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Abstract 
 

Limit sets of Kleinian groups: properties, parameters, and pictures 
 

By Jacob K. Geerlings 
 

 
 

This thesis explores fractal images that are the limit sets of Kleinian groups.  Properties 

and classification of Möbius transformations lead to groups of such transformations, and to the 

classification of some important group types.  Möbius transformations are represented by 

matrices in SL(2, ).  The purpose of the early material is to foster an intuitive grasp of what 

happens in simple groups, so that more complex groups may be correctly pictured.  The 

accumulation points of group’s actions on points in the upper half space are on the plane and are 

called the limit set.  The limit set of a Kleinian group Γ can have 0, 1, 2, or uncountably infinitely 

many points.  A discrete group will have a limit set that is a proper subset of the plane.  The limit 

set is the smallest nonempty, closed, Γ-invariant subset of the plane.  Besides properties of the 

limit set, the thesis explores and utilizes a depth-first search to plot pictures of connected limit 

sets.  The family used for the algorithm has connected limit sets that are origin-symmetric and 

pass through 1 and -1.  Each group in the family has a parabolic commutator.  The pictures are 

used to explore different features of the groups in the family—ones generated by parabolic, 

hyperbolic, and loxodromic transformations.  The images, generated by Mathematica, by self-

symmetry and spirals, serve to remind readers of facts about complex arithmetic and Möbius 

transformations.  The final chapter also explores some limitations of the algorithm. 
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Introduction: What we are looking for 

This thesis explores the limit sets of Kleinian groups—finitely generated, discrete 

groups of Möbius transformations.  Then, the depth-first search algorithm as described by 

Mumford, Series, and Wright in Indra’s Pearls [2] is applied to their special family of 

groups with parabolic commutator.  Their normalization puts the important structures of 

the limit set all pretty close to, and rotation-symmetric, around the origin. 

In plainer English, this thesis gives ways of repeatedly transforming the plane in 

ways that make fractals.  Fractals, infinitely mirrored, repetitively branching forms, will 

be pictured and discussed.  The limit set, which is a fractal in some cases, will be our tool 

for understanding these transformations of the plane.  These geometric objects help us 

understand the transformations that generate them and the underlying complex number 

system. 

The thesis was constructed with two main sources—the graduate reference text 

Foundations of Hyperbolic Manifolds, by John G. Ratcliffe [3], and the book Indra’s 

Pearls: The Vision of Felix Klein, which is meant to be accessible to laymen.  Ratcliffe’s 

treatment of the relevant subject material (one chapter out of 13) is rigorous and dry, 

while Mumford, Series, and Wright skim over proofs, focusing on graphical intuition and 

readability.  The thesis places the harder material from Ratcliffe in the middle, 

surrounded by the intuitive material based on Indra’s Pearls. 

The first chapter presents some preliminary information concerning complex 

numbers, Möbius transformations, and conjugation, leaning more toward intuition.  The 

second chapter discusses groups and discreteness.  Torsion-free Kleinian groups enter 

play there, as do Schottky and Fuchsian groups.  This chapter moves the reader into what 
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is the heaviest chapter.  Chapter 3 proves important properties of the limit set, drawing 

heavily from Ratcliffe, but adapted for three dimensions.  Chapter 4 continues to 

investigate the limit set, but with parameters and an algorithm from Mumford, Series and 

Wright.  The Mathematica code used to generate the fractal images is at the very end. 
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Chapter 1: Möbius transformations 

In order to build a vocabulary with which we may describe and generate fractal 

patterns, an intuitive understanding of Möbius transformations is a start.  But first, let us 

review some facts about the complex plane.  The number i is defined as a solution to the 

equation x2 + 1 = 0 (the other is –i).  There is no solution in the real numbers, so i is 

called “imaginary.”  The complex plane is a plane of two axes: real numbers and 

imaginary.  The imaginary axis moves through real multiples of i.  A complex number is 

one with both imaginary and real parts, like 4 + 3i, or in general a + bi for a, b real.  Each 

complex number is a point on the plane, with 4 +3i situated four units right and three 

units up from the origin. 

Addition of complex numbers works just like regular addition. 

(a + bi) + (c + di) = (a + c) + (b + d)i 

Multiplication is a bit more complicated, though, because i2 = -1.  So, 

(a + bi)(c + di) = ac + adi + bci + bdi2 

 = (ac – bd) + (ad+bc)i 

Multiplication is more easily understood in a different coordinate representation, 

though.  Instead of representing x and y positions, complex numbers can be represented 

by a distance from zero and a degree (in radians) from the positive real ray.  Thus, i gets 

radius 1 and angle π/2.  This can be written using Euler’s formula as i = eiπ/2.  From the 

exponential notation for complex numbers, reiθ, where r is |a + bi|, the distance from the 

origin, and θ is the angle from the positive real numbers, also called the “argument” of 

the number.  By this representation, it is easy to see that two numbers, when multiplied, 

have radius equal to the product of radii, and argument equal to sum of the factors’ 
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arguments.  That is, 

reiθ seiφ = rs(eiθ eiφ) = rseiθ + iφ = rsei(θ + φ) 

The next item on the list is infinity.  The number infinity (∞) does not need to be 

feared and hated (unless perhaps your computer program is stumped by it); it has a proper 

place in the sphere of mathematics.  At the top.  This is the value of stereographic 

projection.  Stereographic projection maps the set of complex numbers and infinity to the 

unit sphere.  Consider the unit sphere sitting in the center of the complex plane.  From the 

top of the sphere, the point (0, 0, 1), make a line to a point in the plane.  That line will 

intersect the unit sphere at one point other than (0, 0, 1).  Associate those two points. 

 Each point in the plane is thus mapped to a point on the sphere.  Any line tangent to the 

sphere at (0, 0, 1) will be parallel to the plane, so it will not be associated with any point 

of the plane.  However, as slopes of lines approach horizontal, the points of the plane get 

farther from 0 and the points on the sphere get closer to the pole.  Hence, the North Pole 

is associated with ∞.  This isomorphism maps circles in the plane to circles on the sphere, 

and lines in the plane become great circles through the North Pole.  This inclusion of 

infinity with the set of complex numbers is called the extended plane, or ℂ∞.  The unit 

sphere when associated with this mapping to the extended plane is called the Riemann 

sphere.  

Definition: A Möbius transformation is a function M with the form 

𝑀𝑀(𝑧𝑧) = 𝑎𝑎𝑧𝑧  + 𝑏𝑏
𝑐𝑐𝑧𝑧  + 𝑑𝑑

,  with a, b, c, d complex and ad – bc nonzero. 

Why is ad – bc nonzero?  If it were zero, then M could give the unhelpful value 

0/0.  𝑀𝑀 �− 𝑑𝑑
𝑐𝑐
� =

−𝑎𝑎𝑑𝑑
𝑐𝑐 + 𝑏𝑏

−𝑑𝑑  + 𝑑𝑑
 = 𝑎𝑎𝑑𝑑  – 𝑏𝑏𝑐𝑐

0
.  Also, M could be something like 𝑧𝑧+1

𝑧𝑧+1
, a constant 

function, which is not invertible.  With our nascent conception of infinity, let us define 
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some intuitive facts like 1/0 = ∞, 1/∞ = 0, ∞ + a = a∞ = ∞/a = ∞, and leave other things 

indeterminate, like 0/0 and 0∞.  Now we have Möbius transformations which act on the 

entire extended plane. These relate to simpler transformations like translation (z |→ z+a), 

scaling (z |→ az), and the inversion (z |→ 1/z) as follows.  The notation “|→” means “is 

mapped to,” so the first transformation is the transformation mapping z to z + a for each 

complex number z. 

Theorem 1.1: Every Möbius transformation is the composition of translations, scalings, 

and the inversion. 

Proof: Beginning with the identity transformation, perform translations, scalings, and 

inversion to show that one can generate any Möbius transformation of the form 𝑎𝑎𝑧𝑧 +𝑏𝑏
𝑐𝑐𝑧𝑧 +𝑑𝑑

. 

 z |→ z identity 

 z |→ c(cz + d) scale by c, translate by d, scale by c 

 z |→ 𝑏𝑏𝑐𝑐 −𝑎𝑎𝑑𝑑
𝑐𝑐(𝑐𝑐𝑧𝑧 +𝑑𝑑)

  invert, scale by bc – ad 

 z |→ 𝑎𝑎
𝑐𝑐

+ 𝑏𝑏𝑐𝑐 −𝑎𝑎𝑑𝑑
𝑐𝑐(𝑐𝑐𝑧𝑧 +𝑑𝑑)

   translate by a/c. 

      = 𝑎𝑎(𝑐𝑐𝑧𝑧 +𝑑𝑑)+𝑏𝑏𝑐𝑐 −𝑎𝑎𝑑𝑑
𝑐𝑐(𝑐𝑐𝑧𝑧 +𝑑𝑑) = 𝑎𝑎𝑐𝑐𝑧𝑧 +𝑏𝑏𝑐𝑐

𝑐𝑐(𝑐𝑐𝑧𝑧 +𝑑𝑑) = 𝑎𝑎𝑧𝑧 +𝑏𝑏
𝑐𝑐𝑧𝑧 +𝑑𝑑

. 

So, any Möbius transformation is a composition of translation, scaling, and inversion.    □ 

This means that Möbius transformations preserve circles (including lines—circles 

through infinity), the angles between them, and orientation, as translations, scalings, and 

the inversion also do. 

Theorem 1.2: A Möbius transformation other than the identity fixes at most two points 

(“fixes” means maps to itself, i.e. f(z) = z). 

Proof: Set 𝑎𝑎𝑧𝑧 +𝑏𝑏
𝑐𝑐𝑧𝑧 +𝑑𝑑

= 𝑧𝑧.  Then, 𝑐𝑐𝑧𝑧2 + (𝑑𝑑 − 𝑎𝑎)𝑧𝑧 − 𝑏𝑏 = 0.  This quadratic equation has 
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solutions 

𝑎𝑎 − 𝑑𝑑 ± √𝑑𝑑2 − 2𝑎𝑎𝑑𝑑 + 𝑎𝑎2 −  4𝑏𝑏𝑐𝑐
2𝑐𝑐

=  
𝑎𝑎 − 𝑑𝑑 ± �(𝑎𝑎 + 𝑑𝑑)2 − 4

2𝑐𝑐
 

(assuming ad – bc = 1, which is easily arranged).  The only trouble comes when c = 0.  

Then, the transformation fixes infinity and some other point, which point is given by the 

solution to (𝑑𝑑 − 𝑎𝑎)𝑧𝑧 − 𝑏𝑏 = 0 (if this equation has no solution, infinity is the only fixed 

point). 

When c = b = d – a = 0, the equation is true for all z.  This is only the case when 

the transformation is the identity.     □  

Hidden in this theorem (assuming Möbius maps are invertible, which is discussed 

later) is the fact that two Möbius maps that are not the same or the identity may only have 

the same action on two points.  If a, b, and c are mapped to x, y, and z by both Möbius 

transformations h and g, the Möbius transformation h -1 g has three fixed points.  Thus, h -

1 g is the identity so h = g. 

So we have found some points of interest to our transformations—fixed points.  

Now we need to be able to move them around without changing how interesting they are. 

Definition: a map M is conjugate to a map N if there is an invertible map C such that 

𝑀𝑀 =  𝐶𝐶 ∘  𝑁𝑁 ∘  𝐶𝐶−1 . 

Conjugation can be thought of like coordinate change.  Let’s say N has a 

structure, perhaps a fixed point at 4 + 2i that would be more conveniently observed at the 

origin.  Then, to move that structure to the origin, simply make C any map such that C 

(4+2i) = 0.  An easy choice is C(z) = z – 4 – 2i.  Then, C -1(z) = z + 4 + 2i.  So, 

 𝑀𝑀(0)  =  𝐶𝐶 ∘  𝑁𝑁 ∘  𝐶𝐶−1 (0)  =  𝐶𝐶 ∘  𝑁𝑁 (4 +  2𝑖𝑖)  =  𝐶𝐶 (4 +  2𝑖𝑖)  =  0 

M (0) = 0, so the conjugation does indeed move the fixed point as desired. 
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When conjugating by Möbius maps, the result is another Möbius map, as Möbius 

transformations are closed under composition.  To see this, let’s compose two of them. 

𝑎𝑎 (𝑒𝑒𝑧𝑧 + 𝑓𝑓)
𝑔𝑔𝑧𝑧 + ℎ + 𝑏𝑏

𝑐𝑐 𝑒𝑒𝑧𝑧 + 𝑓𝑓
𝑔𝑔𝑧𝑧 + ℎ + 𝑑𝑑

=
𝑎𝑎𝑒𝑒𝑧𝑧 + 𝑎𝑎𝑓𝑓 + 𝑏𝑏𝑔𝑔𝑧𝑧 + 𝑏𝑏ℎ
𝑐𝑐𝑒𝑒𝑧𝑧 + 𝑐𝑐𝑓𝑓 + 𝑑𝑑𝑔𝑔𝑧𝑧 + 𝑑𝑑ℎ

=
(𝑎𝑎𝑒𝑒 + 𝑏𝑏𝑔𝑔)𝑧𝑧 + 𝑎𝑎𝑓𝑓 + 𝑏𝑏ℎ
(𝑐𝑐𝑒𝑒 + 𝑑𝑑𝑔𝑔)𝑧𝑧 + 𝑐𝑐𝑓𝑓 + 𝑑𝑑ℎ

 

The result is another Möbius transformation.  And, it looks like something else 

rather handy.  Observe the result of a matrix multiplication of two matrices with entries 

the same as the coefficients above. 

�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� �𝑒𝑒 𝑓𝑓

𝑔𝑔 ℎ� = �𝑎𝑎𝑒𝑒 + 𝑏𝑏𝑔𝑔 𝑎𝑎𝑓𝑓 + 𝑏𝑏ℎ
𝑐𝑐𝑒𝑒 + 𝑑𝑑𝑔𝑔 𝑐𝑐𝑓𝑓 + 𝑑𝑑ℎ� 

This shows that if one represents Möbius transformations by matrices of their 

coefficients, then composition is represented by matrix multiplication.  This is quite 

useful when keeping track of transformations in the computer.  There is not one-for-one 

correspondence between these matrices and Möbius transformations.  The same 

transformation is represented by multiplying each matrix entry by a constant.  So, since it 

does not change the transformation, divide by √𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐 , the root of the determinant.  

Then, each Möbius transformation is represented by a unique matrix with determinant 1.  

This set of matrices is called the special linear group, SL(2,ℂ) as it does not have just any 

matrix in it.  Each matrix has determinant 1, and so is invertible and corresponds to a 

unique Möbius transformation. 

The formula for the inverse matrix becomes a formula for inverse transformations 

as well, since they are unaffected by multiplication by a constant.  Observe that the 

coefficients in the identity matrix give the identity transformation. 

�𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� � 𝑑𝑑 −𝑏𝑏

−𝑐𝑐 𝑎𝑎 � =  �1 0
0 1� 
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Conjugating with Möbius maps can produce some important results.  Besides 

translation, which we have seen, the map z |→ 1
𝑧𝑧
 is its own inverse, and conjugating by it 

switches the interior of the unit circle with the exterior, including swapping 0 and ∞ and i 

and –i.  This conjugation is just like projecting back to the Riemann sphere, flipping its 

south and north poles, and projecting back to the plane from the new north pole.  Another 

useful map is one that pairs the unit circle and the real line.  The classic map for this is 

the Cayley map, 𝑧𝑧−𝑖𝑖
𝑧𝑧+𝑖𝑖

.  Of course, since ∞ is our friend now, the image of the unit circle 

includes ∞, otherwise the circle that is the real line would be missing a point. 

Now comes a very important classification of Möbius maps.  These terms will 

pop up for the rest of the paper.  When I say “conjugate” here, I mean by Möbius 

transformations. 

Definition: A Möbius map is called parabolic if it has only one fixed point. 

Looking back at facts about fixed points, this occurs when �(𝑎𝑎 + 𝑑𝑑)2 − 4 = 0 (so 

a + d = ± 2), or if c is zero and d = a.  These transformations are always conjugate to 

translations—conjugate the fixed point to ∞. 

Definition: A Möbius transformation is called elliptic if it is conjugate to a map z |→ kz 

for k on the unit circle, that is, |k| = 1. 

It is obvious that 0 and ∞ are the fixed points of the conjugate transformation.  

Remember, complex multiplication multiplies distances from the origin, and k is 1 away 

from the origin.  Thus, an elliptic transformation is conjugate to a transformation that 

moves points in circles around the origin, effectively spinning the Riemann sphere. 

Definition: A Möbius transformation M is loxodromic if it is conjugate to a map z |→kz 

with k not on the unit circle, |k| ≠ 1.  If k is real, M is also hyperbolic. 
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A parabolic transformation acting on a circle 
through its fixed point 

 

An elliptic transformation acting repeatedly 
on circles close to the fixed points.

 

 
A loxodromic transformation 

acting on a circle

 

This kind of transformation, then, maps points in spirals towards or away from its 

fixed points (0 and ∞ if conjugated correctly).  If it is hyperbolic, the spirals are quite 

straight. 

Let us see some pictures.  All the pictures 

shown have fixed points at 0.  The 

parabolic and 

elliptic ones have fixed 

points at 0 and 1, to show the entire spiral.  

The parabolic transformation used was 

� 1 0
2𝑖𝑖 1�.  Points move toward the fixed 

point from one side.  Points on the other 

side travel away first in circles that take 

them finally toward the fixed point.  The 

elliptic transformation was z|→iz 
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conjugated so it would be z |→  𝑖𝑖𝑧𝑧
(𝑖𝑖−1)𝑧𝑧+1

.  The loxodrome used was z|→2iz, conjugated to 

be 2𝑖𝑖𝑧𝑧
(2𝑖𝑖−1)𝑧𝑧+1

.  Each transformation acted on a circles close to (or in the parabolic case, 

including) a fixed point.  Notice in the elliptical case that the conjugate map of z|→iz, 

which applied four times is the identity, maps the same circles to themselves after four 

iterations.  It retains the property of the original map.  And, by definition, the maps are of 

the same type under conjugation—a parabolic map cannot be conjugated to a hyperbolic 

one by Möbius transformations. 

These are the important features of the three kinds of transformations: parabolic 

moves things in circles to the fixed point, elliptic moves in circles around the fixed 

points, and loxodromic moves in spirals from one fixed point to the other.  Picture the 

inverses of the transformations—the parabolic one moves everything the other direction 

to the same fixed point.  The inverse of the elliptic transformation simply rotates points in 

the opposite direction around the fixed points, and the inverse of the loxodromic map 

sends points to the other fixed point. 

One more key feature of these maps is essential to our investigations.  The 

quantity (a+d), the sum of the first and last entry in the matrix representation of a 

transformation, tells us what type of transformation it is.  We have already seen that this 

quantity, called the trace, denoted Tr(M) for a transformation M, must be ±2 for parabolic 

transformations.  If the trace is real and between -2 and 2, the transformation is elliptic.  

Otherwise, the transformation is loxodromic.  To see this, conjugate fixed points to 0 and 

∞.  Then, the element is a scaling of the form z |→kz.  This has matrix representation 

𝑀𝑀 = 1
√𝑘𝑘

�𝑘𝑘 0
0 1�, so Tr(M) is 
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�
1

√𝑘𝑘
� (𝑘𝑘 + 1) = √𝑘𝑘 +

1
√𝑘𝑘

 

If |k| = 1, and k = a+bi, then √k is the number on the unit circle halfway anglewise 

to the positive reals and for any a+bi on the unit circle (a2+b2) = 1, 

𝑎𝑎 + 𝑏𝑏𝑖𝑖 +
1

𝑎𝑎 + 𝑏𝑏𝑖𝑖
=

(𝑎𝑎 + 𝑏𝑏𝑖𝑖)2 + 1
𝑎𝑎 + 𝑏𝑏𝑖𝑖

=
(𝑎𝑎 + 𝑏𝑏𝑖𝑖)(𝑎𝑎2 + 𝑏𝑏2) + (𝑎𝑎 − 𝑏𝑏𝑖𝑖)

𝑎𝑎2 + 𝑏𝑏2 = 2𝑎𝑎  

√𝑘𝑘 + 1
√𝑘𝑘

 is real, then, and it cannot get any bigger than 2 or less than -2.  Thus, if M is 

elliptic, trace is real and between 2 and -2.  This leaves loxodromic transformations with 

the rest of the traces. 
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Chapter 2: Groups of transformations 

Definition: A group is a set G and an operation on that set such that 

1) ab ∈ G ∀ a,b ∈ G. (closure) 

2) a(bc) = (ab)c (associativity) 

3) There exists an e such that ea = ae = a. (identity) 

4) ∀ 𝑎𝑎 ∈  𝐺𝐺, there is 𝑎𝑎−1 ∈ 𝐺𝐺 such that 𝑎𝑎𝑎𝑎−1  =  𝑎𝑎−1𝑎𝑎 =  𝑒𝑒. (inverses) 

So, the integers are a group under addition (addition is associative, identity is 0, inverses 

are opposites), but not multiplication—multiplicative inverses of integers are not always 

integers. 

An easy way to make groups is with generators. Pick a few starting elements, 

then do the operation arbitrarily many times. With the integers and addition, this makes 

multiples—with two as a generator and addition as the operation, one can produce ℤ2, or 

the set of positive and negative even integers (and zero) {..., -4, -2, 0, 2, 4, ...} 

Definition: A set of elements g1,g2,... are generators of a group G if every element of G 

can be written as the product of gi’s. 

So, 2 is a generator for ℤ2, from before. 

Example: The set of integers 1 through 6 under multiplication mod 7 is a group. Is two a 

generator? 22 = 2*2 = 4, 23=2*4 = 1 (mod 7). No. 2 only generates the set {1, 2, 4}, a 

subgroup of the whole group (a subgroup is a subset that is a group by the operation).  

Three is a generator. Its powers are 30 = 1, 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36=1, and 

the cycle restarts.  Check these answers in the table below.  Such a group, generated by a 

single element, is called cyclic. 
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一 Mod 7 multiplication table (a Cayley table) 

Now, returning to the topic of Möbius 

transformations, one can make groups of them just 

as easily as with integers. The operation desired is 

composition. 

Example: The set of all Möbius transformations is 

a group under composition.  It is closed under 

composition, composition is associative, the identity 

transformation is an element, and each element has 

an inverse. 

This is a huge group, and the groups we seek are all subgroups of this one.  The 

rest of this thesis will discuss properties of groups that are generated by a finite number 

of Möbius transformations. 

Example: One can make a simple cyclic group by taking a Möbius transformation as a 

generator g.  Elements would then be of the form gm, where m is any integer, positive, 

negative or zero. We have already seen what happens in this case—parabolic 

transformations are conjugate to translations, so the group generated would be conjugate 

to a bunch of translations of varying sizes. A loxodromic transformation would compose 

with itself to spiral things into or out of the generator’s sink and source. Its inverse would 

carry things to the other fixed point, and all elements of the group would fix the same two 

points.  Elliptic transformations would carry points in circles around the fixed points. So, 

there is one point in the parabolic case and two points in the loxodromic and elliptic cases 

that is fixed by the longest strings of compositions, as long as the groups are cyclic. 

 (mod 7) 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 4 6 1 3 5 

3 3 6 2 5 1 4 

4 4 1 5 2 6 3 

5 5 3 1 6 4 2 

6 6 5 4 3 2 1 
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Since composition of Möbius transformations works like matrix multiplication, 

with each transformation having a matrix representation in SL(2,ℂ), SL(2,ℂ) contains a 

group.  

We will need a notion of “how far apart” two Möbius transformations are for the 

next definition.  So here is a metric on the group of Möbius transformations of ℂ∞ , based 

on the matrix representation of the transformations. 

Definition: D(g, h) = |g – h| for g, h ∈ SL(2,ℂ). 

This means subtract the two matrices entry by entry, then take the Euclidean 

distance (root of sum of the squares of each coordinate), pretending the resulting matrix 

is a point of ℂ4.  This metric determines a topology on groups of Möbius transformations, 

making groups of transformations topological groups.  The topological term “open” 

refers to a set that does not contain its boundary, or (alternately defined) to a set whose 

points are all interior points (there is a neighborhood around them that is a subset of the 

surrounding space). 

Proposition: For S an open set and M a Möbius transformation, M(S) is open. 

Proof: Let m ∈ M(S).  Then, M -1(m) ∈ S.  So, there is a neighborhood N of M -1(m) that 

is a subset of S.  Since Möbius transformations (as compositions of inversion, translation, 

and scaling) preserve circles’ interiors and exteriors, M(N) ⊂ M(S), so m is an interior 

point of M(S).  This is true for any m, so M(S) is open.     □ 

Definition: a discrete group is a group all of whose points are open. 

The points of a group of Möbius transformations are the images of points in the 

plane under the transformations in the group.  So, each set of images of a point must be 

discrete (that is, every point in the set is isolated) for the group to be discrete (an isolated 
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point has a disk around it of some positive radius such that no other set member is in the 

disk).  But it is unnecessary to check every single element. 

Theorem 2.1: a group of Möbius transformations Γ is discrete if and only if {I} is open 

in the group. (I refers to the identity) 

Proof: By definition, if Γ is discrete, {I} is open.  Now, assume {I} is open.  For g ∈ Γ, 

the proposition gives that left multiplication by g preserves openness of sets.  Thus, g{I} 

= {g} is open.  Each member of Γ is open.     □ 

Example: The group of Möbius transformations generated by the parabolic map z|→ z + 

c is discrete.  Each transformation in the group is a certain distance from the next.  Check 

the identity:  The “closest” one can get to the identity transformation is to only do the 

generator or its inverse once.  {I} is isolated, so the group is discrete. 

Theorem 2.2: A group X is discrete if and only if every convergent sequence {xn} in X is 

constant after some m > 0. 

Proof: First, assume X is discrete with xn → x.  Then, since X is discrete, there is a disk 

such that x is the only member of X in the disk.  But since the sequence converges to x, 

the sequence at some point enters the disk not to leave again (this is what convergence 

means).  The only option is that after this point the sequence is x, x, x, … So discreteness 

implies sequences are eventually constant. 

Now, assume every convergent sequence in X is constant after some point.  

Assume the contrary; assume X is not discrete.  Then, there is a point x of X that is not 

isolated.  Make a sequence by taking disks of radius 1/n.  Then, since x is not isolated, 

there is a point of X in the disk at each level that is different from x.  Set xn to that point 

for each disk of radius 1/n.  Then, xn → x, but is not eventually constant, contradicting the 
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assumption.  Therefore X must be discrete whenever every convergent sequence in X is 

eventually constant.   □ 

Now we can use this to prove other useful facts.  For example, we will be 

generating groups with parabolic and loxodromic elements.  What if they have the same 

fixed point?  Is this a group we seek?  It turns out that this group is not discrete.  

(Theorem from Ratcliffe [3], proof is similar, but notably easier in three dimensions) 

Theorem 2.3: If a group of Möbius transformations Γ is generated by a loxodromic 

element h and one other element g, and h and g have exactly one fixed point in common, 

Γ is not discrete. 

Proof: Conjugation allows the common fixed point to be ∞, and the other fixed point of h 

to be 0.  This makes h = kz for some k ∈ ℂ.  If necessary, swap h for h-1 so that |k|<1.  

Since g fixes ∞, g can be written g = ax + b for some a, b ∈ ℂ. 

Any transformation of the form hmgh-m is in Γ, so iterating m one makes a 

sequence in Γ. 

hm g h-m (z) = hm g (k-m) = km(ak-m z + b) 

= az + kmb. 

|k |< 1, so the sequence {hm g h-m}converges to az.  However, the sequence is never 

eventually constant as each kmb is distinct.  So Γ is not discrete.     □ 

Definition: The set Γx = {g(x) : g ∈ Γ} is called the orbit of x. 

In English, the orbit of a point is the set of points it is mapped to by the transformations 

in Γ. 

We will need an extension of the idea of Möbius transformations to continue.  To 

initiate an analogy, let us consider the group of Möbius transformations that have only 
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real coefficients.  Since Möbius maps preserve circles and angles, interiors and exteriors 

of circles are preserved as well—if two points are separated by a circle, their images will 

be separated by the image of the circle.  To see this, make a circle including the two 

points, and map the two circles by the transformation.  The image of the figure will be 

two circles intersecting at the same angles.  The points must come in order by 

continuity—the interior point, an intersection point, the exterior point, and then the other 

intersection point of the two circles, so one image point will be inside the image of the 

circle, and one outside.  So, a Möbius transformation with real coefficients (which 

obviously preserve the real axis, a circle on the Riemann sphere) will also preserve which 

plane (upper or lower) is mapped to which.  These Möbius transformations are members 

of SL(2,ℝ), the set of 2×2 matrices with real entries and determinant 1.  For real 

coefficients, 

ad–bc=1, 

𝑎𝑎𝑖𝑖 + 𝑏𝑏
𝑐𝑐𝑖𝑖 + 𝑑𝑑

=
(𝑎𝑎𝑖𝑖 + 𝑏𝑏)(−𝑐𝑐𝑖𝑖 + 𝑑𝑑)

𝑑𝑑2 + 𝑐𝑐2 =
𝑏𝑏𝑑𝑑 + 𝑐𝑐𝑎𝑎 − 𝑏𝑏𝑐𝑐𝑖𝑖 + 𝑎𝑎𝑑𝑑𝑖𝑖

𝑑𝑑2 + 𝑐𝑐2  

This quantity has imaginary part (ad – bc)i = i, so the upper half plane is mapped 

to itself.  The upper half plane is given the name ℍ2, as it is the upper half of 2-space.  

SL(2,ℝ) preserves the real line and the upper half plane, so can be said to act on the 

upper half plane.  The transformations act on more points than that by extension, but the 

entire action of any transformation is determined by its action on the real line. 

The analogy then, takes us to ℍ3, which is the half of three-space above ℂ.  What 

would a Möbius transformation look like in this space, though?  Generalizing inversions, 

translations, and scaling, the Möbius transformations in three-space are compositions of 

reflections over spheres.  ℍ3 does not include ∞ or ℂ, merely complex numbers with a 
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third real, nonzero component.  Thus, the boundary of ℍ3 is ℂ∞ just as the boundary of 

the unit ball is the unit sphere. 

The generalization of how these transformations act in the upper half space is 

controlled by the same four constants as in the plane, otherwise this would not be a useful 

extension.  The action of �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� on a point (z, y) with 𝑧𝑧 ∈ ℂ, 𝑦𝑦 > 0 is 

(𝑧𝑧, 𝑦𝑦)| → �
(𝑎𝑎𝑧𝑧 + 𝑏𝑏)�𝑐𝑐̅𝑧𝑧̅ +  �̅�𝑑� +  𝑎𝑎𝑐𝑐̅𝑦𝑦2

|𝑐𝑐𝑧𝑧 + 𝑑𝑑|2 + |𝑐𝑐|2𝑦𝑦2 ,
𝑦𝑦

|𝑐𝑐𝑧𝑧 + 𝑑𝑑|2 + |𝑐𝑐|2𝑦𝑦2� 

Note that as y → 0, the height of the image also goes to 0.  Also, the complex 

coordinate approaches (𝑎𝑎𝑧𝑧 +𝑏𝑏)(𝑐𝑐 ̅𝑧𝑧̅+ 𝑑𝑑�)
|𝑐𝑐𝑧𝑧 +𝑑𝑑|2 = 𝑎𝑎𝑧𝑧 +𝑏𝑏

𝑐𝑐𝑧𝑧 +𝑑𝑑
, with 𝑐𝑐𝑧𝑧 + 𝑑𝑑 ≠ 0, but – 𝑑𝑑

𝑐𝑐
  just maps to ∞, as 

usual.  So this definition matches our current understanding and extends it continuously 

(and uniquely) into the upper half plane.  One other feature of these will be quite 

important, and that is the hyperbolic metric. 

Definition: the hyperbolic metric d on ℍ3 is the function determined by 

cosh 𝑑𝑑(( 𝑧𝑧, 𝑦𝑦), (𝑧𝑧′ , 𝑦𝑦′ )) =
|𝑧𝑧 − 𝑧𝑧′ |2 + 𝑦𝑦2 + 𝑦𝑦′2

2𝑦𝑦𝑦𝑦′
 

The reason we need this metric is that it is preserved under Möbius 

transformations.  So, for two points a,b in ℍ3 and any Möbius transformation M, d(a,b) = 

d(M(a), M(b).  For comparison, notice that a bit of algebra shows that 

|𝑀𝑀(𝑧𝑧) − 𝑀𝑀(𝑧𝑧′ )| =
|𝑧𝑧 − 𝑧𝑧′ |

|𝑐𝑐𝑧𝑧 + 𝑑𝑑| |𝑐𝑐𝑧𝑧′ + 𝑑𝑑| 

Definition: a group of Möbius transformations Γ acts discontinuously on a subset X of 

ℍ3���� if and only if for each compact subset K of X, the set K ⋂ gK is nonempty for only 

finitely many g in Γ. 
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Example: A group Γ generated by a single parabolic transformation z |→ z + 1 (an 

element of the upper half plane group) acts discontinuously on the upper half plane.  For 

any compact (i.e. closed and bounded) region of the plane, the group eventually moves 

that region away from itself; only finitely many members of the group map it to a set 

overlapping the original.  The group is not discontinuous at ∞—any set containing ∞ will 

overlap its image at ∞ under all transformations in the group, and there are infinitely 

many.  So, Γ acts discontinuously on ℍ⋃ℝ.  Considered as acting on the plane and the 

upper half space, Γ acts discontinuously on ℍ3 ⋃ ℂ. 

Example: A group Γ generated by a single elliptic transformation does not act 

discontinuously on the plane unless it is finite.  If the group is finite, then Γ is 

discontinuous on ℍ3���� by definition.  But if the group is infinite, it is not even discrete—in 

the plane, points are rotated around the fixed points by any value whatsoever.  Since the 

identity can be approximated arbitrarily well by iterating the generator, the group is not 

discontinuous on ℍ3.  A ball can be mapped arbitrarily close to itself, so it can intersect 

itself under infinitely many of the group’s transformations. 

By the same argument (circles return to their starting point), any group with an elliptic 

element does not act discontinuously on a compact region with some area. 

Definition: a Kleinian group is a finitely generated discrete group of Möbius 

transformations. 

However, we will concern ourselves for the remainder of the paper primarily with 

groups that are torsion-free Kleinian groups.  This means that no element (but the 

identity) generates a finite subgroup.  This saves the trouble of dealing with elliptic 

transformations, which have a tendency to mess up our algorithms later on, as we will 
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see. 

One more definition before we see pictures again.  This is an important subset of 

Kleinian groups that will aid in our intuition about Kleinian groups in general. 

Definition: a Schottky group is a Kleinian group generated by transformations which pair 

distinct circles in the plane (This is a restricted definition of Schottky groups that will be 

sufficient for our purposes. 

A loxodromic transformation pairs two distinct circles C1 and C2 (a parabolic 

transformation cannot meet these requirements unless the circles are tangent) if 

• The transformation maps C1 to C2, mapping the inside of C1 to the outside of C2, 

and the outside of C1 to the inside of C2. 

• The transformation’s attractive fixed point is in C2, and the repelling fixed point 

is in C1. 

• The image of C2 under repeated iterations of the transformation is smaller circles 

containing the attractive fixed point. 

To see what this means, let us pair two circles, both of radius 1, with centers at 2 and -2.  

Let’s find the transformation that maps the one at -2 to the one at 2.  They are obviously 

mapped to each other by z |→  z + 4, but this does not map the outside of the first to the 

inside of the second.  So, first map to 0. z |→  z + 2.  Then invert with z |→  1/z.  Then 

map 0 to the next center with the first transformation again.  So the final function 

becomes 1/(z+2)+2.  Some points are checked in the table.  If inside the left circle, a 

point should move outside the right.  If outside the  

Z 1/(z+2)+2 

0 5/2 
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 left, it should move inside the right. 

For a more in depth example, let us pair the circles at -

1 + i and 2 + i with radii ½ and 1, respectively.  First, 

move -1 + i to the origin by adding 1 – i.  Then, invert 

and change size—we have a circle of radius ½, we 

need one of radius one.  z|→ 1/z takes ½ to 2, so compensate by using z|→ 1/(2z).  Then 

translate again by adding 2+i.  The final composition becomes 

1
2(𝑧𝑧 + 1 − 𝑖𝑖) +  2 + 𝑖𝑖. 

Below is a Schottky group on two generators.  In this image, opposite circles are 

paired by loxodromic transformations, with an iteration of each transformation on each 

other circle.  See how the image circles get smaller.  Also, each interior of an original 

circle is an image of the plane outside the opposite circle—there are three circles with 

three circles in each one.  There is a transformation in the group that pairs any two of 

these circles, so the three circles inside another will propagate deeper and smaller into the 

plane.  This is our first taste of the fractal possibilities of Kleinian groups.  Once a 

structure appears—like three circles in one circle—it is transported by the group elements 

to many other levels and locations by the composed Möbius transformations. 

-2 ∞ 

-5/2 0 

-3  1 

√5  √5  
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One other kind of group 

will be a helpful illustration. 

Definition: A Fuchsian group is 

a Kleinian group that leaves 

invariant a circle. 

“Leaves invariant” 

means maps to itself.  That does 

not mean every point is fixed, it only means the map of, for example, the unit circle will 

be the unit circle.  Remember: the only transformation that fixes more than two points is 

the identity.  So every Fuchsian group has an associated circle that is the image of itself 

under each transformation in the group. 

An especially symmetrical Fuchsian group is the one generated by 

𝑎𝑎 =  �√2 𝑖𝑖
−𝑖𝑖 √2

� and 𝑏𝑏 =  �√2 − 𝑖𝑖 √2
√2 √2 + 𝑖𝑖

� 

The special symmetry happens because the four Schottky circles are tangent at the 

intersections of the lines y = ± x with the unit circle.  To check that the unit circle is 

preserved by each generator, one need only check three points—three points determine a 

circle. 

 

z a(z) |a(z)| b(z) |b(z)| 

1 (1+2i√2)/3 1 (7-4i√2)/9 1 

i 1 1 -i 1 

-1 (1-2i√2)/3 1 1 1 

Since in the complex plane, lines and circles are the same, any Fuchsian group is 
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conjugate to a group that fixes the real axis.  This should remind you of the group that 

preserves the upper half plane, SL(2,ℝ).  Furthermore, the image circles of the Schottky 

circles, because they cross the real axis twice at right angles, are centered on the real axis.  

Note: the inversion 1/z, which maps –i to i is not a member of SL(2,ℂ).  Its determinant is 

-1.  The slightly different transformation -1/z does preserve the upper half plane.  The set 

of all these transformations is called the upper half plane group.  Any Fuchsian group is 

conjugate to a subgroup of the upper half plane group. 
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Chapter 3: Limit sets 

In the last chapter, the hyperbolic metric on the upper half space ℍ3 was given.  

This metric is only useful in the upper half space, not on the plane—notice that y = 0 

gives infinity.  So, the metric is useful on the interior of the space, but not on the 

boundary, for the boundary is infinitely far away.  However, if one simply used the 

Euclidean metric, one could take distances and check convergence to the boundary.  This 

would be given by 

|𝑧𝑧, 𝑦𝑦| =  �|𝑧𝑧|2 + 𝑦𝑦2, 

This metric encounters no such problems on the boundary.  This is a metric on ℍ3����.  It is 

the metric by which points converge in the following definition. 

Definition: A point x of ℂ∞ is a limit point of a group of Möbius transformations Γ if 

there is a sequence of group elements {gi} and a point y ∈ ℍ3����s.t. lim gi(y) = x, and this 

sequence is not eventually constant. The limit set L(Γ) of a group is the set of all limit 

points of Γ. 

 Remember that the hyperbolic metric preserves distances under Möbius 

transformations, so convergence would not occur at all under that metric.  This kind of 

limit point, a limit point of a topological group, is not to be confused with the limit point 

of a set or sequence. It is related, but not quite the same. The relation is that the limit set 

is the limit points of the orbits of Γ, which are called limit points of Γ directly for 

convenience.  The definition is stated in terms of the upper half-space and the plane, but 

can be extended to all dimensions, including upper half space groups having limit points 

on the extended (including ∞) real line.  The useful proposition below extends this a bit.  

(From Ratcliffe 12.1.2 [3]) 
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Proposition: For a torsion-free Kleinian group Γ and any point x in ℍ3 , 

𝐿𝐿(Γ) = Γ𝑥𝑥��� ∩ ℂ∞  

Proof: The definition of limit point gives (Γ𝑥𝑥��� ∩ ℂ∞ ) ⊂ 𝐿𝐿(Γ). 

Now, let a be a limit point of Γ.  This means there is a sequence {gi} of elements of Γ and 

a point y ∈ ℍ3 such that {gi(y)} converges to a. 

Because of the properties of the hyperbolic metric, 

𝑑𝑑�𝑔𝑔𝑖𝑖(𝑥𝑥), 𝑔𝑔𝑖𝑖(𝑦𝑦)� = 𝑑𝑑(𝑥𝑥, 𝑦𝑦), for all x in ℍ3, i positive integer. 

So, each element of the sequence takes x and y the same distance from each other.  So 

|gi(x) - gi(y)| gets smaller and smaller as i → ∞.  The sequences {gi(x)} and {gi(y)} have 

the same limit point, and a is a complex number, so a ∈ Γ𝑥𝑥��� ∩ ℂ∞  and Γ𝑥𝑥��� ∩ ℂ∞ ⊂ 𝐿𝐿(Γ).     

□ 

This will prove very important when graphing.  Instead of selecting a point in ℍ3 

and calculating where it is taken by the elements of the group, a point in ℂ will suffice. 

This next theorem comes easily from the idea of limit points. 

Theorem 3.1: A fixed point of a parabolic or loxodromic element of a group Γ is a limit 

point of Γ. 

Proof: Let h ∈ Γ be parabolic or loxodromic, fixing a point a. h (or h-1) has a for an 

attractive fixed point. Thus, for an x ∈ ℂ close to a (or even not a fixed point of h), the 

sequence {hn(x)} (or {h-n(x)}) converges to a.     □ 

So, we have limit points of groups of Möbius transformations which are the 

accumulation points of the action of the group on any point that's not a fixed point. The 

following lemma is useful in the proof of the next theorem, modified from Ratcliffe’s 

12.1.3 [3]. 



26 
 

 

The points fixed by every element in a group are very important to the structure of 

the limit set.  To see this, let's observe what happens to the limit set if all group elements 

have the same fixed points.  For simplicity's sake, we assume that there is not an elliptic 

transformation in the group. 

Theorem 3.2: For a torsion-free Kleinian group, the following are equivalent (each 

implies the others). 

(1) All elements of Γ fix the same point. 

(2) L(Γ) has 0, 1, or 2 points. 

(3) L(Γ) is finite.  

Proof: First, show (1) ⇒ (2). If more than two points are fixed by all elements of Γ, the 

only transformation in the group is the identity, and the only sequences given are {In(x)}. 

None of these sequences are distinct, so L(Γ) has 0 points. If exactly one point is fixed by 

all elements of Γ, then that point is a limit point, as there is a parabolic or loxodromic 

element that fixes that point (4.1). If a parabolic and a loxodromic element share a fixed 

point, the group is not discrete (2.3). Thus, all elements of the group are parabolic 

elements fixing the same point. Conjugate this fixed point to ∞. Then, all elements are of 

the form z|→ z + c, with c complex, so any convergent sequences converge to ∞. 

Now, if all elements of Γ fix the same two points {a, b}, then each element of Γ is a 

loxodromic (or hyperbolic) transformation fixing a and b. By 4.1 again, a and b are in the 

limit set, that is, {a, b} ⊂ L(Γ). To show a subset in the other direction, use the 

proposition.  For a point x ∈ ℍ3, the limit set is a subset of its orbit’s closure.  Because all 

elements of Γ have the same fixed points, the only accumulation points for the orbit are 

the two fixed points.  If there were a sequence of group elements taking x to another point 
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in the plane, it would be a fixed point of a transformation (if the group is discrete), or the 

group would fail to be discrete.  Thus, 

L(Γ) ⊂ {a, b} 

So (1) ⇒ (2). 

(2)⇒(3) obviously (0, 1, and 2 are finite). 

Show (3)⇒(1): 

Assume that L(Γ) is finite.  Let x be a point not in the limit set.  Assume first that 

Γx is finite.  As long as Γ is discontinuous at x, there are finitely many elements g of Γ 

such that g(x) = x.  Thus, Γ is finite, and the only finite group without elliptic elements is 

the trivial group, which fixes all points.  Assume now that Γx is infinite.  Γx then has a 

limit point a in ℂ∞ .  This limit of the orbit is a limit point of the group, so since L(Γ) is 

finite, and the limit set is invariant under the action of the group, Γa is finite.  Since the 

only elements in the group are parabolic and loxodromic, a finite orbit is only achieved at 

a fixed point.  a is fixed by all elements of the group.  (3)⇒(1).     □ 

So, if the limit set is finite at all, the group is very simple.  And the limit set, if it 

has more than two points, has infinitely many points!  We will investigate “how much” 

infinitely presently, because the limit set is uncountable—any mapping to the integers 

will not cover all points of the limit set.  To show this, and a few other things about the 

limit set, we will delve briefly into the hyperbolic convex hull.  This treatment in 3 

dimensions is based on Ratcliffe’s n-dimensional presentation [3]. 

Definition: A subset K of ℍ3 is hyperbolic convex if any two points of C are connected 

by a hyperbolic line segment, ray, or line contained in C. 

But these hyperbolic line segments are not quite the same as regular ones.  In our 
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case, the set will be convex if we can travel to any two points by either straight lines or 

by straight lines on the surface of spheres centered on (orthogonal to) ℂ (remember that 

straight lines are just circles through ∞). 

Definition: The hyperbolic convex hull of a set K ⊂ ℍ3���� is the intersection (denoted C(K)) 

of all hyperbolic convex subsets of ℍ3���� that contain K. 

So, C(K) is the “smallest” hyperbolic convex set that contains K.  It works like 

connecting the points of K by hyperbolic lines.  But it does it in the most efficient way 

because of the intersection.  Sure, the regular convex hull (connect everything with lines) 

of a set K would be hyperbolic convex, but there may be a smaller one.  C(K) is the 

smallest.  This lemma will give the next very useful theorem. 

Lemma:  For a Kleinian group Γ and K a closed, Γ-invariant subset of ℂ∞ , C(K) is closed 

and Γ-invariant. 

Proof:  The proof requires a different model than the upper half space model.  The 

projective disk model will be what we need, or D3.  In this model of the unit ball, the 

hyperbolic lines are straightened out, so the hyperbolic convex hull of K corresponds to 

the regular convex hull of the D3 version of K.  This straightening wreaks havoc on the 

metric, but we will not be needing it here.  So, C(K) is now just the convex hull of K in 

D3.  Its compactness makes it closed and bounded, so now we must check if it is Γ-

invariant. 

Let g ∈ Γ. 

𝑔𝑔𝐶𝐶(𝐾𝐾) = 𝑔𝑔(∩ {𝑆𝑆 ∶ 𝑆𝑆 ⊃ 𝐾𝐾 and S is a convex subset of 𝐷𝐷3����} 

 = ∩ {𝑔𝑔𝑆𝑆 ∶ 𝑆𝑆 ⊂ 𝐾𝐾 and S is a convex subset of 𝐷𝐷3����} 

But, each S is a superset of K, which is invariant under Γ.  Applying g to S will not 
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change the final intersection. 

𝑔𝑔𝐶𝐶(𝐾𝐾) = ∩ {𝑔𝑔𝑆𝑆 ∶ 𝑔𝑔𝑆𝑆 ⊂ 𝐾𝐾 and gS is a convex subset of 𝐷𝐷3����} 

Then, since we pick an arbitrary convex gS a subset of 𝐷𝐷3����, we can just call it S. 

𝑔𝑔𝐶𝐶(𝐾𝐾) = ∩ {𝑆𝑆 ∶ 𝑆𝑆 ⊂ 𝐾𝐾 and S is a convex subset of 𝐷𝐷3����} 

 = 𝐶𝐶(𝐾𝐾). 

So, C(K) is Γ-invariant and closed.  These remain true outside of the D3 model, as Γ-

invariant and closed do not depend on the metric of the space, but rather the topology.     

□ 

Theorem 3.3: Let Γ be a Kleinian group with an infinite limit set.  Then every nonempty, 

Γ-invariant, closed subset of ℂ∞ contains the limit set, L(Γ). 

Proof: Let K ⊂ ℂ∞ be nonempty, Γ-invariant, and closed.  Then, K is infinite, as Γ has 

either a parabolic or loxodromic element to take a single point of K to infinite orbits 

toward a fixed point, and the group does not satisfy the conditions of Theorem 3.2.  

Where C(K) is the hyperbolic convex hull of K, C(K) is also Γ-invariant and closed.  And, 

C(K) ∩ ℂ∞ is just K—the “connecting lines” that make K hyperbolic convex will be 

hyperbolic.  Now, pick a point in C(K) not on ℂ∞.  It satisfies this chapter’s proposition 

with L(Γ) = Γ𝑥𝑥��� ∩ ℂ∞ .  But Γx is in C(K), as it is Γ-invariant, and its closure is in C(K), as 

it is closed.  So 𝐿𝐿(Γ) ⊂ 𝐶𝐶(𝐾𝐾).  And 𝐿𝐿(Γ) ⊂ ℂ∞  by definition, so 𝐿𝐿(Γ) ⊂ 𝐶𝐶(𝐾𝐾) ∩ ℂ∞ =

𝐾𝐾.  K contains the limit set.     □ 

So, any time K is a Γ-invariant set, its closure contains the limit set. The limit set 

is the “smallest” closed, Γ-invariant set, to put it another way.  The following proofs are 

entirely my own. 

Theorem 3.4:  Let F denote the set of all fixed points of loxodromic elements of a 
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torsion-free Kleinian group Γ with an infinite limit set.  Then, 𝐹𝐹� = 𝐿𝐿(Γ). 

Proof: First, notice that by 3.1 and the fact that L(Γ) is closed, 𝐹𝐹� ⊂ 𝐿𝐿(Γ). 

We must show F is nonempty in order to show that it is eligible for Theorem 3.3.  

Assume a group has two parabolic elements (not the identity) with different fixed points 

(if the group has a single fixed point, the limit set is not infinite).  Conjugate one fixed 

point to zero, the other to ∞.  The transformations t1, t2 will have the form: 

𝑡𝑡1 =  �1 𝑏𝑏
0 1� , 𝑡𝑡2 = �1 0

𝑐𝑐 1� 

Then, 𝑡𝑡1 𝑡𝑡2 = �1 + 𝑏𝑏𝑐𝑐 𝑏𝑏
𝑐𝑐 1�, and Tr(𝑡𝑡1 𝑡𝑡2) = 2+bc.  If 𝑡𝑡1 𝑡𝑡2 is loxodromic, F is 

nonempty.  For 𝑡𝑡1 𝑡𝑡2 to not be loxodromic (the group has no elliptic elements), Tr(𝑡𝑡1 𝑡𝑡2) 

must be 2 or -2.  This occurs if bc = 0 or -4.  bc = 0 implies t1 or t2 is the identity, so 

assume bc = -4.  

𝑡𝑡1 𝑡𝑡2𝑡𝑡2 = �1 + 2𝑏𝑏𝑐𝑐 𝑏𝑏
2𝑐𝑐 1� 

Tr(𝑡𝑡1 𝑡𝑡2𝑡𝑡2) = 2+2bc = -6, so there must be a loxodrome in Γ.  F is nonempty. 

Let a ∈ F be a fixed point of h ∈ Γ, a loxodrome.  For g ∈ Γ, g(a) is also in F.  It 

is the fixed point of g h g-1(z), which is loxodromic because it is conjugate to h.  Thus, F 

is Γ-invariant. 

𝐹𝐹� ⊂ ℂ∞  is nonempty, closed, and Γ-invariant, so 𝐿𝐿(Γ) ⊂ 𝐹𝐹�. 

𝐹𝐹� = 𝐿𝐿(Γ)      □ 

Theorem 3.5: For a Kleinian group Γ, if L(Γ) is infinite, L(Γ) is perfect (has no isolated 

points). 

Proof: Let a be an isolated point of L(Γ).  Then, a is an isolated point of F, and there is a 

loxodromic element h ∈ Γ that fixes a.  For b ∈ F not fixed by h, but fixed by another 
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element g (∈ Γ).  Then, assume a is the attractive fixed point of h (so, swap h for its 

inverse if necessary).  Repeated conjugation by h makes a sequence in F converging to a.  

That is, 

ℎ𝑚𝑚 ∘ 𝑔𝑔 ∘ ℎ−𝑚𝑚 (𝑏𝑏) → 𝑎𝑎 as m→∞. 

So, a is not isolated in L(Γ), contradicting the assumption, so no such point exists.     

□ 

It is well known in mathematics that any perfect set is also uncountable.  So, we 

have seen so far that if a limit set has more than two points, it has uncountably infinitely 

many.  Another important fact is that the limit set is not nearly all of ℂ for a discrete 

group.  It is nowhere dense, which means L(Γ) is dense no neighborhood in ℂ∞.  A set X 

is said to be dense in another set Y if every point in Y is in X or has a sequence in X 

converging to it.  So, the rationals are dense in the real numbers.  Any real number can be 

approximated with fractions.  But, no neighborhood in the plane can be approximated by 

the limit set of a discrete group.  Alternately, the interior of the closed set L(Γ) is empty. 

Definition: The ordinary set of a Kleinian group Γ is the set of points O(Γ) in ℂ∞ but not 

in L(Γ).  It is just everything else in the plane but the limit set. 

Theorem 3.6: The limit set of a torsion-free Kleinian group Γ is nowhere dense in ℂ∞. 

Proof: If the limit set is finite, this is obvious.  Assume the limit set is infinite.  So long 

as the group is discrete, there is a point not in the limit set.  Then, the nonempty set O(Γ) 

is Γ-invariant because its complement is.  Thus, its closure 𝑂𝑂(Γ)������ is also Γ-invariant.  So, 

by the ever-useful Theorem 3.3, 𝐿𝐿(Γ) ⊂ 𝑂𝑂(Γ)������.  Since L(Γ) is entirely composed of limit 

points of its complement, it has no interior, and so is nowhere dense.     □ 
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Chapter 4:  Graphing the limit set 

As we consider the limit set, our experience with transformations in general may 

make us wish to make pictures of these closed, nowhere dense subsets of the plane. Some 

pictures may be difficult. In the case of Schottky groups, the limit sets are not always 

connected. As transformations map smaller and smaller circles, the accumulation 

points—the limit set—is a series of disconnected points. The set is perfect, as we 

discussed before, so no point is isolated. 

When limit points are not connected, the limit sets are collections of points that 

resemble the Cantor set, the classic example of a perfect disconnected set. Begin with the 

closed segment [0,1].  Remove the middle third.  Left with [0, 1
3
] ⋃ [2

3
, 1], take out the 

middle third of each of those to get [0, 1
9
] ⋃ [2

9
, 1

3
] ⋃ [4

9
, 2

3
] ⋃ [8

9
, 1]. Continue taking out 

the middle third of each segment. The limit of this process is the Cantor set. Observe 

what happens at endpoints. 1 is first the side of the original segment, but as the process 

continues, a sequence is made converging to 1. This happens with every endpoint of the 

remaining segments, so no point in the Cantor set is isolated, and it is perfect. 

Let us first explore a Fuchsian group, that generated by 

𝑎𝑎 =  �√2 𝑖𝑖
−𝑖𝑖 √2

� and 𝑏𝑏 =  �√2 1
1 √2

� 

We looked at a similar group in chapter 2, and this group also preserves the unit 

circle.  The picture below draws two levels.  The first is the paired circles of the 

generators, then each generator is applied to each circle.  The disks become smaller with 

successive iterations, converging to points on the unit circle. The limit set of the group is 

the whole unit circle, not some jumble of points.  One can ask, “What's different? Why 
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does this group have a connected limit set?” There are a few key differences, given as 

“necklace conditions” in chapter 6 of Indra’s Pearls [2]. 

For the limit set to be connected, 

the tangency points must be mapped to 

each other.  In this picture, if the bottom 

right point of tangency were mapped by 

b into the left circle at a point other than 

the bottom left point of tangency, the 

limit point would not be able to be 

continuous at that point.  So that point 

must be mapped to itself by doing the 

transformation b, then a, then B then A, 

or by ABab.  Likewise, the bottom left point must be a fixed point of bABa, the top left by 

abAB, and the top right by BabA.  This will cause the points of tangency to be correctly 

mapped to each other.  It will also be incredibly convenient if these transformations are 

parabolic, so points do not get dragged to some other fixed point.  The transformation 

abAB is called the commutator, because if the operation commutes, then abAB = aAbB = 

I.  If it does not, abAB is a quantity that suggests how close the two elements are to 

commuting with each other. 

These four parabolic fixed point conditions are actually the same.  Each form of 

the commutator above is a conjugation of the one before.  bABa = b(ABab)B (conjugating 

by b, B), abAB = a(bABa)A, BabA = B(abAB)b, and ABab = A(BabA)a.  So if one is 

parabolic, all are parabolic, as they are conjugate to each other. 
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A final requirement, assuring that the generators do not share a fixed point, is that 

Tr(abAB) = -2. 

Before we see an algorithm, let us first explore the "tree" of compositions.  An 

adaptation of the graphic favored by Mumford, Series, and Wright is below.  This tree 

represents possible compositions, elements of a group generated by a and b.  Beginning 

with the identity in the center, each step represents the action of a transformation, so that 

each location has a transformation named by the composition of the steps taken to get 

there.  For example, notice the composition aabB is not on the tree—bB is redundant.  

Only “reduced” transformations are on the tree. 

Our algorithm will need to be able to go deeper into the tree (farther from I), turn 

(if it has traversed enough of a branch to get a good picture of the limit set), and 

obviously plot limit points.  Let us observe the some turns, though, to generate even more 

respect for the parabolic commutator.  If one begins at a and goes as far right as possible, 

one gets the composition ψ = abABabABabAB…  In the Fuchsian group above, the limit 

point this sequence converges to is the point of tangency of the initial Schottky circles for 

a and b.  Also, if one begins at b and takes every possible left hand turn, the 

transformation made is ϕ = baBAbaBA….  Now,  ψ-1 = ϕ, and ψ is the commutator, so 

both are parabolic.  ϕ and ψ have the same attractive fixed point, points are merely 

attracted from the “other side,” (consider z|→ z+c and z|→  z – c).  So, the limit point 

represented by the infinite sequence of transformations ϕ is the same as the limit point 

represented by ψ. 

This coalescing happens anywhere one starts on the tree.  From aB, turning all the 

way left gets one to aBAbaBAb…, while starting at Ba and turning right gives 
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BabABabA…, again the inverse of the previous parabolic transformation—giving the 

same point in the limit set from both words.  So, if one were to traverse the outermost 

edge of the tree (the “deepest” level), clockwise (or counterclockwise), the limit set 

would be the result in order.  So, our algorithm must enter the tree, go deep enough so 

that if it skipped to the next branch, the skip would be visually almost indistinguishable, 

then skip to the next branch and plot the image of the tree element on a point.  Here is 

another visualization to 

observe how the algorithm 

works.  In this diagram, 

the generators are 

represented by directions.  

Traveling up applies a, 

and down applies A.  

Likewise, traveling right 

applies b, left, B.  As 

before, observe that there 

are no redundancies in the 

diagram (aA is just represented by I).  Each intersection of paths represents a word, and a 

few are labeled to show.  The colors are alternated so the successive levels are clear. 

The algorithm will enter a branch, say a.  It will then take all available right turns 

until it is “deep enough” (this method is called the depth first search).  Then it will spit 

out a limit point by applying the resulting group element to a point in the plane.  Then it 

will go back one level and turn.  The algorithm will traverse all relevant points by 
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following the right-hand wall in this way.  For example, if it was told to provide the 

elements up to level three, it would give a, ab, abA, then go back to ab before going to 

abb, go back, turn, and give aba.  Then, when it goes back, there are no available turns (a 

right turn would take it backward), so it goes back to a and does the same thing from the 

intersection aa, giving aab, aaa, and aaB before returning to a again, continuing to 

follow every available right turn. 

Now, we have seen how to make the limit set a curve, and we have found what 

order the points of the set come in, and we have the basics of an algorithm for drawing 

that curve.  All we need now are some groups.  Mumford, Series, and Wright have 

provided a useful normalization of a family of groups based on two parameters—the 

trace of the generator matrices a and b.  Here is what is meant by normalization.  The 

limit sets are only interesting as far as conjugation.  One need not graph carefully a 

conjugate limit set to one already studied—the conjugate contains all the information in a 

different view.  A normalization, then, is a selection of which conjugation to use.  

Mumford, Series, and Wright explain the parameters they chose in this way.  Two 

matrices have eight total parameters.  Requiring determinant one reduces it to six.  

Conjugation halves that because any three points can be mapped to any other three by a 

Möbius transformation.  Then, they apply the Markov identity 

(Tr a)2 + (Tr b)2 + (Tr ab)2 = Tr a Tr b Tr ab, 
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which guarantees that the 

commutators have trace -2.  

Selecting the three parameters to be 

the traces of a, b, and ab, the 

Markov identity reduces it to two 

necessary parameters. 

Let us observe some things 

about Grandma’s Recipe.  First, it is 

origin symmetric.  To see why, 

observe that a and ab have the same 

element in first and last positions.  

They are of the form 

𝑇𝑇 =  �𝑟𝑟 𝑠𝑠
𝑡𝑡 𝑟𝑟�. 

−𝑇𝑇(−𝑧𝑧) =  −
𝑟𝑟(−𝑧𝑧) + 𝑠𝑠
𝑡𝑡(−𝑧𝑧) + 𝑟𝑟

 

=
𝑟𝑟𝑧𝑧 − 𝑠𝑠

−𝑡𝑡𝑧𝑧 + 𝑟𝑟
= 𝑇𝑇−1(𝑧𝑧) 

So T is not “odd,” rather it is kind of “inverse-odd.”  Conjugating by a rotation of π/2 

about the origin produces the inverse transformation.  Thus, rotations of π/2 do not affect 

the limit set because a(z) = -A(-z) and ab(z) = -BA(-z), and a and ab generate the whole 

group. 

According to the authors, the purpose of the quantity z0 is to normalize to 1 the 

fixed point of abAB.  It also serves to put the fixed point of aBAb at -1.  So half the limit 

set is graphed as a’s branches are traversed, and one needs only go through that one main 

𝑎𝑎 =  

⎝

⎜
⎛

𝑡𝑡𝑎𝑎

2
𝑡𝑡𝑎𝑎 𝑡𝑡𝑎𝑎𝑏𝑏 − 2𝑡𝑡𝑏𝑏 + 4𝑖𝑖

(2𝑡𝑡𝑎𝑎𝑏𝑏 + 4)𝑧𝑧0
(𝑡𝑡𝑎𝑎 𝑡𝑡𝑎𝑎𝑏𝑏 − 2𝑡𝑡𝑏𝑏 − 4𝑖𝑖)𝑧𝑧0

2𝑡𝑡𝑎𝑎𝑏𝑏 −  4
𝑡𝑡𝑎𝑎

2 ⎠

⎟
⎞

 

𝑏𝑏 =  �

𝑡𝑡𝑏𝑏 − 2𝑖𝑖
2

𝑡𝑡𝑏𝑏

2
𝑡𝑡𝑏𝑏

2
𝑡𝑡𝑏𝑏 + 2𝑖𝑖

2

� 

Grandma’s Recipe for parabolic commutator groups: 
 
For two complex numbers ta and tb, set tab = 𝑡𝑡𝑎𝑎 𝑡𝑡𝑏𝑏 −
1
2

 �(𝑡𝑡𝑎𝑎 𝑡𝑡𝑏𝑏 )2 − 4(𝑡𝑡𝑎𝑎
2 + 𝑡𝑡𝑏𝑏

2) (to satisfy the Markov 
equation). 
Compute z0 = 

(𝑡𝑡𝑎𝑎𝑏𝑏 −2)𝑡𝑡𝑏𝑏
𝑡𝑡𝑏𝑏 𝑡𝑡𝑎𝑎𝑏𝑏 −2𝑡𝑡𝑎𝑎 + 2𝑖𝑖 𝑡𝑡𝑎𝑎𝑏𝑏

. 

 
The generator matrices are then: 

       

     

Thus,          𝑎𝑎𝑏𝑏 = �
𝑡𝑡𝑎𝑎𝑏𝑏

2
𝑡𝑡𝑎𝑎𝑏𝑏 −2

2𝑧𝑧0
(𝑡𝑡𝑎𝑎𝑏𝑏 +2)𝑧𝑧0

2
𝑡𝑡𝑎𝑎𝑏𝑏

2

�  (Wright 229) 
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branch to see what 

the whole set looks 

like (afterwards, 

rotate around the 

origin to finish). 

So, initial 

tries with ta = tb = 3 

or 2√2 produce limit 

sets that are circles 

(the unit circle, 

because of the 

normalization).  

These are both 

Fuchsian groups.  

The second, with 

2√2 for both traces, 

is the Fuchsian 

group seen in the 

last chapter.  Things 

get more interesting 

as we move 

gradually to 

parabolic 

ta = tb = 2.2 

 

Parabolic generators: ta = tb = 2.0 
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generators, with trace 2.  The limit set starts becoming our first true fractal curve. 

Now, observe what happens when the generators move all the way to parabolic.  

Instead of meeting circles in infinitely many places, but not the whole circle, the 

parabolic group meets whole circles in an old fractal shape called the Appolonian gasket. 

The limit set has become a continuous meandering curve tracing out infinitely 

many circles.  There are Schottky circles that will generate this picture and the last.  They 

are the real axis, two circles tangent to it and to each other, with points of tangency at 1, -

1 with the real axis and –i with each other.  The fourth Schottky disk, which is paired to 

the whole upper half plane, is nestled in the ideal triangle between the three other circles, 

tangent to all three. 

But these have been real traces.  The real fun comes when there are imaginary 

parts to the traces.  On the right is a picture with nearly the same traces as the last, ta = 

1.9+.3i, tb = 2.05.  It seems to make a valiant attempt at the gasket formation, but its 

generators are not quite parabolic.  One is very close, and the other is pretty close, too, 

with some imaginary flavor.  The imaginary part is what causes the reappearing spirals.  
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Remember that complex multiplication rotates points as it stretches them.  The 

loxodromes of the group make spirals appear all over the place.  The lefthand picture is a 

much better approximation, with ta = 2+.05i, tb = 2—one generator is still parabolic, but is 

still short of completing the gasket. 

Here is one of my favorites.  The generators have traces 1.8+.251i and 1.8-.251i.  

There are a few prominent loxodromes—one carries points in a spiral between the two 
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main circles, and others branch off in all directions.  If you look closely at the beginning 

of the set (close to 1), you can see already there the twists and turns that repeat all over 

the limit set.  The small spirals there are also axes of loxodromes.  The fixed points of 

parabolic (or nearly parabolic) transformations are where the curve goes thin and straight, 

like at 1 and -1 (limit points of the commutator), and scattered throughout.  Parabolic 

transformations can move things more slowly to the fixed point, so the curve through 

them marches regularly on with fewer twistings. 

Twists and turns can be taken to a maximum; the next picture was generated by 

the nearly elliptical transformations ta = 2 cos (π/10) + .05i, tb = 2 cos (π/10) - .05i.  The 

nearby elliptical group was set up 

by the authors of Indra’s Pearls to 

show that the algorithm does not 

run correctly on some elliptic-

generated groups, even though they 

are discrete.  The limit sets keep 

retracing themselves in that case, as 

a10 = b10 = I [2].  But, when the 

transformations become just barely 

loxodromic (because of complex 

trace), the algorithm works fine; 

the points pop out in order and can 

be connected by lines.  Some of the 

features of the limit set are 
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preserved.  Compared with the picture in the book, there are 7 almost-circles (places 

where the limit set touches a circle in many but not all points) in between many of the 

sections, as in the book’s picture of the elliptic case, where the quasicircles are less 

hidden by swirls. 

Below is what happens when 

my version of the algorithm is run on 

the elliptic transformation without the 

additional imaginary part in the trace. 

And so we bump into groups 

that this algorithm cannot handle.  

Groups that are not discrete are 

obviously problems.  Since elements of 

the group get close to {I}, the limit set 

(if you wish to call it that) is every point in the plane!  I do not want to spend hours of 

CPU time to make the computer draw me a black square. 

Other play with the algorithm will show how useful it is to delve deeply into the 

tree.  These plots were made by limiting the depth the algorithm could traverse in the 

 
Maximum level is 3 Maximum level is 4 Maximum level is 5 
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tree. 

The final picture, when the level the algorithm explores in the tree is “big 

enough” (usually 100 is plenty, 

but some groups need more), is 

on the next page. 

As we have added 

imaginary parts to the traces of 

our groups, so we have left 

behind proper Schottky groups.  

There are not circles that can be 

paired to generate these 

pictures.  They are merely 

Kleinian groups, not Schottky 

or Fuchsian.  Since the limit set 

has an interior and an exterior 

like a circle, they could still be called quasi-Fuchsian.  But there is certainly no Möbius 

transformation conjugating those spirals to the real line. 

One more example was an accidental bump into a group in which the 

transformation bab is, for purposes of computer approximation, a translation.  For this 

group, if the level is allowed to go to 100, as is normal and necessary for other groups, 

the limit set stretches hundreds in the x- and y-directions.  The approximately 

translational element takes the same limit set that is in between 0 and 2i and moves it up 

and right or down and left.  Then, when the maximum level is reached, it gets jerky, just 
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like the previous poor approximations for an S-shape.  So, the limit set stretches out 

toward ∞, repeating as it goes.  The traces used were 1.64213876± 0.6658841i. 

 

So play away if 

you wish.  The 

Mathematica code I used 

to make the images is in 

an appendix if you should 

be curious and wish to try 

your own traces or alter 

the code to draw other 

families of groups.  The 

program generates a list 

of points and then plots 

them, so be sure to set the 

variable named 

“countermax”.  An 

accidentally non-discrete 

group would run a loop for a very long time. 
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Appendix: the code 

First cell, the helper functions: 

 

levmax = 200; 

epsilon = .1; 

fixpt[mtrx_] := (mtrx[[1, 1]] - mtrx[[2, 2]] +  

          Sqrt[((mtrx[[1, 1]] + mtrx[[2, 2]])^2 - 4 )])/(2*mtrx[[2, 1]]); 

mobOnPt[mtrx_,  

      z_] := (mtrx[[1, 1]]z + mtrx[[1, 2]])/(mtrx[[2, 1]]z + mtrx[[2, 2]]); 

getXY[z_] := {Re[z], Im[z]}; 

initialize[tra_, trb_] := 

  { 

    trab = (tra trb - Sqrt[(tra trb)^2 - 4(tra^2 + trb^2)])/2; 

    z0 = (trab - 2)trb/(trb trab - 2tra + 2 I trab); 

    a = {{tra/ 

            2, (tra*trab - 2trb +  

                4I)/(z0(2trab + 4))}, {z0 (tra*trab - 2trb - 4I)/(2trab - 4),  

          tra/2}}; 

    b = {{trb/2 - I, trb/2}, {trb/2, trb/2 + I}}; 

    A = Simplify[Inverse[a]]; 

    B = Inverse[b]; 

    gens = {a, b, A, B}; 

    fix = Map[fixpt, gens]; 

    word = Table[0*n, {n, 5000}]; 

    tags = Table[0*n, {n, 5000}]; 

    tags[[1]] = 1; lev = 1; 

    word[[1]] = gens[[1]]; 

    newpt = 0; 

    oldpt = 23; 

    counter = 1; 

    btflag = False; 

    atflag = False; 

    } 

branchTermination[] := 

  { 

    newpt = mobOnPt[word[[lev]], fix[[tags[[lev]]]]]; 

    If[Abs[newpt - oldpt] < epsilon \[Or] lev >= levmax, 

      Sow[{oldpt, newpt}]; 

      oldpt = newpt; 

      counter++; 

      If[lev > levmax, Print[LOOKOUT!!]]; 

      btflag = True, btflag = False]; 

    } 

goForward[] :=  

  { 

    lev = lev + 1; 

    tags[[lev]] = Mod[tags[[lev - 1]] + 1, 4, 1]; 

    word[[lev]] = word[[lev - 1]].gens[[tags[[lev]]]]; 



47 
 

 

    } 

goBackward[] := {lev -= 1; btflag = False;} 

availableTurn[] :=  

  If[Mod[tags[[lev + 1]] + 1, 4, 1] == tags[[lev]], atflag = False,  

    atflag = True] 

turnAndGoForward[] := 

  { 

    tags[[lev + 1]] = Mod[tags[[lev + 1]] - 1, 4, 1];  

    If[lev == 0, word[[1]] = gens[[tags[[1]]]],  

      word[[lev + 1]] = word[[lev]].gens[[tags[[lev + 1]]]]]; 

    lev = lev + 1; 

    } 

 

Next Cell, the tree-traversing loop—I left parameters for a group with ∞ in the 

limit set: 

 

levmax = 25; 

epsilon = .01; 

countermax = 1000000; 

initialize[1.64213876 - .76658841I, 1.64213876 + .76658841I]; 

segs = Reap[ 

      While[((lev != 0 \[Or] tags[[1]] == 1) \[And] counter < countermax), 

          branchTermination[]; 

          While[! btflag, branchTermination[]; If [! btflag, goForward[]]]; 

          goBackward[]; 

          availableTurn[]; 

           

          While[lev != 0 \[And] ! atflag, availableTurn[];  

            If[! atflag, goBackward[]]]; 

          If[tags[[1]] == 1 \[Or] lev != 0, turnAndGoForward[]]];]; 

Print["algorithm finished.  making ptlist"]; 

ptlist = Reap[ 

        Do[Sow[getXY[segs[[2, 1, i, 1]]]], {i, 2, Length[segs[[2, 1]]]}]][[2,  

     ;    1]]; 

Show[Graphics[Line[ptlist]], Graphics[Line[-ptlist]], PlotRange -> All,  

    Axes -> True, AspectRatio -> 1]; 

  

Similar code could be adapted for C or java.  The key is the method of traversing the tree 

of words.  One must follow right-hand walls until deep enough, then spit out 

approximations for limit points based on the current transformation (word). 
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