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Abstract

Implementation of Stimulus Control in a Computasibiodel
By John P. Berg

Reacting appropriately under different stimulusdibans is crucial for live organisms to
improve their chances of survival. A computatiomaldel of behavior based on selection
by consequences originally proposed by McDowelbD@has been successful in
producing a variety of behaviors consistent witie lorganisms (McDowell, 2004;
McDowell & Caron, 2006; Kulubekova & McDowell, 200McDowell, Caron,
Kulubekova, & Berg, 2008). However, previous vensiof this model have been limited
in that there is no method to change behavioraetren to different stimulus conditions.
The purpose of the current project was to modig/NcDowell model to enable it to
react differently under different stimulus conditso Changes were made to the model
that enabled variation in behavior across stimaobrgditions using a conditioned
reinforcement approach. Implementing the Rescoréayivér model to determine
conditioned stimulus strength and therefore theekegf conditioned reinforcement,
two-link, single alternative chained schedulesetfidvior were arranged in a series of
experiments. Correspondence with live organismwiehaas determined using
gualitative and quantitative methods. Specificadiguilibrium values of the conditioned
stimulus strength were evaluated for correspondesiitethe original and exponentiated
versions of the Mazur hyperbolic discounting fuantimodified for use with variable
interval schedules. Behavior on the chained sdeeduas evaluated qualitatively for
consistency with previously published live organidata and was evaluated
guantitatively in a replication of an experimentRgyalty, Williams, and Fantino
(2987), which implemented a pre-reinforcement deRssults indicated correspondence
between the Rescorla-Wagner model and the expateatMazur function. Chained
schedules of behavior were largely consistent ixthorganism data. However, the
Royalty et al. experiment was not successfullyicapdd. The results indicated that the
Rescorla-Wagner model and the Mazur function p@@adomplete model of
conditioned reinforcement. Using this model, chdisehedules of behavior were
successfully produced using the McDowell computetionodel. However, some
behavioral phenomenon with pre- reinforcement detauld not be produced using the
currently proposed computational methodology.
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denoted by the legend on the right.
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Implementation of Stimulus Control in a ComputasibModel
The desire to simulate realistic behavior usingymeade machines is now a

mainstay of modern culture. One can see in vaffitms such as 2001: A Space Odyssey

and_iRobothat the idea of a computer behaving in humansikgs holds great appeal.
Attempts to produce a machine with realistic bebakiave often relied on a top-down
approach. That is, the machine is built with thd-state behavior in mind and
programmed specifically to produce that end-statebior. An alternative approach, a
bottom-up design where low-level rules generatdéveors” with no end-state specified,
has multiple advantages including the ability &t tiynamic theories of behavior. In
other words, these machines or programs can eedaluabries of why behavior occurs,
not just how it looks in the end.

McDowell (2004) proposed a computational moddbethavior that does not
specify end state behavior. Instead, the model @yspinly low level rules that govern
the workings of the model. Behavior develops dyratty from these low level rules.
While this might seem risky because the end-si@t@at be predicted, it allows for
evaluation of basic theories of behavior becausd#sic rules of these theories can be
programmed into the model. The behavior producethbynodel can then be evaluated
for consistency with live organism data. The McDwemputational model specifically
tests the prediction that behaviors “evolve” inp@sse to environmental pressures, much
like the evolution of whole species in responserteironmental forces (see Edelman,
1987; Skinner, 1981). The difference is in the tsoale: selection of fitter behaviors
occurs within an organism’s lifetime while selectiof a species’ characteristics occurs

across multiple generations.



Tests of the McDowell computational model haveesdgd robust similarities
between simulated and live organism behavior. McElb(2004) and McDowell and
Caron (2007) found that the model produced behanaingle alternative reinforcement
schedules that is consistent with matching theBauMm, 1974), which is a mathematical
account of behavior at equilibrium. Kulubekova atcDowell (2007) analyzed the
bouts of responding produced by the model and fabatthe interresponse times
(IRTs), and their distributions, were consistentwthose observed in live organisms.
Finally, McDowell, Caron, Kulubekova, and Berg (3)@und that the model could
produce behavior on concurrent schedules of resefoent that is consistent with
matching theory as well.

The current McDowell computational model does hotyever, account for
behavior under differing stimulus conditions. Thedal responds to the varying
reinforcement contingencies, but there is no metbhadspond differentially to varied
stimulus conditions. The current project’s purpese to modify the McDowell model to
enable this functionality, and to test this modifraodel’s behavior for agreement with

live organism data.

How the McDowell Model Works

The computational model of selection by consequepoaposed by McDowell
(2004) consists of a virtual organism with 100 ptitd behaviors represented by integers
between 0 and 1023. The 100 integers make up thmlorganism’s repertoire of
potential behaviors. The range of 0 to 1023 integduwes are split into several sub-

ranges. Each sub-range represents a behavior Diassg each iteration of the model,



one behavior is randomly picked from the 100-betvargpertoire to be emitted. If the
behavior’s integer value falls within a specifichlbgior class, that class is considered
activated. This is analogous to a rat pressinger)dor example. Because emitted
behaviors are randomly selected at each iterafitimeomodel, the chance of a behavior
class being activated at each iteration is depdrafethe number of behaviors currently
in that class. For example, if 40 out of the 10B8awors in the repertoire fell within a
particular class during an iteration of the motted, probability of the class being
activated during that iteration would be 40/10@ .

One or more behavior classes are selected as tdagses. Behaviors emitted
from target classes are reinforced on random iat€R1) schedules by means of a
genetic algorithm selection procedure, which haseifiect of shifting the distribution of
behaviors towards or into the target class. Thecseh procedure typically employs a
linear fitness function to select “fitter” behawsomwhich are defined as those closer to the
target behavior class, to “mate” and produce dedléoffspring” behavior. During
iterations where behaviors outside a target clesemitted, or when a target-class
behavior is emitted but reinforcement is not aldéaas determined by the RI schedule,
parents are chosen randomly.

Mating is accomplished by first choosing two pareghaviors to mate either by
means of the selection function or randomly. Thepbehavior integers are converted
to ten-position binary form, which is a method epresenting numbers with only 1's and
0’s. For example, the integer 25 in ten-positiamaly form is 0000011001 while 500 is
0111110100 and 724 is 1011010100. An “offsprindidagor is created by randomly

selecting which parent’s bits (i.e. 1's and 0’s) Wwe passed onto the offspring for each



position in a ten-position binary number represtmta The mating process is repeated
until 100 new “offspring” behaviors, representig ihew virtual organism behavior
repertoire, are created. Overall, this method dimggoroduces “offspring” that
resemble, but are not identical, to their parehigbers (McDowell, unpublished data).
In a final step, the new behaviors in the repegtaie subjected to mutation. Mutation is
performed by randomly selecting a percentage ob#t®viors from the new repertoire
and changing their integer values by picking a m@eger value at random from a
Gaussian distribution with a mean set to the oalginnmutated behavior integer.

One iteration of the McDowell computational modehsists of the emission of a
behavior, possible reinforcement, parental selactimating, and mutation. In contrast to
other applications of genetic algorithms, the Mc@twnodel does not specify an end
state or attempt to maximize any quantity. The rhpdeduces behavior based only on
the simple rules inherent in the model.

A compr ehensive account of adaptive behavior: from neuronsto behavior.

Although the McDowell computational model produbefavior on a global
scale (outwardly observable) based on the evolatioprinciples of selection by
consequences, McDowell (2010) proposed that theehrfidd within a larger framework
of evolutionary processes at work within biologioaganisms. McDowell noted
fundamental similarities between the selection daysequences of behavior and Gerald
Edelman’s theory of neuronal group selection (TNG®lich posits that evolutionary
processes are at play on a neuronal scale witblodical organisms (Edelman, 1978).
Like the evolutionary theory of behavior dynamiES BD; i.e., selection by

consequences of behavior), Edelman’s TNGS propbsg¢®volutionary processes occur



within an organism's lifetime. Instead of individl@aganisms being selected for fithess
(traditional view of evolution) or individual behiavs being selected (behavior
dynamics/selection by consequences), neurons apgraf neurons are strengthened
(selected) if activation of these neurons prodacksptive behavior (Edelman, 1987).
End-state neuronal activation and, thus, behavenat specified from these rules that
simply dictate neuron strengthening processes.skatds emerge from underlying
processes, making TNGS (like behavior dynamicgj)teom-up rather than top-down
theory. This approach to brain functioning diffénam other, contemporary theories of
neuroscience that typically examine specific tramkseurons. The TNGS represents a
“conceptual mode [or] way of looking” (Edelman, 9@t brain functioning that focuses
less on specific circuits and more on global bfanctioning (McDowell, 2010). This
approach has advantages in that it attempts t@iexpiain functioning at a fundamental
or more general level than approaches that focubefunction of anatomical structures.
The TNGS provides an explanation for how stimulmstol develops via brain
functioning. The TNGS proposes that stimulus cdrdogurs when neuronal groups
associated with stimulus events and neuronal graspsciated with behaviors are
connected. These connections are termed “reerdigmdling” and are proposed to be
present in all conditioning. If the emitted behasiproduce adaptive behavior, synaptic
strengthening of the neuronal groups connecte@égtrant signaling occurs making
behavior under the stimulus conditions more likelypccur in the future (McDowell,
2010). While the concept of reentrant signalingde®vide an explanation for how

stimulus control develops, it does not specifydigpamics of equilibrium conditions.



McDowell (2010) proposed that, taken together, tN&S and ETBD constitute
a framework for understanding the behavior of oigras from brain functioning to
behavior. Although this comprehensive account gharsm function and behavior has
not been directly tested, the ETBD and TNGS haes ledividually evaluated and
found consistent with observations in live orgarssithe live organism evidence
supporting the ETBD has been noted previously. Gdst evidence to support the TNGS
would entail detailed measurements of neural atimavhile an organism interacts with
its environment, which is not possible utilizingi@nt technology. However, McDowell
(2010) noted several indirect lines of evidence spport the TNGS. The first is the
observation of various phenomena that are consiatiémthe TNGS, including the
existence of value systems (i.e., dopaminergicrammddrenergic systems) that affect
synaptic strength. The other lines of evidence ctrora computational and mechanical
implementations of the TNGS that have shown: 1jhsstic neural networks utilizing
TNGS principles function similarly to neural activin live organisms and 2) mechanical
agents operating with TNGS principles behave sityik® live organisms (See
McDowell [2010] for additional details and referesg.

Despite the possibilities and potential of a cashensive, multi-level selectionist
model of brain functioning and behavior represetgthe ETBD and TNGS, the ETBD
currently lacks methods to produce behavior thegsponsive to different stimuli (as
noted previously).

Chained Schedules of Reinfor cement
The current project’s purpose was to give the McBlbmodel the ability to

respond under different stimulus conditions. Ineotvords, the purpose was to bring the



model's behavior under stimulus control, which ghanomenon consistently observed in
live organisms. For example, if a rat's lever pgressnly occurred when a green light
was illuminated, then the lever pressing woulddid 0 be under stimulus control.
Chained schedules of reinforcement are one methtabting stimulus control.
The basic design of a chained schedule consigtgoobr more separate schedules of
reinforcement that follow each other serially wathch schedule being associated with a
unique stimulus. Reinforcement in the initial linkdsthe chained schedule consists of
entry into the next link in the chain along with #ssociated stimulus. Reinforcement in
the terminal link is the presentation of an unctnded stimulus, which in live
organisms might be something like food. Some chlihdesigns have only one response
option available at any time (simple chains) wiikers have two or more (concurrent
chains). For the purposes of the current projétiple chained schedules were simulated
with the intent that future projects will examinier, more complex, types of chained
schedules.
Chained Behavior in Live Organisms and Associated Theories
In reviewing the existing literature, several pberena are clearly seen in live
organisms responding on chained schedules. Fissgrnount of responding in the initial
link in the chain is less compared to the amoumesponding in the terminal link (the
one immediately preceding primary reinforcemenmtdanditioned stimulus) (c.f.,
Fantino & Romanowich, 2007; Ferster & Skinner, 199his makes sense given that the
initial link is more removed from primary reinforoent than the terminal link. However,

a number of explanations for why this occurs hasentproposed.



The traditional view has held that stimuli asstedawith terminal links in a
chained schedule gain conditioned reinforcementevak they are paired with primary
reinforcement (Williams, 1994). The behavior irtigdilinks is reinforced when a
conditioned reinforcer is presented. This impliesttfor example, a rat responding in a
chained schedule is rewarded when a light assalcveite primary
reinforcement/unconditioned stimulus is illuminatédtheory, a stimulus with
conditioned reinforcement value could eventuallgdienore conditioned reinforcers in
links further removed from the primary reinforcerné#nhese stimuli were subsequently
paired with an existing conditioned reinforcer stlas (Williams, 1994). In this way,
chains of behavior with a number of links shoulcabée to be established.

An alternative approach has been proposed by Sitaalad Cerutti (2003)
whereby responses in initial links are proportiaieahe time until primary reinforcement
occurs and are independent of link stimuli. Theehdvior depends on the passage of
time, not on the presentation of a stimulus withdiboned reinforcement value. This
approach has been developed with, and primarilfiegpp, chained schedules that
employ fixed interval (FI) schedules in all linkkthe chain. Given this restriction the
relationship proposed is:

ty = aly + aly, 1)
wheret; is the time to the first response in the initiakliof a two link chaina is a
proportionality constant, ang andl,are the durations of the initial and terminal limks
the chain, respectively (Staddon & Cerultti, 2003).
In an experiment replicated by the current projRatyalty, Williams, and Fantino

(1987) found evidence that directly contradictesl time to reinforcement approach. The



experiment was designed to test whether conditioeiedorcement or time to
reinforcement is the primary determinant of chaiseldedule behavior. Pigeons were
trained to respond on a three component chaiméncondition, the reinforcement
schedule (VI 33) was the same across all componkenéssecond condition, the initial
and middle links were also VI 33 schedules. Howgethar transition from the middle to
the terminal link was delayed by 3s after the appate response was emitted. In other
words, once the response that would normally ttemsthe changeover to the terminal
link stimulus was registered, a 3s timer was stardter the 3s had elapsed, the terminal
link stimulus was illuminated and its reinforcemsnhedule started. To maintain
constant time-to-reinforcement across conditidms,middle link reinforcement schedule
was reduced to a VI 30. In a third condition, tised@lay occurred after the initial link.
Royalty et al. found the response rates in theslinkmediately preceding the 3s delay
were 59% lower than those where no delay was uftahe to reinforcement had been
the primary factor affecting behavior, the introtloc of the delay should have had no
effect because the time to reinforcement was cohataoss all experiment conditions.
Given the wide acceptance of conditioned reinforeet as a major factor in
determining behavior in chained VI schedules, threant project employed a

conditioned reinforcement approach to simulaterathschedules.

TheModified McDowell Computational M odel
To enable the McDowell computational model to regpeealistically in a
chained schedule (i.e., under differing stimulusdibons), a variation of the

methodology proposed by McDowell, Soto, Dalleryd &ulubekova (2006) was used.
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In the current project, each stimulus conditioa.(ilink in the chain) was associated with
a unique behavior repertoire. The behaviors in efiatulus condition’s repertoire were
selected and evolved separately from the otheraieder, conditioned reinforcement
was introduced to allow stimuli that are pairedhwptimary reinforcement to gain
reinforcement value themselves. Therefore, behawian initial link repertoire was
reinforced by movement into a terminal link repegedhat was associated with primary
reinforcement. Behaviors that resulted in primaipforcement were selected using the
current McDowell methodology, and behaviors thauhed in conditioned reinforcement
were selected using a modified methodology thatleyeg the Rescorla-Wagner or a
related function to determine the magnitude offoggement. This approach, by
definition, implemented a conditioned reinforcemapproach to chain schedules. The
model was programmed for this approach and ndtireto-reinforcement approach
advocated by Staddon and Cerutti (2003), which dibalve required an entirely
different build of the computational model. Therefahe current project had the
capacity to test the conditioned reinforcement mdalé not the time-to-reinforcement
model.

Figure 1 illustrates the progression of reinforcatrend conditioned
reinforcement in a chained schedule in the modifled®owell model. In the left panel
(Time Step #1), no primary or conditioned reinfenemt has occurred. The behavior
repertoires associated with the circle stimulup fianel) and square stimulus (middle
panel) are randomly distributed. Therefore the chasf a behavior being selected from
any particular class is at its baseline level. €ass of behavior (shaded) in the circle

stimulus will result in the organism moving intethquare stimulus. The chance of
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emitting a behavior from this class initially istoThe same is true for the class of
behavior under the square stimulus during Time 8iep

In Time Step #2, the chance of emitting a behawiater circle conditions from
the class that will move the organism/model intoagg stimulus conditions is again low
because it has not been reinforced. However, thrags of the model emitting a
behavior in the class that resulted in primaryfegtement under square stimulus
conditions during Time Step #1 are greatly incrdaselime Step #2 because it was
reinforced in Time Step #1. Also, the square stimuias gained value as a conditioned
reinforcer because it was paired with primary r@icément, although this is not shown
in Figure 1. This means that behavior in circledibans that is followed by the
conditioned reinforcer, the square stimulus, vatigive reinforcement now. Because the
value of conditioned reinforcement is less thanwlee of primary reinforcement, the
selection event is weaker. This weaker selectiecetan be observed by comparing the
distributions of behaviors in the top and middlasgls of Time Step #3 in Figure 1. The
top panel (circle stimulus) has a more varied ifistron of behaviors while the middle
panel has a more concentrated distribution centen@ehd the class of behavior that has
been reinforced with primary reinforcement. Thawg thance of emitting a behavior
within the target class in the circle stimulus mépiee in Time Step #3 is lower than the
chance of emitting a behavior in the square stiswuluTime Step #3 because the circle
stimulus has been reinforced with conditioned @icément and the square with primary
reinforcement. Despite having less concentratedviehin the circle stimulus, the
chances of a behavior being emitted from the glesslting in movement to the square

stimulus are greatly improved compared to Time $&pOver these three example time
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steps, the model has “learned” to behave in wagswfil increase the chances of

obtaining primary reinforcement even across a nooraplicated chain of behavior.

Conditioned Reinfor cement

Just as theoretical accounts exist for both s(aéic matching theory) and
dynamic (i.e., selection by consequences) proeofi®ehavior, conditioned
reinforcement can be examined on both levels olfyaisa Static theories of conditioned
reinforcement, simply put, describe the outcomeaniditioned reinforcement after
behavior has reached equilibrium, or steady skatether words, they describe what can
be observed in live organisms after behavior hagldped and become stable; however,
they do not provide an account of why these outcoemeerge. The questions of “why”
and “how” certain phenomena develop are addresgégrmmic theories. Just as in
evaluating dynamic theories of behavior, the comapaohal environment provides an
ideal method for evaluating dynamic theories ofdittoned reinforcement, which can
only be indirectly examined in live organisms. Tdoenputational environment can
programmatically implement the simple rules of dyaamic theory and evaluate the
results (or behaviors) that emerge. The currerjepraised methodology similar to that
used by McDowell and colleagues to implement dywaineories of behavior
programmatically and then evaluate them againststeeory.

Dynamic theories of conditioned reinforcement.

Rescorla and Wagner (1972) proposed an iteratedifumsystem that describes

how the associative strength of a stimulus (e.tighd) develops in response to pairings
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with an unconditioned stimulus (e.g. food). Thes&ela-Wagner iterated function
system is given by:

Vi=Vii +af(A—Viq), (2)
whereV, is the associative strength of the conditionetsiiis (CS: in Paviovian
conditioning terms) at timg V.. is the conditioned stimulus associative strengthe
previous time stepy is the salience of the stimulysis the salience of the primary
reinforcer, and is the ultimate level of associative learning shienulus will support.
See Table 1 for a description of parameters inghgother equations. Bothand/ take
on different values when primary reinforcement esa@ompared to when no
reinforcement occurs. Typically, the valueto$ set to 1 during reinforcement and to O
when no reinforcement occurs. The salience parantetypically takes on values close
to 1 (i.e., 0.7 to 0.9) when primary reinforcemeoturs, which reflects the salience of
reinforcer presence. In contrast, when no reinfoee occurs, the value gfrepresents
the salience of reinforcer absence. Larger valiggwithout reinforcement) will reduce
the strengthy, quickly during unreinforced trials while smallealues will reduce the
strength more gradually. Becaysandl have these alternating valu¥sncreases when
reinforcement occurs and decreases when it doe#t motmportant to note that Equation
2 is solely a dynamic model and does not predia@ratistate. Equilibrium conditions
can only be determined through iteration of the ehod

Equation 2 or the Rescorla-Wagner (R-W) modeit sscommonly known, has
been highly influential in the field of learningethry and in psychology in general (Seigel
& Allan, 1996). The model has been successful @itatively accounting for a number

of Pavlovian learning phenomena including acqusitind extinction of conditioned
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responding, generalization, discrimination, comaiéd inhibition, patterning, and
overshadowing, among others (Miller, Barnet, & Gnale, 1995). Although other,
competing models of the associative strength ofidtihave been proposed since
Rescorla and Wagner (1972) (i.e., Pearce, 198&), tiodel and variations of it have
successfully accounted for experimental findingsnewm comparison to more recent
models (Bahcekapili, 1998; Myers, Vogel, Shin, & §udar, 2001).

Static theories of conditioned reinfor cement.

The relationship between conditioned reinforcenaerat primary reinforcement
has been addressed by a number of theories. Arhesg,thyperbolic discounting theory
has received strong support and provides an acadwainditioned reinforcer strength at
equilibrium, that is, in the steady state (Maz@917).

Although a number of researchers have proposeggerholic relationship
between a conditioned reinforcer’s strength andithe until primary reinforcement,

Mazur (1984) formalized the relationship by propgsihe function:

- a
14 bx

3)
whereV is the value of the stimulus as a conditionedfoeaer at equilibriumx is the
latency of primary reinforcement following the oheéthe stimulus, and andb are
parameters of the equation (Mazur, 1993). McDov@&slto, Dallery, and Kulubekova
(2006) showed that for random interval (RI) scheduhere there are many valueg,of

the equivalent form of Equation 3 is:

V=a (%) e%F (O, %) (4)
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whereV, a,andb are functionally the same as in Equation 3, the rate of
reinforcement, andl is the incomplete gamma function, which is a canius extension
of the factorial. Equation 4 states tNaihcreases as a functionoénd has the general
form of an exponentiated hyperbola in a reasonaétameter space (McDowell,
unpublished data). In practice, Equation 4 preditds$ a stimulus associated with an Rl
schedule will gain greater conditioned reinforcemeaue the greater the reinforcement
rate delivered by the RI schedule (i.e., the sm#tie average time between the onset of
the discriminative stimulus and the delivery ofnpary reinforcement).

Rachlin (1989) proposed that an additional scdiaetor be added to the Mazur

function in the form of an exponent for the dencemam, s, given by,

_ a
Y=dTm ©)

Although Mazur (1987) found that such an exponéhnat improve fits to pigeon delay
discounting data, Green, Fry, and Myerson (1994hdothat the exponentiated form
better accounted for human child delay discountiat. In a review article, Green and
Myerson (2004) found that for human delay discougntlata across a wide variety of
ages, the exponentiated Mazur function providedteebfit to data witls <1 in most
cases. Using techniques similar to McDowell e{2006), an equivalent function for use
with random interval (RI) schedules (i.evaries widely) was derived from Equation 5.
This function is given by:

V=a (%)S e%F (1 — s, %), (6)

whereV, a,andb are functionally the same as in Equation 3, the rate of

reinforcement, and (1 -5, %) is the incomplete gamma function, evaluated betwee
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different limits. Generally, Equation 6 gives maar result to Equation 4. In fact, when
s=1, Equation 6 reduces to Equation 4. However plbt of Equation 6 contains slight
differences from Equation 4 wher 1. It is important to note that the incomplete
gamma function will return complex numbers for sorakies ofs andr/b. Figure 2
shows a 3D plot of the exponentiated Mazur functardifferent values o$ andr. Of
note, the areas where the plot is missing or eropityain complex numbers. To obtain a
real value of the function in the domains whereitttemplete gamma function returns
complex numbers, the imaginary parts of the redinsdues must be ignored. For the
purposes of the current project, this method wasleyed to obtain a full range of
exponentiated Mazur function values.

Neur obiological bases of conditioned reinfor cement.

Although neither the presently discussed dynamgtatic models of conditioned
stimulus/reinforcement strength are based on negiaal functioning, findings of brain
functioning in relation to conditioned reinforcemean inform model evaluation and
suggest future directions for research. A considteding from neurological data of
conditioned reinforcement is that behavior assediatith initial learning activates
different brain structures than behavior under shirs control. Learning that occurs early
in stimulus-pairing conditioning has been primaghsociated with activation in the
ventral striatum region. As behavior comes undemngfer stimulus control, the dorsal
striatum region becomes more active (for a reviéthese findings, see Graybiel, 2008).
The core of the nucleus accumbens (NAcc) also appednave a critical role in learning
and reacting to conditioned stimuli. Lesions arbition of neural activity in the NAcc

core restricted behavior supported by conditioreaforcement relative to pre-lesion
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behavior and NAcc shell-lesioned animals (Parkirstosl., 1999; Di Ciano et al., 2001).
The NAcc core has also been shown to affect delagibforcement effects (Hutcheson
et al., 2001). These findings appear to correspatidsome theories (i.e., Staddon &
Cerutti, 2003) that have proposed that the poweoatlitioned reinforcement stems
from an ability to signal future primary reinforcent.
Correspondence of R-W and Mazur M odels

Given that the Rescorla-Wagner function can be ts@dedict how the strength
of a conditioned stimulus develops and the Mazacftion (Equations 4 or 6) predicts the
strength of a conditioned stimulus after it hasyfdeveloped (i.e., equilibrium), data
produced by the Rescorla-Wagner function at equuiib should be described by the
Mazur function. In other words, Rescorla-Wagnariidgyia should trace out the Mazur
value function. However, when the Mazur functistiited to dynamically generated
equilibria from the Rescorla-Wagner model fit resil$ are non-random (McDowell,
unpublished data). Although these results reprga@himinary work, they indicate that
either the Mazur function does not adequately enplee Rescorla-Wagner equilibria or,
alternatively, the Rescorla-Wagner function dogspmoduce equilibria comparable to
live organisms. Given the consistent success ozur function in describing
conditioned reinforcement at equilibrium conditicrgl that the majority of data
supporting the R-W model have stemmed from moleduka, non-equilibrium)
observations (Miller, Barnet, & Grahame, 1995gppears more likely that the latter
possibility is the reason because equilibrium dataore stable. An additional possibility
is that the exponentiated Mazur function adequatecribes Rescorla-Wagner

equilibria. To date, this possibility has not besiamined, but it is supported by findings
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suggesting that the exponentiated Mazur functi@vides a better fit with delay
discounting data (i.e., Myerson & Green, 2004).

The current project investigated two potential ohs to the Rescorla-Wagner
equilibria and Mazur function incongruence. Thetfivas to fit the exponentiated Mazur
function to Rescorla-Wagner equilibria. The secdalisicussed below, was to modify the

Rescorla-Wagner function, giving it a scaling exgan

A modified R-W function.

Preliminary work conducted for the current projeentified a potential
modification to the Rescorla-Wagner model that mmake dynamic data produced by
the model consistent with the original Mazur fuanti This new model keeps the existing
structure of the R-W function but adds an expoment, the part of the function that
increments or decrements the conditioned reinfoecdrstrength at each iteration. The
new function form is given by:

Vi =V + [aB(A = V-] (7)
Whena>1, this new function form provides a more graduah$iion to maximum
conditioned reinforcement strength (i.e., equilibmiconditions). Preliminary work has
shown that the exponentiated R-W function has sosineo and more gradual transition
to equilibrium conditions compared to the classié&VRunction and, overall, produces
more stable values &f.
Purpose of the Current Project

The primary purpose of the current project wasxiend the McDowell

computational model of behavior to stimulus contasid this was done via chained
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schedules. To accomplish this, and test the theanderlying the extensions to the
model, three series of experiments were conducted.

The first, Experiment Series I, evaluated the ra@hsthip between static and
dynamic theories of conditioned reinforcement. #madly, the Rescorla-Wagner model
(a dynamic theory of conditioned reinforcement) #melcurrently proposed
exponentiated variant of that model were programimexdthe McDowell computational
model. The conditioned reinforcement strengthsiabthfrom runs with this model were
then compared to the Mazur function (and its exptated variant) which predicts the
strength of a conditioned reinforcer at equilibrium

The second, Experiment Series I, implemented @lsimwo-link chain schedule
in the model using the Rescorla-Wagner model terdehe the strength of conditioned
reinforcement. The model was evaluated acrossla mwinge of parameters and the
resulting behavior was examined for consistenci Wise organism behavior.

The third and final, Experiment Series lll, attegtpto replicate the Royalty et al.
(1987) experiment, which was designed to evaldaeektent to which behavior in
chained schedules is consistent with conditionedarement or time-to-reinforcement
theoretical explanations. However, because the firddiicDowell model was explicitly
programmed for a conditioned reinforcement approthresults from the current
project can only determine the degree of consigteuiiih this approach. Within the
modified McDowell model, a delay was institutediie initial link after a target behavior
was emitted and scheduled for reinforcement. Afterdelay lapsed, the terminal link
was presented. Results of this experiment series e@mpared to data published by

Royalty et al.
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In this dissertation, the general methods usethfil@ment the extensions to the
McDowell model are presented first. This is folla@Mgy three sections reporting results
from Experiment Series I, Il, and Ill. Each expegmhseries section contains Methods,
Results, and Discussion subsections that are rai¢vdhat experiment series. Finally, a
General Discussion synthesizes the entirety ottieent project’s results and discusses
their implications.

General Methods

Unless noted otherwise, the following methods wesed in all project
experiments.

Subject and Environment

The subject was a digital organism with behavioregned by principles of
selection by consequences as specified in McDd&@04). The organism was operated
in a simulated environment consisting of two stinsutonditions chained together. The
reinforced behaviors emitted from the target ciagbe initial link in the chain resulted
in presentation of the terminal link stimulus, drahsferred the action to the behavior
repertoire associated with that stimulus. Behawongtted from the terminal link target
class resulted in primary reinforcement using pdoices identical to those used by
McDowell (2004) followed by presentation of thetiai link stimulus and action transfer
to the repertoire associated with the initial Isthknulus. The terminal link stimulus
gained conditioned reinforcement value via the BdaéWagner model or a variant
thereof (i.e., Equation 2 or 7). Behaviors emiitethe initial link were reinforced using

a modification of the McDowell (2004) proceduresdascribed below.
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Upon action being transferred to the terminal lile behaviors in the initial link
underwent modified reproduction rules as followac®a behavior in the target class
was emitted, the fitness function was centeretie@htidpoint of the class and used to
select behaviors for reproduction. However, to cedihe strength of reinforcement due
to conditioned reinforcement, a “weakened” selecggent was used where only a
proportion of the next generation’s (i.e., nextdistep) behaviors were produced by
using the fitness function. The remaining behaweese produced by randomly selecting
parent behaviors. For example, of the 100 behaimatfse repertoire, 90 might be
produced by selecting parents using the fitnesstilmm with the remaining produced by
randomly selecting parents. In evolutionary terthis is equivalent to a weaker selection
event: only a subset of the population is affettgdhe selection. The percentage of
behaviors undergoing selection by the fitness fonafuring each conditioned
reinforcement event was determined by using theitioned reinforcer strength, to
determine the proportion of behaviors producedgithe fitness function. Thus, if the
conditioned reinforcer strength wes= 0.9, then 90 behaviors for the next generation
would be produced using a fitness function andéneaining 10 would be produced by
selecting parent behaviors randomly.

Apparatusand Materials

Software to implement the digital organism and ecandhe experiments was
written in VB.net and run on computers using WindokP, Vista, or Windows 7
operating systems. Computers had at least 1.7-@&utegsors with 1 Gb of RAM and 5

GB of hard disk space.
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Computational Proceduresfor the M odified M cDowell M odel

The original McDowell (2004) selection by consemges algorithm was modified
to allow for chained schedule experiments to barayed as previously specified. The
following steps were implemented programmaticallyahimate the model:
. At the start of an experiment, initial model par&eng were collected and the
corresponding model variables were set accordingly.
. At the beginning of an experiment, the initial lib&havior repertoire was active.
. A behavior was selected at random from the repertoibe emitted.
. If the emitted behavior came from the target c{#®s class of behavior allowing action
to be transferred to the terminal link), the iditiak schedule of reinforcement was
consulted for the availability of reinforcement.
. If reinforcement was available, then the conditbsémulus strength\) associated with
the terminal link was evaluated.\ff= 0, then parents were selected randomly (i.e., no
selection occurred). ¥ > 0, a proportion of behaviors equaMavas produced using a
fitness function as previously detailed. Recalt Waaries between 0 and 1. The
remainder of the behaviors were produced by rangseiected parents.
. If reinforcement was not available, all parentseveglected randomly.
. Two parent behaviors were selected (using the ndedlescribed in Step 4) and “mated”
using bitwise reproduction as specified in McDow2004). This process was repeated
until a new repertoire was produced.
. The new repertoire underwent Gaussian mutationdsta deviation = 25) as specified

by McDowell (2004).
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7. If reinforcement occurred, the action was transiéto the terminal link repertoire. If
not, the program returned to Step 3.

8. Once in the terminal link, a behavior was seleetiedindom to be emitted.

9. If the behavior came from the target class deseghtii produce reinforcement, the
schedule of reinforcement for the terminal link veasisulted for the availability of
reinforcement.

a. If reinforcement was available, parent behaviorssvgelected using the fitness function.

b. If reinforcement was not available, then parentavadrs were selected at random.

10. Two parent behaviors were selected using the metpedified in Step 9 and “mated”
using “bitwise” reproduction as specified in McDdi@004). This process was repeated
until a new repertoire is produced.

11.The new repertoire underwent Gaussian mutationdsta deviation = 25) as specified
by McDowell (2004).

12.The strength of the conditioned stimuliswas calculated using Equation 4 or 6
(depending on the model being evaluated).

13.If reinforcement occurred, the action was transiitsack to the initial link. If not, the
program returned to Step 8.

At each iteration of the model, relevant behavatacand model parameters were
stored for later analysis. Specifically, the bebathat was emitted, whether
reinforcement occurred, and the conditioned recdorent strength for the terminal link
were collected and stored in a file for later asesly

Simulations employed random interval (RI) schedola®inforcement.

Consistent with previous work by McDowell and callges, a range of Rl schedules was
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employed for reinforcement in the links of the ch&pecifically, RI 1, 2, 3, 5, 8, 10, 18,
25, 68, 112, and 200 schedules were employed m@awlition where relevant.
Schedule timing was specific to each link meaniveg the RI schedule timer stopped
when action was transferred out of each link.
Mutation rate was fixed at 10% for all conditionsbioth chain links. A linear parental
selection function as specified by McDowell (2004s employed with a mean of 40.
The target class of behavior for both the initiadl &erminal links was the range 0 to 40,
inclusive, out of the 0 to 1023 integer range. Basgates of unreinforced target
behavior emission (i.e., operant level of behavawe) approximately 4% given this range.
McDowell and colleagues (McDowell, 2004; McDoweéllaron, Kulubekova, & Berg,
2008) and Popa (2009) have found that these valaekice behavior that is consistent
with the behavior of live organisms responding imgle and concurrent schedules of
reinforcement. For each combination of factors,tfeelel was run for 20,000 cycles to
obtain sufficient data for analysis.
Project Structure

Three series of experiments were conducted to ieathe different components
of the modified McDowell model and to test the midde correspondence with theory
and previously published live organism data.

Experiment Seriesl.

In this series, correspondence between dynamipadiguced values of the
conditioned stimulus strengt¥, produced by the Rescorla-Wagner function (or the
exponentiated variant) and Mazur’s delay discountireory (original and exponentiated

variant) was examined.
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Experiment Seriesl|.

This series examined two-link chained scheduldsebhvior produced by the
modified McDowell model. In particular, inter-lirdependent behavior was examined
across a variety of model parameters. Additiondtg,new technique of only producing
a proportion of behaviors using a fitness functiith the others being produced by
randomly selecting parent behaviors), was evaluatetsure that this technique was
consistent with matching theory.

Experiment Seriesll|.

This series attempted to replicate the Royaligl.ef1987) experiments. Data
from experiments implementing a pre-reinforcemesiay and those without such a
delay was compared to the live organism data puddidy Royalty et al.

Experiment Series|: Rescorla-Wagner Model and Mazur Function Correspondence
M ethods

The subject, environment, apparatus, materiats camputation procedures
detailed in the General Methods were used for Expeert Series .

To evaluate the correspondence between the Reddadmer model (or its
exponentiated variant) and the Mazur function,aerage values of conditioned
reinforcer strengthy, produced by the modified McDowell were obtained
different Rl schedules (R1 1, 2, 3, 5, 8, 10, 18,@8, 112, and 200) by calculating the

average value of across all time-points. This allowed the relatlipdbetween, the
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reinforcement rate generated by the Rl schedutkitenaverag¥ to be evaluated using
the Mazur function.

Ther-V relationship was examined across multiple modetlitens by
systematically varying the Rescorla-Wagner pararadie 1, fo, anda). While each
parameter of interest was varied, the other parens@tere held constant. To evaluate a
wide variety of model conditions, several combioas of parameters were used across
experiments. Table 2 shows the Rescorla-Wagnanpeters that were varied, the range
of values tested, and the values of the other npatiexs.

For each set atV (reinforcement rate — conditioned reinforcer sgtan
datapoints, plots were created, and the Mazur apdreentiated Mazur functions,
Equations 4 and 6, were fitted to the data. Eqnatiche Mazur function, was fitted

using the Excel Solver add-in, and Mathematica lfarkExcel was used to resolve the

value of the gamma functioﬁ,(O, %) Equation 6, the exponentiated Mazur function, was

fitted using the FindFit function in Mathmematitecause complex numbers were

generated by some solutions due to the incompbateta function]’ (1 -5, %)

Goodness of fit was determined by the percentagaridnce accounted for (pVAF) by
Equation 4 or 6, and by residual analyses, whiehdascribed in detail in the Appendix.
Results

Effects of traditional Rescorla-Wagner parameterson conditioned stimulus

strength.

Figure 3 shows the relationship between the reteiment rate and the

conditioned stimulus strength for 3 different valuda. As can be seen in Figure 3, there
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was no virtually no effect of the stimulus saliengeon the relationship between the
reinforcement rate and conditioned stimulus stieiig¥/) at equilibrium. In other
words, each value of produced the sameV profile. Although Figure 3 only shows the
results from one set of model conditions, this rargce in the equilibrium values Wf

for different values ofi was observed in all model conditions (i.e., défgrvalues of,
1, and,a). However, Figure 3 only shows the asymptotic galafV. It does not
illustrate the molecular level or moment-by-momeaities ofV. Figure 4 shows values
of V on the molecular time-scale: the first 500 tink4ifor three different values af
Although the time at which the value dtbegins to increase varies between each plot,
this was likely due to normal variability in the del (i.e., the time to the first
reinforcement event varied across the experimeAtsjose examination of the plots
indicated that the value d decreases faster at higher valuea.drhis, in turn, resulted
in more variability in the values &f. To further examine this effect, the mean and
standard deviation fo¥ were calculated for the same three experimengsir&i5 shows
these values. Although the mearvoivas unchanged across the three values thie
standard deviation increasedeeisicreased. These observations confirm that whdel
not affect the equilibrium or mean value\4fit did affect the variability o¥/, with

higher values o producing more variability iW.

The effect off, the salience of reinforcer absence, on the cglakiip between
reinforcement rate and the conditioned reinforcemsrengthV, can be seen in Figure 6.
Although Figure 6 only shows the results from vagy$, under one set of model
conditions, similar results were obtained for @allex model conditions. Compareddo

Lo had a marked effect dhwith lower values of, producing steeperV (higher levels
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of V with lower reinforcement rates). Additionally, th¥ relationship varied greatly
depending on the value 6§. A wide range of-V profiles was produced by varying the
value off,. Although not shown in the figure, the relatioqgshetweer/ andg, was
consistent across differing valuesffin thata wide range of-V profiles were obtained
from varyingp, across differing values ¢%.

The effect off;, the salience of reinforcer presence, on the tiomeid
reinforcement valu¥ can be seen in Figure 7. Although Figure 7 onbwshthe results
from varyingp; under one set of model conditions, similar resukse obtained for all
other model conditions. Similar &, differing values ofj; produced marked changes in
ther-V relationship. Higher values @i, produced steepetV curves (i.e., higher levels
of V were observed for lower rates of reinforcementtally, a wide range ofV curves
was obtained indicating thAt had a significant effect on the conditioned reinémnent
strength. The range oV profiles obtained by varying depended on the value £
the salience of reinforcer absence. For lower \&ahig, (i.e., 0.01), only a restricted
range ofr-V profiles were obtained, as shown in Figure 8, afor higher values g¢fy
(i.e., 0.05), wider ranges of values were obtaimsdshown in Figure 7. This is likely
becausg, andp; produce opposing effects in the R-W equation \@jtbeing
responsible for the amount of decreas¥ following no reinforcement angibeing
responsible for the amount of increas&/ifollowing reinforcement.

To summarize: the findings from modifying the pagders of the traditional
Rescorla-Wagner model showed that the stimulusrszdi, had little effect on
asymptotic or equilibrium values of the conditiorstisnulus strengthy. However,a did

have an effect on how much the conditioned stimstiength varied, with higher values
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of a producing more variability. In contrast, bgihandp; (the salience of reinforcer
absence or presence, respectively) produced widgesaof conditioned stimulus
strengths. Lower values of reinforcer-absence sedigproduced higher asymptotic values
of conditioned reinforcer strengths, whereas lovaues of reinforcer-presence salience
produced the opposite effect: lower asymptotic @alaf conditioned reinforcer strength.
Finally, there was an interaction between the saéeof reinforcer absence and presence
with lower reinforcer-absence values restricting éfffect of the reinforcer presence.
Taken together, these results indicate that 1Résrorla-Wagner model was
successfully implemented in the McDowell model, @pé range of conditioned
reinforcer strengths could be produced within ttuelet.

Effect of the currently proposed Rescorla-Wagner exponent, a, on

conditioned reinforcer strength.

The effect of varying the exponeat,in the modified R-W equation can be seen
in Figure 9 under the model conditiofs=0.05,51=1.0, and= 0.7. Increases ia
produced higher values ¥f but this effect was more pronounced at lowersrate
reinforcement. At the highest rates of reinforcetntire values oY obtained under
different values o& were similar. This effectively increased the cuavatof ther-V
profile without changing the asymptote. Finallye thhinimum value o¥/ for eachr-V
profile increased witla indicating that higher values afrestricted the range &fto
larger values.

The molecular view of the moment-by-moment valoie¢ for differing values of
a are shown in Figure 10, which shows plot&/dbr the first 500 time-ticks for three

values ofa (1, 1.5, 2). The plots indicate that exponent @algreater than 1 decreased
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the variability inV, the conditioned reinforcer strength, markedly hence created a
more stable value of conditioned reinforcement.

Correspondence of Rescorla-Wagner and M azur functions.

The Mazur and exponentiated Mazur functions (Eguaté4 and 6, respectively)
were fitted to the average conditioned stimuluergith values generated by the Rescorla-
Wagner model (Equation 2) for the parameter contlming listed in Table 2. The best-fit
parameter values are shown in Table 3 (Effect ofing f1), Table 4 (Effect of varying
[o), Table 5 (Effect of varying), and Table 6 (Effect of varyirg). Each table shows the
Rescorla-Wagner parameters in the left hand coldra.classic Mazur function fits are
shown in the middle section, with the exponentidfisdur fits shown in the far right
section. For both classic and exponentiated fitsyalues oR?, which are the
proportions of variance accounted for by the fuoctiare given. The other indication of
goodness-of-fit is the result of the residual asialyor each fit, namely whether a cubic
polynomial trend was present in the residuals.

The best-fit parameter values for the experimeatging$; are shown in Table 3.
A comparison of these parameter values indicatatalwider range of values for bath
andb parameters was obtained for fits of the classieiM&unction than for fits of the
exponentiated function. The valuesaofaried between 1.06 and 11.4 for fits of the
Mazur function, while that range was much morerretsd (1.00-1.72) for fits of the
exponentiated Mazur function. The highest valub fafr the exponentiated function was
19.6 while the classic Mazur function required eager range of values (8.85-13,370).
The values of the exponentiated Mazur scaling patans, ranged from 4.06 to 34.1.

These large values may explain why a large propoudi the exponentiated fits did not
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converge, which means that the iterated step sitteei fit algorithm was larger than the
precision of the fit algorithm itself. Although thprecision was increased to a very high
number of significant digits (a range of 40-80 tigvas explored), these algorithm errors

continued to occur. This was likely because larglees ofs produced very small values

. . r . S .
of the incomplete gamma functldh(l -5, ;), and very high values (@) in the

exponentiated Mazur function (Equation 6). It iscgbossible that the wide range of
values ofs resulted from an incomplete fitting process (itleg, fitting algorithm did not
identify a stable, best-fit solution) and, henteré may be inconsistency across fit
attempts.

Most importantly for the purposes of the currertjget, residual analyses of the
classic Mazur function fits indicated the preseotceon-random residuals for all R-W
parameter combinations tested despftealues all greater than 0.99. Figure 11 shows
the residuals for all fits. Clear evidence of cuipends was visible in all plots. In
contrast, non-random residuals were only evide@tant of the 15 fits of the
exponentiated Mazur function to the R-W generatgd.d~igure 12 shows the residual
plots for all exponentiated Mazur function fits.dpée problems fitting the exponentiated
Mazur function to the conditioned stimulus strendita noted previously, the fits that
did not converge still had excellent goodness-osthtistics and no evidence of non-
random patterns in the residuals.

Table 4 shows the parameters for fits to the exparts varyings,. Similar to the
results off1, the residuals from fits of the Mazur function &leal evidence of non-

random patterns. In comparison, the fits of theoeegmtiated Mazur function showed
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evidence of non-random residual patterns in ordy the 17 fits. Figures 13 and 14 show
the residual plots for fits of the Mazur and expureged Mazur function, respectively.
Clear cubic trends are visible in the Mazur fitsjle exponentiated Mazur fits show a
good scatter of residual values. Across both fenestiincreasing values 6§ produced
higher values ob anda. Similar to the series of experiments varyfgvalues ob were
larger for the Mazur function fits. The valuessofaried widely from 0.40 to 71.0 across
the experiments that vari¢gd. Two fits did not fully converge. It is notableatithese fits
produced the only fit with non-random residual€ dther fit produced the highest value
of sof all experiments in the current project. For éxponentiated Mazur function fits,
there were several cases where the FindFit fundfidiathematica was unable to
resolve a fit without throwing an error. These ‘@erminate fits” were typically caused
by problems with complex number calculations.

Table 5 shows the parameters for fits to the empats varyingx. The quality of
Mazur and exponentiated Mazur function fits wasilsinto other results with the
exponentiated Mazur function, showing no eviderfagom-random residuals (see
Figures 15 and 16 for residual plots). There weadrg some problems fitting the
exponentiated Mazur function to several datasdts.fils for thefy: 0.05,4;: 0.5 series
illustrate some of the difficulties encountered wiiigting the exponentiated Mazur
function. The experiment witta= 0.5 was fitted successfully, whereas the expamm
with o = 0.7 produced errors, and finally the experimeitih w = 0.9 produced values of
b ands that were markedly divergent from the= 0.5 experiment. Considering that the
V profile was almost identical for these three ekpents, this variability may indicate

that fits using the exponentiated Mazur functioryrha unstable for some datasets.
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Finally, Table 6 shows the parameters for fittheexperiments varying the
currently proposed Rescorla-Wagner exponent. (Matethe Mazur functions and the
exponentiated R-W model contarparameters, but these parameters are not the same.
For the purposes of clarity in this section, thiessuipts‘rw” and“m” will be used to
differentiate between the two.) Non-random resigware present in all the classic
Mazur function fits with the exception afy = 1.25. The residuals were random for
exponentiated Mazur function fits with, = 1 and 1.25, but they were not random for
higher values o&.,. Increasing,,, appeared to have several effects on the model
parameters. First, the Mazur model parametesds decreased with increases in the R-
W parametera,,. Notably, values od,,< 1were observed when no other fit in the
current project produced valuesagf< 1. A similar result witls was obtained with
increasing values of the R-W parametgy, producing values af< 1, which was not
observed in any other fits. Another unexpectedltesnerged when,, = 1.25. At this
value, and under these conditions, the Mazur apdmentiated Mazur functions were
markedly similar. Figure 17 shows the residualsfath the Mazur and exponentiated
Mazur function fits. The pattern of residuals isaét identical between the two function
fits to data produced wita,, = 1.25. An examination of the fit parameters eded that
the value oswas very close to Is(= 0.97), indicating that the classic and exponegdiat
Mazur functions were nearly equivalent for thisecgRecall that the exponentiated
Mazur function reduces to the classic Mazur functidens = 1.)

In summary, the current results showed that dyoalhyi produced values &f
were described well by the exponentiated MazurtfandEquation 6), but not by the

classic Mazur function. Fit residuals from claddiazur function fits to average values of



34

V produced by the Rescorla-Wagner function contaimedrandom patterns for all R-W
parameter values except fay, = 1.25. Although non-random residuals were ongspnt
in 3 out of 35 fits using the exponentiated Mazurdtion, the function required
sophisticated techniques to find the best fit,rbtlalways converge despite these
techniques, and required large values tf provide the best fit, which has not been
observed in live organism data to date.
Discussion

Effects of Rescorla-Wagner parameterson conditioned stimulus strength, V.

The results of varying R-W parameters demonstriitathe conditioned
stimulus strength is affected in several ways legéhparameters. The range of R-W
parameters tested provided substantial detail dbmuteach parameter affedtsWhile
changes i, the salience of the conditioned stimulus, prodie difference in
equilibrium levels oW, it did affect the instantaneous valued/pfvith larger values od
corresponding to greater variability Vhacross the time series. In contrast, tathndg;
affected the asymptotic values\afLarger values o, the salience of reinforcer
absence, resulted in shallowev curves or, in other words, decreased the sertgitwi
reinforcement rates. Larger valuesfgfthe salience of reinforcer presence, had the
opposite effect: they generated steagpércurves or greater sensitivity to reinforcement.
Additionally, the salience of reinforcer absengg (estricted the range oV profiles
obtained when varying the salience of reinforcesrggth 3;). This indicates that these
two parameters interact to some extent. The fire#¥ Barametera, newly proposed in
the current project, affected the curvature ofrtheprofile without changing the

asymptote. It also affected the variability\of
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The association between the Rescorla-Wagner and Mazur models.

The current project constitutes the first efforfullty examine the relationship
between the Rescorla-Wagner model and the Mazgtium Two dynamic models of
conditioned stimulus strength and two static modélsonditioned reinforcer strength
were examined. The dynamic models consisted oR#ezorla-Wagner equation and an
exponentiated variant, which are given by Equatiasd 7, respectively. The static
model consisted of the Mazur function and an exptated variant, which are given by
Equations 4 and 6, respectively. Although the eeptiated R-W model was developed
for the current project, the exponentiated Mazuction was proposed previously
(Rachlin, 1989; Myerson, Fry, & Green, 1994).

The results of the current project consistenttiiagated problematic fits between
the values of Rescorla-Wagner generated conditistiedilus strengthy, and the Mazur
function for random interval schedules, EquatioAlhough the Mazur function fit the
r-V data relatively well, as evidenced by percentarareé accounted for (pVAF) of 99%
and higher, the fits consistently left non-rand@siduals. In contrast, the exponentiated
variant of the Mazur function fit the data very Welith pVAF values consistently
nearing unity. Analyses of the residuals reveal@datrandom trends in a small minority
of the fits. Comparing the classic Mazur and expdiaéed Mazur function residual plots
showed clear evidence that the exponentiated grranided a greatly improved fit to
the data. Overall, the results of the current mtojedicated that the exponentiated
version provided a very good fit to the conditiosidhulus strength values obtained via

the Rescorla-Wagner function implemented in the BwBll computational model.
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Some fits of the Mazur functions to average coodéd stimulus strength values
using the currently proposed exponentiated Res8ydgner model (Equation 7)
showed evidence of good correspondence while othénsot. Fora,, > 1.25, neither the
exponentiated nor the classic Mazur function #& tlonditioned reinforcement data
produced using the exponentiated Rescorla-Wagmetitun. Fits of both functions to the
data contained non-random patterns in the residAduitionally, increases in the
exponenta, resulted in decreased goodness-of-fit. Cleaepatin the residuals were
visible at higher values @, and the pVAF decreased as well. While these patte
were not unexpected for the classic Mazur funcgimen the presence of non-random
residuals in all other fits using this functionettiear non-random patterns in the
residuals were not observed for any other condiitdoy the exponentiated Mazur
function. However, for the case whexg = 1.25, both Mazur functions appeared to fit
the exponentiated Rescorla-Wagner data well. Batltions had high pVAFs and
neither fit showed evidence of non-random residuais notable that this was the only
experiment where the classic Mazur function fit dal contain non-random residuals.
Additionally, the best-fit parameters indicatedtttiee two Mazur function forms were
essentially equivalent. The value of the expon&di&azur scaling parametstwas
near unity. Under these conditions, the exponexdidMazur function reduces to the
classic Mazur function. These results indicated thramost values the exponentiated
Rescorla-Wagner model is not consistent with existheory. The unique result when
aw = 1.25 indicates that certain valuesagf may represent special cases where data

produced by the model is consistent with findingsrf live organisms.
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It is important to note that the exponentiatedsiaer of the Mazur function that is
adapted for random interval schedules containgt@mplete gamma function, which
generates complex numbers for many parameter rahgesresulted in many of the
predicted values of in the current project having both real and imagyrparts because
of the complex nature of the incomplete gamma fonctThis in turn produced residuals
with imaginary parts as well. For the purposedefdurrent project, imaginary parts of

the predicted values & were ignored in the analyses. For exampl¥yigictea= 0.8925

+.0000542, wherei is the non-real representatiombf 1, the entire value 0.0000542
was ignored. Only the real parts (i.e., 0.8925)enesed in calculating pVAF and
determining whether non-random patterns existeterresiduals. While it is not
desirable to ignore parts of a function, the curreaults suggest that this approach
produces a function that accurately predicts vatde®nditioned stimulus strength.
The results of the conditioned reinforcement asedyhave important theoretical
consequences. Although the general consensus thdteunting literature is that the
relationship between reinforcer strength and d&aginforcement is likely a hyperbolic
one (Rachlin, 2006), the exact form has been ddlatensively. Mazur (1987)
originally proposed the relationship between coadéd reinforcer strength and time to
primary reinforcement describe by Equation 3. LaRachlin (1989) proposed that
exponentiating the denominator of Equation 3 waurtaide a scaling factor to better fit
data under conditions of delay. The results froendiarent project clearly support
utilizing the exponentiated version of the Mazumndtion based on residual analysis and
pVAF. Interestingly, if pVAF were solely used totediamine which function provided a

better fit, the comparison between a function #wabunts for 98.9% of variance and one
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with 99.9% would be difficult because both valuedicate very high correspondence
with data. However, this was the methodology usedrbvious research (e.g., Green,
Myerson, & Ostaszewski, 1999; Rachlin, 2006) tedeaine goodness-of-fit. Given the
reliance on pVAF to evaluate models in previouskydris difficult to make definitive
conclusions about the correspondence of the cumedel to live organism data. For
example, Jones and Rachlin (2006) concluded teabriginal Mazur function provided a
robust fit to human subject data while Green aneidgn (2004) concluded that the
exponentiated version provided the best fit to demiariety of human subjects data
including children, and college aged and eldertividuals. However, the predictions
resulting from theoretically based computationabele such as the current one illustrate
the benefit of a computational model. The curresttts indicate that the fits of the
original Mazur function will contain non-random idisals while the exponentiated
version will not. To date, this analysis has ne¢ito conducted with data from live
organisms, but it is a prediction based on theeniinresults.

An additional prediction based on the current ltssa that the exponentiated
Mazur function for random interval schedules (iEguation 5) corresponds to
conditioned stimulus strength values and, by extern$o the response rates dependent
on conditioned reinforcement. To date, this analirsis not been conducted with live
organisms. Future studies could test this relakigns live organisms by varying the
reinforcement rate of a behavior that is suppoboiegdrimary reinforcement and paired
with a discriminative stimulus. Then the resporstes of a behavior supported by

conditioned reinforcement via this stimulus coudddompared with the reinforcement
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rates supported by the primary reinforcement. fd@narBconditioneaProfile should
correspond to the exponentiated Mazur function,giqu 6.

Despite the success in describing conditionedudtisnstrengths seen in the
current project, the results of this project alsicated some problems with the
exponentiated Mazur function. First, the fittingalithm did not converge on a best-fit
solution in many cases. This was likely due tohigh number of decimal places
required for fitting values of the incomplete gamimaction. The presence of imaginary
numbers also caused some fits to fail to conveddgspite these problems, most fits that
did not converge still provided an excellent fithe R-W data, indicating that the
function provides a good account of the data. Harethese problems do raise the
possibility that the function may be difficult te@, and this may restrict its practical
application.

The second problem with the exponentiated Mazuctfan was the difference in
parameter values obtained between the Mazur anohexpiated Mazur function. Across
model conditions, the parameterandb were consistently different for these two
function forms despite being derived from similandétions. Despite these functions
being the same wher 1, it is possible that the addition of this soglparameter may
fundamentally alter the function.

Finally, the third problem with the exponentiated2dr function concerns the
estimates o§. Many of the best-fit values sfwere relatively large and often were much
greater than one. The reason for this is apparkah considering the very small values
produced by the incomplete gamma function. Althotinghoffset between incomplete

gamma function and the/)° factor within Equation 6 produces a function tti@scribes
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the data from RI schedules well, the large valdesane incompatible with the general
delay discounting function, Equation 5. Valuesof1 in Equation 5 produce very low
values of conditioned reinforcer strength. Addiaty, previous work has shown that fits
of Equation 5 to delay discounting data in humaeklyg best-fit values cfthat are
typically less than 1 (Green & Myerson, 2004). ®iere, the current results suggest that
the two forms of the exponentiated Mazur functiBgyation 5 for delay discounting and
Equation 6 for RI schedules) are not comparable.

The incompatibility between the two forms of th@erentiated Mazur function
illustrates problems stemming from their developtmEach form was developed to
describe different behavioral phenomena. The daéitegounting function form has
primarily been used to describe the effect thatyéb reinforcement has on behavior
(see Mazur, 1997; Green & Myerson, 2004). In catiithe derivations for use with
variable interval schedules implemented in theentrproject were designed to describe
the relationship between conditioned stimulus gffeland reinforcement rate. To date,
this relationship has not been investigated in éikganisms.  Given the fundamental
difference in how these two forms were developatiiatended to be used, it is not
surprising that there would be some differencebénparameters between them. Future
research could help clarify whether the RI functiorm is useful in practical settings by
fitting this form to live organism behavior thatsgpported by conditioned

reinforcement.
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Experiment Series|l: Chained Schedulesin the Computational Environment
M ethods

The subject, environment, apparatus, materiats camputation procedures
detailed in the General Methods were used for Bxpart Series II.

Varying the proportion of behaviors produced with a fitness function.

In preparation for using the conditioned stimutrengthV, to determine the
strength of selection events (i.e., reinforcemeahs effect of producing fewer than 100%
of behaviors after a reinforcement event usingre§is function was examined. Previous
versions of the McDowell model produced all behesior the next time-step using a
fitness function after reinforcement. The currgmioposed modified model used the
conditioned stimulus strength values produced byRbascorla-Wagner model to
determine the proportion of behaviors producedgittie fithess function after a
reinforcement event in the initial link. The remaimbehaviors were produced by
randomly selecting parent behaviors. The primamnppse of the current experiments was
to ensure that changing these proportions wouldnaatify the correspondence of model
behavior to matching theory (and by extensionue érganism behavior).

A series of experiments was conducted that vahiegtoportion of behaviors
produced using the fitness function from 0.2 ta Edr each condition, data from 11
single alternative Rl schedules (RI 1, 2, 3, 5,(8,18, 25, 68, 112, and 200) were used to
evaluate the relationship between reinforcemeet raand response ratB, The average
response and reinforcement rates for each RI stheduwe calculated by counting the
number of responses for a particular link during élxperiment and dividing this result

by 500. Although this method of determining theesadiffered from previous methods
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used by McDowell and colleagues, this method altbevstandardized rate calculation
without discarding data from incomplete 500 tinok ivindows that result when running
chained schedules (the exact number of time tigksma particular link cannot be
determined a priori due to the emergent natureamfement from initial to terminal link).
The average-B data was plotted and the classic and modern nmag¢heory equations
were fitted to this data using the Solver add-imponent in Microsoft Excel. McDowell
(2005) has discussed the details of, and the diffsgs between, the classic and modern
theories of matching. The residuals from theuiigse evaluated for non-random trends.
Goodness of fit was determined by percent variaeceunted for (pVAF), and by
residual analysis.

Initial link correspondence with matching theory.

The modified McDowell model was run on chainedesitiies to determine
whether behavior in the initial link remained catent with matching theory under these
conditions. Although this set of experiments wasilgir to the experiments presented
above that varied the proportion of behaviors poeduising randomly selected parents
versus parents selected using a fitness functimgetkexperiments had static/constant
proportions. The present set of experiments exairedavior where the proportion of
behaviors produced using the fitness function dab@sed on the conditioned
reinforcement strength, of the terminal link stimulus. It should be notédt the
terminal link behavior was not evaluated becausddiminal link was not different from
an ordinary single alternative schedule, whichdlesady been shown to produce results
consistent with matching theory (McDowell, 2004; Diavell & Caron, 2007). These

analyses were conducted primarily to ensure thaaliink behavior, which depended on
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the terminal link R-W parameters of the modifiedDdevell model, conformed to
matching theory, and by extension to live-organi&ta. For each of the conditions listed
in Table 7, 11 RI schedules were run in the initidt to obtain an-B profile so that the
matching theory equations could be fitted to thiada

Simple behavior chains.

A variety of methods were used to qualitativelglerate the behavior of the
modified McDowell model running on chained schedwéreinforcement. Using a set of
Rescorla-Wagner parameters found to produce aesteioiforcement rate-conditioned
stimulus strength relationship in Experiment Seligk: 0.05,61: 0.5,a: 0.7,a: 1.0), a
variety of experiments were conducted to examieectiained schedule behavior across
different conditions. First, four chained schedwese run at different Rl values (RI1-
RI1, RI5-RI5, RI25-RI125, and RI112-RI112). Cumuwatirecords of initial and terminal
link behavior were constructed for the first 1000 steps. These were examined to
ensure adequate progression through the chaineameta consistency with live
organism behavior. Next, the relationship betwedimai and terminal link response and
reinforcement rates was examined by plotting resporinforcement rate data for the
terminal link/initial link schedule combinationsted above. Finally, the response rate
data were examined for consistency with previopsilylished two-link chained schedule
data from live organism. Based on limited publisbdath from chained VI VI schedules
(Ferster & Skinner, 1957, Figures 859, 860, and,8660% reduction in initial link

response rate was expected (compared to termnkaldsponse rate).
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Results

Effect of varying the proportion of behaviors produced using a fithess

function after reinforcement.

Figure 18 shows theB (reinforcement-response) plot for single alteneti
schedule experiments that varied the proportidoebfaviors produced using a fithess
function from 0.2 to 1.0 (the remaining proportmibehaviors were produced by
selecting parent behaviors randomly). The plotaestrates that reducing the percent
produced using a fitness function reduces bothdbponse and reinforcement rates
relative to the traditional method of replacingt@haviors. This reduction in both
response and reinforcement rates resulted in fosf&lr-B curve thus reducing the
strength of each reinforcement event, as expeblethbly, the same effect has been
observed when increasing the extraneous reinfoncerate, which is represented by the

re parameter in the matching theory equations. Talsleows the fit parameters for the
percent replaced analyses. As shown in Table & kaihdr, (or% for the modern

matching equation) vary with the percent of behesvieplaced during selection events.
Additionally, the exponeng, obtained from the modern matching equation rariged
0.82 to 0.94 indicating a degree of undermatchiimgs was consistent with previously
published results (McDowell & Caron, 2007). Residaraalysis indicated the presence of
cubic polynomial trends in 6 of 9 fits using thasdic matching function, whereas only
one modern matching fit contained significant nanetom residuals. Figure 19 shows the
residuals resulting from fits of the classic andderm matching equations to th& data.

Some classic matching equation residual plots agpdsave non-random patterns while
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others appear randomly distributed. Generally, rasidom patterns were not apparent in
the modern matching equation residual plots. Tégsilt is consistent with previously
published reports (McDowell & Caron). Consequentlgan be concluded that (1)
varying the percent of behavior produced usingorental fitness function does not
disrupt the model’s correspondence with matchimgity, and (2) selection events are
weakened proportionally to the percent of behaviarslomly replaced during selection
events.

Initial link correspondence with matching theory.

The analyses of the initial link correspondencénwmiatching theory indicated
that both the classic and modern matching theargtions adequately described model
behavior. However, less evidence of non-randondueds was observed in the modern
matching equation fits to model data compareddssit matching fits (Equation 2
versus Equation 6), as indicated by the asterisks@ble 8. The account of model data by
matching theory was consistent across R-W modalpater combinations and terminal
link rates of reinforcement, as seen in Table 7edsected, the value of the initial link
increased with decreasing rates of reinforcemetiterterminal link, which depress the
value,V, of the terminal link conditioned reinforcementaherefore the percentage
replaced using a fitness function after reinforcetm&here was no clear relationship
between the modern matching exponangnd model conditions, which ranged from
0.70 to 0.92 indicating that undermatching wasgmes all conditions. These results
indicate that conditioned reinforcement as implet@ern the computational model did
not affect the phenomena of undermatching thabkas shown to be an emergent

property of the model (McDowell & Caron, 2007).
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Simple behavior chains.
Cumulative records.

The cumulative records from four chained scheéufgeriments with RI1-RI1,
RI5-RI5, RI25-RI25, and RI112-RI112 schedules i ithitial and terminal links are
shown in Figures 20 through 23, respectively. THegees show cumulative records,
which provide a method of viewing the relationshgiween responses, reinforcement,
and the passage of time. For each time-step, themnakes one step horizontally to the
right. For each response, the plot makes one pesigrtical step. For each
reinforcement, a horizontal dash is placed nextéaesponse plot. Once the number of
responses reaches 100, the vertical location & te® (the time axis location is not
reset). High rates of response result in steepsdpes. No responding, such as occurs
after extinction, results in flat plot slopes.

As can be seen in the RI1-RI1 cumulative record mure 20), the chained
behavior takes time to develop with the first tadgehavior in the initial link being
emitted after approximately 100 time steps (denbtethe 1 in Figure 20). Following
this behavior emission, which was reinforced (asotied by the small dash), the terminal
link repertoire became active. Within the termiliralk, approximately 100 time steps
elapsed before a target behavior was emitted anfbreed (as denoted by the 2). These
two behaviors completed the chain and the initidd tepertoire was again presented.
Note that again, approximately 100 time steps eldpefore another target behavior in
the initial link was emitted and reinforced (as ol by the 3). After this behavior was
reinforced and the terminal link repertoire wasspreed for the second time, the latency

to terminal link completion was markedly smallehig quick increase in behavior rate
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was due to the previous target behavior being oetefd with primary reinforcement
whereas the first behavior emitted in the initiaklwas reinforced with presentation of
the terminal link stimulus that had yet to be paivéth primary reinforcement. However,
once the terminal link stimulus was paired witmfeicement and therefore gained
conditioned reinforcing strength (as determinedhgyRescorla-Wagner function), it
quickly produced high rates of responding in thgahlink. This effect can be seen in the
rapid acquisition of high response rates to thitrad the “3” in Figure 20.

A qualitative comparison of the response ratgbeninitial and terminal links
revealed similar rates across both links. As casdas in Figure 20, the slopes of both
cumulative records were similar. Additionally, tfesponse rates were approximately
constant throughout the remainder of the 1000 staps shown in the cumulative record.
Taken together, these results indicate that chankddules of behavior were established
in the computational model and, once the chain&dadder was acquired, it continued at
a constant rate.

An examination of the RI5-RI5 cumulative recordealed similar patterns of
behavior: the behavior chain took time to develmg,once acquired, continued at a
relatively constant rate as can be seen in Figlréi@dwever, the rates of behavior were
notably lower in the initial link compared to thexminal link as can be observed by
noting the number of times the cumulative recoedehed 100 behaviors or,
alternatively, by observing the relatively loweost in the top panel of Figure 21. An
additional phenomenon observed was the presergigroficant pauses in responding
that occurred before some reinforced responseselpauses were also present in the

cumulative records of the RI25-RI25 and RI112-RI$tBedules as can be seen in
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Figures 22 and 23. As would be expected, the respaates in these two chained

schedules were appropriately lower. However, tiferdince between initial and terminal

link response rates became more apparent. In te-RI25 and RI1112-R1112

experiments, the response rate in the initial Vugls approximately half that in the

terminal link as can be seen in Figure 22 andr28omparison, the difference was much

smaller in the RI5-RI5 experiment and largely uicesble in the RI1-RI1 experiment.
Initial and terminal response-reinforcement rate dependency.

Plots of the response-reinforcement relationshighe initial link at different
constant values of the terminal link are showniguFe 24. As would be expected from
the previous results showing shallowd curves for lower proportions of behavior
produced with fitness functions, leaner schedulgbe terminal link produced shallower
curves.

Initial versusterminal link response rates.

The difference between response rates for thalimitid terminal links varied
across reinforcement rates. Figure 25 shows tih® gatinitial to terminal link response
rates for RI1-RI1, RI5-RI-5, RI25-RI25, and RI112tR2 reinforcement rates with
Rescorla-Wagner parametefs: (0.05,5;:: 0.5,a: 0.7,a: 1.0). Richer schedules resulted
in higher response rates in the initial link relatto the terminal link. The response rate
ratios ranged from 0.97(RI1-RI1) to 0.59 (RI25-RI2Although the ratio increases for
the RI112-RI112 schedule (0.64), it is likely thiais pattern was unique to the individual
experiment: this pattern was not observed acrdgs gbnditions not specifically
reported here. Unfortunately, there is little pab&d data to compare with these results.

Overall, the results demonstrate that the initr fesponse rates were lower than the
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terminal link response rates, as would be expdotetiained schedules. These results
also show that the ratio of initial to terminalkiresponse rates varies with reinforcement
rate.

Discussion

Effect of varying the proportion of behaviors produced using a fithess

function after reinforcement.

This set of experiments examined a new techniqueefiucing the strength of a
selection event to reflect the reduced strengttoafiitioned reinforcement. This
technique produced only a proportion of new behavior the next time-step using a
fitness function following reinforcement. By randiyrpicking parent behaviors to
produce the remaining behaviors, the strengthrefrdorcement event can be reduced.
This random parent selection places no selectiesspire on these behaviors and thus
reduces the likelihood of new behaviors being antdrget class. Additionally, the
current results demonstrated that producing leams 190% of the behaviors using the
fitness function resulted in behavior consisterihwmatching theory and, by extension,
with the behavior of live organisms. Furthermoggjuctions in the proportion of
behaviors produced using the fitness function, (ieenforcer strength) corresponded with
an increase in extraneous reinforcemef{or reinforcement not contingent with a target
behavior) and a decrease in the matching pararketee maximum response rate. This
effect on the matching function parameters is ctast with previously published live
organism data (e.g.,Bradshaw, Szabadi, & Bevar@ 1%t more simply, reductions in
the reinforcer strength reduced the responseaatsult that is consistent with

previously published reports using live organismg.( Reed & Wright, 1988).
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Matching analyses.

The initial link behavior was evaluated for copesdence with matching theory.
The primary reason to conduct these analyses wasstare that making initial link
behavior dependent on terminal link behavior ditaiter the model in a way that made
it unrealistic. The current results confirmed timatial link behavior was well described
by matching theory. Although there was some evideiaon-random residuals in the
fits of the classic matching function to model dakte evidence suggested that modern
matching function fits fully accounted for the \ace in model data. This result has been
observed before by McDowell and colleagues anduak, was expected (McDowell &
Caron, 2007).

Simple behavior chains.

Several different techniques utilized in the cutgenoject demonstrated that 1)
simple chained schedules of behavior could be ksial and that 2) this behavior was
largely consistent with previously published datasonple chained schedules (i.e., two-
link, single alternative chains). The cumulativearls from the current project
demonstrated the presence of several relevant piesran First, the cumulative records
showed how the chains are established. Althouglkhiha@s take time to establish, once
the model (or digital organism) has acquired thiealer, response rates were generally
consistent over time. Additionally, the model wasgtive to reinforcement rates with
higher rates of reinforcement producing chainsesfdvior that move quickly from link
to link. The cumulative records also showed evidenicpre-reinforcement pauses. This
occurred more often and was more marked in leastexdgiles. These pauses were likely

caused by instances when very few behaviors welteeitarget class. Close examination
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of these instances showed that immediately pregetimpauses there were relatively
steady rates of behavior.

Finally, the simple comparison of initial and tenal response rates revealed
findings that were generally consistent with livganism behavior. Although there is
little previously published data on two link chaitise studies reviewed for this project
indicated that 1) response rates in the initidd Bhould be lower than in the terminal link
and that 2) the response rate in the initial linéwdd be approximately 60% of the
terminal link rate. However, this latter assertwas derived from only one set of data
published by Ferster and Skinner (1957). The restdin the current experiments clearly
showed that the response rates in the initialweke lower than the response rates in the
terminal link. However, the amount of rate decrens&en in the initial link depended on
the terminal link reinforcement rate. To furtherifsethese results, live organism data
with varied reinforcement rates in chained linkanddbe necessary.

Experiment Series|l1: Replication of the Royalty et al. Experiments

The subject, environment, apparatus, materiats camputation procedures
detailed in the General Methods were used for Expeert Series 11l

While Experiment Series | evaluated how well theawor of a computationally
based dynamic theory of conditioned reinforcementesponded to live organism
behavior, and Experiment Series Il examined thditqtige properties of a two-link
chained schedule, Experiment Series Il attemptedlicate a previous experiment that
was originally designed to examine the role thaiditioned reinforcement and time-to-
reinforcement play in chained schedules. The Rypwlal. (1987) experiment

demonstrated that in a 3-link chained schedulepéat s3 second delay immediately prior
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to presenting the conditioned stimulus reducedélponse rates by 60%. In Experiment
Series lll, the Royalty et al. experiment was regiled by delaying the presentation of the
conditioned stimulus (terminal link) by a singlmé-step in a two-link chain.

M ethods

Two experiments using methods similar to Royaltgle(1987) were conducted
and the results were compared. In the first expamiyra chain R1 31 RI 31 schedule was
run for 20,000 cycles. In the second experimert Rh31 initial link was followed by a 1
cycle delay before the terminal link stimulus isggnted. In other words, once a behavior
in the target class was emitted and reinforcemastavailable as determined by the RI
31 schedule, an additional cycle of the model was(this is the delay) before the
terminal link stimulus was presented. Once the iteaihlink stimulus was presented, the
normal selection and reproduction rules as spekifieStep 3a of the program procedures
described in the General Methods section were ¢gdclio maintain the same time (i.e.,
cycle) to reinforcement, the terminal link schedwtes changed to RI 30. Again, the
model was run for 20,000 cycles.

Additional experiments were run to determine if R@yalty et al. experiment was
better replicated by the model in richer or leaswredules. In a series of experiments the
value of the initial and terminal link RI scheduieas varied from RI1RI1 to
RI120RI120. Results from these experiments weré/aed to determine their
correspondence with the Royalty et al. findings.

Results
The results from experiments replicating the Rgyettal. (1987) study were

partially consistent with previously published liweganism data. The response rates from
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experiments with RI31-RI31 schedules did produgbi rates than those where a delay
preceded the presentation of the terminal link, (fegnforcement). Consistent with the
Royalty et al. data, the response rate for thalrdibk was 68% lower when a 1 time-tick
delay was added before presentation of the termstirallus. However, follow-up
analyses indicated that this result was likely ifiegt of the computational model.
Figure 26 shows the results of implementing a kiiiok delay in a variety of RI
schedules (RI1-RI1 to RI22-RI22). As can be sdegretwas no relationship between the
schedule value and the response rate for theliltiawhen a 1 time-tick delay occurred
before presentation of the terminal link. Additilpathe actual response rate value was
consistent with the operant level of the model. $table rate of response seen in Figure
26 and its value (i.e., the operant level) indiddateat adding a 1 time-tick delay
essentially removed all reinforcement contingenclésis, the 68% reduction observed
in the Royalty et al. replication experiment resporate was merely a coincidence
caused by reaching a response rate floor.
Discussion

The failure to replicate the Royalty et al. (198@lings demonstrated that the
model in its current form cannot fully simulate tred schedule behavior. While the
results from the current experiment initially apgehto be consistent with the Royalty et
al. study, they were, in fact, due to the removakmforcement contingency. By
instituting a delay-to-reinforcement paradigm fawvide variety of schedules and
observing that the response rates for the initiéal Were all the same, and were equal to
the operant level, it was determined that in théblwell model a delay of reinforcement

removes all reinforcement contingencies. Ratesgpaonding return to operant levels
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with even the shortest delay (i.e., a single titeg)}s However, live organism data
suggest that discounting functions like Equatioms 3 describe the relationship between
delay of reinforcement and response strength (Ra006), not a complete dissociation
of reinforcement contingencies as seen in the ntdata.

Because the time-to-reinforcement theory wasmptemented in the current
model, the current results do little to resolvetteoretical debate on whether it is
conditioned reinforcement or time-to-reinforcemezgponsible for behavior in chained
schedules. However, because the current projecigitbment a strictly conditioned
reinforcement approach to chained schedules ahdrédlistic behavior could not be
produced, a possible interpretation of the cumresults is that conditioned reinforcement
is not exclusively responsible for the behaviorestssed in chained schedules or other
situations under stimulus control. It is possiblat a combination of the two approaches
may be necessary. Given that Royalty et al. (188@yved that conditioned
reinforcement effects explained their resultss possible that, while delay-to-
reinforcement is involved in some way, it playesseer role compared to conditioned
reinforcement. An alternative explanation is tiat tonditioned reinforcement approach
is correct, but without adequate modeling of detaseinforcement effects, the Royalty
et al. experiment cannot be replicated. Thus, losecting the McDowell model’s
inadequate simulation of delay to reinforcemeng@f, the current conditioned
reinforcement modeling approach might work. Efféasesolve these alternative

explanations are a clear direction for future resea
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General Discussion

The current project’s purpose was to implememthils control within the
McDowell computational model of behavior. To thigletwo-link chained schedules of
behavior were established, maintained, and weneddo be qualitatively similar to live
organism behavior. However, the failed attempeficate the Royalty et al. (1987)
experiment indicated that certain phenomena cooide simulated in the current model
configuration. Despite some problems, the curpeoject produced other findings,
namely, the correspondence between the RescorlaWagd Mazur models of
conditioned reinforcement, that have important thgcal implications for the learning
theory field.
Problemswith Delay of Reinforcement: Failureto Replicate Royalty et al. (1987)

Despite the model’s success in producing realikimking” behavior, it could not
replicate the theoretically important Royalty et(aB87) experiment, which found that
pre-reinforcement delays in initial links decreasesponse rates by 60%. Although the
current results did indicate a decrease in respaise with the addition of a one time-
step delay, the rates dropped to operant levels.ifticated that the delay effectively
removed all reinforcement contingencies. In otherds, the same result could have been
obtained in a setup where no reinforcement existedl. Given that hyperbolic
discounting theory (i.e., Mazur, 1984) has repdgtdemonstrated that delays to
reinforcement should follow a hyperbolic decreaseeinforcement effectiveness, it is
clear that the current computational model setaksldhis type of decay.

The model is not completely devoid of memory fagpous states since the

behaviors in one generation are related to the lmgxrteans of parental mating. (Note
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that the term, “memory,” as used here refers tasictprocess where previous events
have some affect on events occurring later.) Tleaéso a form of memory when the
parental fitness function is used to select paoehaviors for mating. The selection tends
to concentrate behaviors in and near the targes cl&hen all of the behaviors are
clumped together, it takes some time steps bef@eltumping dissipates. Anecdotally,
the number of time ticks necessary to dissipat@wers after reinforcement is on the
order of 1-3 ticks depending on the model pararedieing used. Clearly, three ticks is a
very short memory and would only represent the Bstf organisms.

Although the clumping after reinforcement is somerf of memory, there is
relatively little, if any, memory for behaviors thandergo random mating processes (i.e.,
non-reinforced behaviors). As noted above, thesesame similarities between behavior
generations because the new generations are tauitifehaviors in previous generations.
However, there is virtually no meaningful memorfeet from this property especially in
regard to non-reinforced behaviors. Behaviors afteon-reinforced response are
generally as randomly distributed as those betwegd¢sponse. Because the emitted
behavior is randomly drawn from the existing bebayiopulation, there is little
continuity between responses. For example, if @a@ehfrom Target 1 is emitted in
Time-Step 1 and not reinforced, the next emittdehler has equal likelihood of being
selected from any of the other targets (proportitméhe target sizes). The real world
analogy of this might be the following: at Timealtat is pressing a lever, then at Time 2,
the rat is sniffing the corner of the cage compyed@posite to the lever location. In
reality, the rat would have to dismount the levem around, walk to the other side of the

cage, then sniff the corner. This chain of behaMarot represented in the current model.
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In other words, there is no requirement for sesfesmitted behaviors in the current
model to be related to each other.

There are several potential solutions to this pbbf discontinuous behavior.
One solution would be to require the next genen&iemitted behavior to be close to the
previous generations. However, a top-down apprt@chodeling such as this would
essentially mandate the desired solution. In otfeeds, the end result would be
determined a priori.

An alternative approach to creating more continbéyween behaviors would be
to implement a simple low level rule and determaieether the desired consequences
emerge from the behavior produced by this low-leutd. Taking inspiration from brain
function, the model could implement a requireméat behavior emission would not be
determined by just one phenotype randomly drawm fitee population. Instead, the
emission would be determined by the location ofaug of behaviors. This is an attempt
to be analogous with neurobiological functioningandgroups of neuron activations are
responsible for behavior, not single, isolated oeuirings. The new emission rule would
be as follows:

To determine which behavior will be emitted, thpeoire will be searched for where
the greatest concentration of behaviors is located.

The local mean of that clump of behaviors will ladcalated and that mean will represent
the emitted behavior.

The target class where the emitted behavior resutlesepresent the emitted target class.

Selection, mating, and mutation will occur usingsérg methods.
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Naturally, without reinforcement for a target cléshavior, more behaviors
would be emitted from non-target classes, butighiee case in the current model
version. To ensure that sufficient behaviors existetermine groupings of behavior, the
total number of behavior phenotypes in the popotreshould be increased (e.g., by using
1000 individual behavior phenotypes instead of 108gse methods would likely
increase the contiguity between series of emitedthlsiors. In the case of delayed
reinforcement like the Royalty et al. (1987) stukdghaviors emitted in a delay condition
will likely more closely resemble the behavior thaggered the delay to reinforcement.
Correspondence of the Rescorla-Wagner and Mazur M odels

Although the current project’s purpose was to makemputational model that
produced realistic chained schedule behavior, otgilts were obtained that have
practical and theoretical implications. The mogsiesd of these findings was the
correspondence of a dynamic theory of conditiornigdusus strength (i.e., Rescorla-
Wagner) and a static theory of conditioned reirganent (i.e., the Mazur function). This
correspondence was first proposed by McDowell .g28i06), but had not been formally
evaluated. The current results did not supporbtiggnal proposition that the Rescorla-
Wagner model would produce conditioned stimulusiesithat corresponded to the RI
variant of the classic Mazur function. However,regspondence between the Rescorla-
Wagner model and an exponentiated variant of theukfunction was found. This
finding was important for two reasons: 1) a conplebdel (dynamic and static) of
conditioned reinforcement was supported and 2g#p@nentiated variant of the Mazur

function provides a better description of condiédmreinforcement at equilibrium
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conditions than the original function. Both findggontribute significantly to the
conditioned reinforcement and hyperbolic discoumtiterature, respectively.

To date, a complete model of conditioned reinforeetaccounting for both
dynamic and static conditions has not been fulgl@ated. Having a complete model of a
behavioral phenomenon that describes both whabeabserved and what factors create
the phenomenon is a crucial step in fully undeditagnbehavior. The Rescorla-Wagner
and Mazur models together account for not onlyoilieomes (conditioned
reinforcement), but also the processes that gestethese outcomes (an iterated model
of conditioned stimulus strength).

It is notable that within this complete model sitain exponentiated variant of the
Mazur hyperbolic discounting function that bestatées dynamically produced
conditioned stimulus strength. As noted previouigre has been significant debate
regarding which form, the original Mazur or expoti@ed Mazur, better describes live
organism behavior data (Green & Myerson, 2004). dureent results support the
exponentiated variant over the original functioheTact that this finding originated from
a computational model rather than live organisna daight lead some to dismiss its
significance. However, computational data offensaie advantages over live organism
data. Specifically, computational data is highlyiolled and plentiful. Both of these
factors markedly increase the statistical streogthe analyses. Therefore, phenomena
are less likely to be lost within noise that isergnt to live organism data. Despite these
advantages, the true scientific value of a computat model is in generating findings
that can be tested in live organisms. In regattiéccurrent results, the findings suggest

that the reinforcement rate-conditioned reinforcenstrength relationship is best
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accounted for by an exponentiated hyperbolic disting function. However, existing
live-organism data do not directly address thiatrehship. Therefore, future research
could focus on evaluating this relationship in lorganisms.
Neurobiological Correlateswith the Computational M odel

Two elements of the model design most relevanetoaebiological findings
appear to be the functioning of the Rescorla-Wagmatel and the separate behavior
repertoires that were used to represent separatitiomed stimuli.

Although the dynamic Rescorla-Wagner model provaieaccount of how a
stimulus develops conditioned reinforcement thropainings with unconditioned
stimuli, it can only be grossly compared to neuntdgical functioning. The brain
structure most closely related to this functionwvauld be the ventral striatum. However,
as discussed above, this region has been pringmsigciated with the initial learning of
conditioned stimuli associations. As learning depslfurther, the dorsal striatum appears
to become more relevant (Graybiel, 2008). The Résdbagner model does not account
for the separation of the initial learning and bebamaintenance processes. Despite the
lack of this functioning, it is possible that the/iRmodel provides an estimation of
overall/combined striatum functioning. A reviewtbe literature did not reveal any
specific studies that have explored these connexBo this remains conjecture at the
current time. Future research could address thisexion with collaborative
neurobiologist and learning theorist project. Alilgh neurobiologists and learning
theorists come from different training backgrourttigs cross-disciplinary approach

could be a productive area for future research, (déDowell, 2010).
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The second aspect of the computational model désagrmay benefit from some
comparison to neurobiological findings is the prased separation of the stimulus-
associated repertoires (i.e., the initial and teahiinks). This separation was
programmed into the model giving the separatedrtejpes “built-in” stimulus control.
Although the resulting behavior was consistent Wwite-organism behavior in several
ways, the functioning of the model was restricetd¢havior that has already developed
stimulus associations. Neurobiological findingsdé&wnd consistent evidence that
separate brain regions are involved in the learamdymaintenance of stimulus
associated behavior (Graybiel, 2008; Everitt & Robp2005). The modified model
does not address how stimulus associations debelgpnd the conditioned stimulus
strength values produced by the Rescorla-WagneemBdcause development of
stimulus associations is an important part of stialbehavior, future research would
likely benefit from modeling these phenomena.

The TNGS (theory of neuronal group selection) pegabby Gerald Edelman
does specify how stimulus associations develomdmnecting separate neuronal groups
associated with a stimulus and a behavior, respdgtiby means of reentrant signaling.
It may be possible to use the concept of reensignialing within the current
computational model. If this implementation of rerant signaling were technically
feasible, the behavior produced by the model ussegtrant signaling and Rescorla-
Wagner methods could be compared. An experimeatlils would have important
theoretical implications because a neurobioloicabty (TNGS) could be tested
alongside a traditional learning theory (RescorlagWer) that has a large amount of

research supporting its usefulness.
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Future Directionsfor Research

There are a variety of possible future researatctions based on the current
project’s results. Some of these directions hawnlukscussed previously. One of these
possibilities is the change in behavior emissiothogology. The new methodology
would entail behavior emission by groupings of hédws rather than by randomly
selected behaviors. Although this change wouldasgmt a major modification to the
McDowell model, it has the potential to improve tntinuity between behaviors
emitted at each time-step, which could improve rhoslgism when pre-reinforcement
delays are instituted. A second possibility wouddtd examine model behavior on
concurrent chained schedules of behavior. Althazagiturrent chains are more complex,
there are a variety of quantitative theories tlaatehbeen successful in describing live
organism behavior on them (e.g., delay reducti@oth- Fantino, 1969), which would
improve the validity of any evaluation of model betlor.

Several additional directions for future reseastgm from examining the
correspondence of live organism behavior and theeotimodel results. Although the
current model implemented relatively simple expenits (two link chained schedules),
there was a paucity of existing live organism dateompare to the current results.
Future work could coordinate computational model e organism experiments to
compare the results directly. A first series ofstheoordinated experiments could
systematically vary the reinforcement rate in chdischedules and examine the changes
in behavior rates in the links as a result. Conguoariof the computational model data and
live-organism data would be very informative inetetining the realism of the

computational data. A second series of experimsyu&l examine the relationship
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between conditioned stimulus strength and reinfoes® rate to determine whether the
original or exponentiated Mazur functions best act¢dor live organism data variance.
Given the current project’s results, it is expedteat the exponentiated Mazur function
would best account for the data.

Conclusion

The current project represents a major and impbadvance in computational
modeling of behavior. Although previous versionshef McDowell computational model
could produce behavior on single and concurreptradtive schedules that was consistent
with live organisms, there was no account for cleang behavior due to different
stimulus conditions. The current project’s modifiocas to the model allow for the
production of behavior on chained schedules. Howeke range and type of behavior
capable of being produced was limited. In fact,deent project’s results highlighted
some areas of the model that need improvementttieeeffect of delay to
reinforcement).

In the process of developing the modified moded, gioject also found evidence
for a complete model of conditioned reinforcemduatt taccounts for both dynamic and
static effects. The finding that the Rescorla-Wagnedel's dynamically produced
conditioned stimulus strength are accounted fathyexponentiated variant of the
Mazur hyperbolic discounting function has importth@oretical implications, as noted
previously.

Overall, the project has produced predictions apbehomena that should be
observable in live-organisms. Although some hawsligted that analytical techniques

give rise to a “flight from the laboratory” (Skinned.959), the current results clearly
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demonstrate the co-productive nature of computatiorodeling and live organism data:
results from each discipline can suggest futureations of research in the other. It is this
co-evolution of the two disciplines that holds dneatential for spurring a greater

understanding of behavior.
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Appendix

Residual Analysis

The residuals resulting from fits of various fuoos to model data were analyzed
in several steps. First, the standardized residuate calculated after fitting a function to
model data. Second, these residuals were plot@dsighe predicted value of the
function being used. Third, these plots were gatiiely examined for non-random
patterns. Previous work by Berg (unpublished mas608) and Berg and McDowell
(2010) found that lower order polynomial fits couhiss significant non-random
residuals. Although visual inspection of plots doesprovide statistical confidence
regarding ones’ conclusions, the method can idewtifether patterns might exist but are
not being identified using appropriate statistiv@ans. Finally, after visual inspection of
the residuals, cubic polynomials were fitted to phedicted value-standardized residual
data. Cubic polynomials were chosen (as opposgdddratic, quartic, or quinitic) in the
hopes of balancing Type | and Il error. Figure Adstrates how the pVAF and chance of
Type | error increases as polynomial order appresithe number of datapoints.
Although the datapoints are random,"ao8der polynomial accounts for 100% of the
variance. Thus, in determining what order of polyied to fit to 11 residual datapoints, a

cubic polynomial was chosen to minimize the chasfcEype | error.
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Table 1

Parameter descriptions

Model/Function Parameter Description

Rescorla-Wagner

\% Conditioned stimulus strength
a Stimulus salience
Lo Salience of reinforcer absence
S Salience of reinforcer presence
A Maximum stimulus strength
a Currently-proposed scaling exponent
Mazur Function
a,b Non-specific equation parameters
X Latency of primary reinforcement
Mazur Function(s) for
Variable Intervals
a,b (same as Mazur Function)
r Reinforcement rate

S Scaling parameter for exponentiated variant




Table 2

Model parameters varied in Experiment Series |

Parameter
of interest Parameter values tested Other moddalitons*
o ,Bo ,81 a

- 0.01 0.5 1
- 0.1 0.5 1

o 0.5,0.7,0.9 i 005 05 1
- 0.05 1 1
- 0.05 2 1
0.7 - 025 1

fo 0.001,0.005,0.01,0.05,0.1 7 - 05 1
0.7 - 1 1
0.7 - 2 1
0.7 0.01 - 1

p1 0.25,0.5,0.75,1, 2 0.7 01 i 1
0.7 0.05 - 1

a 1,1.25,15,1.75, 2 0.7 0.051

* for each value of the parameter of interest
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Table 3

Best-fit parameter values and goodness-of-fit stias for fits of classic and
exponentiated Mazur functions to conditioned stirmgtrength values, V, for
different values gf; under several Rescorla-Wagner parameter conditions

Classic Mazur Exponentiated Mazur
b1 a b R a b s R
Bo: 0.01,0: 0.7
0.25 1.18 515 099 105 262 895 1.00
0.5 1.09 214 099 103 137 833 1.00
0.75 1.06 12.6 0.99* 1.01 142 534 1.00
1 1.04 885 099 101 139 413 1.00*
2 1.09 214 099 100 0.62 452 1.00*
Bo:0.1,a: 0.7
0.25 11.4 13370 1.00* 1.72 19.6 18.7 1.00
0.5 242 859 1.000 125 381 341 1.00
0.75 1.74 345 1.00* 116 354 229 1.00
1 149 198 1.00* 1.14 354 229 1.00
2 1.22 70  0.99* 1.06 401 7.60 1.00
L0:0.5,a: 0.7
0.25 249 899 1.00* 126 3.86 34.0 1.00
0.5 151 207 1.00* 1.14 104 6.39 1.00
0.75 1.30 105 0.99* 1.08 458 884 1.00
1 121 673 099* 106 349 840 1.00
2 111 29.1 0.99* 1.03 397 4.06 1.00

* statistically significantff < .05) cubic polynomial pattern in the residuals
Italics indicate that the fit did not converge
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Best-fit parameter values and goodness-of-fit stias for fits of classic and
exponentiated Mazur functions to conditioned stirmgtrength values, V, for

differentf, Rescorla-Wagner parameter values.

Classic Mazur

Exponentiated Mazur

Bo a b R a b s R
£1:0.25,a: 0.7
0.001 1.02 3.12 100+ 100 0.65 3.62 1.00*
0.005 1.09 209 0.99* 1.02 140 801 1.00
0.01 1.18 50.3 0.99* 1.04 262 882 1.00
0.05 244 873 100+ 125 181 710 1.00
0.1 11.4 13270 1.00* 169 108 326 1.00
L1:0.5,a: 0.7
0.001 1.00 1.38 1.00* - - - -
0.005 1.05 9.31 0.99* 1.02 175 3.53 1.00
0.01 1.09 212 0.99* 1.03 195 6.00 1.00
0.05 151 206 1.00* 1.14 815 7.90 1.00
0.1 242 860 1.00* 1.27 123 11.3 1.00
p1:1,a:0.7
0.001 1.00 0.50 0.99* 1.00 167 040 1.00
0.005 1.02 399 1.00* 1.00 0.64 441 1.00
0.01 1.04 8.84 0.99* 1.03 297 523 1.00
0.05 1.22 683 0.99* 1.06 485 6.25 1.00
0.1 147 194 0.99* 1.11 4.5 13.0 1.00
L1:2,0:0.7
0.001 099 0.21 0.86* 099 020 163 1.00
0.005 1.01 171 0.99* - - - -
0.01 1.01 375 0.99* - - - -
0.05 111 289 0.99* 1.04 564 3.02 1.00
0.1 122 70.1 0.99* 1.06 759 431 1.00

* statistically significanti < .05) cubic polynomial pattern in the residuals

- indeterminate fit

Italics indicate that the fit did not converge
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Table 5

Best-fit parameter values and goodness-of-fit stias for fits of classic and
exponentiated Mazur functions to conditioned stimtrength values, V, for
different values od under several Rescorla-Wagner parameter conditions

Classic Mazur Exponentiated Mazur

a a b R a b S R
Po:0.01,6:: 0.5

0.5 1.09 21.0 0.99* 1.03 270 565 1.00

0.7 1.09 21.2 0.99* 1.03 297 523 1.00

0.9 1.09 21.0 0.99* 1.03 3.83 4.00 1.00
Po: 0.1,61: 0.5

0.5 2.37 834 1.00* - - - -

0.7 246 886  1.00* 1.25 410 31.8 1.00

0.9 244 881 1.00* 1.25 228 609 1.00
Bo: 0.05,6:: 0.5

0.5 1.49 201 1.00* 1.13 791 8.02 1.00

0.7 1.46 193 0.99* - - - -

0.9 150 205 1.00* 1.11 230 255 1.00
Po- 0.05,6:: 1

0.5 1.22 68.9 0.99* 1.06 3.13 940 1.00

0.7 122 69.6 0.99* 1.07 549 570 1.00

0.9 121 68.4 0.99* 1.05 267 109 1.00
Bo: 0.05,61: 2

0.5 1.11 28.6 0.99* 1.03 270 564 1.00

0.7 1.11 28,9 0.99* 1.03 297 523 1.00

0.9 1.10 27.1 0.99* 1.03 383 4.00 1.00

* statistically significantg{ < .05) cubic polynomial pattern in the residuals
- indeterminate fit
Italics indicate that the fit did not converge
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Best-fit parameter values and goodness-of-fit stias for fits of classic and

exponentiated Mazur functions to conditioned stimtrength values, V, for
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different a.
Classic Mazur Exponentiated Mazur
a a b R a b S R
po:0.05,61: 1,0: 0.7
1 1.22 70.0 099* 109 7.60 451 1.00
1.25 1.03 23.0 0.99 1.04 244 097 1.00
1.5 095 852 0.99* 099 238 057 1.00*
1.75 092 400 098 098 379 0.31 1.00*
2 092 232 0.96* 097 423 0.22 1.00*

* statistically significantyf < .05) cubic polynomial pattern in the residuals
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Table 7

Rescorla-Wagner parameters, terminal link Rl schedalues, parameters of the
best-fitting hyperbola, and fit statistics?jRor fits of the classic and modern
matching functions to initial link response-reinfement data.

Classic hyperbola Modern
Parameters hyperbola parameters
Model Parameters
and
Terminal Link e
Schedules k re R k a b R
Bo: 0.01,5:: 0.25
RI1 250 34 1.00* 306 0.81 26 1.00
RI5 242 37 1.00 303 0.85 35 1.00*
RI 25 222 52 0.99 258  0.89 46  0.99
RI 112 223 103 1.00 - - - -
ﬂo: 0.0l,ﬂlﬁ 1.0
RI'1 252 31 1.00* 283 0.86 25 1.00
RI5 239 28 1.00 260 0.89 24 1.00
RI 25 214 25 0.99 233 0.90 21 0.99
RI112 238 35 0.98 266 0.91 34 0.98
Bo: 0.005,51:0.5
RI1 253 32 1.00* 294 0.84 25 1.00
RI 5 250 32 1.00* 301 0.85 28 1.00
RI 25 239 33 1.00 257  0.92 29 1.00
RI112 251 57 0.98* 527 0.70 57 0.99*
Bo: 0.05,5:: 0.5
RI1 237 32 1.00* 268 0.86 26 1.00
RI 5 241 42 0.99 320 0.79 33 1.00
RI 25 239 59 1.00 296  0.87 52 1.00
RI112 252 89 0.99 444  0.80 92 0.99
S0:0.055,:0.5,a:1.5
RI'1 249 38 1.00 309 0.81 29 1.00
RI5 242 38 1.00 303 0.80 29 1.00
RI 25 235 53 1.00 261 0.89 43 1.00
RI 112 159 44 0.94 202 0.86 41 0.94

* statistically significantif < .05) cubic polynomial pattern in the residuals
- indeterminate fit
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Table 8

Best-fit parameter values from fits of classic amatlern matching functions to model
response-reinforcement rate data for different ealof proportion of behaviors
produced using a fitness function following reigfEment.

Proportion Classic hyperbola Modern
Produced Parameters hyperbola parameters
Using
Fitness E
Function K re R K a b R
20 151 83 99.0 225 0.85 84 0.99
30 186 69 1.00 211 0.92 63 1.00
40 231 72 1.00* 304 0.83 59 1.00
50 226 55 1.00 241 0.94 49 1.00
60 234 48 1.00* 267 0.87 37 1.00
70 232 39 1.00* 262 0.85 30 1.00
80 239 37 1.00* 266 0.86 29 1.00*
90 245 35 1.00* 279 0.83 26 1.00
100 244 31 1.00* 278 0.82 22 1.00

* statistically significanti{ < .05) cubic polynomial pattern in the residuals
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Figure Captions
Figure 1.Schematic illustrating development of primary aodditioned reinforcement
in modified McDowell computational model implemedit@ a chained schedule.
Figure 2.Plot of the exponentiated Mazur function for valwés andr with parameters
aandb set to 1.1 and 5, respectively.
Figure 3 The effect of reinforcement rate pn conditioned stimulus strengt) (for 3
different values o6 under the model conditioffis: 0.01,8:: 0.5, a: 1.0.
Figure 4.Instantaneous values of conditioned stimulus gtreV, for the first 500 time
ticks. Top panel shows results torF 0.5, middle panel fax = 0.7, and bottom panel for
o =0.9.
Figure 5 Mean and standard deviation of the conditionedwtis strengthy, for three
experiments using = 0.5,a = 0.7, andx = 0.9.
Figure 6 The effect of reinforcement rate on conditiongohglus strength\{) for 5
different values off, under the model conditions 0.7,5;: 0.25,a: 1.0.
Figure 7. The effect of reinforcement rate on conditiongghglus strength\() for 5
different values off; under the model conditions 0.7,5,: 0.05 a 1.0.
Figure 8 The effect of reinforcement rate on conditiongghglus strength\() for 5
different values off; under the model conditions 0.7,50: 0.01, a: 1.0.
Figure 9 The effect of reinforcement rate on conditiongghglus strength\() for 5
different values o& under the model conditiorfs: 0.05,4;: 1.0,a: 0.7.
Figure 10.Instantaneous values of conditioned stimulus gtreW, for the first 500 time
ticks. Top panel shows results for 1, middle panel foa = 1.5, and bottom panel far

= 2 (o 0.05,8:: 1.0, 0.7).
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Figure 11 Standardized residuals (vertical axis) versudipted values o¥ (horizontal
axis) from fits of the classic Mazur function f@ndom interval schedules. Model
conditions are detailed below each plot.

Figure 12 Standardized residuals (vertical axis) versudipted values o¥ (horizontal
axis) from fits of the exponentiated Mazur functionrandom interval schedules.
Model conditions are detailed below each plot.

Figure 13 Standardized residuals (vertical axis) versudipted values o¥ (horizontal
axis) from fits of the Mazur function for randonmtenval schedules. Model conditions
are detailed below each plot.

Figure 14 Standardized residuals (vertical axis) versudipted values oY/ (horizontal
axis) from fits of the exponentiated Mazur functionrandom interval schedules.
Model conditions are detailed below each plot.

Figure 15 Standardized residuals (vertical axis) versudipted values oY/ (horizontal
axis) from fits of the Mazur function for randonmtenval schedules. Model conditions
are detailed below each plot.

Figure 16 Standardized residuals (vertical axis) versudipted values o¥ (horizontal
axis) from fits of the exponentiated Mazur functionrandom interval schedules.
Model conditions are detailed below each plot.

Figure 17 Standardized residuals (vertical axis) versudipted values o¥ (horizontal
axis) from fits of the Mazur and exponentiated Mdzuctions for random interval
schedules under 4 different values of the expoatattiRescorla-Wagner exponeat,

For all plots the Rescorla-Wagner parameters used:fp: 0.05,51: 1,a: 0.7.
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Figure 18 Response and reinforcement rate plots for diffiegpeoportions of behaviors
produced for the next time-step using the pardittess function after reinforcement (as
opposed to production of all new behaviors usirgyfitmess function to select parent
behaviors). The percentage of behavior replacetyube linear fithess function is
denoted by the legend on the right.

Figure 19 Standardized residuals (vertical axis) versudipted values oB (horizontal
axis) from fits of the classic (top two rows) anddern (bottom two rows) matching
functions to reinforcement-response rate data.

Figure 20 Cumulative distribution plots showing responsed eeinforcements for the
first 1000 time-steps of both the initial (top) aedminal (bottom) links for a chain RI1-
RI1 schedule.

Figure 21 Cumulative distribution plot showing responsed exinforcements for the
first 1000 time-steps of both the initial (top) aedminal (bottom) links for a chain RI5-
RI5 schedule.

Figure 22 Cumulative distribution plots showing responsed geinforcements for the
first 1000 time-steps of both the initial (top) aedminal (bottom) links for a chain RI25-
RI25 schedule.

Figure 23 Cumulative distribution plots showing responsed geinforcements for the
first 1000 time-steps of both the initial (top) aedminal (bottom) links for a chain
RI112-R1112 schedule.

Figure 24 The initial link reinforcement and response rdtegl constant terminal link

reinforcement rates under the Rescorla-Wagner tondp,: 0.05,4;: 0.5,a: 0.7,a: 1.0.
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Figure 25.Initial to terminal link response rate ratios. Mbdenditions: So: 0.05,4::
0.5,a: 0.7,a: 1.0.

Figure 26.Initial link response rate8] for 22 experiments varying the initial and
terminal link schedules from RI1-RI1 to RI22-RI2B&ie maintaining a 1 time-tick delay
to reinforcement in the initial link. Operant levdlresponse rate for the computational
model is denoted for comparison.

Figure A1.Random distribution of 6 datapoints fit with quatilt (top panel), cubic
(middle panel), and d"6order polynomial (bottom panel) illustrating tmetieasing
percent variance accounted for (pVAF) as polynomider approaches the number of

datapoints.
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Initial Link Response Rate (B)
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