressions) can be found. Then, the RG equations can be solved in order

to characterize their dynamical fixed points, which here represent models that remain

unchanged when subject to further coarse-graining.

Even where exact recursion relations cannot be established, variational RG ap-

proaches [440] can, in principle, be used to identify large-scale degrees of freedom via

approximate transformations. Indeed, the variational task of minimizing changes to

the free energy has been shown [19] to be equivalent to the optimizations performed

by deep neural network architectures based on Restricted Boltzmann Machines [446].

Yet, while the latter have been used to perform a broad range of pattern recognition

and generative modeling tasks for diverse systems [447], renormalization group meth-

ods, in their traditional forms, remain largely unused in studies of complex systems

outside the specific domains of quantum and statistical physics.

There are technical reasons for this domain specificity. First, since the very notion

of coarse-graining presumes the existence of an initial model, a necessary preliminary

step toward applying RG procedures is the specification of the most general Hamilto-

nian that is consistent with the known symmetries of the system under study [448].

In physics, known symmetries (such as translational and rotational invariance) serve

along with locality constraints to severely limit the number of parameters that can en-

ter such a Hamiltonian; for an arbitrary complex system, this dimensionality-reducing

information may not be readily available. Moreover, inferring mechanistic models is

computationally expensive (as seen in Chapter 2), and even where effective interaction
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structures can be “reverse-engineered” from system-wide activity data, such network

reconstructions tend to be intractably large or else difficult to interpret – much less

coarse-grain systematically. In a sense, then, the automated network inference idea

explored in Chapter 2 runs somewhat counter to the RG task of isolating only a few

relevant variables.

Despite these challenges, several modern lines of work, inspired by the RG in

physics, suggest that it is indeed possible to separate scales and arrive at low-dimensional,

fixed-point descriptions for certain systems in biology and social science [371, 373].

Both approaches pursued therein introduce alternative ways to perform the coarse-

graining step for systems that were not amenable to standard RG methods, but

they are not capable of reducing the space of potentially relevant interactions to a

tractable (O(N) rather than the O(2N) total connections in a network of N inter-

acting degrees of freedom) subset without invoking the aforementioned symmetry

considerations [449]. Meanwhile, a recent coarse-graining of neural activity data in

the murine hippocampus [439] identified various power-law scaling behaviors, indica-

tive of the possibility of attaining a simple description of one network’s dynamics in

terms of a nontrivial fixed point of the RG flow.

This latter study performed the coarse-graining step by combining degrees of

freedom according to their distance in an abstract, “correlation” space instead of

real space, since the connections between neurons in their system are not organized

according to geometrical proximity, raising the question of whether it is possible –

and then, how – to construct RG-style transformations for general complex systems

in the complete absence of knowledge regarding “who interacts with whom” (i.e., the

Hamiltonian) [37].

In this Chapter, we aim to close the gap between the profound successes of renor-

malization techniques within their native branches of condensed matter and high

energy physics and the lack of equivalent tools for discerning an appropriate vocabu-
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lary of large-scale variables for microscopically complex systems generally. We recast

the variational renormalization group objective function as an information-theoretic

optimization to develop a data-driven method of coarse-graining that operates di-

rectly on the network’s joint probability distribution. We define “local” interaction

neighborhoods in information space that can be iteratively removed, as in the real-

space RG. Using this method, we identify, from simulated data, sets of large-scale

degrees of freedom for a 2D Ising model [441] – the simplest network of spin-spin

interactions known to exhibit a phase transition, with an analytical solution [450] –

that resemble the traditional “block spin” variables [445]. In addition, our algorithm

recovers the qualitative RG flow for the nearest-neighbor correlations associated with

pairs of these “block” variables, at various scales. Our results suggest that a fully

quantitative mapping between our outputs and previous analytical solutions is also

within reach; we discuss the concrete, remaining steps toward achieving this goal.

In the following section, we review the basic aspects of variational renormalization

group theory that are needed to motivate our algorithm. Then, we relate the standard

RG parlance to our new terminology, showing that minimization of a free energy dif-

ference can be thought of in terms of a well-known information-theoretic problem in

Section 4.2.2. We describe the general data requirements and specific example system

to be coarse-grained in Section 4.2.3, and summarize our specific algorithmic choices

for that system in Section 4.2.4. Our main results are presented in Section 4.3, with

a commentary on their interpretation and agreement with predictions from standard

RG theory following in Section 4.4. We conclude with a discussion of the aforemen-

tioned, concrete steps that are needed to complete our future work in Section 4.5.
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4.2 Motivation and Methodology

We start here with an abbreviated review of real-space renormalization group theory,

as it was conceived in statistical physics, for completeness and to foster intuition

that is useful for understanding the remainder of this work. We then depart from

this traditional formulation, building on this intuition, to develop the fundamentals

of our information-theoretic approach. Once we have motivated our own method,

we describe both the general type of data we wish to coarse-grain and our Ising

“test” system, to which we will apply our algorithm. Finally, we commit to the

specific algorithmic details for this system, wherever there were freedoms of choice

in implementation, summarize the iterative algorithm itself, and discuss additional

details regarding its validation.

4.2.1 Real-Space RG within Statistical Physics

We begin with known Hamiltonian H = H ({σi}, {K}) describing the behavior of

a physical system in terms of N “micro” degrees of freedom {σi} and parameters

{K}. Each realizable microscopic state {σi} = {σ1, σ2, . . . σN} is associated with

an appearance probability or weight in some statistical ensemble P ({σi}), which is

a function of H. For the canonical ensemble in particular, we have the customary

Boltzmann-Gibbs measure defined by P ({σi}) = e−βH/Zβ, where β is the inverse

temperature and Zβ is the partition function (we set β = 1 wherever it appears, for

the remainder of this Section).

By defining a suitable projection operator T (σi, σ
′
i′), we can then build a set of

new, coarse-grained variables {σ′i′} that summarize those original degrees of freedom,

whose weights P ′ ({σ′i′}) are sums of the probability weights corresponding to the
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microstates they replace:

P ′ ({σ′i′}) =
1

Zβ
e−

∑
i T (σi,σ

′
i′ )H({σi},{K}). (4.1)

Here, T (σi, σ
′
i′) is some local operator (that is, it relates subsets of interacting

system elements) whose form is expected to conform to the general symmetries obeyed

by the system. If its values are positive-definite, it makes intuitive sense to define an

effective Hamiltonian for the coarse-grained degrees of freedom. By analogy with H,

H′ ({σ′i′}, {K ′}) ∝ logP ′ ({σ′i′}), (4.2)

where the effective parameters {K ′} are yet unknown.

In fact, the fundamental assumption is that H and H′ are special cases of the

most general Hamiltonian that still reflects all the symmetries we expect of the system

itself: their differences can only be found in the values of the couplings – including the

possibility that a coupling previously missing from {K} can assume nonzero values

in {K ′} – and in rescalings of the degrees of freedom. This is characteristic of any

system near its critical point. If in addition we require
∑
{σ′
i′}
T (σi, σ

′
i′) = 1, we see

that

Z ≡ Tr{σi}e
−H({σi},{K}) = Tr{σ′

i′}
e−H

′({σ′
i′},{K

′}). (4.3)

In other words, the system’s partition function remains invariant under the transfor-

mation H → H′. Indeed, this transformation also preserves the various derivatives of

the partition function, including the thermodynamic free energy F = − lnZβ. Since

the coarse-graining represents some averaging of the degrees of freedom over some

small spatial scale, we can say that the “new” Hamiltonian H′ retains the large-scale

(macroscopic) behavior of H.

The coarse-graining transformation {σi} → {σ′i′} can be iterated, so that we have
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{σ′i′} → {σ′′i′′}, and so forth. At each successive stage, the coupling parameters {K ′},

{K ′′}, etc., are chosen to ensure the constancy of the free energy. In the ideal case, the

couplings at each stage of coarse-graining will map onto those of the next according

to a precise functional form R (K) : {K} → {K ′}, known as the RG recursion

relation(s) for the system. Then the so-called RG flow that describes the trajectory

of models realized by the RG procedure in parameter space.

Identifying the dynamical fixed points of the RG flow is equivalent to finding a set

of simplified or coarsened set of descriptors for the system’s behavior at large scales.

Formally, linearizing the RG flow equations K ′ = R (K) about a given fixed point

K∗ = R (K∗) allows one to read off eigenvalues for different scaling variables (i.e.,

linear combinations of the parameter deviations from their fixed-point values); these

eigenvalues are either greater, less than, or equal to unity. If they are greater, the

repeated action of (the linearized version of) R (K) causes the scaling variables to

increase, leading them further away from their fixed-point values. Such eigenvalues

are known as relevant because their associated eigenvectors represent a flow directed

away from the critical manifold. Irrelevant eigenvalues, with values below unity,

denote the opposite flow, toward the fixed point (i.e., they span the critical manifold).

Only relevant eigenvalues are associated with the experimental “knobs” that must be

adjusted to tune a system to its critical point; marginal eigenvalues, equal to unity,

are not directly informative about the approach to a fixed point. They are instead

associated with logarithmic corrections to scaling [444].

Unfortunately, renormalization group equations which preserve the partition func-

tion exactly are known for only a handful of systems [451]. Where solving for R (K)

is infeasible, the variational RG approach [440] can often be used to approximate it.

The idea is to minimize the free energy difference between the original and coarse-

grained systems, rather than attempting to preserve the partition function identically.
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This difference is defined by

∆F = (F ′ −F) =

(
ln

Tr{σi} e
−H

Tr{σ′
i′}
e−H′

)
. (4.4)

The free energy calculations that lead to Eq. (4.4) above are, of course, only

possible because we assumed at the outset to be in possession of the Hamiltonian

H. Without such detailed knowledge about the interactions that comprise a system,

not even variational RG methods can be used to determine an appropriate set of

large-scale degrees of freedom and effective coupling constants {K ′}.

4.2.2 Algorithm Motivation

In the absence of detailed, prior knowledge about the interaction structure of the

system (i.e., the form of H), it is not straightforward to choose a coarse-graining rule

T : {σi} → {σ′i′} by which to combine and compress the {σi}: without a way to

measure the global free energy difference ∆F , one cannot quantify the contribution

of individual, microscopic features to a system’s large-scale behavior. For biological

networks and many other complex systems, it is the prerequisite step of writing down

a mechanistic form for H that is problematic.

Is there some way to construct H, approximately? We have seen in Chapter 2

that, under a broad range of conditions, network interaction architectures can be

reconstructed, or “reverse-engineered,” from abundant activity measurements. Yet

the very notion of inferring a large, high-dimensional object as an intermediate step,

only to coarse-grain (reduce the dimensionality) of that object, is something we have

argued vehemently against. To wit, performing tasks in this order seems to violate

a well-known heuristic from statistical learning theory: one should avoid solving a

“hard” problem as an intermediate step toward solving an “easy” (that is, more

direct) one [36]. What is needed, then, is a method of “renormalization” that – like
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the network inference algorithms of Chapter 2 – operates directly and exclusively on

data.

Indeed, it is possible, and arguably more transparent, to cast the RG in terms

of joint probability distributions. This can be done because the preservation of the

free energy is actually an ancillary statement about P ({σi}) and P ′ ({σ′i′}) for the

original and transformed systems: Equations (4.1) and (4.2) together imply that the

full probability measure for quantities that depend only on higher-order “coarsenings”

({σ′i′}, {σ′′i′′}, {σ′′′i′′′}, etc.) – such as the thermodynamic observables – are preserved

(exactly, at least in the case of exact RG transformations) [444].

Here, we explore the possibility of finding a new coarse-graining rule, without

explicit reference to the interaction structure of the system. This lack of a microscopic

model necessarily places us in the variational regime; we now try to build intuition

regarding how to preserve the system’s large-scale behavior in terms of P ({σi}) and

P ′ ({σ′i′}).

Let X denote the subset of system elements that is to be replaced via some

coarse-graining transformation, and X ′ its respective coarse-grained variable(s). The

remaining system elements Y = {σi}\X, where the symbol \ denotes the set difference

operation, each then serve as their own coarse-grained variables {σ′i′}. We now seek a

coarse-graining rule T : X → X ′ whose output must respect the large-scale features

of the system by leaving the distribution P ′(X ′, Y ) as close as possible to P (X, Y ).

In principle, two probability distributions can be compared by measuring their sta-

tistical distance, according to information-theoretic metrics (and pseudo-metrics) [210].

Since the above distributions have different supports (the cardinalities of X and X ′

differ by definition), it is not possible to quantify their statistical distance directly.

Instead, we find the Kullback-Leibler (KL) divergence [452] between the initial dis-

tribution over Y , conditioned on X, and the new distribution over Y , conditioned on
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X ′:

DKL [P (Y |X) ||P ′ (Y |X ′)]

=
∑
y∈Y

P (Y |X) log
P (Y |X)

P (Y |X ′)
, (4.5)

which is in this context a function of the values x ∈ X and their corresponding

x′ ∈ X ′, as defined by the coarse-graining rule T . Then, we propose to minimize the

average of this quantity over all input-output pairs (X,X ′) ,

〈
DKL [P (Y |X) ||P ′ (Y |X ′)]

〉
X,X′

, (4.6)

as a surrogate objective for the free energy of Eq. (4.4).

That Eq. (4.5) constitutes a natural quantity with which to encode the large-scale

behavior of the system can be seen by acknowledging the following. If, without loss

of generality, and in the spirit of Kadanoff’s variational prescription, the couplings

among the σi ∈ X represent the shortest-scale interactions in the system, the elements

of Y necessarily contain the information about the system at larger scales. Therefore,

the probability measure that needs to be preserved (i.e., minimally modified) under

X → X ′ is the conditional distribution P (Y |X).

The variational problem of finding a (stochastic) map X → X ′ that minimizes

Eq. (4.5) is related intimately [453, 454] to the Information Bottleneck optimiza-

tion [455]

min
P (X′|X)

{I(X;X ′)− ΛI(X ′;Y )}, (4.7)

with

Λ→∞.

In Eq. (4.7), the mutual information I(X;X ′) measures the similarity, or degree of

compression, between the subset of elements X to be coarse-grained and their coars-
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ened version, X ′. Meanwhile, I(X ′, Y ) quantifies the information that X ′ contains

about the set of reference variables Y ; the value of this quantity is bounded from

above by I(X, Y ). Minimizing the difference of these two terms, with the Lagrange

multiplier Λ acting as a tradeoff parameter, means seeking a distribution P (X ′|X)

such that the latter approximates I(X, Y ) as closely as possible, with X ′ being con-

strained to be as different as possible – in other words, maximally compressed – from

X itself.

The demand that Λ → ∞ amounts to neglecting the first, “compression,” term

in favor of maximizing the relevant information about degrees of freedom located at

distances larger than the separation between those σi ∈ X. If the dimensionality of

(number of possible values taken by) X ′ is much smaller than that of X, we assume

that this reduction in dimensionality represents the most significant compression that

X will undergo. Then, dropping the first term completely will not affect the output

distribution P (X ′|X), and the limit is consistent. In what follows, we maintain this

assumption whenever the dimensionality of X ′ is smaller than X, with the simple

substitution of a large, finite value for the parameter Λ.

Note:

The relation between these two optimization problems can be illuminated by

rewriting the mutual information variables of Eq. (4.7) in terms of the constituent

entropies:

I(X;Y ) = I(Y ;X) = S(X)− S(X|Y )

= S(Y )− S(Y |X)

(4.8)

I(X ′;Y ) = I(Y ;X ′) = S(Y )− S(Y |X ′) (4.9)

Consider the identity formed by subtracting and adding the quantity I(X;Y ) from
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I(Y ;X ′). That is, we study

I(X ′;Y ) = I(X ′;Y )− I(X;Y ) + I(X;Y ), (4.10)

the first two terms of which can themselves be rewritten in terms of entropies by

using Eq. (4.8) and Eq. (4.9) above:

I(X ′;Y )− I(X;Y ) = S(Y |X)− S(Y |X ′). (4.11)

This difference of conditional entropies can be written in a more compact form. To

do this, we must rewrite both terms of Eq. (4.11) in new forms that encompass sums

over all three random variables X, Y , and X ′. We have

S(Y |X) = −
∑
x∈X,
y∈Y

P (X, Y ) logP (Y |X)

= −
∑
x∈X,
y∈Y,
x′∈X′

P (X, Y,X ′) logP (Y |X) (4.12)

for the first entropy, and

S(Y |X ′) = −
∑
x′∈X′,
y∈Y

P (X ′, Y ) logP (Y |X ′)

= −
∑
x∈X,
y∈Y,
x′∈X′

P (X, Y,X ′) logP (Y |X ′) (4.13)
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for the second. Then we can write

S(Y |X)− S(Y |X ′)

=
∑
x∈X
z∈X′

P (X,X ′)
∑
y∈Y

P (Y |X,X ′) log
P (Y |X ′)
P (Y |X)

= −
∑
x∈X
z∈X′

P (X,X ′)DKL [P (Y |X)||P (Y |X ′)] , (4.14)

where the equation P (Y |X,X ′) = P (Y |X) in last line above is valid only if the

variables form the Markov chainX ′ ← X ← Y , as in the Information Bottleneck [455].

We assume the Markov chain requirement will be satisfied in our RG context,

since this is essentially the purpose of the projection operator T (σi, σ
′
i′). This allows

us to collapse the right-hand side of Eq. (4.10) to the form

I(X;Y )− 〈DKL [P (Y |X)||P (Y |X ′)]〉X,X′ . (4.15)

Since I(X;Y ) is fixed, it does not contribute (apart from a global offset), to the

minimization in Eq. (4.7). We can then recast our RG problem in the equivalent form

min {I(X;X ′) + Λ〈DKL [P (Y |X)||P (Y |X ′)]〉}, (4.16)

where, again, the “compression” term, I(X;X ′), is to be neglected (asymptotically,

in the limit that Λ→∞).

Thus the Information Bottleneck optimization, Eq. (4.7), in the aforementioned

limit, is completely equivalent to the minimization of our desired KL divergence,

averaged over all realizable input-output pairs (X,X ′) of the coarse-graining trans-
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formation. The mapping X → X ′ via the conditional distribution P (X ′|X) thus

generalizes the usual coarse-graining projection operator T (σi, σ
′
i).

The Information Bottleneck optimization can solved by an iterative procedure that

generalizes the Blahut-Arimoto algorithm in information-theoretic rate distortion the-

ory. Whereas a search through the space of possible coarse-graining rules to find an

optimal P (X ′|X) could quickly become prohibitively expensive for large systems, the

Information Bottleneck’s iterative optimization procedure inherits convergence prop-

erties from that original algorithm, guaranteeing a local minimum solution, justifying

its use even for the special case Λ→∞.

Moreover, this implies that the task of finding an appropriate, stochastic coarse-

graining transformation that preserves, as closely as possible, the probability weights

over the remaining activity variables – in other words, the information about all

longer “scales” in the system – can be reduced to the optimization of various mutual

information values (nonlinear correlations) between subsets of activity trajectories.

In particular, working at the level of probability distributions has ensured that the

free energy difference ∆F can be minimized simply by finding a compression X ′ of the

subset X that reproduces, as accurately as possible, the mutual information between

the trajectories X and the rest of the trajectories Y – with no need to enumerate the

intractably large number of terms that could comprise the partition function.

In systems with a well-defined range of interaction, it is in principle possible to to

simplify this optimization yet further. Namely, we can take for Y not “all remaining”

trajectories {σi} \ {X}, but a smaller subset representing the local neighborhood of

X. This can be done whether there is a sharp cutoff (as in, say, a 2D Ising model

with nearest-neighbor interactions) or longer-range influences that diminish over some

characteristic length scale.

Indeed, in developing our method, we would also like to consider more general

notions of locality, such as having a small number of neighbors in some abstract space.
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This type of locality is exhibited by certain genetic networks (see Chapter 2) that

incorporate only a handful of neighbors per node. One can also speak about “local”

interactions in correlation space, as in the case of inferring spatial contact among

amino acid residues from pairwise correlation within protein sequences ([172], or see

Chapter 2), or the neighbors of a given pixel in natural images 1. While the basis for

these two endeavors relies on an explicit correspondence between the neighborhoods

in geometric and correlation space, we are interested in coarse-graining systems even

for which we have no access to geometric information – or, where the geometric and

correlation “spaces” do not map neatly into one another. This latter kind of locality

was recently used, successfully, to define neighborhoods for interacting neurons [439].

The extent to which a system’s constituent interactions are local, in either sense,

may also affect the cardinality of X, as we will see later. In the following sections,

we ask how the variational approach motivated in this section can be used in an

algorithmic pipeline to determine the large-scale, effective degrees of freedom {σ′i′}

from data alone, and without explicit reference to spatial structure.

4.2.3 Description of the Data to be Coarse-Grained

In motivating our approach, we assumed no access to the system’s (local or nonlocal)

interaction structure. We will work directly with data, which presumes, at most,

knowledge of the joint probability distribution P (X, Y ). In practice, this P (X, Y ) is

never known exactly. We will estimate the needed marginal distributions empirically,

from observations or activity measurements m = 1 . . .M on the N elements, some-

times called nodes, that comprise the system at the microscopic level. These activity

variables, {σi(m)}, can be either discrete or continuous.

For convenience, we arrange our activity measurements in an N ×M matrix, so

that each column will represent one possible realization of the system’s microstate

1Private communication with Mahajabin Rahman and Ilya Nemenman, regarding original work
in preparation for publication.
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(i.e., configuration {σi}), and each row the set of activity samples for one individual

element. We assume these samples reflect simultaneous measurements across all ele-

ments in the system, but make no distinction regarding how they are obtained: they

might be independent or consecutive samples, from a system in equilibrium or a time

series.

Until now, our discussion has remained generic, since we desire to develop a

method that will work for many different systems. Since we will be working directly

at the level of probabilities, the only available input will be the system’s empirical

joint distribution, and this should be possible in principle. Yet at this point, for con-

creteness, and in order to test our algorithm on a system for which an appropriate

set of large-scale degrees of freedom are known, we shall focus on a specific model

system.

For the remainder of the present work, we study the d = 2 Ising model on the

square lattice. We consider N interacting spin-1
2

particles, or σi(m) = {±1}. Our

spins occupy a lattice of side length L =
√
N , and remain in thermal contact with

a heat bath at inverse temperature β ≡ 1
kBT

. If only pairwise, nearest-neighbor

interactions and coupling with a uniform, external magnetic field H are permitted,

we can define the Hamiltonian

H ({σ}, {K}) = −J
∑
〈i,j〉

σiσj +H
∑
i

σi, (4.17)

where the symbol
∑
〈·〉 refers to summation over nearest-neighbor pairs. For sim-

plicity, we ignore the second term (set the external field H = 0) and consider only

J > 0.

Spin-spin interactions σiσj in this system exist at short range exclusively, with a

coupling strength (−J) that is uniform for all interacting pairs. That is, the interac-

tions are isotropic and spatially homogeneous, so that each σi interacts in the same
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manner with all four neighbors.

Whereas our choice above represents the ferromagnetic interaction, it can be

shown that the free energy density is invariant to the sign of J . Since σi ∈ {−1, 1}, H

is also clearly invariant to the transformation σi → −σi. Given H = 0, H possesses

the “sub-lattice symmetry,” which allows one to split the lattice into “even” and

“odd” sub-lattices that do not interact [443]. We exploit this symmetry to increase

the efficiency of our sampling process [456].

This model exhibits a second-order phase transition at (T = Tc, H = 0), with a

critical temperature given by [450] sinh2
(

2
kBTc

)
= 1 (here we work in units such that

J
kB

= 1, and therefore Tc = 2
1+
√

2
≈ 2.2692). Among this system’s critical properties,

there can be observed the power-law decay of the spin-spin correlation function with

distance, G(r, T ), at precisely Tc, with critical exponent η = 1
4

[445]:

G(r, T = Tc) ∝
1

rη
. (4.18)

Taking into account the symmetries mentioned above, RG methods predict just

two relevant parameters for the Ising universality class, which turn out to be the

reduced temperature t = T−Tc
Tc

and magnetic field h = H
kBT

.

The scaling fields, t and h, control the statistics of the large-scale degrees of

freedom {σ′i′}, which for the Ising model are simply local spatial averages of the

microscopic spins. The de facto implementation of these averages is Kadanoff’s “block

spin” transformation [445], which can be performed by a projection operator T (σi, σ
′
i′)

which takes the “majority rule,” or sign of the mean spin value.

In order to sample from the canonical equilibrium distribution P ({σi}) = e−βH({σ},{K})

Zβ

with {K} = {J, 0}, we perform Monte Carlo simulations in Matlab. In particular,

we implemented the parallelized version of the heat bath algorithm [457], or “Gibbs

sampler,” that appears in Ref. [456]. Simulation results for select thermodynamic ob-
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servables are shown below for a system of 64× 64 spins, produced with 106 flips/spin

for each Monte Carlo step.
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Figure 4.1: Upper left : Magnetization per spin; Upper right : Energy per spin; Lower
left : Susceptibility; Lower right : Heat Capacity; Red vertical line: Tc.

This sampling protocol, consisting of M Monte Carlo steps in a given run, results

in a series of M whole-lattice spin configurations. Since each such step results in a

fully thermalized lattice state, we can draw individual samples at either the same

(inverse) temperature β or at different temperatures {β1, β2, . . . , βM}.

4.2.4 Algorithm Outline

The end goal of any RG program is to extract certain relevant features – those

which determine a system’s behavior at macroscopic scales – from a microscopic

model. Traditionally, these features include an appropriate set of “effective” degrees

of freedom, as we have mentioned, as well as the parameters (or, technically, their

combinations in the form of scaling fields) that summarize their statistics. So far,

we have argued that the defining objective of the (variational) renormalization group

– the preservation of the free energy – can be given a precise interpretation in term

of information-theoretic concepts. In this section, we begin our conversion of this
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equivalent view into an algorithm by which to detect the effective degrees of freedom

that describe a system at a particular, larger length scale, directly from data.

In developing our algorithm, we will encounter several freedoms in implementation

– such as how to choose the element subset X to be coarse-grained, or what subset

of reference elements Y will to represent the interactions or statistics at larger scales

– that depend on the data being analyzed. We emphasize clearly throughout where

our specific choices could have differed, postponing for this work any discussions of

their general validity.

How can we choose the subset of spins to coarse-grain at a given RG step? As

usual, we must somehow choose X to represent those degrees of freedom which in-

teract on the shortest scales encompassed by the system. Since we have eschewed

any real-space notion of locality from the outset, we determine the “neighborhood”

of a given spin σi by measuring its distance from each other spin σj 6=i in information

space. Stronger correlations are taken as signatures of more local, “shorter-scale,”

interactions.

The logic for this substitution is as follows. In many physical systems spatially

local interactions will produce strong spatial correlations in the vicinity of a particular

element. For example, this is trivially true for networks of interacting spins [441], but

has also been observed in various biological contexts ([75, 174], or see Chapter 2).

As mentioned earlier, the mutual information is our natural choice for measuring

these correlations, since the Information Bottleneck problem of Eq. (4.7) is written in

terms of this same measure of statistical dependency. In addition, for large numbers

of samples and variables {σi} that take on a small number of different values, this

quantity is not much harder to estimate reliably than the familiar linear (Pearson)

correlation [316]. Thus, in order to select members for the subset X to be coarse-
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graining, we compute

I (σi;σj) = S (P (σi))− S (P (σi|σj)) (4.19)

for all
(
N
2

)
unique pairs (i, j), and rank them in descending order, beginning with the

value I(σi∗ ;σj∗(i∗)) associated with the maximally dependent sample sets σi∗(m) and

σj∗(i∗)(m). Then, we establish the neighborhoods for each spin by enumerating those

“surrounding” elements for which the value of Eq. (4.19) exceeds some threshold.

There are several ways to define such a threshold. Our strategy here is never

intended to reproduce a system’s precise interaction architecture (this is known as

inferring “mechanistic” interactions, and was discussed in Chapter 2), but rather to

isolate the most strongly coupled subset of elements, giving a precise meaning to

the standard RG notion of “local” averaging. Thus we employ a strict cutoff that

prevents aggregating all but a small number of “nearby” neighbors for coarse-graining.

Managing only a few neighbors at a time also keeps the problem tractable.

For the ferromagnetic Ising system of Eq. (4.17), it is clear that the strongest cou-

plings at the microscopic level are local (indeed, the direct interactions involve nearest

neighbors exclusively). Due to this inherent locality, we expect to find the highest

values of I (σi;σj) for nearby neighbors on the lattice. In language of correlations,

this also follows from the well-known exponential decay of the spatial correlation

function, G(r, T ) ∝ r−η e−
r

ξ(T ) , for T 6= Tc, where ξ(T ) is the correlation length and

η is the critical exponent describing the power-law decay of pairwise correlations at

T = Tc exactly [443] . We observe in simulation that this holds even if correlations

are computed using independent Ising samples that are drawn at a range of different

temperatures (not depicted here), although it may not be true in general. For now,

we will not discuss the general validity of exploiting across-sample correlations as a

proxy for locality for other systems.
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For the Ising case, we define our threshold such that the subset to be coarse-grained

encompasses only the single, maximally correlated pair; that is X = {σi∗ , σj∗(i∗)}. By

this extreme choice, we mean to take literally Kadanoff’s prescription to coarse-grain

or “integrate out” only those degrees of freedom associated with the smallest scale

of interaction present in the system at each RG step. This allows us to liberally

and intentionally discard, in making each successive compression, any information

which is not relevant to the network’s large-scale statistics. In contrast, previous

efforts to solidify connections between the RG and (deep) machine learning [19, 25]

have focused predominantly on architectures like Restricted Boltzmann Machine-

based autoencoders, which attempt to compress all aspects of input data on equal

footing.

With our selection of X complete for a given RG step, we can proceed to revisit

and refine our choice for Y . For computational tractability, we would like to invoke

our earlier assumption that a comparison with “all remaining” spins in Eq. (4.7)

can be supplanted by comparison with some representative subset. Although this

is guaranteed to be valid only if the interactions are sufficiently short-ranged, this

is the case for the Ising model. We keep the single pair of next-most highly corre-

lated spins, respectively, to each of the elements in X: Y = {σk∗(i∗), σl∗(j∗(i∗))}, with

I(σi∗ ;σk∗(i∗)) ≥ I(σj∗(i∗);σl∗(j∗(i∗))) by convention. This choice also reflects Kadanoff’s

prescription, but instead of aiming to preserve the information all higher scales, it

preserves only the “next” interaction scale in the system.

Once we have designated values for both X and Y , and estimated their respec-

tive distributions P (X) and P (Y ), we use the iterative optimization procedure (ex-

tension of the Blahut-Arimoto algorithm) of Ref. [455] to determine a minimizing

distribution P (X ′|X). In practice, we set the parameter Λ = 100. This strongly

de-emphasizes the “compression” term of Eq. (4.7), under the aforementioned as-

sumption that further compression – beyond changing from the quaternary alphabet



103

{{−1,−1}, {−1,+1}, {+1,−1}, {+1,+1}} of X to the binary alphabet {{−1}, {+1}}

– is not needed 2.

Using the conditional distribution P (X ′|X) and the trajectories for both (hyper-

)spins in the set X, we create a set of samples for new hyperspin X ′. This is done sim-

ply by flipping a coin (generating a uniformly distributed random number) weighted

by P (X ′|X) for each m = 1 . . .M . As a convention, if a randomly number is less

than P (X ′|X), we assign a value of +1 to the corresponding (mth) sample of X ′.

Then, once all M binary samples are drawn, we adjust the overall sign in for this set

of samples such that its linear correlation with the quantity
(
σi∗ + σj∗(i∗)

)
is higher

than its correlation with −
(
σi∗ + σj∗(i∗)

)
. This last adjustment effects the “renor-

malization” part of the RG by ensuring that the new hyperspin X takes on the same

range of values as the spins it replaced, in the same circumstance. In other words, the

compression behaves like a spin subject to ferromagnetic (and not antiferromagnetic

influences.

Finally, we add X ′ to the system, while removing X. This entails modifying the

(originally N ×M) activity matrix by deleting the two rows associated with σi∗(m)

and σj∗(i∗)(m), and appending a one to contain the newly generated set of samples for

X ′. We begin the next iteration by selecting values for X and Y from this reduced

matrix, which will contain N − α rows following coarse-graining iteration α. This

process can continue, in principle, until some small number ω of rows remains. We

2Matlab implementation was adapted from a function written by C. Wiggins and I. Nemenman,
c©2002 (used with permission)
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summarize the overall operation of our algorithm below.

Algorithm 1: Coarse-Graining Procedure

Input : {σi(m)}, i = 1 . . . N , m = 1 . . .M

Output: {σ′i′(m)}, i = 1 . . . ω, m = 1 . . .M

1 repeat

2 Compute I(σi;σj) ∀ i, j ;

3 Select X = {σi∗ , σj∗(i∗)}

where ∗ denotes “max” ;

4 Select “reference” subset Y

as next-highest info. spins,

respectively, with σi∗ & σj∗(i∗);

5 Estimate P (X, Y ), P (X), P (Y )

by counting appearance frequencies

(i.e., maximum-likelihood estimate) ;

6 Initialize P (X ′|X) randomly, as

matrix from uniform distribution ;

7 Find P (X ′|X) via minimization of:

minP (X′|X) {I(X;Y )− ΛI(X ′;Y )}

using Blahut-Arimoto iterative solution [455] ;

8 Use P (X ′|X) & values of X to draw set

of M samples for the new hyperspin X ′ ;

9 Re-define system:
{

[{σ′i′} \X] , X ′
}
← {σ′i′}

10 until less than ω system elements remain

OR I(σi∗ ;σj∗(i∗)) < significance threshold ;
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4.2.5 Note About Validation Procedures

Our algorithm, as outlined in the previous section, can in principle be applied, in ad

hoc fashion, to any given set of Ising trajectories. Since the correlation structure of

Ising data itself differs markedly with the external temperature T , our information-

theoretic “neighborhood” and selection criteria will, themselves, depend on T . For

example, for T → 0 and T → ∞, the maximal information value I (σi;σj) can refer

to spins at arbitrary distances from one another on the lattice.

Is this desirable? Before answering this question, we must first consider that

the knowledge of T as the (sole, in this case) macroscopic parameter required to

determine the phase space structure and statistics for the system is something that

emerges from an RG treatment of our Ising model. Without such a prior knowledge,

we could not have anticipated which external parameters to vary; ultimately, this

type of knowledge must be a product of our approach, not an input. Indeed, we

discuss later how this very same lack of knowledge allows our method to characterize

large-scale properties in unfamiliar systems.

Nonetheless, in order to ensure that the program laid out in Algorithm 1 results in

a set of large-scale degrees of freedom that are consistent with the correct macroscopic

variables, we will test our approach preliminarily on data that expresses separately

each distinct part of the system’s phase space. For our Ising spins, this means testing

data taken at temperature values T < Tc, T > Tc, and near the critical point. With

each of the three cases is associated a distinct qualitative and quantitative RG flow,

or approach to fixed-point behavior. It is this flow, as well as the way in which the

microscopic spin variables are found to combine, yielding some set of macroscopic

degrees of freedom, that we wish to observe for each case.

In the context of the usual RG transformation, such as Kadanoff’s “block spin” [445]

technique, we can expect to apply an operator T (σi, σ
′
i′) of fixed form to any system

sample (that is, realization of the microstate {σi}), at any temperature, with the
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result that the system will flow to the correct fixed point under repeated transforma-

tions. The action of T (σi, σ
′
i′) is the same at all temperatures.

This temperature-independence is easy to ensure when “nearest-neighbor” interac-

tions are defined in real space, since Ising spins change only their values, and not their

positions, with temperature. In order to ensure that our notion of locality remains

independent of temperature during the validation of our procedure, we first “train”

our algorithm by learning a sequence of subsets {X, Y }α, or merge order – according

to which the (hyper-) spins at coarse-graining iteration α will be compressed – on

data taken at various mixed temperatures, centered about Tc.

Once this sequence of the “most local” and next-most closely interacting “reference

spins” across all included temperatures has been established, we switch to a data set

taken at particular values of T where, skipping the establishment of the information-

space “neighborhood” and selection of X and Y (steps 1-3 in Algorithm 1), we coarse-

grain according to the merge order instead. This also helps us to respect, at least

approximately, the known translational symmetry of the Ising system (only temporar-

ily, during our validation procedures) by building distinct neighborhoods of roughly

equivalent information content, over which we can later take averages.

For the results presented in the following section, we learned separate merge or-

ders for 10 data subsets or pools of 1000 samples each, and then applied these to

coarse-grain multiple different sets of fixed-temperature data. Each of these fixed-

temperature data sets contained 400 samples, chosen at random from the full avail-

ability of samples taken at the desired value of T across all 10 pools. The direct

application of our Algorithm 1 to fixed-temperature data in an ad hoc manner, with-

out learning a merge order, will be addressed later (see Section 4.5).
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4.3 Results

We first examine typical outputs for our Information Bottleneck compressions. Fig-

ure 4.2 reiterates the action of steps 6-8 in Algorithm 1: the 2×M vector of activities

associated with the maximally correlated spin pair X is compressed to form a new

trajectory for hyperspin X ′.

Figure 4.2: In this schematic, the binary two-vector of activities for X is compressed
to a one-vector trajectory for the new hyperspin X ′; those for Y remain as before.

This algorithm then introduces hyperspin X ′ into the system, with distribution

P (X ′), for which the mutual information with the reference spins, I(X ′;Y ) is intended

to approximate I(X;Y ). The relationships between these and other information

quantities are illustrated in Fig. 4.3. At each “RG” iteration, the mutual information

is highest between X ′ and one of the spins in X. Sometimes, the Bottleneck samples

a trajectory for X ′ that is identical to the trajectory for one of these spins; other

times, the compression is almost equally similar to the trajectories for both spins

in X . Meanwhile, the magnitudes of the next-nearest neighbor information values,

I(X1, Y1) and I(X2, Y2), and the opposite pairings, I(X1, Y2) and I(X2, Y1), can be

seen relative to the “shortest-scale” information I(X1, X2). For mixed-temperature

data, we expect the latter to decrease over successive iterations, as this quantity set

our effective length scale in the absence of real-space structure.

We would like to somehow compare our coarse-grained systems, consisting of many
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Figure 4.3: For “RG Step 1,” the black line indicating I(X1, X2) lies under the blue
line for I(X1, X

′) and therefore the dotted lines for I(X2, Y1) and I(Y1, X
′) overlap,

as do the lines for I(X2, Y2) and I(Y2, X
′).

such hyperspins after many such successive compressions, to the classic results of the

real-space RG for the square-lattice Ising model. For our method to serve as a viable

replacement for traditional RG techniques where knowledge of (spatial) interaction

structures is unavailable, it is crucial in particular that the large-scale degrees of

freedom {σ′i′} – the X ′ of later iterations – bear an identifiable relation to the usual,

local spin averages that characterize this system.

One way to accomplish this would be to study in some detail the receptive fields

at various stages of coarse-graining. These are the full sets of original spins accounted

for by a given hyperspin X ′ – including those already replaced by previously-added

hyperspins that have X ′ as their compression, and so on, recursively. We would hope
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to verify that our algorithm generates objects similar to Kadanoff’s block spins (that

is, hierarchical sets of geometrically proximal hyperspins; see Appendix 2). Given

that Algorithm 1 operates without any reference to the geometrical structure of the

2D lattice, we cannot expect our receptive fields to correspond exactly to the familiar

block structure. For instance, we will not necessarily observe equally-sized receptive

fields across the lattice at n-fold reductions in the number of spins, for integer values

of n. Yet, the “blocks” should grow in size predictably with the effective (spatial)

length scale ` = L√
Nrem

, where Nrem is the number N of original spins in the system,

minus the number of coarse-graining iteration; recall that each iteration removes two

(hyper-) spins and adds X ′.

Several representative examples of the receptive fields that coalesce at different

stages of coarse-graining are reproduced in Fig. 4.4. Beyond ` ≈ 5.5 (corresponding

to 3961 iterations of the algorithm, with few of the original spins remaining), the

hyperspins shown begin to take the shape of large, delocalized clusters that span the

lattice. By ` = 10, some fields contain spins that are entirely nonlocal to one another

in real space.

What is happening to the information at these stages? We plot the values

I(X1, X2) associated with the shortest interaction scale in information space at each

iteration in Fig. 4.5. The mutual information drops significantly in the vicinity of

` = 10, where the spin neighborhoods inferred by our algorithm were seen to become

nonlocal. We find that this value corresponds with reasonable precision to the maxi-

mal correlation length ξ(T̃c) in the finite system studied in Ref. [458], in addition to

our own numerical measurements of the same quantity (not shown), where T̃c refers

to the shifted, “critical” temperature at which all observables that diverge in the

thermodynamic (L→∞) limit experience a rounded peak for L finite.

In particular, I(X1, X2) begins rapidly approaching, starting around ` = 10, a

value nearly indistinguishable from the average (mean or median) pairwise informa-
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Figure 4.4: Already by ` ≈ 5.5, some of the receptive fields have grown large. The
above represent five consecutive values of X ′, at different stages of the coarse-graining,
at approximately the indicated value of `. Note: Fields are overlaping where the
“highest information” value is between a small (hyper)-spin and an existing, adjacent
hyperspin of comparable or even larger size. Growing clusters of hyperspins in this
manner is not desired at small `, and shall be discussed in more detail below.

tion between elements in the system. In other words, beyond this point, all inter-

actions in the system are viewed by our Algorithm 1 as equally or indistinguishably

“local”. This is essentially the same as reaching an effective lattice on the order of

the correlation in the usual RG, at which point the hyperspins become effectively

decoupled, and suggests a natural stopping point for our coarse-graining procedure:

by analogy with the role usually played by the correlation length, we can iterate our

algorithm until the “shortest-scale” mutual information I(X1, X2) begins to saturate

or becomes statistically insignificant.

The quantity I(X1, X2) can be related in an even more precise manner to standard
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Figure 4.5: This plot shows the maximal information value I(σ∗i ;σ
∗
j (i
∗)) used to select

X across all iterations of the algorithm on a mixed-temperature data set, relative
to the the bounding and average information values at the corresponding values of
`. Specifically, the “Maximum” curve records the highest mutual information value
observed at the corresponding scale (it is computed from the same matrix I(σi, σj),
but using a different Matlab function); the “Minimum” curve records the lowest value
of I(σi, σj) at a particular scale, using a Matlab function analogous to that for the
“Maximum” curve. Similarly, the “Mean” and “Median” curves are different averages
computed using the same data. The behavior of I(X1, X2) between ` ≈ 0.5 and ` ≈ 8
suggests a power-law scaling.

analyses of the Ising model. For binary variables, mutual information is closely tied

to the linear correlation between hyperspins σi′ and σj′ :

Ci′j′ =
〈σi′σj′〉m − 〈σi′〉m〈σj′〉m√

Var [σi′ ] Var [σj′ ]
. (4.20)
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Since I(X1, X2) represents the degree of statistical dependence at the shortest in-

teraction (here, length) scale present in each coarsened version of the system, the

corresponding value of Ci′∗j′∗ is itself related to the nearest-neighbor correlation be-

tween “block” (hyper-)spins.

The nearest-neighbor correlation, or pairwise average 〈σ′i∗σ′j∗〉m for i′∗ and j′∗

representing hyperspins which are adjacent (in information space), has a known de-

pendence on the temperature (see Fig. B.1). Renormalization group theory predicts

that repeated RG transformations will cause this quantity to “flow” to either the

extreme of 〈σiσj〉m = 1 or 〈σiσj〉m = 0, depending on whether the initial temperature

is above or below Tc.

Equally simple and demonstrative of the RG flow the behavior of the net (squared)

magnetization, M2 = 1
N2 (

∑
i σi), which approaches M2 = 1 if the starting tempera-

ture is below Tc and tends toward zero (apart from the usual 1√
N

fluctuations associ-

ated with a sum uniformly distributed, binary random numbers for a finite system)

for starting temperatures above TC . Figure 4.6 records observed values of M2 across

the effective length scales corresponding to successive coarse-graining iterations, and

Fig. 4.7 the nearest-neighbor hyperspin correlations. Each curve in both plots rep-

resents a subset of Ising samples taken at a different temperature surrounding Tc;

all were formed by applying the merge order learned on mixed-temperature data to

these fixed-temperature data subsets. That all curves (excepting T = 2.27) gather

near one of two specific values in these plots suggests that our algorithm has, cor-

rectly, recovered the existence of our Ising model’s distinct low- and high-temperature

phases.

We study also the covariance, or connected correlation 〈σ′iσ′j〉−〈σ′i〉〈σ′j〉 associated

with activity trajectories for each realization of the coarse-grained pair X. This

“truncated” version of the spin-spin correlation function does not flow to separate

fixed-point values, but has the advantageous property of decaying toward zero at
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Figure 4.6: “Flow” of the squared magnetization. For temperatures T < Tc, the
flow is toward the maximal value of 〈σiσj〉 = 1; for T > Tc it is toward a separate
value, which is given by the variance of an unbiased random walker. That is, one
starts at position “zero” and, flipping a coin to take successive steps to either the
left or right, finishes a distance 1√

N
units away from zero after N steps. In general,

these results suggests that our algorithm is reccovering the existence of distinct low-
and high-temperature phases. We discuss later the finite-size and symmetry-breaking
effects that prevent the T = 2 line from reaching M2 = 1.

long range. Since X is to represent the shortest length scale in the system, which in

the real-space RG is always rescaled to restore the unit lattice spacing, our measured

covariances correspond to nearest-neighbor (block) spin correlations.

The nearest-neighbor, connected correlations for block spins are predicted (see [443]
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Figure 4.7: “Flow” of the total pairwise, nearest-neighbor correlations. For tempera-
tures T < Tc flow is toward the maximal value of 〈σiσj〉 = 1; for T > Tc it is toward
〈σiσj〉 = 0. These results serve as an independent confirmation that the algorithm is
able to distinguish the low- and high-temperature phases of the model.

and Appendix B for details) to transform as

G(r = 1, t) = `−ηG (t`) , (4.21)

where ` is the block size, t is the reduced temperature, and η = 1
4

(for the infinite-

size system). Note that the effective temperature responsible for the statistics of

the transformed system is given by t′ = t`yt = t`. Since the total pairwise nearest-

neighbor correlation 〈σ′iσ′j〉 for this system is known analytically (see Appendix B) and

〈σ′i〉〈σ′j〉 is just the squared magnetization, we can combine the previous relation for
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the effective temperature with Eq. (4.21) to predict the nearest-neighbor connected

correlation after a block transformation of any size `.

While for block spins ` typically takes on integer values (multiples of the mi-

croscopic lattice spacing), there is no such constraint in our case. Therefore we

interpolate the effective system size as ` = L√
Nα

to plot our results, with

Nα = N − α (4.22)

the number of constituent hyperspins at a given iteration α (since one coarse-graining

step removes two hyperspins X and adds the single, new hyperspin X ′ to the system).

In theory, the connected correlation G(r, T ) reduces to the pairwise product 〈σiσj〉

for for T > Tc, because the spontaneous magnetization M vanishes there. Yet for a

system of finite size, as for our 64 × 64 lattice, there can in principle be a nonzero

magnetization everywhere, since a true phase transition and critical behavior exist

only in the thermodynamic limit. Although the RG blocking transformation itself

(being a local operation that acts on only a small subset of spins) remains agnostic

to whether the system is infinite or not, the magnetization values M(T ) must be

corrected for finite-size effects.

Details regarding finite-size corrections to the magnetization can be found in Ap-

pendix B; there, we argue that corrections to the total pairwise correlations are small,

and neglect them in what follows. We plot the measured connected correlations

G(1, T ) associated with the coarse-grained spin pair X at each iteration of the algo-

rithm, along with their predicted values for the finite-size system, against the effective

length scale ` in Fig. 4.8. There, the shaded curves of various colors represent our

measured results for data of different temperatures, while the dots of corresponding

colors are the predictions.

Immediately it is evident that, despite some quantitative agreement (i.e., the start
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Figure 4.8: Nearest-neighbor connected correlations, separated into distinct phases
for visual clarity. Finite-size corrections allow us to predict the start points for curves
of different temperatures, as well as their general shapes, but fail to predict their
exact rates of decay accurately beyond a scale of ` ≈ 5. Further work is needed to
determine how to predict correlations in this finite-size system. For example, how
must infinite-size scaling exponent value η = 1

4
be modified?

points and early decays for high and low temperature curves), there are disparities

between our results and our theoretical predictions. The disagreement is exacerbated

in the neighborhood of the critical point, which strongly suggests that η = 1
4

is not

the correct exponent to describe the decay of correlations with the effective length

scale in this system of finite size.

The most significant quantitative disagreements occur, as might be expected, at

scales ` beyond the point at which we have showed that the algorithm begins learning

nonlocal receptive fields. In addition, our algorithm recovers many qualitative features

– such as the existence of distinct high- and low-temperature phases – with remarkable

robustness, given that it was imparted with no knowledge of the system’s local spatial

structure, or any other information that could be used to identify our data as having

come from an Ising model.

In the following section, we discuss several reasons for these discrepancies between

our results and predictions, particularly in the region corresponding to ` > 5, and
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what changes are needed to see them coincide.

4.4 Improving the Quantitative Agreeement

We have seen that the receptive fields generated for our hyperspins on mixed-temperature

data resemble those of traditional “block spins,” at least qualitatively, for small values

of `. This suggests that our algorithm is learning an information-space representa-

tion of the spin neighborhoods, and “compressed” large scale degrees of freedom, that

both recover the known, spatially-informed interaction structure of the system. This

structure is detected implicitly, without explicit reference to space.

In addition, we have been able to reproduce certain key properties and statistics of

these large-scale degrees of freedom, with varying degrees of success. These included

a qualitative reproduction of the RG flow for the (unconnected) spin-spin correlation,

as well as a semi-quantitative prediction for the decay of connected correlations. In

all cases, our measured values for G(r = 1, T ) fall to zero with different rates than do

our predictions. This requires explanation; in this section, we attempt to elucidate

why we could have expected such discrepancies, and which modifications can facilitate

better agreement between our results and quantitative predictions.

4.4.1 Symmetry Breaks in Current Implementation

In classic block spin approaches to renormalization of the Ising model, the system

is first partitioned into multiple subsets to be coarse-grained, representing different

groups of spins that each interact on a particular (length) scale. Then, all these

subsets are transformed simultaneously according to the coarse-graining rule, and the

lattice is rescaled to restore the system’s local geometry. Such a strategy preserves

the translational invariance of the system, since the receptive fields for the block spins

are free to “slide” across the lattice along any spatial dimension, and all interactions



118

on a given scale are removed at once.

Here, our notion of interaction scale and its restoration by rescaling exist in in-

formation space, where there may be a clear ordering of “shortest” distances, but on

a continuum rather than the discrete set of possible lengths that arise naturally as

multiples of the lattice spacing. In selecting only a single, short scale to coarse-grain

out, we break this symmetry: once X is removed and replaced with X ′, the N−α−1

interactions of X ′ with all other (hyper-) spins is considered on equal footing with

the rest of the interactions that were “next in line” if not for X.

Renormalization approaches are predicated on respecting the symmetries of the

system at hand, and without this requirement there is no guarantee of reproducing the

correct RG flow [443, 444]. Still, we expect our Algorithm 1 to respect the aforemen-

tioned translation invariance at least approximately for a given set of data, which we

can illustrate as follows. At the inception of coarse-graining, we select the single pair

X of spins corresponding to the maximally informative pair of trajectories to coarse-

grain out. To within the precision with which we measure the mutual information,

this maximally informative pair can be any one of several possible candidates. When

this first pair is replaced with X ′, the mutual information between the sampled trajec-

tory for X ′ and the remaining spins is bound by the Data Processing Inequality [210]

to be of a value no higher than the already-measured information content between X

and those same spins. Therefore, the subsequent steps will entail, at worst, a choice

between removing the effective interaction of X ′ with one of the remaining spins and

coarse-graining another short scale, associated with another pair of the remaining

spins. Ideally, our algorithm would continue, at each iteration, to select X in such

a way that all interactions at ranges close to that of the initially removed scale are

replaced (on average) before revisiting the first collection of hyperspins produced, and

so on for “longer” scales later.

This last condition can, of course, be mandated, but instead it emerges, in an
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approximate form, as a feature of our algorithm in the early stages of coarse-graining.

Yet, as noted earlier, our measured receptive fields grow larger than predicted for

standard block spins at the equivalent reduction in scale, with fully delocalized clus-

ters of appearing already by the time ` ≈ 5.5. These clusters form because, beyond

a certain stage of coarse-graining, the mutual information between some large hy-

perspin, representing the X ′ of a previous iteration, and some other (hyper)-spin is

found to be higher than the information values between comparably sized hyperspins.

Many of these events are consecutive in the later stages of coarse-graining, with large,

“hoarder” hyperpins simply assuming neighbors in their periphery.

Thus coarse-graining (and information loss) goes faster in some localized spatial

sections than others, meaning that our “renormalized” lattices exist at multiple dif-

ferent effective temperatures, rather than a uniform t′, which explains why the usual

argument leading to Eq. (4.21) fails to predict the rates of decay in Fig. 4.8. What

causes such a bias in mutual information values that leads to cluster formation and

a faster compression in localized regions of the lattice?

The information content of new hyperspins about the states of those already in the

system is controlled by the Information Bottleneck compression process. As we have

seen, I(X ′, Y ) is bounded by I(X, Y ), but it is how the former compares to the “next”

scales in the system – in other words, the mutual information values associated with

the interactions between all other spin pairs {σi, σj}, ∀ i, j /∈ X – that determines

whether X ′ is soon likely to participate in a coarse-graining event.

Since the Blahut-Arimoto solution of the Information Bottleneck problem posed

in Eq. (4.7) guarantees only a locally, not globally, optimal encoding P (X ′|X), it is

possible that sampled trajectory for hyperspin X ′ at a given iteration can be “ranked”

at an inappropriate information-theoretic distance from the rest of the system’s con-

stituent hyperspins for subsequent iterations. In reviewing and re-computing the

output values of I(X ′, Y ) for specific iterations, we have observed that multiple sub-



120

optimal compressions can be found with probabilities comparable to the of the max-

imal value of I(X ′, Y ). While the effect of chosing suboptimal compressions has yet

to quantified, their ability to distort the lattice geometry and effective temperature

should not be overlooked. We comment on how to avoid this problem in the following

section, among other directions for future work.

In addition to setting a new hyperspin at an inappropriate scale, the version of

our algorithm used to generate the plots of Section 4.3 did not distinguish between

symmetric and asymmetric solutions P (X ′|X). Since, by our convention, the first

elements of X and Y (σi∗ and σk∗(i∗) in the notation of Section 4.2.4) were demarcated

as “next-shortest” scale of interaction, P (X ′|X) could have had different values for the

two cases X = {−1,+1} and X = {+1,−1}. This, too, has the potential to destroy

translational invariance, but be ameliorated by the corrective strategies discussed

below.

4.4.2 Simple Modifications May Restore Symmetry

We have argued that several disparities in physical observables between our measure-

ments and theoretical predictions are due principally to to a violation of the inherent

symmetries in our test case of 2D Ising data. Namely, our algorithm fails to predict

a form for our large-scale degrees of freedom that resemble the usual block-average

variables at large `, and their decay rate of their associated connected correlations,

due to aspects of our compression process that encourage favored solutions at these

later scales. Again we stress that, while not all data will incorporate such symmetries,

it is important to show that our method is capable of finding solutions consistent with

them, where they do exist.

In order to ensure that the chosen value of P (X ′|X) represents the best possible

solution for preserving the information about all longer interaction scales in the system

beyond that associated with X, we so far have modified the Information Bottleneck
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step (7) of Algorithm 1 for all future work to repeat the compression step until a clear,

maximum I(X ′, Y ) is identified. For our chosen Bottleneck parameter value Λ = 100,

we observe that that the matrix P (X ′|X) takes one of ∼ O(10) possible values, so we

expect that running the Information Bottleneck algorithm until convergence∼ O(102)

times exhaust these values and find the global optimum. Then the resulting matrix of

P (X ′|X) is symmetrized by replacing the columns for which the spins that comprise

X assume opposite values – P (X ′|X = {−1,+1}) and P (X ′|X = {+1,−1}) – with

their arithmetic average.

A viable alternative would be to average the realized values of P (X ′|X), weighting

realizations in proportion to the proximity of I(X ′, Y ) to its maximum observed

value. A more rigorous way to do this would be to “bootstrap” our estimation of

I(X ′, Y ) by subsampling the trajectories X and Y with replacement and repeating

the compression for each subsample as described above.

If these changes do not restore the prerequisite translational symmetry, additional

measures can be taken to enforce it. An extreme example would be keep track of

which pairs of the system have been coarse-grained and mandate that all the original

spins must be partnered, in information-rank order, before coarse-graining the newly

formed hyperspins – and so on for higher levels (scales) of coarse-graining. In the

special case that these hyperspins are not allowed to serve even as reference spins,

this paradigm corresponds roughly to the approach taken in Ref. [439], although the

pair-selection rule was based on linear correlation and the compression rule identical

for all spins therein. Other variations that interpolate between this extreme and

the precise version of algorithm presented here exist as well – for example, we can

introduce an artificial-temperature “noise” to the selection ofX and Y to allow coarse-

graining away from the “most informative” pair (which can later be annealed), but

this could ruin our attempt to emulate the Kadanoff-Wilson strategy of removing the

shortest scales first. Moreover, since all of these “corrections” entail ways to hard-
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code translational invariance, they do not solve the problem of discovering symmetries

directly from the data.

Furthermore, not all systems will exhibit translational symmetry. For our future

plans, we propose a way to use method to coarse-grain more general, unfamiliar

systems.

4.5 Learning New Physics – or Biology (Future

Work)

So far, we have developed a data-driven coarse-graining procedure, derived from an

information-theoretic recasting of the variational RG for physical models, that recov-

ers several key aspects of the long-length scale behavior of a 2D Ising system. In the

previous section, we discussed how our algorithm could be modified to better account

for the symmetries of this and other systems, and briefly sketched how we would

expect our results to change.

These modifications were introduced in the context of applying our algorithm

to mixed-temperature data, where we demanded that our notion of information-

theoretic neighborhoods – our implicit proxy for locality – remain independent of

T . As stated in Section 4.2.5, this requirement was deemed necessary for our test

case, but not realizable for generic data sets: this would, in turn, require knowledge

of the temperature as a relevant parameter in a correct large-scale description of the

model.

How can we use the methods developed here to build a pipeline capable of isolating

an appropriate set of large-scale degrees of freedom for general complex data? One

central finding in Section 4.3 was that the onset of full breakdown for our predictions

occurred at roughly ` ≈ 8.8, which corresponds to the rough size of the maximal

(“critical”) value of the Ising correlation length ξ(T ) on a 64× 64 lattice [458]. Our
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algorithm appears to have “learned” to stop coarse-graining according to a criterion

– the inability to distinguish outstandingly high values of the mutual information –

that is in essence equivalent to that of the standard (real-space) RG.

What might happen, then, if we apply our algorithm directly to Ising data at a

fixed temperature T , so that the theoretical correlation length (and ostensibly, our

notion of locality) can vary across independent runs? Preliminary work (not depicted)

indicates that the information I(σi∗ , σj∗) will saturate at an iteration corresponding

to a length scale ` that corresponds (roughly) to the known correlation length at T .

This intuitive results suggests that our algorithm should indeed detect, automatically,

the scale at which the independent, macroscopic degrees of freedom “live” for a given

system.

More precisely, applying our algorithm without first training as done here through-

out, will not permit us to reconstruct the entire phase-space structure of the macro-

scopic system, but may nonetheless uncover correct, compact description within local

regions of the phase space. Thus, based on the statistical simplicity of the data,

as ascertained by our algorithm, and typical values of I(σi∗ , σj∗), we should be able

to distinguish low-temperature, high-temperature, and near-critical Ising systems –

and in general, say whether any new system is possessed by a nontrivial cascade

of scales, indicative of being poised a critical point – without first averaging over a

preestablished “merge order.” In the future, we will continue to develop both modes

of operation.
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Chapter 5

Outlook: Where do we stand?

In the Age of Big Data, it is sometimes tempting to dive, full-force, into the nuances of

multitudinous measurements without clear predictive goals. Here, we have first asked

whether this inclination should be resisted for the specific case of large-scale biological

networks, and then explored alternative strategies, rooted in theoretical physics, that

are consistent with the goal of generating interpretable, predictive, and quantitative

frameworks for conveying the rich complexity of living systems – all while escaping

the diminishing returns associated with detailed, whole-network inference.

Specifically, it was argued from the outset, in Chapter 2, that the reconstructive

inference of large-sale biological networks without regard or prior reflection about how

the product is to be used not only distracts, but in certain cases detracts, from char-

acterizing any collective or emergent aspects of the underlying biological processes.

In particular, reconstructions can answer many questions, provided they are isolated

to a given, typically small scale; yet many interesting behaviors, some clinically rel-

evant, appear only when aggregating over (or, emphatically span multiple) scales.

Reverse-engineering is ill-equipped to determine at which level such dynamics “live.”

For Chapter 3, we focused on a system for which reverse-engineering would be

expected to show no specific insights about the macroscopic behavior, but whose
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dynamics nonetheless at the whole-circuit scale could be summarized in terms of

simple input-output relations defined over a two-dimensional manifold. While the

components of this system that determined this behavior at a functional level could

be divided into active and inactive subsets at the microscopic scale, it was not clear

that such a partitioning can be found it general. We then switched our focus the

main question of how to derive an appropriate set of coarse, functional variables with

which to describe a system’s macroscopic behavior, directly from microscopic activity

data (of the same type used in reverse-engineering).

The data-driven coarse-graining method developed in Chapter 4 to answer this

question, based on renormalization group ideas, was able to rediscover key aspects of

the large-scale properties associated with a “network” of Ising spins. Our information-

theoretic approach, which emphasized preserving the mutual information between the

subset of system elements to be removed via coarse-graining and the rest of the sys-

tem’s constituent spins, bears certain overall similarities to the approaches outlined in

Refs. [26, 439]. In the former, the goal was to maximize the information between the

compression of some “system” of interest and its “environment” of surrounding vari-

ables representing the larger scales; the statistics of both are represented implicitly, by

neural network architectures, something we would discourage here since training the

machine seems to violate the statistical learning principle of trying to avoid solving

a “hard” problem as an intermediate step toward solving an “easy” one [36].

The latter [439] applied a simple coarse-graining rule (summation with rescaling)

to time series of neuronal activities, even suggesting that the system exhibits certain

nontrivial (critical) scalings. As done here, trajectories were compressed in pairs, but

with a selection criterion based on linear correlation. It is unclear how this criterion,

as well as the static coarse-graining rule, could be generalized to other systems.

While other approaches to data compression and model reduction applicable to

biological systems have been developed in the machine learning community, our
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renormalization-inspired approach offers a distinct advantage. Namely, whereas pop-

ular deep architectures based on Variational Autoencoders [459] and Restricted Boltz-

mann Machines [446] concentrate their efforts on compressing the totality of input

data, with the hope that high-level features emerge naturally due to the bottle-

neck formed by the smaller number of hidden units comprising successive layers,

our method selects for “large-scale” features from the start. This is accomplished by

shifting the objective from maximixing (the equivalent of) I(X ′, X), the information

held by a compression about the original data itself, to optimizing I(X ′, Y ) – in fact,

with a minor penalty for preserving I(X ′, X) – in our approach.

In fact, our information-theoretic compression can be thought of as a generaliza-

tion of the “pooling” operation introduced in the common in many deep machine

learning architectures. Pooling techniques originated in the context of convolutional

architectures – neural networks that are regularized by imposing translational invari-

ance – where they serve to “sub-sample” the outputs of previous layers in such a way

that still preserves certain meaningful statistics. Our Bottleneck output reduces triv-

ially to “max” pooling when it leads to a set of samples X ′ that identically matches

that of one element in X (i.e., decimation) and is closer to“average” pooling when

the set of samples for X ′ is formed by a majority rule. Yet, whereas the regular-

ization methods for convolutional networks are tailored to a specific type of input

data (typically, images in which the same types of objects are not tied to a particular

location, or even orientation), our method of compressing information from previous

“layers,” or length scales, makes no such assumptions. Rather than mandating in ad-

vance what counts as meaningful information, we exploit the Information Bottleneck

notion of using relevance to the statistics of a reference variables (here, the variable

Y containing information about longer length scales) as its own distortion measure.

We favor the latter approach in the hopes that it can inform future attempts to learn

the symmetries underlying data sets of interest.
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Eventually, we intend our method to be applied in the context of massively parallel

biological data, but it is sufficiently general that it can be applied to other systems for

which large amounts of “microscopic” activity data can be obtained as well. The cru-

cial requirement is that one be able to reliably estimate the joint entropies or mutual

information values (if not the entire joint probability distributions) associated with

pairs of activity variables. If done well [316], this should not require significantly more

data points than measuring the first two standard moments (means and variances)

of the corresponding distributions. Provided activity measurements are system-wide

(i.e., taken in parallel for all elements), we can coarse-grain trajectories consisting of

sequential time series data (as in mRNA expression levels [257], neuronal firing [439],

or even economics [373]), “spot” measurements taken under different conditions (as

in genetic “knockout” and other perturbative experiments [212, 181, 180, 182]), or

independent samples from “equilibrium” distributions [228, 229], as done here.

Having laid the foundation over the last four Chapters for the application of this

method to such diverse systems in the future, I now conclude with a brief anecdote.

I presented an early form of the project in Chapter 3 at the 2016 March Meeting

of the American Physical Society. While some basic motivation to pursue the study

of biological systems using tools and perspectives from theoretical physics was latent

in my decision to attend Emory’s graduate program, I was particularly inspired at a

session of this conference, where I encountered a particularly lucid articulation of the

inadequacy of traditional thinking for certain imminent problems in human health.

In an invited talk, Robert Austin motivated part of his presentation (entitled

“Evolution, Physics, and Cancer: Disrupting Traditional Approaches” [460]) by ref-

erencing a news article, published by Nature, on the status of The Cancer Genome
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Atlas (TCGA) project. As reported in the article [461], the collaboration claimed

to have identified some 107 “cancer-related” mutations. Aggressive cataloguing had

revealed “little commonality between tumors,” and, moreover, had not – as Austin’s

fellow presenter Chris Adami argued should be possible, within the hour at the very

same session [462] – wrought any satisfying functional theories about the disease.

Can it be that such an achievement went unobtained – and perhaps even remains

unattainable – not due to insufficient time or effort, or because the collaborators were

looking at the ”wrong” set of 10,000 tumors, but due instead to a mismatch between

the scales of observation and those of the desired functional understanding?

I hope by this point that I have rendered my own position in a clear and defensi-

ble way. Namely, I am pessimistic that the TCGA discovering a ten million-and-first

mutation would add categorically new or predictive knowledge of the types called for

in the throughout this Dissertation – much less a functional, intuitive, or actionable

understanding of oncogenic processes and pathologies (I have the impression that

Austin agrees). My own contribution to resolving the tension between competing ap-

proaches, at least on the boundaries between physics, biology, statistics, and machine

learning, has been to offer a serious critique and several modest alternatives by which

my successors might afford a new means of looking at living systems.

There is much left to do, but this is an exciting time for my field(s) of study. Far

more now than even when I began my Ph.D., I believe we can hope for true harmony

and progress among various factions – I am honored to join them, as a professional.
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Appendix A

Student Research Problem

Try On Your Own: Become a Reverse-Engineer

By now we hope to have made a convincing case for our contention that different

reverse-engineering methodologies are, in general, best-suited for answering different

types of questions. We have reviewed the most prominent such questions, and il-

lustrated how the “goals” fulfilled by specific algorithms are really manifestations of

their underlying assumptions about what should count as an interaction.

Since no one definition of biological interaction can be considered more “correct”

than the others in all contexts (different algorithms merely capture different aspects of

the same system), a diversity of goals and operational idiosyncracies might be viewed

as a blessing rather than a curse. Yet choices should be made at the outset regarding

what one wishes to learn by doing reverse-engineering, because these choices inform

which algorithms are best suited for the job.

In this section, we simulate the conditions under which the need for such choices

arises. Imagine that you have just been handed a set of high-throughput data, for a

system whose interaction architectures have not yet been fully mapped. Follow the

series of prompts in the box to embark on an exploratory challenge with a represen-

tative set of actual experimental data.
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Consider a set of multi-electrode recordings from the retina of a salamander (we

thank M. Berry for providing us with data from [221]; download link at https://

figshare.com/articles/bint_fishmovie32_100_mat/5009840). As explained in

detail in the README.txt file, the data consists of the responses from p = 160 ganglion

cells to the presentation of a naturalistic stimulus – in this case, a short (∼ 20 sec)

movie of a fish tank, repeated n = 297 times. The activity of each neuron is binarized

as 0 (when the neuron is not firing an action potential) and 1 (when it is firing an

action potential) within discrete time bins of length 20 ms.

1. Of the methods discussed in this Chapter, which are clearly applicable to this

particular set of data? Are there any which are not?

2. What kinds of predictions might a researcher want to make using this data?

Consider multiple levels of analysis, from single nodes in the neuronal network

(Will removing a single node cause the network to collapse? Can we predict a

future value for a given neuron, given the values of certain others?) to multiple

nodes (Are there any functional groups that seem to be operating as a unit?

Are there hub structures present?) to the entire system as an emergent whole

(What can we say about the percentage of time the system is silent, versus when

it is spiking? What other information would we need to say something about

the “typicality” of the recorded networks, with respect to their structural and

dynamical properties?).

3. Crowdsourcing [463] – the idea that conglomerate predictions, made by com-

bining the wisdom of many independent thinkers, are more accurate than those

of any individual – is a popular strategy in DREAM competitions [464, 465]

(for recent examples, see the closed Sage Bionetworks-DREAM Breast Can-

cer Prognosis (DREAM7, 2012), NIEHS-NCATS-UNC DREAM Toxicogenet-

ics (DREAM8, 2013), and ICGC-TCGA DREAM Somatic Mutation Calling

https://figshare.com/articles/bint_fishmovie32_100_mat/5009840
https://figshare.com/articles/bint_fishmovie32_100_mat/5009840


131

(DREAM 8.5-9, 2013-2014) Challenges). Yet we have seen that different reverse-

engineering methods often yield disparate – even antagonistic or contradictory

– predictions. For which combination of the following algorithms would you

feel comfortable following the “wisdom of crowds” (say, averaging the results,

or taking majority rules)?

Think about ARACNe, CLR, Bayesian networks (static and dynamic), MaxEnt

approaches, and possibly other methods. Given the assumptions these methods

make, would you take the union or intersection of the set of results produced

by Bayesian methods and ARACNe? MaxEnt and CLR? Other combinations?

When do you think crowdsourcing in general is a good strategy?
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Appendix B

Ising Model Details for

Coarse-Graining Analysis

Connected Correlations: Analytics

For Kadanoff-Wilson “block spins” of linear dimension `, the general connected cor-

relation function G ≡ 〈σiσj〉 − 〈σi〉〈σj〉 transforms as

G(r, t, h) = `−2(d−yh)G
(r
`
, t`yt , h`

y
h

)
, (B.1)

under coarse-graining [443]. Here, d is the lattice dimension, exponents yt and yh are

to be determined, h = 0 due to the modeling choices made Sec. 4.2.3. For the 2D Ising

model we study here [443], yt = 1
ν

= 1 and yh = 15
8

, so that we have 2(d−yh) = η = 1
4
.

Dropping the reduced magnetic field h from Eq. (B.1) and restricting ourselves to

nearest-neighbor correlations only simplifies the desired scaling relation to

G(r = 1, t) = `−ηG (t`yt ) , (B.2)

where we have dropped the dependence on r = 1
`

(i.e., the separation, in the original

units, between the center points of nearest-neighbor blocks) because it is a constant.
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Figure B.1: The correlation function for nearest neighbors, G(r = 1, T ), as given in
Eq. (B.3). For spins which are not nearest neighbors, but separated by distance r,
the square of Onsager’s magnetization, given by Eq. (B.5) is the limit of the pairwise
correlation 〈σiσj〉. Here, where r = 1, the two curves coincide for small T . These are
numerical evaluations of the known analytical results.

The total pairwise correlation has a known analytical form for this system. Using

the notation 〈i, j〉 to denote nearest-neighbor pairs, as in Eq. (4.17), we can simplify

the general results of Refs. [466, 467] to write

〈σiσj〉 =


1
2

(1 + s−2)
1
2

[
(1− s−2) K̃(s−2) + 1

]
, T < Tc,

1
2

(1 + s−2)
1
2

[
(s−2 − 1) K̃(s2) + 1

]
, T > Tc,

(B.3)

where s ≡ sinh 2βJ and K̃(·) is an elliptic integral of the first kind, written in terms
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of the elliptic modulus and scaled by a constant factor so that K̃(0) = 1:

K̃(·) =
2

π

∫ π
2

0

dφ(
1− (·)2 sin2 φ

) . (B.4)

Numerical evaluations of Eq. (B.3) are depicted in Fig. B.1.

We can build the connected correlation G(r, t) by subtracting from Eq. (B.3)

the squared magnetization per spin [466], which we evaluate here using Onsager’s

famously unpublished [468] solution for the spontaneous magnetization:

M0(T ) =
(
1− k2

) 1
8 , (B.5)

with k ≡ 1
sinh2 2βJ

= s−2 in our isotropic Ising model. It is well known that the square

of Eq. (B.5), which is also evaluated in Fig. B.1, is the limit of 〈σiσj〉, for spins σi

and σj at distance r →∞ [468] from each other.

Since the correlation length ξ` measured in units of the spacing between block

spins on the rescaled lattice, is shorter than the correlation length ξ, measured in

terms of the original lattice spacing, the renormalized system will appear further

from criticality after a coarse-graining transformation `. If we assume [443] that,

at least inside the critical region, the new, “effective” reduced temperature can be

computed as t` = t`yt , we can predict the nearest-neighbor correlation at a given

coarse-graining step from the initial temperature and effective length scale.

Finite-Size Corrections

In order to take finite-size effects into account [444], we assume that the correlation

length at T = Tc in the finite system cannot exceed the lattice size L. Near the

critical point (i.e., t, h = 0 for L→∞), we expect the behavior

ξ ∼ |t|−ν , (B.6)
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that is, a diverging correlation length. This suggests

Tmax − Tc ∼ ξ−
1
ν ∼ L−

1
ν (B.7)

for a lattice of finite size L, where Tmax is the temperature at which the diverging

thermodynamic quantities exhibit a rounded peak rather than a singularity [469].

Rewriting the scaling relations for these thermodynamic observables with the help of

Eq. (B.7) yields for the magnetization

M = L−
β
ν ·Mt,L(tL

1
ν ), (B.8)

where β = 1
8

and Mt,L ∼ (tL
1
ν )−

7
8 for T > Tc [458].

The above form for Mt,L is valid in the region where tL > 1 (at Tc ≈ 2.2692, this

shape function becomes a constant). Near the critical point, it is not guaranteed to

predict accurate values for M ; see Fig. (B.2). Here, To correct the magnetization

at arbitrary temperatures, we plot ML
β
ν against tL

1
ν to observe the data collapse

anticipated by Eq. (B.8) and correct for finite L numerically.

Specifically, we first measure M(T ) = 1
N2 〈
√∑

i σi〉s, where s = 1, 2, . . . denotes a

given set of samples recorded at a particular value of T . We then generate a scatter

plot for the “collapsed” curve ML
β
ν vs. tL

1
ν (see Fig. B.3), create a lookup table for

this curve by binning individual data points along the tL axis. Finally, we use this

average curve to represent Mt,L(tL
1
ν ) numerically, with L = 64.

The result of such a numerical approximation to the Finite-size scaling of the mag-

netization is illustrated in Fig. B.2, where we plot numerical evaluations of Eq. (B.8)

for T > Tc against the aforementioned, measured values of M , for different lattice

sizes L. It is clear that there is a substantial net magnetization even beyond T = 2Tc.

In principle, the total pairwise correlation 〈σiσj〉 must also be corrected for finite
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Figure B.2: An illustration of the result printed as Eq. (B.8), for four different values
of L; the points with error bars represent the mean and standard deviation of our
data. In the neighborhood of Tc, this form cannot be used to predict M accurately,
so we approximate it numerically.

size. In general, we have [443]

G (r, t, L) ∼ |r|−(d−2+η) ·G
(

1

L
, tL

1
ν

)
. (B.9)

In practice, we find that this quantity does not require significant corrections (see

Fig. B.4). By combining our numerical finite-size corrections to M and subtracting

the corresponding values of M2
L=64(T ) from the unconnected correlation, where the

effective T is given by the block spin argument above, we can predict the curve traced

by the connected correlation over different “length” scales `.
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[20] Cédric Bény and Tobias J Osborne. Information-geometric approach to the

renormalization group. Physical Review A, 92(2):022330, 2015.
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[56] Albert-László Barabási and Zoltán N. Oltvai. Network biology: understanding

the cell’s functional organization. Nature Rev Genet, 5(2):101–113, February

2004.

[57] U. Alon. An Introduction to Systems Biology: Design Principles of Biological

Circuits. CRC Press, 2006.

[58] Bernhard Ø Palsson. Systems Biology: Properties of Reconstructed Networks.

Cambridge University Press, April 2006.

[59] Naeha Subramanian, Parizad Torabi-Parizi, Rachel A. Gottschalk, Ronald N.

Germain, and Bhaskar Dutta. Network representations of immune system com-

plexity. Wiley Interdiscip Rev: Syst Biol Med, 7(1):13–38, January 2015.

[60] François Jacob and Jacques Monod. Genetic regulatory mechanisms in the

synthesis of proteins. J Mol Biol, 3(3):318–356, 1961.

[61] Faruck Morcos, Terence Hwa, José N. Onuchic, and Martin Weigt. Direct
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Oleg Gusikhin, and Victor Chang, editors, Proceedings of the 1st International



172

Conference on Complex Information Systems (COMPLEXIS 2016), pages 48–

56, Funchal, Madeira, Portgual, 2016. SCITEPRESS.

[278] Jun-Jie Jiang, Zi-Gang Huang, Liang Huang, Huan Liu, and Ying-Cheng Lai.

Directed dynamical influence is more detectable with noise. Scientific Reports,

6, 2016.

[279] CH Wiggins and Ilya Nemenman. Process pathway inference via time series

analysis. Exp Mech, 43(3):361–370, 2003.

[280] Rainer Opgen-Rhein and Korbinian Strimmer. Learning causal networks from

systems biology time course data: an effective model selection procedure for

the vector autoregressive process. BMC Bioinf, 8(2):S3, 2007.

[281] C. W. J. Granger. Investigating Causal Relations by Econometric Models and

Cross-spectral Methods. Econometrica, 37(3):424–438, 1969.

[282] Norbert Wiener. The theory of prediction. Modern Math for Engineers, 1:125–

139, 1956.

[283] C. W. J. Granger. Some recent development in a concept of causality. J Econo-

metrics, 39(1–2):199–211, September 1988.

[284] Winrich A. Freiwald, Pedro Valdes, Jorge Bosch, Rolando Biscay, Juan Car-

los Jimenez, Luis Manuel Rodriguez, Valia Rodriguez, Andreas K. Kreiter, and

Wolf Singer. Testing non-linearity and directedness of interactions between neu-

ral groups in the macaque inferotemporal cortex. J Neurosci Meth, 94(1):105–

119, December 1999.

[285] Nicola Ancona, Daniele Marinazzo, and Sebastiano Stramaglia. Radial basis

function approach to nonlinear Granger causality of time series. Phys Rev E,

70(5):056221, November 2004.



173

[286] Yonghong Chen, Govindan Rangarajan, Jianfeng Feng, and Mingzhou Ding.

Analyzing multiple nonlinear time series with extended Granger causality. Phys

Lett A, 324(1):26–35, April 2004.

[287] Boris Gourévitch, Régine Le Bouquin-Jeannès, and Gérard Faucon. Linear and

nonlinear causality between signals: Methods, examples and neurophysiological

applications. Biological Cybern, 95(4):349–369, October 2006.

[288] Daniele Marinazzo, Mario Pellicoro, and Sebastiano Stramaglia. Kernel Method

for Nonlinear Granger Causality. Phys Rev Lett, 100(14):144103, April 2008.

[289] Mingzhou Ding, Yonghong Chen, and Steven L. Bressler. Granger causality:

Basic theory and application to neuroscience. In Handbook of Time Series

Analysis: Recent Theoretical Developments and Applications. Wiley, Wienheim,

2006.

[290] Katarzyna J. Blinowska, Rafa l Kuś, and Maciej Kamiński. Granger causal-
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[331] Réka Albert. Boolean modeling of genetic regulatory networks. In Complex

networks, pages 459–481. Springer Berlin Heidelberg, 2004.

[332] Natal AW van Riel. Dynamic modelling and analysis of biochemical networks:

mechanism-based models and model-based experiments. Brief Bioinf, 7(4):364–

374, 2006.
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