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Abstract

Study of Benford’s Law

By Mengqi Zhao

Having been studied for over a hundred years, Benford’s Law is an anomaly of numbers.

It was named after Frank Benford and was introduced in the 19th century. In this paper, we

illustrate its counter-intuitive nature that numbers are actually not distributed with equal

probability in Section 1. The law started with the study of the leading digit frequency, but

expanded to the second digit, the first-two digits, the first-three digits, . . . , and to any base

beyond base 10. Though the real-world applications of the law were limited before the 20th

century, it has been used by auditors, accountants, scientists to detect data fraud in recent

times. This will be discussed in Section 1 following the background information.

In Section 2, by introducing the concept of uniform distribution mod 1, we will define the

notion of a Benford sequence. The next step is to establish the mathematical foundations by

defining a good sequence and Weyl’s Criterion in the mathematical justification subsection.

They provide a strategy to prove whether a sequence conforms to Benford’s Law or not.

Then the strategy was proved accordingly.

Finally, with the established strategy, we take a look at how mathematicians have used

it to prove some sequences to be Benford.
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1 Introduction

Big data problems are often difficult to analyze and solve. Statisticians often study large

data sets with millions of data pieces. They try to identify distributions by calculating

various statistics including mean, variance, standard deviation, skewness, etc. From the

distributions of various data resources, statisticians are able to answer a lot of questions

related to the given data. They can build corresponding models, analyze human behaviors

underlying the experimental data, forecast market performances from stock prices, or solve

other important problems concerned with certain data.

For a very long time, there were very few peculiar data patterns found by data scientists.

Examples could be drawn easily. Since any integer is either even or odd, we expect that

a big database with only integers would contain equal amount of even and odd numbers.

In “real-world” large databases, even numbers and odd ones are indeed roughly equally-

distributed just as expected. Table 1 below gives a list of 60 countries sorted by 2013

nominal GDP in millions of US dollars by the United Nations. After doing a simple count,

we found 26 even numbers, which is nearly one half of the total number! Moreover, a very

big database theoretically follows the Central Limit Theorem (CLT), stating that a random

sample with sufficiently many observations will be approximately normally distributed. Not

only statisticians, but also economists and experts from other fields have utilized this theorem

in real-life data analysis. It is a fact that many statistical tests in economics have been built

with the assumption of the CLT.

However, many natural data sets exhibit unusual behavior. Unlike even and odd numbers,

the significant digits which usually describe the size of a number, for example the first digit,

were found to follow a counter-intuitive pattern. One might naively expect each digit from

0 to 9 to occur with equal frequency. This is also saying that, in a big database, one-ninth

of the numbers should start with 1 or 2, etc. Each digit from 0-9 is also expected to have

a probability of one-tenth to be on the second digit position. However, it turns out to be a
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1. INTRODUCTION 2

completely different story.

Country/Region GDP(Millions of US$) Country/Region GDP(Millions of US$)
United States 16,768,100 United Arab Emirates 402,340

China 9,181,204 Colombia 378,148
Japan 4,898,532 Venezuela 371,339

Germany 3,730,261 South Africa 366,060
France 2,806,432 Denmark 336,701

United Kingdom 2,678,455 Malaysia 312,434
Brazil 2,243,854 Singapore 295,744
Italy 2,149,485 Israel 291,567

Russia 2,096,774 Chile 277,043
India 1,937,797 Hong Kong 274,027

Canada 1,838,964 Philippines 272,067
Australia 1,531,282 Finland 267,329

Spain 1,358,263 Egypt 255,199
South Korea 1,304,554 Greece 241,721

Mexico 1,259,201 Ireland 232,077
Indonesia 868,346 Portugal 227,324

Netherlands 853,539 Pakistan 225,419
Turkey 822,149 Kazakhstan 224,415

Saudi Arabia 748,450 Czech Republic 208,796
Switzerland 685,434 Algeria 208,764
Argentina 611,727 Qatar 202,450
Sweden 579,680 Peru 200,269
Poland 525,863 Irap 195,517

Belgium 524,806 New Zealand 189,025
Norway 522,349 Romania 188,881
Nigeria 514,965 Ukraine 182,026

Iran 492,783 Kuwait 175,831
Taiwan 489,089 Vietnam 171,222
Austria 428,322 Bangladesh 153,505

Thailand 420,167 Hungary 129,989

Table 1: List of Countries with Top 60 GDP by the United Nations (2013) [4]

2
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Ordinary statistical analysis of a given data set like above may include answering such

questions: What is the average national GDP level among the top 60 countries? A number

is randomly drawn from the table, what is probability that it is an even number? How large

is the gap between some wealthier and poorer countries? What does the distribution of

national GDP look like and at what extent does GDP vary from country to country? Many

of the common statistical questions could be answered by calculating the statistics.

Mean = 1, 205, 468

Range = 16, 638, 111

Standard Deviation = 2496543.821

Skewness = 4.87144.

Average national GDP of the 60 countries in Table 1 is 1, 205, 468 and the GDP gap between

the 1st ranked country (the US) and the 60th ranked country (Hungary) is 16,638,111. A high

standard deviation implies that the GDPs of the first 60 countries spread out over a wide

range. In addition, a positive skewness indicates that the mass of the data set distribution

is concentrated on the left. The probability distribution function has a longer or fatter right

tail than the left one.

Unlike the ordinary pattern and the traditional statistical analysis, the distribution of sig-

nificant digits is truly odd. We will take the leading digit as an example. Intuitively, there

are 9 candidates (number 1-9) for the first digit of a number. According to naive intuition,

the chance for a number to start with 1 should be one-ninth. However, Table 2 and Figure

1 below tell us that the digit distribution of the GDP data is not as uniform as expected.

For example, 25% of the 2013 national GDP numbers start with 1, which is more than twice

of the expected 1/9. Moreover, 35% of the 60 numbers in Table 1 start with 2, but only

about 1.7% start with 9. In the full list of 194 countries on the United Nations’ website, 56

numbers (28.8%) have the first digit as 1. Instead of an equal distribution, lower digits (1

and 2) appear more often as first digits than high digits (8 and 9). This counter-intuitive

3



1. INTRODUCTION 4

phenomenon is known as Benford’s Law.

Digit 1 2 3 4 5 6 7 8 9
Frequency 15 21 6 6 5 2 1 3 1
Proportion 0.25 0.35 0.1 0.1 0.083 0.033 0.0167 0.05 0.0167

Table 2: Digit Frequency Table of the Data in Table 1

Figure 1: First Digit Graph of the Data in Table 1

1.1 Historical Background

The establishment of Benford’s Law dates back to 1881. This statistical principle was first

proposed by Simon Newcomb, who was well-known as a highly-honored Canadian-American

astronomer. Newcomb made a significant contribution to the derivation of physical constants

and planetary motion in early 19th century. However, he focused more on mathematics later

on in his life [6]. He first noticed a peculiar phenomenon while studying logarithm tables

that contain a logarithm of numbers starting with lower numbers. Newcomb found that

the earlier pages of the tables were much more worn than later ones. Apparently, people

4
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more often referred to earlier pages, which contain numbers beginning with lower digits such

as 1 or 2. He published his observation in the American Journal of Mathematics, where

he proposed that the probability of a number N being the first digit of a number was:

Prob(D1 = N)=log10(N + 1)− log10(N). This means that in base 10, a number that starts

with 1 would appear approximately 30% of the time. A number that starts with 2 would then

appear around 17.6% of the time. The frequency monotonically decreases as N increases.

Newcomb did not show the equation explicitly, but he was obviously aware of it because of

the probability table he included in the paper [8] :

N Prob(D1 = N) Prob(D2 = N)
0 - 0.1197
1 0.3010 0.1139
2 0.1761 0.1088
3 0.1249 0.1043
4 0.0969 0.1003
5 0.0792 0.0967
6 0.0669 0.0934
7 0.0580 0.0904
8 0.0512 0.0876
9 0.0458 0.0850

Table 3: Expected Digits Frequency Derived By Newcomb

Figure 2: Expected First and Second Digits Distribution Derived by Newcomb

5
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Completely deviating from the intuition: Prob(Di = N)= 1/9, for N = 0, 1, . . . , 9, i ∈ N,

except Prob(D1 = 0) that is not applicable, Newcomb’s observation was just as astounding as

what we found in the previous GDP table. However, since he didn’t explain the phenomena

theoretically, his article did not draw much attention at the time. Newcomb would be

surprised to see how extensively it has been studied since then [6].

Later in 1938, Frank Benford again mentioned the same situation about the logarithm tables

in his The Law of Anomalous Numbers paper [2]. As an illuminating engineer and physicist,

Benford had 20 patents and published more than 100 papers on lights and the science of

optics. His study on digits originated from his interest in mathematics as a hobby. His

patents expired a long long time ago, however, Benford’s study of digit distribution has

lived on and made a great impact on subsequent related research. Benford’s first step was to

analyze the first digit frequency in 20 data tables from various natural sources. The results of

his analysis are displayed in the following table (Table 2). He confirmed that more numbers

tend to begin with lower first digits (1 and 2) instead of higher digits (8 and 9). Beyond that,

the expected frequencies of the digits in number lists including the first digit, the second

digit, the first-two digits, and so on were also derived [9]. Frank Benford’s re-discovery of

the principle, his mathematical analysis, and his experiment on 20229 natural numbers and

20 data sets made the law so well-known that it was given his name.

6
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First Digit (in Percentage)
Group Description Count 1 2 3 4 5 6 7 8 9

A Rivers, Area 335 31.0 16.4 10.7 11.3 7.2 8.6 5.5 4.2 5.1
B Population 3,259 33.9 20.4 14.2 8.1 7.2 6.2 4.1 3.7 2.2
C Constants 104 41.3 14.4 4.8 8.6 10.6 5.8 1.0 2.9 10.6
D Newspapers 100 30.0 18.0 12.0 10.0 8.0 6.0 6.0 5.0 5.0
E Spec. Heat 1,389 24.0 18.4 16.2 14.6 10.6 4.1 3.2 4.8 4.1
F Pressure 703 29.6 18.3 12.8 9.8 8.3 6.4 5.7 4.4 4.7
G H.P.Lost 690 30.0 18.4 11.9 10.8 8.1 7.0 5.1 5.1 3.6
H Mol.Wgt. 1,800 26.7 25.2 15.4 10.8 6.7 5.1 4.1 2.8 3.2
I Drainage 159 27.1 23.9 13.8 12.6 8.2 5.0 5.0 2.5 1.9
J Atomic Wgt. 91 47.2 18.7 5.5 4.4 6.6 4.4 3.3 4.4 5.5
K n-1,

√
n, . . . 5,000 25.7 20.3 9.7 6.8 6.6 6.8 7.2 8.0 8.9

L Design 560 26.8 14.8 14.3 7.5 8.3 8.4 7.0 7.3 5.6
M Digest 308 33.4 18.5 12.4 7.5 7.1 6.5 5.5 4.9 4.2
N Cost Data 741 32.4 18.8 10.1 10.1 9.8 5.5 4.7 5.5 3.1
O X-Ray Volts 707 27.9 17.5 14.4 9.0 8.1 7.4 5.1 5.8 4.8
P Am. League 1,458 32.7 17.6 12.6 9.8 7.4 6.4 4.9 5.6 3.0
Q Black Body 1,165 31.0 17.3 14.1 8.7 6.6 7.0 5.2 4.7 5.4
R Addresses 312 28.9 19.2 12.6 8.8 8.5 6.4 5.6 5.0 5.0
S n1, n2 . . . n! 900 25.3 16.0 12.0 10.0 8.5 8.8 6.8 7.1 5.5
T Death Rate 418 27.0 18.6 15.7 9.4 6.7 6.5 7.2 4.8 4.1

Average 1,011 30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7
Probable Error ±0.8 ±0.4 ±0.4 ±0.3 ±0.2 ±0.2 ±0.2 ±0.2 ±0.3

Table 4: Benford’s Analysis of Natural Data Sets in 1938 [2]

1.2 Real-life Applications

Benford’s Law was not the center of the public’s attention for a long time because of its

lack of applications. However, this is not the case anymore. In“The Running Man” episode

of a popular television crime drama NUMB3RS, one character called Charlir Eppes used

Benford’s Law to solve a series of crimes. This is just an interesting use of Benford’s Law on

television. In real life, major fields of the law’s applications include: accounting, auditing,

and detection of anomalies in data sets.

Not until the 1980s had Benford’s Law been utilized to test the validity of natural data

resources. Two remarkable digital analyses on income statements came from Carslaw and

Thomas at that time. Carslaw, in 1988, detected abnormal income manipulation behav-

ior from a New Zealand firms’ financial statements. Their stated earnings had more zeros

7
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as the second digit than expected by the Benford frequency, but at the same time, there

were too few nines. As we normally perceive a price of $1.99 to be much cheaper than $

2.00, companies also have the tendency to round up their earnings to make better-looking

statements [3]. From the observed second digit frequencies, Carslaw argued that those firms

rounded up earnings such as $ 1,900,000 to $2,000,000 to enhance income numbers. Even

though he utilized Benford’s expected digit frequency, Carslaw did not refer it to Benford’s

Law, but to “Feller’s Proof”. One year later, Thomas studied the U.S. firms’ earnings and

noticed a similar pattern as what Carslaw found. The first person who utilized Benford’s

Law substantially as a key indicator of accounting fraud was Mark J. Nigrini, an accounting

professor at West Virginia University. His assertion about the important role of Benford’s

Law in auditing started from 1996, when he identified tax evaders. He and the co-author,

Mittermaier, further explained the process of auditing accounting data by Benfod analysis

in details and illustrated some case studies in their 1997 paper. Nigrini also made the law

and its use popular through his recent book Benford’s Law: Applications for Forensic Ac-

counting, Auditing, and Detection of Data Frauds [5].

Empirically, people might tend to manipulate the distribution of the first digits in financial

accounts to be more uniform if they want to fraud. Based upon that, auditors could perform

a digital analysis on the target accounts to distinguish any abnormal digits distribution. In

the paper The Effective Use of Benford’s Law to Assist in Detecting Fraud in Accounting

Data, Cindy Durtschi and her colleagues conducted an analysis on two financial accounts of

a large Western U.S. medical center. From the results of their analysis of the office supplies

reimbursement account, they found that except digits 2 and 7, the other seven digits almost

conformed to the expected Benford distribution. Their further study on non-conforming

items went against the existence of accounting frauds; The payments were proved legiti-

mate. However, the insurance refund check account’s number deviations were not as normal

as the office supplies refunds.

The overall insurance refunds deviations did not fall within the conforming ranges except

8
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for the digit 2. Durtschi and her colleagues found that in the entire account many more

checks were written at just over $ 1,000 than in the previous periods and than the expected

Benford frequency. Previously, most checks were actually less than $100.00 . Although the

financial officer claimed that she tried to write fewer checks and refund in an accumulated

amount to some large insurers, it turned out that she owned a shell company and had written

excessive refund checks to her own shell company. This example illustrates that Benford’s

Law is very useful for detecting suspicious account activities. At the same time, auditors

and accountants should pay attention to the adaptability of the law to different types of ac-

counts. For example, Benford testing may work well with income, expenses, disbursements,

transactions numbers, etc. However, it is not likely for Benford analysis to be useful for the

data sets with pre-assigned numbers, such as ATM withdrawals. Patient refund accounts

of a medical center are also unlikely to conform since co-payments were usually assigned

through insurance plans in advance. Moreover, accounts that only record numbers that fall

into a certain range, such as accounts with a built-in maximum or minimum, would not be

in the scope of Benford analysis [5].

Beyond spotting fraudulent accounting data and financial statements, earth scientists

and other users of earth science data also would like to verify the validity and accuracy of

the data they found. Here comes Nigrini’s study on U.S. streamflows to show whether the

data sets conform to Benford’s Law or not. The National Streamflow Information Program

(NSIP) of the U.S. Geological Survey (USGS) collects data of water flows at stream gauge

sites over major floods and droughts. The flow data is important because they could help

other government departments respond to the disasters appropriately and effectively. More-

over, the needs from designers to build bridges and other facilities enhance the significance of

the streamflows data; As do their usefulness to assess the survivability of endangered animals

during extreme conditions, to forecast future flows, and to monitor water quality. As a result,

testing the credibility of the given earth science data before making major decisions from

9
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the data becomes critical. Nigrini performed a first-two digits frequency analysis on 457,440

usable stream gauge measurements, which covered an extended period of 130 years. It was

found that the actual frequency conformed nearly perfectly to the expected frequency. This

indicates that earth science data should follow Benford’s Law, which is useful to examine

the authenticity of the data. If close conformity is observed, accuracy and integrity of the

data can be confirmed and the data can be forwarded to further uses [9].

Having introduced the origins of Benford’s Law and its wide-ranging applications in the

real life, we can move on to study its mathematical aspect and substantiate its mathematical

foundations.

10
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2 Mathematical Foundations of Benford’s Law

To properly define Benford’s Law and perform a study on its mathematical justification, it

turns out that we need the concepts of uniform distribution mod 1. So in this section, we

will first familiarize ourselves with uniform distribution mod 1 and bases in mathematics,

which will build the foundations. Then, we will be ready to define Benford’s Law in base

B. How uniform distribution establishes and justifies Benford’s Law will be illustrated. In

simple terms, if the mantissas of the logarithm of a sequence are uniformly distributed, the

sequence will follow the Benford distribution. Based upon this idea, we will visit Weyl’s

Criterion, which provides us with a strategy to prove uniform distribution modulo 1. Thus,

we would be able to further determine whether Benford’s Law holds for a sequence or a class

of sequence.

2.1 Uniform Distribution Modulo 1

Let [x] and {x} = x − [x] be defined as the integral part and fractional part of x ∈ R,

respectively. Note that {x} is also called mantissa of x or the residue of x (mod 1), {x} ∈

unit interval I = [0, 1).

Let ω = (xn), n = 1, 2, . . . , be a given sequence of real numbers. For a positive integer N

and a subinterval [a, b) ⊆ I, we define a counting function A([a, b);N ;ω) as the number of

terms xn, 1 ≤ n ≤ N , for which {xn} ∈ [a, b).

Definition 1 (Definition 1.1 in [7]). The sequence ω = (xn), n = 1, 2, . . . , of real numbers is

defined to be uniformly distributed modulo 1 (abbreviated u.d. mod 1) if for every pair

a, b ∈ R with 0 ≤ a < b ≤ 1 we have

lim
N→∞

A([a, b);N ;ω)

N
= b− a. (2.1)

11
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This is also saying that if each subinterval [a, b) ⊆ I obtains its deserved share of the

fractional parts, the sequence ω = (xn), n = 1, 2, . . . , is u.d. mod 1.

To be more general, let c[a,b) be the characteristic function of the interval [a, b) ⊆ I. Then

the equation (2.1) could be modified to the following form:

lim
N→∞

1

N

N∑
n=1

c[a,b)({xn}) =

∫ 1

0

c[a,b)(x)dx (2.2)

This follows by the theorem below.

Theorem 1 ([Theorem 1.1 in [7]). The sequence (xn), n = 1, 2, . . . , of real numbers is u.d.

mod 1 if and only if for every real-valued continuous function f defined on the closed unit

interval Ī = [0, 1] we have

lim
N→∞

1

N

N∑
n=1

f({xn}) =

∫ 1

0

f(x)dx (2.3)

Proof. First, let (xn) be u.d. mod 1 and f(x) =
∑k−1

i=0 dic[ai,ai+1](x) be a step function on

Ī = [0, 1], where 0 = a0 < a1 < · · · < ak = 1. Then (2.2) indicates that for every such f

equation (2.3) holds.

We assume that f is a real-valued and continuous function on Ī. The Riemann integral

defines
∫ b
a
f(x)dx to be the area under the function graph over the interval [a, b] based upon

partition of [a, b] : P = {a = u0 < u1 < · · · < uk = b}. A function f on [a, b] is a step

function if there exists a partition P . It follows that given any ε > 0, there exist two step

functions, f1 and f2 such that f1(x) ≤ f(x) ≤ f2(x) for all x ∈ Ī and
∫ 1

0
(f2(x)−f1(x))dx ≤ ε.

We would derive inequalities as following:

∫ 1

0

(f(x)− f1(x))dx ≤ ε

12
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∫ 1

0

f(x)dx− ε ≤
∫ 1

0

f1(x)dx = lim
N→∞

1

N

N∑
n=1

f1({xn})

≤ lim
N→∞

1

N

N∑
n=1

f({xn}) ≤ lim
N→∞

1

N

N∑
n=1

f({xn})

≤ lim
N→∞

1

N

N∑
n=1

f2({xn}) =

∫ 1

0

f2(x)dx ≤
∫ 1

0

f(x)dx+ ε.

Since ε is arbitrarily small, (2.3) holds for a real-valued continuous function f .

Conversely, for a sequence xn, we first assume that (2.3) holds for every real-valued con-

tinuous function f defined on Ī, and [a, b) ⊆ I. For any ε > 0, there exist two continuous

functions, g1 and g2 that g1(x) ≤ c[a,b)(x) ≤ g2(x) for x ∈ Ī. Then we have a chain of

inequalities again: ∫ 1

0

(g2(x)− g1(x))dx ≤ ε

b− a− ε ≤
∫ 1

0

g2(x)dx− ε ≤
∫ 1

0

g1(x)dx = lim
N→∞

1

N

N∑
n=1

g1({xn})

≤ lim
N→∞

A([a, b);N)

N
≤ lim

N→∞

A([a, b);N)

N
≤ lim

N→∞

1

N

N∑
n=1

g2({xn})

=

∫ 1

0

g2(x)dx ≤
∫ 1

0

g1(x)dx+ ε ≤ b− a+ ε.

Since ε is arbitrarily small, we here proved (2.3). �

Corollary 1.1 (Corollary 1.2 in [7]). The sequence (xn) is u.d. mod 1 if and only if for

every complex-valued continuous function f on R with period 1 we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(xn)dx. (2.4)

Proof. Apply Theorem 1 to the real and imaginary part of function f , we first show that

it also holds for complex-valued f . Since here function f has the period 1, then f({xn}) =

13
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f(xn), which leads to (2.4). In the proof of Theorem 1, we could choose functions g1 and

g2 such that g1(0) = g1(1) and g2(0) = g2(1), so that (2.4) can be applied to the periodic

extension of g1 and g2 to R. We prove the sufficiency [7]. �

2.2 Definition of “Benford’s Law Base B”

In the previous introduction section, stories and examples were given in base 10, which is

the most common base used today. Now, we are going to expand to other bases and define

Benford’s Law in any base.

Definition 2. A base is the number of different digits that a numeral system has to represent

numbers. Let B denote a specific base, B ∈ N* = {1, 2, . . . }.

For example, base 10 refers to the decimal system that we use most of the time in real

life. The decimal system has 10 digits, which are 0,1, 2, . . . , 9. Different arrangements

and combinations of these 10 digits can represent different numbers. Unlike human beings,

computers use completely different bases such as base 2 under the binary system, with which

people who have learned computer science might be familiar. Due to their information

processing ability, computers are only able to deal with 0s and 1s. Quinary system (base 5)

would be another numerical system, using digits 0 to 4. Note that we will denote numbers

with their bases as following: 1310 = 11012 = 235 and after. In general, a number in base

B could be calculated in the following way: x1B
j + x2B

j−1 + · · · + xkB
j−(k−1) for some

integer j, xk = 1, 2, . . . , B − 1. We have made a table to show first 12 distinct numbers

of the Fibonacci sequence in decimal, binary, and quinary systems for you to review. It is

always more straightforward to understand bases and how each system represent numbers

differently by a direct comparison.

14
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Decimal(base-10) Binary(base-2) Quinary(base-5)
1 1 1
2 10 2
3 11 3
5 101 10
8 1000 13
13 1101 23
21 10101 41
34 100010 114
55 110111 210
89 1011001 324
144 10010000 1034
233 11101001 1413

Table 5: First 12 Distinct Numbers in Fibonacci sequence with Different Bases 10,2,5

Here follows the definition of Benford:

Definition 3. For a sequence ω = (xn), n = 1, 2, . . . , and xn ∈ R, let

B(d,N,B;ω) =
#{n ≤ N : first digits of xn in base B are the string d}

N
.

For all B ≥ 2, the sequence ω = (xn), n = 1, 2, . . . , xn ∈ R is Benford, if

lim
N→∞

B(d,N,B;ω) ≡ logB(d+ 1)− logB(d)(mod 1).

Study of leading digits only considers the positive numbers without losing general-

ity. The above equation must hold for any initial string d in any base B for a sequence

or function to be Benford. For instance, the function B(100, N, 2;ω) calculate the pro-

portion of n ≤ N , for which xn starts with the string d = “100” in base 2. Since

1002 = 410, (log2(5) − log2(4)) (mod 1) ≈ 0.3219, 32.19 % of a Benford sequence would

be expected to start with “100 ”. We could also derive the expected digit frequencies of the

second digit by following Frank Benford’s research [1].

Let D1, D2, D1D2 denote as the first digit, the second digit, and the first-two digits of a

15
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number, respectively.

Prob(D1 = N1) = logB(N1 + 1)− log(N1);

Prob(D2 = N2) =
∑
D1

logB(N2 + 1)− logB(N2);

Prob(D1D2 = N1N2) = logB(N1N2 + 1)− logB(N1N2).

2.3 Mathematical Justification of Benford’s Law

Here we are going to show how essential and necessary the uniform distribution mod 1 is for

our definition of Benford to hold.

Definition 4. An integer-valued function xn is good whenever

xn ∼ ane
bn ,

which means that

lim
n→∞

xn
anebn

= 1

and the following conditions are satisfied:

(1) There exists some integer h ≥ 1 such that bn is h-differentiable, bn
(h) is monotone, and

lim
n→∞

bn
(h) = 0. (2.5)

(2)

lim
n→∞

n
∣∣∣bn(h)∣∣∣ =∞. (2.6)

(3)

lim
n→∞

D(h) log an

bn
(h)

= 0, where D(h) denotes the hth derivative. (2.7)

16
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Theorem 2. If xn is good, then the sequence (xn) is Benford.

In the article The Distribution of Leading Digits and Uniform Distribution Mod 1, Di-

aconis concluded that a real sequence (xn) is Benford, if and only if logB(xn) is uniformly

distributed mod 1 for all B. Here we illustrate a numerical example in base 10 to justify

Diaconis’ result. Table 6 shows logarithms of the 9 possible first digits in base 10. Then we

map it onto a numerical axis as Figure 3.

Digits N log10(N)
1 0
2 0.301
3 0.477
4 0.602
5 0.698
6 0.778
7 0.845
8 0.903
9 0.954
10 1

Table 6: Logarithms of Numbers 1-10 in Base 10

Figure 3: Logarithm Scale Bar

The mathematical basis of Benford’s Law is that the mantissas of logarithms of the

numbers are uniformly distributed. In base 10, it is also saying that any subinterval [a, b) ⊆

[0, 1) gets its proper share.

Suppose a number M = 284.6710. Then, we have

log10(M) = log10(284.67) = log10(2.8467× 102) = 2 + log10(2.8467)

17
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Thus the mantissa of log10 284.67 equals to the mantissa of log10 2.8467. In like manner,

{log10 1} = {log10 10} = {log10 100} = 0, {log10 2} = {log10 20} = {log10 200} ≈ 0.301, etc.

Since the logarithm function is a monotonically increasing function, numbers with mantissas

less than {log10 2} should start with digit 1. If the assumption of uniform distribution holds,

this justifies equation (2.6) that Prob(D1 = 1) = log10(2)−log10(1) ≈ 0.301 When logB(s(n))

is uniformly distributed mod 1 for all B, then s(n) conforms to Benford’s Law.

In order to prove Theorem 2, we just need to show that if (xn) is good, log(xn) is

uniformally distributed mod 1. In this case, we still need the following two theorems to

support our proof.

Theorem 3 (Weyl’s Criterion). The sequence ω = (xn), n = 1, 2, . . . , is u.d. mod 1 if and

only if

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0 for all integers h 6= 0. (2.8)

Proof. The necessity follows from Corollary 1.1. Suppose that (xn) fulfills the criterion (2.8).

We can show that (2.4) is true for every complex-valued continuous function f on R with

period 1. Let ε > 0 be an arbitrary number. According to the Weierstrass approximation

theorem, there exists a trigonometric polynomial Ψ(x), that is, a finite linear combination

of functions with the term e2πihxn , h ∈ Z, with complex coefficients, such that

sup
0≤x≤1

∣∣f(x)−Ψ(x)
∣∣ ≤ ε. (2.9)

18
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∣∣∣∣∣∣
∫ 1

0

f(x)dx− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣∣ ≤
∣∣∣∣∣
∫ 1

0

(f(x)−Ψ(x))dx

∣∣∣∣∣+

∣∣∣∣∣∣
∫ 1

0

Ψ(x)dx− 1

N

N∑
n=1

Ψ(xn)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

N

N∑
n=1

(f(xn)−Ψ(xn))

∣∣∣∣∣∣ .
According to (2.9), the first term and third term on the right both are ≤ ε for any value of

N . As we assume (2.8) holds at first, if N is sufficiently large, the second term on the right

is ≤ ε. �

Theorem 4 (Theorem 3.5 in [7]). Let f(x) be a function defined for x ≥ 1 which is k-times

differentiable for all x ≥ x0 for some x0 ∈ R+, k ∈ N. Suppose that f (k) is eventually

monotonic,

lim
x→∞

f (k)(x) = 0, (2.10)

and

lim
x→∞

x
∣∣∣f (k)(x)

∣∣∣ =∞, (2.11)

then the sequence {f(n) : n ∈ N} is uniformly distributed mod 1.

In order to establish proof of Theorem 4, we need the following theorems and corollary

as support.

Theorem 5 (Theorem 2.5 in [7]). A sequence of real numbers f(n), n = 1, 2, . . . , satisfies

that ∆f(n) = f(n+ 1)− f(n) is monotone as n increases. Therefore, if

lim
n→∞

∆f(n) = 0 and lim
n→∞

n
∣∣∆f(n)

∣∣ =∞. (2.12)

Then the sequence f(n) is u.d. mod 1.

19
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Proof. For every pair of real numbers u and v,

∣∣∣∣∣e2πiu − e2πiv − 2πi(u− v)e2πiv

e2πiv

∣∣∣∣∣ =
∣∣∣e2πi(u−v) − 1− 2πi(u− v)

∣∣∣

= 4π2

∣∣∣∣∣
∫ u−v

0

(u− v − w)e2πiwdw

∣∣∣∣∣
≤ 4π2

∣∣∣∣∣
∫ u−v

0

(u− v − w)dw

∣∣∣∣∣
= 2π2(u− v)2. (2.13)

If we let u = hf(n+ 1) and v = hf(n), h ∈ N. Then, it follows from (2.13) that:

∣∣∣∣∣e2πihf(n+1)

∆f(n)
− e2πihf(n)

∆f(n)
− 2πihe2πihf(n)

∣∣∣∣∣ ≤ 2π2h2
∣∣∆f(n)

∣∣ for n ≥ 1

∣∣∣∣∣ e2πihf(n+1)

∆f(n+ 1)
− e2πihf(n)

∆f(n)
− 2πihe2πihf(n)

∣∣∣∣∣
≤
∣∣∣∣ 1

∆f(n)
− 1

∆f(n+ 1)

∣∣∣∣+ 2π2h2
∣∣∆f(n)

∣∣ for n ≥ 1 (2.14)

∣∣∣∣∣∣2πih
N−1∑
n=1

e2πihf(n)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N−1∑
n=1

(2πihe2πihf(n) − e2πihf(n+1)

∆f(n+ 1)
+
e2πihf(n)

∆f(n)
) +

e2πihf(N)

∆f(N)
− e2πihf(1)

∆f(1)

∣∣∣∣∣∣
≤

N−1∑
n=1

∣∣∣∣∣2πihe2πihf(n) − e2πihf(n+1)

∆f(n+ 1)
+
e2πihf(n)

∆f(n)

∣∣∣∣∣+
1∣∣∆f(N)

∣∣ +
1∣∣∆f(1)
∣∣

≤
N−1∑
n=1

∣∣∣∣ 1

∆f(n)
− 1

∆f(n+ 1)

∣∣∣∣+ 2π2h2
N−1∑
n=1

∣∣∆f(n)
∣∣+

1∣∣∆f(N)
∣∣ +

1∣∣∆f(1)
∣∣ .

Because ∆f(n) is monotone, we then have

∣∣∣∣∣∣ 1

N

N−1∑
n=1

e2πihf(n)

∣∣∣∣∣∣ ≤ 1

π|h|
(

1

N
∣∣∆f(1)

∣∣ +
1

N
∣∣∆f(N)

∣∣) +
π|h|
N

N−1∑
n=1

∣∣∆f(n)
∣∣ .
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If (2.12) is true, then

lim
N→∞

1

N

N−1∑
n=1

e2πihf(n) = 0.

We recall Weyl’s Criterion that the sequence f(n) which satisfies the above equation is u.d.

mod 1.

�

Corollary 5.1 (Fejer’s Theorem). Let f(x) be a function defined for x ≥ 1 which is differ-

entiable for x ≥ x0. If when x → ∞, f ′(x) monotonically tends to 0, and n
∣∣f ′(x)

∣∣ goes to

∞, then the sequence f(n), n = 1, 2, . . . , is u.d. mod 1.

Proof. The mean value theorem yields that there is a point c in the interval (n, n+ 1) of the

function f(x) that

f ′(c) =
f(n+ 1)− f(n)

(n+ 1)− n
= ∆f(n).

So when x → ∞ and the conditions for Fejer’s Theorem holds, then we get ∆f(n) →

0, x
∣∣∆f(n)

∣∣→∞, which satisfies the conditions of Theorem 5.

�

Theorem 6. For each positive integer h, a sequence (f(n + h) − f(n)) with real numbers

is u.d. mod 1, if ∆kf(n) is monotone in n and as n → ∞, we have ∆kf(n) → 0 and

n
∣∣∆kf(n)

∣∣→∞ for k ∈ N.

Proof. When k = 1, we have Theorem 5. For k > 1, we first assume the theorem is true. Let

a sequence (f(n)) with limn→∞∆(k+1)f(n) = 0, limn→∞ n
∣∣∣∆(k+1)f(n)

∣∣∣ =∞, and ∆(k+1)f(n)

is monotone in n. For a fixed positive integer h,

f(n+ h)− f(n) = Σh−1
j=0∆f(n+ j)

∆(k)(f(n+ h)− f(n)) = Σh−1
j=0∆(k+1)f(n+ j)

21
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Then we have ∆(k+1)(f(n+h)−f(n)) is monotone in n, limn→∞∆(k+1)(f(n+h)−f(n)) = 0,

and limn→∞ n
∣∣∣∆(k+1)(f(n+ h)− f(n))

∣∣∣ = ∞. By induction hypothesis, we prove that the

sequence (f(n+ h)− f(n)) is u.d. mod 1.

�

With Theorem 6, we can extend Fejer’s Theorem as following. Since ∆kf(n) = f (k)(c)

and n
∣∣∆kf(n)

∣∣ = xf (k)(c), limn→∞∆(k)f(n) = 0 and limn→∞ n
∣∣∣∆(k)f(n)

∣∣∣ = ∞ are equiv-

alent to limn→∞ f
(k)(x) = 0 and limn→∞ x

∣∣∣f (k)(x)
∣∣∣ = ∞. Thus, if f (k)(x) tends to 0 and

x
∣∣∣f (k)(x)

∣∣∣ tends to ∞ monotonically as n → ∞, (f(n + h) − f(n)) is u.d. mod 1 for any

h ≥ 1. In order to prove that (f(n)) is u.d. mod 1, we are going to introduce Van der

Corput’s Fundamental Inequality and Van der Corput’s Difference Theorem.

Lemma 7.1 (Van der Corput’s Fundamental Inequality). Let u1, . . . , uN ∈ C, and let H be

an integer that 1 ≤ H ≤ N . Then

H2

∣∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣∣
2

≤ H(N +H − 1)
N∑
n=1

|un|2 + 2(N +H − 1)
H−1∑
h=1

(H − h)Re
N−h∑
n=1

unūn+h, (2.15)

where Re z is the real part of the a complex number z.

Proof. Let un = 0 for n ≤ 0 and n > N .

H

N∑
n=1

un =
N+H−1∑
p=1

H−1∑
h=0

up−h (2.16)

H2

∣∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣∣
2

≤ (N +H − 1)
N+H−1∑
p=1

∣∣∣∣∣∣
H−1∑
h=0

up−h

∣∣∣∣∣∣
2

= (N +H − 1)
N+H−1∑
p=1

(
H−1∑
r=0

up−r)(
H−1∑
s=0

ūp−s)
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= (N +H − 1)
N+H−1∑
p=1

H−1∑
h=0

∣∣up−h∣∣2 + 2(N +H − 1)Re
N+H−1∑
p=1

H−1∑
r,s=0,s<r

up−rūp−s

= (N +H − 1)(Σ1 + 2ReΣ2),

where Σ1 = H

N∑
n=1

|un|2 ,Σ2 =
∑
n,h

unūn+h, n = 1, 2, . . . N and h = r−s = 1, 2, . . . , H−1(s < r)

For a fixed n that 1 ≤ n ≤ N and fixed h that 1 ≤ h ≤ H − 1, the possible combinations

for (r, s) will be (h, 0), (h+ 1, 1), . . . , (H − 1, H − h− 1). Each of them gives a unique p. We

will have H − h repetitions of unūn+h in Σ2.

Σ2 =
H−1∑
h=1

(H − h)
N∑
n=1

unūn+h

Because for n > N, un = 0, the summation over n could be altered to 1 ≤ n ≤ N − h.

�

Theorem 7 (Van der Corput’s Difference Theorem). Given a sequence of real numbers (xn).

If for every positive integer h, the sequence (xn+h − xn), n = 1, 2, . . . , is u.d. mod 1, then

(xn) is also u.d. mod 1.

Proof. Let un = e2πimxn ,m is a constant nonzero integer. We divide (2.15) in Lemma 7.1 by

H2N2.

∣∣∣∣∣∣ 1

N

N∑
n=1

e2πimxn

∣∣∣∣∣∣
2

≤ N +H − 1

HN
+2

H−1∑
h=1

(N +H − 1)(H − h)(N − h)

H2N2

∣∣∣∣∣∣ 1

N − h

N−h∑
n=1

e2πim(xn−xn+h)

∣∣∣∣∣∣ .
For each h ≥ 1, xn − xn+h is u.d. mod 1, now we have,

lim
N→∞

1

N − h

N−h∑
n=1

e2πim(xn−xn+h) = 0, for each h ≥ 1.
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Combining the above two equations:

lim
N→∞

∣∣∣∣∣∣ 1

N

N∑
n=1

e2πimxn

∣∣∣∣∣∣
2

≤ 1

H
.

It holds for every H, if we take H as large as possible, then we have

lim
N→∞

1

N

N∑
n=1

e2πimxn = 0.

�

With Theorem 5, Corollary 5.1, Theorem 6, Lemma 6.1, we are able to prove Theorem

4 by induction.

Proof. For k = 1, it is the same to prove Corollary 5.1, which we already did.

Then, for k > 1, the extension of Fejer’s Theorem indicates that if the conditions for Theorem

4 hold, then the sequence f(n + h) − f(n) is u.d. mod 1. By Van der Corput’s Difference

Theorem, the sequence is proved to be f(n) is u.d. mod 1 [7]. �

Through the definition of uniform distribution mod 1 and Weyl’s Criterion, the following

Lemmas could be derived from Theorem 4:

Lemma 4.1. If f(n) is Benford and f(n) ∼ g(n), then g(n) is Benford.

Now, we are ready to prove Theorem 2.

Proof. Let an integer-valued function x(n) be good first. It follows that x(n) ∼ a(n)eb(n).

According to Lemma 4.1, in order to show x(n) is Benford, it is sufficient to show a(n)eb(n) is

Benford. This is also to prove log a(n)eb(n) = log(a(n))+b(n)(mod1) is uniformly distributed.

By definition of a good function, we have equation (2.9). It satisfies the condition (2.14)

that b(n) is uniformly distributed mod 1. From (2.10), the limit will not be affected if we

add log(a(n)) to b(n) [1]. �
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3 Established Cases of Benford’s Law

In the first section, we mentioned that Frank Benford experimented on 20 different data sets,

which included some mathematical sequences such as n−1,
√
n, n!, etc. His work inspired a

lot of other researchers to further investigate sequences. Many sequences have been proven

Benford. In this section, we include two established cases, their proofs, and how Theorem2

has been applied in each case.

3.1 n!

n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 36880
10 3628800

Table 7: First 20 Terms of the Factorial Sequence n!

The sequence n! is a Benford sequence. The proof is rather simple, followed by Theorem 2.

Proof. Recall Stirling’s formula:

n! ∼ 1√
2π
nn+

1
2 e−n (3.1)

By Definition 3, the sequence n! is good. Hence, n! is Benford from Theorem 2 [6]. �
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3.2 Partition Functions

The partition function p(n) calculates how many different ways that the integer n could be

written as a sum of positive integers. We consider that the order of the addends does not

matter. For example, the integer 5 could be written as follows:

5=5

5=4+1

5=3+2

5=3+1+1

5=2+2+1

5=2+1+1+1

5=1+1+1+1+1.

Thus, p(5) = 7 and such function p(n) is also called an unrestricted partition function [10].

The following Table 8 and 9 gives p(n) for n = 1, 2, . . . , 50 and the digit frequency.

26
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n p(n) n p(n) n p(n)
0 1 19 490 38 26015
1 1 20 627 39 31185
2 2 21 792 40 37338
3 3 22 1002 41 44583
4 5 23 1255 42 53174
5 7 24 1575 43 63261
6 11 25 1958 44 75175
7 15 26 2436 45 89134
8 22 27 3010 46 105558
9 30 28 3718 47 124754
10 42 29 4565 48 147273
11 56 30 5604 49 173525
12 77 31 6842
13 101 32 8349
14 135 33 10143
15 176 34 12310
16 231 35 14883
17 297 36 17977
18 385 37 21637

Table 8: First 50 Terms of the Partition Function p(n)

Digit Frequency
1 19
2 7
3 7
4 4
5 4
6 3
7 4
8 2
9 0

Table 9: Digit Frequency of p(n), n = 1, 2, . . . , 50

27
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Figure 4: First Digit Frequency of p(n), n = 1, 2, . . . , 50

We could observe from Figure 4 that except digit 1 and 9, the first digit distribution

accord with the expected one. To prove the partition function is actually a Benford sequence

mathematically, we recall that Theorem 2 states that: if a sequence (xn) is good, then it is

Benford.

Corollary 2.1. The partition function p(n) is Benford.

Proof. Hardy and Ramanujn obtain the following asymptotic with the circle method and

modular functions[10]:

p(n) ∼ 1

4n
√

3
eπ
√

2n/3. (3.2)

It is obvious that p(n) is good and hence Benford [1]. �
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