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Abstract 

 

Implementation of Stimulus Control in a Computational Model 

By John P. Berg 

 
Reacting appropriately under different stimulus conditions is crucial for live organisms to 
improve their chances of survival. A computational model of behavior based on selection 
by consequences originally proposed by McDowell (2004) has been successful in 
producing a variety of behaviors consistent with live organisms (McDowell, 2004; 
McDowell & Caron, 2006;  Kulubekova & McDowell, 2007; McDowell, Caron, 
Kulubekova, & Berg, 2008). However, previous versions of this model have been limited 
in that there is no method to change behavior in reaction to different stimulus conditions. 
The purpose of the current project was to modify the McDowell model to enable it to 
react differently under different stimulus conditions. Changes were made to the model 
that enabled variation in behavior across stimulus conditions using a conditioned 
reinforcement approach. Implementing the Rescorla-Wagner model to determine 
conditioned stimulus strength and therefore the degree of conditioned reinforcement, 
two-link, single alternative chained schedules of behavior were arranged in a series of 
experiments. Correspondence with live organism behavior was determined using 
qualitative and quantitative methods. Specifically, equilibrium values of the conditioned 
stimulus strength were evaluated for correspondence with the original and exponentiated 
versions of the Mazur hyperbolic discounting function, modified for use with variable 
interval schedules.  Behavior on the chained schedules was evaluated qualitatively for 
consistency with previously published live organism data and was evaluated 
quantitatively in a replication of an experiment by Royalty, Williams, and Fantino 
(1987), which implemented a pre-reinforcement delay. Results indicated correspondence 
between the Rescorla-Wagner model and the exponentiated Mazur function. Chained 
schedules of behavior were largely consistent with live organism data. However, the 
Royalty et al. experiment was not successfully replicated. The results indicated that the 
Rescorla-Wagner model and the Mazur function provide a complete model of 
conditioned reinforcement. Using this model, chained schedules of behavior were 
successfully produced using the McDowell computational model. However, some 
behavioral phenomenon with pre- reinforcement delays could not be produced using the 
currently proposed computational methodology. 
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Implementation of Stimulus Control in a Computational Model 

 The desire to simulate realistic behavior using man-made machines is now a 

mainstay of modern culture. One can see in various films such as 2001: A Space Odyssey 

and iRobot that the idea of a computer behaving in human-like ways holds great appeal. 

Attempts to produce a machine with realistic behavior have often relied on a top-down 

approach. That is, the machine is built with the end-state behavior in mind and 

programmed specifically to produce that end-state behavior. An alternative approach, a 

bottom-up design where low-level rules generate “behaviors” with no end-state specified, 

has multiple advantages including the ability to test dynamic theories of behavior. In 

other words, these machines or programs can evaluate theories of why behavior occurs, 

not just how it looks in the end.  

 McDowell (2004) proposed a computational model of behavior that does not 

specify end state behavior. Instead, the model employs only low level rules that govern 

the workings of the model. Behavior develops dynamically from these low level rules. 

While this might seem risky because the end-state cannot be predicted, it allows for 

evaluation of basic theories of behavior because the basic rules of these theories can be 

programmed into the model. The behavior produced by the model can then be evaluated 

for consistency with live organism data. The McDowell computational model specifically 

tests the prediction that behaviors “evolve” in response to environmental pressures, much 

like the evolution of whole species in response to environmental forces (see Edelman, 

1987; Skinner, 1981). The difference is in the time-scale: selection of fitter behaviors 

occurs within an organism’s lifetime while selection of a species’ characteristics occurs 

across multiple generations.  
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 Tests of the McDowell computational model have revealed robust similarities 

between simulated and live organism behavior. McDowell (2004) and McDowell and 

Caron (2007) found that the model produced behavior on single alternative reinforcement 

schedules that is consistent with matching theory (Baum, 1974), which is a mathematical 

account of behavior at equilibrium. Kulubekova and McDowell (2007) analyzed the 

bouts of responding produced by the model and found that the interresponse times 

(IRTs), and their distributions, were consistent with those observed in live organisms. 

Finally, McDowell, Caron, Kulubekova, and Berg (2008) found that the model could 

produce behavior on concurrent schedules of reinforcement that is consistent with 

matching theory as well.  

The current McDowell computational model does not, however, account for 

behavior under differing stimulus conditions. The model responds to the varying 

reinforcement contingencies, but there is no method to respond differentially to varied 

stimulus conditions. The current project’s purpose was to modify the McDowell model to 

enable this functionality, and to test this modified model’s behavior for agreement with 

live organism data.  

How the McDowell Model Works 

The computational model of selection by consequences proposed by McDowell 

(2004) consists of a virtual organism with 100 potential behaviors represented by integers 

between 0 and 1023. The 100 integers make up the virtual organism’s repertoire of 

potential behaviors. The range of 0 to 1023 integer values are split into several sub-

ranges. Each sub-range represents a behavior class. During each iteration of the model, 
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one behavior is randomly picked from the 100-behavior repertoire to be emitted. If the 

behavior’s integer value falls within a specific behavior class, that class is considered 

activated. This is analogous to a rat pressing a lever, for example. Because emitted 

behaviors are randomly selected at each iteration of the model, the chance of a behavior 

class being activated at each iteration is dependent on the number of behaviors currently 

in that class. For example, if 40 out of the 100 behaviors in the repertoire fell within a 

particular class during an iteration of the model, the probability of the class being 

activated during that iteration would be 40/100 or 0.4.  

One or more behavior classes are selected as target classes. Behaviors emitted 

from target classes are reinforced on random interval (RI) schedules by means of a 

genetic algorithm selection procedure, which has the effect of shifting the distribution of 

behaviors towards or into the target class. The selection procedure typically employs a 

linear fitness function to select “fitter” behaviors, which are defined as those closer to the 

target behavior class, to “mate” and produce a related “offspring” behavior.  During 

iterations where behaviors outside a target class are emitted, or when a target-class 

behavior is emitted but reinforcement is not available as determined by the RI schedule, 

parents are chosen randomly.  

Mating is accomplished by first choosing two parent behaviors to mate either by 

means of the selection function or randomly. The parent behavior integers are converted 

to ten-position binary form, which is a method of representing numbers with only 1’s and 

0’s. For example, the integer 25 in ten-position binary form is 0000011001 while 500 is 

0111110100 and 724 is 1011010100. An “offspring” behavior is created by randomly 

selecting which parent’s bits (i.e. 1’s and 0’s) will be passed onto the offspring for each 
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position in a ten-position binary number representation. The mating process is repeated 

until 100 new “offspring” behaviors, representing the new virtual organism behavior 

repertoire, are created. Overall, this method of mating produces “offspring” that 

resemble, but are not identical, to their parent behaviors (McDowell, unpublished data). 

In a final step, the new behaviors in the repertoire are subjected to mutation. Mutation is 

performed by randomly selecting a percentage of the behaviors from the new repertoire 

and changing their integer values by picking a new integer value at random from a 

Gaussian distribution with a mean set to the original, unmutated behavior integer.  

One iteration of the McDowell computational model consists of the emission of a 

behavior, possible reinforcement, parental selection, mating, and mutation. In contrast to 

other applications of genetic algorithms, the McDowell model does not specify an end 

state or attempt to maximize any quantity. The model produces behavior based only on 

the simple rules inherent in the model. 

A comprehensive account of adaptive behavior: from neurons to behavior. 

 Although the McDowell computational model produces behavior on a global 

scale (outwardly observable) based on the evolutionary principles of selection by 

consequences, McDowell (2010) proposed that the model fits within a larger framework 

of evolutionary processes at work within biological organisms. McDowell noted 

fundamental similarities between the selection by consequences of behavior and Gerald 

Edelman’s theory of neuronal group selection (TNGS), which posits that evolutionary 

processes are at play on a neuronal scale within biological organisms (Edelman, 1978). 

Like the evolutionary theory of behavior dynamics (ETBD; i.e., selection by 

consequences of behavior), Edelman’s TNGS proposes that evolutionary processes occur 
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within an organism's lifetime. Instead of individual organisms being selected for fitness 

(traditional view of evolution) or individual behaviors being selected (behavior 

dynamics/selection by consequences), neurons or groups of neurons are strengthened 

(selected) if activation of these neurons produces adaptive behavior (Edelman, 1987). 

End-state neuronal activation and, thus, behavior are not specified from these rules that 

simply dictate neuron strengthening processes. End states emerge from underlying 

processes, making TNGS (like behavior dynamics) a bottom-up rather than top-down 

theory. This approach to brain functioning differs from other, contemporary theories of 

neuroscience that typically examine specific tracks of neurons. The TNGS represents a 

“conceptual mode [or] way of looking” (Edelman, 1992) at brain functioning that focuses 

less on specific circuits and more on global brain functioning (McDowell, 2010). This 

approach has advantages in that it attempts to explain brain functioning at a fundamental 

or more general level than approaches that focus on the function of anatomical structures.  

The TNGS provides an explanation for how stimulus control develops via brain 

functioning. The TNGS proposes that stimulus control occurs when neuronal groups 

associated with stimulus events and neuronal groups associated with behaviors are 

connected. These connections are termed “reentrant signaling” and are proposed to be 

present in all conditioning. If the emitted behaviors produce adaptive behavior, synaptic 

strengthening of the neuronal groups connected by reentrant signaling occurs making 

behavior under the stimulus conditions more likely to occur in the future (McDowell, 

2010). While the concept of reentrant signaling does provide an explanation for how 

stimulus control develops, it does not specify the dynamics of equilibrium conditions. 
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 McDowell (2010) proposed that, taken together, the TNGS and ETBD constitute 

a framework for understanding the behavior of organisms from brain functioning to 

behavior. Although this comprehensive account of organism function and behavior has 

not been directly tested, the ETBD and TNGS have been individually evaluated and 

found consistent with observations in live organisms. The live organism evidence 

supporting the ETBD has been noted previously. The best evidence to support the TNGS 

would entail detailed measurements of neural activation while an organism interacts with 

its environment, which is not possible utilizing current technology. However, McDowell 

(2010) noted several indirect lines of evidence that support the TNGS. The first is the 

observation of various phenomena that are consistent with the TNGS, including the 

existence of value systems (i.e., dopaminergic and noradrenergic systems) that affect 

synaptic strength. The other lines of evidence come from computational and mechanical 

implementations of the TNGS that have shown: 1) synthetic neural networks utilizing 

TNGS principles function similarly to neural activity in live organisms and 2) mechanical 

agents operating with TNGS principles behave similarly to live organisms (See 

McDowell [2010] for additional details and references.).  

 Despite the possibilities and potential of a comprehensive, multi-level selectionist 

model of brain functioning and behavior represented by the ETBD and TNGS, the ETBD 

currently lacks methods to produce behavior that is responsive to different stimuli (as 

noted previously). 

Chained Schedules of Reinforcement 

The current project’s purpose was to give the McDowell model the ability to 

respond under different stimulus conditions. In other words, the purpose was to bring the 
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model's behavior under stimulus control, which is a phenomenon consistently observed in 

live organisms. For example, if a rat's lever pressing only occurred when a green light 

was illuminated, then the lever pressing would be said to be under stimulus control.  

Chained schedules of reinforcement are one method of testing stimulus control. 

The basic design of a chained schedule consists of two or more separate schedules of 

reinforcement that follow each other serially with each schedule being associated with a 

unique stimulus. Reinforcement in the initial links of the chained schedule consists of 

entry into the next link in the chain along with its associated stimulus. Reinforcement in 

the terminal link is the presentation of an unconditioned stimulus, which in live 

organisms might be something like food. Some chained designs have only one response 

option available at any time (simple chains) while others have two or more (concurrent 

chains). For the purposes of the current project, simple chained schedules were simulated 

with the intent that future projects will examine other, more complex, types of chained 

schedules.  

Chained Behavior in Live Organisms and Associated Theories 

 In reviewing the existing literature, several phenomena are clearly seen in live 

organisms responding on chained schedules. First, the amount of responding in the initial 

link in the chain is less compared to the amount of responding in the terminal link (the 

one immediately preceding primary reinforcement / unconditioned stimulus) (c.f., 

Fantino & Romanowich, 2007; Ferster & Skinner, 1957). This makes sense given that the 

initial link is more removed from primary reinforcement than the terminal link. However, 

a number of explanations for why this occurs have been proposed.  
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 The traditional view has held that stimuli associated with terminal links in a 

chained schedule gain conditioned reinforcement value as they are paired with primary 

reinforcement (Williams, 1994). The behavior in initial links is reinforced when a 

conditioned reinforcer is presented. This implies that, for example, a rat responding in a 

chained schedule is rewarded when a light associated with primary 

reinforcement/unconditioned stimulus is illuminated. In theory, a stimulus with 

conditioned reinforcement value could eventually beget more conditioned reinforcers in 

links further removed from the primary reinforcement if these stimuli were subsequently 

paired with an existing conditioned reinforcer stimulus (Williams, 1994). In this way, 

chains of behavior with a number of links should be able to be established. 

 An alternative approach has been proposed by Staddon and Cerutti (2003) 

whereby responses in initial links are proportional to the time until primary reinforcement 

occurs and are independent of link stimuli. Thus, behavior depends on the passage of 

time, not on the presentation of a stimulus with conditioned reinforcement value. This 

approach has been developed with, and primarily applied to, chained schedules that 

employ fixed interval (FI) schedules in all links of the chain. Given this restriction the 

relationship proposed is:  

�� = ��� + ���,                                                                  (1) 

where t1 is the time to the first response in the initial link of a two link chain, a is a 

proportionality constant, and I1 and I2 are the durations of the initial and terminal links in 

the chain, respectively (Staddon & Cerutti, 2003). 

 In an experiment replicated by the current project, Royalty, Williams, and Fantino 

(1987) found evidence that directly contradicted the time to reinforcement approach. The 
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experiment was designed to test whether conditioned reinforcement or time to 

reinforcement is the primary determinant of chained schedule behavior. Pigeons were 

trained to respond on a three component chain. In one condition, the reinforcement 

schedule (VI 33) was the same across all components. In a second condition, the initial 

and middle links were also VI 33 schedules. However, the transition from the middle to 

the terminal link was delayed by 3s after the appropriate response was emitted. In other 

words, once the response that would normally transition the changeover to the terminal 

link stimulus was registered, a 3s timer was started. After the 3s had elapsed, the terminal 

link stimulus was illuminated and its reinforcement schedule started. To maintain 

constant time-to-reinforcement across conditions, the middle link reinforcement schedule 

was reduced to a VI 30. In a third condition, the 3s delay occurred after the initial link. 

Royalty et al. found the response rates in the links immediately preceding the 3s delay 

were 59% lower than those where no delay was used. If time to reinforcement had been 

the primary factor affecting behavior, the introduction of the delay should have had no 

effect because the time to reinforcement was constant across all experiment conditions. 

 Given the wide acceptance of conditioned reinforcement as a major factor in 

determining behavior in chained VI schedules, the current project employed a 

conditioned reinforcement approach to simulate chained schedules.  

The Modified McDowell Computational Model 

To enable the McDowell computational model to respond realistically in a 

chained schedule (i.e., under differing stimulus conditions), a variation of the 

methodology proposed by McDowell, Soto, Dallery, and Kulubekova (2006) was used.  
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In the current project, each stimulus condition (i.e., link in the chain) was associated with 

a unique behavior repertoire. The behaviors in each stimulus condition’s repertoire were 

selected and evolved separately from the others. However, conditioned reinforcement 

was introduced to allow stimuli that are paired with primary reinforcement to gain 

reinforcement value themselves. Therefore, behavior in an initial link repertoire was 

reinforced by movement into a terminal link repertoire that was associated with primary 

reinforcement. Behaviors that resulted in primary reinforcement were selected using the 

current McDowell methodology, and behaviors that resulted in conditioned reinforcement 

were selected using a modified methodology that employed the Rescorla-Wagner or a 

related function to determine the magnitude of reinforcement. This approach, by 

definition, implemented a conditioned reinforcement approach to chain schedules. The 

model was programmed for this approach and not the time-to-reinforcement approach 

advocated by Staddon and Cerutti (2003), which would have required an entirely 

different build of the computational model. Therefore, the current project had the 

capacity to test the conditioned reinforcement model, but not the time-to-reinforcement 

model.  

Figure 1 illustrates the progression of reinforcement and conditioned 

reinforcement in a chained schedule in the modified McDowell model. In the left panel 

(Time Step #1), no primary or conditioned reinforcement has occurred. The behavior 

repertoires associated with the circle stimulus (top panel) and square stimulus (middle 

panel) are randomly distributed. Therefore the chance of a behavior being selected from 

any particular class is at its baseline level. One class of behavior (shaded) in the circle 

stimulus will result in the organism moving into the square stimulus. The chance of 
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emitting a behavior from this class initially is low. The same is true for the class of 

behavior under the square stimulus during Time Step #1.  

In Time Step #2, the chance of emitting a behavior under circle conditions from 

the class that will move the organism/model into square stimulus conditions is again low 

because it has not been reinforced. However, the chances of the model emitting a 

behavior in the class that resulted in primary reinforcement under square stimulus 

conditions during Time Step #1 are greatly increased in Time Step #2 because it was 

reinforced in Time Step #1. Also, the square stimulus has gained value as a conditioned 

reinforcer because it was paired with primary reinforcement, although this is not shown 

in Figure 1. This means that behavior in circle conditions that is followed by the 

conditioned reinforcer, the square stimulus, will receive reinforcement now. Because the 

value of conditioned reinforcement is less than the value of primary reinforcement, the 

selection event is weaker. This weaker selection effect can be observed by comparing the 

distributions of behaviors in the top and middles panels of Time Step #3 in Figure 1. The 

top panel (circle stimulus) has a more varied distribution of behaviors while the middle 

panel has a more concentrated distribution centered around the class of behavior that has 

been reinforced with primary reinforcement. Thus, the chance of emitting a behavior 

within the target class in the circle stimulus repertoire in Time Step #3 is lower than the 

chance of emitting a behavior in the square stimulus in Time Step #3 because the circle 

stimulus has been reinforced with conditioned reinforcement and the square with primary 

reinforcement. Despite having less concentrated behavior in the circle stimulus, the 

chances of a behavior being emitted from the class resulting in movement to the square 

stimulus are greatly improved compared to Time Step #2. Over these three example time 
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steps, the model has “learned” to behave in ways that will increase the chances of 

obtaining primary reinforcement even across a more complicated chain of behavior.  

Conditioned Reinforcement 

 Just as theoretical accounts exist for both static (i.e., matching theory) and 

dynamic (i.e., selection by consequences) properties of behavior, conditioned 

reinforcement can be examined on both levels of analysis. Static theories of conditioned 

reinforcement, simply put, describe the outcome of conditioned reinforcement after 

behavior has reached equilibrium, or steady state. In other words, they describe what can 

be observed in live organisms after behavior has developed and become stable; however, 

they do not provide an account of why these outcomes emerge. The questions of “why” 

and “how” certain phenomena develop are addressed by dynamic theories.  Just as in 

evaluating dynamic theories of behavior, the computational environment provides an 

ideal method for evaluating dynamic theories of conditioned reinforcement, which can 

only be indirectly examined in live organisms. The computational environment can 

programmatically implement the simple rules of the dynamic theory and evaluate the 

results (or behaviors) that emerge. The current project used methodology similar to that 

used by McDowell and colleagues to implement dynamic theories of behavior 

programmatically and then evaluate them against static theory.  

Dynamic theories of conditioned reinforcement.  

Rescorla and Wagner (1972) proposed an iterated function system that describes 

how the associative strength of a stimulus (e.g., a light) develops in response to pairings 
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with an unconditioned stimulus (e.g. food).  The Rescorla-Wagner iterated function 

system is given by:  

�	 = �	
� + ��(� − �	
�) ,                    (2) 

where Vt is the associative strength of  the conditioned stimulus (CS: in Pavlovian 

conditioning terms) at time t, Vt-1 is the conditioned stimulus associative strength at the 

previous time step, α is the salience of the stimulus, β is the salience of the primary 

reinforcer, and λ is the ultimate level of associative learning the stimulus will support. 

See Table 1 for a description of parameters in this and other equations. Both β and λ take 

on different values when primary reinforcement occurs compared to when no 

reinforcement occurs.  Typically, the value of λ is set to 1 during reinforcement and to 0 

when no reinforcement occurs. The salience parameter, β, typically takes on values close 

to 1 (i.e., 0.7 to 0.9) when primary reinforcement occurs, which reflects the salience of 

reinforcer presence. In contrast, when no reinforcement occurs, the value of β represents 

the salience of reinforcer absence. Larger values of β (without reinforcement) will reduce 

the strength, V, quickly during unreinforced trials while smaller values will reduce the 

strength more gradually. Because β and λ have these alternating values, V increases when 

reinforcement occurs and decreases when it does not. It is important to note that Equation 

2 is solely a dynamic model and does not predict an end-state.  Equilibrium conditions 

can only be determined through iteration of the model.  

 Equation 2 or the Rescorla-Wagner (R-W) model, as it is commonly known, has 

been highly influential in the field of learning theory and in psychology in general (Seigel 

& Allan, 1996). The model has been successful in qualitatively accounting for a number 

of Pavlovian learning phenomena including acquisition and extinction of conditioned 
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responding, generalization, discrimination, conditioned inhibition, patterning, and 

overshadowing, among others (Miller, Barnet, & Grahame, 1995). Although other, 

competing models of the associative strength of stimuli have been proposed since 

Rescorla and Wagner (1972) (i.e., Pearce, 1987), their model and variations of it have 

successfully accounted for experimental findings even in comparison to more recent 

models (Bahcekapili, 1998; Myers, Vogel, Shin, & Wagner, 2001).  

 Static theories of conditioned reinforcement.  

The relationship between conditioned reinforcement and primary reinforcement 

has been addressed by a number of theories. Among these, hyperbolic discounting theory 

has received strong support and provides an account of conditioned reinforcer strength at 

equilibrium, that is, in the steady state (Mazur, 1997).    

 Although a number of researchers have proposed a hyperbolic relationship 

between a conditioned reinforcer’s strength and the time until primary reinforcement, 

Mazur (1984) formalized the relationship by proposing the function:  

 � = �
1 + �� (3) 

where V is the value of the stimulus as a conditioned reinforcer at equilibrium, x is the 

latency of primary reinforcement following the onset of the stimulus, and a and b are 

parameters of the equation (Mazur, 1993). McDowell, Soto, Dallery, and Kulubekova 

(2006) showed that for random interval (RI) schedules, where there are many values of x, 

the equivalent form of Equation 3 is:  

 � = � ���� �
�
�Γ �0, ��� (4) 
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where V, a, and b are functionally the same as in Equation 3, r is the rate of 

reinforcement, and Γ is the incomplete gamma function, which is a continuous extension 

of the factorial. Equation 4 states that V increases as a function of r and has the general 

form of an exponentiated hyperbola in a reasonable parameter space (McDowell, 

unpublished data). In practice, Equation 4 predicts that a stimulus associated with an RI 

schedule will gain greater conditioned reinforcement value the greater the reinforcement 

rate delivered by the RI schedule (i.e., the smaller the average time between the onset of 

the discriminative stimulus and the delivery of primary reinforcement).  

Rachlin (1989) proposed that an additional scaling factor be added to the Mazur 

function in the form of an exponent for the denominator, s, given by, 

 � = �
(1 + ��)�	. (5) 

Although Mazur (1987) found that such an exponent did not improve fits to pigeon delay 

discounting data, Green, Fry, and Myerson (1994) found that the exponentiated form 

better accounted for human child delay discounting data. In a review article, Green and 

Myerson (2004) found that for human delay discounting data across a wide variety of 

ages, the exponentiated Mazur function provided a better fit to data with s < 1 in most 

cases. Using techniques similar to McDowell et al. (2006), an equivalent function for use 

with random interval (RI) schedules (i.e., x varies widely) was derived from Equation 5. 

This function is given by: 

 � = � ����
�
�
�
�Γ �1 −  , ���, (6) 

where V, a, and b are functionally the same as in Equation 3, r is the rate of 

reinforcement, and Γ �1 −  , ��� is the incomplete gamma function, evaluated between 
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different limits.  Generally, Equation 6 gives a similar result to Equation 4. In fact, when 

s = 1, Equation 6 reduces to Equation 4.  However, the plot of Equation 6 contains slight 

differences from Equation 4 when s ≠ 1.  It is important to note that the incomplete 

gamma function will return complex numbers for some values of s and �/�. Figure 2 

shows a 3D plot of the exponentiated Mazur function for different values of s and r. Of 

note, the areas where the plot is missing or empty contain complex numbers. To obtain a 

real value of the function in the domains where the incomplete gamma function returns 

complex numbers, the imaginary parts of the returned values must be ignored. For the 

purposes of the current project, this method was employed to obtain a full range of 

exponentiated Mazur function values.  

 Neurobiological bases of conditioned reinforcement. 

 Although neither the presently discussed dynamic or static models of conditioned 

stimulus/reinforcement strength are based on neurological functioning, findings of brain 

functioning in relation to conditioned reinforcement can inform model evaluation and 

suggest future directions for research. A consistent finding from neurological data of 

conditioned reinforcement is that behavior associated with initial learning activates 

different brain structures than behavior under stimulus control. Learning that occurs early 

in stimulus-pairing conditioning has been primarily associated with activation in the 

ventral striatum region. As behavior comes under stronger stimulus control, the dorsal 

striatum region becomes more active (for a review of these findings, see Graybiel, 2008). 

The core of the nucleus accumbens (NAcc) also appears to have a critical role in learning 

and reacting to conditioned stimuli. Lesions and inhibition of neural activity in the NAcc 

core restricted behavior supported by conditioned reinforcement relative to pre-lesion 
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behavior and NAcc shell-lesioned animals (Parkinson et al., 1999; Di Ciano et al., 2001). 

The NAcc core has also been shown to affect delay to reinforcement effects (Hutcheson 

et al., 2001). These findings appear to correspond with some theories (i.e., Staddon & 

Cerutti, 2003) that have proposed that the power of conditioned reinforcement stems 

from an ability to signal future primary reinforcement. 

Correspondence of R-W and Mazur Models 

Given that the Rescorla-Wagner function can be used to predict how the strength 

of a conditioned stimulus develops and the Mazur function (Equations 4 or 6) predicts the 

strength of a conditioned stimulus after it has fully developed (i.e., equilibrium), data 

produced by the Rescorla-Wagner function at equilibrium should be described by the 

Mazur function.  In other words, Rescorla-Wagner equilibria should trace out the Mazur 

value function.  However, when the Mazur function is fitted to dynamically generated 

equilibria from the Rescorla-Wagner model fit residuals are non-random (McDowell, 

unpublished data). Although these results represent preliminary work, they indicate that 

either the Mazur function does not adequately explain the Rescorla-Wagner equilibria or, 

alternatively, the Rescorla-Wagner function does not produce equilibria comparable to 

live organisms. Given the consistent success of the Mazur function in describing 

conditioned reinforcement at equilibrium conditions and that the majority of data 

supporting the R-W model have stemmed from molecular (i.e., non-equilibrium) 

observations (Miller, Barnet, & Grahame, 1995), it appears more likely that the latter 

possibility is the reason because equilibrium data is more stable. An additional possibility 

is that the exponentiated Mazur function adequately describes Rescorla-Wagner 

equilibria. To date, this possibility has not been examined, but it is supported by findings 
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suggesting that the exponentiated Mazur function provides a better fit with delay 

discounting data (i.e., Myerson & Green, 2004).   

The current project investigated two potential solutions to the Rescorla-Wagner 

equilibria and Mazur function incongruence. The first was to fit the exponentiated Mazur 

function to Rescorla-Wagner equilibria. The second, discussed below, was to modify the 

Rescorla-Wagner function, giving it a scaling exponent. 

 A modified R-W function.  

Preliminary work conducted for the current project identified a potential 

modification to the Rescorla-Wagner model that may make dynamic data produced by 

the model consistent with the original Mazur function. This new model keeps the existing 

structure of the R-W function but adds an exponent to ∆V, the part of the function that 

increments or decrements the conditioned reinforcement strength at each iteration. The 

new function form is given by:  

�	 = �	
� + "��(� − �	
�)#$.                                                  (7) 

When a>1, this new function form provides a more gradual transition to maximum 

conditioned reinforcement strength (i.e., equilibrium conditions). Preliminary work has 

shown that the exponentiated R-W function has a smoother and more gradual transition 

to equilibrium conditions compared to the classic R-W function and, overall, produces 

more stable values of V. 

Purpose of the Current Project 

 The primary purpose of the current project was to extend the McDowell 

computational model of behavior to stimulus control, and this was done via chained 



19 

 

schedules. To accomplish this, and test the theories underlying the extensions to the 

model, three series of experiments were conducted.  

The first, Experiment Series I, evaluated the relationship between static and 

dynamic theories of conditioned reinforcement. Specifically, the Rescorla-Wagner model 

(a dynamic theory of conditioned reinforcement) and the currently proposed 

exponentiated variant of that model were programmed into the McDowell computational 

model. The conditioned reinforcement strengths obtained from runs with this model were 

then compared to the Mazur function (and its exponentiated variant) which predicts the 

strength of a conditioned reinforcer at equilibrium.  

The second, Experiment Series II, implemented a simple two-link chain schedule 

in the model using the Rescorla-Wagner model to determine the strength of conditioned 

reinforcement.  The model was evaluated across a wide range of parameters and the 

resulting behavior was examined for consistency with live organism behavior.  

The third and final, Experiment Series III, attempted to replicate the Royalty et al. 

(1987) experiment, which was designed to evaluate the extent to which behavior in 

chained schedules is consistent with conditioned reinforcement or time-to-reinforcement 

theoretical explanations. However, because the modified McDowell model was explicitly 

programmed for a conditioned reinforcement approach, the results from the current 

project can only determine the degree of consistency with this approach. Within the 

modified McDowell model, a delay was instituted in the initial link after a target behavior 

was emitted and scheduled for reinforcement. After the delay lapsed, the terminal link 

was presented. Results of this experiment series were compared to data published by 

Royalty et al.  
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In this dissertation, the general methods used to implement the extensions to the 

McDowell model are presented first. This is followed by three sections reporting results 

from Experiment Series I, II, and III. Each experiment series section contains Methods, 

Results, and Discussion subsections that are relevant to that experiment series. Finally, a 

General Discussion synthesizes the entirety of the current project’s results and discusses 

their implications. 

General Methods 

 Unless noted otherwise, the following methods were used in all project 

experiments.  

Subject and Environment 

The subject was a digital organism with behavior governed by principles of 

selection by consequences as specified in McDowell (2004). The organism was operated 

in a simulated environment consisting of two stimulus conditions chained together. The 

reinforced behaviors emitted from the target class in the initial link in the chain resulted 

in presentation of the terminal link stimulus, and transferred the action to the behavior 

repertoire associated with that stimulus. Behaviors emitted from the terminal link target 

class resulted in primary reinforcement using procedures identical to those used by 

McDowell (2004) followed by presentation of the initial link stimulus and action transfer 

to the repertoire associated with the initial link stimulus. The terminal link stimulus 

gained conditioned reinforcement value via the Rescorla-Wagner model or a variant 

thereof (i.e., Equation 2 or 7). Behaviors emitted in the initial link were reinforced using 

a modification of the McDowell (2004) procedures as described below.  
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Upon action being transferred to the terminal link, the behaviors in the initial link 

underwent modified reproduction rules as follows. Once a behavior in the target class 

was emitted, the fitness function was centered at the midpoint of the class and used to 

select behaviors for reproduction. However, to reduce the strength of reinforcement due 

to conditioned reinforcement, a “weakened” selection event was used where only a 

proportion of the next generation’s (i.e., next time step) behaviors were produced by 

using the fitness function. The remaining behaviors were produced by randomly selecting 

parent behaviors. For example, of the 100 behaviors in the repertoire, 90 might be 

produced by selecting parents using the fitness function with the remaining produced by 

randomly selecting parents. In evolutionary terms, this is equivalent to a weaker selection 

event: only a subset of the population is affected by the selection. The percentage of 

behaviors undergoing selection by the fitness function during each conditioned 

reinforcement event was determined by using the conditioned reinforcer strength, V, to 

determine the proportion of behaviors produced using the fitness function. Thus, if the 

conditioned reinforcer strength was V = 0.9, then 90 behaviors for the next generation 

would be produced using a fitness function and the remaining 10 would be produced by 

selecting parent behaviors randomly.  

Apparatus and Materials 

Software to implement the digital organism and conduct the experiments was 

written in VB.net and run on computers using Windows XP, Vista, or Windows 7 

operating systems. Computers had at least 1.7-Ghz processors with 1 Gb of RAM and 5 

GB of hard disk space.  
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Computational Procedures for the Modified McDowell Model 

 The original McDowell (2004) selection by consequences algorithm was modified 

to allow for chained schedule experiments to be arranged as previously specified. The 

following steps were implemented programmatically to animate the model: 

1. At the start of an experiment, initial model parameters were collected and the 

corresponding model variables were set accordingly.  

2. At the beginning of an experiment, the initial link behavior repertoire was active.  

3. A behavior was selected at random from the repertoire to be emitted.  

4. If the emitted behavior came from the target class (the class of behavior allowing action 

to be transferred to the terminal link), the initial link schedule of reinforcement was 

consulted for the availability of reinforcement.  

a. If reinforcement was available, then the conditioned stimulus strength (V) associated with 

the terminal link was evaluated. If V = 0, then parents were selected randomly (i.e., no 

selection occurred). If V > 0, a proportion of behaviors equal to V was produced using a 

fitness function as previously detailed. Recall that V varies between 0 and 1.  The 

remainder of the behaviors were produced by randomly selected parents. 

b. If reinforcement was not available, all parents were selected randomly.  

5. Two parent behaviors were selected (using the method described in Step 4) and “mated” 

using bitwise reproduction as specified in McDowell (2004). This process was repeated 

until a new repertoire was produced.  

6. The new repertoire underwent Gaussian mutation (standard deviation = 25) as specified 

by McDowell (2004). 
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7. If reinforcement occurred, the action was transferred to the terminal link repertoire. If 

not, the program returned to Step 3. 

8. Once in the terminal link, a behavior was selected at random to be emitted.  

9. If the behavior came from the target class designated to produce reinforcement, the 

schedule of reinforcement for the terminal link was consulted for the availability of 

reinforcement.  

a. If reinforcement was available, parent behaviors were selected using the fitness function.  

b. If reinforcement was not available, then parent behaviors were selected at random.  

10. Two parent behaviors were selected using the method specified in Step 9 and “mated” 

using “bitwise” reproduction as specified in McDowell (2004). This process was repeated 

until a new repertoire is produced.  

11. The new repertoire underwent Gaussian mutation (standard deviation = 25) as specified 

by McDowell (2004). 

12. The strength of the conditioned stimulus, V, was calculated using Equation 4 or 6 

(depending on the model being evaluated). 

13. If reinforcement occurred, the action was transferred back to the initial link. If not, the 

program returned to Step 8.  

At each iteration of the model, relevant behavior data and model parameters were 

stored for later analysis. Specifically, the behavior that was emitted, whether 

reinforcement occurred, and the conditioned reinforcement strength for the terminal link 

were collected and stored in a file for later analysis.  

Simulations employed random interval (RI) schedules of reinforcement. 

Consistent with previous work by McDowell and colleagues, a range of RI schedules was 
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employed for reinforcement in the links of the chain. Specifically, RI 1, 2, 3, 5, 8, 10, 18, 

25, 68, 112, and 200 schedules were employed in each condition where relevant. 

Schedule timing was specific to each link meaning that the RI schedule timer stopped 

when action was transferred out of each link. 

Mutation rate was fixed at 10% for all conditions in both chain links. A linear parental 

selection function as specified by McDowell (2004) was employed with a mean of 40. 

The target class of behavior for both the initial and terminal links was the range 0 to 40, 

inclusive, out of the 0 to 1023 integer range. Baseline rates of unreinforced target 

behavior emission (i.e., operant level of behavior) are approximately 4% given this range.   

McDowell and colleagues (McDowell, 2004; McDowell, Caron, Kulubekova, & Berg, 

2008) and Popa (2009) have found that these values produce behavior that is consistent 

with the behavior of live organisms responding on single and concurrent schedules of 

reinforcement. For each combination of factors, the model was run for 20,000 cycles to 

obtain sufficient data for analysis.  

Project Structure 

 Three series of experiments were conducted to examine the different components 

of the modified McDowell model and to test the model for correspondence with theory 

and previously published live organism data.  

Experiment Series I. 

 In this series, correspondence between dynamically produced values of the 

conditioned stimulus strength, V, produced by the Rescorla-Wagner function (or the 

exponentiated variant) and Mazur’s delay discounting theory (original and exponentiated 

variant) was examined.  
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Experiment Series II. 

This series examined two-link chained schedules of behavior produced by the 

modified McDowell model. In particular, inter-link dependent behavior was examined 

across a variety of model parameters. Additionally, the new technique of only producing 

a proportion of behaviors using a fitness function (with the others being produced by 

randomly selecting parent behaviors), was evaluated to ensure that this technique was 

consistent with matching theory. 

Experiment Series III. 

 This series attempted to replicate the Royalty et al. (1987) experiments. Data 

from experiments implementing a pre-reinforcement delay and those without such a 

delay was compared to the live organism data published by Royalty et al.  

Experiment Series I: Rescorla-Wagner Model and Mazur Function Correspondence 

Methods 

 The subject, environment, apparatus, materials, and computation procedures 

detailed in the General Methods were used for Experiment Series I.  

To evaluate the correspondence between the Rescorla-Wagner model (or its 

exponentiated variant) and the Mazur function, the average values of conditioned 

reinforcer strength, V, produced by the modified McDowell were obtained for 11 

different RI schedules (RI 1, 2, 3, 5, 8, 10, 18, 25, 68, 112, and 200) by calculating the 

average value of V across all time-points. This allowed the relationship between r, the 
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reinforcement rate generated by the RI schedule, and the average V to be evaluated using 

the Mazur function.  

The r-V relationship was examined across multiple model conditions by 

systematically varying the Rescorla-Wagner parameters (α, β1, β0, and a). While each 

parameter of interest was varied, the other parameters were held constant. To evaluate a 

wide variety of model conditions, several combinations of parameters were used across 

experiments.  Table 2 shows the Rescorla-Wagner parameters that were varied, the range 

of values tested, and the values of the other  parameters.  

For each set of r-V (reinforcement rate – conditioned reinforcer strength) 

datapoints, plots were created, and the Mazur and exponentiated Mazur functions, 

Equations 4 and 6, were fitted to the data. Equation 4, the Mazur function, was fitted 

using the Excel Solver add-in, and Mathematica Link for Excel was used to resolve the 

value of the gamma function, Γ �0, ���. Equation 6, the exponentiated Mazur function, was 

fitted using the FindFit function in Mathmematica, because complex numbers were 

generated by some solutions due to the incomplete gamma function, Γ �1 −  , ���. 

Goodness of fit was determined by the percentage of variance accounted for (pVAF) by 

Equation 4 or 6, and by residual analyses, which are described in detail in the Appendix.  

Results 

Effects of traditional Rescorla-Wagner parameters on conditioned stimulus 

strength. 

Figure 3 shows the relationship between the reinforcement rate and the 

conditioned stimulus strength for 3 different values of α. As can be seen in Figure 3, there 
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was no virtually no effect of the stimulus salience, α, on the relationship between the 

reinforcement rate and conditioned stimulus strength (r-V) at equilibrium.  In other 

words, each value of α produced the same r-V profile. Although Figure 3 only shows the 

results from one set of model conditions, this invariance in the equilibrium values of V 

for different values of α was observed in all model conditions (i.e., different values of β0, 

β1, and, a). However, Figure 3 only shows the asymptotic values of V. It does not 

illustrate the molecular level or moment-by-moment values of V. Figure 4 shows values 

of V on the molecular time-scale: the first 500 time-ticks for three different values of α. 

Although the time at which the value of V begins to increase varies between each plot, 

this was likely due to normal variability in the model (i.e., the time to the first 

reinforcement event varied across the experiments). A close examination of the plots 

indicated that the value of V decreases faster at higher values of α. This, in turn, resulted 

in more variability in the values of V. To further examine this effect, the mean and 

standard deviation for V were calculated for the same three experiments. Figure 5 shows 

these values. Although the mean of V was unchanged across the three values of α, the 

standard deviation increased as α increased. These observations confirm that while α did 

not affect the equilibrium or mean value of V, it did affect the variability of V, with 

higher values of α producing more variability in V.  

The effect of β0, the salience of reinforcer absence, on the relationship between 

reinforcement rate and the conditioned reinforcement strength, V, can be seen in Figure 6. 

Although Figure 6 only shows the results from varying β0 under one set of model 

conditions, similar results were obtained for all other model conditions. Compared to α, 

β0 had a marked effect on V with lower values of β0 producing steeper r-V (higher levels 
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of V with lower reinforcement rates). Additionally, the r-V relationship varied greatly 

depending on the value of β0. A wide range of r-V profiles was produced by varying the 

value of β0. Although not shown in the figure, the relationship between V and β0 was 

consistent across differing values of β1 in that a wide range of r-V profiles were obtained 

from varying β0 across differing values of β1.  

The effect of β1, the salience of reinforcer presence, on the conditioned 

reinforcement value V can be seen in Figure 7. Although Figure 7 only shows the results 

from varying β1 under one set of model conditions, similar results were obtained for all 

other model conditions. Similar to β0, differing values of β1 produced marked changes in 

the r-V relationship. Higher values of β1, produced steeper r-V curves (i.e., higher levels 

of V were observed for lower rates of reinforcement). Notably, a wide range of r-V curves 

was obtained indicating that β1 had a significant effect on the conditioned reinforcement 

strength. The range of r-V profiles obtained by varying β1 depended on the value of β0, 

the salience of reinforcer absence. For lower values of β0 (i.e., 0.01), only a restricted 

range of r-V profiles were obtained, as shown in Figure 8, while for higher values of β0 

(i.e., 0.05), wider ranges of values were obtained, as shown in Figure 7. This is likely 

because β0 and β1 produce opposing effects in the R-W equation with β0 being 

responsible for the amount of decrease in V following no reinforcement and β1being 

responsible for the amount of increase in V following reinforcement.  

To summarize: the findings from  modifying the parameters of the traditional 

Rescorla-Wagner model showed that the stimulus salience, α, had little effect on 

asymptotic or equilibrium values of the conditioned stimulus strength, V. However, α did 

have an effect on how much the conditioned stimulus strength varied, with higher values 
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of α producing more variability. In contrast, both β0 and β1 (the salience of reinforcer 

absence or presence, respectively) produced wide ranges of conditioned stimulus 

strengths. Lower values of reinforcer-absence salience produced higher asymptotic values 

of conditioned reinforcer strengths, whereas lower values of reinforcer-presence salience 

produced the opposite effect: lower asymptotic values of conditioned reinforcer strength. 

Finally, there was an interaction between the salience of reinforcer absence and presence 

with lower reinforcer-absence values restricting the effect of the reinforcer presence. 

Taken together, these results indicate that 1) the Rescorla-Wagner model was 

successfully implemented in the McDowell model, and 2) a range of conditioned 

reinforcer strengths could be produced within the model. 

Effect of the currently proposed Rescorla-Wagner exponent, a, on 

conditioned reinforcer strength.  

The effect of varying the exponent, a, in the modified R-W equation can be seen 

in Figure 9 under the model conditions β0 =0.05, β1=1.0,  and α= 0.7. Increases in a 

produced higher values of V, but this effect was more pronounced at lower rates of 

reinforcement. At the highest rates of reinforcement, the values of V obtained under 

different values of a were similar. This effectively increased the curvature of the r-V 

profile without changing the asymptote. Finally, the minimum value of V for each r-V 

profile increased with a indicating that higher values of a restricted the range of V to 

larger values.  

 The molecular view of the moment-by-moment values of V for differing values of 

a are shown in Figure 10, which shows plots of V for the first 500 time-ticks for three 

values of a (1, 1.5, 2). The plots indicate that exponent values greater than 1 decreased 
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the variability in V, the conditioned reinforcer strength, markedly, and hence created a 

more stable value of conditioned reinforcement.  

Correspondence of Rescorla-Wagner and Mazur functions.  

The Mazur and exponentiated Mazur functions (Equations 4 and 6, respectively) 

were fitted to the average conditioned stimulus strength values generated by the Rescorla-

Wagner model (Equation 2) for the parameter combinations listed in Table 2. The best-fit 

parameter values are shown in Table 3 (Effect of varying β1), Table 4 (Effect of varying 

β0), Table 5 (Effect of varying α), and Table 6 (Effect of varying a). Each table shows the 

Rescorla-Wagner parameters in the left hand column. The classic Mazur function fits are 

shown in the middle section, with the exponentiated Mazur fits shown in the far right 

section. For both classic and exponentiated fits, the values of R2, which are the 

proportions of variance accounted for by the function, are given. The other indication of 

goodness-of-fit is the result of the residual analysis for each fit, namely whether a cubic 

polynomial trend was present in the residuals.  

The best-fit parameter values for the experiments varying β1 are shown in Table 3. 

A comparison of these parameter values indicated that a wider range of values for both a 

and b parameters was obtained for fits of the classic Mazur function than for fits of the 

exponentiated function. The values of a varied between 1.06 and 11.4 for fits of the 

Mazur function, while that range was much more restricted (1.00-1.72) for fits of the 

exponentiated Mazur function. The highest value of b for the exponentiated function was 

19.6 while the classic Mazur function required a greater range of values (8.85-13,370).  

The values of the exponentiated Mazur scaling parameter, s, ranged from 4.06 to 34.1. 

These large values may explain why a large proportion of the exponentiated fits did not 
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converge, which means that the iterated step size in the fit algorithm was larger than the 

precision of the fit algorithm itself. Although this precision was increased to a very high 

number of significant digits (a range of 40-80 digits was explored), these algorithm errors 

continued to occur. This was likely because large values of s produced very small values 

of the incomplete gamma function, Γ �1 −  , ���, and very high values of ����
�
 in the 

exponentiated Mazur function (Equation 6). It is also possible that the wide range of 

values of s resulted from an incomplete fitting process (i.e., the fitting algorithm did not 

identify a stable, best-fit solution) and, hence, there may be inconsistency across fit 

attempts.  

Most importantly for the purposes of the current project,  residual analyses of the 

classic Mazur function fits indicated the presence of non-random residuals for all R-W 

parameter combinations tested despite R2 values all greater than 0.99.  Figure 11 shows 

the residuals for all fits. Clear evidence of cubic trends was visible in all plots. In 

contrast, non-random residuals were only evident in 2 out of the 15 fits of the 

exponentiated Mazur function to the R-W generated data. Figure 12 shows the residual 

plots for all exponentiated Mazur function fits. Despite problems fitting the exponentiated 

Mazur function to the conditioned stimulus strength data noted previously, the fits that 

did not converge still had excellent goodness-of-fit statistics and no evidence of non-

random patterns in the residuals.   

 Table 4 shows the parameters for fits to the experiments varying β0. Similar to the 

results of β1, the residuals from fits of the Mazur function showed evidence of non-

random patterns. In comparison, the fits of the exponentiated Mazur function showed 
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evidence of non-random residual patterns in only 1 of the 17 fits. Figures 13 and 14 show 

the residual plots for fits of the Mazur and exponentiated Mazur function, respectively.  

Clear cubic trends are visible in the Mazur fits, while exponentiated Mazur fits show a 

good scatter of residual values. Across both functions, increasing values of β0 produced 

higher values of b and a. Similar to the series of experiments varying β1, values of b were 

larger for the Mazur function fits. The values of s varied widely from 0.40 to 71.0 across 

the experiments that varied β0. Two fits did not fully converge. It is notable that these fits 

produced the only fit with non-random residuals; the other fit produced the highest value 

of s of all experiments in the current project. For the exponentiated Mazur function fits, 

there were several cases where the FindFit function of Mathematica was unable to 

resolve a fit without throwing an error. These “indeterminate fits” were typically caused 

by problems with complex number calculations.  

 Table 5 shows the parameters for fits to the experiments varying α. The quality of 

Mazur and exponentiated Mazur function fits was similar to other results with the 

exponentiated Mazur function, showing no evidence of non-random residuals (see 

Figures 15 and 16 for residual plots). There were again, some problems fitting the 

exponentiated Mazur function to several datasets. The fits for the β0: 0.05, β1: 0.5 series 

illustrate some of the difficulties encountered when fitting the exponentiated Mazur 

function. The experiment with α = 0.5 was fitted successfully, whereas the experiment 

with α = 0.7 produced errors, and finally the experiment with α = 0.9 produced values of 

b and s that were markedly divergent from the α = 0.5 experiment. Considering that the r-

V profile was almost identical for these three experiments, this variability may indicate 

that fits using the exponentiated Mazur function may be unstable for some datasets.  
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 Finally, Table 6 shows the parameters for fits to the experiments varying a, the 

currently proposed Rescorla-Wagner exponent. (Note that the Mazur functions and the 

exponentiated R-W model contain a parameters, but these parameters are not the same. 

For the purposes of clarity in this section, the subscripts “rw”  and “m”  will be used to 

differentiate between the two.) Non-random residuals were present in all the classic 

Mazur function fits with the exception of arw = 1.25. The residuals were random for 

exponentiated Mazur function fits with arw = 1 and 1.25, but they were not random for 

higher values of arw. Increasing arw appeared to have several effects on the model 

parameters. First, the Mazur model parameters a and s decreased with increases in the R-

W parameter, arw.  Notably, values of am < 1were observed when no other fit in the 

current project produced values of am < 1. A similar result with s was obtained with 

increasing values of the R-W parameter, arw, producing values of s < 1, which was not 

observed in any other fits. Another unexpected result emerged when arw = 1.25. At this 

value, and under these conditions, the Mazur and exponentiated Mazur functions were 

markedly similar. Figure 17 shows the residuals for both the Mazur and exponentiated 

Mazur function fits. The pattern of residuals is almost identical between the two function 

fits to data produced with arw = 1.25.  An examination of the fit parameters revealed that 

the value of s was very close to 1 (s = 0.97), indicating that the classic and exponentiated 

Mazur functions were nearly equivalent for this case. (Recall that the exponentiated 

Mazur function reduces to the classic Mazur function when s = 1.)  

 In summary, the current results showed that dynamically produced values of V 

were described well by the exponentiated Mazur function (Equation 6), but not by the 

classic Mazur function. Fit residuals from classic Mazur function fits to average values of 



34 

 

V produced by the Rescorla-Wagner function contained non-random patterns for all R-W 

parameter values except for arw = 1.25. Although non-random residuals were only present 

in 3 out of 35 fits using the exponentiated Mazur function, the function required 

sophisticated techniques to find the best fit, did not always converge despite these 

techniques, and required large values of s to provide the best fit, which has not been 

observed in live organism data to date.   

Discussion 

Effects of Rescorla-Wagner parameters on conditioned stimulus strength, V.  

The results of varying R-W parameters demonstrated that the conditioned 

stimulus strength is affected in several ways by these parameters. The range of R-W 

parameters tested provided substantial detail about how each parameter affects V. While 

changes in α, the salience of the conditioned stimulus, produced little difference in 

equilibrium levels of V, it did affect the instantaneous values of V, with larger values of α 

corresponding to greater variability in V across the time series. In contrast, both β0 and β1 

affected the asymptotic values of V. Larger values of β0, the salience of reinforcer 

absence, resulted in shallower r-V curves or, in other words, decreased the sensitivity to 

reinforcement rates. Larger values of β1, the salience of reinforcer presence, had the 

opposite effect: they generated steeper r-V curves or greater sensitivity to reinforcement. 

Additionally, the salience of reinforcer absence (β0) restricted the range of r-V profiles 

obtained when varying the salience of reinforcer strength (β1). This indicates that these 

two parameters interact to some extent. The final R-W parameter, a, newly proposed in 

the current project, affected the curvature of the r-V profile without changing the 

asymptote. It also affected the variability of V.  
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 The association between the Rescorla-Wagner and Mazur models.  

The current project constitutes the first effort to fully examine the relationship 

between the Rescorla-Wagner model and the Mazur function. Two dynamic models of 

conditioned stimulus strength and two static models of conditioned reinforcer strength 

were examined. The dynamic models consisted of the Rescorla-Wagner equation and an 

exponentiated variant, which are given by Equations 2 and 7, respectively. The static 

model consisted of the Mazur function and an exponentiated variant, which are given by 

Equations 4 and 6, respectively. Although the exponentiated R-W model was developed 

for the current project, the exponentiated Mazur function was proposed previously 

(Rachlin, 1989; Myerson, Fry, & Green, 1994).  

 The results of the current project consistently indicated problematic fits between 

the values of Rescorla-Wagner generated conditioned stimulus strength, V, and the Mazur 

function for random interval schedules, Equation 4. Although the Mazur function fit the 

r-V data relatively well, as evidenced by percent variance accounted for (pVAF) of 99% 

and higher, the fits consistently left non-random residuals. In contrast, the exponentiated 

variant of the Mazur function fit the data very well, with pVAF values consistently 

nearing unity. Analyses of the residuals revealed non-random trends in a small minority 

of the fits. Comparing the classic Mazur and exponentiated Mazur function residual plots 

showed clear evidence that the exponentiated variant provided a greatly improved fit to 

the data. Overall, the results of the current project indicated that the exponentiated 

version provided a very good fit to the conditioned stimulus strength values obtained via 

the Rescorla-Wagner function implemented in the McDowell computational model.  
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 Some fits of the Mazur functions to average conditioned stimulus strength values 

using the currently proposed exponentiated Rescorla-Wagner model (Equation 7)  

showed evidence of good correspondence while others did not. For arw > 1.25, neither the 

exponentiated nor the classic Mazur function fit the conditioned reinforcement data 

produced using the exponentiated Rescorla-Wagner function. Fits of both functions to the 

data contained non-random patterns in the residuals. Additionally, increases in the 

exponent, a, resulted in decreased goodness-of-fit. Clear patterns in the residuals were 

visible at higher values of arw and the pVAF decreased as well.  While these patterns 

were not unexpected for the classic Mazur function given the presence of non-random 

residuals in all other fits using this function, the clear non-random patterns in the 

residuals were not observed for any other condition fit by the exponentiated Mazur 

function. However, for the case where arw = 1.25, both Mazur functions appeared to fit 

the exponentiated Rescorla-Wagner data well. Both functions had high pVAFs and 

neither fit showed evidence of non-random residuals. It is notable that this was the only 

experiment where the classic Mazur function fit did not contain non-random residuals. 

Additionally, the best-fit parameters indicated that the two Mazur function forms were 

essentially equivalent. The value of the exponentiated Mazur scaling parameter, s, was 

near unity. Under these conditions, the exponentiated Mazur function reduces to the 

classic Mazur function. These results indicated that for most values the exponentiated 

Rescorla-Wagner model is not consistent with existing theory. The unique result when 

arw = 1.25 indicates that certain values of arw may represent special cases where data 

produced by the model is consistent with findings from live organisms. 
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 It is important to note that the exponentiated version of the Mazur function that is 

adapted for random interval schedules contains the incomplete gamma function, which 

generates complex numbers for many parameter ranges. This resulted in many of the 

predicted values of V in the current project having both real and imaginary parts because 

of the complex nature of the incomplete gamma function. This in turn produced residuals 

with imaginary parts as well. For the purposes of the current project, imaginary parts of 

the predicted values of V were ignored in the analyses. For example: if Vpredicted = 0.8925 

+ .0000542i, where i is the non-real representation of √−1, the entire value 0.0000542i 

was ignored. Only the real parts (i.e., 0.8925) were used in calculating pVAF and 

determining whether non-random patterns existed in the residuals. While it is not 

desirable to ignore parts of a function, the current results suggest that this approach 

produces a function that accurately predicts values of conditioned stimulus strength.  

 The results of the conditioned reinforcement analyses have important theoretical 

consequences. Although the general consensus in the discounting literature is that the 

relationship between reinforcer strength and delay to reinforcement is likely a hyperbolic 

one (Rachlin, 2006), the exact form has been debated extensively. Mazur (1987) 

originally proposed the relationship between conditioned reinforcer strength and time to 

primary reinforcement describe by Equation 3. Later, Rachlin (1989) proposed that 

exponentiating the denominator of Equation 3 would provide a scaling factor to better fit 

data under conditions of delay. The results from the current project clearly support 

utilizing the exponentiated version of the Mazur function based on residual analysis and 

pVAF. Interestingly, if pVAF were solely used to determine which function provided a 

better fit, the comparison between a function that accounts for 98.9% of variance and one 
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with 99.9% would be difficult because both values indicate very high correspondence 

with data. However, this was the methodology used by previous research (e.g., Green, 

Myerson, & Ostaszewski, 1999; Rachlin, 2006) to determine goodness-of-fit. Given the 

reliance on pVAF to evaluate models in previous work, it is difficult to make definitive 

conclusions about the correspondence of the current model to live organism data. For 

example, Jones and Rachlin (2006) concluded that the original Mazur function provided a 

robust fit to human subject data while Green and Myerson (2004) concluded that the 

exponentiated version provided the best fit to a wide variety of human subjects data 

including children, and college aged and elderly individuals. However, the predictions 

resulting from theoretically based computational models such as the current one illustrate 

the benefit of a computational model. The current results indicate that the fits of the 

original Mazur function will contain non-random residuals while the exponentiated 

version will not.  To date, this analysis has not been conducted with data from live 

organisms, but it is a prediction based on the current results.  

 An additional prediction based on the current results is that the exponentiated 

Mazur function for random interval schedules (i.e., Equation 5) corresponds to 

conditioned stimulus strength values and, by extension, to the response rates dependent 

on conditioned reinforcement. To date, this analysis has not been conducted with live 

organisms. Future studies could test this relationship in live organisms by varying the 

reinforcement rate of a behavior that is supported by primary reinforcement and paired 

with a discriminative stimulus. Then the response rates of a behavior supported by 

conditioned reinforcement via this stimulus could be compared with the reinforcement 
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rates supported by the primary reinforcement. The r terminal-Bconditioned profile should 

correspond to the exponentiated Mazur function, Equation 6.  

 Despite the success in describing conditioned stimulus strengths seen in the 

current project, the results of this project also indicated some problems with the 

exponentiated Mazur function. First, the fitting algorithm did not converge on a best-fit 

solution in many cases. This was likely due to the high number of decimal places 

required for fitting values of the incomplete gamma function. The presence of imaginary 

numbers also caused some fits to fail to converge. Despite these problems, most fits that 

did not converge still provided an excellent fit to the R-W data, indicating that the 

function provides a good account of the data. However, these problems do raise the 

possibility that the function may be difficult to use, and this may restrict its practical 

application.  

The second problem with the exponentiated Mazur function was the difference in 

parameter values obtained between the Mazur and exponentiated Mazur function. Across 

model conditions, the parameters a and b were consistently different for these two 

function forms despite being derived from similar functions. Despite these functions 

being the same when s = 1, it is possible that the addition of this scaling parameter may 

fundamentally alter the function.   

Finally, the third problem with the exponentiated Mazur function concerns the 

estimates of s. Many of the best-fit values of s were relatively large and often were much 

greater than one.  The reason for this is apparent when considering the very small values 

produced by the incomplete gamma function. Although the offset between incomplete 

gamma function and the (r/b)s factor within Equation 6 produces a function that describes 



40 

 

the data from RI schedules well, the large values of s are incompatible with the general 

delay discounting function, Equation 5. Values of s > 1 in Equation 5 produce very low 

values of conditioned reinforcer strength. Additionally, previous work has shown that fits 

of Equation 5 to delay discounting data in humans yields best-fit values of s that are 

typically less than 1 (Green & Myerson, 2004). Therefore, the current results suggest that 

the two forms of the exponentiated Mazur function (Equation 5 for delay discounting and 

Equation 6 for RI schedules) are not comparable.  

The incompatibility between the two forms of the exponentiated Mazur function 

illustrates problems stemming from their development. Each form was developed to 

describe different behavioral phenomena. The delay discounting function form has 

primarily been used to describe the effect that delay to reinforcement has on behavior 

(see Mazur, 1997; Green & Myerson, 2004). In contrast, the derivations for use with 

variable interval schedules implemented in the current project were designed to describe 

the relationship between conditioned stimulus strength and reinforcement rate. To date, 

this relationship has not been investigated in live organisms.    Given the fundamental 

difference in how these two forms were developed and intended to be used, it is not 

surprising that there would be some differences in the parameters between them. Future 

research could help clarify whether the RI function form is useful in practical settings by 

fitting this form to live organism behavior that is supported by conditioned 

reinforcement. 
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Experiment Series II: Chained Schedules in the Computational Environment 

Methods 

 The subject, environment, apparatus, materials, and computation procedures 

detailed in the General Methods were used for Experiment Series II.  

Varying the proportion of behaviors produced with a fitness function. 

 In preparation for using the conditioned stimulus strength, V, to determine the 

strength of selection events (i.e., reinforcement), the effect of producing fewer than 100% 

of behaviors after a reinforcement event using a fitness function was examined. Previous 

versions of the McDowell model produced all behaviors for the next time-step using a 

fitness function after reinforcement.  The currently proposed modified model used the 

conditioned stimulus strength values produced by the Rescorla-Wagner model to 

determine the proportion of behaviors produced using the fitness function after a 

reinforcement event in the initial link. The remaining behaviors were produced by 

randomly selecting parent behaviors. The primary purpose of the current experiments was 

to ensure that changing these proportions would not modify the correspondence of model 

behavior to matching theory (and by extension to live organism behavior).  

A series of experiments was conducted that varied the proportion of behaviors 

produced using the fitness function from 0.2 to 1.0. For each condition, data from 11 

single alternative RI schedules (RI 1, 2, 3, 5, 8, 10, 18, 25, 68, 112, and 200) were used to 

evaluate the relationship between reinforcement rate, r, and response rate, B. The average 

response and reinforcement rates for each RI schedule were calculated by counting the 

number of responses for a particular link during the experiment and dividing this result 

by 500. Although this method of determining the rates differed from previous methods 
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used by McDowell and colleagues, this method allowed a standardized rate calculation 

without discarding data from incomplete 500 time tick windows that result when running 

chained schedules (the exact number of time ticks within a particular link cannot be 

determined a priori due to the emergent nature of movement from initial to terminal link). 

The average r-B data was plotted and the classic and modern matching theory equations 

were fitted to this data using the Solver add-in component in Microsoft Excel. McDowell 

(2005) has discussed the details of, and the differences between, the classic and modern 

theories of matching.  The residuals from the fits were evaluated for non-random trends.  

Goodness of fit was determined by percent variance accounted for (pVAF), and by 

residual analysis. 

Initial link correspondence with matching theory. 

 The modified McDowell model was run on chained schedules to determine 

whether behavior in the initial link remained consistent with matching theory under these 

conditions. Although this set of experiments was similar to the experiments presented 

above that varied the proportion of behaviors produced using randomly selected parents 

versus parents selected using a fitness function those experiments had static/constant 

proportions. The present set of experiments examined behavior where the proportion of 

behaviors produced using the fitness function varied based on the conditioned 

reinforcement strength, V, of the terminal link stimulus.  It should be noted that the 

terminal link behavior was not evaluated because the terminal link was not different from 

an ordinary single alternative schedule, which has already been shown to produce results 

consistent with matching theory (McDowell, 2004; McDowell & Caron, 2007). These 

analyses were conducted primarily to ensure that initial link behavior, which depended on 
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the terminal link R-W parameters of the modified McDowell model, conformed to 

matching theory, and by extension to live-organism data. For each of the conditions listed 

in Table 7, 11 RI schedules were run in the initial link to obtain an r-B profile so that the 

matching theory equations could be fitted to the data.  

 Simple behavior chains. 

 A variety of methods were used to qualitatively evaluate the behavior of the 

modified McDowell model running on chained schedules of reinforcement. Using a set of 

Rescorla-Wagner parameters found to produce a stable reinforcement rate-conditioned 

stimulus strength relationship in Experiment Series I (β0: 0.05, β1: 0.5, α: 0.7, a: 1.0), a 

variety of experiments were conducted to examine the chained schedule behavior across 

different conditions. First, four chained schedules were run at different RI values (RI1-

RI1, RI5-RI5, RI25-RI25, and RI112-RI112). Cumulative records of initial and terminal 

link behavior were constructed for the first 1000 time steps. These were examined to 

ensure adequate progression through the chain and general consistency with live 

organism behavior. Next, the relationship between initial and terminal link response and 

reinforcement rates was examined by plotting response-reinforcement rate data for the 

terminal link/initial link schedule combinations noted above. Finally, the response rate 

data were examined for consistency with previously published two-link chained schedule 

data from live organism. Based on limited published data from chained VI VI schedules 

(Ferster & Skinner, 1957, Figures 859, 860, and 861), a 60% reduction in initial link 

response rate was expected (compared to terminal link response rate).   
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Results 

Effect of varying the proportion of behaviors produced using a fitness 

function after reinforcement.  

Figure 18 shows the r-B (reinforcement-response) plot for single alternative 

schedule experiments that varied the proportion of behaviors produced using a fitness 

function from 0.2 to 1.0 (the remaining proportion of behaviors were produced by 

selecting parent behaviors randomly).  The plot demonstrates that reducing the percent 

produced using a fitness function  reduces both the response and reinforcement rates 

relative to the traditional method of replacing all behaviors. This reduction in both 

response and reinforcement rates resulted in a shallower r-B curve thus reducing the 

strength of each reinforcement event, as expected. Notably, the same effect has been 

observed when increasing the extraneous reinforcement rate, which is represented by the 

re parameter in the matching theory equations. Table 8 shows the fit parameters for the 

percent replaced analyses. As shown in Table 8, both k and re (or 
�&'
�  for the modern 

matching equation) vary with the percent of behaviors replaced during selection events. 

Additionally, the exponent, a, obtained from the modern matching equation ranged from 

0.82 to 0.94 indicating a degree of undermatching. This was consistent with previously 

published results (McDowell & Caron, 2007). Residual analysis indicated the presence of 

cubic polynomial trends in 6 of 9 fits using the classic matching function, whereas only 

one modern matching fit contained significant non-random residuals. Figure 19 shows the 

residuals resulting from fits of the classic and modern matching equations to the r-B data. 

Some classic matching equation residual plots appear to have non-random patterns while 
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others appear randomly distributed. Generally, non-random patterns were not apparent in 

the modern matching equation residual plots. This result is consistent with previously 

published reports (McDowell & Caron).  Consequently, it can be concluded that (1) 

varying the percent of behavior produced using the parental fitness function does not 

disrupt the model’s correspondence with matching theory, and (2) selection events are 

weakened proportionally to the percent of behaviors randomly replaced during selection 

events.  

Initial link correspondence with matching theory. 

The analyses of the initial link correspondence with matching theory indicated 

that both the classic and modern matching theory functions adequately described model 

behavior. However, less evidence of non-random residuals was observed in the modern 

matching equation fits to model data compared to classic matching fits (Equation 2 

versus Equation 6), as indicated by the asterisks in Table 8. The account of model data by 

matching theory was consistent across R-W model parameter combinations and terminal 

link rates of reinforcement, as seen in Table 7. As expected, the value of the initial link re 

increased with decreasing rates of reinforcement in the terminal link, which depress the 

value, V, of the terminal link conditioned reinforcement and therefore the percentage 

replaced using a fitness function after reinforcement. There was no clear relationship 

between the modern matching exponent, a, and model conditions, which ranged from 

0.70 to 0.92 indicating that undermatching was present in all conditions. These results 

indicate that conditioned reinforcement as implemented in the computational model did 

not affect the phenomena of undermatching that has been shown to be an emergent 

property of the model (McDowell & Caron, 2007).  
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Simple behavior chains.  

Cumulative records. 

 The cumulative records from four chained schedule experiments with RI1-RI1, 

RI5-RI5, RI25-RI25, and RI112-RI112 schedules in the intial and terminal links are 

shown in Figures 20 through 23, respectively. These figures show cumulative records, 

which provide a method of viewing the relationship between responses, reinforcement, 

and the passage of time. For each time-step, the plot makes one step horizontally to the 

right. For each response, the plot makes one positive vertical step. For each 

reinforcement, a horizontal dash is placed next to the response plot. Once the number of 

responses reaches 100, the vertical location is reset to 0 (the time axis location is not 

reset). High rates of response result in steep plot slopes. No responding, such as occurs 

after extinction, results in flat plot slopes.  

As can be seen in the RI1-RI1 cumulative record plot (Figure 20), the chained 

behavior takes time to develop with the first target behavior in the initial link being 

emitted after approximately 100 time steps (denoted by the 1 in Figure 20). Following 

this behavior emission, which was reinforced (as denoted by the small dash), the terminal 

link repertoire became active. Within the terminal link, approximately 100 time steps 

elapsed before a target behavior was emitted and reinforced (as denoted by the 2). These 

two behaviors completed the chain and the initial link repertoire was again presented. 

Note that again, approximately 100 time steps elapsed before another target behavior in 

the initial link was emitted and reinforced (as denoted by the 3). After this behavior was 

reinforced and the terminal link repertoire was presented for the second time, the latency 

to terminal link completion was markedly smaller. This quick increase in behavior rate 
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was due to the previous target behavior being reinforced with primary reinforcement 

whereas the first behavior emitted in the initial link was reinforced with presentation of 

the terminal link stimulus that had yet to be paired with primary reinforcement. However, 

once the terminal link stimulus was paired with reinforcement and therefore gained 

conditioned reinforcing strength (as determined by the Rescorla-Wagner function),  it 

quickly produced high rates of responding in the initial link. This effect can be seen in the 

rapid acquisition of high response rates to the right of the “3” in Figure 20.  

 A qualitative comparison of the response rates in the initial and terminal links 

revealed similar rates across both links. As can be seen in Figure 20, the slopes of both 

cumulative records were similar. Additionally, the response rates were approximately 

constant throughout the remainder of the 1000 time steps shown in the cumulative record. 

Taken together, these results indicate that chained schedules of behavior were established 

in the computational model and, once the chained behavior was acquired, it continued at 

a constant rate.  

 An examination of the RI5-RI5 cumulative record revealed similar patterns of 

behavior: the behavior chain took time to develop, but once acquired, continued at a 

relatively constant rate as can be seen in Figure 21. However, the rates of behavior were 

notably lower in the initial link compared to the terminal link as can be observed by 

noting the number of times the cumulative records reached 100 behaviors or, 

alternatively, by observing the relatively lower slope in the top panel of Figure 21. An 

additional phenomenon observed was the presence of significant pauses in responding 

that occurred before some reinforced responses. These pauses were also present in the 

cumulative records of the RI25-RI25 and RI112-RI112 schedules as can be seen in 
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Figures 22 and 23. As would be expected, the response rates in these two chained 

schedules were appropriately lower. However, the difference between initial and terminal 

link response rates became more apparent. In the RI25-RI25 and RI112-RI112 

experiments, the response rate in the initial link was approximately half that in the 

terminal link as can be seen in Figure 22 and 23. In comparison, the difference was much 

smaller in the RI5-RI5 experiment and largely unnoticeable in the RI1-RI1 experiment.  

  Initial and terminal response-reinforcement rate dependency.  

Plots of the response-reinforcement relationship for the initial link at different 

constant values of the terminal link are shown in Figure 24. As would be expected from 

the previous results showing shallower r-B curves for lower proportions of behavior 

produced with fitness functions, leaner schedules in the terminal link produced shallower 

curves.  

Initial versus terminal link response rates.  

The difference between response rates for the initial and terminal links varied 

across reinforcement rates. Figure 25 shows the ratio of initial to terminal link response 

rates for RI1-RI1, RI5-RI-5, RI25-RI25, and RI112-RI112 reinforcement rates with 

Rescorla-Wagner parameters (β0: 0.05, β1: 0.5, α: 0.7, a: 1.0). Richer schedules resulted 

in higher response rates in the initial link relative to the terminal link. The response rate 

ratios ranged from 0.97(RI1-RI1) to 0.59 (RI25-RI25). Although the ratio increases for 

the RI112-RI112 schedule (0.64), it is likely that this pattern was unique to the individual 

experiment: this pattern was not observed across other conditions not specifically 

reported here. Unfortunately, there is little published data to compare with these results. 

Overall, the results demonstrate that the initial link response rates were lower than the 
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terminal link response rates, as would be expected in chained schedules.  These results 

also show that the ratio of initial to terminal link response rates varies with reinforcement 

rate. 

Discussion 

Effect of varying the proportion of behaviors produced using a fitness 

function after reinforcement.  

This set of experiments examined a new technique for reducing the strength of a 

selection event to reflect the reduced strength of conditioned reinforcement. This 

technique produced only a proportion of new behaviors for the next time-step using a 

fitness function following reinforcement. By randomly picking parent behaviors to 

produce the remaining behaviors, the strength of a reinforcement event can be reduced. 

This random parent selection places no selection pressure on these behaviors and thus 

reduces the likelihood of new behaviors being in the target class. Additionally, the 

current results demonstrated that producing less than 100% of the behaviors using the 

fitness function resulted in behavior consistent with matching theory and, by extension, 

with the behavior of live organisms. Furthermore, reductions in the proportion of 

behaviors produced using the fitness function (i.e., reinforcer strength) corresponded with 

an increase in extraneous reinforcement, re, (or reinforcement not contingent with a target 

behavior) and a decrease in the matching parameter k, the maximum response rate. This 

effect on the matching function parameters is consistent with previously published live 

organism data (e.g.,Bradshaw, Szabadi, & Bevan, 1978). Put more simply, reductions in 

the reinforcer strength reduced the response rate, a result that is consistent with 

previously published reports using live organisms (e.g., Reed & Wright, 1988).  
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Matching analyses. 

 The initial link behavior was evaluated for correspondence with matching theory. 

The primary reason to conduct these analyses was to ensure that making initial link 

behavior dependent on terminal link behavior did not alter the model in a way that made 

it unrealistic. The current results confirmed that initial link behavior was well described 

by matching theory. Although there was some evidence of non-random residuals in the 

fits of the classic matching function to model data, the evidence suggested that modern 

matching function fits fully accounted for the variance in model data. This result has been 

observed before by McDowell and colleagues and, as such, was expected (McDowell & 

Caron, 2007). 

Simple behavior chains.  

Several different techniques utilized in the current project demonstrated that 1) 

simple chained schedules of behavior could be established and that 2) this behavior was 

largely consistent with previously published data on simple chained schedules (i.e., two-

link, single alternative chains). The cumulative records from the current project 

demonstrated the presence of several relevant phenomena. First, the cumulative records 

showed how the chains are established. Although the chains take time to establish, once 

the model (or digital organism) has acquired the behavior, response rates were generally 

consistent over time. Additionally, the model was sensitive to reinforcement rates with 

higher rates of reinforcement producing chains of behavior that move quickly from link 

to link. The cumulative records also showed evidence of pre-reinforcement pauses. This 

occurred more often and was more marked in leaner schedules. These pauses were likely 

caused by instances when very few behaviors were in the target class. Close examination 
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of these instances showed that immediately preceding the pauses there were relatively 

steady rates of behavior.  

Finally, the simple comparison of initial and terminal response rates revealed 

findings that were generally consistent with live organism behavior. Although there is 

little previously published data on two link chains, the studies reviewed for this project 

indicated that 1) response rates in the initial link should be lower than in the terminal link 

and that 2) the response rate in the initial link should be approximately 60% of the 

terminal link rate. However, this latter assertion was derived from only one set of data 

published by Ferster and Skinner (1957). The results from the current experiments clearly 

showed that the response rates in the initial link were lower than the response rates in the 

terminal link. However, the amount of rate decrement seen in the initial link depended on 

the terminal link reinforcement rate. To further verify these results, live organism data 

with varied reinforcement rates in chained links would be necessary.  

Experiment Series III: Replication of the Royalty et al. Experiments 

 The subject, environment, apparatus, materials, and computation procedures 

detailed in the General Methods were used for Experiment Series III.  

While Experiment Series I evaluated how well the behavior of a computationally 

based dynamic theory of conditioned reinforcement corresponded to live organism 

behavior, and Experiment Series II examined the qualitative properties of a two-link 

chained schedule, Experiment Series III attempted to replicate a previous experiment that 

was originally designed to examine the role that conditioned reinforcement and time-to-

reinforcement play in chained schedules. The Royalty et al. (1987) experiment 

demonstrated that in a 3-link chained schedule, a short, 3 second delay immediately prior 
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to presenting the conditioned stimulus reduced the response rates by 60%. In Experiment 

Series III, the Royalty et al. experiment was replicated by delaying the presentation of the 

conditioned stimulus (terminal link) by a single time-step in a two-link chain. 

Methods 

 Two experiments using methods similar to Royalty et al. (1987) were conducted 

and the results were compared. In the first experiment, a chain RI 31 RI 31 schedule was 

run for 20,000 cycles. In the second experiment, the RI 31 initial link was followed by a 1 

cycle delay before the terminal link stimulus is presented. In other words, once a behavior 

in the target class was emitted and reinforcement was available as determined by the RI 

31 schedule, an additional cycle of the model was run (this is the delay) before the 

terminal link stimulus was presented. Once the terminal link stimulus was presented, the 

normal selection and reproduction rules as specified in Step 3a of the program procedures 

described in the General Methods section were executed. To maintain the same time (i.e., 

cycle) to reinforcement, the terminal link schedule was changed to RI 30. Again, the 

model was run for 20,000 cycles. 

Additional experiments were run to determine if the Royalty et al. experiment was 

better replicated by the model in richer or leaner schedules. In a series of experiments the 

value of the initial and terminal link RI schedules was varied from RI1RI1 to 

RI120RI120. Results from these experiments were analyzed to determine their 

correspondence with the Royalty et al. findings.  

Results 

The results from experiments replicating the Royalty et al. (1987) study were 

partially consistent with previously published live organism data. The response rates from 
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experiments with RI31-RI31 schedules did produce higher rates than those where a delay 

preceded the presentation of the terminal link (i.e., reinforcement). Consistent with the 

Royalty et al. data, the response rate for the initial link was 68% lower when a 1 time-tick 

delay was added before presentation of the terminal stimulus. However, follow-up 

analyses indicated that this result was likely an artifact of the computational model. 

Figure 26 shows the results of implementing a 1 time-tick delay in a variety of RI 

schedules (RI1-RI1 to RI22-RI22). As can be seen, there was no relationship between the 

schedule value and the response rate for the initial link when a 1 time-tick delay occurred 

before presentation of the terminal link. Additionally, the actual response rate value was 

consistent with the operant level of the model. The stable rate of response seen in Figure 

26 and its value (i.e., the operant level) indicated that adding a 1 time-tick delay 

essentially removed all reinforcement contingencies. Thus, the 68% reduction observed 

in the Royalty et al. replication experiment response rate was merely a coincidence 

caused by reaching a response rate floor.  

Discussion 

The failure to replicate the Royalty et al. (1987) findings demonstrated that the 

model in its current form cannot fully simulate chained schedule behavior. While the 

results from the current experiment initially appeared to be consistent with the Royalty et 

al. study, they were, in fact, due to the removal of reinforcement contingency. By 

instituting a delay-to-reinforcement paradigm for a wide variety of schedules and 

observing that the response rates for the initial link were all the same, and were equal to 

the operant level, it was determined that in the McDowell model a delay of reinforcement 

removes all reinforcement contingencies. Rates of responding return to operant levels 
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with even the shortest delay (i.e., a single time-step). However, live organism data 

suggest that discounting functions like Equations 3 or 5 describe the relationship between 

delay of reinforcement and response strength (Rachlin, 2006), not a complete dissociation 

of reinforcement contingencies as seen in the current data.  

 Because the time-to-reinforcement theory was not implemented in the current 

model, the current results do little to resolve the theoretical debate on whether it is 

conditioned reinforcement or time-to-reinforcement responsible for behavior in chained 

schedules. However, because the current project did implement a strictly conditioned 

reinforcement approach to chained schedules and fully realistic behavior could not be 

produced, a possible interpretation of the current results is that conditioned reinforcement 

is not exclusively responsible for the behavior observed in chained schedules or other 

situations under stimulus control.  It is possible that a combination of the two approaches 

may be necessary. Given that Royalty et al. (1987) showed that conditioned 

reinforcement effects explained their results, it is possible that, while delay-to-

reinforcement is involved in some way, it plays a lesser role compared to conditioned 

reinforcement. An alternative explanation is that the conditioned reinforcement approach 

is correct, but without adequate modeling of delay to reinforcement effects, the Royalty 

et al. experiment cannot be replicated. Thus, by correcting the McDowell model’s 

inadequate simulation of delay to reinforcement effects, the current conditioned 

reinforcement modeling approach might work. Efforts to resolve these alternative 

explanations are a clear direction for future research.   
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General Discussion 

 The current project’s purpose was to implement stimulus control within the 

McDowell computational model of behavior. To this end, two-link chained schedules of 

behavior were established, maintained, and were found to be qualitatively similar to live 

organism behavior. However, the failed attempt to replicate the Royalty et al. (1987) 

experiment indicated that certain phenomena could not be simulated in the current model 

configuration.  Despite some problems, the current project produced other findings, 

namely, the correspondence between the Rescorla-Wagner and Mazur models of 

conditioned reinforcement, that have important theoretical implications for the learning 

theory field.   

Problems with Delay of Reinforcement: Failure to Replicate Royalty et al. (1987) 

 Despite the model’s success in producing realistic “looking” behavior, it could not 

replicate the theoretically important Royalty et al. (1987) experiment, which found that 

pre-reinforcement delays in initial links decreased response rates by 60%. Although the 

current results did indicate a decrease in response rates with the addition of a one time-

step delay, the rates dropped to operant levels. This indicated that the delay effectively 

removed all reinforcement contingencies. In other words, the same result could have been 

obtained in a setup where no reinforcement existed at all. Given that hyperbolic 

discounting theory (i.e., Mazur, 1984) has repeatedly demonstrated that delays to 

reinforcement should follow a hyperbolic decrease in reinforcement effectiveness, it is 

clear that the current computational model setup lacks this type of decay.  

The model is not completely devoid of memory for previous states since the 

behaviors in one generation are related to the next by means of parental mating. (Note 
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that the term, “memory,” as used here refers to a basic process where previous events 

have some affect on events occurring later.) There is also a form of memory when the 

parental fitness function is used to select parent behaviors for mating. The selection tends 

to concentrate behaviors in and near the target class. When all of the behaviors are 

clumped together, it takes some time steps before the clumping dissipates. Anecdotally, 

the number of time ticks necessary to dissipate behaviors after reinforcement is on the 

order of 1-3 ticks depending on the model parameters being used. Clearly, three ticks is a 

very short memory and would only represent the simplest of organisms.  

Although the clumping after reinforcement is some form of memory, there is 

relatively little, if any, memory for behaviors that undergo random mating processes (i.e., 

non-reinforced behaviors). As noted above, there are some similarities between behavior 

generations because the new generations are built from behaviors in previous generations. 

However, there is virtually no meaningful memory effect from this property especially in 

regard to non-reinforced behaviors. Behaviors after a non-reinforced response are 

generally as randomly distributed as those before the response. Because the emitted 

behavior is randomly drawn from the existing behavior population, there is little 

continuity between responses. For example, if a behavior from Target 1 is emitted in 

Time-Step 1 and not reinforced, the next emitted behavior has equal likelihood of being 

selected from any of the other targets (proportional to the target sizes). The real world 

analogy of this might be the following: at Time 1, a rat is pressing a lever, then at Time 2, 

the rat is sniffing the corner of the cage completely opposite to the lever location. In 

reality, the rat would have to dismount the lever, turn around, walk to the other side of the 

cage, then sniff the corner. This chain of behavior is not represented in the current model. 
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In other words, there is no requirement for series of emitted behaviors in the current 

model to be related to each other.  

There are several potential solutions to this problem of discontinuous behavior. 

One solution would be to require the next generation’s emitted behavior to be close to the 

previous generations. However, a top-down approach to modeling such as this would 

essentially mandate the desired solution. In other words, the end result would be 

determined a priori.  

An alternative approach to creating more continuity between behaviors would be 

to implement a simple low level rule and determine whether the desired consequences 

emerge from the behavior produced by this low-level rule. Taking inspiration from brain 

function, the model could implement a requirement that behavior emission would not be 

determined by just one phenotype randomly drawn from the population. Instead, the 

emission would be determined by the location of a group of behaviors. This is an attempt 

to be analogous with neurobiological functioning where groups of neuron activations are 

responsible for behavior, not single, isolated neuron firings. The new emission rule would 

be as follows:  

1) To determine which behavior will be emitted, the repertoire will be searched for where 

the greatest concentration of behaviors is located.  

2) The local mean of that clump of behaviors will be calculated and that mean will represent 

the emitted behavior.  

3) The target class where the emitted behavior resides will represent the emitted target class.  

4) Selection, mating, and mutation will occur using existing methods.  
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Naturally, without reinforcement for a target class behavior, more behaviors 

would be emitted from non-target classes, but this is the case in the current model 

version. To ensure that sufficient behaviors exist to determine groupings of behavior, the 

total number of behavior phenotypes in the population should be increased (e.g., by using 

1000 individual behavior phenotypes instead of 100). These methods would likely 

increase the contiguity between series of emitted behaviors. In the case of delayed 

reinforcement like the Royalty et al. (1987) study, behaviors emitted in a delay condition 

will likely more closely resemble the behavior that triggered the delay to reinforcement.  

Correspondence of the Rescorla-Wagner and Mazur Models 

Although the current project’s purpose was to make a computational model that 

produced realistic chained schedule behavior, other results were obtained that have 

practical and theoretical implications. The most salient of these findings was the 

correspondence of a dynamic theory of conditioned stimulus strength (i.e., Rescorla-

Wagner) and a static theory of conditioned reinforcement (i.e., the Mazur function). This 

correspondence was first proposed by McDowell et al. (2006), but had not been formally 

evaluated. The current results did not support the original proposition that the Rescorla-

Wagner model would produce conditioned stimulus values that corresponded to the RI 

variant of the classic Mazur function. However, correspondence between the Rescorla-

Wagner model and an exponentiated variant of the Mazur function was found. This 

finding was important for two reasons: 1) a complete model (dynamic and static) of 

conditioned reinforcement was supported and 2) the exponentiated variant of the Mazur 

function provides a better description of conditioned reinforcement at equilibrium 
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conditions than the original function. Both findings contribute significantly to the 

conditioned reinforcement and hyperbolic discounting literature, respectively.  

To date, a complete model of conditioned reinforcement accounting for both 

dynamic and static conditions has not been fully evaluated. Having a complete model of a 

behavioral phenomenon that describes both what can be observed and what factors create 

the phenomenon is a crucial step in fully understanding behavior. The Rescorla-Wagner 

and Mazur models together account for not only the outcomes (conditioned 

reinforcement), but also the processes that generated these outcomes (an iterated model 

of conditioned stimulus strength).  

It is notable that within this complete model, it is an exponentiated variant of the 

Mazur hyperbolic discounting function that best describes dynamically produced 

conditioned stimulus strength. As noted previously, there has been significant debate 

regarding which form, the original Mazur or exponentiated Mazur, better describes live 

organism behavior data (Green & Myerson, 2004). The current results support the 

exponentiated variant over the original function. The fact that this finding originated from 

a computational model rather than live organism data might lead some to dismiss its 

significance. However, computational data offers certain advantages over live organism 

data. Specifically, computational data is highly controlled and plentiful. Both of these 

factors markedly increase the statistical strength of the analyses. Therefore, phenomena 

are less likely to be lost within noise that is inherent to live organism data. Despite these 

advantages, the true scientific value of a computational model is in generating findings 

that can be tested in live organisms. In regard to the current results, the findings suggest 

that the reinforcement rate-conditioned reinforcement strength relationship is best 
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accounted for by an exponentiated hyperbolic discounting function. However, existing 

live-organism data do not directly address this relationship. Therefore, future research 

could focus on evaluating this relationship in live organisms.   

Neurobiological Correlates with the Computational Model 

Two elements of the model design most relevant to neurobiological findings 

appear to be the functioning of the Rescorla-Wagner model and the separate behavior 

repertoires that were used to represent separate conditioned stimuli.  

Although the dynamic Rescorla-Wagner model provides an account of how a 

stimulus develops conditioned reinforcement through pairings with unconditioned 

stimuli, it can only be grossly compared to neurobiological functioning. The brain 

structure most closely related to this functioning would be the ventral striatum. However, 

as discussed above, this region has been primarily associated with the initial learning of 

conditioned stimuli associations. As learning develops further, the dorsal striatum appears 

to become more relevant (Graybiel, 2008). The Rescorla-Wagner model does not account 

for the separation of the initial learning and behavior maintenance processes. Despite the 

lack of this functioning, it is possible that the R-W model provides an estimation of 

overall/combined striatum functioning.  A review of the literature did not reveal any 

specific studies that have explored these connections so this remains conjecture at the 

current time. Future research could address this connection with collaborative 

neurobiologist and learning theorist project.  Although neurobiologists and learning 

theorists come from different training backgrounds, this cross-disciplinary approach 

could be a productive area for future research (c.f., McDowell, 2010).  
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The second aspect of the computational model design that may benefit from some 

comparison to neurobiological findings is the proscribed separation of the stimulus-

associated repertoires (i.e., the initial and terminal links). This separation was 

programmed into the model giving the separated repertoires “built-in” stimulus control. 

Although the resulting behavior was consistent with live-organism behavior in several 

ways, the functioning of the model was restricted to behavior that has already developed 

stimulus associations. Neurobiological findings have found consistent evidence that 

separate brain regions are involved in the learning and maintenance of stimulus 

associated behavior (Graybiel, 2008; Everitt & Robbins, 2005).  The modified model 

does not address how stimulus associations develop beyond the conditioned stimulus 

strength values produced by the Rescorla-Wagner model. Because development of 

stimulus associations is an important part of realistic behavior, future research would 

likely benefit from modeling these phenomena.   

The TNGS (theory of neuronal group selection) proposed by Gerald Edelman 

does specify how stimulus associations develop: by connecting separate neuronal groups 

associated with a stimulus and a behavior, respectively, by means of reentrant signaling. 

It may be possible to use the concept of reentrant signaling within the current 

computational model. If this implementation of reentrant signaling were technically 

feasible, the behavior produced by the model using reentrant signaling and Rescorla-

Wagner methods could be compared. An experiment like this would have important 

theoretical implications because a neurobioloical theory (TNGS) could be tested 

alongside a traditional learning theory (Rescorla-Wagner) that has a large amount of 

research supporting its usefulness.  
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Future Directions for Research  

There are a variety of possible future research directions based on the current 

project’s results. Some of these directions have been discussed previously. One of these 

possibilities is the change in behavior emission methodology.  The new methodology 

would entail behavior emission by groupings of behaviors rather than by randomly 

selected behaviors. Although this change would represent a major modification to the 

McDowell model, it has the potential to improve the continuity between behaviors 

emitted at each time-step, which could improve model realism when pre-reinforcement 

delays are instituted. A second possibility would be to examine model behavior on 

concurrent chained schedules of behavior. Although concurrent chains are more complex, 

there are a variety of quantitative theories that have been successful in describing live 

organism behavior on them (e.g., delay reduction theory - Fantino, 1969), which would 

improve the validity of any evaluation of model behavior.  

 Several additional directions for future research stem from examining the 

correspondence of live organism behavior and the current model results. Although the 

current model implemented relatively simple experiments (two link chained schedules), 

there was a paucity of existing live organism data to compare to the current results. 

Future work could coordinate computational model and live organism experiments to 

compare the results directly. A first series of these coordinated experiments could 

systematically vary the reinforcement rate in chained schedules and examine the changes 

in behavior rates in the links as a result. Comparison of the computational model data and 

live-organism data would be very informative in determining the realism of the 

computational data. A second series of experiments could examine the relationship 
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between conditioned stimulus strength and reinforcement rate to determine whether the 

original or exponentiated Mazur functions best account for live organism data variance. 

Given the current project’s results, it is expected that the exponentiated Mazur function 

would best account for the data.  

Conclusion 

 The current project represents a major and important advance in computational 

modeling of behavior. Although previous versions of the McDowell computational model 

could produce behavior on single and concurrent alternative schedules that was consistent 

with live organisms, there was no account for changes in behavior due to different 

stimulus conditions. The current project’s modifications to the model allow for the 

production of behavior on chained schedules. However, the range and type of behavior 

capable of being produced was limited. In fact, the current project’s results highlighted 

some areas of the model that need improvement (i.e., the effect of delay to 

reinforcement).  

In the process of developing the modified model, the project also found evidence 

for a complete model of conditioned reinforcement that accounts for both dynamic and 

static effects. The finding that the Rescorla-Wagner model’s dynamically produced 

conditioned stimulus strength are accounted for by the exponentiated variant of the 

Mazur hyperbolic discounting function has important theoretical implications, as noted 

previously.  

Overall, the project has produced predictions about phenomena that should be 

observable in live-organisms. Although some have predicted that analytical techniques 

give rise to a “flight from the laboratory” (Skinner, 1959), the current results clearly 
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demonstrate the co-productive nature of computational modeling and live organism data: 

results from each discipline can suggest future directions of research in the other. It is this 

co-evolution of the two disciplines that holds great potential for spurring a greater 

understanding of behavior. 
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Appendix 

Residual Analysis 

 The residuals resulting from fits of various functions to model data were analyzed 

in several steps. First, the standardized residuals were calculated after fitting a function to 

model data. Second, these residuals were plotted against the predicted value of the 

function being used. Third, these plots were qualitatively examined for non-random 

patterns. Previous work by Berg (unpublished masters, 2008) and Berg and McDowell 

(2010) found that lower order polynomial fits could miss significant non-random 

residuals. Although visual inspection of plots does not provide statistical confidence 

regarding ones’ conclusions, the method can identify whether patterns might exist but are 

not being identified using appropriate statistical means. Finally, after visual inspection of 

the residuals, cubic polynomials were fitted to the predicted value-standardized residual 

data. Cubic polynomials were chosen (as opposed to quadratic, quartic, or quinitic) in the 

hopes of balancing Type I and II error. Figure A1 illustrates how the pVAF and chance of 

Type I error increases as polynomial order approaches the number of datapoints. 

Although the datapoints are random, a 6th order polynomial accounts for 100% of the 

variance. Thus, in determining what order of polynomial to fit to 11 residual datapoints, a 

cubic polynomial was chosen to minimize the chance of Type I error.  
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Table 1 
 
Parameter descriptions 
 

 

 Model/Function        Parameter Description 
  
 Rescorla-Wagner   
  V Conditioned stimulus strength 
  α Stimulus salience 
  β0 Salience of reinforcer absence 
  β1 Salience of reinforcer presence 
  λ Maximum stimulus strength 
  a Currently-proposed scaling exponent 
 Mazur Function   
  a,b Non-specific equation parameters 
  x Latency of primary reinforcement 
 Mazur Function(s) for 

Variable Intervals 
 

 

  a,b (same as Mazur Function) 
  r Reinforcement rate 
  s Scaling parameter for exponentiated variant 
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Table 2      

Model parameters varied in Experiment Series I 

Parameter  
of interest Parameter values tested Other model conditions*  
  α β0 β1 a 

α 0.5, 0.7, 0.9 

 

- 

- 

- 

- 

- 

 

 

0.01 

0.1 

0.05 

0.05 

0.05 

 

 

0.5 

0.5 

0.5 

1 

2 

 

 

1 

1 

1 

1 

1 

 

β0 0.001,0 .005, 0.01, 0.05, 0.1 

 

0.7 

0.7 

0.7 

0.7 

 

 

- 

- 

- 

- 

 

 

0.25 

0.5 

1 

2 

 

 

1 

1 

1 

1 

 

β1 0.25,0 .5,0 .75, 1, 2 

 

0.7 

0.7 

0.7 

 

 

0.01 

0.1 

0.05 

 

 

- 

- 

- 

 

 

1 

1 

1 

 

a 1, 1.25, 1.5, 1.75, 2   0.7    0.05   1    - 

* for each value of the parameter of interest 
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Table 3 
 
Best-fit parameter values and goodness-of-fit statistics for fits of classic and 
exponentiated Mazur functions to conditioned stimulus strength values, V, for 
different values of β1 under several Rescorla-Wagner parameter conditions. 
 

 

    
Classic Mazur 

  
Exponentiated Mazur 

 
 β 1  a b R2  a b s    R2 

         
 β0: 0.01, α: 0.7         
 0.25 1.18 51.5 0.99*  1.05 2.62 8.95 1.00 
 0.5 1.09 21.4 0.99*  1.03 1.37 8.33 1.00 
 0.75 1.06 12.6 0.99*  1.01 1.42 5.34 1.00 
 1 1.04 8.85 0.99*  1.01 1.39 4.13 1.00* 
 2 1.09 21.4 0.99*  1.00 0.62 4.52 1.00* 

 β0: 0.1, α: 0.7         
 0.25 11.4 13370 1.00*  1.72 19.6 18.7 1.00 
 0.5 2.42 859 1.00*  1.25 3.81 34.1 1.00 
 0.75 1.74 345 1.00*  1.16 3.54 22.9 1.00 
 1 1.49 198 1.00*  1.14 3.54 22.9 1.00 
 2 1.22 70 0.99*  1.06 4.01 7.60 1.00 

 β 0: 0.5, α: 0.7         
 0.25 2.49 899 1.00*  1.26 3.86 34.0 1.00 
 0.5 1.51 207 1.00*  1.14 10.4 6.39 1.00 
 0.75 1.30 105 0.99*  1.08 4.58 8.84 1.00 
 1 1.21 67.3 0.99*  1.06 3.49 8.40 1.00 
 2 1.11 29.1 0.99*  1.03 3.97 4.06 1.00 

*  statistically significant (p < .05) cubic polynomial pattern in the residuals 
Italics indicate that the fit did not converge 
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Table 4 
 
Best-fit parameter values and goodness-of-fit statistics for fits of classic and 
exponentiated Mazur functions to conditioned stimulus strength values, V, for 
different β0 Rescorla-Wagner parameter values. 
 

 

    
Classic Mazur 

  
Exponentiated Mazur 

 
 β0  a b R2  a b s    R2 

         
 β 1: 0.25, α: 0.7         
 0.001 1.02 3.12 1.00*  1.00 0.65 3.62 1.00* 
 0.005 1.09 20.9 0.99*  1.02 1.40 8.01 1.00 
 0.01 1.18 50.3 0.99*  1.04 2.62 8.82 1.00 
 0.05 2.44 873 1.00*  1.25 1.81 71.0 1.00 
 0.1 11.4 13270 1.00*  1.69 10.8 32.6 1.00 

 β 1: 0.5, α: 0.7         
 0.001 1.00 1.38 1.00*  - - -    - 
 0.005 1.05 9.31 0.99*  1.02 1.75 3.53 1.00 
 0.01 1.09 21.2 0.99*  1.03 1.95 6.00 1.00 
 0.05 1.51 206 1.00*  1.14 8.15 7.90 1.00 
 0.1 2.42 860 1.00*  1.27 12.3 11.3 1.00 

 β 1: 1, α: 0.7         
 0.001 1.00 0.50 0.99*  1.00 1.67 0.40 1.00 
 0.005 1.02 3.99 1.00*  1.00 0.64 4.41 1.00 
 0.01 1.04 8.84 0.99*  1.03 2.97 5.23 1.00 
 0.05 1.22 68.3 0.99*  1.06 4.85 6.25 1.00 
 0.1 1.47 194 0.99*  1.11 4.5 13.0 1.00 

 β 1: 2, α: 0.7         
 0.001 0.99 0.21 0.86*  0.99 0.20 1.63 1.00 
 0.005 1.01 1.71 0.99*  - - - - 
 0.01 1.01 3.75 0.99*  - - - - 
 0.05 1.11 28.9 0.99*  1.04 5.64 3.02 1.00 
 0.1 1.22 70.1 0.99*  1.06 7.59 4.31 1.00 

*  statistically significant (p < .05) cubic polynomial pattern in the residuals 
-  indeterminate fit  
Italics indicate that the fit did not converge 
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Table 5 
 
Best-fit parameter values and goodness-of-fit statistics for fits of classic and 
exponentiated Mazur functions to conditioned stimulus strength values, V, for 
different values of α under several Rescorla-Wagner parameter conditions. 
 

 

    
Classic Mazur 

  
Exponentiated Mazur 

 
  α  a b R2  a b s    R2 

         
 β0: 0.01, β1: 0.5          
 0.5 1.09 21.0 0.99*  1.03 2.70 5.65 1.00 
 0.7 1.09 21.2 0.99*  1.03 2.97 5.23 1.00 
 0.9 1.09 21.0 0.99*  1.03 3.83 4.00 1.00 

 β0: 0.1, β1: 0.5         
 0.5 2.37 834 1.00*  - - -    - 
 0.7 2.46 886 1.00*  1.25 4.10 31.8 1.00 
 0.9 2.44 881 1.00*  1.25 2.28 60.9 1.00 

 β0: 0.05, β1: 0.5          
 0.5 1.49 201 1.00*  1.13 7.91 8.02 1.00 
 0.7 1.46 193 0.99*  - - -    - 
 0.9 1.50 205 1.00*  1.11 2.30 25.5 1.00 

 β0: 0.05, β1: 1          
 0.5 1.22 68.9 0.99*  1.06 3.13 9.40 1.00 
 0.7 1.22 69.6 0.99*  1.07 5.49 5.70 1.00 
 0.9 1.21 68.4 0.99*  1.05 2.67 10.9 1.00 

 β0: 0.05, β1: 2          
 0.5 1.11 28.6 0.99*  1.03 2.70 5.64 1.00 
 0.7 1.11 28.9 0.99*  1.03 2.97 5.23 1.00 
 0.9 1.10 27.1 0.99*  1.03 3.83 4.00 1.00 

*  statistically significant (p < .05) cubic polynomial pattern in the residuals 
-  indeterminate fit  
Italics indicate that the fit did not converge 
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Table 6 
 
Best-fit parameter values and goodness-of-fit statistics for fits of classic and 
exponentiated Mazur functions to conditioned stimulus strength values, V, for 
different a. 
 
    

Classic Mazur 
  

Exponentiated Mazur 
 

               a  a b R2  a b s    R2 

         
 β0: 0.05, β1: 1, α: 0.7          
 1 1.22 70.0 0.99*  1.09 7.60 4.51 1.00 
 1.25 1.03 23.0 0.99  1.04 24.4 0.97 1.00 
 1.5 0.95 8.52 0.99*  0.99 23.8 0.57 1.00* 
 1.75 0.92 4.00 0.98*  0.98 37.9 0.31 1.00* 
 2 0.92 2.32 0.96*  0.97 42.3 0.22 1.00* 

*  statistically significant (p < .05) cubic polynomial pattern in the residuals 
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Table 7 
 
Rescorla-Wagner parameters, terminal link RI schedule values, parameters of the 
best-fitting hyperbola, and fit statistics (R2) for fits of the classic and modern 
matching functions to initial link response-reinforcement data.  
    

Classic hyperbola 
Parameters 

  

Modern 
hyperbola parameters 

 
 Model Parameters 

and  
Terminal Link 

Schedules  k re R2  k a b

r a
e  

   R2 

         
 β0: 0.01, β1: 0.25         
 RI 1 250 34 1.00*  306 0.81 26 1.00 
 RI 5 242 37 1.00  303 0.85 35 1.00* 
 RI 25 222 52 0.99  258 0.89 46 0.99 
 RI 112 223 103 1.00  - - -    - 

 β0: 0.01, β1: 1.0         
 RI 1 252 31 1.00*  283 0.86 25 1.00 
 RI 5 239 28 1.00  260 0.89 24 1.00 
 RI 25 214 25 0.99  233 0.90 21 0.99 
 RI 112 238 35 0.98  266 0.91 34 0.98 

 β0: 0.005, β1:0.5         
 RI 1 253 32 1.00*  294 0.84 25 1.00 
 RI 5 250 32 1.00*  301 0.85 28 1.00 
 RI 25 239 33 1.00  257 0.92 29 1.00 
 RI 112 251 57 0.98*  527 0.70 57 0.99* 

 β0: 0.05, β1: 0.5         
 RI 1 237 32 1.00*  268 0.86 26 1.00 
 RI 5 241 42 0.99  320 0.79 33 1.00 
 RI 25 239 59 1.00  296 0.87 52 1.00 
 RI 112 252 89 0.99  444 0.80 92 0.99 

 β0: 0.05, β1: 0.5, a: 1.5         
 RI 1 249 38 1.00  309 0.81 29 1.00 
 RI 5 242 38 1.00  303 0.80 29 1.00 
 RI 25 235 53 1.00  261 0.89 43 1.00 
 RI 112 159 44 0.94  202 0.86 41 0.94 

*  statistically significant (p < .05) cubic polynomial pattern in the residuals 
-  indeterminate fit  
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Table 8 
 
Best-fit parameter values from fits of classic and modern matching functions to model 
response-reinforcement rate data for different values of proportion of behaviors 
produced using a fitness function following reinforcement. 
 
 

Proportion 
Produced 

Using 
Fitness 

Function 

  
Classic hyperbola 

Parameters 
  

Modern 
hyperbola parameters 

 
 

 k re R2  k a b

r a
e  

  R2 

         
 20 151 83 99.0   225 0.85 84 0.99 
 30 186 69 1.00  211 0.92 63 1.00 
 40 231 72 1.00*  304 0.83 59 1.00 
 50 226 55 1.00   241 0.94 49 1.00 
 60 234 48 1.00*  267 0.87 37 1.00 
 70 232 39 1.00*  262 0.85 30 1.00 
 80 239 37 1.00*  266 0.86 29 1.00* 
 90 245 35 1.00*  279 0.83 26 1.00 
 100 244 31 1.00*  278 0.82 22 1.00 

*  statistically significant (p < .05) cubic polynomial pattern in the residuals 
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Figure Captions 

Figure 1. Schematic illustrating development of primary and conditioned reinforcement 

in modified McDowell computational model implemented in a chained schedule. 

Figure 2. Plot of the exponentiated Mazur function for values of s and r with parameters 

a and b set to 1.1 and 5, respectively.  

Figure 3. The effect of reinforcement rate (r) on conditioned stimulus strength (V) for 3 

different values of α under the model conditions β0: 0.01, β1: 0.5, a: 1.0.   

Figure 4. Instantaneous values of conditioned stimulus strength, V, for the first 500 time 

ticks. Top panel shows results for α = 0.5, middle panel for α = 0.7, and bottom panel for 

α = 0.9.  

Figure 5. Mean and standard deviation of the conditioned stimulus strength, V, for three 

experiments using α = 0.5, α = 0.7, and α = 0.9.  

Figure 6. The effect of reinforcement rate on conditioned stimulus strength (V) for 5 

different values of β0 under the model conditions α: 0.7, β1: 0.25, a: 1.0.   

Figure 7. The effect of reinforcement rate on conditioned stimulus strength (V) for 5 

different values of β1 under the model conditions α: 0.7, β0: 0.05,  a: 1.0.   

Figure 8. The effect of reinforcement rate on conditioned stimulus strength (V) for 5 

different values of β1 under the model conditions α: 0.7, β0: 0.01,  a: 1.0.   

Figure 9. The effect of reinforcement rate on conditioned stimulus strength (V) for 5 

different values of a under the model conditions β0: 0.05, β1: 1.0, α: 0.7.   

Figure 10. Instantaneous values of conditioned stimulus strength, V, for the first 500 time 

ticks. Top panel shows results for a = 1, middle panel for a = 1.5, and bottom panel for a 

= 2 (β0: 0.05, β1: 1.0, α: 0.7).  
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Figure 11. Standardized residuals (vertical axis) versus predicted values of V (horizontal 

axis) from fits of the classic Mazur function for random interval schedules.  Model 

conditions are detailed below each plot.  

Figure 12. Standardized residuals (vertical axis) versus predicted values of V (horizontal 

axis) from fits of the exponentiated Mazur function for random interval schedules.  

Model conditions are detailed below each plot.  

Figure 13. Standardized residuals (vertical axis) versus predicted values of V (horizontal 

axis) from fits of the Mazur function for random interval schedules.  Model conditions 

are detailed below each plot.  

Figure 14. Standardized residuals (vertical axis) versus predicted values of V (horizontal 

axis) from fits of the exponentiated Mazur function for random interval schedules.  

Model conditions are detailed below each plot.  

Figure 15. Standardized residuals (vertical axis) versus predicted values of V (horizontal 

axis) from fits of the Mazur function for random interval schedules.  Model conditions 

are detailed below each plot.  

Figure 16. Standardized residuals (vertical axis) versus predicted values of V (horizontal 

axis) from fits of the exponentiated Mazur function for random interval schedules.  

Model conditions are detailed below each plot.  

Figure 17. Standardized residuals (vertical axis) versus predicted values of V (horizontal 

axis) from fits of the Mazur and exponentiated Mazur functions for random interval 

schedules under 4 different values of the exponentiated Rescorla-Wagner exponent, a.  

For all plots the Rescorla-Wagner parameters used were: β0: 0.05, β1: 1, α: 0.7.   
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Figure 18. Response and reinforcement rate plots for different proportions of behaviors 

produced for the next time-step using the parental fitness function after reinforcement (as 

opposed to production of all new behaviors using the fitness function to select parent 

behaviors). The percentage of behavior replaced using the linear fitness function is 

denoted by the legend on the right.   

Figure 19. Standardized residuals (vertical axis) versus predicted values of B (horizontal 

axis) from fits of the classic (top two rows) and modern (bottom two rows) matching 

functions to reinforcement-response rate data.   

Figure 20. Cumulative distribution plots showing responses and reinforcements for the 

first 1000 time-steps of both the initial (top) and terminal (bottom) links for a chain RI1-

RI1 schedule.   

Figure 21. Cumulative distribution plot showing responses and reinforcements for the 

first 1000 time-steps of both the initial (top) and terminal (bottom) links for a chain RI5-

RI5 schedule.   

Figure 22. Cumulative distribution plots showing responses and reinforcements for the 

first 1000 time-steps of both the initial (top) and terminal (bottom) links for a chain RI25-

RI25 schedule.   

Figure 23. Cumulative distribution plots showing responses and reinforcements for the 

first 1000 time-steps of both the initial (top) and terminal (bottom) links for a chain 

RI112-RI112 schedule.   

Figure 24. The initial link reinforcement and response rates for 4 constant terminal link 

reinforcement rates under the Rescorla-Wagner conditions β0: 0.05, β1: 0.5, α: 0.7, a: 1.0.   



82 

 

Figure 25. Initial to terminal link response rate ratios. Model conditions:  β0: 0.05, β1: 

0.5, α: 0.7, a: 1.0. 

Figure 26. Initial link response rates (B) for 22 experiments varying the initial and 

terminal link schedules from RI1-RI1 to RI22-RI22 while maintaining a 1 time-tick delay 

to reinforcement in the initial link. Operant level of response rate for the computational 

model is denoted for comparison.  

Figure A1. Random distribution of 6 datapoints fit with quadratic (top panel), cubic 

(middle panel), and a 6th order polynomial (bottom panel) illustrating the increasing 

percent variance accounted for (pVAF) as polynomial order approaches the number of 

datapoints.  
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