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Andreas Züfle, Ph.D.
Committee Member

Xujiang Zhao, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date



Harnessing networked, textual data with graph and language modeling

By

Chen Ling
B.S., University of Vermont, VT, 2018
M.S., University of Delaware, DE, 2020

Advisor: Liang Zhao, Ph.D.

An abstract of
A Dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy Candidate
in Computer Science and Informatics

2024



Abstract

Harnessing networked, textual data with graph and language modeling
By Chen Ling

Networked, textual data are ubiquitous across various domains, playing a critical
role in numerous applications from social network analysis to knowledge represen-
tation. These two types of data can naturally be combined, as text data can be
structured like a graph, and graph data can have rich text embedded on nodes and
edges. For instance, a document collection can be represented as a graph where
nodes are documents and edges indicate relationships such as citations or references.
Conversely, social networks often contain textual information in the form of user pro-
files, posts, and interactions embedded on nodes and edges. Existing works have
primarily focused on either graph or textual data in isolation, often overlooking the
potential synergy between the two. Combining both modalities to address unique re-
search problems that require a holistic understanding of structural relationships and
semantic content is important. Integrating these modalities can leverage the com-
plementary strengths of graph data’s structural insights and textual data’s semantic
richness, leading to more robust and comprehensive data mining methodologies.

Despite the advancements in graph data mining and language modeling, existing
approaches that treat graph and textual data separately can introduce significant
limitations. While many graph neural networks do integrate semantic information
from node and edge attributes, there remain graph data mining problems—such as
those addressing graph inverse problems or combinatorial optimization—that pre-
dominantly rely on graph topology and information flow for making predictions or
approximations. Conversely, language models that overlook the structural context
provided by graphs may lack a framework for accurately interpreting and generating
text, especially in tasks requiring a deep understanding of relationships and dependen-
cies. This dichotomy motivates the need to bridge graph and textual data, leveraging
their complementary strengths for more effective data mining.

There are three key challenges to addressing this integration. First, preserving
both graph and textual information in a unified representation is challenging. This
process involves creating embeddings that maintain the structural integrity of graphs
while encapsulating the semantic richness of texts. Second, enhancing graph-based
tasks with textual information is crucial. For instance, in source localization of infor-
mation diffusion on information networks, incorporating node texts can provide addi-
tional context that improves the accuracy of identifying information diffusion sources.
Third, utilizing graph structures to augment text-based tasks, such as knowledge-
extensive question answering, is also essential. For example, knowledge graphs can
provide a structured context that enhances the reasoning capabilities of language
models. This dissertation proposal is dedicated to exploring these challenges, partic-
ularly focusing on applications of 1) integrating textual data for solving graph data
mining problems like source localization of information diffusion and 2) employing
graph-structured data to improve the reasoning capability of language models.



Specifically, this dissertation focuses on three primary areas: 1) learning latent
embeddings that fuse both semantic and structural information of the observed net-
work to facilitate downstream graph data mining tasks, e.g., deep graph generation,
source localization, and influence maximization. 2) enhancing natural language un-
derstanding tasks by different means, such as quantifying the uncertainty of a large
language model’s response and employing an external knowledge base to enhance the
commonsense reasoning task in a retrieval-augmented manner. 3) creating a frame-
work that combines the semantic processing capabilities of large language models
with the structural analysis strengths of graph neural networks to learn a unified
representation for text-attributed graphs.

This dissertation’s contributions include novel formulations and frameworks for
each task, the creation of new datasets, and extensive experimental validation. This
interdisciplinary approach advances the theoretical understanding of integrating graph
data mining and language modeling and has practical implications for a wide range
of applications in data science.
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Chapter 1

Introduction

In the rapidly evolving domain of data science, the ability to effectively analyze and

interpret complex information from diverse sources has become increasingly crucial.

Two significant modalities that have gained substantial attention in recent years are

graph data and text data. Both modalities can naturally be combined, as text data

can be structured like a graph, and graph data can have rich text embedded on nodes

and edges. For instance, academic publications can form a citation network where

each document is a node, and the edges represent citation relationships, with rich

textual abstracts or keywords associated with each node. Similarly, shown in Figure

1.1, social media platforms not only connect users through friendship or follower

networks but also embed extensive textual information in posts and profiles. Despite

their intertwined nature, existing works have primarily focused on either graph data

or textual data in isolation, often overlooking the potential synergy between the

two. Combining both modalities is essential to solving unique research problems

that require a holistic understanding of structural relationships and semantic content.

This integration can harness the complementary strengths of graph data’s structural

insights and textual data’s semantic richness, paving the way for innovative and robust

data mining methodologies.
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The “FAQs” of “integrate a LLM AI with a 
Knowledge Graph” is “What’re the main
problems when integrating LLMs with KGs”.

Figure 1.1: An example of networked, textual data, the local connection in an aca-
demic research graph can be interchangeably converted to natural language.

Traditionally, graph data mining has emphasized the structural aspects of data,

such as the connections between nodes and the overall network topology. While this

approach has been highly effective, certain methods may underutilize or not explicitly

leverage the rich textual information associated with nodes, despite its potential to

significantly enhance analysis. For example, in diffusion source localization within

social networks, many conventional methods focus primarily on structural informa-

tion, often not incorporating the textual content of communications associated with

each node. However, graphs are often used to describe user mobility with textual

data describing the semantics of the visited places [131, 130]. However, analyzing

a node’s movement/mobility history alongside its structural context can yield crit-

ical insights, complement traditional approaches, and enable a more comprehensive

identification of rumor source nodes. By integrating textual features with structural

patterns, researchers can gain a multidimensional understanding of the data, enrich-

ing the analysis and expanding the applicability of graph data mining in scenarios

where textual content is crucial.

Similarly, the field of natural language processing (NLP) has increasingly rec-

ognized the value of incorporating structured knowledge into its frameworks. This
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Figure 1.2: Integrating topology and semantic information to a unified representation.

recognition stems from the realization that language models, while powerful in un-

derstanding and generating text, can significantly benefit from external, structured

contexts to make more informed decisions. Specifically, in tasks requiring factual

accuracy, integrating external knowledge bases (e.g., knowledge graphs) presents a

compelling solution. These graphs, constructed from key entities and their interrela-

tions extracted from textual queries, offer a rich reservoir of structured knowledge that

can guide language models in navigating complex reasoning pathways. By harnessing

this structured knowledge, language models can transcend their inherent limitations,

achieving a deeper comprehension of context and enhancing their decision-making

capabilities in a way that mirrors human cognitive processes more closely.

As shown in Figure 1.2, integrating the modalities of graph data mining and

language modeling into a cohesive analytical framework presents several technical

challenges that necessitate innovative solutions. The first challenge lies in preserv-

ing semantic richness in textual information while integrating it with structural graph

data. Traditional approaches often convert textual data into latent embeddings at

an early stage, potentially stripping away nuanced meanings that could be crucial

for decision-making. This highlights the need for maintaining the integrity of se-

mantic information throughout the analysis process, ensuring that both textual and

structural data are effectively utilized.

The second challenge involves enhancing graph-based tasks with textual informa-

tion. For instance, solving graph problems such as source localization can be sig-

nificantly improved by considering the textual content associated with nodes. This
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integration can provide additional context and insights, leading to more accurate and

robust solutions. Developing methodologies that can seamlessly incorporate textual

data into graph mining tasks is essential for advancing this field.

The third challenge is leveraging graph structures to augment text-based tasks, such

as question-answering. Knowledge graphs provide a structured context that can en-

hance the reasoning capabilities of language models, particularly in zero-shot scenarios

where the model encounters unseen instances. Sophisticated methods are required to

extract and represent this structured knowledge in a way that is understandable and

useful for language models, enabling them to navigate complex reasoning tasks with

improved accuracy and efficiency.

Addressing these challenges not only advances the theoretical understanding of

integrating graph data mining and language modeling but also has practical implica-

tions for a wide range of applications in data science. This dissertation explores these

challenges, focusing on the application of integrating textual data for solving graph

problems like source localization and employing graph data to improve the reasoning

capabilities of language models.

1.1 Research Issues

This thesis aims to explore the intersection of graph data mining and language mod-

eling, with a specific focus on aligning both modalities to solve various data mining

tasks, thereby harnessing the complementary strengths of these two modalities to

enrich our understanding and processing of complex data.
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1.1.1 Enhancing Graph Data Mining by Exploiting Semantic

Information on Networks

The field of graph data mining has seen significant advancements through the consid-

eration of semantic meaning in heterogeneous and complex networks. The first work

introduces a novel framework (HGEN) for heterogeneous network generation that

addresses the challenges of modeling local semantic distributions, preserving graph-

structured distributions, and characterizing global graph patterns. This framework

features a hierarchical heterogeneous walk generator and a graph assembler that con-

structs graphs by stratifying meta-path instances, offering a comprehensive approach

to capturing semantic, structural, and global distributions in heterogeneous graphs.

The second work focuses on source localization in cross-networks, where infor-

mation diffusion in one network depends on another interconnected network. The

proposed method, CNSL, tackles the challenges of diffusion source distribution mod-

eling, learning heterogeneous diffusion patterns, and handling both static and dy-

namic node features. CNSL employs Bayesian inference and disentangled encoders,

enabling effective information diffusion source localization by considering the overall

diffusion process across networks.

The third work addresses influence maximization in social networks, a problem

that seeks to maximize influence spread by selecting optimal initial users. Traditional

methods have reached a performance plateau, prompting the development of learning-

based approaches. The proposed DeepIM framework generatively learns the latent

representation of seed sets and adapts to various node-centrality constraints, offering

a flexible, data-driven solution to the IM problem that overcomes the limitations of

previous methods. Together, these works contribute to enhancing graph data mining

by integrating semantic considerations into complex graph structures and processes.
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1.1.2 Integrating Structured Knowledge and Quantifying Un-

certainty in Natural Language Understanding

For natural language understanding, recent research has focused on integrating struc-

tured knowledge and addressing uncertainty to enhance the capabilities of AI systems.

The first work explores open-ended commonsense reasoning, a challenging task that

involves solving commonsense questions without predefined answer candidates or a

limited answer scope. Traditional question-answering methods and retrieval-based

approaches struggle in this open-ended setting due to the vast search space and the

necessity for implicit multi-hop reasoning. To overcome these challenges, the pa-

per proposes leveraging pre-trained language models to iteratively retrieve reasoning

paths from external knowledge bases without task-specific supervision. These rea-

soning paths help pinpoint the most accurate answers, significantly improving perfor-

mance on commonsense reasoning benchmarks compared to state-of-the-art methods.

The second work investigates the complexities of predictive uncertainty in the con-

text of in-context learning, a powerful capability of Large Language Models (LLMs).

While in-context learning has revolutionized various applications by utilizing a few

task-relevant demonstrations, it also introduces concerns about the trustworthiness

of LLM responses, particularly regarding hallucinations. This research delves into the

dual sources of uncertainty in LLMs—aleatoric uncertainty from provided demonstra-

tions and epistemic uncertainty from the model’s configurations. A novel formulation

and estimation method are proposed to quantify both types of uncertainty, offering an

unsupervised, plug-and-play approach to understanding and mitigating the risks asso-

ciated with LLM predictions in in-context learning scenarios. Together, these studies

contribute to advancing natural language understanding by incorporating structured

knowledge and addressing the nuances of uncertainty in AI models.
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1.1.3 Representation Learning for Text-attributed Networks

Text-attributed graphs (TAGs), where nodes and edges are enriched with textual de-

scriptions, are increasingly prevalent in real-world applications. The key challenge in

representation learning on TAGs lies in effectively integrating textual semantics with

the graph’s topological structure. The paper presents a novel approach to address this

challenge by focusing on textual-edge graphs (TEGs), which are particularly useful

for capturing rich contextual information through text annotations on edges.

The proposed framework, Link2Doc, is designed for link prediction tasks on

TEGs, where existing methods often struggle to fully capture the complex interplay

between edge semantics and graph topology. Link2Doc innovatively summarizes

the neighborhood information between node pairs as a human-readable document,

thereby preserving both semantic content and structural connections. By leverag-

ing a self-supervised learning model, Link2Doc enhances the graph neural net-

work’s (GNN’s) ability to understand and process text through language models.

Extensive empirical evaluations across multiple real-world datasets demonstrate that

Link2Doc outperforms existing edge-aware GNNs and pre-trained language mod-

els, offering superior performance in link prediction, edge classification, and overall

understanding of TEGs. This work is devoted to learning a unified representation of

TAGs, particularly in effectively merging textual and topological information.

1.2 Contribution

The major proposed research contributions that have been addressed up to now can

be stated as follows:

Enhancing Graph Data Mining by Exploiting Semantic Information on Networks :

• Heterogeneous Graph Generation. We not only formulate a new paradigm

of heterogeneous graph generation but also identify and resolve its unique chal-
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lenges in preserving various heterogeneous graph properties. The proposed

framework can effectively learn the underlying distribution of heterogeneous

graphs. It generates heterogeneous graphs with ensuring the preservation of

various heterogeneous graph properties.

• Information Diffusion Source Localization on Cross-networks. We pro-

pose a unified framework for cross-network source localization that can jointly

capture 1) both static and dynamic node features, and 2) the heterogeneous dif-

fusion patterns of both networks. The approximation of diffusion sources is fully

aware of various node features and the interplay of cross-network information

diffusion patterns.

• Deep Graph Representation Learning and Optimization for Influence

Maximization (IM). We formulate the learning-based IM problem as embed-

ding the initial discrete optimization domain into continuous space for easing

the optimization and identify its unique challenges arising from real applica-

tions. The proposed framework models the representation of the seed set in

a latent space, and the representation is jointly trained with the model that

learns the underlying graph diffusion process in an end-to-end manner.

Integrating Structured Knowledge and Quantifying Uncertainty in Natural Language

Understanding

• Open-ended Commonsense Reasoning. The open-ended commonsense

reasoning is formulated as a multi-hop reasoning task iteratively conducted

on an external knowledge graph. We leverage the implicit knowledge stored in

PLMs to guide the reasoning process on Knowledge Graphs, and the retrieved

reasoning paths serve as additional explanations to justify the answer choice.

• Uncertainty Quantification for In-Context Learning of Large Lan-

guage Models. We formulate the problem of uncertainty quantification of the
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Large Language Model (LLM)’s response that extracts epistemic and aleatoric

uncertainties from the predictive distribution of LLMs with in-context learning

from the mutual information perspective.

Representation Learning of Text-attributed Graph

• Problem. We formulate the problem of link prediction on textual-edge graphs

and highlight the unique challenges of learning representations on textual-edge

graphs for link prediction.

• Method. We propose an integrated framework to jointly consider topology

and semantic information in textual-edge graphs, which consists of 1) coherent

document composition to summarize local topology information between node

pairs in plain language; and 2) a self-supervised learning module to teach graph

neural networks language processing ability.

• Experiment. We empirically compare our method against existing state-of-

the-art models in four real-world datasets. Results have shown our proposed

methods can elevate the performance of general GNNs and achieve competitive

performance against edge-aware GNNs.

1.3 The Organization of Thesis

The remainder of the dissertation is as follows. Chapter 2 discusses a series of works

for enhancing graph data mining by exploiting semantic information on networks, in-

cluding the deep graph generation of heterogeneous networks, the source localization

in cross-network information diffusion, and the influence maximization on social net-

works. Chapter 3 explores two works on integrating structured knowledge and quan-

tifying uncertainty in natural language understanding, which consists of a novel open-

ended commonsense reasoning problem that leverages the whole knowledge graph as
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the answer scope, and an uncertainty quantification method that decomposes the pre-

dictive uncertainty of LLM’s response into its aleatoric and epistemic components.

After that, Chapter 4 discusses the work of TEG representation learning, which tries

to discover the synergy between the LLMs and GNNs in learning graph data with

rich semantic information on edges for link prediction. Finally, Chapter 5 concludes

the dissertation with major contributions of each work.
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Chapter 2

Enhancing Graph Data Mining by

Exploiting Semantic Information

on Networks

Incorporating semantic information into graph data mining can be crucial for en-

hancing the understanding of relationships and interactions within graph structures,

leading to more accurate and robust models. For tasks such as heterogeneous graph

generation, semantic meaning enables models to capture nuanced relationships be-

tween different types of nodes and edges, preserving both local and global graph

properties that might otherwise be overlooked. In information diffusion source local-

ization across networks, semantic awareness aids in disentangling static and dynamic

node features, allowing for more precise modeling of the latent distribution of source

nodes and the diffusion process across interconnected networks. Similarly, in influ-

ence maximization on social networks, integrating semantic information can improve

the model’s ability to learn diverse diffusion patterns, enabling more effective identi-

fication of influential nodes under varying constraints.

In this chapter, I will introduce three works that leverage semantic information
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Figure 2.1: Examples of the heterogeneous graph in an academic field.

to enhance different graph data mining tasks. By incorporating semantic meaning,

these works demonstrate that graph mining tasks can achieve greater accuracy, gener-

alization, and adaptability, ultimately improving the quality of insights derived from

complex, real-world networks.

2.1 Deep Generation of Heterogeneous Networks

Graphs, a ubiquitous data structure, model connections (edges) between objects

(nodes). Research in graph analysis primarily falls into two categories: 1) graph

representation learning, which encodes topological and semantic graph information

into vector spaces [178], and 2) graph generation, which reconstructs graph data from

low-dimensional representations of graph rules or distributions [58]. While most prior

work has focused on homogeneous graphs (single node and edge types), heterogeneous

graphs generalize this by incorporating multiple node and edge types, as seen in ci-

tation [213] and social networks [43]. For instance, a citation network (Figure 2.1 b)

may include nodes like authors, papers, venues, and terms, with edges such as author-

ship or publication. A key feature of heterogeneous graphs is their local semantics,

captured by meta-paths, which are sequences of node and edge types reflecting di-

verse relationships [154, 153]. For example, two authors might be connected via a

meta-path by co-authoring a paper or by publishing in the same venue (Figure 2.1

b).
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Recent advancements in graph neural networks have led to significant progress in

heterogeneous graph representation learning and embedding [44, 169, 65, 189, 188,

190, 192], enabling downstream tasks such as meta-relation detection [44, 49], hetero-

geneous node embedding [169, 65], and link prediction [207, 189]. However, hetero-

geneous graph generation remains underexplored. Generating realistic heterogeneous

graphs offers two key benefits: 1) It enhances understanding of latent graph distribu-

tions by capturing implicit properties, and 2) it supports applications like recommen-

dation systems [147], knowledge graph reasoning [207], and node proximity search

[154]. Despite its importance, only one prior work [60] has attempted this, using

hand-crafted rules that fail to learn real data distributions. In contrast, deep genera-

tive models have excelled in homogeneous graph generation [58, 59, 16, 200, 150, 193],

learning latent graph-structure distributions directly from data without manual rules,

and effectively preserving structural properties.

However, existing deep generative models designed for homogeneous graphs cannot

be trivially adapted to heterogeneous graphs due to the following challenges:

1) Difficulties in preserving heterogeneous semantic information. Models designed

for homogeneous graphs often rely on random walks to learn topological distributions

([16, 19]) or directly model edge distributions ([86, 150]). However, heterogeneous

graphs involve diverse meta-paths (Figure 2.1 c), which encode complex semantic

patterns. Without specific consideration of meta-paths, adapting these models to

heterogeneous graphs fails to capture such intricate semantics.

2) Difficulties in preserving heterogeneous higher-order structural information. Be-

yond meta-paths, higher-order structures like triangles or orbits emerge frequently in

heterogeneous graphs (Figure 2.1 b). These structures, representing more intricate

node relationships (e.g., an author writing multiple papers on the same topic), are

difficult to model and preserve during graph generation.

3) Difficulties in preserving heterogeneous global information. Meta-paths also en-
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code global patterns crucial for maintaining graph-wide properties, such as the ratio

of node and edge types across domains (Figure 2.1 a). Preserving these global distri-

butions, alongside topological and type-specific patterns, poses a significant challenge.

To address these challenges, we propose an end-to-end framework, Heterogeneous

Graph Generation (HGEN). HGEN aims to generate novel heterogeneous graphs

by preserving local semantic, higher-order structural, and global properties through

meta-path distribution modeling. Key components include:

• Problem. We not only formulate a new paradigm of heterogeneous graph gen-

eration but also identify and resolve its unique challenges in preserving various

heterogeneous graph properties.

• Framework. We propose an end-to-end framework for heterogeneous graph

generation. The proposed framework can effectively learn the underlying dis-

tribution of heterogeneous graphs. It generates heterogeneous graphs while

ensuring the preservation of various heterogeneous graph properties.

• Evaluation. We conduct extensive experiments on both synthetic and real-

world heterogeneous graphs. Compared with state-of-the-art baselines, HGEN

achieves competitive results in preserving most of the static graph properties.

In addition, HGEN is shown to be capable of generating realistic heterogeneous

graphs by preserving important meta-path information.

2.1.1 Related Work

Heterogeneous Graph Representation Learning. In recent years, graph neural

network (GNN) has achieved massive success in extensive applications [85, 202] due to

its capability of effectively learning relationships and interactions on non-Euclidean

data. There exist plenty of attempts to adopt GNNs to learn with heterogeneous

graphs, and almost all of them rely on employing meta-paths to model heterogeneous
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structures [192]. Specifically, proximity-preserving methods [44, 49, 189, 190] aim

to capture heterogeneous network topological information via meta-path-constrained

random walks. On the other line of approach, [188, 169, 65] try to aggregate infor-

mation from heterogeneous neighbors via multiple layers of learnable projection func-

tions. Throughout the study of heterogeneous graphs [154, 192], meta-path serves

as the fundamental building block owing to its nonpareil ability to carry both graph

topological and rich semantic information.

Graph Generation. Graph generative models have evolved significantly due to

their applications in link prediction [16, 150], protein structure analysis [34], and

information diffusion in social networks [167]. Traditional methods (e.g., random

graphs, and stochastic block models) struggle to capture complex dependencies and

fail to preserve the statistical properties of real-world graphs. Recent advances fo-

cus on deep graph generation, categorized into sequential-based and one-shot-based

approaches [58]. Sequential methods [200, 16, 152] generate nodes and edges au-

toregressively using LSTMs, but their reliance on fixed orderings limits flexibility

and scalability. One-shot methods [150, 34, 16, 191, 193, 205, 109] generate graph

topology and attributes simultaneously, but their high time complexity restricts their

use on large graphs. Additionally, methods for multi-attributed graph generation

[200, 59, 55] focus on homogeneous graphs, failing to capture the higher-order lo-

cal semantics crucial in heterogeneous graphs, which arise from the combinations of

different node and edge types.

2.1.2 Problem Formulation

A heterogeneous graph [148, 192] is a graph G = {V , E} with multiple types of objects

and relations. V is the set of objects (i.e., nodes), where each node vi ∈ V is associated

with a node type o = ϕ(vi). E ⊆ V ×V is the set of edges, where each edge eij ∈ E is
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Figure 2.2: The illustration of the heterogeneous walks generation in HGEN.

associated with a relation type l = ψ(eij).

In the study of heterogeneous graphs, the concepts of meta-paths are widely con-

sidered as cornerstones and adopted to systematically capture numerous semantic

relationships across multiple types of objects, which are defined as a path over the

graph [155, 192]. Hence meta-paths are indispensable to be considered as basic units

for heterogeneous graph generation. Concretely, a meta-path o is defined as a se-

quence of object types and edge types o =
(
(o1, o2, ..., on), (l1, l2, ..., ln−1)

)
= o1

l1−→

o2
l2−→ ...

ln−1−−→ on, where each oi and lj are node type and edge type in the sequence,

respectively. Each meta-path captures the rich semantic information between its two

ends o1 and on. In heterogeneous graphs, the local semantic information is carried on

each of walks v = (v0, v1, ..., vn) and its associated meta-path o. We again take Figure

2.1 (c) as an example, there exist two meta-paths between papers: (Paper, Author,

Paper) and (Paper, Venue, Paper). The utilization of different meta-paths allows the

heterogeneous graph to contain rich topological and semantics among diverse objects.

With the preliminary notion of the heterogeneous graph, we formalize the hetero-

geneous graph generation problem as follows:

Problem 1 (Heterogeneous Graph Generation). The goal of the heterogeneous

graph generation is to learn a distribution pdata(G) from the observed heterogeneous

graphs such that a new graph Ĝ can be obtained by sampling Ĝ ∼ pdata(G).
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2.1.3 Heterogeneous Graph Generation

In this work, we propose a new heterogeneous graph generation framework, named

HGEN, which leverages a heterogeneous walk generator to jointly learn the distribu-

tion of local walks and the associated meta-paths for capturing both heterogeneous

topological and local semantic information. A novel heterogeneous graph assembler

is also proposed to construct new heterogeneous graphs by capturing the global het-

erogeneous property, namely different meta-path ratios.

Heterogeneous Walk Generator

In the observed graph G, a heterogeneous walk is defined as a tuple that consists of two

components: a walk v and an associated meta-path o. The proposed heterogeneous

walk generator G is defined as a probabilistic sequential learning model to generate

synthetic heterogeneous walks: (v̂, ô) =
(
(v̂1, v̂2, ..., v̂n), ((ô1, ô2, ..., ôn), (l̂1, l̂2, ..., l̂n−1))

)
,

where the v̂ and ô are denoted as the generated walk and associated meta-path, re-

spectively. We use v̂i, ôi, and l̂i to denote each of the generated node, node type, and

edge type in (v̂, ô), respectively. Figure 2.2 (a) illustratively summarizes the whole

generative process of each synthetic heterogeneous walk.

Heterogeneous Walk Generation. We model G as a sequential learning process

based on a recurrent architecture, and each unit fθ in the sequential model is pa-

rameterized by θ so that it can generate a node type ô and a corresponding node v̂

that belongs to this node type in a hierarchical manner. Precisely, the node type ô is

determined based on the previously generated sequence, and the node v̂ is then coher-

ently determined by the generated node type as well as the generated sequence. Both

generated node type ô and node v̂ together provide information for the generation of

the next node type and node instance.

Specifically, at each recurrent block (i.e., time step) t, fθ produces two outputs
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(mmmt,hhht), where themmmt is the current memory state and the hhht is a latent probabilistic

distribution (i.e., hidden output of fθ) denoting the information carried from previous

time steps. We first sample the node type ôt ∼ go(hhht) based on the probability

distribution hhht, where the go(·) is a node type decoding function. We then sample

the node v̂t by a node decoding function v̂t ∼ gv(hhht, ôt) that takes hhht and ôt as inputs.

Lastly, the generated node type ôt and node hhht are fused by a heterogeneous node

encoding function gc(ôt, v̂t), which then serves as the input of next recurrent block.

Heterogeneous Node Sampling. To overcome the second challenge, we cannot

uniformly sample v̂t based on the node type ôt because such a way may cause the

neglection of (1) node structural distribution and (2) node semantic distribution. To

tackle this challenge, since latent node embedding could encode both topological and

semantic information into the node, we propose to calculate a latent embedding ṽt

of the next node vt, then we select with a higher probability the closer embedding

among all the embeddings that belong to node type ôt so that the next node vt can be

determined by the sampled embedding. More specifically, we first calculate the latent

node embedding ṽt based on the sampled node type ôt by a simple linear transfor-

mation. We then calculated the distance between ṽt and other node embedding ṽ
(ôt)
i ,

meaning any node ṽi belonging to the sampled node type ôt. Given a total number

of k embeddings that belong to the type ôt, the next node v̂t can be sampled from a

multinomial distribution:

v̂t ∼ Multi(ṽ
(ôt)
1 , ṽ

(ôt)
2 , ..., ṽ

(ôt)
k ; p1, p2, ..., pk),

where each pi = −∥d(ṽt, ṽ(ôt)i )∥2 and d(·, ·) is a distance metric such as Euclidean

distance. Note that the node embedding ṽ
(ôt)
i can be obtained from a conventional

heterogeneous node embedding technique such as [49].

In order to generate a variable-length heterogeneous walk, we incorporate a end-
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of-sequence token as an additional node type so that the heterogeneous walk generator

stops when the sampled node type is the token at any steps. Therefore, the proposed

generator is able to produce variable-length heterogeneous walks. Finally, the edge

type lt can be predicted by a simple edge decoding function ge(ôt, v̂t, ôt−1, v̂t−1) that

takes its two end nodes v̂t−1 and v̂t as well as their node types ôt−1 and ôt as inputs.

In all, we summarize the overall generative process as follows:

aaa0 = 0, mmm0 = f0(zzz), zzz ∼ N (0, 1)

aaa1 = gc(ô1, v̂1), v̂1 ∼ gv(hhh1, ô1), ô1 ∼ go(hhh1), (mmm1,hhh1) = fθ(mmm0, aaa0)

aaa2 = gc(ô2, v̂2), v̂2 ∼ gv(hhh2, ô2), ô2 ∼ go(hhh2), (mmm2,hhh2) = fθ(mmm1, aaa1)

l̂1 = ge(ô2, v̂2, ô1, v̂1)

· · ·

v̂n ∼ gv(hhhn, ôn), ôn ∼ go(hhhn), (mmmn,hhhn) = fθ(mmmn−1, aaan−1)

l̂n−1 = ge(ôn, v̂n, ôn−1, v̂n−1)

In this work, we utilize LSTM as the recurrent architecture, and fθ becomes a

single LSTM unit. To initialize the whole generative process, G takes a random noise

zzz as input, which is drawn from a standard Gaussian distribution. Additionally, for

the node type decoding function go(·), we apply the Gumbel-softmax trick [67] in

go(·) to make the whole sampling differentiable. Finally, in most of the real-world

scenarios, the edge type lt can be determined by the types of its two end nodes ôt

and ôt−1 if there does not exist multi-typed relations between two node types. In

this case, the heterogeneous walk generator can be simplified only to generate node

sequences and associated node types.
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Heterogeneous Generator Training and Utilization

We utilize a heterogeneous discriminator D to distinguish between real and generated

heterogeneous walks, where the real heterogeneous walks are uniformly sampled from

the observed graph. We then propose a heterogeneous graph assembler to construct

new graphs based on the sampled heterogeneous walks.

We first introduce the overall objective function of the Wasserstein heterogeneous

GAN [8], which is written as:

LHGEN = max E(o,v)∼p(G)[Do(o) +Dv(v)]

− Ez∼p(z)[Do(ô) +Dv(v̂)], s.t. G(z) = (ô, v̂),

(2.1)

where v and o are the random walk and associated meta-path, respectively, directly

sampled from the observed G. They are the real data for training our heterogeneous

walk generator G. Specifically, given an observed G, we utilize random-walk-based

method to uniformly sample a set of random walks {v1,v2, ...}, where each vi is a node

sequence s.t. vi = (v1, v2, ..., vn). In addition, we extract the meta-path information

oi =
(
(o1, o2, ..., on), (l1, l2, ln−1)

)
from each vi.

The heterogeneous discriminator D in Eq. (2.1) is designed as a parallel recur-

rent architecture in order to individually distinguish whether each component in the

heterogeneous walks is valid or not. Specifically, at each recurrent block (i.e., each

step) t, the discriminator D takes two inputs: the generated node type ôt and node

index v̂t, each of which is fed into an individual recurrent unit. After processing both

sequences, the discriminator returns a single score Dv(v)+Do(o) that represents the

probability of the heterogeneous walk being real.

Heterogeneous Graph Assembler. To assemble a heterogeneous graph from the

generated heterogeneous walks, we further propose a novel stratified heterogeneous

edge sampling strategy to achieve the following steps: 1) it first samples a node v̂i
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Sampled Meta-paths Heterogeneous Graph Assembler

Heterogeneous Walk
Generator

(a) Heterogeneous walk generation (c) Sampled meta-paths (d) Heterogeneous graph assembler

Generated
Heterogeneous Walks

Edge Frequency
Matrix 

(b) Edge frequency matrix construction

Figure 2.3: The process of heterogeneous graph assembler.

and its type ôi from all of the generated heterogeneous walks; 2) based on the node

type ôi, we then sample a meta-path that starts with ôi; 3) we iteratively sample the

next node v̂i+1 in the sampled meta-path if both of the node type ôi+1 and edge type

l̂i fits the meta-path pattern.

More specifically, the generator G firstly produces a sufficient number of hetero-

geneous walks as shown in Figure 2.3(a). We then construct a symmetric adjacency

matrix S with size |V| × |V| to record the count of edges observed from the sampled

heterogeneous walks in each entry Sij, where the |V| is the size of the node set. Next,

we collect all of the meta-path patterns generated by the generated heterogeneous

walks, as shown in Figure 2.3 (b-c). For the first step of the stratified heterogeneous

edge sampling, we sample a node v̂i and its type ôi based on the node degree dis-

tribution
∑

j Sij

|V| . For the second step, among all the meta-paths {o(f)
1 ,o

(f)
2 , ...} that

start with the node type ôi, we sample a meta-path o
(f)
i based on the probability

c(o
(f)
i )

T ôi
, where T ôi is the total count of generated meta-paths that starts with node

type ôi and c(o
(f)
i ) is the count of meta-path pattern o

(f)
i . For the third step, by

following this meta-path pattern or = (o1, o2, ..., on), we iteratively sample all the

nodes whose node types are regulated by the meta-path. Precisely, we sample the

next node vj by sampling all the neighbors of the current node vi with the proba-

bility pvivj = (Sij)/(
∑

s Sis) such that all the nodes vs belong to the specific node

type oj following the meta-path o
(f)
i . The sampled node sequence vr = (v0, v1, ...) is

then added to the current under construction. We continue the stratified heteroge-
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(a) Observed heterogeneous
graph 

(b) Inaccurate generated
graph 

Data
Mining

Data
Mining

Figure 2.4: Example of two heterogeneous graphs with different semantic informa-
tion: the observed meta-path patterns are different, although the node and edge
distribution are the same between two graphs.

neous edge sampling strategy until the desired amount of edges is reached. The final

assembled graph is visualized in Figure 2.3 (d).

2.1.4 Meta-path Information Preservation Analysis

As we discussed in Section 2.1.2, it is significant to preserve the meta-path information

in our generated graph. Taking Figure 2.4 as an example, although both graphs have

exactly the same structure, they are still regarded as two different heterogeneous

graphs since their meta-path distributions are different. Given the importance of the

meta-path information in heterogeneous graph generation, we further show that our

framework can preserve this meta-path information as proved in Theorem 1.

Theorem 1. The distribution of meta-path patterns O(r)
of the generated heteroge-

neous graph equals the distribution of meta-path patterns O in the observed heteroge-

neous graph, namely p(O(r)
) = p(O).

Proof. We will prove that the ratio of the meta-path patterns can be preserved in

three steps: 1) the ratio of different meta-path patterns can be preserved during the

sampling procedure; 2) the ratio of generated meta-path patterns can be preserved
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during the generation procedure; 3) the meta-path patterns can be preserved during

the graph assembling procedure.

Meta-path Ratio Preservation in Sampling. Let O = (o1,o2, ...) be the collection

of meta-paths obtained from the observed heterogeneous graph G, each oi is a meta-

path in one-hot format oi ∈ {0, 1}1×R, where the R is the total number of different

meta-path patterns. O(τ)
= (o

(τ)
1 ,o

(τ)
2 , ...,o

(τ)
K ) is the sequence of sampled meta-paths

with sampling size K, where each meta-path o
(τ)
j ∈ {0, 1}1×R is drawn independent

and identically distributed (i.i.d) from O.

Suppose that µ = [µ1, µ2, ..., µR]
T denotes the probability of each individual meta-

path pattern in O, it is obvious that E[oi|µ] =
∑

oi
p(oi|µ)oi = [µ1, µ2, ..., µR]

T = µ.

Now consider the total K observations O(τ)
= (o

(τ)
1 ,o

(τ)
2 , ...,o

(τ)
K ), the corresponding

likelihood function takes the form:

p(O(τ)|µ) =
R∏
i

K∏
j

µ
o
(τ)
ij

j =
K∏
j

µ
∑

n o
(τ)
nj

j =
K∏
j

µ
mj

j (2.2)

We see that the likelihood function depends on the K data points only through the

R quantities: mj =
∑

n o
(τ)
nj . Since the number of observations of o

(τ)
j equals 1, we

achieved sufficient statistics for this distribution so that p(O(τ)
) = p(O).

Meta-path Ratio Preservation in Generation. Since we have proved the meta-

path ratio can be preserved during the sampling, the next step is to show that the

distribution of generated meta-paths p(O(g)
) is equal to p(O(τ)

). Proving p(O(g)
) =

p(O(τ)
) is equivalent to prove whether pdata = pg in the GAN setting. As proved in

the works of GANs and their variants [54, 8], it showed that the objective function of

the generator G is equivalent to optimize the distribution distance between pdata and

pg if the discriminator D is optimal. Therefore, global optimality of pg = pdata can be

achieved if both generator G and discriminator D have enough capability. Therefore,

p(O(g)
) = p(O(τ)

) if both G and D are optimal in our framework.



24

Meta-path Ratio Preservation in Assembling. Finally, we show that our graph

assembling method can also preserve the meta-path ratio from the generated data

O(g)
such that p(O(g)

) = p(O(r)
). As discussed in Section 2.1.3, the new graph Ĝ is

directly assembled by meta-paths (o
(g)
1 ,o

(g)
2 , ...,o

(g)
Q ) that are sampled i.i.d from O(g)

with sampling size Q, which is exactly the reverse procedure of Eq. (2.2).

Therefore, if both generator G and discriminator D are optimal, the multinomial

distribution p(O) of distinct meta-path patterns can be preserved in all three steps

of our generation framework.

2.1.5 Experiment

In this section, we compare HGEN to the adaption of existing baselines, demonstrat-

ing its effectiveness in generating realistic heterogeneous graphs in diverse settings.

2.1.6 Data

Synthetic Datasets. We synthesize random heterogeneous graphs of different sizes

through the combination of N overlapping homogeneous graphs, where the overlap

is accomplished by node sharing. We generate three random heterogeneous graphs

(named as Syn100, Syn200, and Syn500) with node size 100, 200, and 500, respectively.

The number of node types in each synthetic heterogeneous graph is 3.

Real-world Datasets. We also employ three large-scale real-world heterogeneous

graph datasets in our experiment.

• PubMed. This dataset consists of four classes of nodes: Gene (G), Disease

(D), Chemical (C), and Species (S). We construct a sub-graph that relates to

all Chemical nodes labeled in [192]. There are 1, 565 nodes and 13, 532 edges.

• IMDB. This movie-related heterogeneous graph is adopted from [169], which

contains three node types: Director (D), Actor (A), Movie (M), and Genre (G).
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Graphs Models LCC TC Clustering Coef. Powerlaw Coef. Assortativity Degree Distribution Dist. EO Rate Uniqueness

Syn-100

GraphRNN 78.43± 2.23 16.62± 5.42 0.002± 0.01 1.611± 0.09 −0.153± 0.07 2.19e−2± 3.21e−3 37.21%± 1.08% 33.09%± 7.06%
NetGAN 80.12± 3.45 6.79± 1.76 0.001± 0.00 1.524± 0.21 −0.213± 0.09 1.33e−2± 6.46e−3 8.74%± 0.82% 94.03%± 0.49%
GraphVAE 99.01± 0.00 224.81± 5.13 0.70± 0.04 4.579± 0.05 −0.73± 0.05 3.71e−1± 1.98e−2 11.5%± 1.09% 65.54%± 2.98%
VGAE 48.9± 4.63 63.7± 46.25 0.184± 0.06 1.87± 0.10 0.1± 0.03 2.23e−1± 6.08e−2 3.23%± 0.09% 51.1%± 3.04%
HGEN 81.13± 2.42 53.12± 3.78 0.079± 0.01 1.782± 0.01 −0.114± 0.03 8.79e−3± 3.12e−3 10.2%± 0.17% 92.97%± 0.72%

Real 85 36 0.072 1.832 -0.169 N/A N/A N/A

Syn-200

GraphRNN 132.76± 1.08 2.54± 0.77 0.001± 0.00 1.603± 0.01 −0.05± 0.01 5.15e−2± 3.07e−3 25.81%± 2.65% 27.72%± 3.07%
NetGAN 153± 1.56 2.24± 0.35 0.001± 0.00 1.579± 0.31 −0.008± 0.001 6.43e−2± 4.2e−3 11.32%± 0.77% 95.88%± 3.19%
GraphVAE 195.43± 1.12 51.32± 1.01 0.002± 0.001 5.377± 0.21 −0.75± 0.05 5.38e−1± 1.7e−2 1.78%± 0.41% 64.37%± 2.94%
VGAE 86.2± 16.93 860.4± 185.9 0.23± 0.04 1.787± 0.08 0.2± 0.15 8.53e−2± 2.14e−2 3.74%± 0.08% 59.65%± 1.46%
HGEN 158.5± 2.64 38.5± 5.26 0.043± 0.01 1.732± 0.02 −0.065± 0.04 2.25e−2± 5.5e−3 4.22%± 0.67% 96.31%± 5.11%

Real 180 28 0.037 1.809 -0.089 N/A N/A N/A

Syn-500

GraphRNN 311.59± 2.14 11.53± 5.57 0.004± 0.001 1.862± 0.01 1.862± 0.002 4.05e−2± 1.1e−3 21.87%± 0.86% 29.54%± 4.32%
NetGAN 305.81± 14.28 3± 1.21 0.001± 0.001 1.812± 0.07 0.03± 0.12 4.83e−2± 7.4e−4 6.72%± 0.13% 93.98%± 0.21%
VGAE 97.0± 29.24 4346.2± 453.62 0.193± 0.02 1.77± 0.06 −0.022± 0.09 2.22e−1± 2.4e−2 5.46%± 1.12% 63.65%± 3.1%
HGEN 347.88± 7.63 74.88± 4.78 0.031± 0.01 1.865± 0.02 −0.097± 0.01 2.81e−2± 3.4e−3 1.49%± 0.11% 95.89%± 1.18%

Real 417 8 6.5e−3 1.978 -0.12 N/A N/A N/A

PubMed

GraphRNN 1563.23± 32.46 1549.79± 33.62 0.01± 0.007 1.753± 0.04 −0.03± 0.01 1.61e−1± 3.71e−2 13.41%± 1.24% 54.62%± 4.32%
NetGAN 793.2± 41.5 18.3± 0.9 0.001± 0.00 1.47± 0.11 −0.12± 0.02 6.69e−2± 1.5e−3 4.32%± 0.54% 78.03%± 0.19%
VGAE 347.9± 7.03 70, 982.2± 4, 086.53 0.234± 0.01 2.48± 0.01 −0.466± 0.01 1.38e−1± 4.8e−3 ≈ 0% 22.87%± 1.68%
HGEN 825.6± 22.1 1569.3± 31.3 0.034± 0.003 1.634± 0.07 −0.143± 0.08 3.92e−2± 7.5e−4 0.07%± 0.01% 93.91%± 0.12%

Real 948 2, 114 0.068 1.75 −0.208 N/A N/A N/A

IMDB

GraphRNN 1425.47± 121.5 142.13± 5.87 0.179± 0.02 2.97± 0.05 0.05± 0.04 1.98e−1± 2.61e−3 9.87%± 0.51% 21.52%± 3.31%
NetGAN 932.5± 8.49 0.0± 0.0 0.0± 0.0 2.08± 0.01 −0.25± 0.07 1.36e−1± 1.89e−3 7.62%± 0.07% 82.69%± 1.27%
VGAE 635.2± 4.16 7, 752.4± 281.32 0.141± 0.01 2.02± 0.02 −0.49± 0.15 1.9e−1± 2.33e−3 ≈ 0% 42.71%± 1.47%
HGEN 945.2± 11.54 26.0± 3.28 3.56e−3± 3.42e−4 2.16± 0.01 −0.19± 0.04 4.36e−2± 4.25e−4 2.69%± 0.04% 88.71%± 0.39%

Real 1, 074 1 4.43e−4 2.51 -0.235 N/A N/A N/A

DBLP

NetGAN 10, 353± 72.71 0.0± 0.0 0.0± 0.0 3.308± 0.41 −0.059± 0.03 5.03e−1± 2.1e−2 5.48%± 0.32% 72.51%± 0.32%
VGAE 3, 771± 236.29 1214.69± 452.61 0.271± 0.06 1.579± 0.07 −0.44± 0.11 8.71e−2± 1.77e−3 ≈ 0% 17.26%± 0.41%
HGEN 5,163± 21.41 1068± 12.83 0.018± 0.001 1.793± 0.21 −0.157± 0.03 5.82e−3± 1.67e−4 1.55%± 0.09% 66.59%± 0.17%

Real 5, 513 0.0 0.0 1.855 −0.201 N/A N/A N/A

Table 2.1: Performance evaluation over compared baselines. The Real rows include
the values of real graphs, while the rest are the evaluation results of different algo-
rithms. The best performance (the closest to real value) achieved under each metric
for a particular dataset is highlighted in bold font. Note that we do not include Graph-
VAE in datasets with (≥ 500) nodes and GraphRNN in datasets with (≥ 10, 000)
nodes because the programs return errors.

We construct a subgraph that contains all the movies with a score ≥ 7.5. This

graph contains 1, 653 nodes and 4, 267 edges.

• DBLP. This heterogeneous graph adopted from [169] contains Paper (P), Au-

thor (A), Venue (V), and Term (T) as node types. We sample a subgraph that

is related to five computer science venues: KDD, WSDM, WWW, ICDM, and

ICML. There are 1, 565 nodes and 47, 885 edges.

Experiment Setting

In our experiment, we focus on meta-paths with lengths 1, 2, and 3 as they are the

most common ones in heterogeneous graphs [154]. We sample 10 graphs from each of

the trained models and report results in Table 2.1. We randomly select 60% of the
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edges for training, and the remaining graph is used for testing.

Baselines. Since no direct competitors are available for heterogeneous graph gen-

eration, we carefully adapt four state-of-the-art graph generation methods: NetGAN

[16], GraphVAE [150], VGAE [86], and GraphRNN [200]. We utilize node type infor-

mation as a node feature of the input graph in GraphVAE and VGAE. In addition,

we modify NetGAN and GraphRNN to make them available to generate node types.

Evaluation Metrics. The evaluation of heterogeneous graph generation can be

divided into three aspects. 1) Graph Statistical Properties : we focus on six typical

statistics as widely used in [16, 191, 55] for measuring the structural similarity, in-

cluding LCC (the size of the largest connected component), TC (Triangle count),

Clustering Coef. (clustering coefficient); Powerlaw Coef. (power-law distribution of

the node degree distribution), Assortativity, and Degree Distribution Dist. (Node

degree distribution Maximum Mean Discrepancy distance). 2) Graph Novelty and

Uniqueness. Ideally, we would want the generated graphs to be diverse and similar,

but not identical. To quantify this aspect, we check the uniqueness between the gen-

erated graphs by calculating their edit distances. Additionally, we calculate the EO

Rate (edge overlapping rate) between the generated graphs and the testing graphs

to measure the novelty of the generated graphs. 3) Meta-path Ratio Properties : We

measure the preservation of meta-path distribution in two metrics. Firstly, we mea-

sure the meta-path length ratio preservation. Secondly, under different meta-path

lengths, we also measure the distribution of the frequent meta-path patterns.

Quantitative Analysis

We evaluate HGEN’s performance on standard graph statistics against various base-

lines, as shown in Table 2.1. HGEN consistently achieves competitive results across

synthetic and real-world datasets with few exceptions. Key observations include:
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Figure 2.5: The meta-path distribution comparison. 2.5a - 2.5d and 2.5e - 2.5h are
the generated meta-path length distribution along with frequent meta-path patterns
distribution with length 1, 2, 3 for Syn 500 dataset and PubMed dataset, respectively.

1) Node-level similarity : HGEN outperforms in most node-level metrics, showing

at least a 40% improvement in node degree distribution distance. While differences

in Assortativity and Power-law Coefficient are minimal, HGEN effectively captures

the degree distribution across node types by jointly learning meta-path and random

walk distributions. 2) Graph-level similarity : HGEN excels in preserving community

structures, particularly in datasets with rich local communities (e.g., PubMed and

synthetic datasets). It leverages heterogeneous node embeddings to capture higher-

order structures, resulting in superior performance on metrics such as LCC, TC, and

Clustering Coefficient. However, its performance diminishes in graphs with sparse

higher-order structures. 3) Random walk stability : Both HGEN and NetGAN demon-

strate stable performance across datasets compared to one-shot methods (e.g., VGAE,

GraphVAE) and sequential models (GraphRNN). This stability arises from learning

graph distributions via discrete random walks, which are less sensitive to varying

graph characteristics. 4) Baseline limitations : Although VGAE achieves high per-

formance on some metrics, it struggles to generate realistic graphs due to its focus

on node embeddings rather than full graph generation. Similarly, GraphRNN faces

scalability issues as graph size increases, leading to less realistic outputs.
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Graph Novelty and Uniqueness. The results of graph novelty and uniqueness

are reported in the right two columns in Table 2.1. Specifically, HGEN achieves a

generally lower EO rate across all datasets, indicating that HGEN does not purely

memorize the seen heterogeneous walks in the training data. In contrast, GraphRNN

has a higher EO rate, indicating GraphRNN regenerates graphs it saw during train-

ing. In addition, VGAE achieves the lowest EO rate since it fails to generate real-

istic heterogeneous graphs. For Uniqueness, HGEN also exceeds other one-shot and

sequential-based algorithms by an evident margin, which demonstrates the diversity

of the generated graphs.

Preservation of Graph Semantic Properties. To further demonstrate the per-

formance of HGEN, we evaluate the performance of meta-path distribution preserva-

tion with other baselines. Specifically, we measure the meta-path distribution from

two aspects: 1) the overall meta-path length ratio preservation in generated graphs

and 2) frequent meta-path patterns under each length. The results of Syn 500 and

PubMed datasets are illustrated in Figure 2.5. In general, all the methods can ap-

proximately maintain the meta-path length ratio except for VGAE. However, HGEN

can constantly achieve a better performance as shown in Figure 2.5a and 2.5e. 2) As

shown in Figure 2.5b - 2.5d and 2.5f - 2.5h, HGEN can outperform other methods

by at least 10% in preserving the ratio of specific meta-path patterns under each

length, which is expected since HGEN is able to learn and maintain the meta-path

distribution from the observed graphs while others cannot.

Ablation Study

We further conduct ablation studies on the PubMed dataset to evaluate the effect

of different components in HGEN, and the results are exhibited in Table 2.2. The

ablative experiments are conducted based on each of the essential components in
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Figure 2.6: Running time comparison of different models in both synthetic and real-
world datasets. It is clear that GraphVAE is not scalable in generating graphs with
more than 200 nodes. GraphRNN also fails to generate large graphs (with more than
10, 000 nodes). The proposed HGEN exhibits a linear running time growth in terms
of graph size growth.

HGEN-S HGEN-E HGEN-A HGEN Real

LCC 1563.76 824.14 819.32 825.6 948
TC 1453.23 784.34 863.53 1569.3 2114

Clustering Coef. 0.026 0.015 0.016 0.034 0.068
Power Law Coef. 1.649 1.652 1.621 1.634 1.75
Assortativity -0.09 -0.132 -0.131 −0.143 -0.208

Node Degree Dist. 0.0354 0.0388 0.0515 0.0392 N/A

Table 2.2: Ablation Study in PubMed Dataset

our architecture. Specifically, we select a single large heterogeneous walk length

- 8 to replace the heterogeneous walk length 1, 2, and 3 in our model, and the

resulting model is called HGEN-S. We also independently remove the heterogeneous

node embedding to let the generator uniformly sample the next node, and the resulting

model is named HGEN-E. Lastly, we replace the heterogeneous graph assembler with

a probability-based graph assembler, namely HGEN-A.

As shown in Table 2.2, all ablative models perform similarly on node-level met-

rics like Powerlaw Coefficient and Assortativity, as HGEN effectively captures this

information through heterogeneous walk distributions. Key observations include: 1)

HGEN-S : Although it constructs larger sub-graphs due to longer heterogeneous walks,

it fails to improve the capture of heterogeneous structural information. Longer meta-
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paths are often redundant, as they share common sub-parts [154]. Hence, we limit

meta-path lengths to 1, 2, and 3 for flexibility and efficiency. 2) HGEN-E : Remov-

ing heterogeneous node embeddings hampers local graph structure capture. This

is because HGEN relies on neighborhood-encoded information to make node sam-

pling structure-aware. 3) HGEN-A: Replacing the heterogeneous graph assembler

with a probabilistic one degrades performance in preserving node degree distribu-

tions. Probabilistic assemblers uniformly sample edges from generated walks, ignor-

ing meta-paths. In contrast, HGEN leverages meta-paths as fundamental units for

edge sampling, ensuring effective preservation of meta-path distributions (Theorem

1) and maintaining node degree distributions across types.

Running Time Comparison

The results of our running time experiments are shown in Figure 2.6. The running

times on both synthetic and real-world datasets including both training and inference

time are shown with respect to the growth of number of nodes in both synthetic

and real-world datasets. All running times are in log10 scale. As shown in both

figures, random-walk-based generative models (HGEN and NetGAN) have a constant

running time growth in terms of number of nodes, which is especially important when

dealing with large graphs. Even though VGAE is much faster regarding running

time, it is indeed a representation learning framework based on GCN and lacks of the

ability to generate realistic heterogeneous graphs, and the results are also reflected

in Table 2.1. Both GraphRNN and GraphVAE fail to compare with HGEN in model

scalability because their designs require at least O(|V|2) to process the transformed

node sequence and adjacency matrix.
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2.1.7 Conclusion

In this paper, we propose a novel framework - HGEN for heterogeneous graph gener-

ation, which can jointly capture the semantic, structural, and global distributions of

heterogeneous graphs. Our framework consists of a novel heterogeneous walk genera-

tor that can hierarchically generate meta-path instances (namely heterogeneous walk)

and a heterogeneous graph assembler that can construct new graphs by sampling from

the generated heterogeneous walks in a stratified manner. Extensive experiments on

synthetic and real-world datasets demonstrate the advantages of HGEN over existing

deep generative models in terms of preserving both graph statistical and heteroge-

neous specified properties.

2.2 Source Localization for Cross Network Infor-

mation Diffusion

Source localization seeks to identify the origins of information diffusion in networks,

a crucial inverse problem in understanding information propagation. This task has

both practical and theoretical significance, as accurately pinpointing sources can help

mitigate the spread of misinformation by disrupting critical pathways. Early works

[137, 203, 173, 216] employed rule-based methods, which rely on predefined diffusion

patterns. More recently, learning-based approaches [42, 110, 172] utilize deep neural

networks to encode neighborhood and graph topology information, achieving state-

of-the-art performance. These advances highlight the vital role of source localization

in ensuring the integrity of information in digital networks.

Existing source localization techniques focus on single networks, yet many real-

world systems operate as cross-networks. These include cross-community communi-

cations, cross-border financial transactions, and interconnected supply chains. Cross-

networks introduce unique risks, such as misinformation spreading across social me-
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Figure 2.7: Example of misinformation propagation on cross-network between GitHub
and Stack Overflow, where each node in the GitHub network denotes a repository,
and each node in the Stack Overflow represents a discussion thread.

dia platforms or safety issues propagating in supply chains. For example, a malicious

GitHub repository (Figure 2.7) linked to over 40 Stack Overflow threads illustrates the

challenge. Less experienced users may unknowingly adopt risky solutions, potentially

disrupting their systems [73]. Tracing misinformation in cross-networks is difficult, as

propagation often starts in one network (GitHub) and is observed in another (Stack

Overflow), involving multiple rounds of dissemination. This highlights the need for

advanced source localization methods tailored to cross-network environments.

Cross-network source localization involves identifying diffusion sources in a source

network using only the observed diffusion in a target network, a task that remains

underexplored. This problem is particularly challenging due to the network sep-

aration, which renders traditional methods ineffective. Key obstacles include: 1)

Characterizing diffusion source distribution. Understanding the distribution of po-

tential sources is essential for modeling diffusion processes and quantifying uncertain-
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ties [110, 111, 30]. In a cross-network scenario, this requires a conditional probabil-

ity model that considers the structural and dynamical properties of both networks.

However, diverse topologies, node features, and propagation patterns complicate the

learning objective. 2) Capturing dynamic and static node features jointly. Effective

source localization depends on both intrinsic node attributes and their connections.

Incorporating node features such as text descriptions or statistical data results in high-

dimensional, complex distributions. Moreover, the distinct characteristics of nodes

across networks further complicate modeling their diffusion dynamics. 3) Modeling

heterogeneous diffusion patterns. Beyond source distribution, capturing the diverse

propagation patterns in both networks is critical. This includes accounting for cross-

network propagation paths (Figure 2.7), which play a significant role in the diffusion

process.

In this work, we propose the Cross-Network Source Localization (CNSL) method

for locating the diffusion sources from a source network given its diffused observa-

tion from another target network under arbitrary diffusion patterns. Specifically, for

the first challenge, we design a novel framework to approximate the distribution of

diffusion sources by mean-field variational inference. For the second challenge, we

propose a disentangled generative prior to encoding both static and dynamic features

of nodes. For the last challenge, we model the unique diffusion dynamics of each

network separately and integrate the learning process of these information diffusion

models with the approximation of diffusion source distribution. This ensures accurate

reconstruction of diffusion sources considering the specific propagation mechanisms

of each network. We summarize our major contributions of this work as follows:

• Problem. We design a novel formulation of the cross-network source localiza-

tion and propose to leverage deep generative models to characterize the prior

and approximate the distribution of diffusion sources via variational inference.

• Technique. We propose a unified framework to jointly capture 1) both static
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and dynamic node features, and 2) the heterogeneous diffusion patterns of both

networks. The approximation of diffusion sources is fully aware of various node

features and the interplay of cross-network information diffusion patterns.

• Data. Cross-network source localization lacks high-quality data, which is highly

difficult to craft. We collect and curate a real-world dataset that accounts

for the Cross-platform Communication Network, which records the real-world

misinformation propagation from Github to Stack Overflow. We also provide

a simulated cross-network dataset using agent-based simulation to disseminate

misinformation across physical and social networks.

• Experiments. We conduct experiments against state-of-the-art methods de-

signed originally for single-network source localization. Results show substan-

tially improved performance of our method for cross-network source localization.

2.2.1 Related Works

Information Source Localization. Diffusion source localization is defined as in-

ferring the initial diffusion sources given the current diffused observation, which has

attracted many applications, ranging from identifying rumor sources in social net-

works [69] to finding blackout origins in smart grids [146]. Early approaches [137,

215, 216, 173] focused on identifying the single/multiple source of an online disease

under the Susceptible-Infected (SI) or Susceptible-Infected-Recover (SIR) diffusion

patterns with either full or partial observation. Later on, Dong et al. [42] fur-

ther leverage GNN to enhance the prediction accuracy of LPSI. However, existing

diffusion source localization methods cannot well quantify the uncertainty between

different diffusion source candidates, and they usually require searching over the high-

dimensional graph topology and node attributes to detect the sources, both drawbacks

limit their effectiveness and efficiency. Moreover, in the past few years, more methods
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[110, 172, 138, 184] have been proposed to address the dependency of prescribed dif-

fusion models and characterize the latent distribution of diffusion sources, which have

achieved state-of-the-art results. However, their methods still may not generalize to

cross-network source localization due to the unique interconnected structure.

Information Diffusion on Cross Network. The interconnection between cross-

networks allows information to flow seamlessly from one platform to another through

overlapping nodes. However, it is important to note that the patterns of influence and

information propagation differ between various networks and can even vary within the

same network. Recent studies in information diffusion across interconnected networks

have made notable advancements. Earlier works [81, 185, 35, 106] have developed

different frameworks for correct modeling of the information flow within different

network formats, such as wireless networks, social networks, and supply chains. Later

on, many works have been proposed to study different features and applications of

cross-networks, e.g., mitigating cascading failures [161, 52]. However, until today,

there are few works [40, 107] trying to correctly model the information diffusion

pattern in the interconnected network system.

2.2.2 Cross-network Diffusion Source Localization

In this section, the problem formulation is first provided before deriving the overall

objective from the perspective of the divergence-based variational inference. A novel

optimization algorithm is then proposed to infer the seed nodes given the observed

cross-network diffused pattern.

Problem Formulation

Cross-network G = (Gs, Gt) consists of a Source Network Gs = (Vs, Es) and a Target

Network Gt = (Vt, Et). Both Gs and Gt are composed of a set of vertices Vs and Vt
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corresponding to individual users of the network as well as a set of edges Es ⊆ Vs×Vs

and Et ⊆ Vt × Vt denote connecting pairs of users in both networks, respectively. In

addition, fs ∈ RNs×F and ft ∈ RNt×F and denote the static features of both networks

(e.g., associated text embedding, user age, social relations, etc.), where F denotes

the dimension of the node feature, and Nt, Ns denote the number of nodes in each

network, respectively. To connect the cross-network G, there exists a set of bridge

links between Gs and Gt denoted by L = {(vs, vt)|vs ∈ Vs, vt ∈ Vt}, which represent

the propagation paths from Gs to Gt.

The information propagation from Gs to Gt follows one-directional message pass-

ing. More specifically, the propagation initiates from a group of nodes denoted as

xs ∈ {0, 1}Ns in the source network Gs, where each entry has a binary value rep-

resenting whether the node is seed or not. After a certain time, the information

propagates from Gs to Gt and infects a portion of nodes in Gt through the bridge

links L. We use yt ∈ [0, 1]Nt to denote the infection probability of each node in Gt.

Problem 2 (Cross-network diffusion source localization). Given G and the dif-

fused observation of the target network yt, the problem of diffusion source localization

in cross-networks (i.e., the inverse problem of diffusion estimation) requires finding

x̃s ∈ {0, 1}Ns from the source network Gs, such that the empirical loss ∥x̃s − xs∥22 is

minimized, under the constraint that the diffused observation in the target graph yt

could be generated from x̃s through L.

However, reconstructing x̃s from yt is difficult due to the following challenges.

1) The difficulty of characterizing the distribution of seed nodes in the cross-network

scenario. To consider all possibilities of the seed nodes in cross-network source local-

ization, it’s desired to model the distribution of seed nodes p(xs) by characterizing the

conditional probability p(xs|yt). However, learning p(xs|yt) requires jointly consider-

ing the topology structure of the cross-network G as well as the stochastic diffusion

pattern through bridge links L. Existing works cannot be directly adapted due to
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the incapability of considering the complex cross-network scenario. 2) The difficulty

of jointly capturing dynamic and static features of the nodes in the cross-network.

The intrinsic patterns of the seed nodes consist of both dynamic patterns (i.e., the

choice of seed nodes xs) and static patterns (e.g., node features fs). The correlated

factors lead to the high-dimensional and often intractable distribution p(xs), which

makes maximizing the joint likelihood p(xs, yt) to be hard and computationally inef-

ficient. 3) The difficulty of jointly capturing the heterogeneous diffusion patterns of

the cross-network. The underlying diffusion process from xs to yt is not only affected

by numerous factors (e.g., the infectiousness of the misinformation and the immunity

power of the user), but the propagation patterns in the cross-network are inherently

different in different networks.

Latent Distribution Learning of Seed Nodes

To cope with the first challenge of characterizing the distribution of diffusion sources

in the cross-network, we propose to utilize graph topology as well as the diffused ob-

servation to define the conditional probability p(xs|yt). Since the diffused observation

yt is conditioned on both networks G as well as the diffusion source xs, we derive a

conditional probability p(yt|xs,G) · p(xs), where p(xs) is the distribution of infection

sources within Gs. To estimate the optimal diffusion source x̃s, we employ the Max-

imum A Posteriori (MAP) approximation by maximizing the following probability:

x̃s = argmax
xs

p(yt|xs,G) · p(xs) = argmax
xs

p(xs, yt|G).

However, since p(xs) is often intractable and entangles both static and dynamic fea-

tures, we instead leverage deep generative models to characterize the implicit distri-

bution of p(xs).

To tackle the second challenge of jointly considering all static and dynamic node
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features, we propose a disentangled generative model to map the intractable and

potentially high-dimensional p(xs) to latent embeddings in low-dimensional latent

space. Specifically, we aim to learn the conditional distribution p(xs, yt,G|zs, zfs)

of xs given two latent variables zs and zfs. Specifically, zs ∈ Rk1 (k1 ≪ Ns) and

zfs ∈ Rk2 (k2 ≪ Ns) are obtained by an approximate posterior p(zs, zfs|xs, yt,G),

where p(zs, zfs) is the prior distribution of node’s dynamic and static features. Note

that k1 and k2 are the numbers of variables in each group, in order to capture the

different types of semantic factors.

The goal here is to learn the conditional distribution of p(xs) given Z = (zs, zfs),

namely, to maximize the marginal likelihood of the observed cross-network diffusion in

expectation over the distribution of the latent variable set Z as Epθ(Z) [pθ(xs, yt,G|Z)].

For a given observation of the information diffusion in the cross-network, the prior

distribution of the latent representations p(Z) is still intractable to infer. We propose

solving it based on variational inference, where the posterior needs to be approximated

by the distribution qϕ(Z|xs, yt, fs,G). In this way, the goal becomes to minimize the

Kullback–Leibler (KL) divergence between the true prior and the approximate poste-

rior. Moreover, we assume zs and zfs capture different semantic factors. Specifically,

zs is required to capture just the independent dynamic semantic factors of which

nodes are infection sources, and zfs is required to capture the correlated semantic

factors considering both dynamic features and static node features. To encourage

this disentangling property of both posteriors, we introduce a constraint by trying to

match the inferred posterior configurations of the latent factors to the prior p(zs, zfs)

by setting each prior to being an isotropic unit Gaussian N (0, 1), leading to the

constrained optimization problem as:

max
θ,ϕ

Eqϕ(zs,zfs|xs,yt,G) [pθ (xs, yt,G|zs, zfs)] ,

s.t. KL [qϕ(zs, zfs|xs, fs, yt,G)||p(zs, zfs)] < I.
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Figure 2.8: The training pipeline of CNSL contains three steps: 1) qϕ1 and qϕ2 approx-
imate the distribution of p(zs, zfs) in a disentangled manner; 2) the inferred latent
variables zs and zfs are concatenated to reconstruct x̂s; 3) the reconstructed x̂s is
leveraged as initial seed nodes to initiate the cross-network information propagation
and predict expected diffusion ŷt.

Furthermore, assuming p(zs) represents the distribution of dynamic node features and

p(zfs) denotes the distribution of joint node features (entangles with both static and

dynamic features), the constraint term can be decomposed as:

qϕ(zs, zfs|xs, fs, yt,G) = qϕ1(zs|xs, yt,G) · qϕ2(zfs|yt, fs, xs,G)

Then the objective function can be written as:

max
θ,ϕ

Eqϕ(zs,zfs|xs,yt,G) [pθ (xs, yt,G|zs, zfs)] , (2.3)

s.t. KL [qϕ1(zs|xs, yt,G)||p(zs)] < Is, KL [qϕ2(zfs|yt, xs,G)||p(zfs)] < Ifs,

where we decompose I into two separate parts (i.e., Is and Ifs) of the information ca-

pacity to control each group of latent variables so that the variables inside each group

of latent variables are disentangled. In practice, qϕ1(·) and qϕ2(·) are implemented

as two encoders with multi-layer perceptron structure. More details can be found in

Figure 2.8.
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Cross Network Diffusion Model Learning

To address the third challenge, i.e., making the source localization be aware of the

heterogeneous diffusion patterns between networks, locating diffusion origins xs may

not only involve estimating the distribution of seed nodes but the process should

also be determined by correctly modeling the information diffusion across diverse

and interlinked network structures G. In the context of cross-network information

diffusion, the diffused observation yt is determined by the diffusion source xs under

the cross-network G through bridge links L. Therefore, the conditional distribution

pθ(xs, yt, xf ,G|zs, zfs) can further be decoupled as:

log pθ(xs, yt, xf ,G|zs, zfs) = log[pψ(yt|xs,G)] + log[pθ(xs|zs, zfs)],

where pψ(·) models the probability of the infection status yt of nodes in Gt given

seed nodes xs in Gs. Moreover, the second term pθ(xs|zs, zfs) reveals that the latent

variables Z only encodes information from x (i.e., yt⊥Z|xs,G). According to the

assumption, we could also simplify both encoders as qϕ1(zs|xs,G) and qϕ2(zfs|xs, fs,G)

in Eq. (2.3) by removing yt from the input.

Cross-network Information Propagation. Modeling the diffusion from xs to

yt is complex due to multiple factors, such as misinformation’s infectiousness and

the distinct propagation patterns across networks like GitHub and Stack Overflow,

which cater to different user communities. The unknown nature of these diffusion

patterns prevents the use of standard models like Linear Threshold or Independent

Cascade. This complexity underlines the need to decompose and simplify pψ(yt|xs,G)

to analyze the diverse diffusion behaviors in Gs and Gt through a learning approach:

log pψ(yt|xs,G) = log pψ1(ys|xs, Gs) + log pψ2(yt|ys, xt, Gt). (2.4)
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Note that log pψ(yt|xs, Gs, Gt) = log[
∑

xt
pψ1(xt|xs, Gs) · pψ2(yt|xt, Gt)], where xt in-

herited infection probability from ys. In practice, we assume pψ1(xt|xs, Gs) follows

delta distribution, where only the xt is 1 that corresponds to the xs and the rest of

xt’s are 0. This property is also assumed in many works [141] using VAE. Therefore,

log pψ(yt|xs, Gs, Gt) is simplified as Eq. (2.4). In this simplified decomposition, pψ1(·)

characterizes the diffusion pattern of Gs given the seed nodes xs, which is independent

of the information propagation in Gt. ys ∈ [0, 1]Ns records the infection status of all

nodes in the source network Gs. When the diffusion is complete in Gs, the infection

probability is directly transferred to the target network Gt through bridge links L

so that some nodes in Gt have initial infection status (denoted as xt) to initiate the

infection process in Gt. The propagation in Gt is then modeled by pψ2(yt|ys, xt, Gt)

by taking the graph structure Gt and initial seed infection probability xt as inputs.

More details of the derivation are provided in the Appendix.

Monotonic Constraint on Information Diffusion. The information diffusion

on the regular network is often regularized by the monotone increasing property [39,

110]. In this work, we also assume the same monotonic property holds in the cross-

network information diffusion, namely y
(i)
t ⪰ y

(j)
t , ∀ x(i)s ⊇ x

(j)
s . Specifically, selecting

more seed nodes in Gs would result in a generally higher (or at least equal) infec-

tion probability of nodes in Gs according to the property of diminishing returns.

Subsequently, the bridge links would transfer the infection probability from ys to

xt, and similarly, the probability of each node being infected in y
(i)
t (estimated from

x
(i)
t ) should be greater or equal to y

(j)
t (estimated from x

(j)
t ), such that y

(i)
t ⪰ y

(j)
t .

Therefore, owing to the monotonic increasing property of the information diffusion,

we add the constraint λ
∥∥∥max(0, y

(j)
t − y

(i)
t )

∥∥∥2

2
,∀ x(i)s ⊇ x

(j)
s , to Eq. (2.3), where we

transform the inequality constraint into its augmented Lagrangian form to minimize∥∥∥max(0, y
(j)
t − y

(i)
t )

∥∥∥2

2
and λ > 0 denotes regularization hyperparameter.
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Overall Objective for Training. The training procedure of the proposed CNSL

model is coupled with Eq. (2.3), Eq. (2.4), and the monotonic increasing constraint:

Ltrain = max
θ,ϕ1,ϕ2

Eqϕ [pθ(xs, yt, xf ,G|zs, zfs)] , (2.5)

s.t. KL [qϕ1(zs|xs,G)||p(zs)] < Is, KL [qϕ2(zfs|xs, fs,G)||p(zfs)] < Ifs,

y
(i)
t ⪰ y

(j)
t , ∀ x(i)s ⊇ x(j)s ,

= min
θ,ϕ1,ϕ2,ψ1,ψ2

−Eqϕ
[
log pθ(xs|zs, zfs) + log pψ1(ys|xs, Gs) + log pψ2(yt|ys, xt, Gt)

]
,

s.t. KL [qϕ1(zs|xs,G)||p(zs)] < Is, KL [qϕ2(zfs|xs, fs,G)||p(zfs)] < Ifs,∥∥∥max(0, y
(j)
t − y

(i)
t )

∥∥∥2

2
,

where we only need to sample one x
(i)
s and many x

(j)
s ’s (such that x

(i)
s ⊇ x

(j)
s ) as

training samples for each mini-batch. The y
(i)
t and y

(j)
t ’s are estimated by arbitrary

diffusion patterns. For simplicity, we omit the subscript of Eqϕ(zs,zfs|xs,yt,G) as Eqϕ

when the context is clear. The overall framework is summarized in Figure 2.8.

Cross-network Seed Set Inference

Upon training completion, the joint probability p(zs, zfs) is approximated by the pos-

terior qϕ(zs, zfs|xs, fs, yt,G). Both pψ1(·) and pψ2(·) effectively classify the diffusion

patterns across networks. This study introduces a sampling method for x̃s ∼ p(xs)

by marginalizing over p(zs) · p(zfs) to conduct MAP estimation, where p(xs) =∑
zs

∑
zfs
pθ(xs|zs, zfs)p(zs, zfs). However, marginalizing the standard Gaussian prior

p(zs, zfs) necessitates extensive sampling to align the sample distribution with the tar-

get distribution, increasing computational load. Additionally, it is also hard to sample

individual latent variables from the joint distribution of p(zs, zfs). To cope with both

challenges, we consider the density over the inferred latent variables induced by the

approximate posterior inference mechanism, and we propose the following objective

w.r.t. zs to infer x̃s in an optimized manner. Specifically, the inference objective
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function Lpred is written as:

Lpred = max
zs

E [pψ(yt|xs,G) · pθ(xs|zs, zfs)] , (2.6)

s.t. zs ∼ qϕ1(zs|x̂s,G), zfs ∼ qϕ2(zfs|x̂s, fs,G),

= min
zs
−E

[
log pψ(yt|xs,G) + log

[∑
zs

∑
x̂s
pθ(xs|zs, zfs)

]]
s.t. zs ∼ qϕ1(zs|x̂s,G), zfs ∼ qϕ2(zfs|x̂s, fs,G),

where we sample many x̂s from the training set, and obtain equal amount of zs from

qϕ1(·). Note that we optimize zs (dynamic latent variable) only, instead of both zs

and zfs (static-dynamic entangled latent variable), which is rooted in the specific

roles these variables play in the model. zs is targeted for optimization because it

encodes dynamic information crucial for identifying better seed nodes in the context

of information diffusion. This dynamic aspect is mutable and can be optimized to

improve source localization accuracy. On the other hand, zfs entangles both dynamic

and static information, where the static part represents unchangeable node features.

Optimizing zfs would be less efficient because static features, by their nature, cannot

be optimized. The optimization process aims to adjust variables to improve model

performance, but since static features remain constant, attempting to optimize zfs

would not enhance the model’s ability to localize diffusion sources.

Implementation of the Seed Set Inference. We provide implementation details

of the overall inference process here. Specifically, the inference framework first samples

k seed node set x̂s from the training set, and we can take the average value z̄s and

z̄fs from the learned latent distributions by taking k different x̂s as input:

z̄s =
1

k

∑k

i
qϕ1(zs|x̂(i)s ,G), z̄fs =

1

k

∑k

i
qϕ2(zs|x̂(i)s , fs,G). (2.7)
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We concatenate z̄s and z̄fs as input to minimize the inference loss in Eq. 2.6. The

latent variable zs is iteratively optimized according to the inference objective function

to minimize − log pψ(yt|xs,G). In practice, Eq. (2.6) cannot be optimized directly, we

thus provide a practical version of the inference objective function: since the diffused

observation yt fits the Gaussian distribution and the seed set xs fits the Bernoulli

distribution, we can simplify Eq. (2.15) as:

Lpred = min
zs
−

[
log

[∏Ns

i=0
fθ(z

(i)
s , z

(i)
fs )

x
(i)
s (1− fθ(z(i)s , z

(i)
fs )

1−x(i)s
]
+
∥∥ỹt − yt∥∥2

2

]
(2.8)

where the ỹ is given as the optimal influence spread (i.e., ỹt = Nt). In other words,

the inference objective is guided by the discrepancy between the inferred yt and

the ground truth ỹt. We visualize the overall inference procedure in Figure 2.8 (b).

Specifically, we sample z̄fs and z̄s, according to Eq. (2.7), and leverage pθ(·) to decode

x̂s. The predicted x̂s is leveraged to initiate the cross-network diffusion and predict

ŷt. The optimization supervision consists of 1) the mean squared loss between ŷt

and the ground truth yt as well as 2) the probability of node vi being seed node

fθ(z
(i)
s , z

(i)
fs ) ∈ [0, 1].

2.2.3 Experimental Evaluation

This section reports both qualitative and quantitative experiments that are carried

out to test the performance of CNSL and its extensions on a simulated dataset that

simulates the spread of misinformation across a city-level population and a collected

real-world cross-network dataset obtained by crawling two online networking plat-

forms and cross-references between them.
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Real-world Dataset: Cross-Platform Communication Network

We collected real-world data from GitHub and Stack Overflow to form the cross-

platform communication network, where information flows from GitHub to Stack

Overflow since many posts in Stack Overflow have mentioned or discussed GitHub

Repositories when addressing users’ questions. We started by downloading the Stack

Overflow public data dump provided by the Internet Archive. Then, we extracted

all the Stack Overflow posts where their post texts contain a URL to GitHub (i.e.,

439, 753 posts mapping to 439, 753 repositories). We further built the Stack Overflow

network by finding the question posts, answer posts, and related posts of the current

439, 753 posts. This yielded a total of 1, 410, 600 Stack Overflow posts, encompassing

data from 2008 up to 2023.

To obtain the GitHub network, we expanded our initial GitHub network by find-

ing all GitHub repositories that the existing repositories depended upon. We utilized

an open-source tool1, which uses the GitHub GraphQL API to obtain the dependency

information. The resulting GitHub network contains 533, 240 repositories. For our

experiment, we sampled GitHub repositories from the year 2021 and their depen-

dent repositories from the year before 2021 (i.e., 1, 204 nodes and 1, 043 edges). We

then found their corresponding Stack Overflow posts (i.e., 3, 862 nodes and 3, 149

edges). We obtained the ground truth in a pseudo-setting: we randomly sampled

10% of the GitHub nodes as seed nodes, and simulated their diffusion process within

the GitHub network and the Stack Overflow network (i.e., 120 GitHub seed nodes,

354 GitHub infected nodes, 195 Stack Overflow seed nodes, and 482 Stack Overflow

infected nodes).

1https://github.com/edsu/xkcd2347

https://github.com/edsu/xkcd2347
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Simulated Dataset: Agent-Based Geo-Social Information Spread

We leverage an agent-based simulation framework based on realistic Patterns of Life

[84? , 6, 7] to simulate the spread of misinformation across social and physical net-

works. In this simulation, an agent represents a simulated individual who commutes

to their workplace, eats at restaurants, and meets friends and recreational sites. In-

spired by the Theory of Planned Behavior [2] and Maslow’s Hierarchy of Needs [126]

as theories of human behavior, agents are driven by physiological needs to eat and

have shelter, safety needs such as financial stability requiring them to go to work,

and needs for love requiring them to meet friends and build and maintain a social

network. Details of the theories of social science informing this simulation are found

in [219] and details to use this simulation for data generation are described in [5].

We augmented this simulation framework to simulate the spread of misinformation

using a simple Susceptible-Infectious disease model. The simulation is initialized with

15, 000 agents. A small number of n (by default, n = 5) agents are selected randomly

as the sources of misinformation and flagged as “Infectious” and all other agents are

initially flagged as “Susceptible”. Agents can spread misinformation in two ways:

1) through collocation, allowing an agent to spread the misinformation in-person

to other agents located at the same workplace, restaurant, or recreational site, and

2) through the social network, allowing an agent to spread misinformation to their

friends regardless of their location. To allow the generation of large datasets for source

localization, each spreading of misinformation is stopped after five simulation days.

At this time, the following datasets are recorded:

• Ground Truth. The set of n agents that were initially seeded with the misinfor-

mation.

• Misinformation Spread. The list of agents to whom the misinformation has

spread after five days.
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• The Complete Co-location Network. This network captures the agents who meet

each other and thus, may spread misinformation through co-location.

• The Observed Co-location Network. This network is a randomly sampled subset

of agents from the complete co-location network. It represents the agents in the

complete co-location network that are parts of the simulated location tracking.

This network is used to simulate the realistic case of not having access to the

location data of every individual.

• The Complete Social Network. This network records the friend and family

connections of all agents which may infect each other through social contagion.

• The Observed Social Network. This network includes a randomly sampled sub-

set of agents from the complete social network and simulates the social media

environment. This network simulates the realistic case where an observed social

media network may not capture the entire population.

• Cross-Network Links through Identity. Links between the two observed net-

works are defined through identity. Any individual agent in the co-location

network is (trivially) connected to itself in the social network.

Once this data is collected, the misinformation spread status of all agents is set

to “Susceptible” and n new agents are selected as the seed nodes of a new case of

misinformation. This process of creating new cases of misinformation is iterated every

five simulation days to create an unlimited number of realistic datasets of information

spread across the physical and social spaces.

For the dataset used for the following experiments, there are 5, 281 agents and

8, 276 edges in the observed co-location network, and 5, 669 agents and 17, 948 edges

in the observed social network. Each case of misinformation spread yields between 50-

200 agents to which the misinformation spreads after five days. This synthetic dataset
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allows us to capture realistic misinformation spread across both networks. Due to

some agents not being captured in the two networks, this dataset allows us to simulate

the realistic case where misinformation may spread outside of the observed networks.

We provide the code for our agent-based misinformation simulation framework in a

GitHub repository2, which also contains the generated dataset used in this work.

Experiment Setup

Implementation Details. We employ a two-layer MLP for learning node features,

which are concatenated with the seed vector in the subsequent stage before being

input to the encoder qϕ2(·). Both encoders (qϕ1(·), qϕ2(·)) and the decoder pθ(·) utilize

three-layer MLPs with non-linear transformations. We use GNN model architecture

coupled with a two-layer MLP network as the aggregation network with 64 hidden

units for the two propagation models (pψ1(·) and pψ2(·)). The learning rates for

encoder-decoder, pψ1(·), and pψ2(·) are set to 0.0001, 0.005, and 0.01 respectively in a

multi-optimization manner. Additionally, the number of epochs is 15 for all datasets,

with a batch size of 2. The iteration numbers for inference are set to 2 for all datasets.

Comparison Methods. We illustrate the performance of CNSL in various exper-

iments against two sets of methods: 1) Rule-based methods: LPSI [173] predicts

the rumor sources based on the convergent node labels without the requirement of

knowing the underlying information propagation model; OJC [216] aims at locating

sources in networks with partial observations, which has strength in detecting network

sources under the SIR diffusion pattern. 2) Learning-based methods: GCNSI [42]

learns latent node embedding with GCN to identify multiple rumor sources close to

the actual source; IVGD [168] propose a graph residual model to make existing graph

diffusion models invertible; SL-VAE [110] proposed to learn the graph diffusion model

with a generative model to characterize the distribution of diffusion sources. DDMSL

2https://github.com/Siruiruirui/misinformation

https://github.com/Siruiruirui/misinformation
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[187] proposed a diffusion model-based source localization method to recover each

diffusion step iteratively. Note that existing comparison methods are not designed

for cross-network source localization, in order to conduct a fair comparison, we re-

peated each model separately for two networks and learned the two networks. We

used bridge links L to connect these two models.

Evaluation Metrics. Source localization is a classification task so we use two main

metrics to evaluate the performance of our proposed model: 1). F1-Score (F1) and

2). ROC-AUC Curve (AUC), as they are classical metrics for classification tasks.

since most real-world scenarios tend to have an imbalance between the number of dif-

fusion sources and non-source nodes (fewer diffusion sources), we additionally leverage

PR@100 to evaluate the precision of the top-100 prediction returned by models.

Quantitative Analysis

We evaluated the models in different diffusion configurations. For the cross-platform

communication data, the underlying diffusions are LT (Table 2.3) and IC (Table 2.4)

for the first network which was followed by other three diffusion patterns (LT, IC, and

SIS) for the second network in each case. For the Geo-Social information spread data

(Table 2.5), the underlying diffusion pattern has been explained in Section 2.2.3. For

that dataset, we used two different simulations (A and B) and also used two different

types of seed selections. Here D0 considers the initial sources of misinformation as

seed nodes and D1 considers the initial sources of misinformation and the infected

agents on the first day as seed nodes.

Performance in the cross-platform communication network. Table 2.3 shows

that CNSL excels others across all metrics and diffusion patterns. In the first network

with LT diffusion pattern (LT2LT, LT2IC, LT2SIS), CNSL achieves the highest recall

(RE) in all scenarios, with scores of 0.996, 0.997, and 0.997, respectively, indicating its
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LT2LT LT2IC LT2SIS

Category Method PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC

Rule-based
LPSI 0.156 0.841 0.263 0.583 0.141 0.849 0.242 0.533 0.079 0.942 0.127 0.497
OJC 0.104 0.035 0.052 0.500 0.116 0.036 0.054 0.502 0.113 0.036 0.053 0.501

Learning
based

GCNSI 0.103 0.858 0.184 0.636 0.103 0.866 0.184 0.622 0.114 0.801 0.199 0.635
IVGD 0.228 0.948 0.368 0.139 0.227 0.874 0.359 0.138 0.123 0.985 0.215 0.240
SL-VAE 0.249 0.947 0.395 0.703 0.192 0.847 0.313 0.689 0.242 0.931 0.385 0.612
DDMSL 0.251 0.923 0.394 0.815 0.309 0.845 0.454 0.732 0.320 0.842 0.464 0.772

Our Method
CNSL 0.332 0.996 0.498 0.888 0.332 0.997 0.498 0.889 0.332 0.997 0.498 0.890
CNSL-W/O 0.103 0.922 0.185 0.520 0.103 0.930 0.186 0.511 0.103 0.917 0.186 0.517

Table 2.3: Performance comparison for cross-platform communication network under
LT diffusion pattern for the first network with LT, IC, and SIS diffusion pattern for
the second network.

IC2LT IC2IC IC2SIS

Category Method PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC

Rule-based
LPSI 0.124 0.868 0.217 0.489 0.215 0.657 0.324 0.562 0.129 0.906 0.226 0.522
OJC 0.117 0.032 0.050 0.503 0.097 0.027 0.042 0.499 0.115 0.032 0.050 0.502

Learning
based

GCNSI 0.142 0.638 0.233 0.623 0.170 0.476 0.251 0.627 0.152 0.602 0.243 0.630
IVGD 0.120 0.979 0.210 0.733 0.548 0.391 0.083 0.439 0.115 0.825 0.195 0.733
SL-VAE 0.254 0.881 0.394 0.719 0.195 0.909 0.321 0.703 0.185 0.829 0.302 0.592
DDMSL 0.286 0.827 0.425 0.818 0.318 0.886 0.468 0.753 0.270 0.833 0.408 0.689

Our Method
CNSL 0.333 0.990 0.498 0.887 0.333 0.998 0.499 0.891 0.332 0.997 0.498 0.888
CNSL-W/O 0.103 0.922 0.186 0.514 0.103 0.935 0.185 0.515 0.103 0.928 0.185 0.516

Table 2.4: Performance comparison for cross-platform communication network under
IC diffusion pattern for first network with LT, IC, and SIS diffusion pattern for the
second network.

superior ability to identify all relevant instances in the dataset. Additionally, CNSL

also exhibits the best precision (PR) in LT2LT and LT2IC scenarios, and competi-

tive precision in the LT2SIS scenario. The F1 scores, which balance precision and

recall, are also highest for CNSL, peaking at 0.498 in both LT2LT and LT2IC pat-

terns, demonstrating the method’s overall efficiency and accuracy. The AUC scores

for CNSL are robust, ranking highest in LT2LT and LT2SIS scenarios, signifying ex-

cellent model performance across various threshold settings. In the Table 2.4 first

network with IC diffusion pattern (IC2LT, IC2IC, IC2SIS), CNSL’s performance re-

mains impressive, maintaining the highest recall scores of 0.990, 0.998, and 0.997,

respectively. CNSL also boasts the highest F1 scores in all scenarios, with a notable

0.499 in IC2IC, suggesting a balanced performance between precision and recall. The

AUC scores for CNSL are again the highest, with 0.887 in IC2LT and 0.891 in IC2IC,

indicating its strong discriminative ability. Overall, CNSL demonstrates considerable
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G2S-A-D0 G2S-B-D0 G2S-A-D1 G2S-B-D1

Category Method PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC

Rule-based
LPSI 0.147 0.982 0.256 0.512 0.165 0.954 0.281 0.609 0.152 0.903 0.260 0.475 0.224 0.973 0.364 0.578
OJC 0.053 0.018 0.022 0.496 0.125 0.039 0.051 0.507 0.063 0.040 0.043 0.497 0.115 0.058 0.071 0.505

Learning
based

GCNSI 0.123 1.000 0.216 0.744 0.117 1.000 0.207 0.351 0.183 1.000 0.300 0.250 0.221 1.000 0.341 0.193
IVGD 0.139 1.000 0.244 0.502 0.138 1.000 0.242 0.500 0.218 1.000 0.352 0.490 0.266 1.000 0.409 0.500
SL-VAE 0.364 0.863 0.512 0.707 0.289 0.788 0.423 0.611 0.289 0.754 0.418 0.664 0.425 0.893 0.576 0.725

Our Method
CNSL 0.481 0.816 0.605 0.931 0.452 0.885 0.598 0.933 0.499 0.779 0.609 0.894 0.539 0.987 0.698 0.901
CNSL-W/O S 0.122 1.000 0.219 0.503 0.117 1.000 0.2101 0.488 0.183 0.998 0.309 0.499 0.221 0.999 0.362 0.501

Table 2.5: Performance comparison for Geo-Social Information Spread Data (G2S) for
two types (A, B) of simulation. HereD0 considers the initial sources of misinformation
as seed nodes and D1 considers the initial sources of misinformation and the infected
agents at the first day as seed nodes.

strength in reliably identifying relevant instances across different diffusion patterns

and networks, while maintaining high precision and excellent area under the ROC.

Performance in geo-social information spread data. In Table 2.5, the perfor-

mance of various methods on Geo-Social Information Spread Data (G2S) is evaluated

for two simulation types, A and B, with two different seeding strategies, D0 and

D1. Our method, CNSL, exhibits strong performance across all scenarios. In the

G2S-A-D0 simulation, CNSL achieves a high precision (PR) of 0.481, showing its ef-

fectiveness in correctly identifying misinformation spread. It also has the highest F1

score of 0.605 and an AUC of 0.931, indicating a balanced precision-recall trade-off

and excellent model discrimination ability, respectively. For the G2S-B-D0 simula-

tion, CNSL’s precision (0.452) and F1 score (0.598) are notable, and the AUC of

0.933 is the highest compared to other methods, suggesting CNSL’s consistency and

reliability. In the G2S-A-D1 scenario, CNSL maintains a high recall (RE) of 0.779

and an impressive AUC of 0.894, which signifies its capacity to identify true misin-

formation cases effectively when the seeding includes infected agents from the first

day. Remarkably, in the G2S-B-D1 scenario, CNSL stands out with the highest pre-

cision (0.539) and F1 score (0.698), and it achieves an outstanding AUC of 0.901.

This demonstrates CNSL’s superior ability to differentiate between misinformation

and non-misinformation spread, especially when the initial condition includes both

sources of misinformation and infected agents. The recall of 0.987 in this scenario
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Figure 2.9: Runtime Comparison with learning based methods for dataset a) LT2LT,
b) LT2IC c) LT2SIS, d) IC2LT, e) IC2IC, f) IC2SIS, g) G2S-A-D0, h) G2S-A-D1, i)
G2S-B-D0, j) G2S-B-D1

also indicates that CNSL can identify nearly all instances of misinformation spread.

Overall, the CNSL method outperforms both rule and learning-based methods in most

metrics across different simulations and seeding strategies in geo-social networks.

Runtime Analysis. Figure 2.9 presents a runtime comparison among four learning-

based methods: CNSL, SL-VAE, GCNSI, and IVGD across ten different diffusion

configurations (a to j). CNSL, which is our method, shows a competitive inference

time in all datasets when compared to the SL-VAE. In cross-platform communica-

tion network datasets (a) LT2LT, b) LT2IC, c) LT2SIS, d) IC2LT, e) IC2IC, and

f) IC2SIS)), CNSL demonstrates an inference time that is neither the fastest nor

the slowest, indicating a balanced computational demand for these more complex

scenarios. However, in datasets geo-social information spread data (g) G2S-A-D0,

h)G2S-A-D1, i)G2S-B-D0, and j)G2S-B-D1), CNSL’s runtime is noticeably lower,

suggesting that while CNSL is highly effective in identifying misinformation spread.

Overall, CNSL shows a strength in providing a good balance between accuracy and

computational efficiency. While there are scenarios where CNSL’s runtime is higher,

these may correlate with more complex network conditions where deeper analysis

is necessary, which CNSL seems to handle without compromising the quality. This
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Figure 2.10: Precision@100: the precision rate of the top 100 nodes being predicted
as seed nodes. The comparison is conducted between our method: CNSL and the
current state-of-the-art: SL-VAE.

makes CNSL a robust method for practical applications where runtime is a critical

factor alongside precision and accuracy.

Precision analysis at top 100 nodes predicted by models. Figure 2.10 illus-

trates the precision at top 100 (PR@100) comparison between CNSL and the state-

of-the-art SL-VAE across various diffusion patterns. PR@100 measures the precision

rate of the top 100 nodes predicted as seed nodes, indicating how accurately each

method can identify the most influential nodes in the spread of information or misin-

formation. CNSL shows a strong performance in this metric, outperforming SL-VAE

in all diffusion patterns. CNSL exhibits higher PR@100 rates, indicating that it is

more precise in identifying the key seed nodes. This precision is crucial in scenarios

where it is important to quickly and accurately pinpoint the main drivers of informa-

tion spread within a network. Notably, CNSL’s precision suggests that its algorithm

is particularly adept at handling complex diffusion patterns where the identification

of influential nodes is more challenging. The strength of CNSL, as highlighted by

Figure 2.10, lies in its ability to rank the most relevant nodes higher than SL-VAE

consistently. The precision at the top 100 nodes is essential for practical applica-

tions where interventions need to be targeted and efficient, such as in the case of

misinformation containment or viral marketing.
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2.2.4 Conclusion

In conclusion, information diffusion source localization on cross-networks requires lo-

cating the origins of information diffusion within and across networks. We propose a

Cross-Network Source Localization (CNSL) framework in this work, which stands as

a pivotal advancement in addressing the complexities introduced by cross-network en-

vironments, where traditional source localization methods fall short. By ingeniously

approximating the distribution of diffusion sources through mean-field variational

inference, encoding both static and dynamic features of nodes via a disentangled

generative prior, and uniquely modeling the diffusion dynamics of interconnected

networks, CNSL offers a comprehensive solution to the problem. Extensive experi-

ments, including quantitative analysis, case studies, and runtime analysis, have been

conducted to verify the effectiveness of the framework across different real-world and

synthetic cross-networks. The significance of this work lies not only in its method-

ological innovation but also in its practical implications for safeguarding the integrity

and reliability of information in an increasingly interconnected digital world.

2.3 Deep Graph Representation Learning and Op-

timization for Influence Maximization

As one of the fundamental research problems in network analysis, the objective of

Influence Maximization (IM) is to find a set of seed nodes that maximizes the spread

of influence in a social network. IM has been extensively studied in recent years

due to its large commercial value. For example, consider the case of viral market-

ing [25] for promoting a commercial product, where a company may wish to spread

the adoption of a new product from some initially selected users, the selected initial

users are expected to spread the information about the product on their respective

social networks. IM has become the cornerstone in many critical applications such as
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network monitoring [170], misinformation containment [195], and friend recommen-

dation [198].

As a typical type of combinatorial optimization problem, retrieving a (near) opti-

mal seed set to maximize the influence in a network is challenging due to the stochastic

nature of information diffusion and the hardness of the problem. Traditional (non-

learning-based) methods for IM [90, 80, 158, 159, 132, 144] have made great progress

in the last decade, and Li et al. [95] have even achieved exact solutions under specific

diffusion models. The commonality of traditional methods is the explicit requirement

of the information diffusion model as the model input. However, the real-world in-

formation diffusion process is complex and cannot be simply modeled by prescribed

diffusion models. With the recent development of machine/deep learning, it is natural

to consider a learning-based way to characterize the underlying diffusion process.

While great progress has been made in the field, current efforts on learning-based

IM solutions are still in the infancy stage due to fundamental obstacles as follows.

1). The difficulty of efficiently optimizing the objective function. Learning-based IM

methods tend to solve the discrete problem in continuous space by mostly leverag-

ing deep network representations [204, 88] and deep reinforcement learning [160, 93].

Even though they could attain a competitive performance with traditional methods,

their scalability and execution efficiency are problematic due to (a) the need to it-

eratively update all node embeddings at each action and (b) the #P-hardness of

computing the influence spread [103]. 2). The difficulty of automatically identifying

and modeling the actual diffusion process. To maximize the influence spread in a

network, the underlying information diffusion pattern is an imperative part as it de-

termines the overall information propagation outcome. However, both traditional and

learning-based methods cannot characterize the underlying diffusion process without

heuristics. To work around this, both traditional and current learning-based methods

have been leveraging pre-defined diffusion models (e.g., Linear Threshold (LT) and
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Independent Cascade (IC)) as the input to solve the combinatorial optimization prob-

lem. Although they could work well only for the process following their heuristics, the

real-world network process is way more complex than the heuristics and largely un-

known. 3). the difficulty of adapting solutions to various node-centrality-constrained

IM problems. There are a lot of variants of IM that relate to node centrality, e.g., the

constraint on the number of seed nodes, the constraint on the total degree of seed

nodes, etc. Current learning-based IM solutions do not have a well-defined paradigm

for solving different node-centrality-constrained IM problems, which poses another

challenge to their solution adaptivity.

To address the above challenges, we propose a novel framework - DeepIM, to solve

the IM problem by developing a novel strategy that embeds the initial discrete opti-

mization domain into a larger continuous space. Remarkably, we propose to learn the

latent representation of seed sets by retaining their expressiveness and directly opti-

mizing in the continuous space to reduce the problem’s hardness. We further design

a learning-based diffusion model to characterize the underlying diffusion dynamics in

an end-to-end manner. Moreover, we develop a generic seed set inference framework

to directly optimize and generate set embeddings under a uniform budget constraint.

Finally, we summarize our contributions as follows:

• Problem. We formulate the learning-based IM problem as embedding the

initial discrete optimization domain into continuous space for easing the opti-

mization and identify its unique challenges arising from real applications.

• Framework. We propose modeling the representation of the seed set in a latent

space, and the representation is jointly trained with the model that learns the

underlying graph diffusion process in an end-to-end manner.

• Adaptivity. We propose a novel constrained optimization objective function

to infer the optimal seed set by leveraging deep graph embeddings, which can
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be applied under arbitrary node-centrality-related constraints.

• Evaluation. We conduct extensive experiments over four real-world datasets

to demonstrate the performance of the proposed method. Compared with other

state-of-the-art in various application scenarios, DeepIM achieves the best re-

sults in finding a seed set to maximize the influence.

2.3.1 Related Work

Learning-based Influence Maximization

influence Maximization (IM), initially framed as a combinatorial optimization prob-

lem by Kempe et al. [80], has spurred significant research and applications over the

past decade. Traditional IM methods fall into three categories: simulation-based,

proxy-based, and heuristic-based. These approaches have achieved efficient and ac-

curate solutions under specific diffusion models. While Du et al. [45], Vaswani et al.

[164] explored learning influence from cascade data, they still relied on predefined

diffusion models, such as the Coverage function. For a comprehensive overview, see

recent surveys [97, 13].

Learning-based methods address traditional IM limitations, particularly the lack

of generalization. Early works [101, 3] integrated reinforcement learning (RL) with

IM, inspiring numerous RL-based approaches. Current state-of-the-art methods [92,

160, 125, 93, 23] typically learn latent embeddings of nodes or networks, treating node

embeddings as agent states to select seed nodes, with marginal influence gain as the

reward. Beyond RL, some methods [88, 79, 135] use graph neural networks to encode

social influence into node embeddings for node selection. However, learning-based

IM methods face challenges in handling diverse diffusion patterns, ensuring solution

quality, and achieving scalability comparable to traditional methods.
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Graph Neural Network

Graph Neural Networks (GNNs) [178] are a class of deep learning methods designed

to perform inference on data described by graphs. The general paradigm of GNNs al-

ternates between node feature transformation and neighbor nodes’ information aggre-

gation. For a K-layer GNN, a node aggregates information within K-hop neighbors.

Specifically, the k-th layer transformation is:

ak = Ak(hk−1; θk), hk = Ck(ak; θk),∀1 ≤ k ≤ K. (2.9)

where ak is an aggregated feature, and hk is the k-th layer node feature. The flexibil-

ity of aggregation function A(·) and combine function C(·) functions induces different

GNN models [165, 85, 183]. The high-level representations of nodes or graphs are uti-

lized for different tasks. In this work, we leverage GNN to characterize the underlying

diffusion pattern and construct an end-to-end model for estimating the influence.

2.3.2 Problem Formulation

Given a graph G = {V,E}, the problem of IM aims to maximize the number of

influenced nodes in G by selecting an optimal seed node set x ⊆ V . Particularly,

the evaluation of IM relies on an influence diffusion model parametrized by θ: y =

M(x, G; θ), where θ can be the set of infection probability on each node if M(·) is

an independent cascade model or the set of parameters in the aggregation/combine

functions if M(·) is GNN-based. We denote x ∈ {0, 1}|V | as the vector representation

of the source node set, where the i-th element xi = 1, xi ∈ x if vi ∈ x and xi = 0

otherwise. The output y ∈ R+ measures the total number of infected nodes. Based

on the formalization of the influence spread, the IM problem is defined as follows:

Definition 1 (Influence Maximization). The generic IM problem requires selecting
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Figure 2.11: DeepIM consists of two parts. a) we leverage the autoencoder to learn
and compress the latent distribution of seed node sets into lower dimension p(z). b)
the seed set inference scheme iteratively optimizes the proposed objective function by
updating the latent variable z to maximize the influence spread.

a set of k users from V as the seed set to maximize the influence spread:

x̃ = argmax|x|≤kM(x, G; θ), (2.10)

where x̃ is the optimal seed node set to produce maximal influence spread in G.

2.3.3 DeepIM

In this section, we propose the DeepIM framework to ease the computational overhead

of the learning-based IM methods and automatically identify the underlying diffusion

patterns. The framework can be divided into two phases: the learning phase is

leveraged to characterize the probability of the observed seed set and model the

underlying information propagation distribution, and the inference phase is employed

to optimize the selection of seeds in continuous space to maximize the influence spread.

2.3.4 Learning Representation of Seed Set

To build an effective and efficient objective function, we propose to characterize the

probability of the seed node set p(x) over x given the graph G since learning p(x)

can help depict the seed set’s underlying nature. However, learning such probability

is not a trivial task because different nodes are inter-connected within each seed
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set and highly correlated based on the topology of G. These connections make the

relationship between nodes very complex and harder to decipher than other similar

combinatorial problems.

Learning Probability over Seed Nodes. Instead of directly modeling the highly-

intractable probability p(x), we introduce an unobserved latent variable z to represent

x and define a conditional distribution p(x|z) to quantify the likelihood. These la-

tent variables have much lower dimensions than the observed sub-optimal seed sets,

which can yield a compressed representation. Particularly, we marginalize over the

latent variables to obtain p(x): p(x) =
∫
p(x, z) dz =

∫
p(x|z)p(z) dz. The posterior

likelihood p(z|x) = p(x|z)p(z)/p(x) allows us to infer the latent variables given the

observed seed sets. In this work, we adopt autoencoder to generatively infer the

posterior, where both encoder fϕ (parameterized by ϕ) and decoder fψ (parameter-

ized by ψ) are used to characterize the likelihood of both posterior and conditional

distribution, respectively. We aim to maximize the joint likelihood:

maxϕ,ψ E
[
pψ(x|z) · pϕ(z|x)

]
. (2.11)

Learning the End-to-end Diffusion Model. Once we have learned the latent

distribution of seed nodes p(x), the next step is to update the seed node set x in

order to increase the marginal gain of the influence spread. Current learning-based

IM solutions still assume the computation of the influence spread (i.e., M(x, G; θ))

relies on prescribed mathematical models. However, real-world information diffusion

is complicated, and it is not easy to determine the most suitable diffusion model in

practice. A chosen diffusion model may be misspecified compared to real-world data

and lead to large model bias. In addition, the diffusion network structure can be also

hidden from us, so we need to learn not only the parameters in the diffusion model

but also the diffusion network structure [45].
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In this work, we design a GNN-based diffusion model M(·) for accurate modeling

the relationship between x and y with considering the overall graph topology. The

output of a GNN-based diffusion function M(·) is composed of two functions M =

gr ◦ gu(x, G; θ): 1) τ = gu(x, G; θ), where gu(·) is a GNN-based aggregation function

and τ ∈ [0, 1]|V | is an intermediate output after aggregating multi-hop neighborhood

information. τ denotes the infection probability of each node; and 2) y = gr(τ ; ξ), y ∈

R+ denotes the final information spread, where gr(·) is a normalization function (e.g.,

l-1 norm) and ξ is the threshold of transforming the probability into discrete value.

The GNN-based M(·) is visualized in Figure 2.11 (a).

Definition 2 (Score Monotonicity and Infection Monotonicity). Given a

GNN-based diffusion model M(·) : 2|V | → R+ and any two subsets S, T ⊆ V , M(·) is

score monotonic if xS ⪯ xT (i.e. S ⊆ T ) implies M(xS, G; θ) ≤ M(xT , G; θ), where

xS,xT ∈ {0, 1}|V | are vector representations of seed sets S and T , respectively. M(·)

is infection monotonic if xS ⪯ xT (i.e. S ⊆ T ) implies τS ⪯ τT , where τS, τT ∈ [0, 1]|V |

denote the infection probability of seed sets S and T , respectively.

Monotonicity is a natural property for us in modeling the overall diffusion net-

work structure. A monotonic diffusion model indicates the spread of influence would

continue to increase. Intuitively, if we select a larger community x′ as the seed set,

the larger x′ would intrinsically infect no fewer nodes in the whole network than a

smaller seed set x if x ⪯ x′. Ensuring the property of both monotonicities allows

us to better characterize the underlying diffusion network structure and mimic the

real-world diffusion pattern [41]. Hence, we add constraints to make the GNN-based

diffusion model M(x, G; θ) monotonic during the influence spread estimation.

Theorem 2.3.1 (Monotonicity of GNNModels). For any GNN-basedM(x, G; θ) =

gr ◦ gu(x, G; θ), where gu(x, G; θ) is formulated by Eq. (2.9), M is score and infection

monotonic if Ak and Ck, k ∈ [1, K], are non-decreasing in Eq. (2.9), and gr is also

non-decreasing.
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We further illustrate that the well-known Graph ATtention network (GAT) can

be score and infection monotonic under the constraint we claimed in Theorem 2.3.1.

Corollary 2.3.2 (Montonicity of GAT). M is score and infection monotonic when

gu is GAT if θk ≥ 0 in Eq. (2.9) and gr is also non-decreasing.

The proof of Theorem 2.3.1 and Corollary 2.3.2 are provided in Appendix. Ac-

cording to Theorem 2.3.1 and Corollary 2.3.2, the GNN-based M(x, G; θ) has the

theoretical guarantee to retain monotonicity, and the objective of learning the GNN-

based M(x, G; θ) is given as maximizing the following probability with a constraint:

maxθ E
[
pθ(y|x, G)

]
, s.t. θ ≥ 0. (2.12)

Knowledge Distillation for Diffusion Estimation Efficiency. We have learnt

the deep representation of seed nodes and an end-to-end diffusion model with a mono-

tonicity guarantee. However, we empirically find the calculation of influence spread

M(x, G; θ) involves three steps: 1) decoding a node vector x from the learned pos-

terior p(x|z); and 2) executing the GNN-based diffusion model M(x, G; θ) under the

graph G; and 3) normalizing the probabilistic output τ from M(x, G; θ) to actual in-

fluence spread y. Even though the prediction results are accurate, the computational

overhead is still a burden when dealing with million-scale networks. Inspired by re-

cent research on knowledge distillation, we propose to leverage a small yet powerful

student model supervised by M(x, G; θ) to attain efficiency. Specifically, the student

model Ms(z;λ) is a lightweight neural network parametrized by λ that directly takes

the latent variable z sampled from the learned p(z) as input. Ms(z;λ) directly re-

turns the estimated influence spread ys as output. The distillation loss between the

y =M(x, G; θ) (teacher model) and ys =Ms(z;λ) can be as simple as ∥y − ys∥22.
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End-to-end Learning Objective. Finally, in order to bridge the representation

learning and the learning of the diffusion model, we propose a unified objective func-

tion in an end-to-end manner by putting together Eq. (2.11) and (2.12) as:

Ltrain = maxθ,λ,ψ,ϕE
[
pθ(y|x, G) · pλ(ys|z) · pψ(x|z) · pϕ(z|x)

]
, s.t. θ ≥ 0. (2.13)

However, optimizing the expectation of joint probabilities could be computationally

difficult. We instead derive the negative log term of Eq. (2.13) and derive its lower

bound as the final learning objective according to Jensen’s inequality:

Ltrain = minθ,λ,ψ,ϕ− log
[
E
[
pθ(y|x, G) · pλ(ys|z) · pψ(x|z) · pϕ(z|x)

]]
, s.t. θ ≥ 0.

≥ minθ,λ,ψ,ϕ E
[
− log

[
pθ(y|x, G) · pλ(ys|z) · pψ(x|z) · (pϕ(z|x)

]]
, s.t. θ ≥ 0.

= minθ,λ,ψ,ϕ E
[
− log

[
pθ(y|x, G)

]
− log

[
pλ(ys|z)

]
− log

[
pψ(x|z) · (pϕ(z|x)

]]
, s.t. θ ≥ 0.

(2.14)

The overall objective consists of minimizing the empirical error − log[pθ(y|x, G)] of

the prediction of y with the reconstructed x as input and minimizing the reconstruc-

tion error. In addition, we minimize the distillation loss − log[pλ(ys|z)] to train the

student model along with the overall training process. The overall framework for the

training of end-to-end diffusion models and the autoencoder for learning the seed set

distribution is visualized in Figure 2.11 (a).

2.3.5 Seed Node Set Inference

To infer the high-influential seed node set in the testing domain, we leverage the la-

tent distribution p(x) of the seed node set and the end-to-end diffusion model M(·)

jointly from Eq. (2.14). Firstly, if the autoencoder is well trained and can retain both

continuity (i.e., two close points in the latent space should not give two completely
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different contents once decoded) and completeness (i.e., for a chosen distribution, a

point sampled from the latent space should give “meaningful” content once decoded),

the autoencoder in Eq. (2.11) can generate contents by exploiting the latent feature

space p(z) learned from all the examples it was trained from, i.e., p(x). Therefore, we

propose to alternatively search the optimal seed node set x̃ in the lower-dimensional

and less-noisy latent space p(z). The following corollary demonstrates it is equiva-

lent to estimating the influence spread with the latent variable z rather than high-

dimensional x if the autoencoder retains both continuity and completeness.

Corollary 2.3.3 (Influence Estimation Consistency). For any

M(fψ(z
(i)), G; θ) > M(fψ(z

(j)), G; θ), we have M(x(i), G; θ) > M(x(j), G; θ).

The proof of Corollary 2.3.3 can be found in Appendix. According to the corol-

lary, we could find the optimal seed set that can generate the maximal influence by

optimizing z in the following joint probability: maxz E
[
pθ(y|x, G) · pψ(x|z)

]
.

Adaptation to Different IM Variants with Node Centrality Constraints.

Since the introduction of IM in [80], IM has been studied under various budget-

constrained settings on nodes in recent years. To enhance the adaptivity of DeepIM,

we design a unified constraint that allows inferring seed sets under various budgets

on individual nodes. Specifically, the objective Lpred is given as:

Lpred = max
z

E
[
pθ(y|x, G) · pψ(x|z)

]
, s.t.

∑|V |

i=0
F(vi, G) · xi ≤ k, (2.15)

where
∑|V |

i=0F(vi, G)·xi is a generalized budget constraint applied on individual nodes,

and k is the actual budget. For the vanilla IM problem that only requires selecting a

given number of seed nodes,
∑|V |

i=0F(vi, G) · xi can be derived as ∥x · 1∥1, where the

1 ∈ {1}N×1 is an all-one vector indicating the price of selecting each node are the same.

In addition, for node degree constrained IM problems [90, 133],
∑|V |

i=0F(vi, G) ·xi can
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Algorithm 1: DeepIM Prediction Framework

Input: Lpred; decoder function fψ(·); regularization function Φ(·); number of
training instances N ; the number of iteration η; learning rate α.

1: z = 1/N
∑N

i=0 fψ(x) {x sampled from training set.}
2: for i = 0, ..., η do
3: x← fψ(z) {seed set x.}
4: x← Φ(x) {Regularize the seed set x into a valid region in terms of different

constraints.}
5: z ← z − α · ∇Lpred(x, z)
6: end for
7: x̃← Φ(fψ(z)) {Output the final x̃ by decoding the final optimized z.}

be derived as ∥x · A∥1, where A ∈ {0, 1}N×N is the adjacency matrix of the network

G, and ∥x · Ai∥1 ≤ k represents the l1-norm of the total seed node degree is bounded

by a budget k. The budget constraint F(vi, G) · xi ≤ k can also be easily designed,

combined, and adapted to solve the IM variants with non-uniform prices on nodes.

Implementation Details of the Seed Set Inference. We visualize our inference

procedure in Figure 2.11 (b). Specifically, the inference framework first samples a

latent variable z from the learned latent distribution p(z). The latent variable z is

iteratively optimized according to the inference objective function Eq. (2.15) to attain

a larger marginal gain (influence spread). Note that the learning-based diffusion

model pθ(y|x, G) can be switched between the student diffusion model Ms(z;λ) and

the GNN-based diffusion model M(x, G; θ) to achieve either efficiency or efficacy. In

addition, the constrained objective function Eq. (2.15) cannot be computed directly

so we provide a practical version of the inference objective function: since the diffused

observation y fits the Gaussian distribution and the seed set x fits the Bernoulli

distribution, we can simplify Eq. (2.15) as:

Lpred =min
z

[
− log

[∏|V |

i=0
fψ(zi)

xi(1− fψ(zi)1−xi
]

+
∥∥ỹ − y∥∥2

2

]
s.t.

∑|V |

i=0
F(vi, G) · xi ≤ k, (2.16)



66

where the ỹ is given as the optimal influence spread (i.e., ỹ = |V |), and the full

derivation of the above equation is provided in Appendix. Furthermore, we utilize the

Projected Gradient Descent and propose a regularization function Φ(x) to keep the

predicted seed set x in a valid region in terms of different constraints. For example,

Φ(x) can be defined as selecting k nodes with the highest probabilities when the

price of selecting each node is equal in Eq. (2.15). Φ(x) can also be defined as cost-

efficiently selecting the top-k nodes from x/c(x), where c(x) denotes the budget on

one node (e.g., node degree). Finally, The optimization procedure is summarized in

Algorithm 1. Specifically, we first sample an initial latent variable z on Line 1. From

Line 2 - 6, we iteratively solve the optimization problem proposed in Eq. (2.15) via

gradient descent optimizer (e.g., Adam) while regularizing the predicted seed set in a

valid region with Φ(·). Figure 2.11 (b) illustrates the overall process of the inference

objective learning. The derivation details of both Eq. (2.14) and (2.16) are provided

in the Appendix.

2.3.6 Experiment

In this section, we compare the performance of our proposed DeepIM framework

across six real networks in maximizing the influence under various settings, following

a case study to qualitatively demonstrate the performance of DeepIM.

Experiment Setup

Our primary purpose is to evaluate the expected influence spread as defined in Eq.

(2.10) under various IM application scenarios. Since DeepIM can be easily adapted to

different diffusion patterns, we choose two representative models that are commonly

used in the IM problem, i.e., LT and IC models.
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Digg Weibo
Power
Grid

Network
Science

Cora-ML Jazz Synthetic

Nodes 279,613 2,251,166 4,941 1,565 2,810 198 50,000
Edges 1,170,689 225,877,808 6,594 13,532 7,981 2,742 250,000

Table 2.6: The Overview of Dataset

Data. The proposed DeepIM is compared with other approaches over six real-world

datasets, including Cora-ML, Network Science, Power Grid, Jazz, Digg, and Weibo.

We also adopt a synthetic dataset that is a random graph with 50, 000 nodes generated

by Erdos-Renyi algorithm [46]. The statistics of the data are shown in Table 2.6. We

randomly sample seed node set x, and the seed size is proportional to |V | of each

network. We then use IC, LT, and SIS models to compute the final influence spread

y. The {(x, y)} set then serves as the training set of our algorithm.

Comparison Method.

In addition to comparing our model’s performance between the GNN-based diffusion

model M(x,G; θ) (denoted as DeepIM) and the student diffusion model Ms(z;λ)

(denoted as DeepIMs), we also adopt four sets of comparison methods, all of which are

outlined as follows. Traditional IM : 1) Greedy [80], 2) IMM [159], 3) OPIM-C [157],

and 4) SubSIM [57]. Learning-based IM : 1) IMINFECTOR [135], 2) PIANO [93], and

3) ToupleGDD [23]. Online IM : OIM [157]. Budget-constraint IM : CELF [90]. Other

than the four sets of baselines, we also show the performance of our student model

DeepIMs (i.e., DeepIM coupled with the simplified student diffusion model Ms(·)).

Quantitative Analysis

We evaluate the performance of DeepIM in maximizing the influence against other

approaches under various IM application schemes. Each model selects 1%, 5%, 10%,

and 20% nodes in each dataset as seed nodes, and we allow each diffusion model

to simulate until the diffusion process stops and record the average influence spread
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Cora-ML Network Science Power Grid Jazz Synthetic Digg Weibo

Methods 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

Greedy 9.2 25.3 37.5 50.0 4.8 16.3 26.5 44.3 2.7 8.4 29.6 49.8 3.9 18.1 32.7 40.1 8.5 23.1 32.5 44.7 6.8 17.8 31.7 48.2 8.3 21.6 34.1 49.2
IMM 8.1 26.2 37.3 50.2 5.2 16.8 27.0 45.7 4.3 17.4 31.5 51.1 2.6 20.1 31.4 42.8 9.2 26.2 36.3 51.6 7.4 18.4 32.8 49.6 9.5 23.8 36.4 50.5
OPIM 13.4 26.9 37.4 50.9 6.6 19.4 28.9 48.6 5.7 17.7 29.7 50.1 2.4 20.1 34.4 46.8 9.6 25.3 36.6 51.7 7.6 18.5 32.9 48.9 9.7 23.7 36.6 50.3
SubSIM 10.1 25.7 36.8 51.1 4.8 15.4 27.9 44.8 4.6 19.2 31.7 50.2 3.6 18.8 37.6 44.7 9.5 26.7 36.5 51.5 7.5 18.9 33.3 49.4 9.3 23.1 36.5 50.6

OIM 8.9 27.6 38.0 51.3 4.2 16.7 26.5 48.2 5.7 17.5 31.9 50.8 2.0 18.5 36.3 42.2 9.6 26.2 36.7 51.3 7.8 18.2 33.1 49.6 - - - -

IMINFECTOR 9.6 26.8 37.7 50.6 5.4 17.9 27.8 47.6 5.4 18.2 31.6 50.9 3.6 19.7 37.5 45.9 9.1 26.2 36.1 51.5 7.9 18.6 33.5 49.8 9.4 23.5 36.9 50.3
PIANO 9.8 25.2 37.4 51.1 4.7 16.3 27.1 47.2 5.3 18.1 31.7 50.2 2.2 19.2 36.6 43.2 9.1 26.4 36.2 51.6 - - - - - - - -

ToupleGDD 10.6 27.5 38.5 51.5 6.3 17.8 28.3 50.5 5.4 19.3 31.6 51.3 3.3 20.4 37.2 45.7 9.5 26.8 37.1 51.4 - - - - - - - -

DeepIMs 13.6 27.7 38.5 51.8 6.9 19.1 29.3 50.5 5.9 20.2 31.7 51.5 3.8 21.4 38.9 47.1 10.2 26.8 37.5 51.8 7.9 18.8 33.7 50.3 10.1 24.7 36.8 50.8
DeepIM 14.1 28.1 39.6 52.4 7.8 20.9 31.5 51.2 6.3 21.0 32.5 52.4 4.9 23.3 41.5 49.9 11.6 27.4 38.7 52.1 8.4 19.3 34.2 51.3 11.2 26.5 37.9 51.8

Table 2.7: Performance over comparison methods under IC diffusion pattern. −
indicates the model experiences an out-of-memory error during the execution of the
dataset. (Best is highlighted with bold.)
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Figure 2.12: The total infected nodes in the y-axis under the constraint of the budget
with the node size growth (x-axis: 1%, 5%, 10%, and 20%). Figure 2.12a - 2.12e and
Figure 2.12f - 2.12j are evaluated under the IC and LT model, respectively.

of 10 rounds. We report the percentage of final infected nodes (i.e., the number of

infected nodes/the total number of nodes).

IM under IC Model. We evaluate the performance of DeepIM against baseline

methods under the IC diffusion model. As shown in Table 2.7, DeepIM consistently

outperforms other methods across all datasets. Traditional methods such as IMM,

OPIM, and SubSIM, which leverage reserve-set sampling and approximation tech-

niques, produce similar results but rely on different heuristics for efficiency, failing

to capture the true distribution of seed sets. OIM performs better than traditional

methods by iteratively updating edge weights but is specifically tailored for the IC

model, limiting its real-world applicability. Learning-based methods (IMINFECTOR,

PIANO, ToupleGDD) generally outperform traditional ones due to their superior gen-
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10,000 20,000 30,000 50,000 50,000 (Training)

IMINFECTOR 3.478s 7.842s 12.376s 16.492s 4753.67s
PIANO 5.948s 10.532s 16.575s 28.437s 14732.63s
ToupleGDD 10.476s 19.583 32.792s 58.985s –

DeepIMs 0.312s 0.616s 0.847s 1.275s 503.12s
DeepIM 1.402s 2.798s 5.124s 12.882s 1244.56s

Table 2.8: The average inference runtime (in seconds) with regard to the increase of
node size and the average training time. We select 10% of nodes as the seeds.

eralization but face scalability issues, rendering them impractical for billion-scale net-

works like Digg and Weibo. In contrast, DeepIM offers a robust approach by learning

the diffusion model end-to-end and searching for high-influence nodes in latent space,

addressing both scalability and diffusion dynamics. Moreover, DeepIMs introduces a

lightweight variant, retaining competitive performance with improved efficiency over

other learning-based methods.

IM with Budget Constraint. Finally, we compare the quality of the seed sets

generated by DeepIM and CELF under the IC and LT model with the budget con-

straint, and such a budget is explicitly defined as the node degree in this paper. As

can be seen from Figure 2.12, our proposed method generally performs better than

CELF across all networks of different sizes, and the margins are more evident under

the LT model (Figure 2.12f - 2.12j). In addition, compared to CELF, the growths

of influence spread in DeepIM have fewer fluctuations across all datasets, which also

demonstrates the stability of DeepIM because of its capability of identifying the latent

distribution seed sets while considering the budget constraint.

Scalability Analysis

We record the runtime of the seed set inference about the increase in node size against

other learning-based IM solutions. As can be seen in Table 2.8, DeepIM demonstrates
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near-linear growth of runtime as the graph size increases. In addition, it achieves

a generally shorter inference time (on average 20% faster inference time than the

second-fast IMINFECTOR) compared to other learning-based methods. In addition,

our DeepIMs coupled with a lightweight end-to-end diffusion model can greatly reduce

the computational cost of estimating the expected influence spread and achieves even

90% improvement in the inference time on average than our DeepIM model.

2.3.7 Conclusion

In this paper, we propose a novel framework to tackle the IM problem in a more robust

and generalized way than existing learning-based IM methods. Particularly, to char-

acterize the complex nature of the seed set, we propose to character the probability of

the seed set and directly search for a more optimal seed set in continuous space. Fur-

thermore, to solve the challenge of modeling the underlying diffusion pattern, we offer

two different learning-based diffusion models to characterize the diversified diffusion

dynamics with efficiency and efficacy guarantee. Finally, we propose a novel objective

function that can be coupled with multiple constraints for seed node set inference,

which can adapt to different IM application schemes. Extensive experiments and

case studies on both synthetic and real-world datasets demonstrate the advantages

of DeepIM over existing state-of-the-art methods to maximize the influence spread.
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Chapter 3

Integrating Structured Knowledge

and Quantifying Uncertainty in

Natural Language Understanding

Natural language understanding is essential for the development of intelligent AI

systems capable of meaningful human interaction. However, significant challenges

persist in enabling these systems to effectively integrate structured knowledge and

accurately quantify uncertainty in their predictions. This thesis addresses these chal-

lenges through two key studies.

Firstly, we explore the task of open-ended commonsense reasoning, which involves

answering commonsense questions without predefined answer options. This task is

particularly challenging due to the vast search space of potential answers and the

necessity for implicit multi-hop reasoning across diverse pieces of knowledge. Tra-

ditional question-answering methods and retrieval-based approaches often struggle

under these conditions. To overcome these limitations, we propose a novel method

that leverages pre-trained language models to iteratively retrieve reasoning paths from

external knowledge bases without requiring task-specific supervision. By constructing
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these reasoning paths, our approach effectively narrows the search space and enhances

reasoning capabilities, leading to significant improvements over state-of-the-art meth-

ods on commonsense reasoning benchmarks.

Secondly, we investigate the complexities of predictive uncertainty in the context

of in-context learning—a feature of large language models (LLMs) that allows them

to perform tasks based on a few examples provided in the input prompt. While in-

context learning has expanded the applicability of LLMs, it raises concerns about the

trustworthiness of their responses, especially due to the potential for generating hallu-

cinations. Our research examines two primary sources of uncertainty in these models:

aleatoric uncertainty, arising from variability in the input demonstrations, and epis-

temic uncertainty, stemming from the model’s inherent limitations and configurations.

We introduce a novel formulation and estimation method to quantify both types of

uncertainty, providing an unsupervised, plug-and-play solution to better understand

and mitigate risks associated with LLM predictions in in-context learning scenarios.

By integrating structured knowledge and quantifying uncertainty, this thesis ad-

vances the field of natural language understanding, enhancing both the reasoning

capabilities and reliability of AI systems in handling complex language tasks.

3.1 Open-ended Commonsense Reasoning with Un-

restricted Answer Scope

Current research on commonsense reasoning conventionally formulates the problem

into a multiple-choice question answering (QA) format, where the best answer is ex-

pected to be chosen from a list of candidates for the given commonsense question.

However, there are many practical and real-world scenarios where a small list of an-

swer candidates or an answer scope (i.e., a relatively large set of concepts where

the correct answer exists) are missing or not even provided (e.g., arbitrary questions
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 Question Context: What gives fish more speed? 
 Transformed Prompt:  [MASK] gives fish more speed. 

 T5-3b: In fact, they are the fastest of all   
 living creatures on our planet.

 RoBERTa: water

Predicted
Answers

 A. more gills, B. scale, C. more water 
 D. less exercise, E. running, F. body 

(a)

(b)

Encoder

Question
Context Retrieval 

Agent
Document 1

Document 2
...

 Labeling Cost? Training Cost? Domain-specific Question? 

No Answer 
 Candidates?

Figure 3.1: Current approaches can only partially solve the open-ended commonsense
reasoning with unrestricted answer scope.

asked in the search engine), which requires the intelligent system to understand the

commonsense question rather than picking a correct answer from a pre-defined pool.

In this study, we focus on the open-ended commonsense reasoning, where we

answer commonsense questions with two constraints: i.e., without regulating an

answer scope and without a pre-defined answer candidates list. Open-ended common-

sense reasoning is inherently challenging due to its core obstacle: the unrestricted

answer scope would result in an extremely large search space, where the model can-

not retrieve relevant answers effectively and efficiently.

Two approaches can be adapted to partially solve the open-ended commonsense

reasoning (i.e., solving only one constraint). On the one hand, PLMs have been

demonstrated to excel in various NLP tasks by using prompts. However, as shown

in Figure 3.1 (a), both RoBERTa-large [120] and T5-3b [78] may not provide satis-

fying answers to the commonsense question since they can only leverage their own

corpus to fill the mask in prompts. Without providing answer candidates, PLMs may

have a limited capacity to obtain and accurately predict the answer, which requires

structured reasoning. Even though lots of methods [99, 197, 209] have emerged to
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incorporate external knowledge bases and PLMs to perform joint reasoning, their

methods still require a small set of answer candidates, which is not applicable in the

open-ended scenario.

Researchers have developed various knowledge-augmented retrieval methods to

resolve the necessity of a few answer candidates in the open-ended QA problem, and

their general inference scheme is visualized in Figure 3.1 (b). Specifically, instead of

regulating a small set of answer candidates, knowledge-augmented retrieval methods

[122, 15, 100] have designed an answer scope that directly contains the correct an-

swer, and they leverage learning-based ranking algorithms to select the best answer.

Although the form of the answer scope can vary, including a large set of conceptual

entities and a set of question-related documents, building such an answer scope is

still a resource-consuming and ad-hoc process. Moreover, well-trained retrievers are

dependent on specific answer scopes, which are less applicable in real-world applica-

tions. For example, it’s impossible to provide a relevant document set when answering

commonsense questions during a conversation with a chatbot.

In this work, we present the external KnowlEdge-Enhanced Prompting method

(KEEP) to achieve open-ended commonsense reasoning without pre-defining an an-

swer candidate set and an answer scope. Firstly, to eliminate the requirement of

answer candidates, KEEP leverages an external knowledge base (e.g., ConceptNet)

as the answer searching space and iteratively extracts multi-hop reasoning paths rel-

evant to the question. To avoid searching exhaustively over the whole knowledge

base, we leverage PLMs to formulate the overall search criteria. The key insight is

PLMs have certain reasoning abilities through their large-scale model parameters,

which can be utilized to provide implicit knowledge in determining whether or not

to keep expanding the reasoning paths or adopt the entity in the path as the final

answer. Therefore, without restricting specific answer scopes and direct supervision

of the reasoning process, KEEP can be applied in most real-world scenarios requiring
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commonsense reasoning. To further enhance the reasoning ability of the PLM, we

propose to leverage task-agnostic reasoning paths extracted directly from the external

knowledge base as training instances to finetune the PLM.

We summarize our main contributions as follows.

• We formulate the novel open-ended commonsense reasoning problem.

The open-ended commonsense reasoning is formulated as a multi-hop reasoning

task iteratively conducted on an external knowledge graph.

• We provide explanations along with the prediction results. We leverage

the implicit knowledge stored in PLMs to guide the overall searching/reasoning

process on Knowledge Graphs, and the retrieved reasoning paths serve as addi-

tional explanations to justify the answer choice.

• We empirically demonstrate the performance of our method against

other methods. Our proposed method excels other comparison methods in

multiple metrics under the open-ended setting. Ablation studies and various

case studies further prove the effectiveness of our method.

3.1.1 Related works

Neural Commonsense Reasoning. Combining PLMs and external knowledge for

reasoning has recently gained lots of attention [26, 31]. State-of-the-art methods have

been invented to inject commonsense knowledge into language models, either by pre-

training on knowledge bases [122, 20], finetuning the model on the test domain [15],

or leveraging structured knowledge base (e.g., ConceptNet) [197, 209, 33] so that

they can infer with additional retrieved knowledge. However, none of these works

except for LLMs [115] can be trivially adapted to solve the open-ended commonsense

reasoning since they require substantial training instances for pre-training/finetuning

or a list of pre-existing answer candidates designed for the question.
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Open-ended Commonsense Reasoning. To date, a few attempts are trying

to solve the open-ended commonsense reasoning. Gerber et al. [51] and Roemmele

et al. [142] have first formulated the open-ended commonsense reasoning problem

and leveraged the statistical natural language processing techniques. However, their

performance is rather limited, and they may only provide a series of knowledge state-

ments instead of providing a plausible answer. With the development of deep lan-

guage models, a number of conversational and Mask Language Models (MLMs) (e.g.,

GPT-3 [18] and RoBERTa [120]) can also perform the task by leveraging prompt

tuning and learning. However, even the powerful GPT-3 may not provide satisfying

answers in the zero-shot setting by only relying on its own corpus. In addition, our

work is also related to the work of open-ended commonsense reasoning [100], which

formulated open-ended commonsense reasoning as a concept ranking process. Their

approach still entails a training procedure on a given document set that is related

to the commonsense question, which deviates from the main purpose of open-ended

commonsense reasoning: lack of pre-defined answer candidates and finetuning data.

Explanation Generation for Commonsense Reasoning. Other than predict-

ing the correct answer, it is also important to explore explicit reasoning steps behind

the answer selection. Other than works that require direct supervision to predict ex-

planation [136], Bosselut et al. [17] proposed to leverage knowledge graphs to acquire

reasoning paths as the explanation in an unsupervised way. However, this approach

requires pre-defined answers to guide the reasoning, which is not applicable in open-

ended commonsense reasoning. The other line of works [149, 68, 119, 114] have also

been utilizing model-generated text as the clarification of the commonsense ques-

tion and empirically demonstrating the performance can be boosted by augmenting

the query with knowledge statements. However, their models still require answer

candidates as the model input. Additionally, purely relying on the language model
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Knowledge Graph

 Question Context: 
  What do people aim to do at work?  
   People aim to [MASK] at work. 

Work Jobs
requireswork_at

People Office

work_at
People Office Finish_Jobs

related_to

Figure 3.2: Example of the open-ended commonsense reasoning: the model takes the
question as input and returns supporting reasoning paths (i.e., knowledge statements)
with the best answer.

still lacks the model transparency, and the generated knowledge statement cannot be

empirically served as the answer explanation [119].

3.1.2 Proposed Method

In this section, we first introduce the problem formulation, and then discuss the

detailed framework of the proposed method, which can be divided into three compo-

nents: 1) entity extraction and linking, 2) local knowledge graph expansion, and 3)

training strategy and answer prediction.

Problem Formulation

We aim to solve open-ended commonsense reasoning questions by jointly using knowl-

edge from a PLM and a structured knowledge graph G. The knowledge graph (KG)

G = (V,E) (e.g., ConceptNet1) is a multi-relational heterogeneous graph [108, 112].

V is the set of entity nodes, E ⊆ V ×R× V is the set of edges that connect nodes in

V , where R represents a set of relation types (e.g., locates at or requires). Specifically,

given an open-ended commonsense reasoning question q without providing answer

candidates and regulating an answer scope, the target of this work is to determine 1)

a local KG Gq ∈ G contains relevant information of q; 2) a set of reasoning paths

k = {k1, k2, ..., km} extracted from Gq; and 3) an entity â extracted from k that is pre-

1https://conceptnet.io/
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𝑞=“What do people aim 
to do at work?”

1. Concept Extraction and Mapping

people

work

aim{‘people’, ‘work’, ‘aim’}

Question Concepts𝐜𝒒

Initial 
Entities

2. Knowledge Graph Expansion with Iterative Reasoning

First-hop 
Expansion

at_location

succeed

0.0

1.0

work on new and 
challenge problems

related_to
office

capable_of

Second-hop 
Expansion

Invest money 
or energymotivated_byrelated_to

finish job

learn

at_location

learn from 
othersrelated_torequires

3. Knowledge Integration and Prediction
𝐜𝒌 = {“work on new and challenge problems”,
“finish jobs”,
“learn from others”,
“invest money or energy”, …}

𝒌 = {“People is capable of work on new and 
challenge problems”,

“work is related to office, office is at the 
location of finish jobs”,

“work requires learn, learn is related to 
learn from others”,

“aim is related to succeed, succeed is 
motivated by invest money or energy”}

Figure 3.3: The framework of the proposed method consists of 1) concept extraction
and entity linking; 2) local knowledge graph expansion with iterative reasoning steps,
and 3) knowledge integration and final answer prediction.

cise to answer the question q. For example, in Figure 3.2, to answer a commonsense

question ”What do people aim to do at work?”, we aim at first extracting all relevant

reasoning paths from the external KG that can provide us with logical information

to answer the question. Among all the paths, we select the most precise one (i.e.,

people → office → finish jobs) and extract the answer â = finish jobs such that the

following joint likelihood can be maximized.

P (â,k|q,Gq) = P (k|q,Gq) · P (â|k) (3.1)

Challenges. However, maximizing the joint likelihood in Equation (3.1) is challeng-

ing due to two obstacles. First, retrieving the question-relevant reasoning paths k (i.e.,

knowledge statements) is difficult since we cannot build a local KG between question

entities and answer candidates under the open-ended setting as [197, 209, 99, 121] do.

Moreover, without regulating a pre-defined answer scope as Lin et al. [100] does, the

search space would be the whole knowledge graph. Exhaustively expanding a multi-

hop neighborhood that is relevant to the question on the knowledge graph would

cause severe scalability issues.

Next, to solve both challenges, we discuss how to initiate the local KG and itera-

tively reason over it to find all plausible knowledge statements and the most convinc-

ing answer. We demonstrate the overall framework in Figure 3.3.
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Local Graph Construction and Expansion

Knowledge Graph Entity Linking. Conceptual knowledge graphs (e.g., Con-

ceptNet) enable a variety of useful context-oriented reasoning tasks over real-world

texts, which provides us with the most suitable structured knowledge in open-ended

commonsense reasoning. To reason over a given commonsense context using knowl-

edge from both PLM and G, the first step of the framework is to extract the set

of critical entities cq = {c(1)q , ..., c
(i)
q , ...} from the question q that have the surjective

mapping to a node set Vq ∈ V in the KG. Since q is often presented in the form of

non-canonicalized text and contains fixed phrases, we follow the prior work [14] to

map informative entities cq from q to conjunct concept entities Vq in KG by leveraging

the latent representation of the query context and relational information stored in G.

Reasoning Over Local Knowledge Graph. To imitate the human reasoning

process, we aim to retrieve reasoning paths within L hops from G to form the local

knowledge subgraph Gq that has the highest coverage to the question concepts cq.

Ideally, each path in Gq can be regarded as a reasoning chain that helps to locate the

most precise answer and its explanation to the question q. However, expanding L-hop

subgraph Gq from cq is computationally prohibited. Unlike other works [197, 99] that

build Gq between the question q and all answer candidates, the open-ended common-

sense reasoning problem does not provide any directions (i.e., answer candidates) or

limited answer scope. The typical node size of a 3-hop local KG with |cq| = 3 could

easily reach 1, 000 on ConceptNet, and many nodes are irrelevant under the current

question context.

Reasoning Path Pruning. In order to make the process of reasoning path ex-

pansion scalable, we incorporate the implicit knowledge in PLMs to prune irrever-

ent paths. Specifically, we pair the question q with the text of node v along with
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(people, relatedto, work)

(work, atlocation, office)

(office, relatedto, finish jobs)

people
work

office finish_jobs

𝑞=“What do people aim to do at work?”

(𝑣! , 𝑟!" , 𝑣")

Relation Groups Merged Relations Relation Text

antonym/distinctfrom antonym is the antonym of

atlocation/locatednear atlocation is at location of

relatedto/similarto/synonym relatedto is related to

Example: 𝑊=“What do people aim to do at work? 
<office>, because <work is related to office>.”

Figure 3.4: Knowledge statement transformation and cloze-based prompt construc-
tion.

the reasoning-path-transformed knowledge statement to form a cloze-based prompt

W = [q; vj; (vi, rij, vj)] in order to turn the local graph expansion problem into an

explicit reasoning procedure by directly answering the question with its derived rea-

soning path. For example, in Figure 3.4, the prompt is formatted as What do people

aim to do at work? <answer node>, because <reasoning path>. We leverage a

pre-defined template to transform the triplet (vi, rij, vj) into natural language. For

instance, the triplet (work, antonym, unemployment) can be translated to work is

the antonym of unemployment as illustrated in Figure 3.4. Note that a KG typically

contains many edge types that have similar meanings (e.g., both antonym and dis-

tinct from have the same meaning antonym); therefore, we merge similar edge types

into a unified template and illustrate a few examples of the templates in Figure 3.4.

To evaluate whether we keep the reasoning path, we propose leveraging the PLM to

score the relevance of each reasoning path given the context of the question. Formally,

suppose the prompt W consists of N tokens W = {ω1, ..., ωn−1, ωn, ωn+1, ..., ωN}, the

commonsense score ϕl(W ) of the logical sentence W composed at l-th hop expansion

is defined as:

ϕl(W ) :=
N∑
n=1

log
(
pθ(ωn|W\n)

)
/N, (3.2)
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Question Context: What home entertainment equipment requires cable? 
 A. radio_shack, B. substation, C. cabinet, D. television, E. desk 

Entertainment

Equipment

Cable

Question Entities Correct
Answer Entity

Television

Taping a TV
show

related to

Watching
TV

causes

Intermediate Entities

requires

uses

is a type of; is at; is required for, ...

is required for

Extracted Reasoning Paths: 
 1. Entertainment causes watching TV, and watching TV requires Television. 
 2. Cable is a type of Television. 
 3. Cable is required for Television. 
 4. Equipment is required for Taping a TV show, and Taping a TV show          
       relates to Television. 

Figure 3.5: Training Corpus Generation. For each commonsense question in the
training set, we discover all the reasoning paths between entities in the question and
the correct answer entity in ConceptNet. All the reasoning paths are transformed
into sentences by templates and thus serve as the finetuning corpus of our model.

where theW\n indicates replacing the token ωn to the [MASK], and the denominator

N reduces the influence of the sentence length on the score prediction. Intuitively,

log(pθ(ωn|W\n)) can be interpreted as how probable a word ωn given the context. For

example, by filling blue and red into the masked logical statement W\n = “The sky

is [MASK]”, blue should have a higher score than red.

As we iteratively expand Gq, each ϕl(W ) scores a unique reasoning path at a

particular l ∈ [1, L] depth in the graph. As marked in Figure 3.3, a higher score

ϕl(W ) indicates the node vj should be kept for the next (l + 1) hop expansion.

Training Strategy and Answer Prediction

Training Strategy. The proposed framework is able to answer open-ended com-

monsense questions with any off-the-shelf language models and the ConceptNet. How-

ever, we empirically find the performance of the off-the-shelf PLM is rather limited

(i.e., commonsense score ϕl(·) is less distinguishable between different prompts) when

dealing with long-range reasoning paths (e.g., L ≥ 2). In order to further enhance the
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PLM’s reasoning capability, we propose to finetune PLMs on the knowledge examples

constructed from ConceptNet. Specifically, we aim to enhance the pθ’s reasoning ca-

pability by correctly identifying the knowledge triplets on ConceptNet. As depicted

in Figure 3.5, given a commonsense question q = “What home entertainment equip-

ment requires cable?” and its correct answer ã = “television”, we identify reasoning

paths [(v1, r1, v2), ..., (vL−1, rL−1, vL)] on G from each entity c
(i)
q in cq to ã. Note that

there may exist multiple paths c
(i)
q to ã; e.g., “Cable is a type of Television” and “Ca-

ble is required for Television”. Each reasoning path is then transformed as natural

language sentences with templates as illustrated in the table of Figure 3.4. We follow

the standard masked language modeling task to finetune the model. By randomly

masking a small portion (i.e., 15%) of tokens in each sentence, we aim to let the PLM

comprehend the latent logic behind each retrieved path by learning to fill masks.

Answer Prediction. After we obtained the subgraph Gq consisting of all reasoning

paths k within L-hop with a high commonsense score, each path ki ∈ k can be

regarded as an individual supporting knowledge explanation to an answer ai.

log pθ(ai|ki) ∝ ϕL =
∑L

l=1
ϕl,

where the ϕL denotes the final score for each answer ai within L-hop and can be

interpreted as approximating the likelihood of answer ai given a singular reasoning

path {c→ v1 → · · · → a}. To improve efficiency, we utilize beam search to only keep

high-confidence reasoning paths. We can thus pick the answer â and its reasoning

path k̂ with the highest score ϕL as the final answer and supporting knowledge.

3.1.3 Experiment

We leverage RoBERTa-large [120] as our base PLM. We empirically verify the per-

formance of the proposed method against other methods on commonsense reasoning
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benchmark datasets under the open-ended setting. Due to the space limit, more

experiments, case studies, and implementation details can be found in Appendix B.1.

Experiment Setting

Dataset. We evaluate our method on two commonsense reasoning benchmarks. 1)

CommonsenseQA (CSQA): Talmor et al. [156] that contains 1, 140 test cases. 2)

QASC : Khot et al. [83] that contains 917 test cases. We only keep the question and

discard the attached multiple-choice answers.

Comparison Methods. Since open-ended commonsense reasoning with unrestricted

answer scope is a novel setting, we have no direct opponents to compete. All the QA

models either require pre-defined answer candidates or a specific answer scope, which

CANNOT be applied in the real open-ended scenario. In this work, we compare our

model against the following baselines. 1) RoBERTa-large [120] is an MLM that is

trained with dynamic masking, a larger batch size, and a larger vocabulary size. 2)

DeBERTa-v3-large [62] improves the BERT and RoBERTa models using disentangled

attention and enhanced mask decoder. 3) RelBERT [163] is a finetuned model based

on RoBERTa, which particularly focuses on improving the relation embedding and

leverages relational triplets extracted from ConceptNet as training corpus. 4) T5-3b

[78] is an encoder-decoder-based language model pre-trained on a multi-task mixture

of unsupervised and supervised tasks. We use its 3b version that contains 3 billion

parameters. 5) UnifiedQA [82] is a unified pre-trained language model specifically

for generative question-answering tasks, which is based on T5-large. 6) GPT-3 [18]

is one of the largest language models with 175 billion parameters, which is powerful

and excels other methods in multiple NLP tasks. We use all language models in the

zero-shot setting to follow the open-ended application scenario.
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Method
CSQA QASC

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Masked Language Model
DeBERTa-v3-large 0.273 0.426 0.607 0.254 0.554 0.618
RoBERTa-large 0.275 0.477 0.682 0.294 0.523 0.578
RelBERT 0.302 0.567 0.698 0.362 0.574 0.601

Generative Language Model
T5-3b 0.426 0.471 0.501 0.422 0.546 0.572
UnifiedQA 0.395 0.439 0.517 0.379 0.513 0.602
GPT-3 0.476 0.654 0.769 0.452 0.573 0.749

Ours
KEEP (w/o finetuning) 0.385 0.615 0.776 0.467 0.742 0.821
KEEP 0.523 0.714 0.798 0.489 0.732 0.829

Table 3.1: Top-1, 3, and 5 prediction accuracy made by human annotators for each
model. (The higher the better)

Evaluation Criteria. Since we do not have ground truth to evaluate the prediction

correctness, we generate answer candidates for each commonsense question and work

with human annotators to indicate whether there exists a precise answer that could

answer the given question. For baselines with MLMs: RoBERTa, DeBERTa, and

RelBERT, we design prompts that allow each model to fill the mask with top-N

answer choices. For baselines with generative language models, T5-3b, UnifiedQA,

and GPT-3, they are prompted to generate direct answers (within 20 tokens). In

addition to human judgment, we also incorporate the commonsense score (Equation

(3.2)) to evaluate the perplexity of the answer choice. Specifically, we choose the

best answer from all the candidates generated by each model and concatenate the

answer to the original question. Following the way of evaluating the commonsense

score of the sentence in Zhou et al. [214], We use GPT2-large [139] and LLaMA2-70B

[162] as the base model to calculate the score since GPT2-large is not included in

our comparison methods. Intuitively, a PLM should assign higher probabilities to

answers that are semantically and syntactically correct to the question.

Results

Qualitative Analysis. Table 3.1 summarizes the Top-N accuracy results. For

each approach, the test results are obtained by evaluating if there is a precise answer
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Method
GPT-2 LLaMA-2-70B

CSQA QASC CSQA QASC
DeBERTa-large 12.498 15.528 94.391 62.497
RoBERTa-large 8.589 10.788 91.467 59.582
RelBERT 9.327 8.543 77.813 54.284
T5-3b 9.152 9.314 76.789 56.759
UnifiedQA 8.573 8.439 58.929 45.621
GPT-3 6.527 7.528 43.325 33.569
KEEP 6.139 7.692 47.472 37.793
Ground Truth 4.844 5.327 34.675 29.579

Table 3.2: The commonsense score of each model, which is calculated by GPT-2
and LLaMA-2 through concatenating each question and the most suitable answer
generated from each model. (The lower the better)

in the Top-1, 3, and 5 generated answers. As shown in the table, our proposed

method excels both MLMs and generative language models by an evident margin

(achieved approximately 9%, 20%, and 15% improvement than the second-best on

Top-1, 3, and 5 accuracy on both datasets, respectively). Additionally, We report

several observations from the table to explain the results: 1) PLMs do not generalize

well on unseen entities. Without relying on pre-defined answer candidates, PLMs do

not make satisfied predictions of reasoning-related prompts. Especially for MLMs like

DeBERTa and RoBERTa, most of the correct answers in the reasoning questions are

not even encountered during pre-training due to their heavy reliance on memorization

in the pre-training process. 2) PLMs are becoming a promising alternative to external

knowledge bases. As we can see from the table, generative PLMs (i.e., T5, UnifiedQA,

and GPT-3) generally perform well on the Top-1 accuracy on both datasets, which

indicates signs of capturing relational knowledge in a zero-shot setting reasonably

well compared to our proposed method. However, their performances do not show

evident improvements if we can choose from Top-3 and 5 candidates. Even though

MLMs can achieve improvements at each level, their performance still cannot be

compared to ours since standard PLMs lack knowledge awareness without accessing

external knowledge. 3) Commonsense reasoning ability is not fully determined by
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Example of Invalid Reasoning Path (Links wrong entities from
question to the correct answer): 
Question: Where is a business restaurant likely to be located? 
Answer: Big City 
Generated Reasoning Path: Business is located at big city. 

Example of Valid but Not Helpful Reasoning Path (Links correct
entities from the question but not helpful): 
Question: Johnny sat on a bench and relaxed after doing a lot of work on
his hobby. Where is he? 
Answer: Terrace 
Generated Reasoning Path: The synonym of the bench is terrace. 

Figure 3.6: The Percentage of Valid Reasoning Paths in the Correct Prediction.
There are 910 correct predictions in the CSQA dataset, and 809 of them are valid.
In QASC dataset, there are 638 out of 760 reasoning paths that are valid based on
human judgment.

Setting
Top-1 Score

CSQA QASC

Ours (Reasoning Path Length L = 3) 0.523 0.489
w/o finetuning 0.385 0.467
w/o explanation 0.449 0.423

Reasoning Path Length L = 1 0.379 0.422
Reasoning Path Length L = 2 0.515 0.476

Table 3.3: Ablation Study.

model sizes. Without proper finetuning on target datasets, larger language models

may find it harder to mine latent and unstructured knowledge, which indicates their

performance may deteriorate. For instance, RoBERTa-large and RelBERT contain

300 million of parameters while T5-3b contains more than 3 billion of parameters.

However, both RoBERTa-large and RelBERT have competitive performance with

T5-3b on both datasets.

Quantitative Analysis. Table 3.2 depicts the average commonsense score of the

predicted answer from each comparison method. Specifically, our human annotators
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pick the most suitable answer from each model’s predicted answer candidates, and

we concatenate the answer with the question to form a sentence. We use the vanilla

GPT-2-large to calculate the commonsense score of each sentence by Eq. (3.2). As

shown in Table 3.2, our method achieves competitive performance with GPT-3 across

two datasets. First, lacking support from external knowledge bases and pre-defined

answer candidates, MLMs may not perform well in generating answers only relying

on prompts. Generative models tend to generate long and coherent sentences as

the answer rather than short words/phrases. Even though they may not fit the

commonsense, they can still achieve better commonsense scores than MLMs.

Validity of Reasoning Paths. In addition, we also incorporate human evaluation

to check the validity of the generated reasoning paths for our methods, and we report

the percentage of valid reasoning paths in Figure 3.6. Note that the invalid reasoning

path is defined as falsely linking the correct entity in the question to the semantically

correct answer, and the valid but not helpful reasoning paths denote our model links

the correct entity from the question to a semantically correct answer on ConceptNet,

but the reasoning path may not aid the language model make predictions. We also

give examples of both cases in the figure. Statistics show that the majority (nearly

90% on the CSQA and 80% on the QASC) of the generated reasoning paths are

grammatical and valid to the question. On top of that, around 70% of them can be

helpful and relevant to the context of the question.

Ablation Study. Next, we conduct an ablation study to investigate the importance

of each component in the model, and the results are reported in Table 3.3. Firstly, the

performance of our method drops around 25% without finetuning, which indicates the

logical sentences transformed from reasoning paths can indeed help the model navi-

gate to the most correct answers that fit the commonsense in ConceptNet. Secondly,

we discard concatenating the reasoning-path-transformed explanation to the prompt,
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CSQA
Test Case

Generation Results

Prompt: What do people aim to do at work?
→(People aim to [MASK] at work.)

DeBERTa-v3-large burst

RoBERTa-large succeed

RelBERT improve

T5-3b What tools are they going to use? What products is their life like?

UnifiedQA The answer is not to just go. ”Work” is only part of the solution to unemployment.

GPT-3 People aim to do many different things, depending on their individual goals and aspirations.

KEEP (Ours)
Work on new and challenging problems.
Reasoning Chain:
Work is done by People, People desires to work on new and challenging problems.

QASC
Test Case

Generation Results

Prompt: What is saturated fat at room temperate?
→(The saturated fat at room temperate is [MASK].)

DeBERTa-v3-large unchanged

RoBERTa-large negligible

RelBERT zero

T5-3b It is a major source of energy in the human body.

UnifiedQA You will find fats like butter or margarine, the main components of the food chain.

GPT-3 Saturated fat is a type of fat that is solid at room temperature.

KEEP (Ours)
Solid Object.
Reasoning Chain:
Fat is related to Butter, Butter is a type of solid object.

Table 3.4: Test cases of all comparison methods on both datasets. Under the open-
ended setting, KEEP excels in other methods and achieves competitive performance
with GPT-3 in generating answers and valid reasoning paths.

and the performance also drops approximately 15% in both datasets. As with other

explanation-aided commonsense reasoning models [149, 119], the logical sentence can

indeed help the model make better predictions. Finally, we also investigate how the

length of reasoning paths impacts the model performance. Specifically, the length of

reasoning paths denotes the maximal hop of neighbors our method could explore from

the question entities. Intuitively, if we regulate the length of reasoning paths to be

short, it may not reach answers that require multi-hop reasoning. However, if we set

a large path length, the model may generate noisy paths and the search time would

be unacceptable. As shown in the table, there is a large performance gap if we set the

reasoning path length to be 1, which indicates most of the answers do not exist within
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the first hop of question entities. Ae increase the length, the performance difference

between L = 2 and 3 (our adopted length) is very small. Therefore, considering both

effectiveness and efficiency, we adopt L = 3 as the maximal path length.

Case Study. Finally, we demonstrate a few examples from both datasets to see

how the retrieved reasoning path can help the PLM to make the correct prediction

under the open-ended setting. As shown in Table 3.4, masked Language models,

i.e., RoBERTa, DeBERTa, and RelBERT, generally can only predict a single token

to fill the mask. Even though they can make feasible predictions in some cases,

they cannot provide valid reasoning chains. Generative language models predict the

answer in an autoregressive way, which could generate a full sentence to answer the

question. However, without proper training on the test domain, even the strongest

GPT-3 cannot provide a precise answer for questions like What do people aim to do at

work?. As opposed to existing approaches, by reasoning over the external KG, KEEP

can generate precise answers and provide a reasoning chain to support the answer

choice without any learning steps during the inference.

3.1.4 Conclusion

We present an off-the-shelf framework KEEP to predict answers for open-ended com-

monsense reasoning without requiring answer candidates and a pre-defined answer

scope. By integrating the implicit knowledge stored in PLMs and the external knowl-

edge base, KEEP retrieves relevant reasoning paths and extracts suitable answers

for commonsense questions while maintaining both efficiency and efficacy. We be-

lieve this work poses a new direction to automated commonsense reasoning under the

zero-shot and open-ended setting in the Large Language Model era [115].
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3.2 Uncertainty Quantification for In-Context Learn-

ing of Large Language Models

Large Language Models (LLMs) have revolutionized diverse domains by serving as

general task solvers, which can be largely attributed to the emerging capability: in-

context learning. By providing demonstrations of the task to LLMs as part of the

prompt, LLMs can quickly grasp the intention and make corresponding responses to

the particular task [129]. In this paradigm, LLMs can quickly adapt to solve new tasks

at inference time (without any changes to their weights). Advanced LLMs, e.g., GPT-

4 and LLaMA, have achieved state-of-the-art results on LAMBADA (commonsense

sentence completion), TriviaQA (question answering) [181], and many tasks in other

domains [115, 113].

While in-context learning has achieved notable success, LLMs remain vulnerable

to well-known reliability issues like hallucination [140, 11]. Uncertainty quantifica-

tion has emerged as a popular strategy to assess the reliability of LLM responses.

In past years, numerous works [180, 104, 116, 4, 87] have been proposed to quan-

tify the uncertainty of LLM response. These approaches either return a confidence

score or directly compute variance/entropy across multiple responses; however, they

often overlook the complex nature of LLMs and their reliance on provided demon-

strations in in-context learning, so that existing methods may not provide insights

into the underlying causes or the interactions among different factors contributing to

uncertainty.

A natural question therefore arises: when LLM uses in-context learning to pre-

dict a wrong answer with high uncertainty, can we indicate if it is caused by the

demonstration examples or by the model itself? Given LLM’s responses to a par-

ticular task, it’s essential to decompose the uncertainty into its primary sources to

address the question. Specifically, Aleatoric Uncertainty (AU) refers to variations
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Example #1: I didn’t feel humiliated
Label: 0 Sadness
Example #2: I’m feeling a bit burdened 
Label: 0 Sadness
Example #3: I feel low energy
Label: 0 Sadness
Example #4: Dad will blow a fuse
Label: 3 Anger

Test: I have the feeling she was amused
LLM Prediction: [2: Love]
Ground Truth:  [1: Joy]

❌

(a) Inappropriate or insufficient few-shot
 demonstrations may cause uncertainty

(b) Various decoding strategies and parameter
 settings may cause uncertainty

Classify the sentiment of the text based on following categories: 
[0: Sadness; 1: Joy, 2: Love; 3: Anger].

Decoding Results
Beam Search
The answer is 1: Joy 

Greedy
The answer is 2

Top-K Sampling
[1: Joy], please let …

Parameter Setting

ngram_size,
# of beams, etc.

if_sampling,
seq_length, etc.

Prediction

top_k, top_p, etc.

1

2

1

❌

Figure 3.7: Uncertainty in LLM’s prediction can stem from two aspects: a) Demon-
stration Quality : LLMs are likely to make wrong predictions if the demonstra-
tions are inappropriate; b) Model Configuration: different decoding strategies (e.g.,
beam search and top k sampling) and their parameter settings may return different
predictions.

in the data, often linked to the demonstration examples. As shown in Figure 3.7

(a), LLM’s output can easily be disturbed by inappropriate demonstrations since the

provided demonstrations do not cover all possible labels. The noise and potential am-

biguity of these demonstrations could bring uncertainty, which, in turn, may hinder

the accuracy of the response. In contrast, Epistemic Uncertainty (EU) stems from

ambiguities related to the model parameters or different configurations. As depicted

in Figure 3.7 (b), different decoding strategies (e.g., beam search and greedy decoding)

and their hyperparameter settings can have different decoding results. Recognizing

and quantifying the uncertainty from the model’s perspective can also be critical in

evaluating the generated responses, which allows us to understand the model’s con-

fidence level toward the task and make necessary adjustments (e.g., choosing a more

powerful model or conducting an ensemble prediction).

Despite the strides made by existing works in understanding the total uncertainty,

the decomposition of uncertainty in the realm of in-context learning remains under-

explored. In this work, we propose a novel framework for quantifying the uncertainty

of in-context learning to aleatoric and epistemic components from the generated out-

puts. Our contributions are summarized as follows.
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• Problem. We formulate the problem of uncertainty decomposition that ex-

tracts epistemic and aleatoric uncertainties from the predictive distribution of

LLMs with in-context learning.

• Method. We propose quantifying both aleatoric and epistemic uncertainty

from the mutual information perspective. A novel entropy-based estimation

method is also designed to handle the free-form outputs of LLMs.

• Experiment. Extensive experiments are conducted to evaluate different as-

pects of uncertainty, followed by specific applications and case studies to show

how two types of uncertainty influence the model’s performance.

3.2.1 Uncertainty Decomposition of In-context Learning

We first formulate the process of in-context learning as Bayesian Neural Networks with

latent variables. Based on the formulation, we propose to decompose the predictive

uncertainty into its epistemic and aleatoric components from the mutual information

perspective, followed by a novel way to estimate both uncertainties based on the

entropy of the prediction’s distribution.

Background

LLMs are typically trained using maximum likelihood estimation on a large corpus

of text. The training goal is to maximize the likelihood of the observed data under

the model: L(Θ) =
∏

i≤N p(ωi|ω1, ω2, . . . , ωi−1; Θ), where each ωi ∈ x is a token in a

sentence x = [ω1, . . . , ωN ], and Θ denotes the set of parameters.

Latent Concept. From the Bayesian point of view, LLM’s in-context learning

ability is obtained by mapping the training token sequence x to a latent concept z

[181]. The concept z is a latent variable sampled from a space of concepts Z, which
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defines a distribution over observed tokens ωi from a training context x:

p(ω1, . . . , ωN) =

∫
z∈Z

p(ω1, . . . , ωN |z)p(z)dz.

The concept can be interpreted as various document-level statistics, such as the gen-

eral subject matter of the text, the structure/complexity of the text, the overall

emotional tone of the text, etc.

In-context Learning. Given a list of independent and identically distributed (i.i.d.)

in-context demonstrations (contain both question and answer) [x1, . . . ,xT−1] concate-

nated with a test question (without the task answer) xT as prompt. Each demonstra-

tion xi in the prompt is drawn as a sequence conditioned on the same concept z and

describes the task to be learned. LLMs generate a response yT to the test question

xT based on the aggregated prompt x1:T :

p(yT |x1:T ) =

∫
z∈Z

p(yT |x1:T , z)p(z|x1:T )dz.

In-context learning can be interpreted as locating a pre-existing concept z based on

the provided demonstrations x1:T−1, which is then employed to tackle a new task

xT . Including more high-quality demonstrations within the prompt can help refine

the focus on the relevant concept, enabling its selection through the marginalization

term p(z|x1:T ). Note that formulating in-context learning as Bayesian inference with

latent variables is more of a hypothesis; however, demystifying the in-context learning

from the view of Bayesian inference offers a probabilistic interpretation of how LLM

learns and adapts to new data in context.

In this work, we focus on quantifying the predictive uncertainty of LLMs in deter-

ministic NLP tasks, such as text classification. Specifically, we address tasks where

the training dataset D = {X ,Y} consists of token sequences X = {x} and their
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corresponding target outputs Y = {y}. For LLMs, the generation process is defined

by the function y = f(x, z; Θ), where f : X ×Z → Y is a deterministic function. The

output y exhibits stochastic behavior, influenced by the latent concept z ∼ p(z|x1:T )

and the model parameters/configurations Θ (e.g., temperature, etc.).

Predictive Uncertainty Formulation of In-context Learning

We formulate the predictive distribution of in-context learning for predicting yT given

few-shot demonstrations x1:T−1 and a test case xT as:

p(yT |x1:T ) ≈
∫
p(yT |Θ,x1:T , z) · p(z|x1:T )q(Θ)dz dΘ, (3.3)

where p(yT |Θ,x1:T , z) is approximated by a Bayesian Neural Network-based likelihood

function N (f(x1:T , z),Σ), and Σ is the covariance matrix contains the variances and

covariances associated with LLM parameters. q(Θ) is the approximated posterior of

the LLM’s parameters Θ. Eq. (3.3) approximates LLM outputs following a Gaussian

distribution, which serves as an initial framework for generating predictions based on

input data and accompanying demonstrations: p(yT |x1:T ), which entangles different

types of uncertainties. We first present the overall pipeline of our uncertainty quan-

tification framework, followed by formulation on decomposing the total uncertainty

based on mutual information and a novel way to estimate the uncertainty. Note that

LLMs can be categorized into white-box and black-box models [115] based on their

transparency. Quantifying mutual information involves accessing the probability of

generated tokens, which is not applicable to black-box LLMs. In this study, we also

provide a decomposition way from the variance perspective for black-box LLMs. Due

to the space limit, the variance-based decomposition can be found in Appendix B.2.1.

Framework Pipeline. In this work, we employ a Bayesian framework to quantify

the predictive uncertainty from LLMs, and the overall pipeline is visualized in Figure
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LLM

Input
𝒙!

Training Set

𝒙":!$" ∼ 𝝌

Θ% ∼ 𝑞(Θ)

Output 𝒚!"
Θ"

Θ&
𝝌

𝒚!" ∼ 𝑝(𝒚!|Θ" , 	 𝒙#:! , 𝑧	)

𝑧 ∼ 𝑝(𝑧|𝒙":!)

Output 𝒚!"

Figure 3.8: Uncertainty Quantification of In-context Learning Pipeline: we want to
quantify the uncertainty that comes from 1) different in-context demonstrations x1:T ;
and 2) different model configurations Θl.

3.8. Specifically, the input x1:T is composed of a test query xT and a set of demonstra-

tions x1:T−1 sampled from X . By sampling different model parameters/configurations

Θl ∼ q(Θ), LLM can return different outputs ylT ∈ [y1
T , · · · ,yLT ] based on the con-

ditional probability p(yT |Θl,x1:T , z). The collection of outputs [y1
T , · · · ,yLT ] records

the total uncertainty regarding Θl and demonstrations x1:T−1.

Entropy-based Decomposition

As a widely adopted measure of uncertainty, entropy provides a quantifiable and

interpretable metric to assess the degree of confidence in the model’s predictions

[123]. Since white-box LLMs can return the probability of each token in the generated

sequence, it naturally makes entropy-based uncertainty measures applicable uniformly

across different types of white-box LLMs.

Epistemic Uncertainty (EU). Let H(·) be the differential entropy of a probabil-

ity distribution, the total uncertainty in Eq. (3.3) can be quantified as H (yT |x1:T ),

which entangles both aleatoric (i.e., demonstration x1:T−1) and epistemic (i.e., model

parameter Θ) uncertainties. To estimate the EU, we condition Eq. (3.3) on a specific

realization of the model parameter Θ, yielding p(yT |x1:T ,Θ) =
∫
p(yT |x1:T , z,Θ)p(z|x1:T )dz

with an associated entropyH(yT |x1:T , z,Θ). The expected value of this entropy under

different demonstration sets can be expressed as Ez [H(yT |x1:T , z,Θ)], which serves
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Classify the sentiment of the text based on following categories: 
[0: Sadness; 1: Joy, 2: Love; 3: Anger].
Sentence 𝒙𝑻: I have the feeling she was amused .

0 1 2 3
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Figure 3.9: Framework of entropy-based uncertainty estimation, which consists of 1)
generatingM sequences based on a set of x1:T−1; 2) selecting token(s) that is relevant
to the answer and extract the probabilities; 3) aggregating the token probabilities of
M sequences into a distribution of predicted labels; 4) iterating the process L times
corresponding to L different demonstration sets and form a probability matrix M,
where the column denotes different demonstration sets and the row denotes labels of
the dataset.

as a metric to quantify the EU in Eq. (3.3).

Aleatoric Uncertainty (AU). In terms of AU, the randomness comes from dif-

ferent sets of demonstration x1:T−1 and their corresponding latent concept z. To

estimate AU, we can quantify the mutual information between yT and latent con-

cept z, which can often be leveraged as an evaluation metric of AU [176]. As we

have already obtained the EU, AU can subsequently be calculated as the discrepancy

between the total uncertainty and the epistemic uncertainty:

I(yT , z|Θ) = H (yT |x1:T ,Θ)− Ez [H(yT |x1:T , z,Θ)] . (3.4)

The entropyH (yT |x1:T ,Θ) can be approximately calculated as−
∑

t [p(ω
yT
t ) · log p (ωyT

t )],

where p(ωyT
t ) represents the probability of each possible next token ωyT

t given the in-

put prompt x1:T . Therefore, the AU in Eq. (3.4) can be approximated by sampling
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many z (by sampling different sets of demonstrations) to obtain different yT condi-

tioning on one set of parameters Θ. The group of yT can then be used to approximate

the respective entropies for each group of demonstrations x1:T−1:

I(yT , z|Θ) = H (yT |x1:T ,Θ)− Ez [H(yT |x1:T , z,Θ)] (3.5)

≈
M×L∑

H(yT )−
1

M

M∑
m=1

L∑
l=1

[
H(yΘm,l

T )
]
,

where [yΘm,l
T ] are obtained corresponding to different demonstrations [x1

1:T−1, . . . ,x
L
1:T−1],

and [Θ1, . . . ,ΘM ] are sampled from q(Θ). However, in many cases, direct sampling

from the posterior is hard since it requires a prohibitive number of samples to ap-

proximate it effectively. Beam search is then used as an efficient alternative to find

high-quality hypotheses. This approach can be viewed as a form of importance sam-

pling, where hypotheses are drawn from high-probability regions of the space. Each

hypothesis yT observed during the beam search process is associated with uncertainty,

which is importance-weighted in proportion to p(yT |x1:T , z). Beam Search thus serves

as a practical and efficient way to sample from the posterior by focusing on the most

relevant parts of the hypothesis space.

In addition, since calculating the entropy H (yT ) entails to obtain the joint prob-

ability of the generated tokens p(yT ) = (ωyT
1 , . . . , ωyT

T ), entropy-based method may

only be applicable to white-box LLMs.

Entropy Approximation

The generation of LLMs is generally free-form, which makes the uncertainty estima-

tion for in-context learning still different from well-studied classification models that

have specific labels. Specifically, not only may the LLM not always be able to re-

turn an expected answer, but the generated sequence may also consist of placeholder

tokens. Calculating the entropy of the whole generated sequence would involve re-
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dundant tokens. Therefore, in this work, we propose to approximate the entropy of

the output H(yT ), and the process is summarized in Figure 3.9.

Given the probability distributions of the generated tokens p(yT ) for one set of

demonstrations, we only select token(s) ωyT
t that directly answer the provided ques-

tion. Taking the text classification task as an example, LLM is asked to directly

output a numerical value standing for a predefined category (e.g., 0: Sadness, 1:

Joy, etc.). The probability of the token ωyT
t that represents the numerical value is

then leveraged to denote the overall distribution of p(yT ). We aggregate the answer

probabilities from all M decoded sequences and transform them as an answer distri-

bution (as shown in the top right corner in Figure 3.9). After repeating the process

L times, where L corresponds to L different sets of demonstrations, we have a matrix

M recording the answer distributions of choosing different demonstrations and model

configurations (as shown in the lower right corner in Figure 3.9). The EU and AU

can then be approximated as:

EU =
1

L

∑
H (σ(M:,j)) , AU = H

(
σ
(∑

[M:,j]
))
− 1

L

∑
H (σ (M:,j)) ,

where σ(·) normalizes the column M:,j into a probability distribution, and entropy

H(·) can be calculated as −
∑K

k=1 (p(Mk,j) ∗ log(p(Mk,j))) if the number of labels is

K. Note that we have instructed LLMs not to generate tokens with less semantic

meaning, such as dashes, spaces, or non-related words. In practice, our adopted LLMs

can follow the instructions only to return desired answers so that the whole sentence

will be the answer tokens (no need to select tokens).

3.2.2 Related Works

Uncertainty Quantification and Decomposition. Uncertainty quantification

aims to measure the confidence of models’ predictions, which has drawn attention
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from various domains [212, 124]. Measuring uncertainty is essential in many real-

world NLP applications where making a wrong prediction with high confidence can

be disastrous (e.g., assessing the confidence in a translation or a generated piece of

information). This is especially important in foundation models since we do not have

enough resources to finetune the model [1]. To better understand the uncertainty, the

primary focus is on understanding and categorizing the sources of uncertainty for in-

terpreting the models’ outputs more effectively. The output uncertainty can typically

be categorized into Aleatoric Uncertainty that arises from the inherent noise in the

data, and Epistemic Uncertainty that arises due to inappropriate model architecture

or overfitted/underfitted parameters. Existing methods [29, 36, 123] have come up

with various methods (e.g., Bayesian neural network, Deep Ensembles, and Monte

Carlo Dropout) to decompose the uncertainty.

Uncertainty in Language Models. Existing LLMs often neglect the importance

of uncertainty in their responses. Earlier works [179, 37, 74] on uncertainty in lan-

guage models have focused on the calibration of classifiers (e.g., applying dropout

to the model parameters or leveraging ensemble voting) to better assess the confi-

dence of the generated output. When it comes to the era of LLMs, multiple works

[180, 201, 104, 87, 47] have been proposed to measure the uncertainty of LLM’s pre-

diction in multiple aspects (e.g., lexical uncertainty, text uncertainty, and semantic

uncertainty) for multiple NLP tasks. Another line of works [77, 4, 22] instead tries to

analyze how to extract knowledge from a language model correctly and self-evaluate

the correctness with a confidence score. However, despite these commendable efforts,

existing methods still lack an effective way to directly quantify and decompose the

uncertainty inherent in the outputs of LLMs with in-context learning.
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3.2.3 Experiments

We evaluate the uncertainty decomposition procedure on realistic natural language

understanding problems. By comparing state-of-the-art uncertainty quantification

methods, we aim to examine what type of uncertainty is the most promising indicator

of high confidence for LLMs. In addition, we also provide generalization analysis

and two specific out-of-distribution detection applications. Extra experiments and

experiment settings are provided in the Appendix.

Experiment Setup

We evaluate the decomposed uncertainties on open-source LLMs with different model

sizes. We leverage LLaMA-2 [162], which is the most widely applied open LLM,

with its 7B, 13B, and 70B model sizes. The primary experiments are conducted with

LLaMA-2 models. In order to further demonstrate the generalization ability of our

method, we apply our uncertainty quantification method on OPT-13B [206].

Data. We consider different Natural Language Understanding tasks. 1) Sentiment

Analysis : Emotion [145] contains 2, 000 test cases and six classes; Financial Phrase-

bank (Financial) [124] contains 850 financial news and three sentiment classes; Stan-

ford Sentiment Treebank v2 (SST2) [151] consists of 872 sentences from movie reviews

and two classes. 2) Linguistic Acceptability: The Corpus of Linguistic Acceptability

(COLA) [174] is about English acceptability judgments, which has 1, 040 test cases

and two classes. 3) Topic Classification: AG News [208] contains 1, 160 test cases

and four classes.

Demonstration & Model Configuration Sampling. We evaluate each method

by choosing two strategies to randomly sample in-context learning demonstrations. 1)

Random: we randomly sample demonstrations (training instances with labels) from



101

the training set regardless of their labels. 2) Class : we randomly sample demon-

strations but ensure there is at least one demonstration per label class. To generate

various sequences based on one set of demonstrations, we adopt Beam Search with

beam width = 10 to approximate the sampling process of Θ ∼ q(Θ).

Comparison Methods. We evaluate the following baseline uncertainty estima-

tion methods: 1) Likelihood-based Uncertainty (Likelihood) [123] calculates the sum

of log probabilities of all tokens generated from language models and normalizes it

by the sequence length. 2) Entropy-based Uncertainty (Entropy) [179] calculates the

entropy of the probability distributions of the generated tokens. 3) Semantic Un-

certainty (Semantic) [87] is the most advanced entropy-based uncertainty estimation

method, which groups generated sequences into clusters according to their semantic

embeddings. The average entropy across all groups is viewed as the uncertainty score.

Evaluation Metrics. We show the prediction accuracy of each dataset. In ad-

dition, we leverage two standard metrics: the Area under Precision-Recall Curve

(AUPR) and AUROC (ROC) to evaluate the uncertainty. AUPR calculates the area

under the Precision-Recall curve. AP is high when both precision and recall are high,

and low when either of them is low across a range of confidence thresholds. ROC

represents the likelihood that a correct answer is selected. An ideal ROC rating is 1,

whereas a random uncertainty estimate would yield ROC = 0.5.

Quantitative Analysis

We compare the performance of different methods in assessing the misclassification

samples based on their perspective uncertainty scores. We follow the procedure:

1) We use LLMs to classify all examples in the dataset with different beam search

branches and demonstrations; 2) we use different uncertainty quantification methods

to obtain a score associated with each test instance; 3) we assign each example a 0 if



102

Inference

Model
ACC

Likelihood Entropy Semantic Ours (EU) Ours (AU)

AUPR ROC AUPR ROC AUPR ROC AUPR ROC AUPR ROC

E
m
o
ti
o
n

LLaMA-7b-random 0.407 0.423 0.426 0.448 0.501 0.598 0.607 0.688 0.667 0.625 0.579

LLaMA-7b-class 0.411 0.562 0.423 0.657 0.538 0.697 0.653 0.745 0.696 0.691 0.601

LLaMA-13b-random 0.501 0.597 0.613 0.584 0.503 0.612 0.625 0.645 0.681 0.559 0.585

LLaMA-13b-class 0.533 0.641 0.578 0.593 0.554 0.652 0.701 0.622 0.686 0.526 0.599

LLaMA-70b-random 0.584 0.512 0.462 0.491 0.452 0.657 0.696 0.667 0.713 0.531 0.663

LLaMA-70b-class 0.592 0.537 0.484 0.469 0.442 0.622 0.689 0.659 0.721 0.612 0.693

F
in
a
n
ci
a
l

LLaMA-7b-random 0.379 0.821 0.532 0.728 0.438 0.715 0.624 0.731 0.672 0.669 0.582

LLaMA-7b-class 0.397 0.593 0.505 0.548 0.362 0.732 0.699 0.803 0.711 0.753 0.589

LLaMA-13b-random 0.476 0.894 0.571 0.652 0.463 0.705 0.545 0.718 0.512 0.729 0.573

LLaMA-13b-class 0.477 0.752 0.594 0.692 0.531 0.694 0.543 0.765 0.610 0.758 0.592

LLaMA-70b-random 0.530 0.816 0.509 0.754 0.493 0.679 0.688 0.779 0.754 0.734 0.642

LLaMA-70b-class 0.537 0.668 0.469 0.623 0.439 0.774 0.649 0.893 0.804 0.739 0.659

S
S
T
-2

LLaMA-7b-random 0.856 0.149 0.636 0.135 0.587 0.244 0.593 0.286 0.683 0.205 0.702

LLaMA-7b-class 0.897 0.230 0.666 0.196 0.579 0.253 0.577 0.248 0.701 0.302 0.673

LLaMA-13b-random 0.866 0.268 0.472 0.204 0.467 0.355 0.712 0.314 0.677 0.326 0.816

LLaMA-13b-class 0.928 0.178 0.425 0.113 0.439 0.343 0.631 0.397 0.836 0.367 0.639

LLaMA-70b-random 0.932 0.091 0.597 0.137 0.475 0.258 0.565 0.318 0.764 0.298 0.571

LLaMA-70b-class 0.938 0.132 0.552 0.185 0.531 0.312 0.679 0.331 0.851 0.362 0.697

C
O
L
A

LLaMA-7b-random 0.599 0.388 0.557 0.329 0.443 0.358 0.502 0.416 0.562 0.377 0.517

LLaMA-7b-class 0.639 0.392 0.523 0.381 0.478 0.425 0.526 0.473 0.587 0.401 0.506

LLaMA-13b-random 0.652 0.389 0.498 0.287 0.512 0.433 0.562 0.469 0.572 0.488 0.565

LLaMA-13b-class 0.649 0.412 0.418 0.342 0.517 0.426 0.548 0.456 0.568 0.523 0.641

LLaMA-70b-random 0.826 0.481 0.599 0.312 0.471 0.372 0.625 0.317 0.716 0.329 0.676

LLaMA-70b-class 0.852 0.357 0.612 0.397 0.588 0.397 0.613 0.389 0.727 0.425 0.682

Table 3.5: The performance comparison on the misclassification rate based on the un-
certainty score from each approach. For each dataset, correct predictions are labeled
as 0 and incorrect ones are labeled as 1. We show the AUPR and ROC (the higher
the better) based on the uncertainty score and misclassification rate with two types
of demonstration selection strategy: Random and Class as well as three LLaMA
model sizes: 7B, 13B, and 70B.

it was classified correctly or a 1 if it was misclassified; and 4) we calculate AUPR and

AUROC based on the misclassification rate and uncertainty score. Ideally, misclassi-

fied samples should have higher uncertainty scores. The results are shown in Table

3.5. Note that our proposed method can decompose the uncertainty into epistemic

uncertainty (EU) and aleatoric uncertainty (AU), we thus show the performance of

EU and AU separately.

As shown in the table, in most cases, our proposed methods (EU and AU) con-

sistently show higher AUPR and ROC scores across all datasets, which indicates a
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better performance in assessing misclassification samples based on uncertainty scores.

Moreover, we also draw some observations from the table. 1. Class Sampling Strat-

egy Proves Superior : The class sampling strategy generally yields higher AUPR and

ROC scores across datasets, which proves it is more effective than random demon-

stration sampling. Class sampling ensures that each class is represented in the sample

and reduces sampling bias, which is crucial in scenarios where the dataset might be

imbalanced or where certain classes are underrepresented. 2) Increasing Model Size

Enhances Performance: Larger models (moving from 7B to 70B) tend to have bet-

ter performance in terms of AUPR and ROC. Specifically, there’s a general trend of

increasing AUPR and ROC scores as model size increases from 7B to 13B to 70B

for all comparison methods. Some datasets and metrics do not strictly follow this

trend. For instance, in the Emotion dataset, the 70B model sometimes shows a

slight decrease in performance compared to the 13B model. The inconsistencies in

performance improvement with larger models, especially for EU, hint at the com-

plexity of uncertainty assessment in different contexts and datasets. 3. Treating

all tokens equally can be harmful in uncertainty quantification: both Likelihood and

Entropy Uncertainty treat all tokens equally. However, some tokens carry greater

relevance and representativeness than others, owing to the phenomenon of “linguistic

redundancy”. However, most uncertainty estimators treat all tokens equally when

estimating uncertainty, disregarding these inherent generative inequalities.

Generalization Capability

We further show how our method performs when applied to different LLMs. We com-

pare the performance of misclassification rate when using OPT-13B and LLaMA-2-

13B. We compute the precision-recall (PR) curve and ROC curve using two backbone

LLMs on the Emotion dataset, and the results are shown in Figure 3.10.

As shown in Figure 3.10, our method exhibits consistent trends across different
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Figure 3.10: The performance of misclassification rate using two backbone LLMs:
OPT-13B and LLaMA-2-13B on Emotion dataset. (a) and (b) demonstrate the
precision-recall curves (x-axis is the recall and y-axis is the precision) for OPT-13B
and LLaMA-2-13B; (c) and (d) demonstrate the ROC curve (x-axis is the false
positive rate and y-axis is the true positive rate) for OPT-13B and LLaMA-2-13B.

LLMs. The precision-recall curves of both uncertainties (Figure 3.10 (a) and 3.10 (b))

between the two methods are almost identical, and the model’s capability between two

LLMs is also reflected in the PR curves of EU. Furthermore, by comparing Figure 3.10

(c) and 3.10 (d), the ROC curves of both LLMs show a similar pattern, with the AUC

scores not deviating significantly. Specifically, both OPT-13B and LLaMA-2-13B

exhibit the same Area Under ROC (AUROC) curve = 0.68 for AU. Since LLaMA-

2-13B is a more powerful LLM than OPT-13B, our method can quantify that EU

of LLaMA-2-13B (AUROC = 0.59) is better than OPT-13B (AUROC = 0.55).

This finding further supports our method maintains its performance irrespective of

the underlying model and its robust generalization capability.

Misclassification Rate with Out of Domain Demonstration

Out-of-domain in-context Demonstration refers to the test instance being coupled

with less relevant or out-of-domain demonstrations, which the model may be misled

and not handle the test instance reliably. In this work, we analyze the misclas-

sification rate of out-of-domain Demonstration in the Emotion dataset (six-class

sentiment analysis task) by providing LLMs with relevant demonstrations (sampled

from Finance Phrasebank which is a three-class sentiment analysis task) and com-

plete out-of-domain demonstrations (sampled from COLA which is a binary linguistic
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acceptability task). We conduct the task with two demonstration selection strategies,

and the results are provided in Table 3.6.

LLaMA-13B-Random LLaMA-13B-Class

EU AU EU AU

Original Demo 0.681 0.585 0.686 0.599

Relevant Demo
0.688

(+1.0%)
0.541

(−7.5%)
0.671

(−2.2%)
0.524

(−12.5%)

OOD Demo
0.671

(−1.4%)
0.501

(−13.3%)
0.673

(−1.8%)
0.497

(−17.0%)

Table 3.6: Comparison of AUROC in misclassificatin rate on Emotion dataset,
where “Original Demo” indicates we sample demonstrations from its original training
set, “Relevant Demo” indicates we sample demonstrations from Finance Phrasebank
Dataset (a relevant sentiment analysis task, and “OOD Demo” indicates we sample
demonstrations from an irrelevant dataset: COLA.

As shown in the table, changes in the performance of the EU are relatively minor

under all conditions, suggesting that the model is more stable or less sensitive to the

changes in demonstration data within this metric. In contrast, the AU shows more

significant fluctuations, which implies that the AU is more sensitive to the quality

and relevance of demonstration data. When relevant demonstrations from the Fi-

nance Phrasebank sentiment analysis dataset are used, there’s a slight improvement

or a minor decrease in EU, but a notable decrease in AU. This suggests that even

relevant but not identical data can confuse the model, especially for the AU. With

out-of-domain demonstrations from COLA, the model’s performance drops more sig-

nificantly, with the AU metric showing a dramatic decrease of up to 17.0%, which

indicates that the model struggles significantly when the demonstrations are not rel-

evant to the task it’s being tested on.

Out-of-domain Demonstration Detection

Out-of-domain (OOD) demonstration refers to coupling a test instance with less rele-

vant or OOD demonstrations, potentially leading the model to be misled and handle

the test instance unreliably. In this study, we investigate whether uncertainty scores
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Semantic Ours (EU) Ours (AU)

AUPR ROC AUPR ROC AUPR ROC

Relevant Demo 0.702 0.644 0.742 0.935 0.657 0.682

OOD Demo 0.698 0.712 0.784 0.941 0.773 0.607

Table 3.7: Out-of-domain demonstration detection conducted with LLAMA-2-13B
on Emotion Dataset.

can effectively distinguish between in-domain and OOD demonstrations. In our label-

ing scheme, in-domain demonstrations are labeled as 0, while OOD demonstrations

are labeled as 1. AUPR and ROC analyses are performed based on the labels and

uncertainty scores, with results summarized in Table 3.7. Specifically, we conduct

experiments on the Emotion dataset, involving two scenarios: in-domain demon-

strations (sampled from its training set) and relevant demonstrations (sampled from

Finance Phrasebank, a three-class sentiment analysis task). Additionally, we com-

pare in-domain demonstrations with complete OOD demonstrations (sampled from

COLA, a binary linguistic acceptability task).

As shown in Table 3.7, compared to the state-of-the-art Semantic Uncertainty and

the AU, the EU demonstrates the best indicator to detect both less relevant and OOD

demonstrations. Intuitively, the model’s predictions would be impacted by irrelevant

and OOD demonstrations and exhibit large variance. AU is less effective than EU in

detecting OOD demonstrations since the demonstrations already have large inherent

variability. Semantic Uncertainty instead cannot really distinguish what is the root

cause of the predictive uncertainty.

3.2.4 Semantic Out-of-distribution Detection

Semantic out-of-distribution (SOOD) detection refers to distinguishing test samples

with semantic shifts from the given demonstrations and the prompt. In this study,

we mask out a few classes and ask LLMs to classify test samples into the rest of the

classes. The method is expected to return a higher uncertainty score of SOOD test
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Semantic Ours (EU) Ours (AU)

AUPR ROC AUPR ROC AUPR ROC

7B 0.477 0.532 0.548 0.658 0.461 0.570
13B 0.417 0.468 0.525 0.592 0.414 0.437

Table 3.8: Semantic out-of-distribution detection using LLAMA-2 7B and 13B on
Emotion Dataset.

samples. Specifically, we mask two classes 1: sadness and 2: anger out of six classes

from the Emotion dataset and ask LLM to categorize a given test sample only into

the rest four classes. The SOOD samples are labeled as 1 and in-distribution samples

are labeled as 0. Results of AUPR and ROC are recorded in Table 3.8 in terms of

different model sizes.

As shown in the table, EU still performs the best as a better indicator to recognize

SOOD samples across different model sizes. SOOD samples are semantically different

from the provided demonstrations, and the task description also masks out the correct

class of these SOOD samples, leading to higher uncertainty in the model’s predictions.

Given the inappropriate task description and demonstrations, AU may not necessarily

perform better in the presence of SOOD samples.

3.2.5 Conclusion

We provide a novel approach to decompose the predictive uncertainty of LLMs into

its aleatoric and epistemic perspectives from the Bayesian perspective. We also design

novel approximation methods to quantify different uncertainties based on the decom-

position. Extensive experiments are conducted to verify the effectiveness and better

performance of the proposed method than others. We believe this research stands as

a significant stride toward harnessing the full potential of LLMs while being acutely

aware of their performance boundaries. For future works, we plan to extend our

method to other forms of data [21] and tasks [210] to quantify the uncertainty.
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Chapter 4

Representation Learning on

Textual-edge Graphs for Link

Prediction

In network science, the prevalence of networks with rich text on edges, also known

as Textual-edge Graphs (TEGs) [194, 59], increasingly become significant, as they

encapsulate a wealth of relational and contextual information critical for diverse ap-

plications. The text associated with edges in networks can dramatically deepen our

understanding of network dynamics and behavior. For instance, in a social media net-

work, when a user responds to another’s post, the reply not only creates a directed

edge but also includes specific text that can reveal the sentiment, intent, or relation-

ship between users. Similar cases can also be found in citation networks where text

on edges is the exact reference quote. Both examples illustrate how text-rich edges

are pivotal in accurately interpreting and leveraging networked data for advanced

analytical purposes. In TEGs, link prediction is a unique yet open question due to

the rich textual information embedded on edges.

Extensive works have been devoted to studying graphs with rich text, which can
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Figure 4.1: An example of textual-edge graphs: two books are connected by citation
links. Predicting whether there’ll be a citation between A and E needs to jointly
consider both topology and semantic information embedded on nodes and their edges.

be categorized into Graph Neural Networks (GNN)-based and language model -based

methods. GNN-based works have extensively studied the topology connection be-

tween nodes and designed various variants. Specifically, works [59, 217, 53] typi-

cally compress the text embedded on edges to latent vectors by text encoders (e.g.,

Word2Vec [128] and BERT [38]), and iteratively merge edge features with/without

node features [72, 196]. The current most advanced edge-aware GNN [75] tries to

refine the text encoder with the GNN training to obtain better representation. How-

ever, it still follows the neighbor aggregation way, which may not comprehensively

consider overall semantics. On the other hand, owing to the strong text understand-

ing ability of LLMs [115], researchers [28, 48, 199, 186] have directly used language

models to solve graph mining tasks on textual graphs by designing various prompts

to express or summarize the topology connection into natural language.

While these approaches have advanced the study of text-rich graphs, they tend to

simplify the diverse text on edges, potentially losing crucial information necessary for

tasks such as link prediction, where edge text is key to understanding the relation-

ships within the graph. Both GNN-based and LLM-based methods may fall short of

addressing the link prediction on TEGs due to two challenges, respectively.
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Challenge 1: Understand graph topology in language models. For LLM-

based approaches, existing works have worked on prompting LLMs by expressing or

summarizing graph topology into text, but the graph topology is generally expressed

in a linear shape, which may lead to a significant loss of graph-based structural

information. For example, in Figure 4.1, if we summarize the relation between Book

A and E as Breadth-first Search, the dependencies along specific paths would be

overlooked. This approach would not capture the multi-hop interactions and the rich

contextual dependencies among nodes and edges. On the other hand, if we summarize

all paths from A to E, the same edge, such as the negative reference on edge C to E,

could appear in several paths. Representing this repeated edge in text multiple times

leads to unnecessary duplication and potential noise, complicating the model’s ability

to discern the true nature of the relationships. If the graph is too large, potential

overflow of the language model’s context window limitation may also emerge.

Challenge 2: Comprehensively consider context information on all connec-

tions. For GNN-based methods, predicting links in TEGs requires a comprehensive

examination of all potential paths connecting two nodes. Neighborhood aggregation

approaches often focus on immediate neighbors and fail to account for the complex

interactions that can occur in textual-edge graphs. As shown in Figure 4.1, there are

many multi-hop paths with different intermediate nodes between A and B, and each

edge is annotated with different contexts, including user descriptions and user com-

ments, describing their complex relations. It’s already hard for existing GNN-based

methods to use one latent vector to describe the complex context on edges. Moreover,

user’s preferences may also differ from one path to another (i.e., A→ C → E is neg-

ative while A→ B → D → E is positive), creating a conflicting semantic landscape.

However, GNN’s neighbor aggregation would treat these paths uniformly, potentially

diluting the sentiment difference in these paths.
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Present Work. To effectively make link predictions on TEGs by jointly consider-

ing rich semantic information and graph topology, in this paper, we propose a novel

representation learning framework, Link2Doc, that transforms local connections

between nodes into a coherent document for better-reflecting graph topology along

with semantic information. To process rich textual information efficiently, we further

propose a stratified representation learning framework that captures multi-scale in-

teractions between target nodes. The crafted document further enhances GNNs to

make link predictions in a contextualized way. The key contributions are summarized

as follows:

• Problem. We formulate the problem of link prediction on textual-edge graphs

and highlight the unique challenges of learning representations on textual-edge

graphs for link predictions.

• Method. We propose an integrated framework to jointly consider topology

and semantic information in textual-edge graphs, which consists of 1) coherent

document composition to summarize semantic relations between node pairs in

plain language; 2) a specialized Transition Graph Neural Network to process

topology information between target nodes in a stratified manner; and 3) a self-

supervised learning module to combine semantic understanding and topology

processing ability for better link prediction on textual-edge graphs.

• Experiment. We empirically compare our method against existing state-of-

the-art in four real-world datasets. Results have shown our proposed methods

can elevate the performance of general GNNs and achieve competitive perfor-

mance against edge-aware GNNs.
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4.1 Related Works

Edge-aware Graph Representation Learning. Earlier research of Graph Neu-

ral Networks (GNNs) [178, 33] tends to only focus on node features. Later on, re-

search on heterogeneous graph representation learning [192] began to consider cat-

egorical information on edges. In text-attributed graphs, to more comprehensively

utilize edge information during the network representation learning, some edge-aware

GNNs [217, 53, 72, 196] were proposed to consider edge text by designing various

architectures (e.g., attention on edges, node and edge role switch, etc.). The re-

cent state-of-the-art method EdgeFormer [75] involved pre-trained language models

and proposed to better consider edge text by designing a cross-attention mechanism

to merge node and edge representation in Transformer layers. However, these ap-

proaches still use the neighborhood aggregation way to obtain graph representation

and cannot consider the local connections as a whole unit. Neighborhood aggregation

may not always work especially when nodes are dissimilar (as shown in Figure 3.1)

[182]. Moreover, existing edge-aware GNNs tend to deliberately erase text on nodes

and only explore the effect of edge information on various graph-related tasks [75],

which lacks the flexibility to extend to other text-attributed scenarios.

Language Modeling Augmented Graph Learning. Large language models

have been proven to have the ability to interpret graph-structured data [70, 56, 76].

In the past year, many works [27, 28, 66, 134] have been proposed to prove LLMs

have great potential (and even become state-of-the-art) to classify nodes in text-

attributed graphs. However, how LLMs can better assist link prediction in text-

attributed graphs is still an under-explored area, let alone the more complicated sce-

nario of edge-attributed graphs that contain rich textual information on both edges

and nodes. Existing works [218, 211, 96, 175] have tried to distill implicit knowledge

from LLMs to smaller GNN models for text-attributed graph tasks, but they still
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focus on learning good node embeddings. In edge-attributed graphs, text on edges

cannot be uniformly processed in the same manner as node text, necessitating more

specialized techniques that account for the unique semantics and structural roles of

edge attributes in enhancing graph-based learning models.

4.2 Link Prediction on Textual-edge Graph

We begin by introducing key notations and formulating the problem of link prediction

on Textual-edge Graphs. We then describe a novel way of constructing a transition

document that summarizes the relationship between node pairs for link prediction.

Finally, we provide an LLM-enhanced Graph Neural Network framework that learns

the local topology and semantic information to retain both efficiency and efficacy.

4.2.1 Problem Formulation

A Textual-edge graph (TEG) is a type of graph in which both nodes and edges

contain free-form text descriptions. These descriptions provide detailed, contextual

information about the relationships between nodes, enabling a richer representation

of relational data than in traditional graphs.

Definition 3 (Textual-edge Graphs). A TEG G = (V , E) is an undirected graph,

which consists of a set of nodes V and a set of edges E ⊆ V × V . Each node vi ∈ V

contains a textual description di, and each edge eij ∈ E also associates with free-form

texts dij describing the relation of (vi, vj).

In this work, we target the Link Prediction task on TEGs, where we aim to predict

the existence (or the label) of edges between pairs of nodes (vi, vj) /∈ E based on the

neighborhood information of (vi, vj). Due to the rich edge text information, local

edges in TEGs can inherently be represented by natural language sentences. For
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example, the connection vi → eij → vi can be represented as “di is connected to

dj via dij”, which directly describes the relation in plain text.

Compared to graphs that have edges labeled with simple, predefined categories,

TEGs feature edges annotated with free-form text, which offer detailed and contextual

relationship descriptions. Take Figure 4.1 again as an example, books are connected

by textual edges, where text on edges consists of exact quotations that one book cites

another. To predict whether A and E will have a citation link, we not only need

to analyze semantics embedded within each edge’s description, but different paths

may also depict different semantic meanings due to the varying textual descriptions

and types of relationships they represent. As noted in Figure 4.1, the Red Path

contains negative reference from A to E, while the Blue Path indicates another group

of researchers endorse the research conducted by book A.

Challenge. The rich and complex text on edges makes the link prediction on TEGs

not a trivial task, and there are two essential difficulties regulating existing GNN-

based and LLM-based methods, respectively. For edge-aware GNN-based methods,

directly combine and update each node vi’s feature based on its neighbor’s Nvi(vj)

features as well as features of edges eij. However, neighborhood aggregation would

fall short since semantics carried on each edge dij needs to be viewed in the context

of the whole connections from s to t. For LLM-based methods, existing works tend to

prompt language models by linearly summarizing graph topology, e.g., “G(s,t) contains

s, v1, v2, ..., vn, t nodes, v1 is connected to v2 via d12, v2 is connected to v4 via d24, etc.”

This way may let LLMs fail to understand how information propagates from s to t

and the contextual dependencies among nodes.
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the transition graph between 𝑠 and 𝑡. 
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Figure 4.2: Overall framework of LLM-enhanced link prediction on Textual-edge
graphs, where orange and blue nodes in G(s,t) belong to s’s and t’s local neighborhood
(namely Gs and Gt), respectively. Half blue and half orange nodes denote shared
nodes between Gs and Gt.

4.2.2 Overall Architecture

In this work, we introduce Link2Doc, a novel approach that leverages a self-supervised

learning scheme to endow GNNs with text comprehension capabilities akin to those

of LLMs. Link2Doc is designed to preserve and synergize rich semantic information,

topology information, and their interplay within TEGs for link prediction. We pro-

pose learning and aligning representations from two complementary perspectives: the

text view and the graph view. The text view, termed Text-of-Graph, organizes the text

associated with TEG’s nodes in a way that reflects the graph’s topology, forming a

structured document that inherently captures logical and relational data. Conversely,

the graph view, or Graph-of-Text, transforms the nodes and topology of TEGs into

structured graph data. By employing pretrained language models (PLMs), the text

view adeptly maintains textual integrity, while the graph view, processed through

GNNs, ensures the retention of graph-specific characteristics. Aligning these views

allows each representation to enrich the other, fostering a holistic understanding where

textual nuances inform graph structures and vice versa.

Specifically, as noted in Figure 4.2 (a), to reduce the search space and to eliminate

the noise from unrelated connections, we propose to formulate a (s, t)-transition graph

containing all the possible routes through which s could correlate to t.
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Definition 4 (Transition Graph). For any pair of two entities (s, t) in the Textual-

edge Graph, all paths from s to t collectively form an (s, t)-transition graph, which is

denoted by G(s,t). We use n and m to denote the number of nodes and edges in G(s,t),

respectively. Figure 4.1 exemplifies an (s, t)-transition graph, where s is Book A and

t is Book B. In practice, the length of paths can be upper-bounded by an integer K,

which can usually be set as the diameter of the Textual-edge graph.

The transition graph G(s,t), as well as all the text on edges, provide the necessary

information needed to understand the relation between s and t. Next, as shown

in Figure 4.2(b), we separate two subgraphs: Gs and Gt from G(s,t) for preserving

local neighborhood of s and t, respectively. In Figure 4.2(c), to view the topology

and semantic information of G(s,t) in a joint unit, we compose a manageable and

coherent document that expresses G(s,t) as a human-written document. Finally, in

Figure 4.2(d), we distill the text processing ability from large language models to

graph neural networks for inference scalability while maintaining performance.

4.2.3 Transition Document Construction

In this work, to address the first challenge, we need to summarize local relations

in G(s,t) to comprehensively understand the relation between (s, t). Since state-of-

the-art LLMs are predominantly trained on human-written documents and books,

in this work, we propose a novel way to express G(s,t) as a structured document

d(s,t) [89], complete with an introduction, sections, subsections, and a conclusion, to

let language models better understand the overall semantics between s and t with

preserving topology. The overall process is illustrated in Figure 4.3.

Node-centric Paragraph Composition. For source node s and target node t,

we first conduct Breadth-first Search (BFS) to extract their respective local structure

with depth L, i.e., Gs and Gt from their transition graph G(s,t). As shown in Figure
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[3] “High-resolution image synthesis 
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Figure 4.3: We first split G(s,t) into Gs (nodes are marked with orange) corresponding
to the local structure of s (Gt is omitted due to space limit). Commonly shared nodes
are marked with half blue and half orange. We transform the local structure of Gs into
a paragraph that summarizes hierarchical relation with s being the root. For better
visibility, hidden edges are highlighted with orange, and commonly shared nodes are
highlighted with blue.

4.3, nodes in G(s,t) that belong to Gs are marked with orange, and nodes belonging to

Gt are marked with blue. The structural data (i.e., BFS tree) obtained is transformed

into a textual paragraph aimed at both human readability and machine processability.

Specifically, taking the BFS tree Gs rooted at source node s as an example, s acts as

the main subject of the paragraph’s textual summary. We conduct pre-order traversal

to go over all nodes in both trees. The first and subsequent levels of BFS neighbors

are detailed in separate sections and subsections, akin to a detailed outline:

1. Root: Start with a sentence that describes node s and its immediate connec-

tions: “[s] Root s has three connections. s is connected to v1 via

ds1, s is connected to v2 via ds2, and s is connected to v3 via ds3’’,

where ds1, ds2, and ds3 are textual descriptions on edges es1, es2, and es3.

2. First-hop Neighbors: For each first-hop neighbor of s, we provide a sec-

tion detailing its connections: “[1]. Node v1 has two connections. v1
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is connected to v11 via d11, and v1 is connected to v12 via d12”; “[2].

Node v2 has one connection. v2 is connected to v21 via d21”; and “[3].

Node v3 has two connections. v3 is connected to v31 via d31, ...”.

3. Second (and following)-hop Neighbors: Subsections under each first-hop

neighbor detail further connections: “[1.1] v11 is connected to ...” “[1.2]

v12 is connected to...”, etc.

This structure is recursively applied up to L levels deep, ensuring each node’s direct

connections are thoroughly described, capturing the intricate topology of the graph.

The notation “[X]” refers to earlier parts of the summary where the connected node

was initially described, aiding in understanding the network’s connectivity beyond a

simple hierarchical structure.

Hidden Edges. The neighborhood of s and t may not always form tree structures.

As shown in Figure 4.3, node v122 is not only the child node of v12, v122 also links

back to v1 to form a triangle structure. To consider a more holistic view of the node

relationships, we add an extra description to the node stating its connection to pre-

existing nodes. Specifically, we introduce the hidden edge information of node v122 in

[1.2.2] as “In addition, v122 is also linked to [1] v1 via ...”. By letting

each mention of a hidden edge direct back to the respective section “[X]”, we aim to

ensure clarity and maintain the coherence of the graph’s description.

Transition Graph Document Construction. The unified d(s,t), which consists

of paragraphs from s and t, aims to not only present isolated descriptions but also to

highlight the interconnected nature of Gs and Gt. In this work, we aim to illuminate

the interconnectedness between Gs and Gt by identifying and highlighting nodes that

appear in both Gs and Gt’s local structures. These common nodes are pivotal as

they link the context of one paragraph to the other. As shown in Figure 4.3, the
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common nodes are marked with half orange and half blue. For each common node,

we include a cross-reference in the text where the node is mentioned, which is done

by adding a note after the section index. For example, node v122 has a section index

“[1.2.2]” in s’s paragraph, and a section index “[1.2.1]” in t’s paragraph. We then

add ([1.2.1] in Paragraph t) after the section index of v121 in s’s paragraph. We

conduct the cross-reference in the other paragraph reversely.

In practice, we keep the depth L to be half of the diameter of the G(s,t) so that

Gs and Gt can each cover their close neighbor information as well as an adequate

number of common nodes. We further enhance the document’s coherence by adding

an introduction to the start of the document. Finally, the generated d(s,t) can be

viewed as a structured document. More details can be found in Figure 4.3.

4.2.4 Transition Graph Neural Network

After obtaining a document d(s,t) summarizing both topology and semantic informa-

tion of G(s,t), scalability still poses a significant challenge for language models on

large-scale graphs. To conduct link prediction on a large G(s,t), we need to compose

many documents between node pairs with duplicated content (e.g., d(s,t1) and d(s,t2)

may largely overlap if t1 and t2 are neighbors).

On the other hand, GNNs are inherently designed to process graph structures

efficiently, making them a promising alternative for this task. Although LLMs may

not be capable of conducting large-scale link predictions, the implicit knowledge can

still be utilized to train GNNs. However, a straightforward application of GNNs faces

limitations: a single GNN may not fully capture the intricate interplay between the

graph’s structural properties and the semantic information on nodes and edges, espe-

cially in large graphs where G(s,t) between two nodes s and t can encompass thousands

of nodes due to a diameter as small as 4 [113]. Moreover, independently learning local

representations for s and t fails to account for the multi-scale interactions crucial for
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accurate link prediction. Each hop in the graph can reveal different structural and

semantic information—immediate neighbors contribute local properties, while nodes

farther away provide broader contextual insights.

Transition Graph Neural Network (TGNN). To better process rich textual

information on large-scale graphs efficiently, we propose TGNN and introduce a novel

stratified representation learning framework to captures multi-scale interactions be-

tween target nodes s and t by considering different “cuts” in the transition graph

G(s,t). Each cut is defined by a pair (n,K − n), where K is the diameter of the G(s,t)

between s and t, i.e., the longest path length between s and t in G(s,t). For each cut,

TGNN encompasses two directed graph convolution processes (with shared parame-

ters): one focuses on learning the representation of s of its n-hop neighborhood, and

the other focuses on t’s (K − n)-hop neighborhood. The TGNN update function at

n-th layer for node u is given as:

h(n)
u = fθ

(
h(n−1)
u ,AGG

(
{h(n)

v , eu→v : v ∈ N (u)}
))
, (4.1)

where v is the child node of u, θ is the parameter of the TGNN update function,

AGG(·) is the aggregation function of TGNN. By calculating Equation (4.1) for n =

1, 2, · · · , K − 1, we will obtain all the embeddings of s and t for all the cuts, namely

{(h(n)
s ,h

(K−n)
t )}, n = {1, 2, · · · , K − 1}.

Accelerating Transition Graph Representation Learning by Deduplicating

TGNN Computation. However, naively implementing all K cuts would neces-

sitate 2K times the calculation of the whole TGNN on the entire graph, resulting

in duplicated computation which will be prohibitive, especially for non-small graphs

that are common in the real world. To mitigate this, we exploit the hierarchical na-

ture of our transition graph to re-order the message-passing process as a cascading
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process from higher-hop neighbors of s (or t) progressively to the lower and lower

layers. The TGNN update function of cut n for node s given as:

h
(n)
u∈Ln

= xu,

h
(n)
u∈Ln−1

= fθ(h
(n−1)
u∈Ln−1

,AGG({h(n)
v , eu→v : v ∈ NLn(u)})),

h
(n)
u∈Ln−2

= fθ(h
(n−2)
u∈Ln−2

,AGG({h(n−1)
v , eu→v : v ∈ NLn−1(u)})),

...

h(n)
s = fθ(h

(n−1)
s ,AGG({h(n)

v , eu→v : v ∈ N (u)})), (4.2)

where v and u are nodes in the transition graph G(s,t) and Ln means all the n-hop

neighbors of s. The computation of h
(n)
s follows the cascading order that aggregates

higher-hop neighbors’ information first, as shown in Eq. (4.2). Since the cascading

(a.k.a, Eq. (4.2)) for cut n actually uses the node embeddings calculated in cut n−1,

we, therefore, propose to calculate the cascading processes in a sequential order n =

1, 2, · · · , K − 1 so the cut n− 1’s computation is naturally used for cut n, saving the

later from re-compute. Therefore, the entire calculation for all the K cuts for s is the

same as one calling of TGNN and hence we accelerate the compute by K times.

Aligning Topology Representation of G(s,t) with Semantic Information. To

bridge the gap between the semantic understanding capabilities of LLMs and the

structural learning strengths of the TGNN, in this work, we leverage LLMs to generate

embeddings h̃(s,t) of d(s,t) to guide the training of TGNN in a self-supervised learning

manner:

h̃(s,t) = fLM
(
d(s,t)

)
, h(s,t) = g(h̄s ⊕ h̄t), h̄s =

1

K − 1

∑K−1

n=1
h(n)
s , h̄t =

1

K − 1

∑K−1

n=1
h
(n)
t

where ⊕ denotes embedding concatenation, fLM(·) denote the LLM query function.

We transform text on nodes and edges with pre-trained language models (e.g., LLaMA
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models or OpenAI’s Embedding Models) and feed these attributes along with adja-

cency matrix of Gs and Gt to GNNs. The outputs are then concatenated and trans-

formed into LLM’s embedding space by a projection function g(·) with non-linear

transformation. We seed to align the latent embeddings h̃(s,t) produced by the LLM

with the embeddings h(s,t) generated by the GNN:

ℓKD = −E

log exp
(
sim(h̃(s,t),h(s,t))/τ

)
∑K

k=1 exp
(
sim(h(s,t),h(s,h))/τ

)
 , (4.3)

where the objective function is based on temperature-scaled cross-entropy loss (NT-

Xent) [24] to enforce the agreement between h̃(s,t) and h(s,t) compared with latent

embedding h(s,h) from negative pairs. Furthermore, to calibrate h(s,t) more towards

the link prediction (and edge classification) task, we incorporate standard binary

cross-entropy loss ℓLP for tuning GNNs. Note that for dealing with highly imbalanced

label distribution for edge classification tasks, we use weighted cross-entropy loss (e.g.,

Focal Loss [102]) instead.

Finally, the overall objective of the LLM-enhanced Representation Learning for

predicting links on edge-attributed graphs is written as ℓ = λ1ℓKD + λ2ℓLP , where λ1

and λ2 are hyperparameters.

Complexity Analysis. Given the transition graph G(s,t) with the diameter K, we

use Breadth-first Search (time complexity O((N+E)/2) (BFS) with the depthK/2 to

extract Gs and Gt, respectively. We then use pre-order traversal to obtain the docu-

ment d(s,t), which leads the total complexity to be O(N+E+N). The time complexity

for Pre-trained LMs to process d(s,t) is O(P
2), where P denotes the number of tokens

in d(s,t). Moreover, the GNN module requires O(|E| ·f +N2), where f denotes the di-

mension of the embedding on nodes/edges. Overall, The complexity encapsulates the

stages of BFS tree construction, document processing with Transformers, and GNN
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learning, which gives the training time complexity O(2N + E + P 2 + |E| · f + N2).

However, during the inference stage, the complexity of our work simply reduces to

the complexity of normal GNNs: O(|E| · f + N2) as we do not need to construct

documents during the inference phase.

4.3 Experiment

4.3.1 Experiment Setup

Setup. This paper focuses on link prediction on TEGs, which aims to predict

whether there will be a strong connection between two nodes in the adopted datasets

based on their transition graph. We run experiments on five real-world networks:

Amazon-Movie [63], Amazon-Apps [63], GoodReads-Children [166], GoodReads-Crime

[166], and StackOverflow. More specific dataset statistics can be found in the Ap-

pendix ??. We evaluate the performance using four standard metrics: Mean Recip-

rocal Rank (MRR), Normalized Discounted Cumulative Gain (NDCG), Area Under

ROC Curve (AUC) metric, and F1 score.

Comparison Methods. We compare our model with general GNNs, language

model integrated GNNs, and large language models. For general GNNs, we select

MeanSAGE [61], MaxSAGE [61], GIN [183] and RevGAT [91], which only use an adja-

cency matrix as the input. For language model-enhanced GNNs, we utilize Pre-trained

LMs, e.g., BERT [38], to acquire text representations on edges. Our baselines consist

of BERT + Graph Transformer (GTN) [202], BERT + GINEConv [64] and BERT +

EdgeConv [171]. Furthermore, we also incorporate state-of-the-art edge-aware GNN

- Edgeformer [75], which is constructed based on graph-enhanced Transformers to

combine language modeling into each layer of the Graph transformer. A novel graph

foundation model - THLM [218] is also included that integrates language modeling
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with GNN training. Finally, we adopt state-of-the-art LLMs, i.e., LLaMA-3-70B

and GPT-4o by directly translating the transition graph G(s,t) between the node

pair (s, t) to natural language as [48] do. Note that state-of-the-art language model

integrated GNNs, namely EdgeFormer, cannot incorporate text on nodes. For a fair

comparison, we present two variants of our method: Link2Doc does not consider

node texts, and Link2Doc-NT takes node text into account.

Implementation Details. To process all node and edge text, we leverage OpenAI’s

embedding model1 with dimension 3, 072. For both general GNNs and language model

enhanced GNNs, the dimensions of the initial node and edge embeddings are further

normalized to 64 and 128 respectively. Additionally, for the Edgeformer model, we

adhere to the same experimental settings as outlined in [75]. Our model uses Graph

Transformer (GTN) as our backbone in Eq. (4.1), where both node and edge embed-

dings mirror those of language model integrated GNNs. For Link2Doc, we follow the

same settings as general GNNs to obtain node and edge embeddings from OpenAI’s

embedding model. We set λ1 = 1 and λ2 = 2 respectively. All GNN baseline layers

are set to 2. The temperature τ in Eq. (4.3) to 2. We use Adam as the optimizer

with a learning rate of 1e− 5. The batch size is 1, 024. We run our model and other

baselines 10 times with different random seeds and report the average performance.

4.3.2 Results on Link Prediction

As can be seen from Table 4.1 and Table 4.2, Link2Doc can consistently achieve

better performance than other methods. Specifically, Link2Doc outperforms the

second best on average 5% of both AUC and F1 (Table 4.1) and 10% of both MRR

and NDCG across all datasets (Table 4.2). We further draw several observations

from the results. 1) There are no clear differences between general GNNs and edge-

1https:/platform.openai.com/docs/guides/embeddings/embedding-models
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Goodreads-Children Goodreads-Crime Amazon-Apps Amazon-Movie StackOverflow

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

General GNN
MaxSAGE 0.870 0.637 0.858 0.624 0.727 0.571 0.706 0.527 0.895 0.631
MeanSAGE 0.828 0.611 0.829 0.615 0.700 0.569 0.686 0.525 0.887 0.615
RevGAT 0.862 0.622 0.839 0.619 0.662 0.562 0.689 0.541 0.819 0.533
GIN 0.859 0.571 0.857 0.577 0.705 0.543 0.692 0.512 0.873 0.605

LM-enhanced GNN
GTN 0.880 0.654 0.863 0.640 0.728 0.572 0.742 0.539 0.911 0.675
GINEConv 0.881 0.657 0.864 0.636 0.701 0.573 0.692 0.543 0.920 0.681
EdgeConv 0.879 0.646 0.860 0.622 0.692 0.551 0.682 0.532 0.835 0.563
THLM 0.871 0.651 0.871 0.635 0.718 0.587 0.749 0.534 0.911 0.659
Edgeformer 0.882 0.662 0.862 0.643 0.722 0.580 0.744 0.540 0.903 0.663

LLMs
LLAMA-3-70B 0.832 0.573 0.869 0.587 0.694 0.509 0.643 0.482 0.252 0.471
GPT-4o 0.878 0.609 0.889 0.604 0.712 0.512 0.659 0.503 0.407 0.561

Link2Doc 0.902 0.705 0.901 0.652 0.762 0.588 0.753 0.553 0.938 0.697
Link2Doc-NT – – – – 0.769 0.595 0.759 0.565 0.940 0.707

Table 4.1: The performance comparison of Link Prediction on all datasets (the higher
the better), where the bests are highlighted with bold, and the second bests are
highlighted with underline. Note that − indicates the dataset does not have text on
nodes so that Link2Doc-NT cannot be conducted.

aware GNNs : both types of GNNs show comparable performance, with edge-aware

GNNs having a slight edge but not consistently outperforming general GNNs in all

metrics, which implies co-training language models with GNNs still cannot capture

the subtle cues on edge texts. For instance, while Edgeformer achieves the second-

best AUC on the Goodreads-Children dataset, it doesn’t consistently outperform

general GNNs like MaxSage across all datasets. 2) Directly summarizing topology

and letting LLMs make predictions may not perform well : LLMs, such as LLAMA-

3-70B and GPT-4o, tend to underperform compared to specialized GNNs and our

proposed Link2Doc. It is evident that state-of-the-art LLMs may not be able to

fully understand graph topology from the linear topology summarization, highlighting

the advantage of the composed document. 3) Text on nodes can further improve the

performance: As can be seen from the table, even though Link2Doc can achieve

a generally better performance than other approaches, by considering the text on

nodes, Link2Doc-NT can achieve a generally better performance than its no node-

text version.
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Goodreads-Children Goodreads-Crime Amazon-Apps Amazon-Movie StackOverflow

MRR NDCG MRR NDCG MRR NDCG MRR NDCG MRR NDCG

General GNN
MaxSAGE 0.2059 0.3342 0.2130 0.3372 0.2119 0.3938 0.2148 0.4299 0.2256 0.3313
MeanSAGE 0.2156 0.3619 0.2006 0.3199 0.2179 0.3951 0.2433 0.4340 0.2155 0.3351
RevGAT 0.2079 0.3567 0.1921 0.2997 0.2039 0.3865 0.2253 0.4318 0.2159 0.3369
GIN 0.2147 0.4160 0.2354 0.3644 0.2313 0.3486 0.2061 0.4305 0.2254 0.3351

LM-enhanced GNN
GTN 0.2239 0.4207 0.2536 0.4398 0.3134 0.4296 0.2872 0.4958 0.2321 0.4201
GINEConv 0.2458 0.4399 0.2628 0.4629 0.2916 0.4467 0.2587 0.4472 0.2340 0.4243
EdgeConv 0.2389 0.4281 0.2486 0.4265 0.2871 0.4318 0.2492 0.4432 0.2326 0.4218
THLM 0.1732 0.2998 0.2416 0.3964 0.2337 0.3845 0.2969 0.4284 0.1696 0.3283
Edgeformer 0.1754 0.3000 0.2395 0.3875 0.2239 0.3771 0.2919 0.4344 0.1754 0.3339

LLMs
LLAMA-3-70B 0.1356 0.2127 0.0692 0.0778 0.0500 0.1692 0.0683 0.1657 0.1421 0.2144
GPT-4o 0.2079 0.4106 0.2684 0.3633 0.2740 0.3697 0.2352 0.4228 0.2299 0.3751

Link2Doc 0.3167 0.5988 0.3518 0.6115 0.4139 0.5287 0.3926 0.6141 0.3618 0.6359

Table 4.2: The performance comparison of Link Prediction on all datasets (the higher
the better), where the bests are highlighted with bold, and the second bests are
highlighted with underline.

Amazon-APPs
AUC F1

Mean-SAGE 0.551 0.479
GINE 0.573 0.488
GTN 0.567 0.503
Edgeformer 0.612 0.526

Link2Doc 0.626 0.541

Table 4.3: Comparison on Edge Classification on Amazon-APPs dataset.

4.3.3 Results on Edge Classification

For the edge classification task, we aim to predict the category of each edge based

on its associated text and local network structure. There are 5 categories for edges

in the Amazon-APPs dataset (i.e., from 1 star to 5 star). The results of the 5-

class edge-type classification are shown in Table 4.3. As clearly can be observed

in the table, Link2Doc improves the AUC by an average of 5% and the F1 score

by 4.2% compared to other models, demonstrating its superior performance in edge

classification.
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Figure 4.4: Leveraging composed documents to enhance base GNNs on Amazon-
APPs dataset.

4.3.4 Ablation Study and Parameter Analysis

We further demonstrate the effectiveness of each component in our framework and

analyze the importance of different hyper-parameter settings.

Performance Elevation from Transition Document. We first aim to check the

general performance elevation brought by the composed transition document d(s,t).

We adopt three GNNs using BERT to obtain embeddings on edges and illustrate

whether using the composed d(s,t) as a reference would improve their performance in

both link prediction and edge classification tasks. The results on the Amazon-APPs

dataset are presented in Figure 4.4. As can be seen from the figure, the document-

augmented GNNs excel in their general version with an average improvement of 5%.

By summarizing all relations from s to t as a coherent document, language models

can give positive feedback on the proposed self-supervised learning module to guide

different GNNs in learning.

Hyperparameter Analysis. We then aim to investigate the sensitivity of the key

hyperparameter λ2 and their impact on Link2Doc’s performance. Specifically, since

λ1 controls the basic objective function for link prediction, we fix λ1 = 1 and show

the link prediction performance on the Amazon-APPs dataset under different λ2
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Figure 4.5: The performance on Amazon-APPs.

Children Crime

Inference Time (s)
Edgeformer 1450.67 3307.66
Link2Doc 49.35 23

Training Time (h)
Edgeformer 12.17 12.65
Link2Doc 5.253 7.04

Table 4.4: Comparison of inference and training time on Goodreads-Children and
Goodreads-Crime.

values (ranging from 0 to 5). As shown in Figure 4.5, both metrics show consistent

results across varying parameter values. By comparing with the second-best methods

(highlighted with red dash horizontal lines), Link2Doc with various λ2 values can

achieve overall better results. This demonstrates that our model maintains superior

performance across different configurations, highlighting its stability and effectiveness.

4.3.5 Runtime Analysis

We further illustrate the runtime comparison between our proposed Link2Doc with

the state-of-the-art competitor - Edgeformer. The comparison table (Table 4.4) high-

lights the efficiency of our method, Link2Doc, which significantly outperforms Edge-

former in both inference and training times. For the Goodreads-Children dataset,

Link2Doc is approximately 29 times faster in inference and more than twice as fast in
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training. On the Goodreads-Crime dataset, Link2Doc demonstrates an even greater

advantage, being about 144 times faster in inference and almost twice as fast in

training. These improvements stem from Link2Doc’s design, which does not require

fine-tuning language models; instead, it builds document representations and uses a

pre-trained GNN, avoiding the extensive matrix calculations in Edgeformer’s cross-

attention design. Consequently, Link2Doc is more scalable and efficient for large-scale

link prediction tasks.

4.4 Conclusion

In this work, we study the problem of link prediction on textual-edge graphs, where ex-

isting GNN-based and LLM-based methods may fall short of jointly capturing both se-

mantic and topology information to make more accurate link predictions. We present

a novel framework Link2Doc that learns and aligns the semantic representation

and topology representation by 1) building a structured document to preserve both

topology and semantic information; 2) proposing a Transition Graph Neural Network

module for better learning representations of the transition graph; and 3) designing

a self-supervised learning module to let TGNN have text understanding ability like

LLMs. Our method generally outperforms other approaches from multiple aspects

on five datasets.
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Chapter 5

Conclusion and Future Works

This dissertation explores the synergy between language modeling and graph data

mining in their respective data mining problems. I have specifically focused on three

tasks: 1) enhancing graph data mining by exploiting semantic information on net-

works, 2) integrating structured knowledge and quantifying uncertainty in natural

language understanding, and 3) representation learning on textual-edge graphs for

link prediction.

Completed Work: Enhancing graph data mining by exploiting semantic

information on networks. We first develop a generative framework to generate

heterogeneous graphs. The proposed framework - HGEN learns the latent distribu-

tion of observed heterogeneous graphs and generates novel ones by preserving various

heterogeneous graph properties. Next, for the task of information diffusion source lo-

calization, we have proposed a generic framework SL-VAE for probabilistic source

localization in graph diffusion. To handle more complex network structures, we

extend SL-VAE to handle cross-network information source localization: the pro-

posed framework CNSL further incorporates different features on nodes and develops

a novel objective function such that the reconstruction of diffusion sources in the

source network is fully aware of and guided by heterogeneous diffusion patterns in
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cross-networks. Finally, for the task of influence maximization, we developed a novel

framework DeepIM generatively learns the latent representation of seed nodes and

adapts to various node-centrality constraints, offering a flexible, data-driven solution

to the IM problem.

Completed Work: Integrating structured knowledge and quantifying un-

certainty in natural language understanding. We present the external KnowlEdge-

Enhanced Prompting method (KEEP) to achieve open-ended commonsense reasoning

without pre-defining an answer candidate set and an answer scope. KEEP leverages

an external knowledge base (e.g., ConceptNet) as the answer searching space and

iteratively extracts multi-hop reasoning paths relevant to the question by Pretrained

Language Models. In addition, we study the complexities of predictive uncertainty of

using in-context learning in large language models. This research delves into differ-

ent sources of uncertainty in LLMs, namely the aleatoric uncertainty from provided

demonstrations, and the epistemic uncertainty from the language model’s configura-

tions. We provide a novel formulation and an estimation method to quantify both

uncertainties, offering an unsupervised and plug-and-play approach to understand

and mitigate the uncertainty when using in-context learning in using LLMs.

Completed Work: Representation Learning of Textual-edge Graphs for

Link Prediction. Textual-edge Graphs (TEGs), characterized by rich text anno-

tations on edges, are increasingly significant in network science due to their ability to

capture rich contextual information among entities. In this paper, we present a novel

framework - Link2Doc, designed especially for link prediction on TEGs. Specifi-

cally, we propose to summarize neighborhood information between node pairs as a

human-written document to preserve both semantic and topology information. We

also present a specialized GNN framework to process the multi-scaled interaction be-

tween target nodes in a stratified manner. Finally, a self-supervised learning model is
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Task Description Status

Research Area A Enhancing graph data mining by exploiting semantic information on networks
A1 Deep generation of heterogeneous network: problem formulation & proposed framework Completed
A2 Cross-network source localization: problem formulation, framework, and dataset construction Completed
A3 Deep influence maximization: problem formulation & proposed framework Completed
A4 Experiment validation on synthetic and real-world datasets Completed

Research Area B Integrating structured knowledge and quantifying uncertainty in natural language understanding
B1 The definition and formulation of the problem Completed
B2 Using language models to guide reasoning path retrieval Completed
B3 Estimating the uncertainty associated with in-context learning Completed
B4 Experiment validation on synthetic and real-world datasets Completed

Research Area C Representation Learning of Textual-edge Graphs for Link Prediction
C1 The proposal of unique challenges of link prediction in TEGs Completed
C2 The design of Node-centric paragraph composition for transition graphs Completed
C3 The design and implementation of LLM-enhanced GNN framework Completed
C4 Experiment validation on synthetic and real-world datasets Completed

D Thesis Revision Completed

Table 5.1: Research tasks and status

utilized to enhance the GNN’s text-understanding ability from language models. Em-

pirical evaluations, including link prediction, edge classification, parameter analysis,

runtime comparison, and ablation studies, on five real-world datasets demonstrate

that Link2Doc achieves generally better performance against existing edge-aware

GNNs and language models in link predictions.

5.1 Research Task

The major research tasks are described as follows, and the current status of these

tasks is listed in Table 5.1.

5.1.1 Enhancing graph data mining by exploiting semantic

information on networks

• Deep generation of heterogeneous network: problem formulation &

proposed framework (A1). I propose a novel framework - HGEN for hetero-

geneous graph generation, which can jointly capture the semantic, structural,

and global distributions of heterogeneous graphs. Our framework consists of a
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novel heterogeneous walk generator that can hierarchically generate meta-path

instances (namely heterogeneous walk) and a heterogeneous graph assembler

that can construct new graphs by sampling from the generated heterogeneous

walks in a stratified manner.

• Cross-network source localization: problem formulation, framework,

and dataset construction (A2). I formulate the unique Cross-network

Source Localization problem, which aims at characterizing the distribution of

diffusion sources given the graph topology, graph features, and final diffused ob-

servation. The proposed framework captures 1) both static and dynamic node

features, and 2) the heterogeneous diffusion patterns of both networks. The

approximation of diffusion sources is fully aware of various node features and

the interplay of cross-network information diffusion patterns.

• Deep influence maximization: problem formulation & proposed frame-

work (A3). I propose a novel framework to tackle the IM problem in a more

robust and generalized way. Particularly, to characterize the complex nature of

the seed set, we propose to character the probability of the seed set and directly

search for a more optimal seed set in continuous space. Furthermore, to solve

the challenge of modeling the underlying diffusion pattern, we offer two dif-

ferent learning-based diffusion models to characterize the diversified diffusion

dynamics with efficiency and efficacy guarantee. Finally, we propose a novel

objective function that can be coupled with multiple constraints for seed node

set inference, which can adapt to different IM application schemes.

• The experiment verification on both sets of datasets (A4). I conduct

experiments against state-of-the-art methods designed originally for different re-

search tasks. Results show substantially improved performance of the proposed

methods.
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5.1.2 Integrating structured knowledge and quantifying un-

certainty in natural language understanding

• The definition and formulation of the novel problem (B1). The open-

ended commonsense reasoning problem is formulated as a multi-hop reasoning

task iteratively conducted on an external knowledge graph, where no pre-defined

answers are provided. The predictive uncertainty of LLMs associated with in-

context learning is also formulated as two types of uncertainties from different

sources.

• The model design of the knowledge-augmented commonsense reason-

ing (B2). I leverage the implicit knowledge stored in pretrained language mod-

els to guide the overall searching/reasoning process under both zero-shot and

finetuning settings. Then, I utilize the retrieved reasoning paths as additional

explanations to justify the answer choice.

• Estimating the uncertainty associated with in-context learning (B3).

I propose a novel formulation and corresponding estimation method to quantify

both types of uncertainties. The proposed method offers an unsupervised way

to understand the prediction of in-context learning in a plug-and-play fashion.

• Experiment validation on synthetic and real-world datasets (B4). I

empirically demonstrate the performance of our method against the state-of-

the-art competitors, which excels other comparison methods in multiple metrics

under different settings.
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5.1.3 Textual-edge Graph Representation Learning for Link

Prediction

• The proposal of unique challenges of link prediction on TEGs (C1).

I formulate the unique problem of leveraging language models in link predic-

tion on TEGs since GNNs often fall short of fully capturing the contextualized

semantics on edges and graph topology.

• The design design of node-centric paragraph composition for transi-

tion graphs (C2). I propose a novel method to summarize graph connections

in plain language. The coherent document composition summarizes local topol-

ogy information between node pairs in plain language.

• The design and implementation of LLM-enhanced GNN framework

(C3). I propose to use an integrated framework to jointly consider topology and

semantic information in TEGs, which consists of a specially designed Transition

Graph Neural Network (TGNN) and a self-supervised learning module to teach

TGNN language processing ability.

• Experiment validation on synthetic and real-world datasets (C4). I

empirically compare our method against existing state-of-the-arts in five real-

world datasets. The results reveal the proposed method can elevate the per-

formance of general GNNs and achieve competitive performance against edge-

aware GNNs.

5.2 Published Works

5.2.1 Publication during PhD Study
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Appendix A

Enhancing Graph Data Mining by

Exploiting Semantic Information

on Networks

A.1 CNSL Technical Supplements

A.1.1 Derivation of Eq. (2.4)

log pψ(yt|xs, Gs, Gt) = log[
∑

xt
pψ1(xt|xs, Gs) · pψ2(yt|xt, Gt)], where xt inherited in-

fection probability from ys. In practice, we assume pψ1(xt|xs, Gs) follows delta dis-

tribution, where only the xt is 1 that corresponds to the xs and the rest of xt’s

are 0. This property is also assumed in many works [141] using VAE. Therefore,

log pψ(yt|xs, Gs, Gt) is simplified as Eq. (2.4).

A.1.2 Graphical Model of CNSL

We provide the graphical model for the CNSL framework in Figure A.1. As shown

in the figure, solid arrows indicate the variational approximation qϕ1(zs|xs, Gs) and
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Figure A.1: The graphical model for CNSL, where the solid arrows indicate the varia-
tional approximation qϕ1(zs|xs, Gs) and qϕ2(zfs|xs, fs, Gs) to the intractable posterior
p(Z|xs, fs, Gs). Dashed arrows denote the generative process that decodes xs from
pθ(xs|Z) and predicts the information diffusion pψ(yt|xs,G).

qϕ2(zfs|xs, fs, Gs) to the intractable posterior p(Z|xs, fs, Gs). Dashed arrows denote

the generative process that decodes xs from pθ(xs|Z) and predicts the information

diffusion pψ(yt|xs,G). The two directional arrows between ys and xt indicate xt inher-

its the infection probability from the diffusion observation ys through bridging nodes

L.

A.2 Experiment Supplement

A.2.1 Case Study

In a case study depicted in Figure A.2, we illustrate the distribution of selected seed

nodes. Here violet nodes represent the nodes that are not seeds. On the other hand,

green nodes are the original seeds that were not selected by CNSL; orange nodes are

wrongly identified as seeds by CNSL; and the Blue color nodes are correctly identified

as seeds by CNSL.
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(a) LT2LT (b) LT2IC (c) LT2SIS

Figure A.2: Visualization of the inferred Seed Nodes by CNSL.

A.2.2 Algorithm

Algorithm 2: CNSL Training Framework

Input : Gs, Gt, fs, L, xs, yt

Output: Trained qϕ(·), pθ(·), and pψ(·)

1 repeat

2 repeat

3 zs = qϕ1(xs, Gs);

4 zfs = qϕ2(xs, xfs, Gs);

5 x̂s = pθ(zs, zfs);

6 ŷs = pψ1(x̂s, Gs);

7 x̂t ← ŷs based on the bridge links: L = {(vs, vt)|vs ∈ Vs, vt ∈ Vt};

8 ŷt = pψ2(x̂t, Gt);

9 Calculate Ltrain;

10 Back-propagate loss and Update parameters in qϕ(·), pθ(·), and pψ(·);

11 until each batch in train set;

12 until epoch in 1 to num epochs;

We summarize the inference algorithm of CNSL in 2. We want to use observed xs

and yt to learn the approximate posterior qϕ(Z|xs,G), the decoding function pθ(xs|Z),

and the cross-network diffusion prediction function pψ(yt|xs,G). Specifically, we sep-
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arately obtain two latent variables zs and zfs in Line 3-4. Both zs and zfs are fed to

reconstruct x̂s in Line 5. After the seed set reconstruction, we conduct cross-network

diffusion prediction as shown in Line 6-8. The backpropagation is calculated based on

Eq. (2.5) that consists of seed nodes reconstruction error, diffusion estimation error,

as well as constraints of KL divergence and influence monotonicity.

A.2.3 Algorithm

Algorithm 3: CNSL Inference Framework

Input : pθ(xs|zs, zfs); pψ1(ys|xs, Gs); pψ2(yt|ys, xt, Gt); the number of

iteration η; learning rate α.

Output: x̂s

1 z̄s =
1
k

∑k
i qϕ1(zs|x̂

(i)
s ,G);

2 z̄fs =
1
k

∑k
i qϕ2(zs|x̂

(i)
s ,G);

3 repeat

4 x̂s = pθ(z̄s, z̄fs);

5 ŷs = pψ1(x̂s, Gs);

6 x̂t ← ŷs based on L = {(vs, vt)|vs ∈ Vs, vt ∈ Vt};

7 ŷt = pψ2(x̂t, Gt);

8 z̄s ← z̄s − α · ∇Lpred(ŷt, z̄s, z̄fs)

9 until i = 0, ..., η;

10 x̂s = pθ(z̄s, z̄fs)

We summarize the inference algorithm of CNSL in 3. For the seed set inference, we

first sample k different x̂
(i)
s from the training set, and we marginalize them to obtain

two latent variables z̄s and z̄fs (Line 1-2). For η iterations, we decode the predicted x̂s

based on (z̄s, z̄fs) (Line 4) and conduct cross-network information diffusion prediction

(Line 5-7). The error between predicted ŷt and the observed yt is leveraged to update

z̄s based on Eq. (2.16).
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A.3 DeepIM Technical Supplements

A.3.1 Proof of Theorem 2.3.1 and Corollary 2.3.2

The proof of Theorem 2.3.1 is demonstrated as follows.

Proof. gu(x,G; θ) = A1◦(C1◦A2◦C2 · · ·◦AK◦CK) via iterating Eq. (2.9) recursively.

Because Ak and Ck are non-decreasing, so is A1 ◦ C1 · · · ◦ AK ◦ CK , which is gu.

Therefore, M is infection monotonic. Because gu and gr are non-decreasing, M is

also non-decreasing and hence score monotonic.

The proof of Corollary 2.3.2 is demonstrated as follows.

Proof. For the GAT model, aki,j = Ak(hki , hkj , θk) = θk1(θ
k
2h

k−1
i ||θk2hk−1

j ) and hki =

Ck(ak, θk) = max(
∑

j∈N(i) softmax(LeakyReLU(a
k
i,j))θ

k
1h

k−1
j , 0) where θk = [θk1 ; θ

k
2 ],

and || denotes the concatenation of two vectors. Ak are non-decreasing and non-

negative because θk ≥ 0 (i.e. θk1 ≥ 0 and θk2 ≥ 0). In other words, aki,j is non-negative,

and hki , θ
k
1 and the softmax operator are non-negative. Therefore, the LeakyReLU

operator and max(•, 0) can be removed from Ck. That is, hki = Ck(ak, θk) =∑
j∈N(i) softmax(a

k
i,j)θ

k
1h

k−1
j . Because the softmax operator is non-decreasing, and θk1

is non-negative. Ck is non-decreasing. Hence, The GAT model satisfies the conditions

in Theorem 2.3.1 and thus M is score and infection monotonic.

A.3.2 Derivation of Equation 2.16

The derivation of Equation 2.16 is shown as follows.

Lpred = min
z

E
[
− log pθ(y|x,G)− log pψ(x|z)

]
, s.t.

∑|V |

i=0
F(vi, G) · xi ≤ k,
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Since we assume the optimal ỹ = |V | and the predicted y ∈ [0, |V |], the optimization

target is to maximize the y until it reaches the fully infected status. Therefore, the first

term in Eq. (2.16) is written as the Mean Squared Loss (MSE): ∥ỹ −M(x,G; θ)∥22.

For the second term in Eq. (2.16), the value range of x after the autoencoder is [0, 1],

indicating the probability of each node being selected to the seed set. x ∈ [0, 1] fits

the binomial distribution so that minimizing the negative log-likelihood is equivalent

to minimizing the probability mass function. Therefore, the second term of the above

function can be written to − log
[∏|V |

i fψ(zi)
xi(1 − fψ(zi)

1−xi
]
. Adding both terms

gives us the final expression as shown in Eq. (2.16):

Lpred = max
z

E
[
pθ(y|x,G) · pψ(x|z)

]
, s.t.

∑|V |

i=0
F(vi, G) ≤ k.

A.3.3 More Experiments

Data. We provide a more detailed dataset description as follows. 1) Jazz [143].

This dataset is a Jazz musicians collaboration network, where each node represents

a musician and each edge represents two musicians who have played together in a

band. 2) Cora-ML [127]. This network contains computer science research papers,

where each node represents a paper and each edge represents one paper cites the

other one. 3) Power Grid [143]. This is a topology network of the US Western

States Power Grid. An edge represents a power supply line. A node is either a

generator, a transformation, or a substation. 4) Network Science [143]. This is a

coauthorship network between scientists working on network theory, where nodes

represent scientists and edges represent two scientists who have collaborated. 5) Digg

[135]. A directed network of social media where users follow each other and a vote to

a post allows followers to see the post. 6) Weibo [135]. A directed follower network

where a cascade is defined by the first tweet and the list of retweets.
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Hyperparameter Setting. For each baseline, we set hyperparameters according

to their original papers and fine-tune them on each dataset. For the configuration

of each diffusion model, we use a weighted cascade version of the IC model, i.e., the

propagation probability pu,v = 1/dinv (dinv denotes the in-degree of node v) for each

edge e = (u, v) on graph G; For LT model, the threshold θ is set to be uniformly sam-

pled from [0.3, 0.6] for each node v; the infection probability and recovery probability

are set to be 0.001 in the SIS model. For DeepIM, the 2-layer GAT-structured diffu-

sion estimation model that each layer contains 4 attention heads and the dimension of

each attention channel is 64. Both encoder and decoder are symmetric 4-layer MLP

with hidden size 512, 1024, 1024 and 1024 for each layer, respectively. We choose

Adam with learning rate 0.001 and 0.0001 for optimizing both Eq. (2.14) and Eq.

(2.15), respectively.
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Appendix B

Integrating Structured Knowledge

and Quantifying Uncertainty in

Natural Language Understanding

B.1 Open-ended Commonsense Reasoning

B.1.1 Experimental Details

Language Models. Our method is implemented with PyTorch and the Hugging-

face library. We do not train any new language models but finetune existing ones

with the training procedure described in Section 3.1.2. the language model pθ can

be any language model either with the zero-shot setting or finetuned on the external

knowledge base, and we leverage the masked language model RoBERTa-large [120]

since it has larger representative power in commonsense ability with a less model

size [214]. Specifically for GPT-3, we used the OpenAI API and specifically chose

text-davinci-003 as the base model.
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Commonsense Questions Answer 1 Answer 2 Answer 3 Answer 4 Answer 5 Top 1 Top 3 Top 5

August needed money because he was
afraid that he’d be kicked out of his house.
What did he need money to do?

needed for survival
in urban center

usual medium used
to buy things

can buy things
gregorian
calendar

root of all evil 1 1 1

The weasel was becoming a problem, it kept
getting into the chicken eggs kept in the what?

found in
grocery store

hen house bird
roomful of
junkies

farm 0 1 1

Where can you put a picture frame
when it’s not hung vertically?

picture frame electro magnetic ibt bounded surface table
useful to

convey idea
0 0 1

Unlike a spider and his many sight seers,
people only have what?

heavier than
sandwitches

go to mexican
restaurants for dinner

optimistic dreams
find sound of
bells mournful

watch movies
at home on dvds

0 0 0

Table B.1: Examples of the rating criteria for assessing the model performance.

Knowledge Graph. We leverage ConceptNet, a general-domain knowledge graph,

as our structured knowledge source G, which contains 799, 273 nodes and 2, 487, 810

edges. We obtain the data from the repository1 with version 5.6.0. ConceptNet

contains 34 relations (edge types). In terms of achieving less noise and better inference

time, we pre-process the ConceptNet by 1) merging similar relations into one unified

relation to reduce ambiguity; 2) extracting English-only content and transforming all

relations into an adjacency edge list; and 3) translating the relational edge between

two concepts to a natural language by designed template: (related to, car, traffic) →

“Car is related to traffic.” An example of the transformation template can be found

in Table B.2.

Data. 1) CommonsenseQA (CSQA): [156] is a multiple-choice QA dataset about

common-world scenarios, which is constructed on ConceptNet and contains 1, 140 test

cases. 2) QASC : Khot et al. [83] is a multiple-choice QA dataset about grad-school

science, which contains 917 test cases in total. We discard the provided answers and

supporting arguments in both datasets.

Relation Groups Merged Relations Relation Text

antonym/distinctfrom antonym is the antonym of
atlocation/locatednear atlocation is at location of
causes/causesdesire/motivatedby causes causes
relatedto/similarto/synonym relatedto is related to
isa/instanceof/definedas isa is a

Table B.2: Examples of the ConceptNet edge relation transformation templates.

1https://github.com/commonsense/conceptnet5/wiki/
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Implementation Details. Inferences are conducted on Nvidia Quadro RTX 6000

with approximately 100 GPU hours. We set the maximum length of the reasoning

path to be 3, indicating our algorithm only searches for answers within 3-hop of

neighbors from all the entities in the question. We generate 20, 000 logical sentences

as the training corpus for each dataset as described in Section 3.1.2. We finetuned

our model with 2 epochs and 1e− 5 learning rate by leveraging the training corpus.

Human Evaluation Criteria. We work with human annotators (students re-

cruited from the college) to obtain the Top-N accuracy and the validity rate of the

generated reasoning paths in Table 3.1 and Figure 3.6. There are three annotators

in total to evaluate the generated answers. To be more specific, for each dataset,

two annotators are individually assigned to score the Top-N accuracy. If there are

discrepancies between two annotators’ judgments, the third annotator is involved in

making the final decision.

We provide guidance for evaluating each model’s performance in Table B.1, and

the Evaluation Criteria for the results in Figure 3.6 are self-contained. Specifically,

we sample answers five times for each model on each commonsense question and rank

their answers based on their model’s confidence score (i.e., Equation (3.2)). Human

annotators are responsible for evaluating whether there exists an answer that fits

the semantic meaning of the question in the Top-1, Top-3, and Top-5 candidates,

respectively.

B.1.2 More Test Cases

We illustrate more test cases of each model’s performance on both datasets. (CSQA:

Table B.3; QASC: Table B.4).
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B.2 Uncertainty Quantification of In-context Learn-

ing for Large Language Model

B.2.1 Variance-based Decomposition

Alternatively, we can use the variance as a measure of uncertainty. Let σ2(·) com-

pute the variance of a probability distribution, and the total uncertainty is then

σ2(yT |x1:T ). This quantity can then be decomposed using the law of total variance:

σ2(yT |x1:T ) =σ
2
q(Θ) (E[yT |x1:T ,Θ]) + Eq(Θ)

[
σ2(yT |x1:T ,Θ)

]
. (B.1)

where E[yT |x1:T ,Θ] and σ2(yT |x1:T ,Θ) are mean and variance of yT given p (yT |x1:T ,Θ).

σ2
q(Θ) (E[yT |x1:T ,Θ]) represents the variance of E[yT |x1:T ,Θ] when Θ ∼ q(Θ), which

indicates the epistemic uncertainty since it ignores the contribution of z. In contrast,

Eq(Θ) [σ
2(yT |x1:T ,Θ)] in Eq. (B.1) represents the aleatoric uncertainty since it de-

notes the average value of σ2(yT |x1:T ,Θ) with Θ ∼ p(Θ) and ingores the contribution

of Θ to yT . Note that variance-based uncertainty decomposition does not involve

the probability of the generated tokens, which is applicable to black-box LLMs (e.g.,

GPT models).

Variance Approximation. In practice, when we are dealing with black-box LLMs

(e.g., ChatGPT), there are multiple hyperparameters (e.g., temperature and top p)

allowing to return different responses. Specifically, [y1
T , . . . ,y

L
T ] can be obtained

through querying the LLM with different demonstrations [x1
1:T−1, . . . ,x

L
1:T−1] L times.

The different sets of parameter configurations are denoted as [Θ1, . . . ,ΘM ]. The

E[yT |x1:T ,Θ] can then be calculated as the expected model output given the input

data and the model parameters Θ. Calculating the variance of this expectation with

respect to a set of model configurations over all sets of demonstrations gives the epis-
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temic uncertainty. The variance σ2(yT ) can also be obtained given a set of few-shot

demonstrations over all model parameters. Finally, average this variance over the

certain model configuration to obtain the aleatoric uncertainty.

B.2.2 Dataset Description

Sentiment Analysis. 1) Emotion [145] contains 2, 000 test cases, where LLMs are

asked to classify a given sentence with six categories: sadness, joy, love, anger, fear,

surprise. 2) Financial Phrasebank (Financial) [124] contains 850 test cases, where

LLMs are asked to classify a given financial news with three categories: negative,

neutral, positive. 3) Stanford Sentiment Treebank v2 (SST2) [151] consists of 872

sentences from movie reviews and human annotations of their sentiment, where the

language model is asked to predict the sentiment from two classes: positive and

negative.

Linguistic Acceptability. 1) The Corpus of Linguistic Acceptability (COLA) [174]

is about English acceptability judgments drawn from books and journal articles on

linguistic theory. Each example is a sequence of words annotated with whether it is

a grammatical English sentence, and there are 1, 040 test cases in total.

Topic Classification. TC aims at categorizing the given sentence into predefined

topics. We adopt AG News [208] is a dataset that collects more than 1 million news

articles, where LLMs are asked to classify a given news into four categories: World,

Sports, Business, and Sci/Tech. There are 1, 160 test cases in total.

B.2.3 Experiment Setup

We conduct experiments primarily on llama-2-7b-chat-hf, llama-2-13b-chat-

hf, and llama-2-70b-chat-hf, where the model weights are downloaded from the

website2. Since we cannot actually “sample” model weights as Bayesian Neural Net-

2https://ai.meta.com/resources/models-and-libraries/llama-downloads/
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works, in order to let LLMs return different outputs, we leverage Beam Search since

it considers multiple best options based on beam width using conditional probability,

which is better than the sub-optimal Greedy search. The beam search is conducted

with the beam size 10 and the max number of new tokens is set to be 16 uniformly

across all datasets. We choose a different number of demonstrations (details are

recorded in Table B.5) to allow the LLM to achieve the best performance on each

dataset, and we sample demonstrations four times uniformly across all datasets.

B.2.4 Prompt Template

In this work, we uniformly apply the following prompt template for all datasets. Take

the Emotion dataset as an example, we summarize the prompt in Table B.6. Note

that all datasets use the same template, small modifications are made on the actual

label information and different demonstration numbers of different datasets.

B.2.5 Case Study

Table B.7 demonstrates the actual changes in AU and EU when presenting LLMs

with different sizes and different demonstrations. Given the test query is: I had

stated to her the reason I feel so fearful is that I feel unsafe with the ground truth

label is (4: fear), which is a sentence with a negative feeling. For LLaMA-2-7B,

by presenting LLMs with more diverse demonstrations (containing both positive and

negative sentences), the results would be more diverse between different beam search

returned sequences, leading to a relatively higher AU than EU. For LLaMA-2-70B

with a larger parameter space and model capability, the EU and AU are significantly

reduced, which indicates the model is more confident in the generated output and the

variation of data may not influence much to the prediction.
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CSQA
Test Case 1

Generation Results

Prompt: Sean was in a rush to get home, but the light turned yellow and he was forced to do what?
→(Sean was in a rush to get home, but the light turned yellow and he was forced to [MASK].)

DeBERTa-v3-large stop

RoBERTa-large something

RelBERT park

T5-3b He got out of his car.

UnifiedQA The driver didn’t turn on the lights?

GPT-3 If the driver didn’t turn on the lights, it could be dangerous to drive

KEEP (Ours)
Stop cars.
Reasoning Chain:
Yellow light is a type of traffic light, traffic light is capable of stop cars.

CSQA
Test Case 2

Generation Results

Prompt: Reading newspaper is one of many ways to practice your what?
→(Reading newspaper is one of many ways to practice your [MASK].)

DeBERTa-v3-large English

RoBERTa-large Writing

RelBERT Writing

T5-3b Skills. You’ll spend plenty of time reading news items.

UnifiedQA Technique. You can use print, Internet, your phone, the internet, and even more online technologies.

GPT-3 Reading comprehension.

KEEP (Ours)
Essential ingredient of education.
Reasoning Chain:
Newspaper requires Reading, Reading is defined as an Essential ingredient of education.

CSQA
Test Case 3

Generation Results

Prompt: A child wants to play, what would they likely want?
→(A child wants to play, they would likely want [MASK].)

DeBERTa-v3-large toys

RoBERTa-large toys

RelBERT something

T5-3b Their father’s toys.

UnifiedQA Other children.

GPT-3 A child likely would want toys, games, outdoor activities, or sports equipment.

KEEP (Ours)
Toys.
Reasoning Chain:
A child is related to toys.

Table B.3: Three representative test cases on the CSQA dataset.
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QASC
Test Case 1

Generation Results

Prompt: Cystitis is an example of something that can be treated with?
→(Cystitis is an example of something that can be treated with [MASK].)

DeBERTa-v3-large surgery

RoBERTa-large medicine

RelBERT surgery

T5-3b Illness treatment.

UnifiedQA Antibiotics, but a small proportion of people with the disease are not.

GPT-3 Cystitis can be treated with antibiotics, anti-inflammatory medications, and pain relievers.

KEEP (Ours)
Antibiotics.
Reasoning Chain:
Cystitis is a type of Diease, Antibiotics is capable of handling Diease.

QASC
Test Case 2

Generation Results

Prompt: What allows fish to move through the water without slowing down too much?
→([MASK] allows fish to move through the water without slowing down too much.)

DeBERTa-v3-large It

RoBERTa-large Water

RelBERT Agility

T5-3b In fact, they are the fastest of all living creatures on our planet.

UnifiedQA Fishes all swim through the water and they all started swimming fast.

GPT-3 Fish have evolved a variety of features that help them move through the water with minimal resistance.

KEEP (Ours)
Fins.
Reasoning Chain:
Fish is capable of Swimming, Swimming requires Fins.

QASC
Test Case 3

Generation Results

Prompt: What made sharks excellent predators?
→(Sharks are excellent predators because of [MASK].)

DeBERTa-v3-large Camouflage

RoBERTa-large this

RelBERT something

T5-3b They could not just eat their prey.

UnifiedQA They have a streamlined body shape.

GPT-3 Sharks have many adaptations that make them excellent predators.

KEEP (Ours)
Jaws.
Reasoning Chain:
Sharks is related to Jaws.

Table B.4: Three representative test cases on the QASC dataset.

Random Class

Emotion 6 1 per class
Financial 6 2 per class
SST2 4 2 per class
COLA 2 1 per class
AG News 4 1 per class

Table B.5: Number of demonstrations selected in each dataset.
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System Prompt
### Below is an instruction that describes a task. Clearly follow the instruction and write a short
response to answer it.

Task Description
### Instruction: Classify the sentiment in the following text based on the six categories:
[0: Sadness; 1: Joy, 2: Love; 3: Anger; 4: Fear, 5: Surprise]. Provide the information in a
structured format WITHOUT additional comments, I just want the numerical label for each text.

Demonstrations

### Here are some examples:
Example 1: Sentence: {i didnt feel humiliated} Category: {0: Sadness}
Example 2: Sentence: {im grabbing a minute to post i feel greedy wrong} Category: {3: anger}
Example 3: Sentence: {i have the feeling she was amused and delighted} Category: {1: joy}
Example 4: Sentence: {i feel more superior dead chicken or grieving child} Category: {1: joy}
Example 5: Sentence: {i get giddy over feeling elegant in a pencil skirt} Category: {1: joy}
...

Test Query
### Test
Sentence: {} Category:

Table B.6: Prompt Template consists of four parts: 1) System Prompt aims at pro-
viding a basic hint of the task; 2) Task Description provides some details of the
task, e.g., if it is a sentiment analysis task or how many labels are there; 3) Few-shot
Demonstrations are leveraged to give LLMs some basic formats of how the returned
responses can be constructed; and 4) Test Query is the final test query that we want
LLMs to classify/categorize, and the LLM is only expected to return an exact answer
to solve the given question.

Testing Query:
I had stated to her the reason I feel so fearful is because I feel unsafe (4: fear)

Extracted
Predictions

EU AU

LLaMA-2-7B

1. i felt anger when at the end of a telephone call (3: anger)
2. i feel a little mellow today (1: joy)
3. i don t feel particularly agitated (4: fear)
4. i hate it when i feel fearful for absolutely no reason (4: fear)
5. im updating my blog because i feel shitty (0: sadness)

0, 0, 0, 1, 3
4, 3, 4, 4, 4

0.171 0.372

1. i am feeling outraged it shows everywhere (4: fear)
2. i do feel insecure sometimes but who doesnt (4: fear)
3. i start to feel emotional (0: sadness)
4. i feel so cold a href http irish (3: anger)
5. i feel i have to agree with her even though i can imagine
some rather unpleasant possible cases (0: sadness)

4, 4, 1, 3, 4
4, 4, 4, 5, 4

0.163 0.189

LLaMA-2-70B

1. i felt anger when at the end of a telephone call (3: anger)
2. i feel a little mellow today (1: joy)
3. i don t feel particularly agitated (4: fear)
4. i hate it when i feel fearful for absolutely no reason (4: fear)
5. im updating my blog because i feel shitty (0: sadness)

4, 3, 4, 3, 4
4, 4, 2, 4, 4

0.012 0.079

1. i am feeling outraged it shows everywhere (4: fear)
2. i do feel insecure sometimes but who doesnt (4: fear)
3. i start to feel emotional (0: sadness)
4. i feel so cold a href http irish (3: anger)
5. i feel i have to agree with her even though i can imagine
some rather unpleasant possible cases (0: sadness)

4, 4, 4, 4, 4
4, 4, 4, 4, 4

0.004 0.009

Table B.7: Case study on the actual EU and AU decomposed from the predictive
uncertainty
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Appendix C

Representation Learning on

Textual-edge Graphs for Link

Prediction

C.1 Algorithm of Transition Document Composi-

tion

We provide the full procedure of producing the document d(i,j) based on the node

pair’s transition graph G(s,t) in Algorithm 15. From Line 1-2, we obtain the respective

local structure of s and t based on their transition graph G(s,t) by BFS search. From

Line 3-4, for both Gs and Gt, we extract hidden edges that are not covered in the

BFS tree. In Line 5, we get the intersection of the node sets Vs and Vt for recording

the cross-paragraph nodes. Next, we initiate the document with the initial prompt

and traverse each node in Gs and Gt to assign document section indices and relations

to the document. Finally, we add hidden edges and cross-paragraph references as

denoted in Line 12-13.
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Algorithm 4: Transition Document Composition

Data: The transition graph G(s,t), the diameter K of G(s,t).
Result: Composed document d(s,t) with hierarchical relation, hidden edge

references, and cross-paragraph references.
1 1. Gs ← BFS(ROOT = s,GRAPH = G(s,t),DEPTH = K//2);
2 2. Gt ← BFS(ROOT = t,GRAPH = G(s,t),DEPTH = K//2);
; /* Obtaining local structure of s and t’ neighbor by

breadth-first search with depth K//2. */

3 3. Ehidden
s ← {eij|∀ vi ∈ Gs, vj ∈ Gs, eij ∈ G(s,t), eij ̸∈ Gs};

4 4. Ehidden
t ← {eij|∀ vi ∈ Gt, vj ∈ Gt, eij ∈ G(s,t), eij ̸∈ Gt};

; /* For both subgraphs Gs and Gt, we obtain hidden edges. */

5 5. V cross ← Vs ∪ Vt;
; /* Get common nodes shared by Gs and Gt. */

6 6. Initiate the document d(i,j) with an initial prompt: ‘‘‘‘We have two

paragraphs that summarize the relation between s and t...’’;
7 7. for each node vi ∈ Gs do
8 8. Assign document sections (e.g., [Sec. 1.1]) following pre-order

traversal of Gs;

9 end
10 9. Assign hidden edge following Ehidden

s to d(i,j) ;
11 10. for each node vi ∈ Gt do
12 11. Assign document sections (e.g., [Sec. 1.1]) following pre-order

traversal of Gt;

13 end
14 12. Assign hidden edges following Ehidden

t to d(i,j) ;
15 13. Assign cross-paragraph reference ∀ vi ∈ V cross;
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𝑠 𝑡
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(5)

…

Figure C.1: The stratified representation learning of TGNN.

C.2 Transition Graph Neural Network

Considering a (K−1)-layer graph neural network, TGNN returns the embedding of s

at each embedding updating layer of the GNN, as shown in Figure C.1. The strategy

effectively minimizes duplicated computation by reusing convolution outputs across

different cuts, resulting in a total computational cost equivalent to an K-layer GNN.

While it shares computational complexity with a standard K-layer GNN, it is not

strictly equivalent in terms of representation learning. By capturing and utilizing

multi-scale representations at each layer n, the proposed approach offers potential

advantages in expressiveness and performance for link prediction tasks.

C.3 Additional Experiments

Data. We run experiments on five real-world networks: Amazon-Movie [63], Amazon-

Apps [63], GoodReads-Children [166], GoodReads-Crime [166], and StackOverflow.

Amazon is a user-item interaction network, with reviews as textual content associated

with the edges. Goodreads is a reader-book network, that utilizes readers’ comments

as textual information within the edges. StackOverflow is an expert-question network,

and there will be an edge when an expert posts an answer to a question. The statistics

of five datasets can be found in Table C.1.
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Table C.1: Dataset Statistics

Dataset # Node # Edge

Goodreads-Children 192,036 734,640
Goodreads-Crime 385,203 1,849,236
Amazon-Apps 100,468 752,937
Amazon-Movie 173,986 1,697,533
Stack OverFlow 129,322 281,657

Amazon-Apps Amazon-Movie Goodreads-Children Goodreads-Crime StackOverflow

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

Single-Cut 0.7620 0.5880 0.7530 0.5530 0.9020 0.7050 0.9010 0.6520 0.9185 0.6841
Multi-Cut 0.7697 0.5997 0.7731 0.5755 0.9146 0.7099 0.9124 0.6661 0.9374 0.6968

Table C.2: Ablation study comparison between Link2Doc with single cut versus
multi-cut across five datasets, where the best values are bolded.

Ablation Study of Transition Graph Neural Network. We further demon-

strate the effectiveness of considering multiple cuts to learn a better representation

of G(s,t). As can be seen from Table C.2, Single-Cut denotes we only split G(s,t) in

half, where each Gs and Gt have the depth of K/2.

The Multi-Cut strategy consistently outperforms the Single-Cut approach across

all datasets. For example, in the Amazon-Apps dataset, the Multi-Cut method

achieves an AUC of 0.7697 compared to 0.7620 with the Single-Cut method, and an

F1 score of 0.5997 compared to 0.5880. This trend is observed across other datasets

as well, such as Goodreads-Crime, where the Multi-Cut approach results in an AUC

of 0.9124 versus 0.9010 for Single-Cut, and an F1 score of 0.6661 compared to 0.6520.

The improvement is particularly notable in the StackOverflow dataset, where the

AUC increases from 0.9185 with Single-Cut to 0.9374 with Multi-Cut, and the F1

score rises from 0.6841 to 0.6968.

Overall, the results clearly indicate that the Multi-Cut strategy leads to better

performance in both AUC and F1 scores, suggesting that the model benefits from the

multi-scale representation learning provided by the Multi-Cut approach. This likely

enhances the model’s ability to capture more comprehensive and diverse neighborhood

information, leading to improved prediction accuracy.
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