
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory
University, I hereby grant to Emory University and its agents the non-exclusive license to
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or
hereafter now, including display on the World Wide Web. I understand that I may select some
access restrictions as part of the online submission of this thesis. I retain all ownership rights to
the copyright of the thesis. I also retain the right to use in future works (such as articles or
books) all or part of this thesis.

Yuzhang Guo April 4, 2019

Deep Learning for Skyline Queries

by

Yuzhang Guo

Li Xiong
Adviser

Department of Computer Science

Li Xiong

Adviser

Vaidy Sunderam

Committee Member

Bree Ettinger

Committee Member

2019

Deep Learning for Skyline Queries

By

Yuzhang Guo

Li Xiong

Adviser

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of

Bachelor of Sciences with Honors

Department of Computer Science

2019

Abstract

Deep Learning for Skyline Queries
By Yuzhang Guo

Skyline computation is important in many applications. It identifies a set of skyline points that
are not dominated by any other point and is used in multi-criteria data analysis and decision
making. In this paper, we propose the first neural architecture for skyline, called neural skyline
networks (SkyNet), to learn the spatial knowledge of skyline patterns. Given SkyNet, we can
predict the skyline points rather than compute the skyline points using traditional algorithms.
SkyNet can predict the skyline points in linear $O(n)$ time with high accuracy, where n is the
number of points. To achieve higher accuracy, we further propose two spatial aware loss
functions which distinguish the contribution/weights of non-skyline points. Extensive
experiments show that our neural skyline networks are capable of high accuracy and are at
least one order of magnitude faster than the state-of-the-art algorithms for skyline
computation. The main contribution of this paper is to outline and evaluate the potential of a
novel approach to compute computational geometry structures (e.g., skyline and convex hull),
which complements existing works and arguably opens up an entirely new research direction
for a decades-old field.

Deep Learning for Skyline Queries

By

Yuzhang Guo

Li Xiong

Adviser

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Sciences with Honors

Department of Computer Science

2019

Acknowledgements

I would like to express my sincere gratitude to my thesis advisor Prof. Li Xiong for the
continuous support for my study and research. Her guidance, motivation and immense
knowledge helped me throughout my research and writing of this thesis.

I would also like to thank the rest of my thesis committee: Prof. Vaidy Sunderam and Dr. Bree
Ettinger for their encouragement and insightful comments which incented me to widen my
research from various perspectives.

I am grateful to my fellow labmate Dr. Jinfei Liu for enlightening me the first glance of the
research and his help throughout the research.

Last but not the least, I would like to thank my parents for giving birth to me and supporting me
throughtout my life.

Contents

1 Introduction 1

2 Related Work 6
2.1 Skyline . 6
2.2 Neural Networks . 7

3 Definitions and Preliminaries 9
3.1 Definitions . 9
3.2 Sequence-to-sequence Framework 10
3.3 Attention Model . 12
3.4 Pointer Networks . 13

4 Proposed Models 16
4.1 Pointer Networks with an additional skyline layer 16
4.2 Neural Skyline Networks . 19

4.2.1 Neural Skyline Networks with layer based loss function . 21
4.2.2 Neural Skyline Networks with Euclidean distance based

loss function . 22
4.3 Discussion . 24

5 Experiments 26
5.1 Experiment Setup . 26
5.2 Average Number of Skyline Points 27
5.3 Prediction Time Cost . 28
5.4 Prediction Accuracy . 29
5.5 Model Transformability . 33
5.6 Real Dataset . 36
5.7 Summary . 38

6 Conclusion and Future Work 39

List of Figures

1.1 A skyline example of hotels. 2

3.1 Models. 11

4.1 Skyline layers. 18
4.2 Illustration of predicted probabilities over 100 points by a model

trained with layer based loss. 22
4.3 Illustration of predicted probabilities over 100 points by a model

trained with layer based loss. 24

5.1 Time cost. 29
5.2 The impact of number of points n on the accuracy. 30
5.3 The impact of number of points n on the accuracy. 31
5.4 The impact of number of dimensions d on the accuracy. 32
5.5 Model transformabilities of different n. 34
5.6 Transformability by training the models with datasets that con-

tain various number of points. 35
5.7 Model transformabilities on real data. 37

List of Tables

5.1 Average number of skyline points. 27
5.2 Basic SkyCov of random points. 30

1

Chapter 1

Introduction

Skyline, also known as Maxima in computational geometry or Pareto in busi-

ness management field, consists of the points from a set of multi-dimensional

points for which no other point in the set exists that is better in at least one

dimension and at least as good in every other dimension. Skyline has many

important applications such as decision making and is widely used as a filter

to significantly reduce the size of the returned query results.

Assume that we have a dataset P of n points. Each point p in the dataset

P has d real-valued attributes and can be represented as a d-dimensional point

ppr1s, pr2s, ..., prdsq P Rd, where pris is the i-th attribute of p. Given two points

p “ ppr1s, pr2s, ..., prdsq and p1 “ pp1r1s, p1r2s, ..., p1rdsq in Rd, p dominates p1 if

for every i, pris ď p1ris and for at least one i, pris ă p1ris (1 ď i ď d). Given

the set of points P , the skyline is defined as the set of points that are not

dominated by any other point in P . In other words, the skyline represents the

best points or Pareto optimal solutions from the dataset since the points within

the skyline cannot dominate each other.

Figure 1.1(a) illustrates a dataset P “ tp1, p2, ..., p11u. Each records in the

2

price

p1
p2

p3
p4

p7
p8

hotel distance price

p1
p2
p3
p4
p5
p6
p7
p8

(a) (b)
distance to the destination

10 20 30 40

100

200

300

400

p9
p10

p11

p6
p5

4 400
380

340

p9
p10
p11

36 300

24

26 280

260
200

180

140

120

60

8

20

28

34

40

14

16

Figure 1.1: A skyline example of hotels.

dataset represents a hotel with two attributes: the distance to the destination

and the price. Figure 1.1(b) shows the corresponding points in two dimen-

sional space, where the x and y coordinates correspond to the two attributes

of the hotels, respectively. To give an example of dominance, we can see that

p5p26, 280q is better than p4p36, 300q in both attributes; thus, p5 dominates p4.

The skyline of the dataset contains the points that are not dominated by any

other points in the dataset, and are p1, p6, and p11. Suppose the organizers of a

conference need to reserve an hotel considering both distance to the conference

destination and the price for participants, the skyline offers a set of best options

or Pareto optimal solutions with various tradeoffs between distance and price:

p1 is the nearest to the destination, p11 is the cheapest, and p6 provides a good

compromise of the two factors. p8 will not be considered as p11 is better than

p8 in both factors.

Motivation. In two dimensional space, the time complexity for computing

skyline points is Opn log nq. If the expected number of skyline points is small,

we can employ the even more efficient output-sensitive algorithms [11] [13] to

3

compute skyline points in Opn log vq time, where v is the number of skyline

points and v ! n in most cases. Although the traditional algorithms for com-

puting skyline points in two dimensional space is efficient, the time complexity

for computing skyline points in high dimensional space is still prohibitively

high due to the “curse of dimensionality”. In high dimensional space, the

state-of-the-art algorithm for computing skyline points in Opn logd´1 nq time

was proposed by Bentley in [3]. We can see that the time complexity increases

exponentially as the number of dimensions d increases. Therefore, it is desirable

to explore a more efficient algorithm for computing skyline.

Can we compute skyline points in linear time? Even in high dimensional

space? Deep learning opens up the opportunity to learn a model that reflects

the patterns in the dataset and thus to enable the automatic synthesis of spe-

cialized skyline structure.

Challenge. This is the first work to explore how to solve skyline problem with

neural networks and choosing an appropriate model architecture is a challenge.

Considering our skyline problem, the input and the output of skyline computa-

tion are sets and the lengths of the input set and the output set are arbitrary.

Therefore, it is natural to employ the classic sequence-to-sequence model which

uses an encoder (e.g., RNN and LSTM) to map an input sequence to an em-

bedding and another (possible the same) decoder to map the embedding to an

output sequence. At the encoding time step i, the encoder takes a vector rep-

resenting ith point from the database as its input, collects information for the

point, and propagates it forward. Then, during the decoding phase, the model

outputs one predicted skyline point at each decoding step. The content-based

attentional mechanism augments the decoder by propagating extra contextual

information from the input and achieves state-of-the-art performances in core

4

deep learning problems, e.g., translation, parsing, and video captioning.

However, these methods still require the size of the output dictionary to

be fixed in advance. Because of this constraint, we cannot directly apply this

framework to skyline problem where each input point is a potential candidate

for output, so that the number of target classes depends on the length of the in-

put. Pointer Networks can address this limitation by repurposing the attention

mechanism to create pointers to input elements. However, each decoding step

in pointer networks requires Opnq time. Therefore, the total time for pointer

networks is Opnmq where m is the number of decoding steps. We still cannot

achieve our goal of computing skyline points in linear time.

Contributions. In this paper, we propose the first neural skyline networks,

SkyNet, to predict the skyline points in linear time. Because the skyline points

are a subset rather than a sequence, we can predict the skyline points in one

decoding step rather than k decoding steps in pointer networks. In SkyNet

model, we take k points with the highest weight from n points in one decoding

step. Because the kth highest weight can be selected in linear Opnq time by

the classic selection algorithm [5], the decoder of SkyNet can be finished in

Opnq time. Because the encoder takes Opnq time, the time complexity for

SkyNet is Opnq in total. Furthermore, to better capture the skyline structure,

we propose two loss function variants, layer-based loss function and Euclidean

distance-based loss function. For the layer-based loss function, the point in

the lower layer takes more weight. Similarly, the point with near Euclidean

distance to the query point takes more weight. Extensive experiments show

that our proposed models are capable of high efficiency and accuracy, and both

efficiency and accuracy are insensitive to the number of dimensions.

The main purpose/contribution of this paper is to outline and evaluate

5

the potential of a novel approach to compute computational geometry struc-

tures, which complements existing works and arguably opens up an entirely

new research direction for a decades-old field. What we want to emphasize is

that SkyNet supports a complement for the skyline community rather than a

complete replacement of the traditional algorithms.

We briefly summarize our contributions as follows.

• We propose the first neural skyline networks, SkyNet, to learn skyline

patterns. Given SkyNet, we can predict the skyline points in linear Opnq

time rather than compute the skyline points using traditional algorithms

that have higher time cost.

• For the purpose of integrating the particular structure of skyline, we

design two different loss functions. Each loss function has its own advan-

tage.

• We conduct comprehensive experiments on the real and synthetic datasets.

The experimental results show that SkyNet is efficient and accurate.

Organization. The rest of the thesis is organized as follows. Chapter 2

presents the related work of skyline and neural networks. The problem defini-

tion and preliminaries including several neural networks are given in Chapter

3. We propose the first neural skyline networks and design two different loss

functions which capture the particular structure of skyline in Chapter 4. We

report the experimental results and findings in Chapter 5. Chapter 6 concludes

the paper and discusses the future directions.

6

Chapter 2

Related Work

In this chapter, we briefly review the related work to the skyline problem and

neural networks.

2.1 Skyline

Skyline is a fundamental problem in computational geometry because it is

an interesting characterization of the boundary of a set of points. Since the

introduction of the skyline operator by Borzsonyi et al. [6], Skyline has been

extensively studied in database field. To facilitate the skyline query, skyline

diagram was proposed in [15]. To protect data privacy and query privacy, secure

skyline query was studied in [14]. [9] studied the skyline in P2P systems. [16,

18,22] studied the skyline on the uncertain dataset. [17] studied the continuous

skyline over distributed data streams. [12, 21] generalized the original skyline

definition for individual points to permutation group-based skyline for groups.

The theoretical state-of-the-art algorithms for computing skyline points are

[13] [11] [3]. In two dimensional space, [13] [11] proposed the efficient Opn log kq

time complexity algorithms based on subtle divide-and-conquer paradigm, where

7

k ď n is the number of skyline points. [10] proved an Ωpn log nqq lower bound

for the skyline problem, which means that we cannot design an algorithm with

better time complexity than Opn log nq. In high dimensional space, the skyline

points can be computed in Opn logd´1 nq time based on the empirical cumula-

tive distribution function which was proposed in [3]. Although this algorithm

is effective when d is small, the time cost is still prohibitively high when d is

large. Therefore, a linear time algorithm is still highly desired. In this paper,

our goal is to train the neural skyline networks which can be used to decode

the skyline points given any dataset in linear Opnq time while sacrificing a little

accuracy.

2.2 Neural Networks

The classic sequence-to-sequence models were proposed by Sutskever et al.

[19] and Cho et al. [8]. They have been established as powerful models and

have been widely used in many learning tasks such as machine translation and

question answering. A sequence-to-sequence model consists of two recurrent

neural networks (RNNs) that act as an encoder and a decoder respectively. The

encoder compresses the information of an input sequence of variable length to

a fixed length vector, and the decoder then generates a variable length target

sequence from the vector. The encoder and the decoder are trained together to

learn the conditional probability of a target sequence given an input sequence.

However, the performance of a basic encoder-decoder structure deteriorates

rapidly as the length of an input sentence increases, because of the limited

amount of information the fixed length vector that connects the encoder and

the decoder can contain. [7]. In order to address this issue, Bahdanau et al.

8

proposed an attention mechanism [1]. The attention mechanism allows the

decoder to adaptively choose a subset of input elements to focus on at each

step of decoding. Therefore, instead of solely depending on a fixed-length

vector to generate outputs, the decoder is informed that which parts of the

input sequence play important roles when decoding. However, these methods

require the size of the dictionary to be fixed in advance, which is not suitable

for the problems that the size of the output dictionary depends on the length

of the input sequence. To address this issue, pointer networks model [20] was

proposed. Instead of using attention to blend hidden units of an encoder to a

context vector at each decoder step, pointer networks use attention as a pointer

to select a member of the input sequence as the output. However, the time

complexity for pointer networks is Opnmq which is high, where m is the number

of decoding steps.

9

Chapter 3

Definitions and Preliminaries

In this chapter, we present definitions in Section 3.1 and review the sequence-

to-sequence framework [19] and attention models [2] in Section 3.2 and 3.3. In

Section 3.4, we present pointer networks [20] which serve as the performance

benchmark for our proposed neural skyline networks, SkyNet. We provide the

detailed explanation of the architecture of SkyNet in Chapter 4.

3.1 Definitions

We show the formal definition of skyline as follows.

Definition 3.1. (Skyline). Given a dataset P of n points in d-dimensional

space. Let p and p1 be two different points in P , p dominates p1, denoted by

p ă p1, if for all i, pris ď p1ris, and for at least one i, pris ă p1ris, where pris is

the ith dimension of p and 1 ď i ď d. The skyline points are those points that

are not dominated by any other point in P .

The theoretical state-of-the-art algorithms for computing skyline points

are [13] [11] [3]. In two dimensional space, [13] [11] proposed efficient Opn log kq

10

time complexity algorithms based on subtle divide-and-conquer paradigm, where

k is the number of skyline points. In high dimensional space, the skyline points

can be computed in Opn logd´1 nq time based on the empirical cumulative distri-

bution function which was proposed in [3], where d is the number of dimensions.

Although those proposed algorithms are effective to some extent, computing

skyline points can be time consuming, especially for high dimensional space. In

practice, data usually has multiple dimensions. Therefore, a linear time algo-

rithm is desired. However, the lower bound for computing skyline is Opn log nq

even in two dimensional case [10]. In this paper, our goal is to train the neural

skyline networks which can be used to predict the skyline points given any

dataset in linear Opnq time but sacrificing a little accuracy.

3.2 Sequence-to-sequence Framework

The sequence-to-sequence framework provides an effective approach to map se-

quences from one domain to sequences in another domain. Consider a training

sequence pair pX, Y q, where X “ tx1, x2, ..., xnu and Y “ ty1, y2, ..., ymu are

sequences with length n and m respectively. The sequence-to-sequence frame-

work learns to model the conditional probability P pY |Xq. Usually, sequence-

to-sequence models consist of two main components, an encoder and a decoder,

as depicted in Figure 3.1(a). Each component is typically a recurrent neural

network (RNN) or a long short-term memory network (LSTM). The encoder

processes and encodes the input sequence X into a fixed-dimension represen-

tational vector v that contains useful information from X. The representation

v is then forwarded to the decoder which generates the output sequence Y

conditioned on v.

11

p1

p2

p3

p

x1

y1

x2

y2

x3

y3

x4

y4
)

(

x1

y1

x2

y2

x3

y3

x4

y4
)

(

(

1

2

3

x1

y1

x2

y2

x3

y3

x4

y4
)

1 2 3

(b) Pointer Network (c) Skyline NetworkSkyline

p2 p3p1

p2 p3p1

p2 p3p1

(a) Sequence�to�Sequence

Figure 3.1: Models.

To illustrate how to build the conditional probability P pY |Xq, we first

decompose it using the chain rule, i.e.,

P pY |Xq “
m

ź

i“1

P pyi|y1, y2, ..., yi´1, Xq

Since the encoder encodes X into the representational vector v, we can

replace X with v and have

P pyi|y1:i´1, Xq “ P pyi|y1:i´1, vq

where y1:i´1 represents y1, y2, ..., yi´1. With an RNN, each conditional proba-

bility is modeled as

P pyi|y1:i´1, vq “ fpdiq

and

di “ RNNpdi´1, yi´1q

where fpq is a nonlinear function that outputs the probability of yi based on

the previous information and di is the hidden state at decoding step i, which

encodes the information of v along with y1,y2,...,yi´1.

In the training phase, the parameters of the model are learned by minimizing

12

the cross entropy loss:

L “ ´ log
m

ź

i“1

P pyi|y1:i´1, vq

Usually, inputs of RNNs are real-valued vectors, so a token embedding

layer is always needed to embed non-numeric inputs (e.g. text data in question

answering). However, in our problem, the inputs to the network are points in

Euclidean space so that embedding layer is not necessary.

Under the assumption that the length of an output sequence is Opnq,

sequence-to-sequence models have the time complexity of Opnq.

3.3 Attention Model

In the sequence-to-sequence framework, the information describing an input

sequence is compressed into a representational vector v, which is the only in-

formation visible to the decoder when generating the output sequence. The

potential issue of this approach is that the fixed dimension of v restricts the

amount of information flowing through to the decoder RNN. Since input se-

quences can have arbitrary lengths, v may not hold enough information regard-

ing inputs, especially when the length of an input sequence is large, causing

models to suffer from low predicting power. To break the bottleneck of the

basic encoder-decoder architecture, [2] proposed an attention mechanism that

allows the decoder to focus on parts of the input sequence when generating

a target element at each decoding step. Intuitively, the attention mechanism

provides a context for the decoder by assigning weights to each encoder hidden

state.

Let us denote encoder and decoder hidden states as pe1, ..., enq and pd1, ..., dmpPqq,

13

respectively. Mathematically, at decoding step i, the attention mechanism com-

putes

ui
j “ gpdi, ejq

aij “ softmaxpui
jq j P p1, ..., nq

ci “
n

ÿ

j“1

aijej

where gpq is an alignment function that scores how well the j-th element of

input sequence matches the output element at position i. The attention vector

ai is then computed by normalizing the vector ui of length n using the softmax

function. Finally, ci is computed as a weighted sum over the encoder hidden

states and serves as the context vector. ci and di are then concatenated to form

a new hidden state from which the model makes predictions.

Note that for each step of decoding, the attention model performs n oper-

ations to compute an attention vector over the input sequence of length n. If

the length of the output sequence is m, the model has the time complexity of

Opnmq.

3.4 Pointer Networks

The sequence-to-sequence and attention models described in section 3.2 and 3.3

require the output dictionary size to be fixed. However, for skyline problem,

the number of potential output at each decoding step is equal to the length

of the input, which is variable, because different databases contains different

number of records. Thus, we need to train separate models for databases with

different size when using sequence-to-sequence and attention models.

We now describe a variation of the attention model, named pointer net-

14

works proposed in [20]. This model allows us to solve problems where the out-

put dictionary size varies with the number of elements in the input sequence.

It is suitable for various combinatorial problems where output is a subset or

sub-sequence (permutation) of the input, such as computing convex hulls and

Travelling Salesman problem. The Skyline problem, in which the skyline points

is a subset of all points in a database, also belongs to this category.

Ptr-Nets propose a novel neural attention mechanism. Instead of using the

attention vector to compute the weighed sum over all encoder hidden states,

it directly uses attention to model the conditional probability and select a

member from the input sequence at each decoding step. For example, in Figure

3.1(b), at the first decoding step, the model outputs an index pointing to the

first position of the input sequence. Then, the element corresponding to the

output index is fed to the decoder at the next decoding step together with

the previous decoder hidden state. Consider a training pair pX , CX q, where

X “ tx1, x2, .., xnu is a sequence of points and CX “ tC1, C2, ..., Cmu is a

sequence of indices, each between 1 and n. Ptr-Nets compute the attention as

follows:

ui
j “ gpdi, ejq

P pCi|C1:i´1, vq “ softmaxpui
q

where gpq is an alignment function as described in section 3.3 and di and ej

are the i-th decoder and j-th encoder hidden states, respectively. The softmax

function normalizes the vector ui to be an output probability distribution over

the dictionary of the input sequence. At each decoding step, the model returns

the index of the input element with the highest probability.

Similar to the attention model, for an input sequence of length n and an

15

output sequence m, the Ptr-Net has the time complexity of Opnmq.

16

Chapter 4

Proposed Models

The accuracy of Ptr-Nets for predicting skyline points is acceptable, but the

time complexity Opnmq is high, where n is the number of points and m is the

number of skyline points. In this chapter, we propose a novel model, SkyNet,

to efficiently predict skyline points. Keeping the accuracy advantage of pointer

networks, SkyNet has another desired advantage on time complexity. We can

predict skyline points using SkyNet model in linear Opnq time, which is very

appealing for big datasets.

4.1 Pointer Networks with an additional sky-

line layer

We can employ Ptr-Nets to solve the skyline problem directly. Ptr-Nets employ

the cross-entropy as the loss function, which measures the performance of a

classification model whose output is a probability value between 0 and 1. The

cross-entropy increases as the predicted probability diverges from the actual

label. We set the labels of skyline points as 1, and the labels for all other

17

points as 0 in the loss function. Although the time complexity for Ptr-Nets

Opnmq is high, it can achieve high prediction accuracy.

Can we achieve a better accuracy? Our observation is that those non-

skyline points contribute differently to Domination Range. Therefore, we may

distinguish those non-skyline points in the training phase. We first show the

definition of domination range and then show the definition of skyline coverage

as follows.

Definition 4.1. (Domination Range). Given a point p in a d dimensional

space, the domination range DRppq of Point p is the range that if any point

p1 lies in this range, p ă p1. Given a dataset P “ tp1, p2, ..., pnu in the d

dimensional space, the domination range of P is the union of the domination

ranges of Points p1, p2, ..., pn, i.e., DRpP q “ DRpp1q
Ť

DRpp2q
Ť

...
Ť

DRppnq.

For a dataset P with the set of skyline points SKY , it is natural to see that

the DRpP q “ DRpSKY q. Therefore, it is reasonable to employ domination

range to measure the predicted set of skyline points. We show the definition of

Skyline Coverage as follows.

Definition 4.2. (Skyline Coverage). Given a point p in a d dimensional

space, we use SKYpred to denote the predicted set of skyline points. The

skyline coverage for the predicted set of skyline points is

SkyCovpSKYpredq “
DRpSKYpredq

DRpSKY q

If the predicted skyline points are the exact skyline points, the skyline

coverage will be 100%. However, it is difficult to predict all the skyline points

exactly. Therefore, we want to maximize the skyline coverage of the predicted

skyline points. A natural idea is to choose the points with larger domination

18

range which usually lie in lower skyline layers. We show the definition of skyline

layers as follows.

Skyline Layers [12]. We present a structure representing the points and

their dominance relationships based on the notion of skyline layers. A formal

definition is presented as follows.

Definition 4.3. (Skyline Layers). Given a dataset P of n points in a d-

dimensional space. The set of skyline layer layer1 contains the skyline points

of P , i.e., layer1 “ skylinepP q. The set of layer2 contains the skyline points of

P zlayer1, i.e., layer2 “ skylinepP zlayer1q. Generally, the set of layerj contains

the skyline points of P z
Ťj´1

i“1 layeri, i.e., layerj “ skylinepP z
Ťj´1

i“1 layeriq.

The above process is repeated iteratively until P z
Ťj´1

i“1 layeri “ H.

p1
p2

p3
p4

p7
p8

10 20 30 40

100

200

300

400

p9
p10

p11

p6
p5

layer1

layer2

layer3

layer4

Figure 4.1: Skyline layers.

An example of skyline layers of Figure 1.1 is shown in Figure 4.1. It is easy

19

to see from Definition 4.3 that for a point p, if there is no point in layeri´1

that can dominate p, p should be in layeri´1 or a lower layer.

In the traditional pointer networks, skyline points are labeled as the posi-

tive class 1, whereas all other points are labeled as 0. We then train the model

to predict the skyline points. However, different points contribute differently

during the learning stage of the model, and we think the points in the sec-

ond layer can further help the model to learn the distribution of points and

distinguish skyline points from others. Thus, we label points in both the first

layer and second layer as positive class and train a new model. The experi-

ments in Chapter 5 show that pointer networks with an additional skyline layer

outperforms pointer networks with only first skyline layer in terms of accuracy.

4.2 Neural Skyline Networks

Although pointer networks with an additional skyline layer can achieve higher

accuracy, the time complexity is still Opnmq. Due to the massive computation

in the model, the running time of Ptr-Nets cannot compete with the state-of-

the-art traditional algorithms.

Can we achieve a better efficiency? The pointer network predicts one sky-

line point at each decoding step and requires m decoding steps to predict all the

skyline points, where m is the number of skyline points. For each decoding step,

the model needs to compute the attention vector over the input dataset with

n points, which is the main reason that slows down the model. For problems

with outputs that have an intrinsic order (e.g., finding the correct permutation

of the input in Travelling Salesman Problem), we cannot avoid these multiple

decoding steps because it is necessary to predict each output element based on

20

the input and the previous predicted output elements. However, in our skyline

problem, the output is a set rather than a sequence. The probability of each

output element does not depend on previous predicted output elements, so we

can use the attention mechanism to directly model the probability of ith point

being a skyline point conditioned solely on the representational vector v, which

contains spatial information of all points in the database. Intuitively, we can

treat the attention mechanism as a binary classification model taking v and jth

encoder hidden state as inputs and compute the probability of jth point being

the skyline point. It is computed as follows:

uj “ gpv, ejq j P p1, ..., nq

P pSkyj|vq “ sigmoidpujq

where gpq is an alignment function in the attention mechanism that scores how

likely j-th point is a skyline point among all points in the database whose in-

formation is encoded in v. P pSkyj|vq denotes the probability of j-th point being

skyline given representational vector v. Note that pP pSky1|vq, P pSky2|vq, ..., P pSkyn|vq

constitutes the attention vector computed by the attention mechanism at the

first decoding step. Therefore, SkyNet is able to solve the skyline problem in

one decoding step and has the time complexity of Opnq.

Under the setting of our attention mechanism that functions as a binary

classifier, the cross entropy loss function is given as follows,

L “ ´
n

ÿ

j“1

Lj logP pSkyj|vq ` p1´ Ljqplogp1´ P pSkyj|vqqq

where Lj P t0, 1u is the label of j-th point in a database with 1 denoting the

21

point is a skyline and 0 otherwise.

Inspired by the improved performance of the Ptr-Net with an additional

skyline layer, we want to explore whether the domain knowledge of the skyline

problem can help SkyNet achieve a better performance. We observe that the

cross entropy loss function presented above penalizes the output points with

equal weight. For example, if a model predicts that p3 and p4 in Figure 4.1

have the same probability of being skyline points, the model penalizes them

equally. This is not a good penalizing strategy. The point p3 is closer to the

first skyline layer and should be more acceptable than p4. In section 4.2.1 and

4.2.2, we propose two spatial aware loss functions that are able to encode the

spatial information of points and ameliorate the deficiency in the cross entropy

loss.

4.2.1 Neural Skyline Networks with layer based loss func-

tion

Since points in lower skyline layers are more acceptable than points in higher

skyline layers, we propose a layer based loss function, which incorporates the

layer knowledge by assigning a weight to each point. The weight of a point

is inversely proportional to the layer number of the point, so lower layer the

point is in, the higher the weight we assign to it. The layer based loss function

is given as follows,

Llayer “ ´

n
ÿ

j“1

wj logP pSkyj|vq ` p1´ wjqplogp1´ P pSkyj|vqqq

where

wj “
1

layerj

22

is the weight assigned to the j-th point and layerj denotes the layer number of

the j-th point.

In Figure 4.2, we show the assigned probabilities of a set of 100 points being

skyline points. The probabilities are predicted by a model trained with the layer

based loss function. The darker the color of a point, the higher probability the

model predicts. We can see that the loss function enables the model to learn

the layer structure of a set of points.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.2: Illustration of predicted probabilities over 100 points by a model
trained with layer based loss.

4.2.2 Neural Skyline Networks with Euclidean distance

based loss function

Generally speaking, points near the origin are more acceptable than points

far away from the origin and are more likely to be skyline points. Euclidean

23

distance based loss function utilizes this knowledge and is given as follows,

Llayer “ ´

n
ÿ

j“1

wj logP pSkyj|vq ` p1´ wjqplogp1´ P pSkyj|vqqq

The weights for skyline points are 1 and for non-skyline points are

wj “
expp1{distjq

řn
i“1 expp1{distiq

where distj is the distance between the j-th point and the origin and n is the

number of points in a dataset. Since 1/distj can have very small value for

points near the origin, we use the softmax function to normalize the weights.

In Figure 4.3, we show the assigned probabilities of a set of 100 points

being skyline points. The probabilities are predicted by a model trained with

the Euclidean distance based loss function. The darker the color of a point, the

higher probability the model predicts. We can see that the model assigns high

probabilities for skyline points. For non-skyline points, the model assigns higher

probabilities for points near the origin, but we cannot distinguish the difference

in their color in Figure 4.3. The reason is that after applying softmax function,

the weight assigned to each non-skyline point is small comparing to 1, which is

the weights assigned to skyline points. Although the color is indistinguishable,

each point still contributes differently during the learning process of the model,

and the points closer to the origin are actually predicted with a slightly higher

probability of being skyline points.

Another way to interpret the spatial aware loss functions is to consider the

fundamental meaning of cross entropy. In information theory, cross entropy

is commonly used to quantify the difference between two probability distri-

butions. In the basic cross entropy loss function, labels can be reinterpreted

24

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3: Illustration of predicted probabilities over 100 points by a model
trained with layer based loss.

as probabilities of being a skyline point but can only take values in the set

t0, 1u. However, in spatial aware loss functions, the range of label value is not

restricted to t0, 1u. Labels can take values in a continuous range r0, 1s, and the

values are computed by 1
layerj

in layer based loss and
expp1{distjq

řn
i“1 expp1{distiq

in Euclidean

distance based loss.

4.3 Discussion

If we compare the skyline problem to the task of choosing the k most repre-

sentative/coverage points from a dataset of n points, the mechanism of pointer

networks is a local optimization while the mechanism of neural skyline networks

is a global optimization. The pointer network is more like a greedy algorithm

that chooses the locally optimal point at each decoding steps based on the in-

25

put and the previous outputs, and it requires k decoding steps. Neural skyline

networks search the global optimal subset with size k in one decoding step.

26

Chapter 5

Experiments

In this chapter, we present experimental studies evaluating our proposed pointer

networks with an additional skyline layer and neural skyline networks.

5.1 Experiment Setup

We ran experiments on a machine with an Intel Core i7-8700K and two NVIDIA

GeForce GTX 1080 Ti running Ubuntu with 64GB memory. We implemented

the following algorithms in Python 3.5 and TensorFlow 1.9.

• TRAD: state-of-the-art traditional skyline computation algorithm [3].

• PtrNet: Pointer Networks.

• PtrNet+: Pointer Networks with an additional skyline layer.

• SkyNet: Neural Skyline Networks with cross entropy loss function.

• SkyNet-layer: Neural Skyline Networks with layer based loss function.

• SkyNet-dist: Neural Skyline Networks with Euclidean distance based

loss function.

27

We used synthetic datasets and a real NBA dataset in our experiments.

We built a dataset1 that contains 2384 NBA players who are league leaders

of playoffs. Each player has five attributes (Points, Rebounds, Assists, Steals,

and Blocks) that measure the player’s performance.

5.2 Average Number of Skyline Points

Although the expected number of skyline points for independent datasets is

Opplnnqd´1q in theory [4], the big O notation is not accurate enough for practi-

cal applications. Therefore, we experimentally evaluate the number of skyline

points given the number of points n and the number of dimensions d. For each

setting of different n and d, we randomly generate 10000 datasets. We then

compute the skyline points for the datasets and take the average number of

skyline points. The average number of skyline points for different n and differ-

ent d is shown in Table 5.1. We use the calculated number of skyline points to

set the number of decoding steps in pointer networks and the number of points

with the largest probability being skyline points in the decoding step of neural

skyline networks.

Table 5.1: Average number of skyline points.
number of points 10 100 1000 10k 100k

of skyline points in 2D 2.9 5.2 7.5 9.5 11.8
of skyline points in 3D 5.1 14.3 28.7 49.1 73.2
of skyline points in 4D 6.8 27.9 76.8 165.2 304.2
of skyline points in 5D 8.1 43.7 158.2 415.2 947.6

1Extracted from http://stats.nba.com/leaders/alltime/?ls=iref:nba:gnav on 04/15/2015.

28

5.3 Prediction Time Cost

Figures 5.1(a)(b) present the computation time for TRAD and the prediction

time cost for PtrNet, PtrNet+, SkyNet, SkyNet-layer, and SkyNet-dist. PtrNet

and PtrNet+ have the same time cost because they employ the same model.

The same to the models of SkyNet, SkyNet-layer, and SkyNet-dist. Therefore,

we only report the prediction time cost for PtrNet and SkyNet. Figure 5.1(a)

presents the time cost for different number of points n in two dimensional space.

Both PtrNet and SkyNet significantly outperform TRAD and almost linearly

increase with increasing number of points n, which verifies the efficiency of our

proposed models. PtrNet has a good performance because the time complexity

for PtrNet is Opnmq and the number of skyline points m is small, i.e., PtrNet

does not need too many decoding steps for the small datasets. However, we can

see that the difference between PtrNet and SkyNet increases with the increasing

n because the number of skyline points increases with the increasing number

of points n and PtrNet needs to decode more steps. Figure 5.1(b) present the

time cost for different number of dimensions d. Similar to the performance in

different number of points n, in different number of dimensions d, both PtrNet

and SkyNet significantly outperform TRAD. Furthermore, TRAD exponen-

tially increases with the increasing d because d is in the exponential part of

the time complexity Opn logd´1 nq. PtrNet almost exponentially increases with

the increasing d because the number of skyline points exponentially increases

with the increasing d. SkyNet has the best performance, especially when the

number of skyline points is large.

29

10 100 1000

number of points n

10-1

100

101

tim
e(

m
s)

TRAD
PtrNet
SkyNet

(a) d “ 2

2 3 4 5

number of dimensions d

100

101

102

tim
e(

m
s)

TRAD
PtrNet
SkyNet

(b) n “ 100

Figure 5.1: Time cost.

5.4 Prediction Accuracy

In this subsection, we evaluate the prediction accuracy of our proposed algo-

rithms by the SkyCov, the Recall, and the Precision. Even we choose the points

randomly rather than compute the skyline points from the given datasets, those

chosen points also have the SkyCov named as Basic SkyCov, i.e., the SkyCov

accuracy we can achieve even we randomly choose points. To better illustrate

the accuracy gain of our proposed models, we compute the basic SkyCov for

the datasets with size 10, 100, 1k, 10k, 100k by randomly choosing the ex-

pected number of skyline points as shown in Table 5.1. For example, for ten

points in two dimensional space, we randomly generate 10000 datasets with 10

points. For each dataset, we randomly choose 2.9 « 3 points as a set Srandom,

and then compute DRpSrandomq for this set; we also compute the set of skyline

points as Sskyline, and then compute DRpSskylineq. The basic SkyCov equals to

DRpSrandomq

DRpSskylineq
. For each size, we compute 10000 times and take the average score.

The basic SkyCov is shown in Table 5.2.

Skyline is widely used as a filter. Therefore, it is reasonable/acceptable to

30

Table 5.2: Basic SkyCov of random points.
number of points 10 100 1000 10k 100k

SkyCov in 2D 0.66 0.67 0.69 0.73 0.76
SkyCov in 3D 0.72 0.69 0.73 0.78 0.83
SkyCov in 4D 0.81 0.72 0.74 0.79 0.85
SkyCov in 5D 0.86 0.76 0.76 0.80 0.86

10 100 1000

number of points n

0.94

0.95

0.96

0.97

0.98

0.99

1

S
ky

C
ov

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(a) SkyCov

10 100 1000

number of points n

0.7

0.75

0.8

0.85

0.9

0.95

1

re
ca

ll

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(b) Recall

10 100 1000

number of points n

0.5

0.6

0.7

0.8

0.9

1

pr
ec

is
io

n

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(c) Precision

Figure 5.2: The impact of number of points n on the accuracy.

returned more points than the number of skyline points and the recall is more

important than the precision for predicting skyline points. Figures 5.3(a)(b)(c)

present the SkyCov, the Recall, and the Precision with varying number of points

n by returning twice the average number of skyline points given any datasets.

For example, our models output 3 points given a dataset with 10 points in

Figure 5.2. In this subsection, our models output 6 points. It is natural to

31

see that the recall by returning twice the average number of skyline points is

much higher than the recall by returning the average number of skyline points.

For example, both SkyNet and its variants achieve around 0.97 recall, which is

highly desirable in practice.

10 100 1000

number of points n

0.94

0.95

0.96

0.97

0.98

0.99

1

S
ky

C
ov

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(a) SkyCov

10 100 1000

number of points n

0.7

0.75

0.8

0.85

0.9

0.95

1

re
ca

ll

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(b) Recall

10 100 1000

number of points n

0.3

0.35

0.4

0.45

0.5

pr
ec

is
io

n

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(c) Precision

Figure 5.3: The impact of number of points n on the accuracy.

Figures 5.2(a)(b)(c) present the SkyCov, the Recall, and the Precision with

varying number of points n for PtrNet, PtrNet+, SkyNet, SkyNet-layer, and

SkyNet-dist in two dimensional space. All our proposed models outperform

the basic pointer networks model in all three accuracy metrics. For the skyline

coverage metric, all the models including PtrNet perform very well, e.g., for two

dimensional case, PtrNet has the lowest SkyCov 0.94 while the basic SkyCov

32

is only around 0.68. Furthermore, all our proposed models outperform PtrNet.

For example, PtrNet+ has the lowest SkyCov 0.968 which is much higher than

0.94 of PtrNet. Comparing different models, both SkyNet and its variants

outperform the pointer networks model, which verifies the advantages of our

proposed neural skyline networks. For both the recall and the precision, our

proposed models significantly outperform the basic pointer networks model.

Both the recall and the precision are higher than 0.75 for all our proposed

models.

2 3 4 5

number of dimensions d

0.95

0.96

0.97

0.98

0.99

1

S
ky

C
ov

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(a) SkyCov

2 3 4 5

number of dimensions d

0.7

0.8

0.9

1

1.1

re
ca

ll

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(b) Recall

2 3 4 5

number of dimensions d

0.6

0.7

0.8

0.9

1

pr
ec

is
io

n

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(c) Precision

Figure 5.4: The impact of number of dimensions d on the accuracy.

Figures 5.4(a)(b)(c) present the SkyCov, the Recall, and the Precision with

varying number of dimensions d for PtrNet, PtrNet+, SkyNet, SkyNet-layer,

33

and SkyNet-dist when n “ 100. For all our proposed models, the number of

dimensions d does not have a significant impact on all the three metrics. The

reason is that we embed each point in one encoding/decoding step and the

number of dimensions d cannot affect the model very much. Both SkyNet and

its variants outperform PtrNet and PtrNet, which verifies the advantages of our

proposed neural skyline networks model. Both SkyNet-layer and SkyNet-dist

outperform SkyNet, which verifies the efficiency of our proposed loss functions.

5.5 Model Transformability

In this subsection, we evaluate the model transformabilities of our proposed

models, i.e., we can use a model trained on datasets with a points to predict

the skyline points of a dataset with b points, where a ‰ b.

Figures 5.5(a)(b)(c) present the SkyCov, the Recall, and the Precision on

the datasets of 100000 points predicted by the models that are trained by the

datasets with 10, 100, and 1000 points, respectively. For the SkyCov metric,

all the models including PtrNet significantly higher than the basic SkyCov

0.76, which verifies the efficiency of those neural network models. All our

proposed models outperform PtrNet, which verifies the high efficiency of our

propose models. For our proposed SkyNet and its variants, the SkyCov is

almost 1 and the basic SkyCov is 0.66, 0.67, and 0.68, respectively, which

verifies the high transformabilities of our problem model. Even for the models

trained by the datasets with 10 points, the SkyCov for predicting the datasets

with 100000 points is almost 1, which is significantly desirable. For the recall

and the precision, the scores increase with the increasing number of points

trained by the proposed models. The reason is that the trained models with

34

more points capture more spatial knowledge of skyline patterns. Comparing

different models, both SkyNet and its variants significantly outperform both

PtrNet and PtrNet+, which verifies the gain of our proposed neural skyline

networks. Furthermore, SkyNet-dist outperforms SkyNet, which verifies the

gain of our proposed loss function for skyline. Although the SkyCov of our

proposed models is very high, both the recall and the precision are not so high.

The reason is that although the predicted points are not exactly the skyline

points, they are very closely to the skyline points.

10 100 1000

number of points n

0.85

0.9

0.95

1

S
ky

C
ov

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(a) SkyCov

10 100 1000

number of points n

0

0.1

0.2

0.3

re
ca

ll

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(b) Recall

10 100 1000

number of points n

0

0.1

0.2

0.3

pr
ec

is
io

n

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(c) Precision

Figure 5.5: Model transformabilities of different n.

Figures 5.5(a)(b)(c) show that our proposed models have good transforma-

bilities. We would like to know if we can enhance the transformability by

35

training the models with datasets with various number of points. We ran-

domly generate 10000 datasets that contain various number of points from 10

to 1000 in two dimensional space. We train all the models by the 10000 datasets

and use those trained models to predict the skyline points of the datasets with

10, 100, 1000, 10000, and 100000, respectively.

10 100 1000 10k 100k

number of points n

0.85

0.9

0.95

1

S
ky

C
ov

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(a) SkyCov

10 100 1000 10k 100k

number of points n

0

0.2

0.4

0.6

0.8

1

re
ca

ll

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(b) Recall

10 100 1000 10k 100k

number of points n

0.2

0.4

0.6

0.8

pr
ec

is
io

n

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(c) Precision

Figure 5.6: Transformability by training the models with datasets that contain
various number of points.

Figures 5.6(a)(b)(c) present the SkyCov, the Recall, and the Precision on

the datasets of 10, 100, 1000, 10000, 100000 points predicted by the models

that are trained by the datasets with various number of points from 10 to 1000.

For the ease of presentation, we use modela to denote the model that is trained

36

by the datasets with a points and use modela´b to denote the model that is

trained by the datasets with various number of points from a to b. We show

the transformabilities of predicting the skyline points of the datasets with the

length that the models already learned by comparing to Figure 5.2. To predict

the skyline points of the datasets with size 10, 100, and 1000, our models10´1000

have the similar performance with models10, models100, and models1000, respec-

tively. We show the transformabilities of predicting the skyline points of the

datasets with the length that the models did not learn by comparing to Fig-

ure 5.5. To predict the skyline points of the datasets with size 100000, our

models10´1000 achieve around 0.4 for both the recall and the precision, which

are higher than the score 0.3 achieved by models1000. Therefore, we can see

that the models trained by the datasets with various number of points have

higher transformability than the models trained by the datasets with the fixed

number of points.

5.6 Real Dataset

In this subsection, we evaluate the prediction accuracy of our proposed algo-

rithms on the real NBA dataset. Because there are 57 skyline points in the real

NBA dataset, we choose the top 57 points with highest weights in our neural

skyline networks.

Figures 5.7(a)(b)(c) present the SkyCov, the Recall, and the Precision on

the real NBA dataset predicted by the models that are trained by the datasets

with 10, 100, and 1000 points, respectively. For the SkyCov metric, both

SkyNet and its variants significantly higher than the basic SkyCov 0.76, which

verifies the efficiency of our proposed neural skyline networks. Interestingly, the

37

10 100 1000

number of points n

0.5

0.6

0.7

0.8

0.9

1

S
ky

C
ov

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(a) SkyCov

10 100 1000

number of points n

0

0.2

0.4

0.6

0.8

1

re
ca

ll

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(b) Recall

10 100 1000

number of points n

0

0.2

0.4

0.6

0.8

1

pr
ec

is
io

n

PtrNet
PtrNet+
SkyNet
SkyNet-layer
SkyNet-dist

(c) Precision

Figure 5.7: Model transformabilities on real data.

SkyCov predicted by both PtrNet and PtrNet+ is lower than the basic Sky-

Cov for 1000 points in five dimensional space, 0.76. The reason is that both

PtrNet and PtrNet+ predicted much less skyline points than 158 (the average

number of skyline points for 1000 points in five dimensional space) and less

points usually lead to a lower SkyCov. For the recall and the precision scores,

they almost do not change with the increasing number of points trained by the

proposed models. The reason is that even for the models trained by 10 points,

they are already good to learn the spatial knowledge for 2384 points. Compar-

ing different models, both SkyNet and its variants have around 0.8 recall and

precision, and they significantly outperform both PtrNet and PtrNet+, which

38

verifies the gain of our proposed neural skyline networks. The recall and the

precision for both SkyNet and SkyNet+ are exactly the same. The reason is

that we choose the top 57 points with highest weights, the denominators for

both the recall and the precision are the same.

5.7 Summary

All our proposed models can achieve high accuracy. In practice, we can return

twice the average number of skyline points to achieve higher recall. All our

proposed models have very high transformabilities. For example, the models

trained by the datasets with 1000 points can predict the skyline points for a

dataset of 100000 points with a high accuracy. The models trained by the

datasets with various number of points have higher transformability than the

models trained by the datasets with fixed number of points. Therefore, in

practice, we can train the model by the datasets with various number of points

to achieve higher accuracy.

39

Chapter 6

Conclusion and Future Work

In this paper, we propose the first neural skyline networks, SkyNet, to predict

the skyline points in linear time given any datasets. Instead of computing the

skyline points using traditional algorithms, SkyNet predicts the skyline points

based on the trained models. To better capture the spatial information of a

set of points and help models to achieve higher accuracy, we propose two loss

function variants, layer based loss function and Euclidean distance based loss

function. Experimental results show that our proposed models are capable of

high accuracy and high efficiency. Our proposed models are at least one or-

der of magnitude faster than the traditional state-of-the-art skyline algorithms.

Furthermore, our models’ efficiency is insensitive to the number of dimensions,

whereas the time complexity of the traditional algorithms increases exponen-

tially as the number of dimensions increases. The main contribution of this

paper is to outline and evaluate the potential of a novel approach to com-

pute computational geometry structures (e.g., skyline and convex hull), which

complements existing works and arguably opens up an entirely new research

direction for a decades-old field. SkyNet serves as a complement for the skyline

40

community rather than a complete replacement of the traditional algorithms.

One potential issue of our models is that during the encoding phase, the models

use an RNN and treat input points as a sequence, but the input should be a

set of points for the skyline problem. In the future, we will investigate into this

issue and test whether different orders of the same set of points can affect the

performance of our models. We want to modify our proposed network struc-

tures to achieve insensitivity to the order of input points, which requires the

encoder to generate same representational vector v regardless of the order of

inputs. In the future, we will also explore the applications of neural networks

on solving other computational geometry problems.

41

Bibliography

[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by

jointly learning to align and translate. In 3rd International Conference

on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings, 2015.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by

jointly learning to align and translate. In ICLR, 2015.

[3] J. L. Bentley. Multidimensional divide-and-conquer. Commun. ACM,

23(4):214–229, 1980.

[4] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the

average number of maxima in a set of vectors and applications. J. ACM,

25(4):536–543, 1978.

[5] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time

bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973.

[6] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In

ICDE, pages 421–430, 2001.

[7] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the prop-

erties of neural machine translation: Encoder-decoder approaches. In Pro-

42

ceedings of SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics

and Structure in Statistical Translation, Doha, Qatar, 25 October 2014,

pages 103–111, 2014.

[8] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using RNN

encoder-decoder for statistical machine translation. In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT,

a Special Interest Group of the ACL, pages 1724–1734, 2014.

[9] B. Cui, L. Chen, L. Xu, H. Lu, G. Song, and Q. Xu. Efficient skyline

computation in structured peer-to-peer systems. IEEE Trans. Knowl.

Data Eng., 21(7):1059–1072, 2009.

[10] S. Kapoor and P. V. Ramanan. Lower bounds for maximal and convex

layers problems. Algorithmica, 4(4):447–459, 1989.

[11] D. G. Kirkpatrick and R. Seidel. Output-size sensitive algorithms for find-

ing maximal vectors. In Symposium on Computational Geometry, pages

89–96, 1985.

[12] J. Liu, L. Xiong, J. Pei, J. Luo, and H. Zhang. Finding pareto optimal

groups: Group-based skyline. PVLDB, 8(13):2086–2097, 2015.

[13] J. Liu, L. Xiong, and X. Xu. Faster output-sensitive skyline computation

algorithm. Inf. Process. Lett., 114(12):710–713, 2014.

[14] J. Liu, J. Yang, L. Xiong, and J. Pei. Secure skyline queries on cloud

platform. In ICDE, pages 633–644, 2017.

43

[15] J. Liu, J. Yang, L. Xiong, J. Pei, and J. Luo. Skyline diagram: Finding

the voronoi counterpart fro skyline queries. In ICDE, 2018.

[16] J. Liu, H. Zhang, L. Xiong, H. Li, and J. Luo. Finding probabilistic

k-skyline sets on uncertain data. In CIKM, pages 1511–1520, 2015.

[17] H. Lu, Y. Zhou, and J. Haustad. Continuous skyline monitoring over

distributed data streams. In SSDBM, pages 565–583, 2010.

[18] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain

data. In VLDB, pages 15–26, 2007.

[19] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with

neural networks. In Advances in Neural Information Processing Systems

27: Annual Conference on Neural Information Processing Systems 2014,

December 8-13 2014, Montreal, Quebec, Canada, pages 3104–3112, 2014.

[20] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in

Neural Information Processing Systems 28: Annual Conference on Neural

Information Processing Systems 2015, December 7-12, 2015, Montreal,

Quebec, Canada, pages 2692–2700, 2015.

[21] W. Yu, Z. Qin, J. Liu, L. Xiong, X. Chen, and H. Zhang. Fast algorithms

for pareto optimal group-based skyline. In CIKM, pages 417–426, 2017.

[22] W. Zhang, A. Li, M. A. Cheema, Y. Zhang, and L. Chang. Probabilistic

n-of-n skyline computation over uncertain data streams. World Wide Web,

18(5):1331–1350, 2015.

