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Abstract

3-connected, Claw-free, Generalized Net-free graphs are Hamiltonian
By Susan Rae Janiszewski

Given a family F = {H1, H2, . . . ,Hk} of graphs, we say that a graph is
F-free if G contains no subgraph isomorphic to any Hi, i = 1, 2, . . . , k. The
graphs in the set F are known as forbidden subgraphs. In this work, we
continue to classify pairs of forbidden subgraphs that imply a 3-connected
graph is hamiltonian. First, we reduce the number of possible forbidden
pairs by presenting families of graphs that are 3-connected and not hamilto-
nian. Of particular interest is the graph K1,3, also known as the claw, as we
show that it must be included in any forbidden pair. Secondly, we let Ni,j,k

denote the generalized net, which is the graph obtained by rooting vertex-
disjoint paths of length i, j, and k at the vertices of a triangle. We show that
3-connected, {K1,3, Ni,j,0}-free graphs are hamiltonian for i, j 6= 0, i + j ≤ 9
and {K1,3, N3,3,3}-free graphs are hamiltonian. These results are best possi-
ble in the sense that no path of length i can be replaced by i+1 in the above
net graphs. When combined with previously known results, this completes
the classification of generalized nets such that a graph being {K1,3, Ni,j,k}-
free implies hamiltonicity.
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Chapter 1

Introduction

We assume from the beginning that the reader has a basic knowledge of

graph theory. Throughout, we use Ck to denote a cycle with k vertices and

Pk to denote a path on k vertices. The length of a path refers to the number

of edges in the path. We define a generalized net, denoted Ni,j,k, to be a

triangle with vertex disjoint paths of length i, j, and k rooted at the vertices

of the triangle, and we define the graph  Lk to be the graph formed by joining

two vertex disjoint triangles with a path containing k edges.

Throughout, the circumference of a graph G, denoted c(G), refers to the

longest cycle in G. We will also use directed cycle notation in which
−→
C

indicates that we are traveling around the cycle so that the indices on the

vertices of the cycle are increasing and
←−
C indicates that we are traveling

around the cycle in the opposite direction. For all other terms and notation

not defined in this work, see [2].

A graph G with n ≥ 3 vertices is hamiltonian if G contains a cycle of length

n. A hamiltonian path in G is a path on n vertices. A graph is hamiltonian

connected if each pair of vertices are the endpoints of a hamiltonian path. A

graph G is said to be connected if there exists a path between any two vertices

and is k-connected if the removal of any set of size at most k − 1 results in

a connected graph. Likewise, a graph G is said to be k-edge-connected if the

removal of at most k− 1 edges results in a connected graph. Throughout we

will use κ and κ′ to denote connectivity and edge-connectivity, respectively.
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There are many problems in graph theory that focus on determining what

graph properties imply a graph with given connectivity is hamiltonian or

hamiltonian connected. One of the richest areas of these problems concerns

families of forbidden subgraphs, which is the focus of this dissertation.

Given a family F = {H1, H2, . . . , Hk} of graphs we say that a graph is

F -free if G contains no subgraph isomorphic to any Hi, i = 1, 2, . . . , k. In

particular, if F = {H}, we say that G is H-free. The graphs in the set F

are known as forbidden subgraphs.

One graph that is commonly included in families of forbidden subgraphs

that imply hamiltonian properties is K1,3, also known as the claw. In [14],

Matthews and Sumner presented their famous conjecture on claw-free, 4-

connected graphs, which can be found below. This conjecture is still open

more than 25 years after it was first published.

Conjecture 1.1. [14] If G is a 4-connected, K1,3-free graph, then G is hamil-

tonian.

The most recent progress towards proving the Matthews-Sumner conjecture

is due to Kaiser and Vrana [11]. In their paper, they lower the previous best

known connectivity requirement from 6 to 5, provided a minumum degree

condition is met.

Theorem 1.2. [11] Every 5-connected claw-free graph of minimum degree at

least 6 is hamiltonian.

They further show that these conditions are sufficient to guarantee not only

hamiltonicity, but hamiltonian-connectedness as well.

Theorem 1.3. [11] Every 5-connected claw-free graph of minimum degree at

least 6 is hamiltonian-connected.

While it is not known whether 4-connected, claw-free is enough to guar-

antee hamiltonicity, it can easily be shown that 3-connected, claw-free is
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not sufficient. Several families of 3-connected, claw-free graphs that are not

hamiltonian are presented in Chapter 3.

The first results regarding forbidden pairs involved graphs that are 2-

connected. Bedrossian determined a complete classification of forbidden pairs

which imply a 2-connected graph is hamiltonian in [1]. Faudree and Gould

further generalized these results in [6] for sufficiently large graphs. The fol-

lowing theorems summarize their results.

Theorem 1.4. [6] Suppose A is a connected graph and G is a 2-connected

graph. Then G is A-free implies G is hamiltonian if, and only if, A = P3.

Theorem 1.5. [6] Let R and S be connected graphs (R, S 6= P3), and

G a 2-connected graph of order n ≥ 10. Then G is {R, S}-free implies

G is hamiltonian if, and only if, R = K1,3 and S is one of the graphs

C3, P4, P5, P6, Z1, Z2, Z3, B, N , or W (see Figure 1.1.)

Z1

B N W

Z3Z2

Figure 1.1: Common Forbidden Graphs for 2-connected Graphs

After considering which forbidden pairs imply a 2-connected graph is hamil-

tonian, it is natural to consider which forbidden pairs of graphs imply a 3-

connected graph is hamiltonian. A complete classification of these pairs is
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not yet known, but several individual results have been determined. The

claw, once again, shows up as a graph of importance. In Chapter 3, we will

show that it is necessary to include the claw in any forbidden pair.

One of the first results determining a forbidden pair that implies a 3-

connected graph is hamiltonian is due to Pfender and  Luczak [13]. The

result is the best possible in the sense that P11 cannot be replaced by P12.

Theorem 1.6. [13] Every 3-connected {K1,3, P11}-free graph is hamiltonian.

Another result, due to Lai, Xiong, Yan, and Yan [12], involves the graph

Zk, where Zk is the generalized net Nk,0,0. Once again, this result is best

possible since it can be shown that Z8 cannot be replaced with Z9.

Theorem 1.7. [12] Every 3-connected {K1,3, Z8}-free graph is hamiltonian.

The most recent set of known results are due to Hu and Lin in [10] and [9].

In these papers they begin to explore forbidden pairs which include the claw

and a generalized net Ni,j,k.

Theorem 1.8. [10] Every 3-connected {N5,2,2, K1,3}-free or {N4,3,2, K1,3}-

free graph is hamiltonian.

Theorem 1.9. [9] Every 3-connected {N7,1,1, K1,3}-free, {N6,2,1, K1,3}-free,

{N5,3,1, K1,3}-free, or {N4,4,1, K1,3}-free graph is hamiltonian

It can be shown that these results are best possible in the sense that in each

pair the graph Ni,j,k cannot be replaced with Ni+1,j,k, Ni,j+1,k, or Ni,j,k+1.

A graph G is considered to be pancyclic if G contains a cycle of length k for

all k, 3 ≤ k ≤ n. In [7], Gould,  Luczak, and Pfender classified all forbidden

pairs that imply a 3-connected graph is pancyclic. They found six pairs

{X, Y }, where X must be K1,3 and Y is one of P7, Ni,j,k where i + j + k ≤ 4,

or  L1. Of particular note is the graph  L1, since it is not a subgraph of any

of the previously mentioned results.
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Theorem 1.10. [7] Every 3-connected {K1,3,  L1}-free graph is pancyclic, and

therefore hamiltonian.

In this dissertation, we further classify the pairs of graphs such that G

being 3-connected and {X, Y }-free implies G is hamiltonian. The results

are presented in two parts. First, we present infinite families of graphs that

are 3-connected and not hamiltonian in order to reduce the list of possible

forbidden pairs in Chapter 3. Secondly, we prove Theorem 1.11 in Chapter 4

and Theorem 1.12 in Chapter 5. These theorems, combined with Theorems

1.7, 1.8, 1.9 and the results in Chapter 3, give a complete classification of

which generalized net graphs Ni,j,k can form a forbidden pair {X, Y } such

that a 3-connected, {X, Y }-free graph is hamiltonian.

Theorem 1.11. Let i, j be non-zero with i+ j = 9. Then every 3-connected,

claw-free, Ni,j,0-free graph G is hamiltonian.

Theorem 1.12. Every 3-connected, claw-free N3,3,3-free graph G is hamilto-

nian.
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Chapter 2

Background

In this chapter, we discuss the necessary tools and theorems that we will

utilize in the proofs of Theorem 1.11 and Theorem 1.12.

One of the tools we will utilize is a closure concept introduced by Ryjác̆ek

[15]. Let G be a graph, let v be a vertex of G, and let N(v) denote the

neighborhood of v. A vertex v ∈ V (G) is said to be locally connected if the

neighborhood of v induces a connected subgraph in G. The local completion

of G at v, denoted G′

v, is obtained by adding in the edges {xy | x, y ∈ N(v)

and xy /∈ E(G)}. The Ryjác̆ek closure is obtained by recursively performing

the local completion operation at vertices that are locally connected until

there are no such vertices remaining. Many useful properties of the Ryjác̆ek

closure in claw-free graphs are summarized in Theorem 2.1.

Theorem 2.1. [15] Let G be a claw-free graph. Then the following are true:

• cl(G) is uniquely determined.

• cl(G) is the line graph of a triangle-free graph.

• c(cl(G)) = c(G).

• G is hamiltonian if and only if cl(G) is hamiltonian.

Further research by Brousek, Ryjác̆ek, and Favaron in [3] showed that cer-

tain classes of graphs were stable under the closure operation. Of particular

interest to us is the result stated in Theorem 2.2.
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Theorem 2.2. [3] Let G be claw-free. If G is Ni,j,k-free then cl(G) is also

Ni,j,k-free.

Combining Theorems 2.1 and 2.2, we see that when determining whether a

3-connected graph G which is {K1,3, Ni,j,k}-free is hamiltonian, it is sufficient

to show that cl(G) is hamiltonian. Thus, we need only consider those graphs

which are closed under the Ryjác̆ek closure operation.

Another well-known theorem that will be of use to us is due to Harary and

Nash [8]. Here we define the line graph of a graph G, denoted L(G), to be

the graph with E(G) as its vertex set and two vertices are connected if and

only if the corresponding edges in G are incident with one another.

We say a graph is eulerian if it is connected and every vertex has even

degree. An eulerian subgraph H of a graph G is said to be a dominating

eulerian subgraph if every edge of G has at least one endpoint in V (H).

Lastly, we define a graph to be supereulerian if it contains a spanning eulerian

subgraph.

Theorem 2.3. [8] Let G be a connected graph with at least 3 edges. The

line graph L(G) is hamiltonian if and only if G has a dominating eulerian

subgraph.

Pairing this result with the above observation that we need only consider

closed graphs, we see that finding a hamiltonian cycle in a 3-connected,

{K1,3, Ni,j,k}-free graph G is equivalent to finding a dominating eulerian sub-

graph in the inverse line graph of cl(G). We denote the inverse line graph of

a graph H by L−1(H).

Let X ⊆ E(G) be a subset of edges of G. The contraction, denoted G/X,

is the graph obtained by identifying the two ends of each edge in X and

deleting the resulting loops. For a given subgraph K, we will use G/K to

denote G/E(K). The preimage of a vertex v ∈ V (G/K) is the set of all
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edges that were contracted onto v. A vertex v in a contraction of G is said

to be a nontrivial vertex if its preimage contains at least one edge.

Let G be a graph such that κ(L(G)) ≥ 3 and L(G) is not complete. The core

of the graph G, denoted G0, can be found by contracting all pendant edges

and contracting one of xy or yz for each path xyz where dG(y) = 2. After all

contractions have been made, any edge that remains after contracting either

xy or yz as described above is called a nontrivial edge. Items (a)-(c) in the

following theorem were presented by Shao in [16], with item (d) added by

Lai, Xiong, Yan, and Yan in [12].

Theorem 2.4. [12][16] Let G be a graph with κ(L(G)) ≥ 3 and L(G) is not

complete. Let G0 be the core of G, then each of the following holds:

(a) G0 is nontrivial and δ(G0) ≥ κ′(G0) ≥ 3.

(b) G0 is well-defined.

(c) If G0 has a spanning eulerian subgraph, then G has a dominating eu-

lerian subgraph.

(d) If G0 has a dominating eulerian subgraph containing all nontrivial ver-

tices and both ends of each nontrivial edge, then G has a dominating

eulerian subgraph.

We will also use the notion of a collapsible graph, which was first introduced

by Catlin in [4]. Let O(G) denote the set of odd vertices in G. Given a subset

R ⊆ V (G) with |R| even, a subgraph H of G is said to be an R-subgraph

if both O(H) = R and G − E(H) is connected. A graph G is said to be

collapsible if for any even subset R of G, G has an R-subgraph. Catlin

further showed in [4] that every vertex in a graph G is in a unique maximal

collapsible subgraph of G. We form the reduction of G by contracting all of

the maximal collapsible subgraphs. We use G′ to denote the reduced graph.
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Theorem 2.5. [4] Let G be a connected graph and let H be a collapsible

subgraph of G. Then each of the following holds:

(a) G is collapsible if and only if G/H is collapsible. In particular, G is

collapsible if and only if the reduction G′ is K1;

(b) G is reduced if and only if G has no nontrivial collapsible subgraphs;

(c) g(G′) ≥ 4 and δ(G′) ≤ 3;

(d) G is supereulerian if and only if G′ is supereulerian.

Theorem 2.6. [4] Let G be a connected graph and let H be a collapsible

subgraph of G. Let the reduction of G, denoted G′, have g(G′) ≥ 4, then G

is supereulerian if and only if G′ is supereulerian.

Lastly, the method of proof we will use will involve examining graphs of

each possible circumference. To aid in this process, we will use the following

two results:

Theorem 2.7. [5] If G is a 3-edge-connected graph with at most 13 vertices,

then either G is collapsible or G is contractible to K2, K1,2, or the Petersen

graph.

Theorem 2.8. [12] Let G be 3-edge-connected. If c(G) ≤ 8, then G is

supereulerian.
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Chapter 3

Further Classification of Pairs

of Forbidden Graphs

In this section, we present two new theorems that reduce the number of

possible pairs such that that a graph being {X, Y }-free implies a 3-connected

graph is hamiltonian. Theorem 3.1 gives that in any pair {X, Y }, one of the

graphs must be K1,3. Theorem 3.2 focuses on reducing the number of graphs

that can be paired with K1,3 to form a forbidden pair.

We begin by defining five graphs which are 3-connected, claw-free, and not

hamiltonian.

• G1 = L(H) where H is the graph obtained from the Petersen graph by

adding one pendant edge to every vertex of P .

• G2 = the graph obtained by replacing each vertex of the Petersen graph

with a K3.

• G′

2 = the graph obtained by replacing all but one vertex of the Petersen

graph with a K3 and the replacing the remaining vertex with a Kt for

t ≥ 4.

• G3 = the graph obtained by blowing up each vertex of the Petersen

graph to a Kt with t ≥ 6 and replacing each edge between two Kt

subgraphs with  L1.
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• G4 = the graph obtained by blowing up each vertex of the Petersen

graph to a Kt with t ≥ 6 and replacing each edge between two Kt

subgraphs with an hourglass, i.e. two triangles joined at a common

vertex.

The graphs G1, G2, G′

2, G3, and G4 are pictures in Figure 3.1. Note that

the labeled vertices in G1 are identifications.

2

1

1

3

5 4
3

4

2

5

G1 G2 G′2

Kt

Kt

Kt

Kt

KtKt

Kt

Kt

Kt

KtKt

G3 G4

Kt

Kt

Kt

Kt

Kt

KtKt

Kt

Kt

Kt

Figure 3.1: 3-connected, claw-free graphs that are not hamiltonian

We also note that the graphs in Figure 3.2, while not claw-free, are also

3-connected and not hamiltonian. In addition, the Petersen graph and the
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complete bipartite graph Kn,m with n, m ≥ 3 and n 6= m are also 3-connected,

not claw-free, and not hamiltonian.

...

H1

Km

H2

Figure 3.2: 3-connected graphs that are not claw-free and are not hamiltonian

Theorem 3.1. Let X and Y be connected graphs with neither X nor Y equal

to P3, and let G be a 3-connected graph. If G being {X, Y }-free implies G is

hamiltonian, then either X or Y must be K1,3.

Proof. We will proceed by considering two cases.

Case 1: Assume that X contains an induced P4. This implies that Y must

be a subgraph of every 3-connected, nonhamiltonian graph that is P4-free.

Since the complete bipartite graph Kn,m with n, m ≥ 3 and n 6= m is P4-free,

we automatically get that Y must be a subgraph of Kn,m. The graph H1 is

P4-free, which when paired with Y being a subgraph of Kn,m forces Y to be

a star. The largest star in H2 is a K1,3, thus we conclude that Y must be

K1,3.

Case 2: Assume that X does not contain an induced P4. We can further

split this case into two subcases: either X contains a cycle or it does not.

Clearly, if X contains no cycles, it must be a tree. The condition that X

does not contain an induced P4 forces X to be a star. The Petersen graph

has ∆(G) = 3, which forces X to have ∆(G) ≤ 3. Thus X must be K1,3.
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If X contains a cycle, it must be a triangle or a C4 since any larger cycle

contains an induced P4. If X contains a triangle, then Y must be a subgraph

of both the Petersen graph and K3,m since they are both triangle-free. From

here we can easily see that Y must be K1,3. If X contains a C4, then Y

must be a subgraph of both the Petersen graph and H2 since they are both

C4-free. Once again, it is clear by inspection that Y must be K1,3.

Now that we have established that K1,3 must be included in any forbidden

pair that implies a 3-connected graph is hamiltonian, we proceed by assuming

that X = K1,3 and reduce the number of graphs Y that can complete a

forbidden pair.

Theorem 3.2. Let Y be a connected graph with Y 6= P3, and let G be a

3-connected graph. If G being {K1,3, Y }-free implies G is hamiltonian, then

G satisfies each of the following conditions:

(a) ∆(Y ) ≤ 3;

(b) The longest induced path in Y has at most 11 vertices;

(c) Y contains no cycles of length at least 4;

(d) The distance between two triangles in Y is odd;

(e) Y contains at most two triangles;

(f) If Y contains exactly two triangles, then it must be one of  L1,  L3, or

 L5;

(g) Y is claw-free.

Proof. Since all of the graphs in Figure 3.1 are claw-free and non-hamiltonian,

it must be the case that Y is an induced subgraph of each of these graphs.
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Property (g) follows naturally from each of these graphs being claw-free.

Since ∆(G2) = 3, Y must satisfy (a). There is no induced P12 in G1, therefore

(b) is satisfied. Also, (b) is best possible by Theorem 1.6.

The longest cycle in G1 is a C10, therefore any cycle in Y must be of length

less than or equal to 10. When considering G2 and G′

2, the shortest cycle

that is not a C3 is a C10, thus eliminating the possibility of Y containing a

Ck for 4 ≤ k ≤ 9. The graph G3 does not contain a C10, so we deduce that

the only cycle Y can have is a C3 and (c) is satisfied.

Condition (d) arises from the fact that all triangles in G2 are odd distance

apart.

We now look at property (e). When considering G3, we see that the only

triangles that appear distance 1 apart occur between the cliques and the

addition of any additional vertex would create a K4 − {e}. This clearly

cannot happen since G2 does not have this as a subgraph. Therefore, if there

are more than two triangles in Y , each pair of triangles must be distance at

least 3 by (d). To prevent the induced path of Y from becoming longer than

11, it must be the case that Y is the graph obtained by taking a triangle,

joining vertex disjoint paths of length 3 to two vertices, and identifying the

endpoint of each path with a vertex of an additional triangle (see Figure 3.3).

However, this particular subgraph does not appear in G4, thus (e) must be

satisfied.

Figure 3.3: Subgraph with 3 triangles.
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Lastly, consider property (f). The previous properties guarantee that if Y

contains two triangles then it is either an  Lk or an  Lk with tree components

attached to the vertices of the triangles. We note that G3 contains no  L1

or  L5 subgraphs with additional pendant edges off of the triangles, and G4

contains no  L3 or  L7 subgraphs with additional pendant edges off of the

triangles. We need not worry about  Lk with k even as that would violate (d)

or  Lk with k ≥ 9 as that would violate (b). To eliminate  L7, we note that

G1 does not contain  L7 as an induced subgraph. The graph G1 contains 10

cliques of size four. If G1 did contain  L7 as a subgraph, two cliques would

contain triangles. Two additional cliques would not contain any edges since

they would contain a vertex of one of the triangles. Each of the remaining

seven edges must appear in a unique clique, however there are only six unused

cliques remaining in the graph.

This concludes the proof of the theorem.
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Chapter 4

Claw-Free, Ni,j,0-free Graphs

In this chapter, we focus on proving Theorem 1.11. Throughout, G will

be a graph such that L(G) is 3-connected and claw-free. We will use G0 to

denote the reduced core of G and C to denote a longest cycle in G0 with

vertices labeled by c1, c2, . . . , cc(G0). If there is more than one cycle of length

c(G0), we will choose C to contain the largest number of nontrivial vertices

of G0.

Let Ta,b,c be the tree obtained from taking disjoint paths with a, b, and

c vertices and making one endpoint of each adjacent to a new vertex x.

It is easy to see that if a graph G has no subgraphs isomorphic to Ta,b,c

(not necessarily induced), then L(G) is Na−1,b−1,c−1-free. By Theorems 2.3

and 2.4, proving Theorem 1.11 is equivalent to showing the following four

theorems:

Theorem 4.1. Let Y = T9,2,1 and let G be a connected simple graph without

subgraphs isomorphic to Y . Let G0 be the core of G. If κ(L(G)) ≥ 3, then

G0 has a dominating eulerian subgraph containing all the nontrivial vertices

and both end vertices of each nontrivial edge.

Theorem 4.2. Let Y = T8,3,1 and let G be a connected simple graph without

subgraphs isomorphic to Y . Let G0 be the core of G. If κ(L(G)) ≥ 3, then

G0 has a dominating eulerian subgraph containing all the nontrivial vertices

and both end vertices of each nontrivial edge.
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Theorem 4.3. Let Y = T7,4,1 and let G be a connected simple graph without

subgraphs isomorphic to Y . Let G0 be the core of G. If κ(L(G)) ≥ 3, then

G0 has a dominating eulerian subgraph containing all the nontrivial vertices

and both end vertices of each nontrivial edge.

Theorem 4.4. Let Y = T6,5,1 and let G be a connected simple graph without

subgraphs isomorphic to Y . Let G0 be the core of G. If κ(L(G)) ≥ 3, then

G0 has a dominating eulerian subgraph containing all the nontrivial vertices

and both end vertices of each nontrivial edge.

For the proofs of Theorems 4.1, 4.2, 4.3, and 4.4, we will proceed by con-

sidering graphs of each possible circumference. As well as considering graphs

of each possible circumference, we will treat when C is a dominating cycle

and when C is not a dominating cycle separately.

We begin by presenting lemmas that will be used in the proofs of each of

the preceding four theorems. The first lemma shows that when c(G) ≥ 12,

the above results are true. When paired with Theorem 2.8, which states

that any 3-edge-connected graph with circumference less than or equal to

8 is supereulerian, we see that the only cases left to consider are graphs of

circumference 9, 10, and 11.

Lemma 4.5. Let G be a connected, claw-free graph with no subgraphs iso-

morphic to Ti+1,j+1,1 where i, j are non-zero and i + j = 9. If c(G) ≥ 12,

then G has a dominating eulerian subgraph containing all vertices.

Proof. Let C be a cycle of longest length. If there are no vertices off of C then

this is the desired dominating eulerian subgraph. Assume not all vertices are

on C. Let v be a vertex such that v is not on C but v has a neighbor, x, that

is on C. Then x is the center of a Ti+1,j+1,1, contradicting our assumptions.

When handling graphs with few vertices, Theorem 2.7 gives that any graph

with at most 13 vertices is either contractible to a graph that is supereulerian
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or is contractible to the Petersen graph. The following lemma applies when

the graph is contractible to the Petersen graph.

Lemma 4.6. If G0 is the Petersen graph, then either G0 has a dominat-

ing eulerian subgraph containing all nontrivial vertices or G contains a (not

necessarily induced) subgraph isomorphic to Ti+1,j+1,1.

Proof. Clearly any 9 vertices of the Petersen graph form a cycle that is a

dominating eulerian subgraph. If G0 does not have a dominating eulerian

subgraph that contains all nontrivial vertices, it must be the case that all 10

vertices are nontrivial.

If every nontrivial vertex is such because it is the endpoint of a path xyz

where d(y) = 2, then in G there must be a cycle of length at least 12 and

the argument used in the proof of Lemma 4.5 gives a Ti+1,j+1,1.

Therefore, there must exist a vertex v that is the endpoint of a pendant

edge vv′ in G. It can be seen that v is the center of a Ti,j,1 in G0 since there

exists a P10 in G0 where v is vertex i + 1 along the path. Noting that the

first and last vertices along this path were also nontrivial, there must exist

vertices in G that are adjacent to those that were contracted to form G0.

This gives the desired Ti+1,j+1,1 in G.

4.1 Lemmas for the case that C is not domi-

nating.

As stated previously, we will treat when C is dominating and when C is

not dominating separately in the proofs of the four main theorems in this

chapter. In this section, we present lemmas that will be used when C is not a

dominating cycle. Each lemma corresponds to a specific graph circumference.



19

Lemma 4.7. Let G be a 3-edge-connected graph with c(G) = 11 and g(G) ≥

4, and let C denote a longest cycle in G which contains the largest number

of nontrivial vertices. Assume C is not a dominating cycle and every vertex

not on C has at least two neighbors on C. Then G must contain each of the

following: T9,2,1, T8,3,1, T7,4,1, and T6,5,1.

Proof. Since C is not dominating there must be an edge xy such that neither

x nor y are on the cycle. Since G is 3-edge-connected and by the assumption

that each vertex has at most one neighbor off of C, both x and y must have

at least two neighbors that lie on C. Any neighbor of y must be at least

distance 3 from any neighbor of x, otherwise we create a longer cycle.

Without loss of generality, we can assume that x is adjacent to c1. Assume

that the distance between neighbors of x is 2. Label this second neighbor

as c3. In this case, the neighbors of y can either be {c6, c8} (symmetrically

{c7, c9}) or {c6, c9}. If the distance between neighbors of x is 3, say c1 and

c4, then the neighbors of y must be {c7, c9}. However, this case is symmetric

to the latter case above. This gives two nonsymmetric ways to arrange the

neighbors of x and y, which are shown in Figure 4.1.

c10

c9

c11

c1 c2

x

y

c3

c4

c5

c6
c7

c8

c11

c2

c7

c8

c9

x

y

c10

c5

c4

c3

c1

c6

Figure 4.1: Arrangements of neighbors of x and y when c(G0) = 11 and C is
not dominating.

In the case where x is adjacent to {c1, c3} and y is adjacent to {c6, c8}, we
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get the following trees:

T9,2,1 = T{c1 : c11, xy, c2c3c4c5c6c7c8c9c10}

T8,3,1 = T{c1 : x, c11c10c9, c2c3c4c5c6c7c8y}

T7,4,1 = T{c6 : c7, c5c4c3c2, yxc1c11c10c9c8}

T6,5,1 = T{c1 : c2, c11c10c9c8c7, xyc6c5c4c3}
The only tree above that used an edge that is not also present when x is

adjacent to {c1, c3} and y is adjacent to {c6, c9} is the T8,3,1. In this case, we

get T8,3,1 = T{y : x, c6c7c8, c9c10c11c1c2c3c4c5}.

Lemma 4.8. Let G be a 3-edge-connected graph with c(G) = 10 and g(G) ≥

4, and let C denote a longest cycle in G which contains the largest number of

nontrivial vertices. Assume C is not a dominating cycle and every vertex not

on C has at least 2 neighbors on C. Then either G has a dominating eulerian

subgraph or G must contain each of the following: T9,2,1, T8,3,1, T7,4,1, and

T6,5,1.

Proof. Once again, by 3-edge-connectedness, each of x and y must have at

least two additional neighbors. Since G is triangle-free and placing a neighbor

of x and a neighbor of y less than distance 3 apart creates a longer cycle,

it can be seen that there is only one way (up to symmetry) to place these

neighbors. Without loss of generality, we can assume that x is adjacent to

{c1, c3} and y is adjacent to {c6, c8}. This configuration is shown in Figure

4.2. With these neighbors of x and y, the vertices of C can be partitioned

into three sets with each vertex in a given set being symmetric to the other

vertices in the same set: {c1, c3, c6, c8}, {c2, c7}, and {c4, c5, c9, c10}.

If G has at most 13 vertices then it has a dominating eulerian subgraph by

Theorem 2.7, thus we can assume that G contains at least 14 vertices. Let v

be one of the additional vertices not on C.

Assume v is adjacent to a vertex in the group {c2, c7}, without loss of

generality say c2. Then we get the following trees:
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Figure 4.2: Arrangement of neighbors of x and y when c(G0) = 10 and C is
not dominating.

T9,2,1 = T{c6 : c7, c5c4, yc8c9c10c1xc3c2v},

T8,3,1 = T{x : y, c1c2v, c3c4c5c6c7c8c9c10},

T7,4,1 = T{c8 : c7, yc6c5c4, c9c10c1xc3c2v},

T6,5,1 = T{c2 : v, c3c4c5c6c7, c1c10c9c8yx}.

If v is adjacent to a vertex in the group {c4, c5, c9, c10}, without loss of

generality say c4, then we get the following trees:

T9,2,1 = T{c4 : v, c3c2, c5c6c7c8c9c10c1xy},

T8,3,1 = T{c4 : v, c5c6c7, c3xyc8c9c10c1c2},

T7,4,1 = T{c4 : v, c5c6yx, c3c2c1c10c9c8c7},

T6,5,1 = T{c8 : c7, yc6c5c4v, c9c10c1c2c3x}.
Therefore, we can assume that v has all its adjacencies in the set S =

{c1, c3, c6, c8}. Assume that v has at least three adjacencies on C. Since all

3-subsets of S are symmetric, we can assume that v is adjacent to {c1, c3, c6}.

This gives the longer cycle c1vc6c5c4c3xyc8c9c10c1. Therefore, it must be the

case that v has two neighbors on C and one neighbor not on C. Denote the

neighbor not on C by v′. Under these conditions we get the following trees:
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T9,2,1 = T{c1 : v, xy, c2c3c4c5c6c7c8c9c10},

T8,3,1 = T{x : y, c1vv′, c3c4c5c6c7c8c9c10},

T7,4,1 = T{c1 : v, c10c9c8c7, c2c3c4c5c6yx},

T6,5,1 = T{c1 : v, c10c9c8yx, c2c3c4c5c6c7}.

Lemma 4.9. Let G be a 3-edge-connected graph with c(G) = 9 and g(G) ≥ 4.

If C is a longest cycle in G such that every vertex not on C has at least two

neighbors on C, then C must be a dominating cycle.

Proof. Since G is 3-edge-connected, each of x and y must have at least two

additional neighbors. It can easily be seen that there is no way to pick the

two neighbors of x and the two neighbors of y without either violating G

being triangle free or placing a neighbor of x and a neighbor of y less than

distance 3 apart, which creates a longer cycle. Both of these contradict our

original assumptions.

4.2 Lemmas for the case that C is dominat-

ing.

Much of the structure of a reduced graph core, G0, of a specific circumference

is determined regardless of whether we assume that G0 is T9,2,1-free, T8,3,1-

free, T7,4,1-free, or T6,5,1-free. In this section, we will establish those properties

that we will use in each of the four main proofs.

Before presenting any results, we note that in our proofs we are searching

for a dominating eulerian circuit that contains all nontrivial vertices. If C

contains all nontrivial vertices, it is the dominating eulerian circuit that we

are looking for. Therefore, we can assume that in each of these cases there

must be at least one vertex w such that w is a nontrivial vertex of G0 and w
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is not on C. This implies there exists a vertex w′ such that w′ 6∈ V (G0) but

ww′ ∈ E(G). Since C was chosen to contain the largest number of nontrivial

vertices, we get Lemma 4.10.

Lemma 4.10. Let w be a nontrivial vertex not on C. If w is adjacent to two

vertices that are distance 2 apart, say ci−1 and ci+1, then the vertex ci must

be nontrivial.

Proof. The cycle C can be rerouted to include the subpath ci−1wci+1 instead

of the subpath ci−1cici+1. If ci were trivial, then the alternate cycle would

contain more nontrivial vertices. This contradicts our original choice of C.

By 3-edge-connectivity of G0 and the fact that C is dominating, w must

have at least three neighbors on C. When c(G0) = 9, there are 3 nonisomor-

phic ways to place the three neighbors of w and maintain the property of

being triangle-free. These can be classified by the number of vertices between

consecutive neighbors of w and are {1, 1, 4}, {1, 2, 3}, and {2, 2, 2} and are

shown in Figure 4.3. Note, that in some of these placements certain vertices

on C are forced to be nontrivial by Lemma 4.10, these vertices are repre-

sented with triangles. When referring to specific neighbors of w, we will use

the labels shown in Figure 4.3.

Lemma 4.11. Let c(G0) = 9, C be a dominating cycle, and w be a vertex off

of C. If the number of vertices between consecutive neighbors of w is given

by {2, 2, 2}, then any other vertex v that is also not on the cycle must have

at least 2 neighbors in common with w.

Proof. Let ci denote a neighbor of w. If v has neighbors {ci−1, ci+1} then

ci−1vci+1ciwci+3
−→
C ci−1 is a C10. Similarly, if v has neighbors {ci−1, ci+2} then

ci−1vci+2ci+1ciwci+3
←−
C ci−1 is a C11. Lastly, if v has neighbors {ci−2, ci+2}

then ci−2vci+2ci+1ciwci+3
−→
C ci−2 is a C10. Each of these contradict c(G0) = 9.
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Figure 4.3: Possible neighbor placements on C9

Therefore, as v has 3 neighbors on C, it must have at least two in common

with w.

When c(G0) = 10, there are four non-isomorphic ways to place the neigh-

bors of w on C which can be categorized by the number of vertices between

consecutive neighbors of w. These four ways are {1, 1, 5}, {1, 2, 4}, {1, 3, 3},

and {2, 2, 3} and are depicted in Figure 4.4. Any vertex that is forced to

be nontrivial by Lemma 4.10 is denoted by a triangle. Once again, when

referring to a specific configuration, we will use the labels shown in the figure

to identify neighbors of w.

When c(G0) = 11, there are five nonisomorphic ways to place the neighbors

of w. The specific configurations are not utilized in any of our proofs, so we
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Figure 4.4: Possible neighbor placements on C10

omit these details.

Regardless of the value of c(G0), if all of the vertices that are not on C

happen to have the same set of three adjacencies on C, then the graph G0

has a dominating eulerian circuit. This is described in Lemma 4.12.

Lemma 4.12. Given a dominating cycle C in a graph G, if there are at

least two vertices not on C and all such vertices have three neighbors on C

in common, say S = {s1, s2, s3}, then G has a spanning eulerian circuit.

Proof. The exact dominating eulerian circuit depends on the parity of the

number of vertices not on C.

First consider when there are an even number of vertices not on C. These

can be paired as sets {x, y}. Begin the circuit by traversing C starting and



26

ending at s1. Then for each pair {x, y}, append s1xs2ys1 to the end of

the circuit. This is clearly a dominating circuit since all vertices of G are

included.

Next consider when there are an odd number of vertices not on C. Once

again, we begin the trail by traversing C starting and ending at s1. By

assumption, there are at least three vertices not on C. Take three of these

vertices, {x, y, z}, and append s1xs2ys3zs1 to the circuit. If there are vertices

remaining, there must be an even number. Therefore, we pair them up and

append s1xs2ys1 to the circuit for each pair. As with the previous case,

the circuit must be a dominating eulerian circuit since all vertices have been

included.

Corollary 4.13. Given a dominating cycle C in the reduced core G0 of a

graph G such that there are at least two nontrivial vertices or endpoints of

nontrivial edges that are not on C, if all such vertices have three neighbors on

C in common, say S = {s1, s2, s3}, then G has a dominating eulerian circuit

that contains all nontrivial vertices and both endpoints of all nontrivial edges.

Proof. By Theorem 2.4, G has a dominating eulerian circuit if and only if

G0 has a dominating eulerian circuit containing all nontrivial vertices and

both endpoints of nontrivial edges. If all nontrivial vertices and endpoints

of nontrivial edges have the same adjacencies on C, the dominating eulerian

circuit described in the proof of Lemma 4.12 suffices.

Before we begin the proofs of the main theorems, we note one more thing

about the cases where C is a dominating cycle. In these cases we utilize the

existence of a nontrivial vertex w. The edge ww′ that is contracted to form

G0 can either be a pendant edge or it could be part of a path of length 3. If

an edge that corresponds to a nontrivial vertex is used at the end of a path
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that contains more than one edge, then it does not matter which type of edge

was contracted. We note that in G it might be necessary to end the path

with w′w instead of ww′ as listed. However, as convention, we will assume

that the edge ww′ is in the path. In the case that the nontrivial vertex is

included in a Ti,j,k as the central vertex of degree three, further argument is

necessary to show that the desired subgraphs still occur when the edge ww′

is part of a path of length 3.

4.3 Proof of Theorem 4.1: T9,2,1

The cases where C is a dominating cycle and C is not a dominating cycle will

be handled separately. We will split the cases further based on c(G0). Recall

that by Lemma 4.5 and Theorem 2.8, we need only consider c(G0) = 9, 10,

and 11.

4.3.1 Case 1: C is not a dominating cycle.

Let xy denote an edge of G0 such that neither vertex is on C. Without loss

of generality we can assume there is a path from x to c1.

In the case where c(G0) = 11, there is a T9,2,1 described by T{c1 : c11, xy,

c2c3c4c5c6c7c8c9c10}. This observation along with Lemmas 4.7, 4.8, and 4.9,

give the desired result provided that when c(G0) = 10 every vertex not on C

has at least two neighbors on C. This result is presented in Lemma 4.14.

Lemma 4.14. If G0 is the reduced core of a graph without subgraphs iso-

morphic to T9,2,1 and c(G0) = 10, then every vertex not on a longest cycle C

has at least 2 neighbors on C.

Proof. First assume there is a vertex w such that none of the neighbors of

w can be found on C. Since G0 is 3-edge connected, w must have at least 3

neighbors. Denote these by x, y, and z. If any of x, y, or z have a neighbor
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off of C other than w, say z has neighbor z′, then there is a T9,2,1 centered at

w where the paths of length 1 and 2 are y and zz′ respectively, and the path

of length 9 can be formed by x and the vertices of C. If two neighbors of w

share a common neighbor on C, say x and y are both adjacenct to c1, then

T{c1, x, yw, c2
−→
C c10} is a T9,2,1. Thus, all neighbors of x, y, and z must be on

C and must be distinct. To prevent creating a longer cycle, all neighbors of

x, y, and z must be at least distance 4 apart. Clearly there is not enough

room to place all the neighbors under these restrictions, so each vertex w

must have at least one neighbor on C.

Now assume there is a vertex w that has exactly one neighbor on C. Denote

this neighbor by c1. Since w has at least 3 neighbors, there must be at

least 2 not on C, label these as x and y. If x or y have a neighbor off of

C besides w, say y has neighbor z, then we have the T9,2,1 described by

T{w : x, yz, c1c2c3c4c5c6c7c8c9}. If x and y have a neighbor ci ∈ V (C) in

common, then ci is the center of a T9,2,1 with the paths of length one and

two as x and yw, and the path of length 9 traveling around the cycle. Thus

all neighbors of x and y must be distinct. Also note that x and y cannot

be adjacent to c1 since G0 is triangle-free. They also cannot be adjacent to

c2, c3, c9, or c10 as that would create a longer cycle. The remaining 5 vertices

on the cycle are {c4, c5, c6, c7, c8}. It is clear that there is no way to choose

the four neighbors of x and y from these vertices without either creating a

longer cycle or a triangle. Therefore, it must be the case that w has at least

two neighbors on C.

4.3.2 Case 2a: C is a dominating cycle and c(G0) = 11.

Recall that if C contains all nontrivial vertices, then it is the desired domi-

nating eulerian subgraph. So, let w be a nontrivial vertex not on C. Let
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w′ denote the neighbor of w that is in V (G) but not V (G0). Without

loss of generality, assume that w is adjacent to c1. Then the subgraph

T{c1 : c11, ww′, c2c3c4c5c6c7c8c9c10} is present.

4.3.3 Case 2b: C is a dominating cycle and c(G0) = 10.

By Theorem 2.7, any graph with at most 13 vertices is supereulerian. There-

fore, there must be at least 4 vertices not on C. Let w be a nontrivial vertex

not on C with neighbor w′ ∈ V (G)/V (G0). Let v be one of the other vertices

not on C.

If v and w share an adjacency on C, say both are adjacent to c1, then T{c1 :

v, ww′, c2c3c4c5c6c7c8c9c10} is a T9,2,1. Also, if a neighbor of v is distance 2

from a neighbor of w, say w is adjacent to c1 and v is adjacent to c3, then

there is a T9,2,1 described by T{c1 : c2, ww′, c10c9c8c7c6c5c4c3v}.

We will now consider each of the four possible configurations for the neigh-

bors of w as shown in Figure 4.4.

Let the neighbors of w be {c1, c3, c5}, i.e. they are arranged with {1, 1, 5}

vertices between consecutive neighbors. By the previous observations that

v cannot share neighbors with w or have a neighbor distance 1 or 2 from a

neighbor of w, the neighbors of v must come from the set {c2, c4, c6, c8, c10}.

Since v has at least three neighbors on C, any set of neighbors must include

one of {c6, c8, c10}. In each case, the graph contains a T9,2,1. If v is adjacent

to c8, the T9,2,1 is T{c8 : v, c7c6, c9c10c1c2c3c4c5ww′}. If v is adjacent to c10,

it is T{c10 : v, c1c2, c9c8c7c6c5c4c3ww′}. The case where v is adjacent to c6 is

symmetric to the case where v is adjacent to c10.

Now, let the neighbors of w be {c1, c3, c6}, i.e. they are arranged with

{1, 2, 4} vertices between consecutive neighbors. Since v cannot have any

neighbors in common with w or distance 2 from a neighbor of w, it must be

the case that c2, c7, and c10 are the three neighbors of v. This results in the
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longer cycle given by c10vc2c1wc3c4c5c6c7c8c9c10.

Let the neighbors of w be {c1, c3, c7}, i.e. they are arranged with {1, 3, 3}

vertices between consecutive neighbors. The set of vertices that are not neigh-

bors of w or distance 2 from the neighbors of w consists of {c2, c4, c6, c8, c10}.

Any set of 3 neighbors of v must include either one of {c4, c10}, which are

symmetric, or one of {c6, c8}, which are symmetric as well. If v is adjacent

to c4, there is a T9,2,1 described by T{c4 : v, c5c6, c3c2c1c10c9c8c7ww′}. If v is

adjacent to c6, there is a T9,2,1 described by T{c6 : v, c5c4, c7c8c9c10c1c2c3ww′}.

Lastly, consider the case where the neighbors of w are arranged with gaps of

size {2, 2, 3} and are labeled as c1, c4, and c7. The only vertices that are not

neighbors of w or distance 2 from a neighbor of w are c8 and c10. Therefore,

it is not possible to place three neighbors of v without creating a T9,2,1.

4.3.4 Case 2c: C is a dominating cycle and c(G0) = 9.

If |V (G0)| ≤ 13 then by Lemmas 4.6 and 2.7 either G0 is supereulerian or

contains a T9,2,1. So it can be assumed that |V (G0)| ≥ 14. This gives at

least 5 vertices off of C, at least one of which is nontrivial. As before, we

label this vertex w and its contracted neighbor as w′. Consider the three

non-symmetric ways to place the neighbors of w as shown in Figure 4.3.

Let the neighbors of w be c1, c3, and c5. We first show that v must have at

least one adjacency in common with w. Note that if a vertex v is adjacent to

any of the pairs {ci−1, ci+1}, {ci−1, ci+2}, {ci−2, ci+1} for i ∈ {1, 3, 5} a longer

cycle can be found. If we consider v adjacent to c2, we see that v cannot

be adjacent to any vertex from the set {c1, c3, c4, c5, c8, c9} since that would

create either a triangle or a longer cycle. Therefore v must be adjacent to

two of {c6, c7, c8}. To prevent a triangle, the adjacencies must be c6 and c8.

This gives rise to the longer cycle c1wc5c4c3c2vc6c7c8c9c1. Therefore v cannot

be adjacent to c2. By symmetry, v also cannot be adjacent to c4. Since there
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is no way to place 3 neighbors of v among {c6, c7, c8, c9} without creating a

triangle, v must have at least one neighbor from {c1, c3, c5}.

By Lemma 4.10, both c2 and c4 must be nontrivial. If v is adjacent to c1,

we get T{c1 : v, ww′, c9c8c7c6c5c4c3c2c
′

2}. The case where v is adjacent to c5

is symmetric. If v is adjacent to c3 we get T{c3 : v, ww′, c4c5c6c7c8c9c1c2c
′

2}.

Now let the neighbors of w be c1, c3, and c6. By Lemma 4.10, c2 must

be nontrivial. Consider the places where an additional vertex v can be ad-

jacent. If v is adjacent to c1 there is a T9,2,1 described by T{c1 : v, ww′,

c9c8c7c6c5c4c3c2c
′

2}. The case where v is adjacent to c3 is similar, with the

long path going around the cycle in the opposite direction.

If v was adjacent to c2 it could not be adjacent to {c1, c3, c4, c5, c8, c9} since

each of those would create either a triangle or a longer cycle. But this forces

v to be adjacent to both c6 and c7, which creates a triangle. If v is adjacent

to c4 it cannot be adjacent to {c2, c3, c5, c7, c8, c9} since each of these create

either a triangle or a longer cycle. The vertex v also cannot be adjacent to

c1, by the argument in the previous paragraph. This leaves only c6, therefore

there is not enough room to place all three adjacencies of v.

The above arguments show that no vertex v can be adjacent to any of

{c1, c2, c3, c4}. The only way to fit three adjacencies among {c5, c6, c7, c8, c9}

without creating a triangle is to have v adjacent to {c5, c7, c9}. This config-

uration leads to the longer cycle c1c2c3wc6c5vc7c8c9c1.

The last case to consider is when the neighbors of w are c1, c4, and c7. First

assume that there is a vertex v that has all the same adjacencies as w. Let

x be a vertex that has an adjacency different than w and v. By symmetry

all choices are isomorphic, so let x be adjacent to c9. This gives a T9,2,1

described by T{c1 : v, ww′, c2c3c4c5c6c7c8c9x}. Thus, if one vertex has all

the same adjacencies as w, then all of the vertices not on C have the same

adjacencies and we have a dominating eulerian circuit by Lemma 4.12.

Lastly, we need to consider the case where no vertex has the same set of
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adjacencies as w. By Lemma 4.11, each of the vertices not on C must have at

least two adjacencies in common with w. Since there are at least four other

vertices not on C, there must exist two vertices, say v1 and v2, that share

the same pair of adjacent vertices with w. Without loss of generality, we can

assume these common neighbors to be c1 and c4. To keep G0 triangle-free,

the third adjacency of v cannot be one of {c2, c3, c5, c9}. The case where

v is adjacent to c7 is handled above, so that leaves c6 and c8 as possible

adjacencies for v1 and v2. Note that being adjacent to c6 is symmetric to

being adjacent to c8, so there are only two cases to consider.

First suppose that v1 is adjacent to c6 and v2 is adjacent to c8. In this case

there exists a T9,2,1 described by T{c4 : c5, c3c2, v2c8c9c1v1c6c7ww′}. Next

suppose that v1 and v2 are both adjacent to c6. This gives a T9,2,1 described

by T{c4 : v1, c3c2, c5c6v2c1c9c8c7ww′}.

This concludes the proof of Theorem 4.1.

4.4 Proof of Theorem 4.2: T8,3,1

The cases where C is a dominating cycle and C is not a dominating cycle will

be handled separately. We will split the cases further based on c(G0). Recall

that by Lemma 4.5 and Theorem 2.8, we need only consider c(G0) = 9, 10,

and 11.

4.4.1 Case 1: C is not a dominating cycle.

Lemmas 4.7, 4.8, and 4.9, give the desired result provided that every vertex

not on C has at least two neighbors on C when c(G0) = 10 or 11. This result

is presented in Lemma 4.15.
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Lemma 4.15. If G0 is the reduced core of a graph without subgraphs iso-

morphic to T8,3,1 and c(G0) = 10 or 11, then every vertex not on a longest

cycle C has at least 2 neighbors on C.

Proof. First assume that there is a vertex w such that w has no neighbors

on C. By 3-edge-connectivity, w must have at least three neighbors. Denote

these by x, y, and z. There must be a path from one of these vertices to C.

Without loss of generality, we can assume that there is a path from x to c1.

This gives the following T8,3,1 (the parentheses denote the path used when

c(G0) = 11): T{c1 : (c11)c10, xwy, c2c3c4c5c6c7c8c9}. Therefore every vertex

must have at least one neighbor on C.

Assume there is a vertex w that has exactly one neighbor on C. This implies

that w must have at least two neighbors not on C, say x and y. Since every

vertex has at least one neighbor on C, x must have a neighbor on the cycle,

say ci. This gives a T8,3,1 centered at ci where the paths of length 1 and 8 are

obtained by traversing along the cycle and the path of length three is xwy.

Thus, each vertex can have at most one neighbor off of C and we have the

desired result.

4.4.2 Case 2a: C is a dominating cycle and c(G0) = 11.

If all nontrivial vertices of G0 are on C, then this is the desired dominating

eulerian subgraph. Therefore, it must be the case that there is a vertex w not

on C that is nontrivial. Let w′ denote the vertex that was contracted when

forming G0. Also note that by Theorem 2.7, any graph G0 with |V (G0)| ≤ 13

must be supereulerian, so we can assume that G0 has at least 14 vertices.

If any two vertices not on C, say v1 and v2, have neighbors that are distance

2 apart, say c1 and c3 respectively, then c1 is the center of the T8,3,1 described

by T{c1 : v1, c2c3v2, c11c10c9c8c7c6c5c4}. If these vertices have neighbors at



34

distance 4, say c1 and c5, then T{c1 : v1, c2c3c4, c11c10c9c8c7c6c5v2} is a T8,3,1.

If any vertex v not on C has a neighbor that is distance 1 from a neighbor

of w, say w is adjacent to c1 and v is adjacent to c2, then there is a T8,3,1

described by T{c2 : v, c1ww′, c3c4c5c6c7c8c9c10c11}. If the neighbor of v is

distance 5 from a neighbor of w, say w is adjacent to c1 and v is adjacent to

c6, then there is a T8,3,1 described by T{c6 : v, c5c4c3, c7c8c9c10c11c1ww′}.

Combining the results in the previous two paragraphs, if w is adjacent to

c1, any vertex not on C cannot have a neighbor distance 1, 2, 4 or 5 from c1.

This forces all vertices not on C, including w, to have neighbors (without loss

of generality) c1, c4, and c9 and G0 contains a dominating eulerian circuit by

Lemma 4.12.

4.4.3 Case 2b: C is a dominating cycle and c(G0) = 10.

Since G0 cannot be contractible to the Petersen graph, Theorem 2.7 gives that

either G0 is supereulerian or |V (G0)| ≥ 14. Therefore, we can assume that

G0 has at least 4 vertices off of C. Let w be a nontrivial vertex. Without loss

of generality, we may assume w is adjacent to c1. Let v denote an additional

vertex that is not on C.

If v has a neighbor that is distance 1 from a neighbor of w, without loss of

generality say v is adjacent to c2, then T{c2 : v, c1ww′, c3c4c5c6c7c8c9c10} is

present. If v has a neighbor that is distance 4 from a neighbor of w, without

loss of generality say w is adjacent to c1 and v is adjacent to c5, then we have

T{c5 : v, c4c3c2, c6c7c8c9c10c1ww′}.

We now consider the possible adjacencies of w as shown in Figure 4.4.

First, assume the adjacencies of w are c1, c3, and c5. There are only two

vertices, c3 and c8, that are not distance 1 or 4 from a neighbor of w. Thus

when placing the three neighbors of v, we must get a T8,3,1.

Next, assume the adjacencies of w are c1, c3, and c7. In this case, all vertices
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of C are either distance 1 or 4 from a neighbor of w. Thus the addition of

any vertex v must give a T8,3,1.

Finally, assume the adjacencies of w are c1, c4, and c7. In this case the only

vertices that are not distance 1 or 4 from a neighbor of w are c4 and c9. Once

again, there is no way to place three neighbors of v without creating a T8,3,1.

Lastly, consider the case where the adjacencies of w are c1, c3, and c6.

By Lemma 4.10, c2 must be nontrivial. In the case where c′2 is not part

of the preimage of the cycle C in G, there is a T8,3,1 described by T{c2 :

c′2, c1ww′, c3c4c5c6c7c8c9c10}. Assuming that c′2 is in the preimage of C and

w′ is either a pendant vertex or is on the path from w to c6, there is a T8,3,1

described by T{w : w′, c1c2c
′

2, c3c4c5c6c7c8c9c10}. The case where w′ is on the

path from w to c1 is symmetric, with the resulting T8,3,1 being described by

T{w : w′, c6c5c4, c3c2c
′

2c1c10c9c8c7}.

It is now only necessary to consider when w′ is located on the path from

w to c3. In this case, we consider the neighbors of an additional vertex

v. If v is adjacent to c2, there is a T8,3,1 isomorphic to the one described

when c′2 is not on the preimage of C. When v is adjacent to c4 or c5 we

get T{c4 : v, c3w
′w, c5c6c7c8c9c10c1c2} or T{c5 : v, c4c3w

′, c6c7c8c9c10c1c2c
′

2},

respectively. When v is adjacent to c7 there is a T8,3,1 described by T{c7 :

v, c8c9c10, c6c5c4c3c2c
′

2c1w}, and when v is adjacent to c8 there is a T8,3,1 de-

scribed by T{c8 : v, c7c6c5, c9c10c1c
′

2c2c3ww′}. The vertices c10 and c9 are

symmetric to c7 and c8, respectively. This forces all vertices off of C to

be adjacent to S = {c1, c3, c6} and a dominating eulerian circuit exists by

Lemma 4.12.

4.4.4 Case 2c: C is a dominating cycle and c(G0) = 9.

If |V (G0)| ≤ 13, then by Lemmas 4.6 and 2.7 either G0 is supereulerian or

contains a T8,3,1. So it can be assumed that |V (G0)| ≥ 14. This implies at
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least 5 vertices off of C, at least one of which is nontrivial. As before, we

label this vertex w. We consider each of the three ways to place the neighbors

of w as shown in Figure 4.3.

First, consider the case where neighbors of w are c1, c3, and c5. By Lemma

4.10, both c2 and c4 must be nontrivial. Then the T8,3,1 described by T{c4 :

c′4, c3ww′, c5c6c7c8c9c1c2c
′

2} is present. Since c2 and c4 are symmetric under

this configuration, this T8,3,1 is sufficient provided at least one of c′2 and c′4

is not located on the preimage of C. If both happen to lie on the preimage

of C, then in the case where w′ is either a pendant vertex or lies on the

path from w to c1 the T8,3,1 described by T{w : w′, c5c4c
′

4, c3c2c
′

2c1c9c8c7c6}

is present. In the case where w′ is located on a path between w and c5, the

T8,3,1 described by T{w : w′, c1c2c
′

2, c3c
′

4c4c5c6c7c8c9} is present. This leaves

only the case where w′ is located on a path between w and c3.

When both c′2 and c′4 are located on the main cycle and w′ lies on a path

from w to c3, we consider an additional vertex v and its possible adjacencies

on C. If v is adjacent to c2 or c4, there exists a T8,3,1 isomorphic to the one

described when c′4 is not on the cycle. If v is adjacent to c6 (or symmetrically

c9), the T8,3,1 described by T{c6 : vc7c8c9, c5c4c
′

4c3c2c
′

2c1w} is present, and

when v is adjacent to c7 (or symmetrically c8), the T8,3,1 described by T{c7 :

v, c6c5w, c8c9c1c
′

2c2c3c
′

4c4} is present. This implies that all vertices not on C

must be adjacent to the set S = {c1, c3, c5} and G0 contains a dominating

eulerian circuit by Lemma 4.12.

Next, let the neighbors of w be c1, c4, and c7. By Lemma 4.11, any vertex

v not on C must have at least two neighbors in common with w.

If v has exactly 2 neighbors in common with w, by symmetry we can assume

c4 and c7, then the third neighbor must be either c2 or c9. Once again, these

cases are symmetric so we may assume the third neighbor is c2. This gives

the following C9: c2c3c4wc1c9c8c7vc2. This alternate C9 implies either c5 or

c6 is nontrivial. Whether it is c5 or c6 that is nontrivial, there is a T8,3,1.
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When c5 is nontrivial T{c7 : v, c6c5c
′

5, c8c9c1c2c3c4ww′} is the T8,3,1 present.

When c6 is nontrivial, T{c4 : v, c5c6c
′

6, c3c2c1c9c8c7ww′} is present. Therefore,

all vertices not on C must have the same three adjacencies and the graph

contains a dominating eulerian circuit by Lemma 4.12.

Lastly, consider the case when the neighbors of w are c1, c3, and c6. By

Lemma 4.10 the vertex c2 must be nontrivial.

We first consider possible neighbors of an additional vertex v. If v is ad-

jacent to c4 or c9, there is a T8,3,1. When v is adjacent to c4 the T8,3,1 is

T{c4 : v, c3ww′, c5c6c7c8c9c1c2c
′

2}. When v is adjacent to c9 it is T{c9 :

v, c1c2c
′

2, c8c7c6c5c4c3ww′}. Note that if c4 or c9 were nontrivial vertices, the

same T8,3,1 subgraphs would be present.

First consider the vertex c4. Since every vertex in G0 has degree at least 3

and c4 is not adjacent to any vertex off of C, it must be the case that c4 has

a chord. The chords c2c4 and c4c6 create triangles. If the chord is c4c7, we

get the longer cycle c1c2c3wc6c5c4c7c8c9c1.

If the chord is c4c8, then c7 must be nontrivial since c1c2c3wc6c5c4c8c9c1

is an alternate C9. This gives T{w : w′, c3c2c
′

2, c1c9c8c4c5c6c7c
′

7} as a T8,3,1

when ww′ is either a pendant vertex or part of a path from w to c6. If

ww′ is part of a path from w to c1, then T{c4 : c5, c3c2c
′

2, c8c9c1w
′wc6c7c

′

7} is

present. Lastly, if ww′ is part of a path from w to c3, the T8,3,1 described by

T{c7 : c′7, c6c5c4, c8c9c1ww′c3c2c
′

2} is present provided c′7 does not lie on the

preimage of C and T{c2 : c′2, c3w
′w, c1c9c8c7c

′

7c6c5c4} is present if c′2 does not

lie on the preimage of C. If both c′2 and c′7 lie on C, then it is necessary to

consider an additional vertex v. We can assume v is not adjacent to either

c2 or c7 since v would act in the same manner as having c′2 or c′7 not on

C. If the vertex v is adjacent to c3, c4, c5, or c9, there is a T8,3,1 present,

with the descriptions of them being T{c3 : v, c2c
′

2c1, w
′wc6c

′

7c7c8c4c5}, T{c4 :

v, c3ww′, c5c6c7c
′

7c8c9c1c2}, T{c3 : c2, c4c5v, w′wc1c9c8c7c
′

7c6}, and T{c9 : v,

c1c
′

2c2, c8c7c
′

7c6c5c4c3w
′}, respectively. This implies that v must be adjacent
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to the set S = {c1, c6, c8} and T{c6 : v, c′7c7c8, c5c4c3c2c
′

2c1ww′} is present.

If the chord c4c9 is present, we get a similar situation with c5 being non-

trivial due to c1c2c3c4c9c8c7c6wc1 being an alternate C9. This gives the T8,3,1

described by T{w : w′, c1c2c
′

2, c3c4c9c8c7c6c5c
′

5} whenever ww′ is either a pen-

dant edge or contained in a path from w to c6. If ww′ is on a path from w to

c3, then the T8,3,1 described by T{c9 : c1, c4c5c
′

5, c8c7c6ww′c3c2c
′

2} is present.

Lastly, if ww′ is part of a path from w to c1 and c′2 is not a part of the

preimage of C, then the T8,3,1 described by T{c2 : c′2, c1w
′w, c3c4c9c8c7c6c5c

′

5}

is present. If ww′ is part of a path from w to c1 and c′2 is part of the preimage

of C, then it is necessary to consider an additional vertex v. If v is adja-

cent to any of c1, c4, c6, c7, c8, or c9 there is a T8,3,1 with the descriptions

given by T{c1 : v, c9c8c7, c
′

2c2c3c4c5c6ww′}, T{c4 : v, c9c8c7, c5c6ww′c1c
′

2c2c3},

T{c6 : v, c7c8c9, c5c4c3c2c
′

21w′w}, T{c7 : v, c6c5c
′

5, c8c9c4c3c2c
′

2c1w
′}, T{c8 :

v, c9c4c5, c7c − 6wc3c2c
′

2c1w
′}, and T{c9 : v, c4c5c

′

5, c8c7c6wc3c2c
′

2c1}, respec-

tively. This leaves only c2, c3, and c5 as possible neighbors of v, which would

violate either the assumption that v has at least three neighbors on C or the

assumption that G0 is triangle-free.

The above observations imply that the chord incident to c4 must have c1

as its other endpoint.

Now consider v adjacent to c5. If v is also adjacent to c1, we get the

longer cycle c1vc5c4c3wc6c7c8c9c1. If v is adjacent to c2, we get the longer

cycle c1wc3c2vc5c6c7c8c9c1. If v is also adjacent to c7, we get the longer cycle

c1c2c3wc6c5vc7c8c9c1. Lastly, if v is also adjacent to c8, we get the longer

cycle c1c2c3c4c5vc8c7c6wc1. Taking into account the fact that no vertex is

adjacent to c4 or c9 when the neighbors of w are arranged in this manner, it

must be the case that v is adjacent to {c3, c5, c6}. Being adjacent to both c5

and c6 creates a triangle. We conclude that v cannot be adjacent to c5. Like

c4, the vertex c5 must then be incident to some chord within C.

The chord c5c9 is the only possible chord that produces a longer cycle,
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which is given by c1c2c3wc6c7c8c9c5c4c1.

The chord c2c5 produces the alternate C9 given by c1wc3c2c5c6c7c8c9c1,

which forces c4 to be nontrivial. This yields a T8,3,1 described by T{c4 :

c′4, c3ww′, c5c6c7c8c9c1c2c
′

2} if c′4 is not on the preimage of C and the T8,3,1

described by T{c2 : c′2, c1ww′, c3c
′

4c4c5c6c7c8c9} in the case that c′4 is lo-

cated on the preimage of C and c′2 is not. In the case that both c′2 and

c′4 are on the cycle and ww′ is a pendant edge, the T8,3,1 described by

T{w : w′, c1c
′

2c2, c3c
′

4c4c5c6c7c8c9} is present. If ww′ is located on a path from

w to c1 or a path from w to c6, the subgraph T{c6 : c5, c7c8c9, ww′c1c
′

2c2c3c
′

4c4}

is present. Lastly, if the edge ww′ is on a path from w to c3, then the T8,3,1

described by T{c3 : w′, c′4c4c
′5, c2c

′

2c1wc6c7c8c9} is present. Therefore, the

chord c2c5 cannot be present.

The chord c5c8 also gives an alternate C9: c1c2c3c4c5c8c7c6wc1. This cycle

forces c9 to be nontrivial. In the case where c′9 is not on the cycle, the T8,3,1

described by T{w : w′, c1c2c
′

2, c3c4c5c6c7c8c9c
′

9} is present. This T8,3,1 also is

present when c9 is on the cycle and ww′ is either a pendant edge in G or lies

on a path from w to c6. In the case where c′9 is on the cycle and ww′ is part of

a path from w to c1, the T8,3,1 described by T{c4 : c5, c3c2c
′

2, c1w
′wc6c7c8c9c

′

9}

is present. Lastly, when ww′ is part of a path from w to c3, the T8,3,1 described

by T{c4 : c5, c1c2c
′

2, c3w
′wc6c7c8c9c

′

9} is present. Therefore, G0 cannot contain

the chord c5c8.

It can easily be seen that all chords incident to c5 not mentioned above

create triangles. Since there is no way to place the chords at c4 and c5

without creating a longer cycle, a T8,3,1, or a triangle, this configuration for

the neighbors of w cannot occur.

This concludes the proof of Theorem 4.2.
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4.5 Proof of Theorem 4.3: T7,4,1

The cases where C is a dominating cycle and C is not a dominating cycle will

be handled separately. We will split the cases further based on c(G0). Recall

that by Lemma 4.5 and Theorem 2.8, we need only consider c(G0) = 9, 10,

and 11.

4.5.1 Case 1: C is not a dominating cycle.

Lemmas 4.7, 4.8, and 4.9, give the desired result provided that when c(G0) =

10 or 11 every vertex not on C has at least two neighbors on C. This result

is presented in Lemma 4.16.

Lemma 4.16. If G0 is the reduced core of a graph without subgraphs iso-

morphic to T7,4,1 and c(G0) = 10 or 11, then every vertex not on a longest

cycle C has at least 2 neighbors on C.

Proof. We will present the proofs for c(G0) = 10 and c(G0) = 11 together,

with parentheses denoting the portions of the paths present for 11 but not

10.

First assume that there is a vertex w such that w has no neighbors on

C. This vertex must have at least three neighbors, which we denote x, y,

and z. There must be paths from each of the vertices to C, so without

loss of generality we can assume there is a path from x to c1. If any of x,

y, or z has a neighbor not on the cycle besides w, say y is adjacent to y′,

then there is the T7,4,1 described by T{c1 : (c11)c10, xwyy′, c2c3c4c5c6c7c8}.

Therefore, we can assume that all neighbors of x, y, and z are on the cycle.

To prevent a longer cycle, neighbors of different vertices must either coincide

or be at least distance 4 apart. With x adjacent to c1, there are three

nonsymmetric places to choose a neighbor for y: c1, c5, or c6. (Note: these

choices are the same whether c(G0) = 10 or 11.) Since y has at least two
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neighbors on C, it must be adjacent to c5, c6, or a vertex symmetric to

one of those two. If y is adjacent to c5, there is a T7,4,1 described by T{c1 :

x, (c11)c10c9c8c7, c2c3c4c5ywz}. If y is adjacent to c6, there is a T7,4,1 described

by T{c1 : x, (c11)c10c9c8c7, c2c3c4c5c6yw}. Thus, each vertex must have at

least one neighbor on C.

Now assume there is a vertex w with exactly one neighbor on C and neigh-

bors x and y off of C. The vertex x must have a neighbor on C by the above

observations. There are three nonsymmetric places to choose this neighbor

that do not create a longer cycle: c4, c5, and c6. Each of these gives rise to

a T7,4,1. If x is adjacent to c4 we get T{w : y, xc4c3c2, c1(c11)c10c9c8c7c6c5}.

If x is adjacent to c5 we get T{w : y, c1c2c3c4, zc5c6c7c8c9c10}. Lastly, if x is

adjacent to c6 we get T{c6 : x, c5c4c3c2, c7c8c9c10(c11)c1wy}. Therefore, we

can assume that every vertex has at least two neighbors on C.

4.5.2 Case 2a: C is a dominating cycle and c(G0) = 11.

Consider the case when C is a dominating cycle. There are at least 3 vertices

not on C, at least one of which is nontrivial. Label this nontrivial vertex as

w and let one of its neighbors be labeled c1. We first note that w cannot be

adjacent to c5, or symmetrically c8, since this creates the T7,4,1 described by

T{w : w′, c1c2c3c4, c5c6c7c8c9c10c11}.

Let v be an additional vertex not on C. If v is adjacent to c6 (symmetrically

c7), then T{c1 : w, c2c3c4c5, c11c10c9c8c7c6v} is a T7,4,1. If v is adjacent to c3

(symmetrically c10), then T{c3 : v, c2c1ww′, c4c5c6c7c8c9c10} is a T7,4,1. Lastly,

if v is adjacent to c4 (symmetrically c9), T{c4 : v, c3c2c1w, c5c6c7c8c9c10c11}

is a T7,4,1. Since v cannot be adjacent to consecutive vertices, as that would

create a triangle, the only possibilities for neighbors of v are {c1, c5, c8},

{c2, c5, c8}, {c2, c5, c11}, {c2, c8, c11}, and {c5, c8, c11}. Note that the cases
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where v is adjacent to {c2, c5, c11} and {c5, c8, c11} are symmetric, as are the

cases where v is adjacent to {c2, c5, c11} and {c2, c8, c11}.

First consider v adjacent to {c2, c5, c11}. If w is adjacent to c3 or c4 (sym-

metrically c11 or c10), we get the longer cycles c1wc3c4c5c6c7c8c9c10c11vc2c1

and c1wc4c5c6c7c8c9c10c11vc2c1, respectively. This forces w to be adjacent to

both c6 and c7, which creates a triangle.

Next consider v adjacent to {c2, c5, c8}. In this case w cannot be adjacent

to c3 or c4, since that results in the longer cycles c1wc3c2vc5c6c7c8c9c10c11c1

and c1wc4c3c2vc5c6c7c8c9c10c11c1, respectively. If w is adjacent to c6, the

longer cycle c1wc6c5c4c3c2vc8c9c10c11c1 is present. If w is adjacent to c7, then

the longer cycle c1wc7c6c5c4c3c2vc8c9c10c11c1 is present. This forces w to be

adjacent to c9 and c10, which contradicts G0 being triangle-free.

Lastly, consider v adjacent to {c1, c5, c8}. If w is adjacent to c3 (symmetri-

cally c10), there is a T7,4,1 described by T{c5 : v, c4c3c2c1, c6c7c8c9c10ww′}.

If w is adjacent to c4 (symmetrically c9), there is a T7,4,1 described by

T{c9 : w, c10c11c1v, c8c7c6c5c4c3c2}. Lastly, if w is adjacent to c6 (symmet-

rically c7), there is a T7,4,1 described by T{c1 : v, c2c3c4c5, c11c10c9c8c7c6w}.

Paired with the previous restrictions on where neighbors of w can be placed,

this shows that there is no way to place the neighbors of w without creating

either a longer cycle or a T7,4,1.

4.5.3 Case 2b: C is a dominating cycle and c(G0) = 10.

First we observe that an additional vertex v cannot be adjacent to a ver-

tex distance two away from any neighbor of w since this gives rise to a

T7,4,1. For example, let w be adjacent to c1 and v be adjacent to c3. Then

T{c3 : v, c2c1ww′, c4c5c6c7c8c9c10} is the resulting T7,4,1. We now proceed by

considering the different configurations of the neighbors of w as shown in

Figure 4.4.
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Let neighbors of w be c1, c3, and c5. By Lemma 4.10, we note that both c2

and c4 are nontrivial. When considering where an additional vertex v can be

adjacent, we note that there are five vertices that are not distance two from

a neighbor of w: c2, c4, c6, c8, and c10. If v is adjacent to c6 (symmetrically

c10), then T{c6 : v, c5c4c3c2, c7c8c9c10c1ww′} is a T7,4,1. Therefore v must be

adjacent to {c2, c4, c8}. In this case, T{c2 : v, c3c4c5c6, vc8c9c10c1ww′} is a

T7,4,1.

Let the neighbors of w be c1, c3, and c6. When considering which vertices

on C can be neighbors of v, the only vertices that are not distance 2 from a

neighbor of w are c2, c6, c7, and c10. Since v cannot be adjacent to both c6

and c7 as that would create a triangle, two of the three neighbors of v must

be c2 and c10. This creates the longer cycle c1wc3c4c5c6c7c8c9c10c2c1.

Let the neighbors of w be c1, c3, and c7. The vertex c2 is nontrivial by

Lemma 4.10. When c′2 is not on the preimage of C, the T7,4,1 described by

T{c2 : c′2, c3c4c5c6, c1c10c9c8c7ww′} is present. When c′2 is on the cycle and

ww′ is either a pendant edge or lies on a path from w to c1, the T7,4,1 described

by T{w : w′, c3c4c5c6, c7c8c9c10c1c2c
′

2} is present. If ww′ is part of a path

from w to c3, then the T7,4,1 described by T{c1 : w, c′2c2c3w
′, c10c9c8c7c6c5c4}

is present. Lastly, when ww′ is part of a path from w to c7, it is nec-

essary to consider an additional vertex v. If v is adjacent to c2, there is

the same T8,3,1 as if c′2 is not on C. If v is adjacent to any of the ver-

tices c1, c3, c4, c5, c6, c8, or c9 there is a T7,4,1 present, with the descriptions

given by T{c1 : v, c′2c2c3w, c10c9c8c7c6c5c4}, T{c3 : v, c2c
′

2c1w, c4c5c6c7c8c9c10},

T{c4 : v, c5c6c7w
′, c3c2c

′

2c1c10c9c8}, T{c5 : v, c4c3ww′, c6c7c8c9c10c1c2}, T{c6 :

v, c5c4c3w, c7c8c9c10c1c
′

2c2}, T{c8 : v, c9c10c1w, c7c6c5c4c3c2c
′

2}, and T{c9 :

v, c10c1ww′, c8c7c6c5c4c3c2}, respectively. This leaves only c7 and c10 as pos-

sible neighbors of v that do not create a T8,3,1, which contradicts v having at

least 3 neighbors on C.

Lastly, consider when the neighbors of w are c1, c4, and c7. The vertices
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that are not distance two from a neighbor of w are {c1, c4, c7, c8, c10}. To

prevent a triangle, v must be adjacent to c4, one of {c1, c10}, and one of

{c7, c8}. If v is adjacent to c10, the cycle c1c2c3c4vc10c9c8c7wc1 is an alternate

C10, which forces either c5 or c6 to be nontrivial. Since both c5 and c6 are

distance two from a neighbor of w, if the extra vertex (c′5 or c′6) is a pendant

vertex then it acts as v and gives rise to a T7,4,1. If the extra vertex is

located on C, without loss of generality we can assume this vertex is c′5, then

T{c7 : w, c8c9c10v, c6c5c
′

5c4c3c2c1} is present. The case where v is adjacent to

c8 is symmetric. Therefore we can assume that all vertices off of C have the

same set of adjacencies as w and G0 contains a dominating eulerian circuit

by Lemma 4.12.

4.5.4 Case 2c: C is a dominating cycle and c(G0) = 9.

If |V (G0)| ≤ 13 then by Lemmas 4.6 and 2.7 either G0 is supereulerian or

contains a T7,4,1. So it can be assumed that |V (G0)| ≥ 14. This gives at least

5 vertices off of C, at least one of which is nontrivial. As before, we label

this vertex w. We proceed by considering the three possible placements of

the neighbors of w as shown in Figure 4.3.

Consider w adjacent to {c1, c3, c5}. By Lemma 4.10, c2 and c4 must be non-

trivial. Also, an additional vertex v cannot be adjacent to c1 (symmetrically

c5) since this gives T{c1 : v, c2c3ww′, c9c8c7c6c5c4c
′

4} as a T7,4,1.

Let ci denote one of the neighbors of w. If a vertex v is adjacent to any

of the pairs {ci−1, ci+1}, {ci−1, ci+2}, or {ci−2, ci+1} for i ∈ {1, 3, 5}, there is

a longer cycle in G0. Likewise, v cannot be adjacent to both c2 and c8 as

that creates the longer cycle c1wc3c4c5c6c7c8vc2c1. Symmetrically, v cannot

be adjacent to both c4 and c7. We conclude that v cannot be adjacent to c2

or c4 since all possible neighbors either create a triangle or a longer cycle.

Therefore, v must be adjacent to c3 and either {c6, c8}, {c6, c9}, or {c7, c9}.
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Consider v adjacent to c9. This produces c1c2c3vc9c8c7c6c5wc1, which is a

longer cycle. The vertices c9 and c6 are symmetric, so this handles all of the

possibilities.

Now consider w adjacent to {c1, c3, c6}. By Lemma 4.10, the vertex c2 must

be nontrivial. First note that an additional vertex v cannot be adjacent to

c5 since this gives T{c5 : v, c4c3ww′, c6c7c8c9c1c2c
′

2} as a T7,4,1. Likewise, v

cannot be adjacent to c8 since that gives T{c8 : v, c9c1c2c
′

2, c7c6c5c4c3ww′} as

a T7,4,1. It can easily be seen that if ci is one of the neighbors of w and v is

adjacent to both ci−1 and ci+1 we get a longer cycle.

If v is adjacent to c2, the above restrictions eliminate {c1, c3, c4, c5, c8, c9}

as possible neighbors. This implies that the other two neighbors of v are c6

and c7, which contradicts G0 being triangle-free.

This leaves v adjacent to one of each the following pairs: {c1, c9}, {c3, c4},

and {c6, c7}. Assume v is adjacent to c7. If v is also adjacent to c3 we get the

longer cycle c1wc6c5c4c3vc7c8c9c1. If v is also adjacent to c4 we get the longer

cycle c1c2c3wc6c5c4c7c8c9c1. Thus, v must be adjacent to c6. If v is adjacent

to both c4 and c9 we get the longer cycle c1c2c3c4vc9c8c7c6wc1. Therefore the

adjacencies of v must either be {c3, c6, c9} or {c1, c4, c6}.

Note that if there is a vertex v1 with adjacencies {c1, c4, c6} and a vertex v2

with adjacencies {c3, c6, c9} we get the longer cycle c1c2c3wc6c7c8c9v2c4v1c1.

Therefore we can assume that all vertices that are not on C and are not w

must have the same set of adjacencies.

Assume all additional vertices vi are adjacent to {c3, c6, c9}. The cycle

c1c2c3vc9c8c7c6wc1 is an alternate C9 that adds w and bypasses c4 and c5,

implying that one of those two vertices must be nontrivial. First consider

when c5 is the nontrivial vertex. In this case G0 contains the T7,4,1 de-

scribed by T{c2 : c′2, c3c4c5c
′

5, c1wc6c7c8c9v} when c′2 is not on the preimage

of C and T{c9 : v, c8c7c6w, c1c
′

2c2c3c4c5c
′

5} in the case where c′2 is on the

preimage of C. Next, consider c4 as the nontrivial vertex. Since G0 has
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minimum degree 3, there must be a chord from c5. The chord cannot be

c3c5 or c5c7 since G0 is triangle-free. If the chord is c2c5, we get the longer

cycle c1c2c5c4c3wc6c7c8c9c1. If the chord is c5c8, we get the longer cycle

c1c2c3c4c5c8c7c6vc9c1. The chord c5c9 also gives c1c2c3c4c5c9c8c7c6wc1 as a

longer cycle. This implies that the chord from c5 must be c1c5. The vertex c4

also needs a chord since G0 is 3-edge-connected. This chord must be one of

c4c7, c4c8, and c4c9. The chord c4c7 allows c4c5c6wc3c2c1c9c8c7c4 as a longer

cycle. The chord c4c8 gives the longer cycle c1c2c3wc6vc9c8c4c5c1. Lastly, the

chord c4c9 gives the longer cycle c1c2c3vc6c7c8c9c4c5c1.

Now assume that all additional vertices vi are adjacent to {c1, c4, c6}. We

note that the only additional edges are either incident to additional vertices

vi and one of {c1, c4, c6} or are chords within C. This graph contains a

dominating eulerian circuit, with the description of the circuit depending only

on the parity of the number of vertices vi. If there is an odd number of vertices

vi, begin the dominating eulerian circuit with c6wc3c2c1c9c8c7c6v1c4c5c6. Note

that one vi was used in this part of the circuit. Pair up the remaining

vertices vi into pairs {x, y} and append c6xc4yc6 to the end of the circuit

for each pair. If there is an even number of vertices vi, begin the circuit

with c6c7c8c9c1c2c3wc1v1c6v2c4c5c6. Two vertices vi were used in this part of

the circuit, leaving an even number that we can pair up and append as we

did in the odd case. In both the even and odd cases, the circuits must be

dominating eulerian circuits since they contain all vertices of G0.

Lastly, consider the case where w is adjacent to {c1, c4, c7}. By Lemma

4.11, any additional vertex v must have at least two neighbors in common

with w.

Consider v with exactly two adjacencies in common with w. By symmetry,

we can assume that these two adjacencies are c1 and c4 and the third adja-

cency is c6. Assume there is a vertex x not on C that is adjacent to c9. This

vertex x must also be adjacent to c4 and c7. This gives a T7,4,1 described by
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T{c6 : v, c7c8c9x, c5c4c3c2c1ww′}. Therefore, we can assume there is no vertex

adjacent to c9. The three-edge-connectedness of G0 implies there must then

be a chord at c9. There are four choices that do not create triangles: c3c9,

c4c9, c5c9, and c6c9. The chords c3c9, c5c9, and c6c9 create the longer cy-

cles c1wc4c5c6c7c8c9c3c2c1, c1c2c3c4vc6c5c9c8c7wc1, and c1c2c3c4c5c6c9c8c7wc1

respectively.

The chord c4c9 gives the alternate longest cycle c1wc7c8c9c4c5c6vc1 which

includes w but omits c2 and c3. Therefore, either c2 or c3 must be non-

trivial. If c2 is nontrivial and c′2 is not on the preimage of C, we get

T{c2 : c′2, c1vc6c5, c3c4c9c8c7ww′} as a T7,4,1. If c′2 is on the preimage of C, then

in the case that ww′ is a pendant edge or is part of a path from w to c1 the

T7,4,1 described by T{w : w′, c4c5c6v, c7c8c9c1c
′

2c2c3} is present. If ww′ is part

of a path from w to c7 or a path from w to c4, the T7,4,1 described by T{c4 :

c9, w
′wc7c8, c5c6vc1c

′

2c2c3} is present. If c3 is nontrivial and c′3 is not on the

preimage of C, there is a T7,4,1 described by T{w : w′, c4c5c6v, c7c8c9c1c2c3c
′

3}.

The case where c′3 is on the preimage of C is isomorphic to when c′2 is on

the preimage of C, and the above arguments suffice. Therefore, the chord

c4c9 cannot be present in G0. Since there is no way to place a chord at c9

without violating our assumptions, we conclude that v cannot have exactly

two adjacencies in common with w when the neighbors of w are {c1, c4, c7}.

This leaves only the case when all vertices not on the cycle C have the same

adjacencies as w. In this case, G0 is guaranteed to have a spanning eulerian

circuit by Lemma 4.12.

This concludes the proof of Theorem 4.3.
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4.6 Proof of Theorem 4.4: T6,5,1

The cases where C is a dominating cycle and C is not a dominating cycle will

be handled separately. We will split the cases further based on c(G0). Recall

that by Lemma 4.5 and Theorem 2.8, we need only consider c(G0) = 9, 10,

and 11.

4.6.1 Case 1: C is not a dominating cycle.

Lemmas 4.7, 4.8, and 4.9, give the desired result provided that when c(G0) =

10 or 11 every vertex not on C has at least two neighbors on C. This result

is presented in Lemma 4.17.

Lemma 4.17. If G0 is the reduced core of a graph without subgraphs iso-

morphic to T6,5,1 and c(G0) = 10 or 11, then every vertex not on a longest

cycle C has at least 2 neighbors on C.

Proof. Once again, we will present the proofs for when c(G0) = 10 and

c(G0) = 11 together, with the vertices in parentheses denoting the portions

of paths that appear when c(G0) = 11 but not when c(G0) = 10.

We start by assuming that there is a vertex w with no neighbors on C.

Let the neighbors of w be x, y, and z, and assume that there is a path from

x to c1. The path from x to c1 can have at most one other vertex, say x′,

otherwise this path paired with wy gives a path of length 5, which can be

used to create a T6,5,1 centered at c1. Similarly, if there is such a vertex

x′, then neither y nor z can have any neighbors off of C other than w and

possibly x′, as this would either create a triangle or give a path of length 5

that could be used to create a T6,5,1. Any neighbor of y that is on C must

either be c1 or be at least distance 5 from c1. This leaves two other choices,

c6 and c7, which are symmetric. Since y cannot be adjacent to both c1 and

x′ as that would create a triangle, y must be adjacent to one of c6 or c7.
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Without loss of generality, we may assume that y is adjacent to c6. This

gives the T6,5,1 described by T{w : z, xx′(c11)c10c9c8, yc6c5c4c3c2}. Therefore,

all neighbors of x, y, and z must be on C.

Now we can assume that x is adjacent to c1. When considering neigh-

bors of y, there are three nonsymmetric places that do not create a tri-

angle or a longer cycle: c1, c5, and c6. Since y has at least two neigh-

bors on C, it must be adjacent to either c5, c6, or a vertex symmetric to

one of those choices. If y is adjacent to c5 we get the T6,5,1 described by

T{w : z, yc5c4c3c2, xc1(c11)c10c9c8c7}. If y is adjacent to c6 we get the T6,5,1

described by T{w : z, yc6c5c4c3, xc1(c11)c10c9c8c7}. We conclude that every

vertex must have at least one neighbor on C.

Now we wish to show that every vertex has at least two neighbors on C.

Assume there is a vertex w with exactly one neighbor on C, say c1, and neigh-

bors x and y off of C. The vertex x must have a neighbor on C, and there are

three nonsymmetric ways to choose it: c4, c5, or c6. If x is adjacent to c4 there

is a T6,5,1 described by T{c4 : x, c3c2c1wy, c5c6c7c8c9c10}. If x is adjacent to

c5, there is a T6,5,1 described by T{w : y, xc5c4c3c2, c1(c11)c10c9c8c7c6}. Lastly,

if x is adjacent to c6 then the subgraph T{c1 : w, (c11)c10c9c8c7, c2c3c4c5c6x}

is present.

4.6.2 Case 2a: C is a dominating cycle and c(G0) = 11.

Without loss of generality, we may assume that c1 is one of the neighbors of

w, where w is a nontrivial vertex. Note that when considering w, it cannot

have adjacencies that are distance 5 apart. For example, if w was adjacent

to both c1 and c6 this gives T{w : w′, c1c2c3c4c5, c6c7c8c9c10c11} as a T6,5,1 if

ww′ is a pendant edge or part of a path to the third adjacency of w. If ww′

is located on the path from w to c1 (or symmetrically the path from w to c6),
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then the T6,5,1 described by T{c1 : w′, c11c10c9c8c7, c2c3c4c5c6w} is present.

If w is also adjacent to c3, its third adjacency must be c5 or c10 as these are

the only vertices that are not distance 1 or 5 from c1 or c3. By symmetry,

we may assume c5. Since we can reroute C to include w and omit either

c2 or c4, these two vertices must be nontrivial. This gives a T6,5,1 described

by T{w : w′, c1c2c3c4c
′

4, c5c6c7c8c9c10} when ww′ is either a pendant edge

or part of a path from w to c3. When ww′ is part of a path from w to

c1 (or symmetrically from w to c5), there is a T6,5,1 described by T{c1 :

w′, c2c3c4c5w, c11c10c9c8c7c6}. Since c10 is symmetric to c3, we conclude that

w cannot be adjacent to either of these vertices.

Therefore, when w is adjacent to c1 the other two adjacencies must be one

of {c4, c5} and one of {c8, c9}. The three combinations that do not have

two adjacencies distance 5 apart are {c1, c4, c8}, {c1, c5, c8}, and {c1, c5, c9}.

Note that all three of these cases are symmetric, so we may assume that the

adjacencies are {c1, c4, c8}. When considering an additional vertex v, there

are six nonisomorphic places that it can be adjacent to: c1, c2, c8, c9, c10, and

c11. In each case, there is a T6,5,1.

When v is adjacent to c1, the T6,5,1 is T{c1 : v, c2c3c4c5c6, c11c10c9c8ww′}.

When v is adjacent to c2 it is T{c2 : v, c3c4c5c6c7, c1c11c10c9c8w}. When v

is adjacent to c8, the T6,5,1 is T{c8 : v, wc1c11c10c9, c7c6c5c4c3c2}. Having v

adjacent to c9 gives T{c9 : v, c10c11c1ww′, c8c7c6c5c4c3}. With v adjacent to

c10, the T6,5,1 is T{c10 : v, c9c8c7c6c5, c11c1c2c3c4w}. Lastly, when v is adjacent

to c11, T{c11 : v, c10c9c8ww′, c1c2c3c4c5c6} is the T6,5,1.

4.6.3 Case 2b: C is a dominating cycle and c(G0) = 10.

As before, we proceed by considering the four ways to place the neighbors of

w as shown in Figure 4.4.

Let the neighbors of w be {c1, c3, c5}. In this case both c2 and c4 are
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nontrivial by Lemma 4.10. If c′2 is not part of the preimage of C (or, by

symmetry, if c′4 is not part of the preimage of C), there is a T6,5,1 described

by T{c2 : c′2, c3c4c5ww′, c1c10c9c8c7c6}. If both c′2 and c′4 are on C, then

T{c1 : w, c′2c2c3c
′

4c4, c10c9c8c7c6c5} is a T6,5,1.

Let the neighbors of w be {c1, c3, c6}. By Lemma 4.10, c2 is nontrivial. If

c′2 is not part of the preimage of C, then T{c2 : c′2, c1c10c9c8c7, c3c4c5c6ww′}

is a T6,5,1 in G0. If c′2 is on C, then T{w : w′, c6c7c8c9c10, c1c
′

2c2c3c4c5} is

present if ww′ is a pendant edge or belongs to a path from w to c3, T{c6 :

w, c5c4c3c2c
′

2, c7c8c9c10c1w
′} is present if ww′ is part of a path from w to c1,

and T{c6 : w′, c5c4c3c2c
′

2, c7c8c9c10c1w} is present if ww′ is part of the path

from w to c6.

Let the neighbors of w be {c1, c3, c7}. Once again, c2 is nontrivial by

Lemma 4.10. Up to symmetry, when considering an additional vertex v

there are only 6 different places that v can be adjacent (symmetric ver-

tices are given in parentheses): c2, c3(c1), c4(c10), c5(c9), c6(c8), or c7. Each

possible choice gives us a T6,5,1. If v is adjacent to c3, the T6,5,1 is T{c3 :

v, c2c1c10c9c8, c4c5c6c7ww′}. If v is adjacent to c4, then the subgraph T{c4 :

v, c5c6c7ww′, c3c2c1c10c9c8} is present. If v is adjacent to c5, then T{c5 :

v, c6c7c8c9c10, c4c3c2c1ww′} is present. If v is adjacent to c6, then T{c6 :

v, c5c4c3ww′, c7c8c9c10c1c2} is present. And lastly, if v is adjacent to c7 the

T6,5,1 is described by T{c7 : v, c6c5c4c3c2, c8c9c10c1ww′}.

The only case left to consider is when the neighbors of w are {c1, c4, c7}.

Up to symmetry there are 6 different ways to place a neighbor of an addi-

tional vertex v (symmetric vertices are given in parentheses): c1(c7), c2(c6),

c3(c5), c4, c8(c10), and c9. When v is adjacent to c1 the subgraph T{c1 :

v, c2c3c4ww′, c10c9c8c7c6c5} is present. When v is adjacent to c3 there is a

T6,5,1 given by T{c3 : v, c2c1c10c9c8, c4c5c6c7ww′}. When v is adjacent to c4

then T{c4 : v, c3c2c1ww′, c5c6c7c8c9c10} is a T6,5,1. Lastly, when v is adjacent

to c8 there is a T6,5,1 given by T{c8 : v, c9c10c1c2c3, c7c6c5c4ww′}. This leaves
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exactly three neighbors for v: c2, c6, and c9. However, when these are the

neighbors of v, G0 contains the longer cycle c1c2vc6c5c4wc7c8c9c10c1.

4.6.4 Case 2c: C is a dominating cycle and c(G0) = 9.

If |V (G0)| ≤ 13 then by Lemmas 4.6 and 2.7 either G0 is supereulerian or

contains a T6,5,1. It can be assumed that |V (G0)| ≥ 14. This gives at least

5 vertices off of C, at least one of which is nontrivial. As before, we label

this vertex w. We proceed by considering the possible configurations of the

neighbors of w as shown in Figure 4.3.

Let the neighbors of w be c1, c3, and c6. By Lemma 4.10, c2 must be

nontrivial. When considering an additional vertex v, first note that it cannot

be adjacent to either c6 or c7 because both give a T6,5,1. If v is adjacent to

c6 the T6,5,1 is T{c6 : v, c5c4c3ww′, c7c8c9c1c2c
′

2}. If v is adjacent to c7, then

T{c7 : v, c8c9c1c2c
′

2, c6c5c4c3ww′} is present.

Consider v adjacent to c2. Then v cannot also be adjacent to c1, c3, c4, or

c9 as G0 is triangle-free. If it were adjacent to c4, G0 would have the longer

cycle c1c2vc4c3wc6c7c8c9c1. Being adjacent to c5 would create the longer

cycle c1c2vc5c4c3wc6c7c8c9c1. This leaves only c8 and c9 for the other two

adjacencies of v, which contradicts G0 being triangle-free.

Now consider v adjacent to c4. This vertex cannot be adjacent to c3 or c5

as that would create a triangle, and it has already been established that no

vertex can be adjacent to c2, c6, or c7. To prevent a triangle, the other two ad-

jacencies must be c1 and c8. This gives the longer cycle c1c2c3wc6c5c4vc8c9c1.

Next consider v adjacent to c5. If v is also adjacent to c8, then the

longer cycle c1c2c3c4c5vc8c7c6wc1 is present. If v is adjacent to c9, then

c1c2c3c4c5vc9c8c7c6wc1 is a longer cycle. To keep G0 triangle-free, the other

adjacencies of v must then be c1 and c3. This gives c1vc5c4c3wc6c7c8c9c1 as

a longer cycle.
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The only possibility left is to have v adjacent to c1, c3, and c8. In this case

v must be nontrivial since C can be rerouted to include v and leave out c2.

This gives the T6,5,1 described by T{v : v′, c8c9c1c2c
′

2, c3c4c5c6ww′} when vv′

is either a pendant edge or part of a path from v to c1. When vv′ is part of

a path from v to c3, the T6,5,1 described by T{c1 : c2 : vv′c3c4c5, c9c8c7c6ww′}

is present. Lastly, when vv′ is part of a path from v to c8, either the T6,5,1

described by T{c2 : c′2, c1c9c8v
′v, c3c4c5c6ww′} or the T6,5,1 described by T{c3 :

v, c4c5c6ww′, c2c
′

2c1c9c8v
′} is present depending on the location of c′2 in G.

Now let the adjacencies of w be c1, c4, and c7. By Lemma 4.11, any vertex

v must have at least two adjacencies in common with w.

First consider a vertex v with exactly two adjacencies in common with

w. Without loss of generality, we can say these are c1 and c4 and the third

adjacency is c8. The graph G0 has at least 5 vertices off of C, so consider

another additional vertex x. It too must have at least two adjacencies in com-

mon with w, and when considering the placement of v there are 5 ways (up

to symmetry) that we can place the neighbors of x: {c1, c4, c8}, {c1, c4, c6},

{c2, c4, c7}, {c4, c7, c9}, and {c1, c4, c7}.

When x is adjacent to {c1, c4, c8} the graph G0 contains the subgraph

T{c4 : x, c5c6c7ww′, vc8c9c1c2c3}. When x is adjacent to {c1, c4, c6} there

is a T6,5,1 given by T{c1 : v, c9c8c7ww′, c2c3c4c5c6x}. When x is adjacent to

{c2, c4, c7} there is a longer cycle c1wc7xc2c3c4vc8c9c1. When x has adjacen-

cies {c4, c7, c9}, then c1c2c3c4c5c6c7xc9c8vc1 is a longer cycle. Lastly, when x

is adjacent to {c1, c4, c7}, T{c4 : x, c5c6c7ww′, c3c2c1c9c8v} is a T6,5,1.

Therefore, it must be the case that all vertices off of C must have the same

adjacencies as w and G0 contains a spanning eulerian circuit by Lemma 4.12.

The last case to consider is when the adjacencies of w are c1, c3, and c5.

By Lemma 4.10, c2 and c4 are both nontrivial.

Now consider where an additional vertex v might be adjacent. If v is

adjacent to c6 (symmetrically c9), T{c6 : v, c5c4c3ww′, c7c8c9c1c2c
′

2} is a T6,5,1.
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If v is adajcent to c7 (symmetrically c8), there is a T6,5,1 given by T{c7 :

v, c8c9c1c2c
′

2, c6c5c4c3ww′}. Since all vertices off the cycle must have three

adjacencies on the cycle, it must be the case that all such vertices are adjacent

to c1, c3, and c5 and G0 contains a spanning eulerian circuit by Lemma 4.12.

This concludes the proof of Theorem 4.4.
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Chapter 5

Claw-Free, N3,3,3-free Graphs

The main focus of this chapter is proving Theorem 1.12. As in the previous

chapter, G is a graph such that L(G) is 3-connected and claw-free, G0 denotes

the reduced core of G, and C is a longest cycle in G0 with vertices labeled by

c1, c2, . . . , cc(G0). If there is more than one cycle of length c(G0), we choose

C to contain the largest number of nontrivial vertices of G0.

Once again, we use Ta,b,c to denote the tree obtained from taking disjoint

paths with a, b, and c vertices and making one endpoint of each adjacent

to a new vertex x. By the same observations as in the previous chapter, we

know that if a graph G has no subgraphs (not necessarily induced) isomor-

phic to Ta,b,c, then L(G) is Na−1,b−1,c−1-free. Thus, proving Theorem 1.12 is

equivalent to proving the following theorem:

Theorem 5.1. Let Y = T4,4,4 and let G be a connected simple graph without

subgraphs isomorphic to Y . Let G0 be the core of G. If κ(L(G)) ≥ 3, then

G0 has a dominating eulerian subgraph containing all the nontrivial vertices

and both end vertices of each nontrivial edge.

The structure of the proof of Theorem 5.1 is similar to the proofs presented

in Chapter 4. We divide the proof into cases based on the circumference of

the graph. Recall that Theorem 2.8 states that a 3-edge-connected graph

with circumference less than or equal to eight is supereulerian. Therefore we

need only consider graphs with circumference nine or greater. We divide the
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cases further by considering when C is a dominating cycle and when C is not

a dominating cycle separately.

5.1 C is not a dominating cycle.

We split this section into cases based on circumference. Before considering

the cases, we prove Lemmas that handle whenever there exists a path of

length 3 such that no vertex on the path is a vertex of C. From there we

consider when c(G0) ≥ 13, c(G0) = 12, c(G0) = 11, and c(G0) = 10. Note

that by Lemma 4.9, if c(G0) = 9 then C must be a dominating cycle. By

Theorem 2.8, any 3-edge-connected graph with circumference less than or

equal to eight is supereulerian. When combined, these arguments finish the

proof for when C is not a dominating cycle. Let g = c(G0) throughout this

section.

First consider when c(G0) ≥ 10 and there is a path of 4 vertices off of

C. Label this path as v1v2v3v4. If an endpoint of this path is adjacent to

C, without loss of generality say v1 is adjacent to c1, then there is a T4,4,4

centered at c1. If neither endpoint is connected to C either by an edge or a

path that does not include either of the interior vertices, then one of the two

cases must be true. The first possibility is that one of v1v4, v1v3, and v2v4

is an edge. In this case, we can find reorder the vertices vi to find a path of

4 vertices such that an endpoint is adjacent to C. The other possibility is

that none of the above edges exist. In this case, the pair of edges v1v2 and

v3v4 serve as a 2-edge-cut, which violates the assumption that G0 is 3-edge-

connected. Therefore, in each of the following cases we can assume that the

longest path off of C contains at most three vertices.

The following two lemmas apply when there is a path of length 3 off of C.

Lemma 5.2 assumes that the middle vertex does not have an adjacency on

C, while Lemma 5.3 handles when the middle vertex does have an adjacency
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on C.

Lemma 5.2. If there is a vertex w with neighbors v1, v2, . . . , vd(w) such that

none of the vertices vj are on C, then all of the vertices vj must have adja-

cencies ci and ci+4 for some 1 ≤ i ≤ c(G0).

Proof. Assume such a vertex w exists. Without loss of generality, we can

assume that there is a path from v1 to ci since there must be some path

from w to C. This path must be comprised of a single edge, otherwise there

would be a T4,4,4 centered at ci. Clearly each vj cannot be adjacent to a

vertex vk as that would violate the assumption that G0 is triangle-free. Also,

each vj cannot have an additional adjacency off of C as that would imply

the existence of a T4,4,4 centered at ci.

Since G0 is 3-edge-connected, the vertex v2 requires two additional neigh-

bors, both of which must be on C. If v2 is adjacent to a vertex that is distance

1, 2, or 3 from ci, then G0 contains a longer cycle. Similarly, if v2 is adjacent

to a vertex that is distance greater than 4 from ci, say x, then G0 contains

the subgraph T{ci : ci+1ci+2ci+3ci+4, ci−1ci−2ci−3ci−4, v1wv2x}. This leaves ci,

ci+4, and ci−4 as possible neighbors of v2. Due to the symmetry between the

vertices v1 and v2 and the symmetry between ci−4 and ci+4, we can assume

that both v1 and v2 are adjacent to ci and ci+4. Since all vi are symmetric,

this implies that all neighbors of w must be adjacent to ci and ci+4.

If |NG0
(w)| = t, then the structure described in the preceding proof is a K3,t

with partite sets {w, ci, ci+5} and NG0
(w). We will refer to these structures

as a K3,t anchored at {ci, ci+5}. One observation to make is that none of the

vertices vi can be nontrivial, as that would give the existence of a T4,4,4 in G.

Also, the edge wvi cannot be nontrivial as that would imply the existence

of a T4,4,4 as well. Therefore, if there exists a dominating eulerian circuit of

G0 \ {w ∪ NG0
(w)} that contains all nontrivial vertices, both ends of every
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nontrivial edge, and both anchor vertices of the K3,t, then we can extend this

to a dominating eulerian circuit of G0 with all of the desired properties simply

by appending civ1wv2ci into the middle of the circuit at the appropriate spot.

Lemma 5.3. If there exists a path of length three, say v1v2v3, such that each

vi /∈ V (C) has at least one adjacency on C, then it must be the case that

c(G0) = 10, v1 and v3 are adjacent to ci and ci+4, and v2 is adjacent to ci−3.

Proof. When determining the adjacencies of v1 and v2 in the proof of Lemma

5.2, the fact that v2 did not have any adjacencies on C was not used. There-

fore, we can assume, without loss of generality, that both v1 and v3 are

adjacent to c1 and c5 and no other vertices.

Let x denote the neighbor of v2 that is on C. If x is distance 1 or 2 from

either c1 or c5 then G0 contains a longer cycle. If the distance from x to c1 is

greater than 4, then G0 contains a T4,4,4 centered at c1. The case when the

distance from x to c5 is greater than 4 is symmetric.

If x is distance exactly 4 from c5, then either x is c1 and G0 contains a

triangle or x is c9. Assuming x = c9 and c(G0) = g ≥ 11, this gives a T4,4,4

described by T{v2 : v3c5c4c3, c9c8c7c6, v1c1cgcg−1}. Note that if g < 11, then

c9 is distance 1 or 2 from c1 and G0 contains the T4,4,4 described previously.

The case where x is distance 4 from c1 is symmetric.

The above observations imply that x must be distance 3 from both c1 and

c5. The only way this is possible is if c(G0) = 10 and x = c8, which is the

desired result.

Now assume that c(G0) = 10, there is a path v1v2v3 such that vi /∈ V (C),

and the adjacencies of each vi are as described in Lemma 5.3. Observe that v2

can have arbitrarily many neighbors vi off of C and each of these neighbors is

symmetric to both v1 and v3. None of these neighbors of v2 can be nontrivial,

as that would imply a T4,4,4 in G. Likewise, none of the edges v2vi can be
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nontrivial as that would also imply a T4,4,4 in G. Therefore, if there exists a

dominating eulerian circuit of G0 \{v2∪NG0
(v2)} that contains all nontrivial

vertices, both ends of every nontrivial edge, and both ci and ci+4, then we

can extend this to a dominating eulerian circuit of G0 with all of the desired

properties simply by appending civ1v2v3ci into the middle of the circuit at

the appropriate spot.

Since we have shown that any path of length 3 that is not on C can be

absorbed into a dominating eulerian circuit provided that the original dom-

inating eulerian circuit contains all vertices of C, it is now only necessary to

consider paths of length 2 that are not on C. (Note that if all paths not on

C are of length 1, then C is a dominating cycle and this case is handled in

the next section.)

By Lemma 5.2, any vertex with no adjacencies on C must be the middle

vertex on a path of length 3 not on C. Therefore, we may assume that all

vertices have at least one adjacency on C. By assuming that each vertex x

not on C has at least one neighbor on C, we can go one step further and

assume that x has all but at most one neighbor on C. To see this, assume

that x is adjacent to y1, another vertex not on C. By assumption y1 has an

adjacency on C. If x were to have another neighbor not on C, say y2, then

y1xy2 would be a path of length 3 and we can create the desired dominating

eulerian circuit.

In each of the following sections, let xy be an edge not dominated by V (C).

Without loss of generality, we assume that x is adjacent to c1.

5.1.1 Case 1: c(G0) ≥ 13.

When assuming x is adjacent to c1, we can easily see that y cannot be

adjacent to any vertex that is distance 1 or 2 from c1 as that would create a

longer cycle. Likewise, we can assume that y is not adjacent to any vertex
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that is distance greater than 4 from c1 as that would imply a T4,4,4 centered

at c1. Therefore, the two neighbors of y must be distance 3 or 4 from c1.

This gives three nonsymmetric possibilities: y is adjacent to c4 and cg−2,

y is adjacent to c5 and cg−2, and y is adjacent to c5 and cg−3 (recall that

g = c(G0).)

First, assume that y is adjacent to c4 and cg−2. This graph contains a T4,4,4

described by T{c4 : c3c2c1x, c5c6c7c8, ycgcg−1cg−2}. Note that this T4,4,4 is

present whenever c(G0) ≥ 11.

Next, assume that y is adjacent to c5 and cg−2. (Note that in this case, y

adjacent to c4 and cg−3 is symmetric.) This graph contains a T4,4,4 described

by T{c5 : c4c3c2c1, ycg−2cg−1cg, c6c7c8c9}. This particular T4,4,4 is present

whenever c(G0) ≥ 12.

Lastly, assume that y is adjacent to c5 and cg−3. This graph contains a T4,4,4

described by T{c5 : c4c3c2c1, c6c7c8c9, ycg−3cg−2cg−1}. This graph is present

whenever g − 3 > 9, i.e. when c(G0) ≥ 13.

5.1.2 Case 2: c(G0) = 12.

By the same arguments as when c(G0) = 13, we can assume that the neigh-

bors of y must be distance 3 or 4 from c1. The only arrangement of these

neighbors that did not produce a T4,4,4 in a graph of circumference 12 was

when both neighbors were distance 4. Therefore, we may assume that the

neighbors of y are c5 and c9. Since we assumed no paths of length 3 off of C,

the third neighbor of x must be on C. However, since x and y are symmetric,

we conclude that any neighbor of x must be distance 4 from both c5 and c9.

As x is already adjacent to c1 and there is no other vertex that is distance 4

from both c5 and c9, it is easy to see that any choice for a third neighbor of

x will either result in a T4,4,4, a triangle, or a longer cycle.
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5.1.3 Case 3: c(G0) = 11.

Recall that there are two possible configurations of the neighbors of x and y

that are shown in Figure 4.1. In both configurations x is adjacent to c1 and

c3 and y is adjacent to c6. In this case, G0 contains the T4,4,4 described by

T{c6 : c5c4c3c2, c7c8c9c10, yxc1c11}.

5.1.4 Case 4: c(G0) = 10.

Recall that there is only one possible configuration of the neighbors of x and

y that does not violate our assumptions about G0, and this is shown in Figure

4.2. By Lemma 2.7, the graph G0 must contain at least 13 vertices. There-

fore, there must be an additional vertex, v, that is not on C. If v is adjacent

to one of the neighbors of x or y, without loss of generality we can assume

c1, then G0 contains the T4,4,4 described by T{c8 : c7c6c5c4, c9c10c1v, yxc3c2}.

If v is adjacent to a vertex in one of the gaps containing two vertices, say

c4, then G0 contains T{c1 : c2c3c4v, c10c9c8c7, xyc6c5}. This implies that v

can only be adjacent to vertices in the gaps containing one vertex. Since v

must have two adjacencies on C (otherwise there is a path of length 3 off of

C), it must be the case that v is adjacent to c2 and c7. This implies that G0

contains the T4,4,4 described by T{x : c1c2vc7, c3c4c5c6, yc8c9c10}.

This concludes the argument for when C is not a dominating cycle.

5.2 C is a dominating cycle.

Since C is a dominating eulerian subgraph, if C contains all nontrivial ver-

tices and both endpoints of every nontrivial edge the theorem is satisfied.

Therefore, it must be the case that there is a vertex off of C that is either

nontrivial or the endpoint of a nontrivial edge. Throughout this section, let

w denote this vertex and w′ denote the vertex in G that was contracted to w.
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The vertex w′ can either be a pendant vertex or belong to a path of length

3. Since we are looking for a T4,4,4 subgraph, we do not need to consider

separately when a nontrivial vertex is the center of the T4,4,4 and when it is

not as there are no paths of length 1 involved. Therefore, we will assume

that w′ (and any other contracted vertex) is a pendant vertex and note that

the same subgraphs are present when the vertex is contracted from a path

of length 3, with the possible modification of switching the order along the

path.

5.2.1 Case 1: c(G0) ≥ 12.

Assume c(G0) is exactly 12 and two neighbors of w are distance 2 apart.

Without loss of generality say w is adjacent to c1 and c3. Recall that by

Lemma 4.10, anytime that two neighbors of w are distance 2 apart the ver-

tex between these neighbors must be nontrivial. Therefore, c2 must be non-

trivial. In this situation, there are four non-symmetric places to put the

third neighbor of w: c5, c6, c7, and c8. These produce the following T4,4,4

subgraphs:

Neighbor of w Resulting Subgraph

c5 T{c5 : c4c3c2c
′

2, wc1c12c11, c7c8c9c10}

c6 T{c6 : c5c4c3c2, wc1c12c11, c7c8c9c10}

c7 T{c7 : c6c5c4c3, wc1c2c
′

2, c8c9c10c11}

c8 T{c8 : c7c6c5c4, wc1c2c3, c9c10c11c12}

Note that if c(G0) > 12 and two neighbors of w are distance 2 apart,

we can contract edges along C to get one of the structures considered above.

Uncontracting the edges to get back to the original graph will clearly preserve

the existence of a T4,4,4.

Now consider when c(G0) = 12 and all neighbors of w are distance at least
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3 apart. There are three non-symmetric ways to place the neighbors of w:

{c1, c4, c7}, {c1, c4, c8}, and {c1, c5, c9}.

In the case where the neighbors are {c1, c4, c8} there is a T4,4,4 described

by T{c8 : wc1c2c3, c7c6c5c4, c9c10c11c12}. In the case where the neighbors are

{c1, c5, c9} there is a T4,4,4 described by T{w : c1c2c3c4, c5c6c7c8, c9c10c11c12}.

Once again, if we have a core G0 with c(G0) > 12 and it is possible to contract

edges along C to create one of the above two structures, then G0 must also

contain a T4,4,4.

In the case where the neighbors of w are {c1, c4, c7}, it is necessary to

consider additional structure of G0. By Lemma 2.7, either G0 is supereulerian

or contains at least 14 vertices. Therefore, we can assume that G0 has at least

one additional vertex v. If v is adjacent to c2 (symmetrically c6), G0 contains

the T4,4,4 described by T{c7 : c6c5c4c3, wc1c2v, c8c9c10c11}. If v is adjacent to

c4 we get T{c1 : c2c3c4v, wc7c6c5, c12c11c10c9}. Lastly, if v is adjacent to c10

there is a T4,4,4 described by T{c1, c2c3c4c5, wc7c8c9, c12c11c10v}. This leaves

c1, c3, c5, c7, c8, c9, c11, and c12 as possible neighbors of w.

Consider v adjacent to c3. If v is adjacent to any of the vertices c5, c8, c11,

or c12, we can find a longer cycle in G0, and if v is adjacent to c7 or c9 the

graph contains a T4,4,4. These are summarized below:

Neighbor of v Resulting Subgraph

c5 c1c2c3vc5c4wc7c8c9c10c11c12c1

c7 T{c7 : c6c5c4w, c8c9c10c11, vc3c2c1}

c8 c1wc7c6c5c4c3vc8c9c10c11c12c1

c9 T{c3 : c2c1ww′, c4c5c6c7, vc9c10c11}

c11 c1c2c3vc11c10c9c8c7c6c5c4wc1

c12 c1c2c3vc12c11c10c9c8c7c6c5c4wc1

Thus, when v is adjacent to c3, the only other possible neighbor of v that
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does not create either a longer cycle or a T4,4,4 is c1, thus there is no way to

place the remaining neighbors of v. We conclude that v cannot be adjacent

to c3 or (by symmetry) c5.

Now consider v adjacent to c1. It has already been determined that v cannot

be adjacent to any vertex from the set {c2, c3, c4, c5, c6, c10}. Note that if v is

adjacent to c12 there is a triangle, and if v is adjacent to c7 or c8 there is a

T4,4,4 as described below. This forces v to be adjacent to {c1, c9, c11}.

Neighbor of v Resulting Subgraph

c7 T{c1 : c2c3c4c5, c12c11c10c9, vc7ww′}

c8 T{c1 : c2c3c4c5, c12c11c10c9, vc8c7c6}

Since G0 has minimum degree 3 and c2 does not have an adjacency off of

C, there must be a chord incident with c2. If the chord is also incident to c4

or c12 there is a triangle in G0. Every other possible chord, when considered

with vertex v adjacent to {c1, c9, c11} also present, gives either a longer cycle

or a T4,4,4 as summarized below.

Chord Resulting Subgraph

c2c5 C13 = c2c3c4wc1c12c11c10c9c8c7c6c5c2

c2c6 T{c2 : c3c4ww′, c6c7c8c9, c1c12c11c10}

c2c7 T{c2 : c3c4c5c6, c7c8c9c10, c1c12c11v}

c2c8 C13 = c2c8c9c10c11c12c1wc7c6c5c4c3c2

c2c9 T{c2 : c1c12c11c10, c9c8c7w, c3c4c5c6}

c2c10 C13 = c2c10c11c12c1vc9c8c7c6c5c4c3c2

c2c11 T{c4 : c3c2c11c10, wc1vc9, c5c6c7c8}

Therefore, we conclude that v cannot be adjacent to c1 or (symmetrically)

c7. This leaves only c8, c9, c11, and c12 as possible adjacencies of v. There is

no way to choose three neighbors of v without creating a triangle.



65

Consider a core G0 with c(G0) = 13 that could have had one edge of C

contracted to create the graph with circumference 12 and w adjacent to

c1, c4, and c7 as described above, there are four possibilities up to sym-

metry: w is adjacent to {c1, c4, c7}, {c1, c4, c8}, {c1, c4, c9}, or {c1, c5, c9}.

In each of the last three cases, it is possible to choose an edge to con-

tract that would give the adjacencies of w as either {c1, c4, c8} or {c1, c5, c9}.

This implies that these graphs must contain a T4,4,4 by previous argument.

In the case where the neighbors of w are {c1, c4, c7}, the subgraph T{c7 :

wc1c13c12, c6c5c4c3, c8c9c10c11} is present.

Every graph with c(G0) > 13 in which w does not have adjacencies that are

distance two apart can be transformed into one of the graphs of circumference

13 described in the previous paragraph by contracting edges along C. Thus,

each of these graphs must contain a T4,4,4 since uncontracting edges preserves

the existence of a Ta,b,c.

5.2.2 Case 2: c(G0) = 11.

Lemma 2.7 states that any graph with at most thirteen vertices and circum-

ference more than nine is collapsible. Therefore, we may assume that there

is both the nontrivial vertex w and at least one other vertex v not on C. We

proceed by considering the possible placements of the neighbors of w. Up

to symmetry, there are five configurations of neighbors of w. We will label

these as {c1, c3, c5}, {c1, c3, c6}, {c1, c3, c7}, {c1, c4, c7}, and {c1, c4, c8}.

Case 2a: w is adjacent to {c1, c3, c5}.

Lemma 4.10 implies that both c2 and c4 must be nontrivial vertices. This

gives the T4,4,4 described by T{c1 : c2c3c4c
′

4, wc5c6c7, c11c10c9c8}.



66

Case 2b: w is adjacent to {c1, c3, c6}.

Again, Lemma 4.10 implies that c2 must be nontrivial. We consider where

the vertex v can have adjacencies. First note that v cannot be adjacent to

c3, c7, c9, or c11 as those adjacencies immediately give rise to a T4,4,4 (these

are summarized in the table below.) Also note that these T4,4,4 subgraphs

would be present if these vertices were simply nontrivial instead of having an

adjacency off of C.

Neighbor of v Resulting Subgraph

c3 T{c6 : c5c4c3v, wc1c2c
′

2, c7c8c9c10}

c7 T{c1 : c2c3c4c5, wc6c7v, c11c10c9c8}

c9 T{c1 : c11c10c9v, c2c3c4c5, wc6c7c8}

c11 T{c6 : c5c4c3c2 : wc1c11v, c7c8c9c10}

Next assume that v is adjacent to c4. Since G0 is 3-edge-connected, v

must have at least two other neighbors on C. If v is also adjacent to c5,

there is a triangle in G0. If v is adjacent to c2 there is the longer cycle

c2vc4c5c6c7c8c9c10c1wc3c2, while v being adjacent to c10 gives the T4,4,4 de-

scribed by T{c4 : c3c2c1c11, c5c6ww′, vc10c9c8}. This leaves only c1 and c6 as

possible neighbors of v. However, when v is adjacent to {c1, c4, c6} there is a

T4,4,4 described by T{c1 : c2c3c4c5, c11c10c9c8, vc6ww′}. Therefore, v must not

be adjacent to c4.

Now consider v adjacent to c5. If v is also adjacent to c1 or c2 there

is the longer cycle c2vc5c4c3wc6c7c8c9c10c11c1c2 or c1vc5c4c3wc6c7c8c9c10c11c1,

respectively. If v is also adjacent to c6, there is a triangle. Therefore, v

must be adjacent to the set {c5, c8, c10}. This configuration gives the T4,4,4

described by T{c8 : c7c6ww′, vc5c4c3, c9c10c11c1}. We conclude that v is not

adjacent to c5.

Lastly, consider v adjacent to c2. Clearly, v cannot also be adjacent to c1 as
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that creates a triangle, and if v is adjacent to c10 that gives the longer cycle

c10vc2c1wc3c4c5c6c7c8c9c10. This implies v must be adjacent to {c2, c6, c8}.

This configuration gives the longer cycle c2vc8c9c10c11c1wc6c5c4c3c2. There-

fore, v is not adjacent to c2.

The above arguments leave only c1, c6, c8, and c10 as possible neighbors of v.

First note that if v is adjacent to both c1 and c6 there is the T4,4,4 described by

T{c1 : c2c3c4c5, vc6ww′, c11c10c9c8}. So, v must either have {c1, c8, c10} as its

set of adjacencies or be adjacent to {c6, c8, c10}. In either of these cases, if v is

nontrivial, there is the T4,4,4 described by T{c6, c7c8vv′, c5c4c3c2, wc1c11c10}.

This implies that the only nontrivial vertex not on C is w and all edges not

on C are dominated by the set {c1, c3, c6, c8, c10}.

If v is adjacent to {c1, c8, c10}, then c1c2c3c4c5c6wc1c11c10c9c8cvc1 is a the

desired dominating eulerian circuit. Note that while the eulerian circuit

does not visit the vertex c7, by previous argument we know that it is nei-

ther nontrivial nor the endpoint of a nontrivial edge. Likewise, if v is

adjacent to {c6, c8, c10} the desired dominating eulerian circuit is the trail

c6c7c8c9c10vc6wc1c2c3c4c5c6. This case did not visit c11 in the eulerian circuit,

but that is not necessary as c11 also cannot be nontrivial or the endpoint of

a nontrivial edge.

We conclude that when the neighbors of w are arranged in this manner,

either G0 does not meet our assumptions or there exists an appropriate dom-

inating eulerian circuit containing all nontrivial vertices and both endpoints

of each nontrivial edge.

Case 2c: w is adjacent to {c1, c3, c7}.

Once again, Lemma 4.10 implies that c2 must be a nontrivial vertex. This

gives the T4,4,4 described by T{c7 : c6c5c4c3, c8c9c10c11, wc1c2c
′

2}. Therefore,

the neighbors of w cannot be arranged in this manner without violating the

assumptions of the theorem.
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Case 2d: w is adjacent to {c1, c4, c7}.

We proceed by considering the possible adjacencies of v. First we note that

if v is adjacent to c2 (symmetrically c6), then there is a T4,4,4 described by

T{c7 : c6c5c4c3, wc1c2v, c8c9c10c11}. Also, if v is adjacent to c4 there is a T4,4,4

described by T{c7 : c6c5c4v, wc1c2c3, c8c9c10c11}.

Next consider when v is adjacent to c3. If v is adjacent to a vertex

from the set S = {c5, c8, c9, c10, c11}, then there is either a longer cycle

or a T4,4,4 as summarized in the table below. This implies that v must

be adjacent to both c1 and c7, which gives the T4,4,4 described by T{c7 :

c8c9c10c11, c6c5c4c3, vc1ww′}. Therefore, v cannot be adjacent to c3 or (sym-

metrically) c5.

Neighbor of v Resulting Subgraph

c5 C12 = c3vc5c4wc7c8c9c10c11c1c2c3

c8 C12 = c3vc8c9c10c11c1wc7c6c5c4c3

c9 T{c9 : c10c11c1c2, vc3c4w, c8c7c6c5}

c10 C12 = c1c2c3vc10c9c8c7c6c5c4wc1

c11 C13 = c3vc11c10c9c8c7c6c5c4wc1c2c3

Now consider when v is adjacent to c1. If v is also adjacent to c11 there

is a triangle, and if v is adjacent to c7 there is a T4,4,4 described by T{c1 :

c2c3c4c5, vc7ww′, c11c10c9c8}. Thus the other two neighbors of v must come

from the set {c8, c9, c10}. To prevent a triangle, the neighbors must be c8 and

c10. By symmetry, if there is a vertex adjacent to c7 its set of neighbors must

be {c7, c9, c11}.

Likewise, when we consider v adjacent to c11 we can deduce that v must be

adjacent to {c7, c9, c11}. This can be seen by observing that if v is adjacent

to c1 or c10 there is a triangle and the only way to choose two neighbors from

the remaining vertices without creating a triangle is to have v adjacent to
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{c7, c9, c11}. By symmetry, any vertex v adjacent to c8 must be adjacent to

{c1, c8, c10}.

Lastly, consider v adjacent to c10. It has already been determined that the

only other vertices that v could be adjacent to are c1, c7, and c8. We note that

if v is adjacent to c7 we get the T4,4,4 described by T{c1 : c2c3c4c5, vc7ww′,

c11c10c9c8}. Therefore, we conclude that all vertices off of C that are not w

are adjacent to either {c1, c8, c10} or {c7, c9, c11}.

Note that the sets s1 = {c1, c8, c10} and s2 = {c7, c9, c11} are symmet-

ric and that there cannot be v1 adjacent to s1 and v2 adjacent to s2 as

that permits the longer cycle c1c2c3c4c5c6c7v2c9c8v1c10c11c1. So, without loss

of generality, we can assume that v is adjacent to s1. Also note that v

must be trivial as v nontrivial gives T{c7 : c6c5c4c3, wc1vv′, c8c9c10c11} as a

T4,4,4 subgraph. Therefore, w is the only nontrivial vertex not on C and

c1c2c3c4c5c6c7wc1vc8c9c10c11c1 is the desired dominating eulerian circuit.

Case 2e: w is adjacent to {c1, c4, c8}.

As in the previous case, we proceed by considering the possible neighbors

of the vertex v. Immediately, we can eliminate c2 (symmetrically c3), c5

(symmetrically c11), and c7 (symmetrically c9), as they give rise to the

T4,4,4 subgraphs T{w : c1c11c10c9, c4c3c2v, c8c7c6c5}, T{c8 : c7c6c5v, c9c10c11c1,

wc4c3c2}, and T{c4 : c5c6c7v, wc8c9c10, c3c2c1c11}, respectively. This leaves

only c1, c4, c6, c8, and c10 as possible adjacencies of v.

First consider v adjacent to c6 (symmetrically c10). If v is also adjacent to

c10, then T{c6 : c7c8ww′, vc10c11c1, c5c4c3c2} is present. If v is also adjacent

to c1, then T{c6 : vc1c2c3, c5c4ww′, c7c8c9c10} is present. This implies that

any vertex adjacent to c6 must also be adjacent to s1 = {c4, c6, c8}. Note

that v cannot be nontrivial as that would give rise to the T4,4,4 described by

T{c8 : c7c6vv′, c9c10c11c1, wc4c3c2}. By symmetry, any vertex adjacent to c10

must be trivial and adjacent to the set s2 = {c1, c8, c10}.
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The only remaining possibility is that the adjacencies of v are the set s3 =

{c1, c4, c8}. Any vertex adjacent to the set s3 could possibly be nontrivial.

Putting together the arguments above, we see that the only nontrivial ver-

tices not on C must be adjacent to s3. If there are at least two nontrivial

vertices, there is a dominating eulerian subgraph by Corollary 4.13. If w

is the only nontrivial vertex, there must be at least one nontrivial vertex

x that is not on C since Lemma 2.7 guarantees at least 14 vertices in G0.

If x is adjacent to s3, we can pair it with v and use the dominating trail

for an even number of nontrivial vertices described in the proof of Corol-

lary 4.13. Without loss of generality, we can then assume x is adjacent

to s1 since the sets s1 and s2 are symmetric. In this case, the subgraph

c8c7c6c5c4wc8xc4c3c2c1c11c10c9c8 is the desired dominating eulerian circuit.

5.2.3 Case 3: c(G0) = 10.

Lemma 2.7 states that any graph with at most thirteen vertices and circum-

ference more than nine is collapsible. Therefore, we may assume that there

is both the nontrivial vertex w and at least three other vertices vi not on C.

We proceed by considering the possible placements of the neighbors of w.

Up to symmetry, there are four configurations of neighbors of w, as shown

in Figure 4.4.

Case 3a: w is adjacent to {c1, c3, c5}.

We first note that Lemma 4.10 implies that both c2 and c4 are nontrivial.

Immediately, we see that if v is adjacent to c6 (symmetrically c10), then the

subgraph T{c1 : c2c3c4c
′

4, wc5c6v, c10c9c8c7} is present, and if v is adjacent to

c8 then the T4,4,4 described by T{c1 : c2c3c4c
′

4, wc5c6c7, c10c9c8c7} is present.

We note that these subgraphs are also present if the vertices c6, c8, and c10

are nontrivial.
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First consider v adjacent to c2. Clearly, v adjacent to c1 or c3 creates a trian-

gle. If v is adjacent to c5, then the T4,4,4 described by T{c5 : vc2c1c10, c6c7c8c9,

c4c3ww′} is present. If v is adjacent to c7, then c7vc2c3c4c5wc1c10c9c8c7 is a

longer cycle. This leaves only c4 and c9 as the possible adjacencies of v,

which gives the longer cycle c4vc9c8c7c6c5wc1c2c3c4. This implies that v is

not adjacent to c2 or, by symmetry, c4.

This leaves the vertices c1, c3, c5, c7, and c9 as the only vertices that

v can be adjacent to. We first note that none of these vertices v can be

nontrivial as v must be adjacent to at least one of c1, c3, and c7, and

this would give rise to the T4,4,4 subgraphs T{c5 : c4c3c2c
′

2, wc1vv′, c6c7c8c9},

T{c1 : c2c3vv′, wc5c4c
′

4, c10c9c8c7}, and T{c5 : c6c7vv′, c4c3c2c
′

2, wc1c10c9}, re-

spectively.

We next note that if v is adjacent to c1 and c5 the subgraph T{c5 :

c6c7c8c9, c4c3c2c
′

2, vc1ww′} is present. This implies that v must be adjacent

to two vertices from the set {c3, c7, c9}.

If v is adjacent to both c3 and c9 then c3c2c1wc3vc9c8c7c6c5c4c3 is a domi-

nating eulerian circuit. Note that the only vertex of C that is not included

in the circuit is c10 and it has already been determined that c10 is trivial.

The case where v is adjacent to both c3 and c7 is symmetric.

Lastly, consider when v is adjacent to both c7 and c9. Either v is adjacent

to s1 = {c1, c7, c9} or s2 = {c5, c7, c9}, otherwise we have the case described

above. Both s1 and s2 are symmetric, so assume v is adjacent to s1. In this

case c1c2c3c4c5wc1vc7c8c9c10c1 is the desired dominating eulerian circuit. As

above, the circuit does not contain c6, but it was determined previously that

c6 must be trivial.

Case 3b: w is adjacent to {c1, c3, c6}.

By Lemma 4.10, c2 must be nontrivial. As in the previous case, we proceed

by considering the neighbors of v.
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First consider v adjacent to c3. Without any further knowledge of the

adjacencies of v, we see that the subgraph T{c6 : c5c4c3c
′

3, wc1c2c
′

2, c7c8c9c10}

is present.

Next consider v adjacent to c4. If v is adjacent to c5 there is a triangle. If v is

adjacent to c1 there is a T4,4,4 described by T{c1 : c2c3ww′, vc4c5c6, c10c9c8c7}.

Lastly, if v is adjacent to any of c2, c7, c8, or c10 we get a longer cycle.

When v is adjacent to c2, the cycle is c2vc4c5c6c7c8c9c10c1wc3c2. When v

is adjacent to c7, the cycle is c7vc4c5c6wc3c2c1c10c9c8c7. When v is adja-

cent to c8, the cycle is c8vc4c5c6wc3c2c1c10c9c8. Lastly, when v is adjacent

to c10, the cycle is c10vc4c3c2c1wc6c7c8c9c10. This implies that v must be

adjacent to c4, c6, and c9. This gives the T4,4,4 subgraph described by

T{c9 : c10c1c2c
′

2, c8c7c6c5, vc4c3w}. We conclude that v cannot be adjacent to

c4.

Next consider v adjacent to c5. Since G0 is triangle-free, v cannot be

adjacent to c6. If v is adjacent to one of c2, c7, or c10 then one of the

following longer cycles is present, respectively: c2vc5c4c3wc6c7c8c9c10c1c2,

c7vc5c6wc3c2c1c10c9c8c7, or c10vc2c1wc3c4c5c6c7c8c9c10. If v is adjacent to

c9, the subgraph T{c9 : c10c1c2c
′

2, c8c7c6w, vc5c4c3} is present. This im-

plies that v must be adjacent to {c1, c5, c8}, and in this case the subgraph

T{c5 : c4c3c2c
′

2, vc1ww′, c6c7c8c9} is present. We conclude that, v cannot be

adjacent to c5.

Consider when v is adjacent to c2. When v is adjacent to c7, c8, c9 or c10

one of the longer cycles c7vc2c3c4c5c6wc1c10c9c8c7, c2vc8c9c10c1wc6c5c4c3c2,

c9vc2c1wc3c4c5c6c7c8c9, or c10vc2c1wc3c4c5c6c7c8c9c10 is present. This implies

that v must be adjacent to c1 and c6, which contradicts G0 being triangle-free.

Next consider v adjacent to c1. If v is adjacent to c6 there is the subgraph

T{c1 : c2c3c4c5, vc6ww′, c10c9c8c7}. This leaves c7, c8, c9, and c10 as possible

neighbors. The only way to choose two additional neighbors from that set and

keep G0 triangle-free is to have v adjacent to c7 and c9. Since G0 must have at
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least 14 vertices, there must be an additional vertex x not on C. By previous

arguments, x can only be adjacent to c1, c6, c7, c8, c9, or c10. If x is adjacent

to c10 there is the subgraph T{c6 : c5c4c3c2, wc1c10x, c7c8c9v} present. If x is

adjacent to c8, there is the subgraph T{c1 : c10c9c8x, c2c3c4c5, wc6c7v}. If x

is adjacent to c6, the subgraph T{c1 : c2c3ww′, xc6c5c4, c10c9c8c7} is present.

This implies x must have the same adjacencies as v. In fact, we can deduce

that all additional vertices off of C must be adjacent to the same adjacencies

as v and G0 contains a spanning eulerian circuit by Lemma 4.12.

The remaining possible vertices that can be adjacent to v are c6, c7, c8,

c9, and c10. The only way to choose three neighbors from this set and not

create a triangle is to have v adjacent to c6, c8, and c10. Thus all neighbors

off of C which are not w must be adjacent to the same subset of vertices of

C, and none can be nontrivial or the endpoint of a nontrivial edge as that

would give the subgraph T{c6 : c7c8vv′, c5c4c3c2, wc1c10c9}. In this case, the

circuit c6c5c4c3c2c1wc6c7c8c9c10vc6 is a dominating eulerian subgraph with

the desired properties.

Case 3c: w is adjacent to {c1, c3, c7}.

By Lemma 4.10, c2 must be nontrivial. As in the previous cases, we proceed

by considering the neighbors of v.

If v is adjacent to c4, the subgraph T{c7 : c6c5c4v, wc3c2c
′

2, c8c9c10c1} is

present. The case when v is adjacent to c10 is symmetric.

Next consider when v is adjacent to c6. If v is adjacent to c2, the longer cycle

c2vc6c5c4c3wc7c8c9c10c1c2 is present, and if v is adjacent to c1 the T4,4,4 de-

scribed by T{c1 : c2c3ww′, vc6c5c4, c10c9c8c7} is present. Since G0 is triangle-

free, this leaves either s1 = {c3, c6, c8} or s2 = {c3, c6, c9} as the adjacencies

of v. In the case when the adjacencies of v are s1, the T4,4,4 described by

T{c3 : c4c5c6c7, vc8c9c10, c2c1ww′} is present. In the case when the adjacencies

are s2, the T4,4,4 described by T{c9 : c10c1c2c
′

2, c8c7ww′, vc3c4c5} is present.
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Therefore, v cannot be adjacent to c6. The case when v is adjacent to c8 is

symmetric.

Lastly, consider when v is adjacent to c2. If v is adjacent to c5, then the

longer cycle c2vc5c4c3wc7c8c9c10c1c2 is present. Since G0 is triangle-free, this

implies that the set of neighbors of v must be {c2, c7, c9} and this gives the

longer cycle c9vc2c1wc3c4c5c6c7c8c9 is present. Thus v cannot be adjacent to

c2.

We have now deduced that any vertex off of C must have adjacencies

that are a subset of {c1, c3, c5, c7, c9}. We note that if there is a nontriv-

ial vertex adjacent to c5 then T{c7 : c6c5xx′, wc3c2c
′

2, c8c9c10c1} is present.

If there is a nontrivial vertex adjacent to c9, then the subgraph T{c7 :

c8c9xx′, c6c5c4c3, wc1c2c
′

2} is present. Therefore, all nontrivial vertices have

the same adjacencies as w. If there are at least two nontrivial vertices, G0

contains a spanning eulerian subgraph by Corollary 4.13. If there is only one

nontrivial vertex, there must exist at least one trivial vertex off of C, denote

this vertex as v. If v is adjacent to at least two of the same vertices as w, then

we can use a trail similar to the one described in the proof of Lemma 4.12 that

uses an even number of vertices as the desired dominating eulerian trail. If v

does not have at least two adjacencies in common with w, then it must be ad-

jacent to both c5 and c9 and the subgraph T{c9 : c10c1c2c
′

2, c8c7ww′, vc5c4c3}

is present.

Case 3d: w is adjacent to {c1, c4, c7}.

As in the previous cases, we consider the possible neighbors of an additional

vertex v.

First consider when v is adjacent to c2. Note that the case when v is

adjacent to c6 is symmetric. If v is adjacent to any of the vertices c5, c6,

c8, c9, or c10, a longer cycle is present as shown in the table below. Since

G0 is triangle-free, this forces v to be adjacent to c4 and c7. This gives
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c2vc7c8c9c10c1wc4c3c2 as an alternate C10 that includes w. This gives either

c5 or c6 as nontrivial, otherwise we have contradicted our choice of C. If

c5 is nontrivial, then T{w : c7c6c5c
′

5, c4c3c2v, c1c10c9c8} is present. If c6 is

nontrivial, then T{w : c4c5c6c
′

6, c7vc2c3, c1c10c9c8} is present. Therefore, v

cannot be adjacent to c2 or c6.

Neighbor of v Resulting Subgraph

c5 C12 = c2vc5c6c7c8c9c10c1wc4c3c2

c6 C11 = c2vc6c5c4wc7c8c9c10c1c2

c8 C12 = c2vc8c9c10c1wc7c6c5c4c3c2

c9 C11 = c2vc9c10c1wc7c6c5c4c3c2

c10 C11 = c10vc2c1wc4c5c6c7c8c9c10

Next consider v adjacent to c5. If v is adjacent to c3 the longer cycle

c3vc5c6c7c8c9c10c1wc4c3 is present, while v being adjacent to c9 gives the

longer cycle c5vc9c10c1c2c3c4wc7c6c5. If v is adjacent to c8 or c10, there is

a T4,4,4 present. This T4,4,4 is given by T{c5 : c6c7ww′, c4c3c2c1, vc8c9c10} or

T{c5 : c6c7ww′, c4c3c2c1, vc10c9c8}, respectively. This leaves only c1 and c7 as

the possible neighbors of v. Note that v cannot be nontrivial as that would

give the T4,4,4 described by T{c7 : c6c5vv′, wc4c3c2, c8c9c10c1}. Therefore, as

long as any dominating eulerian circuit contains the set {c1, c5, c7}, then we

do not need to worry further about this case. Since c3 is symmetric to c5, we

get that every dominating circuit must also include the set {c1, c3, c7}.

Next consider v adjacent to c8. By previous arguments we know that v

cannot be adjacent to c2, c3, c5, or c6, and it is clear that if v is adjacent

to c7 or c9 there is a triangle in G0. This implies that v is either adja-

cent to s1 = {c1, c4, c8} or s2 = {c4, c8, c10}. First assume v adjacent to

s1 and consider an additional vertex x. If x is adjacent to c5, we know

from previous arguments that x must be adjacent to {c1, c5, c7}. This gives
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the subgraph T{c1 : c2c3c4w, xc7c6c5, c10c9c8v}. Similarly, if x is adjacent

to c3 then it must be adjacent to {c1, c3, c7}. In this case the longer cycle

c1c2c3xc7wc4vc8c9c10c1 is present. If x is adjacent to c10, then the subgraph

T{c7 : c8c9c10x, c6c5c4v, wc1c2c3} is present. If x is adjacent to both c7 and

c9, there is the longer cycle c7xc9c8vc1c2c3c4c5c6c7. This implies x must be

adjacent ot either r1 = {c1, c4, c7}, r2 = {c1, c4, c8}, or r3 = {c1, c4, c9}. How-

ever, in each case x is adjacent to both c1 and c4, which gives the subgraph

T{c1 : xc4c3c2, wc7c6c5, vc8c9c10}. Now assume that v is adjacent to s2. This

results in the alternate C10 given by c10vc4c3c2c1wc7c8c9c10, which implies

that either c5 or c6 must be nontrivial. If c5 is nontrivial, then the subgraph

T{c8 : c7c6c5c
′

5, c9c10c1c2, vc4ww′} is present. If c6 is nontrivial, then the sub-

graph T{v : c10c1c2c3, c4c5c6c
′

6, c8c7ww′} is present. Therefore, it must be

the case that v is not adjacent to c8. The case where v is adjacent to c10 is

symmetric.

Next consider v adjacent to c9. The other two adjacencies of v must be

from the set {c1, c4, c7}. If v is adjacent to c4, then the T4,4,4 described by

T{c9 : vc4ww′, c10c1c2c3, c8c7c6c5} is present. This implies v is adjacent to

{c1, c7, c9}. If v is nontrivial, then by relabeling the vertices of C, we see that

this case is symmetric to when w is adjacent to {c1, c3, c5}. Therefore, we

may assume that v is trivial.

The only vertices we have not inspected yet are c1, c4, and c7, and we note

that it is possible to have additional vertices adjacent to this set.

Using the same argument that we used when considering v adjacent to c9,

we see that we may assume that any nontrivial vertex must have adjacencies

such that the number of vertices between consecutive adjacencies is given by

{2, 2, 3}, otherwise we fall into one of the previous cases. Inspecting all of the

sets of vertices that have this property, and combining this with the preceding

results limiting where an additional vertex x can be present, we deduce that

all non-trivial vertices are adjacent to {c1, c4, c7}. If there are at least two
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nontrivial vertices, G0 contains a dominating eulerian circuit with the desired

properties by Corollary 4.13. If there is exactly one nontrivial vertex, since

G0 has at least 14 vertices we know there must be another vertex x. From the

previous arguments, x is adjacent to one of s1 = {c1, c4, c7}, s2 = {c1, c3, c7},

s3 = {c1, c5, c7}, or s4 = {c1, c7, c9}. If x is adjacent to s1, we use the same

trail as if there had been a nontrivial vertex adjacent to that set. If x is

adjacent to s2, s3, or s4 we utilize the fact that x is adjacent to both c1 and

c7 in each case and c1c2c3c4c5c6c7xc1wc7c8c9c10c1 is the desired dominating

eulerian subgraph.

5.2.4 Case 4: c(G0) = 9.

Lemma 2.7 states that any graph with at most thirteen vertices is either

collapsible or contractible to the Petersen graph. If G0 is the Petersen graph,

then it must be the case that every vertex is either nontrivial or the endpoint

of a nontrivial edge. Label the graph as shown in Figure 5.1. Then T{p1 :

p2p7p10, p6p8p3, p5p4p9} is a T3,3,3. Since each of p10, p3, and p9 are nontrivial

or the end vertex of a nontrivial edge, each one is adjacent to an additional

vertex in G. Note that none of these vertices are adjacent, so it cannot be

the case that they are both end vertices of the same nontrivial edge. Thus,

this T3,3,3 can be extended to a T4,4,4 in G.

Now we consider when G0 is not the Petersen graph. We know from Lemma

2.7 that G0 must have at least 14 vertices. This implies that there are at

least 5 vertices not on C. By the arguments presented in Section 4.2, there

are three possible placements of the neighbors of w up to symmetry. These

are {c1, c3, c5}, {c1, c3, c6}, and {c1, c4, c7}. These configurations are shown

in Figure 4.3. We proceed by considering each of these possible placements.
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P1

P2

P3P4

P5

P7P10

P6

P8P9

Figure 5.1: Petersen Graph

w is adjacent to {c1, c3, c5}.

Recall that by Lemma 4.10 both c2 and c4 are nontrivial. Now consider

possible neighbors of an additional vertex v that is not on C.

If v is adjacent to c2, clearly it cannot be adjacent to c1 or c3 as G0 is

triangle-free. Since G0 is 3-edge-connected, v must also be adjacent to one

of the following vertices: c4, c6, c7, c8, and c9. In each of these cases, there

exists a longer cycle, which are given in the table below. Thus we conclude

that v cannot be adjacent to c2 or, by symmetry, c4.

Neighbors of v Resulting Cycle

c4 C11 = c2vc4c3wc5c6c7c8c9c1c2

c6 C11 = c2vc6c7c8c9c1wc5c4c3c2

c7 C10 = c2vc7c8c9c1wc5c4c3c2

c8 C10 = c8vc2c1wc3c4c5c6c7c8

c9 C11 = c9vc2c1wc3c4c5c6c7c8c9
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Assume v is adjacent to c1. Both c2 and c4 have previously been eliminated

as possible neighbors of v, and v adjacent to c9 would create a triangle. If v is

adjacent to c3, there is a T4,4,4 described by T{c1 : c2c3ww′, vc5c4c
′

4, c9c8c7c6}.

If v is adjacent to c5, then the subgraph T{c1 : c2c3ww′, vc5c4c
′

4, c9c8c7c6} is

present. This implies that v is adjacent to two of c6, c7, and c8. To keep G0

triangle-free, it must be the case that if v is adjacent to c1, then it is also

adjacent to c6 and c8.

Assume v is adjacent to c6. Both c2 and c4 cannot be adjacent to v, and

if v is adjacent to c5 or c7 there is a triangle. If v is adjacent to c3, then

c3vc6c7c8c9c1wc5c4c3 is a longer cycle. Thus, c6 must be adjacent to two of

c1, c8, and c9. To keep G0 triangle-free, it must be the case that v is adjacent

to c1, c6, and c8.

Assume v is adjacent to c8. Once again, both c2 and c4 have already

been eliminated as possible neighbors of v, and v being adjacent to c9 or

c7 would create a triangle. If v is also adjacent to c3, then the subgraph

T{c8 :, c9c1c2c
′

2, vc3ww′, c7c6c5c4} is a T4,4,4 in G0. If v is adjacent to c5, then

the other adjacency must be c1 (to prevent a triangle.) We already know

that v cannot be adjacent to both c1 and c5, thus v cannot be adjacent to

c5. We conclude that if v is adjacent to c8, it must be adjacent to both c1

and c6 as well.

Since each of the following pairs are symmetric, {c1, c5}, {c6, c9}, and

{c7, c8}, it can be assumed that any vertex off of C other than w is ei-

ther adjacent to {c1, c6, c8} or {c5, c7, c9}. First note that there cannot be

a vertex v1 adjacent to {c1, c6, c8} and a vertex v2 adjacent to {c5, c7, c9} as

that would create the longer cycle c1c2c3c4c5c6v1c8c7v2c9c1. Also note that

a vertex v adjacent to {c1, c6, c8} cannot be nontrivial as that would cre-

ate the T4,4,4 described by T{c1 : c2c3c4c
′

4, wc5c6c7, c9c8vv′}. Thus, the only

nontrivial vertex not on C is w and c1c2c3c4c5wc1c9c8c7c6vc1 is the desired

dominating eulerian circuit.
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w is adjacent to {c1, c3, c6}.

By Lemma 4.10, c2 must be a nontrivial vertex. As in the previous case, we

proceed by considering where an additional vertex v can have its adjacencies

on C.

Assume v is adjacent to c2. Clearly, if v were adjacent to either c1 or c3

there would be a triangle in G0. Since v has at least two other adjacencies on

C, it must be adjacent to at least one of c4, c5, c7, c8, and c9. Each of these

produces a longer cycle, as described in the table below. Thus we conclude

that v cannot be adjacent to c2.

Neighbor of v Resulting Cycle

c4 C11 = c2vc4c5c6c7c8c9c1wc3c2

c5 C10 = c2vc5c6c7c8c9c1wc3c2

c7 C11 = c2vc7c8c9c1wc6c5c4c3c2

c8 C10 = c2vc8c9c1wc6c5c4c3c2

c9 C11 = c2vc9c8c7c6c5c4c3wc1c2

Assume v is adjacent to c7. If v is adjacent to either c6 or c8 there is a

triangle in G0, and c2 has already been eliminated as an adjacency for v. If

v is adjacent to c3, c4, or c5 there is a longer cycle (as described in the table

below.) This leaves only c1 and c9 as the other adjacencies of v, which forces

a triangle. Thus v cannot be adjacent to c7.

Neighbor of v Resulting Cycle

c3 C10 = c7vc3c4c5c6wc1c9c8c7

c4 C11 = c7vc4c5c6wc3c2c1c9c8c7

c5 C10 = c7vc5c6wc3c2c1c9c8c7

Assume v is adjacent to c9. The vertex v cannot be adjacent to c1 or c8

as that would create a triangle. If v is also adjacent to c4 or c5 then we
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get the longer cycle c9vc4c3c2c1wc6c7c8c9 or c9vc5c4c3c2c1wc6c7c8c9, respec-

tively. This implies that v is adjacent to c3, c6, and c9. There are at least

3 more vertices off of C, so consider x to be one of these vertices. If x is

adjacent to c3, c6, or c9 we get the following T4,4,4 subgraphs respectively:

T{c6 : c7c8c9v, c5c4c3x, wc1c2c
′

2}, T{c3 : wc1c2c
′

2, vc9c8c7, c4c5c6x}, or T{c6 :

c7c8c9x, vc3c4c5, wc1c2c
′

2}. This implies x is either adjacent to {c1, c4, c8} or

{c1, c5, c8}. These cases produce the longer cycles c8vc4c5c6wc3c2c1c9c8 and

c1vc5c4c3wc6c7c8c9c1, respectively. Thus, v cannot be adjacent to c9.

Assume v is adjacent to c3. The only adjacencies of v that don’t create tri-

angles and haven’t been previously eliminated are c1, c5, c6, and c8. If v is ad-

jacent to c8 there is the T4,4,4 described by T{c8 : c9c1c2c
′

2, vc3ww′, c7c6c5c4}.

Thus, to prevent a triangle, v is either adjacent to {c1, c3, c5} or {c1, c3, c6}.

If v is adjacent to the former, then c1vc5c4c3wc6c7c8c9c1 is a longer cycle. If v

is adjacent to the latter, v is actually symmetric to w and must be nontrivial

by Lemma 4.10.

Assume v is adjacent to c5. If v is also adjacent to c1, we get the longer

cycle described in the previous paragraph. This leaves c8 as the only possible

adjacency which does not create either a triangle, longer cycle, or T4,4,4 as

described in earlier paragraphs. Since v needs at least three neighbors, we

conclude that it is not adjacent to c5.

At this point, the only vertices that v can be adjacent to are c1, c3, c4, c6,

and c8. The only ways that we can choose three neighbors from among

those without creating a triangle or a configuration that we have previ-

ously eliminated are as follows: {c1, c3, c6}, {c1, c4, c6}, and {c1, c6, c8}. Re-

call that any vertex adjacent to {c1, c3, c6} must be nontrivial. Any ver-

tex v adjacent to {c1, c4, c6} cannot be nontrivial as that would give T{c6 :

c7c8c9c1, c5c4vv′, wc3c2c
′

2}. Assume there is a vertex adjacent to {c1, c6, c8}

which is nontrivial. That would give the following two alternate cycles of

length 9: c1c2c3c4c5c6vc8c9c1 and c1c2c3c4c5c6c7c8vc1. The first of these alter-
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nate cycles forces c7 to be nontrivial, while the second forces c9 to be nontriv-

ial. This implies that the T4,4,4 described by T{c6 : vc8c7c
′

7, c5c4c3c2, wv1c9c
′

9}

is a subgraph of G0. Therefore the only nontrivial vertices not on C must

be adjacent to {c1, c3, c6}. If there are at least two nontrivial vertices not

on C, then G0 contains a dominating eulerian circuit by Corollary 4.13. If

there is exactly one nontrivial vertex w, then there must be a trivial vertex

v not on C. If v is adjacent to {c1, c3, c6}, we can treat it like a nontriv-

ial vertex and use the dominating eulerian circuit described in the proof of

Corollary 4.13. If v is adjacent to {c1, c4, c6}, then the dominating trail is

c1c2c3wc1xc4c5c6c7c8c9c1. If v is adjacent to {c1, c6, c8}, then the dominating

trail is c1c2c3c4c5c6wc1c9c8c7c6vc1.

w is adjacent to {c1, c4, c7}.

By Lemma 4.11, we may assume that any vertex v that is not on C has at

least two adajencies from the set {c1, c4, c7}.

If all vertices off of C have the adjacencies {c1, c4, c7}, then G0 contains

a spanning eulerian circuit by Lemma 4.12. Therefore, we can assume that

there exists at least one vertex not on C that does not have this set of

adjacencies as w.

Since there are at least four additional vertices off of C, there must be at

least two of these vertices, say v1 and v2, with two neighbors in common.

Without loss of generality, we can assume that these vertices are both adja-

cent to c1 and c4. The third adjacency for each of these vertices must be one

of {c6, c7, c8}.

Assume that v1 is adjacent to c6 and v2 is adjacent to c8. The cycle

c1v1c6c5c4v2c8c7wc1 is an alternate C9 that includes w. This implies that

one of c2, c3, and c9 is nontrivial. In each case, a T4,4,4 exists. These are

summarized below.
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Nontrivial Vertex Resulting Subgraph

c2 T{v1 : c1c9c8v2, c4c3c2c
′

2, c6c7ww′}

c3 T{v2 : c1c2c3c
′

3, c4c5c6v1, c8c7ww′}

c9 T{c6 : c5c4ww′, v1c1c2c3, c7c8c9c
′

9}

Now assume that both v1 and v2 are adjacent to c6 (the case when they are

both adjacent to c8 is symmetric.) Then c1c9c8c7wc4c5c6v1c1 is an alternate

C9 containing w. This implies that either c2 or c3 is nontrivial.

First consider the case when c2 is nontrivial. The vertex c8 must have

degree at least three, so there must be either an adjacency off of C or a

chord incident with c8. If c8 has an adjacency, say x, off of C, then T{v1 :

c4c3c2c
′

2, c6c7ww′, c1c9c8x} is a T4,4,4. Therefore, it must be the case that there

must be a chord incident with c8. Clearly, both c1c8 and c6c8 create triangles.

The chords c2c8 and c5c8 create the longer cycles c8c2c3c4c5c6c7wc1c9c8 and

c8c5c6c7wc4c3c2c1c9c8, respectively. The chord c3c8 gives the T4,4,4 described

by T{w : c4c3c2c
′

2, c7c8c9c
′

9, c1v1c6c5}. This forces the chord c4c8 to be present.

The vertex c5 must also have degree at least three. If c5 is adjacent to a vertex

x, then T{c8 : c7c6c5x, c4c3c2c
′

2, c9c1ww′} is a T4,4,4. So, it must be the case

that there is a chord incident with c5. Both c3c5 and c5c7 create triangles,

and each of c2c5, c5c8, and c5c9 create longer cycles. The C10 present when

we have the edge c2c5 is c5c2c3c4wc1c9c8c7c6c5, the C10 present when we have

the edge c5c9 is c5c9c8c7c6vc1c2c3c4c5, and the C10 created when the edge c2c8

is present was described when discussing chords incident with c8. Therefore,

the chord c1c5 must be present. Lastly, we consider the vertex c9. It too

must have either an adjacency or a chord. If it has an adjacency x, then

T{w : c4c3c2c
′

2, c1c5c6v, c7c8c9x} is a T4,4,4. The chords c2c9 and c7c9 clearly

create triangles. The chords c4c9 and c5c9 also create triangles since we know

that the chords c4c8 and c1c5 must also be present. Lastly, the chords c3c9 and

c6c9 create the longer cycles c9c3c2c1wc4c5c6c7c8c9 and c9c8c7wc1c2c3c4c5c6c9,
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respectively. Thus, we conclude that c2 must be trivial.

The other case to consider is when c3 is nontrivial. The vertex c9 needs

either an adjacency off of C or a chord incident to it. If there is a vertex x ad-

jacent to c9, then T{w : c1c2c3c
′

3, c4c5c6v, c7c8c9x} is a T4,4,4. Therefore there

must be a chord at c9. The chords c2c9 and c7c9 create triangles. The chord

c4c9 creates the T4,4,4 described by T{c9 : c1c2c3c
′

3, c4c5c6v, c8c7ww′}. Lastly,

the chords c3c9, c5c9, and c6c9 create the longer cycles c9c3c2c1wc4c5c6c7c8c9,

c9c5c6vc1c2c3c4wc7c8c9, and c9c6c5c4c3c2c1wc7c8c9, respectively. Thus, c3 also

cannot be nontrivial. This proves that v1 and v2 could not have both had c6

(or both had c8) as their third adjacency.

By the above arguments we see that at least one of v1 and v2 must be

adjacent to c7. Without loss of generality, assume v1 is adjacent to c6 and

v2 is adjacent to c7 (the case where one is adjacent to c8 and the other c7 is

symmetric.) If there is a vertex x adjacent to c9, it must be the case that

x is adjacent to the set {c4, c7, c9} since x must have at least two neighbors

in common with w. This gives the longer cycle c1c2c3c4xc9c8c7c6vc1. There-

fore, there must be a chord at c9. The chords c2c9 and c7c9 create triangles,

and the chords c3c9 and c6c9 create the longer cycles c9c3c2c1wc4c5c6c7c8c9

and c9c6c5c4c3c2c1wc7c8c9, respectively. When the chord c5c9 is present,

c9c5c6c7wc4c3c2c1c9 is an alternate cycle of length nine that includes w. Since

C was chosen to contain the largest number of nontrivial vertices, this im-

plies that c8 must be nontrivial. This gives the T4,4,4 described by T{c4 :

c3c2c1v2, v1c6c7w, c5c9c8c
′

8}. Therefore, it must be the case that the chord

c4c9 is present. Next consider the vertex c5. If c5 has an adjacency, x, not on

C then there is a T4,4,4 described by T{c1 : c2c3c4w, v1c6c5x, c9c8c7v2}. There-

fore there must be a chord at c5. The chords c3c5 and c5c7 create triangles.

The chords c2c5 and c5c8 create the longer cycles c5c2c3c4wc1c9c8c7c6c5 and

c8c5c6c7wc4c3c2c1c9c8, respectively. The chord c5c9 was discussed previously,

which leaves only c1c5 as a possibility. When both c1c5 and c4c9 are present,
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then c1c5c6v1c4c9c8c7wc1 is an alternate C9 that includes w. This implies

that either c2 or c3 is nontrivial. If c2 is the nontrivial vertex, there is a T4,4,4

described by T{c9 : c4c3c2c
′

2, c8c7ww′, c1vc6c5}. If c3 is the nontrivial vertex,

there is a T4,4,4 described by T{c9 : c1c2c3c
′

3, c4c5c6v1, c8c7ww′}. This implies

that it cannot be the case that v1 is adjacent to c6 and v2 is adjacent to c7.

The above arguments imply that it must be the case that both v1 and v2

are adjacent to c7. Since c1, c4, and c7 are all symmetric, it ends up that

all vertices off of C must have the same adjacencies. Therefore, we are done

since this case was handled previously.

With this, we conclude the proof of Theorem 1.12.
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Chapter 6

Future Work

The results shown in Chapter 3 greatly reduce the possibilities for pairs

{X, Y } such that a 3-connected graph being {X, Y }-free implies the graph

is hamiltonian. Paired with the previous results discussed in Chapter 1 and

the new results in Chapters 3, 4, and 5, the only pairs for which it is un-

known whether or not a 3-connected, {X, Y }-free graph is hamiltonian are

{K1,3,  L3} and {K1,3,  L5}. Determining whether these forbidden pairs imply

hamiltonicity is a natural next question, as that would complete the classifi-

cation of all forbidden pairs that imply a 3-connected graph is hamiltonian.

One of the things to note about the above problem is that the method

of proof used in this dissertation to show that 3-connected, K1,3, Ni,j,k-free

graphs are hamiltonian will not work. The proofs presented here utilized the

fact that generalized nets are stable under the Ryjác̆ek closure operation, i.e.

if a graph G is net-free then the Ryjác̆ek closure of G is also net-free. It is

well-known that the  Lk graphs are not stable under this closure operation

(see [3]). It would be of interest to try to develop new closure operations

under which this particular graph is stable.

There are several other forbidden subgraph problems that imply properties

such as pancyclicity, hamiltonian-connectedness, and existence of two-factors.

One possibility that is of interest to me is to work on forbidden pairs that

imply a 3-connected graph is hamiltonian-connected. It is already known

that any forbidden pair must contain the claw [6]. There are still several
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generalized nets and  Lk graphs for which it is unknown if they can be included

in a forbidden pair that implies hamiltonian connectedness.

Lastly, it would be remiss to not mention the open-problem that has fueled

the area of forbidden subgraphs for almost 30 years- the Matthews-Sumner

Conjecture (Conjecture 1.1). While this problem is not in my immediate

scope of future work, it is my hope to continue to solve various subproblems

related to this famous conjecture.
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