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Abstract 

Quantum Decoherence of Green Fluorescence Proteins 

By Yingrong Chen 

Quantum batteries, rooted in quantum mechanics, are revolutionizing energy storage with their 

superextensive charging capability, which allows them to charge rapidly as their capacity increases. The 

previous prototype, utilizing an organic microcavity with polaritons as "qubits," faces limitations due to 

exciton-exciton annihilation. To address this, we propose replacing organic dyes in the microcavity with 

fluorescent proteins, leveraging their protein cylinder as a "molecular bumper" to mitigate annihilation. 

For practical battery function, the fluorescent protein-based microcavity must delay quantum 

decoherence, where the quantum system collapses into classical states due to environmental interactions. 

 Inspired by biological systems with enduring quantum coherence, our research explores how 

protein and solvent environments influence energy gap fluctuations and quantum decoherence. The 

hypothesis posits that mutations reducing interactions and collisions can delay quantum decoherence. 

Using hybrid quantum mechanics-molecular mechanics (QMMM) simulations with both explicit and 

implicit models, we studied three GFP mutants—citrine, eGFP, and GFP.  

The findings reveal that citrine, with mutations (Q65M and T199Y) introducing π-π interactions 

and steric clashes, exhibits a shorter estimated decoherence time. In contrast, eGFP shows prolonged 

coherence, attributed to lower water density surrounding its chromophore. Explicit models also show 

shorter decoherence times due to dynamic solvent-chromophore interactions. Additionally, we establish a 

correlation between structural dynamics metrics like RMSD and RMSF and quantum decoherence, 

emphasizing their value for future rational design. The model is validated with experimental absorption 

spectra using time-dependent density functional theory (TDDFT). In conclusion, this study enhances our 

understanding of quantum decoherence in fluorescent proteins, providing a knowledge base for the 

rational design of quantum batteries. 
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Introduction 

Quantum Battery 

Quantum batteries are an emerging area of research that could revolutionize the energy storage 

and retrieval industries. While traditional batteries have been pivotal in technological advancements 

across personal electronics and automotive industries, they still rely on the principles of electrochemistry 

established in the 18th century 1. Thus, the expanding energy industries require new approaches that 

harness the principles of quantum mechanics.  

Quantum mechanics governs the behavior of particles at the atomic and subatomic levels, giving 

rise to nonclassical phenomena like coherence and entanglement. Decades of progress in quantum devices 

development have demonstrated the concept of “quantum advantage.” “Quantum advantage” highlights 

how quantum devices can outperform their traditional counterparts in specific tasks, such as quantum 

sensing, computing, and communication. For instance, quantum computers can simulate many-particle 

quantum systems exponentially faster than classical computers 2. Now, the focus of emerging research has 

shifted toward quantum energy processing, leading to the intriguing idea of quantum batteries 3.  

In contrast to traditional batteries, which suffer from slower charging rates as their capacity 

increases, quantum batteries possess a remarkable property known as superextensive charging 4. That is, 

quantum batteries charge at an accelerated rate as their capacity grows. This property holds promise for 

applications that require both substantial and rapid energy storage, such as electric vehicles. It could also 

reduce energy wastage during storage and retrieval, contributing to sustainability.  

The superextensive charging property arises from how quantum batteries are engineered based on 

principles of quantum mechanics (Fig. 1). Energy is stored in “qubits”, which can be implemented with 

ions, neutral atoms, and other physical forms with multiple energy levels. An ensemble of many qubits is 

embedded in a single cavity coupling with an external energy source. Charging a quantum battery excites 

all qubits to higher energy states by a protocol of “interaction” between the qubit ensemble and the 

external field. Conversely, discharging relaxes these qubits to lower accessible states. The energy is 

https://sciwheel.com/work/citation?ids=11000152&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=895035&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11661363&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15396053&pre=&suf=&sa=0&dbf=0
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stored in work that can be reversibly extracted from the system. Superextensive charging is made 

possible through entanglement between qubits that reduces the number of traversed states 5 or 

cooperative behavior that increases the coupling between battery and energy source 6. The more 

qubits, and hence the more entanglement, the faster the charging process. 

 

Fig. 1 Quantum battery implemented with an ensemble of qubits coupled with external energy source 7. 

 

Quantum Battery Built from Microcavity 

Very recently, a prototype of quantum battery was realized in an organic microcavity 

coupled with ultrafast optical spectroscopy (Fig. 2 a).  8. A microcavity is an engineered structure 

to confine and control photons (Fig. 2 b). It consists of two facing dielectric mirrors, the distance 

between which determines the wavelength of confined photons in the microcavity. Between the 

mirrors lies a layer of semiconductor dispersed in a polymer matrix. The confined photons will 

interact with the semiconductor molecules, which excites particles to higher energy states and 

creates electron-hole pairs known as excitons. Strong coupling between the incoming photons and 

the created excitons forms special particles called polaritons, which exhibit characteristics of both 

light and matter. Polaritons demonstrate quantum properties such as Bose-Einstein condensation 

and superfluidity. Moreover, they are capable of entanglement and coherent oscillations, so they 

are the “qubits” in this prototype 9. To measure the evolution of stored energy, researchers excited 

the microcavity using a pump pulse and measured the number of excited molecules with a second 

probe pulse 8.  As the number of molecules in the microcavity increases, the charging power 

density also increases, and it takes less time to charge 8.  

https://sciwheel.com/work/citation?ids=15401415&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14214779&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8215946&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14214771&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11427507&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14214771&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14214771&pre=&suf=&sa=0&dbf=0
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Fig. 2 Quantum battery prototype implemented with microcavity. (a) Quantum battery implemented with 

microcavity of Lumogen-F orange (LFO) in a polystyrene (PS) matrix between Bragg reflectors (DBRs). 

This prototype used polaritons as “qubits” and demonstrated superextensive charging 8. (b) Typical 

exciton-polariton microcavity with two Bragg mirrors and quantum well. The coupling between photon 

and exciton gives arises to polaritons 10. 

 

Exciton-Exciton Annihilation Necessitates the Use of Fluorescent Protein 

However, this prototype of quantum battery is limited by exciton-exciton annihilation. As the 

concentration of organic dye Lumogen-F orange (LFO) in the semiconductor increases, the quantum yield 

drops to zero 8. This phenomenon, also known as exciton-exciton annihilation or intermolecular 

quenching, arises from the nonradiative recombination of excitons and the dissipation of energy as heat 

into the surrounding environment (Fig. 3). Exciton-exciton annihilation is detrimental to microcavity 

because it limits device lifetime, makes it challenging to scale up the system, and reduces the efficiency 

for energy storage or other optical applications. 

https://sciwheel.com/work/citation?ids=14214771&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15600901&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14214771&pre=&suf=&sa=0&dbf=0


 

 

 

4 

 

Fig. 3 Exciton-exciton annihilation and green fluorescent protein. (a) exciton-exciton annihilation 11(b) 

enhanced green fluorescent protein (eGFP) structure (c) eGFP’s protein cylinder as “molecular bumpers” 

(d) higher fluorescence intensity of eGFP compared to organic dye at high concentrations12. 

 

To address the issue of exciton-exciton annihilation in microcavities, researchers have 

replaced LFO in the semiconductor with biologically sourced enhanced green fluorescent protein 

(eGFP) 12. The active component in eGFP is a chromophore formed by autocatalytic cyclization 

of three amino acids. The chromophore is surrounded by a nanocylinder composed of 11 β sheets 

(Fig. 3 b). This protein cylinder acts as a “molecular bumper,” maintaining a separation between 

chromophores even within densely packed arrangement (Fig. 3 c). eGFP has been engineered in 

the microcavity as the active semiconductor component positioned between two mirrors (Fig. 4) 

12. The resulting microcavity demonstrates polariton properties, such as low-threshold coherent 

light generation, superfluidity, and small Rabi splitting. Importantly, eGFP does not undergo 

exciton annihilation, so it exhibits higher fluorescence intensity than organic dye at high 

concentrations (Fig. 3 d)  12. This suggests that a quantum battery prototype can be innovatively 

implemented with an eGFP-filled microcavity. Furthermore, by engineering fluorescent protein 

mutants other than eGFP inside the microcavity, we can study how the protein cylinder control 

the microcavity’s energy transfer and quantum decoherence – an important property to consider 

in engineering quantum battery discussed in next section. 

https://sciwheel.com/work/citation?ids=15444707&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11859104&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11859104&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11859104&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11859104&pre=&suf=&sa=0&dbf=0
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Fig. 4 An innovative quantum battery prototype: fluorescent protein-based microcavity.  

 

Energy Retention Issue – Quantum Decoherence 

How can a quantum battery charge quickly while stabilizing the energy and discharging much 

more slowly? The energy retention problem is associated with a phenomenon called quantum 

decoherence. Quantum decoherence occurs when a quantum system "collapses" back into the classical 

regime due to its interactions with the surrounding environment (Fig. 5). Ideally, we prefer quantum 

systems to remain completely isolated. However, realistic quantum systems are exposed to external fields, 

rapidly entangling with numerous environmental degrees of freedom. Quantum decoherence explains why 

it's challenging to observe quantum phenomena like superposition in our everyday experiences – they 

quickly collapse even if they are successfully made. 

   

Fig. 5 Quantum decoherence on a quantum superposition state of 'heads' and 'tails'. And its collapse into 

two distinct 'heads' and 'tails' states due to quantum decoherence  

To mitigate quantum decoherence in the fluorescent protein-based quantum battery, we can begin 

by studying biological systems known for their long-lasting quantum coherence. Biological functions like 

photosynthesis and fluorescence depend on quantum transitions from ground to excited states as well as 
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phenomena like entanglement and tunneling. Thus, researchers have long been interested in the 

extent and impact of quantum decoherence in biological systems. Long-lived quantum coherence 

has been observed in systems like light-harvesting complexes (Fig. 6) 13. Excitation energy can 

become delocalized among closely spaced chromophores and their associated donor and acceptor 

states, driving multiple energy transfer pathways simultaneously 14. This enhances the efficiency 

of energy transfer between the chromophore antenna and the photosynthetic reaction center 15.  

 

 

Fig. 6 Light-harvesting complexes Fenna−Matthews−Olson (FMO) with multiple chromophores 16. 

 
This remarkable long-lived quantum coherence is attributed to small energy gap 

fluctuation 17. When considering chromophores as two-level systems (TLS), the energy gap 

fluctuation between the ground and first excited states is determined by the correlated evolution 

of energy levels and the smoothness of each potential energy surface (Fig. 7 a). When the energy 

surface of the ground state vertically aligns with that of the excited state along certain reaction 

coordinate, it leads to correlated evolution of energy levels, thereby enhancing quantum 

coherence. On the other hand, quantum coherence is impaired by small bumps in the potential 

energy surfaces, which often occur due to the coupling of the reaction coordinate with other 

vibrational modes. This inverse relationship between energy gap fluctuation and quantum 

coherence are also found in the Fenna−Mat- thews−Olson complexes, the PE545 aggregate, the 

LH2 complexes, DNA, photolyase, and cryptochromes (Fig. 7 b)  1819. Thus, we may improve 

quantum coherence in a biological system by minimizing the energy gap fluctuation.  

 

https://sciwheel.com/work/citation?ids=5585327&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1255281&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3238831&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14594097&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14229137&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14229136&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14232401&pre=&suf=&sa=0&dbf=0
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Fig. 7 Energy gap fluctuation and quantum decoherence. (a) energy gap fluctuation controlled by the 

correlated evolution of energy levels and the smoothness of each potential energy surface (b) inverse 

relationship between energy gap fluctuation and quantum coherence 17 

 

Rational Design of Fluorescent Proteins to Minimize Decoherence 

Biological systems, such as fluorescent proteins, can be examined as quantum subsystems 

interacting with the surrounding environment of proteins and solvents. Initially, the chromophore exists in 

a superposition of the ground and excited states. However, chemical interactions and collisions with 

surrounding proteins and solvents lead to quantum decoherence (Fig. 8 a). In our pursuit of designing 

fluorescent proteins for quantum batteries, it is crucial to understand how the protein cylinder and active 

water influence the chromophore decoherence. However, gaining such insights in experiments can be 

challenging due to the time and resources required to set up the microcavity. Thus, this research performs 

computer simulations to reveal the quantum decoherence of various fluorescent protein mutants. The 

protein cylinder of these mutants forms different hydrogen bonds and electrostatic interactions with the 

chromophore. The hypothesis is that the smoothness of potential energy surface can be improved by 

reducing random collisions between the environment and the quantum subsystem, while the environment 

can polarize the subsystem in a way that its energy levels become more correlated. The resulting design 

rules will enable rational design of fluorescent proteins to make highly efficient quantum batteries.  

Green fluorescent proteins (GFP) have revolutionized biomedical imaging by allowing 

researchers to label and track biological components in living organisms. Notably, scientists have 

engineered a vibrant spectrum of fluorescent protein variants with diverse maturation, brightness, 

https://sciwheel.com/work/citation?ids=14229137&pre=&suf=&sa=0&dbf=0
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stability, and emission bands, an achievement that was honored with the Nobel Prize in 

Chemistry in 2008. These properties are primarily controlled by the chemical structures of the 

chromophore, but also finely tuned by the noncovalent interactions between the chromophore and 

the protein cylinder as well as water molecules. This research studies two prominent GFP 

mutants, citrine and eGFP, along with the wild-type GFP, all sharing the same chromophore 

(CRO) (Fig. 8 b). Several residues on the surrounding β-barrel are key to the CRO excitation, so 

they are predicted to affect the quantum decoherence. For instance, the T203Y in citrine mutant 

removes the T203–CRO hydrogen bond and creates the π–π stacking between the six-membered 

rings of Y203 and CRO. This increases the CRO polarizability and results in a significant red-

shift 20. 

On the other hand, water molecules play a crucial role in chromophore excitation and 

emission 21. Some water molecules can form hydrogen bond with nitrogen in the CRO 

imidazolinone ring, while others can mediate the interaction between surrounding amino acids 

and CRO 20. To explore the effects of water on CRO decoherence, this research used both implicit 

and explicit solvent models. 

   

 

Fig. 8 Mutants of GFP and their surrounding environments. (a) effects of environment on the GFP 

chromophore’s quantum decoherence (b) mutants of GFP studied in this research 20 

https://sciwheel.com/work/citation?ids=14993647&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14895171&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14993647&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14993647&pre=&suf=&sa=0&dbf=0
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Theory 

Quantum Decoherence 

Formally, decoherence can be viewed as a filter acting on the state space, selecting stable 

classical states while excluding unstable entangled ones 22. It happens either through continuous 

monitoring by the environment or through a rapid measurement, or both. 

“Before” the subsystem A interacts with the environment B, it is a coherent pure state described by a 

wave function Ψ(A):  

Ψ(A) = ∑ c𝐼|ψ𝐼⟩

I∈A

 

With coefficient c𝐼  and basis set {ψI}. And its density operator ρ̂ can be expressed as: 

ρ̂ = |Ψ⟩⟨Ψ| = ∑ c𝐼c𝐽
∗|ψ𝐼⟩⟨ψ𝐽|

𝐼𝐽

 

The diagonal elements of the density matrix are called populations, or probabilities, while the off-

diagonal elements are called coherences. On the other hand, a mixed state – a statistical mixture of pure 

states ΨL – cannot be described by a wave function, but it can be described by a density matrix: 

ρ̂ = ∑ p𝐿|ΨL⟩⟨Ψ𝐿|

𝐿

 

where pL is the classical probability of finding the system in state L. Instead of the coherent superposition 

in pure state, this is a classical mixture of quantum states.  

“After” the subsystem A interacts with the environment B with multiple state J expressed in the 

basis {|s𝒦⟩}: 

ϕ𝐽
(𝐵)

= ∑ αJ𝒦 |s𝒦⟩

𝒦∈B

 

The combined system–environment state becomes: 

Ψ(AB) = ∑ c𝐼|ψ𝐼⟩|ϕ𝐼⟩

I∈A

 = ∑ 𝑐𝐼αI𝒦|ψ𝐼⟩|s𝒦⟩

I∈A,𝒦∈B

  

https://sciwheel.com/work/citation?ids=15470647&pre=&suf=&sa=0&dbf=0
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Suppose there are two states each in the subsystem A and the environment B, the combined system–

environment state is: 

Ψ = c1α11|ψ1⟩|s1⟩ + c1α12|ψ1⟩|s2⟩ + c2α21|ψ2⟩|s1⟩ + c2α22|ψ2⟩|s2⟩ 

The coefficients 𝑐𝐼αI𝒦 cannot be expressed in a product form, indicating entanglement between system A 

and environment B. The density operator for the subsystem A is given by: 

ρ̂ (A) = ∑ c𝐼c𝐽
∗

𝐼𝐽∈A

⟨ϕ𝐼|ϕ𝐽⟩|ψ𝐼⟩⟨ψ𝐽| 

ρ̂ (A) contains terms describing the overlaps between environment states. When the 

environmental degrees of freedom are large and the environmental states are orthogonal, the off-

diagonal elements vanish because 𝛿𝐼𝐽 = ⟨ϕ𝐼|ϕ𝐽⟩. Although the combined system–environment 

state is still a pure state, the subsystem A becomes a mixed state.  

In fluorescent protein, the chromophores can be described as two-level systems (TLS) 

with only the ground and first excited state, represented with coefficient 𝑐1 and 𝑐2. The density 

matrix of the chromophore subsystem “before” and “after” environmental interaction is: 

𝜌𝑏𝑒𝑓𝑜𝑟𝑒 =  (
|𝑐1|2 𝑐1

∗𝑐2

𝑐1𝑐2
∗ |𝑐2|2 )  → 𝜌𝑎𝑓𝑡𝑒𝑟 = (

|𝑐1|2 0

0 |𝑐2|2) 

The off-diagonal, coherence terms vanish due to decoherence (Fig. 9).  

 

Fig. 9 Math theories behind quantum decoherence represented with Schrödinger’s cat. The vanishing of 

off-diagonal, coherence terms in the density matrix due to decoherence. 23 

 

Decoherence can also be viewed as the loss of information from a system into the 

environment. That is, “the environment measures the system”. As the molecule become entangled 

https://sciwheel.com/work/citation?ids=15444447&pre=&suf=&sa=0&dbf=0
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with environmental degrees of freedom, the environment keeps track of the quantum information in the 

system, even though it's not a conscious observer. The continuous measurement-like interaction leads to 

the decay of quantum behavior. 

 

Decoherence Time and Energy Gap Fluctuation 

The relationship between quantum decoherence and energy gap fluctuations in biological systems 

can be described by a generalized version of the Kubo stochastic line shape theory 24. For the HOMO-

LUMO energy gaps 𝐸𝑖𝑗 (𝑡) of green fluorescent protein, the autocorrelation function is calculated by: 

𝐶𝑖𝑗(𝑡) =  ⟨𝛿𝐸𝑖𝑗(𝑡)𝛿𝐸𝑖𝑗(0)⟩, where 𝛿𝐸𝑖𝑗(𝑡) = 𝐸𝑖𝑗(𝑡) − 〈𝐸𝑖𝑗〉. 

The gap fluctuation ⟨ΔE2⟩1/2 is used to estimate the decoherence time 𝜏𝐷 by: 

τD =  
B

√〈∆𝐸2〉
, with B = √2ℏ or B = √

12

5
ℏ 

The following is a simplified derivation of the 𝜏𝐷 equation. Generally, the decoherence function 

D(t) is a convolution f * g of exponential decay f(t) and Gaussian decay g(t) 25. The unnormalized 

correlation function C(t) in Kubo stochastic line shape theory consists of two parts with normalized 

prefactors α1 and α2, where α1 + α2 =  1, along with coherence times τc,1 and τc,2: 

C(t) = ⟨ΔE2⟩(α1exp(−
𝑡

τc,1
) + α2exp(−

𝑡

τc,2
)) 

If the fluctuations in the system include slow and fast fluctuations at the same time, the line shape 

function can be approximated by: 

g(t) =
⟨ΔE2⟩

ℏ2
(α1τc,1t + α2t2/2)) 

The decoherence function is given by: 

D(t)  =  exp(−g(t)) 

The dephasing time (the onset of quantum decoherence) τD is defined as: 

τD =
2

√𝜋
∫ 𝐷(𝑡)𝑑𝑡 = 

∞

0

√
2ℏ2

〈ΔE2〉α2
𝑒−𝐴〈ΔE2〉erfc(√𝐴〈ΔE2〉) 

https://sciwheel.com/work/citation?ids=14236888&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15472624&pre=&suf=&sa=0&dbf=0
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erfc(x) denotes the complementary error function and the constant A is given by: 

A =
τ1

2

2ℏ2

α1
2

𝑎2
 

In the limit as 𝑎1 approaches to 0, the dephasing time can be simplified to: 

τD,G =
𝐵

√〈ΔE2〉
 

The constant B is fitted in previous research to be B = √2ℏ or B = √
12

5
ℏ 17. 

Molecular Dynamics (MD)  

 The energy gap fluctuation is calculated by computational simulation of fluorescent protein 

mutants. Molecular dynamics (MD) simulates a system of interacting molecules by numerically solving 

Newton's equations of motion. For each atom, the starting position 𝑅(0) is obtained from experimental 

data, and the starting velocity 𝑣(0)  =  
𝑑 𝑅(0)

𝑑𝑡
 is assigned based on a specified temperature. The new 

positions and velocities after a time interval Δt is predicted with acceleration 𝑎(𝑡). 𝑎(𝑡) is computed from 

Newton’s second law and the force 𝐹(𝑡):  

𝐹(𝑡)  =  𝑚𝑎(𝑡) 

 

In turn, the overall force acting on an atom is computed from a potential energy function 

𝑉(𝑅) based on the position 𝑅(𝑡):  

𝐹(𝑡)  =  −
𝜕𝑉(𝑅)

𝜕𝑅
 

The potential energy function can be derived from either quantum mechanics or 

molecular force field. A molecular force field comprises a set of parameters used to calculate 

interatomic forces, taking into account factors such as chemical bonds, bond angles, bond 

dihedrals, as well as non-bonded interactions like van der Waals forces and electrostatic charges. 

The computational cost for evaluating the molecular potential scales as O(N2), accounting for the 

interactions between each particle and all others. However, it's essential to recognize that a 

https://sciwheel.com/work/citation?ids=14229137&pre=&suf=&sa=0&dbf=0
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molecular force field doesn't capture electron behavior and, therefore, cannot be utilized to depict 

chemical reactions, electron transfer processes, nor fluorescence phenomena. 

Molecular movements are propagated in n steps, and the total simulation time is Δt ×  n. Within 

each step, the system is updated using integrator like the Velocity Verlet method: 

{
𝑅(𝑡 + Δt)  =  R(t)  +  v(t)Δt +  

1

2
 𝑎(𝑡)Δt2 

𝑣(𝑡 + Δt)  =  v(t)  +
1

2
 {𝑎(𝑡)  +  𝑎(𝑡 + Δt)}Δt

 

By default, the number of atoms (N), the volume of the system (V), and the total energy (E) 

remain constant, which is known as the microcanonical ensemble (NVE). NVE ensemble represents an 

adiabatic process without any heat exchange. However, biological systems frequently interact with their 

environment through endothermic and exothermic processes, causing variations in their total energy. In 

such cases, simulations can be configured to maintain a constant number of atoms (N), volume (V), and 

temperature (T) using the canonical ensemble (NVT). Temperature is estimated from the kinetic energy 

of the system 
𝑛𝑘𝐵𝑇

2
  , and is controlled using a thermostat. Alternatively, simulations can be set to maintain 

constant pressure by employing the isothermal–isobaric ensemble (NPT) in place of constant volume. 

 

Fig. 10 Statistical ensembles in Molecular Dynamics26. 

 

Solvents can be depicted either explicitly or implicitly in simulations. Explicit solvent model 

substantially increases the computational cost, as it involves tenfold more particles to calculate in each 

step. In contrast, generalized born implicit solvent models treat the solute as a collection of spheres with a 

https://sciwheel.com/work/citation?ids=15462036&pre=&suf=&sa=0&dbf=0
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designated dielectric constant. The implicit solvent model also account for solvation energies and 

forces acting on the solute atoms 27. 

 

Fig. 11 Explicit versus Implicit solvent models in Molecular Dynamics 26. 

 

Instead of having a single system comprising one protein and its surrounding solvents, 

the system exists within a bulk of other similar systems and interacts with the protein and solvents 

in other systems. Thus, periodic boundary conditions are used to connect one side of the 

simulation seamlessly to the opposite side. This condition mimics the behavior of multiple 

instances of the same system interacting with each other (Fig. 12). In the simulation, 

electrostatics are evaluated using the Particle Mesh Ewald method. This method combines the 

short-ranged potential calculated in real space with the long-ranged potential calculated in Fourier 

space, resulting in faster computation with a time complexity 𝑂(N log 𝑁), as opposed to the 

direct calculation method with a time complexity of 𝑂(𝑁2). 

 

Fig. 12 Periodic boundary condition in Molecular Dynamics 28. 

 

https://sciwheel.com/work/citation?ids=12171158&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15462036&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14430602&pre=&suf=&sa=0&dbf=0
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Quantum Mechanics−Molecular Mechanics (QM/MM)  

The fluorescent protein cylinder and solvent molecules collectively possess a multitude 

of degrees of freedom that can only be described using classical mechanics. In contrast, the chromophore 

subsystem experiences quantum transitions that necessitate a quantum mechanical description. Therefore, 

I employed a hybrid quantum mechanics-molecular mechanics (QM/MM) approach. 

In this approach, the system is partitioned into two distinct regions: a quantum mechanical (QM) 

region and a molecular mechanics (MM) region. The total energy of the system is expressed as: 

𝐸 =  ⟨Ψ|𝐻𝑄𝑀  +  𝐻𝑄𝑀/𝑀𝑀|Ψ⟩  + 𝐸𝑀𝑀   

The total energy in MM region 𝐸𝑀𝑀 is independent of electronic degrees of freedom and is 

calculated classically using specified molecular force field. 𝐻𝑄𝑀/𝑀𝑀 is determined through an 

electrostatic embedding scheme, which calculates the interaction between the point charges in the MM 

region and the nuclei and electrons in the QM region. When there is no covalent bond between the QM 

and MM regions, the 𝐻𝑄𝑀/𝑀𝑀 comprises an electrostatic component and a Lennard-Jones term. If the 

QM and MM regions are connected by chemical bonds, the bond is truncated, and a link atom is 

introduced along the bond vector to cap each region. 

𝐻𝑄𝑀  is evaluated using specified electronic structure calculation. In general, electronic structure 

calculation derives approximate solutions to the Schrödinger equation to obtain the total energy and the 

wavefunction (or electron density distribution) of the system. The Born-Oppenheimer approximation 

segregates the electron wavefunction from the nuclei wavefunction. For a fixed nuclei arrangement, the 

electronic ground state energy can be determined from the electron density ρ(r) based on density 

functional theory (DFT). However, the specific form of the density functional is generally unknown, so 

density functional approximations is used to estimate the ground state energy. The density 𝜌(𝑟) can be 

represented by a sum of squared molecular orbitals {φ𝑖}: 

𝜌(𝑟) = ∑ φ𝑖
2(𝑟)

𝑛

𝑖
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The molecular orbital φ𝑖 can be expressed as combinations of the basis {χ𝑗} with 

molecular orbital coefficients 𝑐𝑖𝑗: 

φ𝑖  =  ∑ 𝑐𝑖𝑗χ𝑗

𝑗

 

The basis functions {χ𝑗} typically resemble each of the occupied atomic orbitals, collectively referred to 

as the basis set. The coefficients 𝑐𝑖𝑗 determine the weight of each basis function in a particular molecular 

orbital φ𝑖. 𝑐𝑖𝑗 are obtained through a self-consistent field (SCF) method, where energy is iteratively 

calculated, and coefficients are updated until convergence is achieved.  

Upon convergence of the energy, the forces acting on the atoms can be obtained by 

taking the derivative of the energy with respect to the positions of the QM and MM atoms. QM 

computations usually scale as O(N3) or worse, so QM/MM balances the strengths of QM 

(accuracy) and MM (speed).  

 

Unsupervised Learning in Chemistry Simulation 

Unsupervised learning can uncover important conformations and structural transitions 

within large molecular dynamics (MD) simulation data. Given the high-dimensional 3D time 

series data, we use dimensionality reduction techniques to simplify and visualize the data while 

preserving important relationships. Features can be extracted from a MD data set, such as 

dihedral angles or pairwise contact distances of a protein. Time-structure independent 

components analysis (tICA) is a dimensionality reduction technique that extracts high-

autocorrelation linear combinations of the input features, which represent the slowest-relaxing 

degrees of freedom in the system while maximizing decorrelation time. Once the dimensionality 

is reduced with tICA, clustering algorithms can be applied to group structures into distinct 

conformations. k-centers clustering algorithm selects a predefined number of cluster centers (k) 

that are representative of the data and assigns each data point to the nearest cluster center. From 
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the clustering results, we can study stable or frequently sampled states, their properties and dynamics, and 

transitions between states. 

Based on the tICA and clustering result, the analysis can be extended by building a Markov State 

Model. The eigenvectors associated with the slowest processes in the model contain information about the 

configurational changes occurring on different timescales. Free energy landscape can be calculated by re-

weighting the trajectory frames with stationary distribution. Each microstate can be assigned to 

macrostates using the PCCA++ algorithm. The representative molecular structures for each macrostate 

can be visualized for further inspection. We can also compute stationary as well as dynamic experimental 

observables to compare the model to experimental data. 

 

Time-Dependent Density Functional Theory (TDDFT) 

The absorption spectrum is computed from the trajectory in order to benchmark the simulation 

with experimental measurements. The vertical absorption energy is calculated by subtracting the ground 

state electronic energy from that of the excited state at a fixed nuclear configuration, because the nuclear 

configuration stays the same during the fast electron excitation process. While the ground state energy is 

calculated using the QM method described earlier, the excitation energy can be obtained through the 

excited-electronic structure methods, including configuration interaction (CI), perturbation theory, or 

equation of motion coupled-cluster (EOM-CC). This process can be repeated to predict the complete 

evolution of the system. However, wave-function-based excited-state methods are computationally 

demanding due to electron correlation term. A more practical approach is time-dependent density 

functional theory (TDDFT), an extension of density-functional theory (DFT) that uniquely maps the 

(time-dependent) wave function to the (time-dependent) electronic density 29. TDDFT calculates 

excitation energies in response to a time-varying applied electric field.  

From the TDDFT energies and oscillatory strengths, the absorption spectrum is generated through 

Gaussian broadening. Each excitation energy, E, associated with an oscillation strength (amplitude) A, 

contributes to the absorption intensity, I, on the spectrum at E𝑖 in a Gaussian-like function: 

https://sciwheel.com/work/citation?ids=1952762&pre=&suf=&sa=0&dbf=0
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I =  ∑ A ∗  e−(
(E − E𝑖)

σ
)26

E𝑖=0 . 

σ controls the width of the distribution, with larger values resulting in broader distributions. The 

contributions from each peak are cumulatively summed to obtain the overall spectral distribution. 

  

 

Computational Details 

The protein structures were parametrized, relaxed with classical molecular dynamics, and simulated 

with hybrid QM/MM simulation (Fig. 13).  

 

 

Fig. 13 Hybrid quantum mechanics-molecular mechanics (QM/MM) workflow 30. 

 

Protein Preparation 

 Initial protein structures were obtained from Protein Data Bank (PDB) – 1huy for citrine, 1emg 

for GFP, and 4eul for eGFP – all of which share the same chromophore structure (CRO) (Table 1). Extra 

ligands and ions were removed in Pymol. Water molecules were removed for the implicit solvent model 

but preserved for the explicit solvent model. Since the molecular force field does not contain parameters 

for CRO, its partial charges and atom types were computed in antechamber with the bcc charge scheme. 

The CRO template was obtained from the Chemical Component Dictionary (CCD). Prepgen was used to 

make an amino-acid-like molecule that be connected to other parts of the protein at its termini. The 

https://sciwheel.com/work/citation?ids=15462105&pre=&suf=&sa=0&dbf=0
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covalent parameters (bonds, angles, and dihedrals) were computed with parmchk2 using parm10.dat file, 

supplemented with GAFF (generalized Amber force field) database 31. 

 The protein was parameterized using the Amber ff14SB force field. For the implicit model, the 

generalized Born solvent model was used with the default radius set (PBRadii) as "mbondi3." For the 

explicit solvent model, the protein was solvated in a rectangular box with a 12 Å solvent on all sides 

using the TIP3P model. Counter ions (Cl- and Na+) were added to neutralize the protein charge.  

 

Table 1. Amino acid mutations in GFP mutants. 
 

63 62 64 65 68 76 199 

Citrine (1huy) CRO F L M A R Y 

GFP (1emg) CRO F V Q S R T 

eGFP (4eul) CRO L V Q S Q T 

 

Molecular Dynamics (MD) 

For the implicit solvent model, the system was first minimized with 100 steps of the steepest 

gradient descent. Then, the system was heated in the NVE ensemble from 10 K to 300 K over the course 

of 200 ps with a 2 fs time step. At the end, the system was relaxed at 300 K for 50 ns using a 2 fs time 

step. No periodic boundaries were imposed, and the Particle Mesh Ewald (PME) method was turned off. 

A 1000 Å cutoff distance was set for nonbonded interactions. 

 For the explicit solvent model, the solvent was initially minimized with the protein structure 

restrained, followed by a minimization with the solvent molecules fixed, and finally with the entire 

system unrestrained. Each minimization run consisted of 10000 steps of steepest gradient descent 

followed by 10000 steps of conjugate gradient descent. After minimization, the system was heated in 

NVT ensemble from 0K to 100K over 1000 ps with a 1 fs timestep and then in NPT ensemble from 100K 

https://sciwheel.com/work/citation?ids=356813&pre=&suf=&sa=0&dbf=0
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to 310K over 1000 ps with 1 fs timestep. The system was equilibrated in NPT ensemble at 310K for an 

additional 5 ns with 2 fs timestep. Temperature was controlled using Langevin dynamics with a collision 

frequency of 5 ps−1 during heating and 2 ps−1 in production simulations. Pressure is controlled using 

Monte Carlo barostat. Periodic boundary conditions were applied to the system throughout heating and 

equilibration. Electrostatics were calculated using the Particle Mesh Ewald (PME) method, with a 

distance cutoff of 9.0 Å. 

 

Quantum Mechanical−Molecular Mechanical (QM/MM)  

From the molecular runs, four frames with 1 ns in between were used to setup the 

QM/MM simulation. For two solvent model and three GFP mutants, four independent trajectories 

were ran for 30 ps with 0.2 fs time step. The MM region was run with similar setup as the above 

MD runs. The QM region is set with zero net charge and a spin multiplicity of 1, indicating a 

closed-shell configuration. The basis set was 6-31G*, encompassing both valence and core 

electrons. The electronic structure calculation uses the global hybrid density functional, B3LYP. 

Dispersion interactions were added through Grimme’s D3 correction. The self-consistent field 

(SCF) calculation uses the Direct Inversion in the Iterative Subspace (DIIS) algorithm, with a 

maximum iteration limit of 200. 

 

Simulation Analysis 

Python script was developed to watch the total energy and the HOMO-LUMO energy 

gap calculated in each QM/MM step. The dephasing time was calculated with B = √
12

5
ℏ. 

Mass-weighted root-mean-square-deviation (RMSD) was used to measure the structure 

flexibility of the whole chromophore or the protein nanocylinder during simulation. Root Mean 

Square Fluctuation (RMSF) was used to measure the structure flexibility of each atom or each 

amino acid. The native contacts between chromophore and protein are tracked by recording any 
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protein atoms nearby the chromophore within 5 A cut-off in each frame. I calculated the the total fraction 

of frames the contact is present, the average distance of the contact when present, and the standard 

deviation of the contact distance when present. Relative contact strengths are normalized and a PDB is 

generated with relative contact strength in B factor column and visualized with Chimera. The radial 

distribution function (RDF, aka pair correlation function) is calculated from the histogram of the number 

of water particles found as a function of distance to the chromophore.  

The 3D coordinates data is transformed to distances between CRO and other proteins, resulting in 

223 features. To simplify and visualize the data, Time-Lagged Independent Component Analysis (TICA) 

is used. TICA aims to map the high-dimensional input space into a lower-dimensional space that 

preserves 95% of the kinetic variance, with the use of a lag time of 5. The TICA coordinates are clustered 

into discrete states using the k-means algorithm with 200 clusters. The distribution of these states is 

visualized in the low-dimensional TICA subspace. 

 

Time-Dependent Density Functional Theory (TDDFT) 

Time-dependent density functional theory (TDDFT) is used to calculate the absorption spectra on 

40 selected frames from the QM/MM simulation with the QM xyz coordinate and MM point charge. The 

QM region is set with zero net charge and a spin multiplicity of 1. Both the wPBEh method and the 

B3LYP method were used with lacvps_ecp basis set. SCF convergence methods was implemented with 

DIIS with a convergence threshold of 3.0e-5 and tolerance for the X-matrix of 1.0e-6. Configuration 

interaction singles (CIS) calculations was performed for 30 excited states with a spin multiplicity of 1. 

The absorption spectrum is calculated by Gaussian broadening with σ of 0.5.  
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Results and Discussion 

Simulation Overview 

To assess the accuracy of MM and QM models, I analyzed thermodynamic parameters obtained 

from the simulations. The total energy and temperature were recorded by Amber. The MM production 

simulations showed steady energy levels and minimal temperature fluctuations, which indicates that the 

MM models have achieved equilibrium state (Fig. 14 a). The eGFP system exhibited higher 

energy levels compared to GFP and citrine (Fig. 14 b). In the QMMM production simulations, 

the initial few picoseconds displayed a decrease in total energy and significant temperature 

fluctuations (Fig. 14 b). This indicates that the system was unstable when transitioning from MM 

to QMMM due to changes in force fields. However, the system was stablized after 5 ps, as 

evident from the consistent energy levels (Fig. 14 b). eGFP still exhibited higher energy levels 

compared to the other two systems (Fig. 14 b).  

 

Fig. 14 Total energy and temperature over time. (a) results from MM simulation (b) results from hybrid 

QMMM simulation 

Fig. 15 displays the total energies of the QM region, comprising solely the chromophore, 

along with the HOMO-LUMO energy gap obtained from Terachem. In two separate implicit 

models initialized from different MM frames (Fig. 15a, b), we observed consistent patterns in 

both total energy and HOMO-LUMO gap, confirming the reproducibility of the findings (Fig 15 
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a, b). The QM energy was very high but rapidly decreased within the first few picoseconds, which again 

indicated that the system was unstable first (Fig 15 a, b). However, the energy stabilized at a lower level 

after 5 ps, signifying stabilization. In the implicit models, eGFP displayed higher total QM energy 

compared to GFP and citrine, consistent with the MM results (Fig 15 a, b).  

 Explicit models were run for a longer time to ensure that the system is equilibrated with the 

solvents. Two consecutive 4 ps trajectories (20-24ps and 24-28ps) were then analyzed (Fig 15 c, d). 

Explicit models are higher in energy (~-1072) than the implicit models (~-1160). This is because explicit 

models account for the energy cost of the solvent-solute interactions via point charges representing water 

molecules. Different from the trends observed in implicit models and MM productions, citrine is slightly 

higher in energy than the other two systems.  

 



 

 

 

24 

Fig. 15 QM region energy and HOMO-LUMO gap over time. (a-b) results from two separate implicit 

models (c) 20-24ps simulation in the explicit model (d) 24-28ps simulation in the same explicit model. 

 

Quantum coherence can also be visualized with autocorrelation function, a measure of 

the degree of similarity between the HOMO-LUMO gap series and a lagged version of itself over 

successive time intervals. Different trajectories within each model display similar trends, 

underscoring the reproducibility of the results (Fig 16). In general, explicit models were less auto-

correlated than the implicit models (Fig 16). This means that the HOMO-LUMO gap energies in 

explicit models tend to fluctuate more over time due to dynamic interactions with the solvent. 

 

 

Fig. 16 Autocorrelation function of HOMO-LUMO gap. The x-axis displays the number of lags and the y-

axis displays the autocorrelation at that number of lags. 
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Larger Energy Gap Fluctuation in Explicit Solvent Model and Citrine 

All means and standard deviations were calculated using 4 ps long trajectories to ensure a 

fair comparison. Notably, the HOMO-LUMO energies of GFP were the lowest in implicit models 

but became the highest in the explicit model (Table 2). This shift indicates that GFP interacts 

more profoundly with the solvent, stabilizing the HOMO state of the chromophore. Conversely, the 

HOMO-LUMO energies of citrine decrease in explicit models, suggesting lesser interaction with the 

solvent (Table 2). 

Furthermore, the explicit condition displays higher standard deviations compared to the implicit 

model overall (Fig 16, Table 2). These higher standard deviations reflect additional sources of variability 

arising from dynamic and unpredictable solvent-solute interactions. Citrine consistently exhibits the 

highest standard deviation of HOMO-LUMO energies compared to n to eGFP and GFP across all three 

conditions (Fig 15 c, d, Table 2). However, citrine also has the smallest HOMO-LUMO gap energies. 

Such a combination of smaller gap energies and higher standard deviation left a question: Does a larger 

HOMO-LUMO gap result in less variability due to the energy surface distance and better alignment 

between the excited state and the ground state? In contrast, eGFP exhibits the lowest standard deviation, 

except in the last condition (Fig 16, Table 2). Thus, some of the mutations in citrine lead to higher energy 

gap fluctuation, while that in eGFP leads to lower energy gap fluctuation. The larger the HOMO-LUMO 

fluctuation, the smaller the estimated decoherence time. Thus, explicit models had shorter decoherence 

time compared to implicit models (Table 2). And citrine system had shorter decoherence time relative to 

eGFP and GFP.  

 

Table 2. Mean values and standard deviations of HOMO-LUMO gaps, as well as estimated decoherence 
times. 

 Implicit(16-20ps) Explicit (20-24ps) Explicit (24-28ps) 

 Citrine Egfp gfp Citrine Egfp gfp Citrine Egfp gfp 

Mean (eV) 2.896 3.069 2.741 2.536 3.159 3.334 2.464 3.117 3.291 
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Standard 

Deviation (eV) 
0.224 0.163 0.208 0.350 0.206 0.224 0.356 0.236 0.231 

Decoherence 

Time (fs)    

2.531 2.967 2.627 2.025 2.641 2.533 2.007 2.466 2.492 

 

Correlation between Structural Dynamics and Decoherence 

To investigate the structural mechanisms underlying the observed trend—faster decoherence in citrine 

and slower decoherence in eGFP—I conducted structural analyses of conformational dynamics, 

interactions between the chromophore and the protein, and water density. Additionally, I performed 

dimensionality reduction and conformation clustering to identify crucial conformations and transitions 

within the simulation. 

Root mean square deviation (RMSD) calculates the deviation of a structure to a reference, with 

RMSD=0.0 indicating a perfect overlap. Here, I measured the RMSD with respect to the starting frame. 

The RMSD values for the chromophore and the surrounding protein were separated and normalized by 

the number of atoms in each region. The RMSD were large for all systems initially; upon reaching a 

stable state, no significant conformational changes were observed (Fig 17 a, b). The chromophore has 

lower RMSD compared to the surrounding protein (Fig 17 a, b). The chromophore changed less over the 

simulation because it was constrained by steric factors and interactions with surrounding proteins. The 

RMSD can’t be directly compared across the system with varying initial conditions. 

The trajectories were partitioned into 2.5ps windows. For each window, the average chromophore 

RMSD and protein RMSD were calculated with respect to the starting frame of the window and 

plotted against the energy gap fluctuation (Fig 17 c, d). Both chromophore RMSD and protein RMSD 

correlate with energy gap fluctuation, highlighting the influence of structural dynamics on quantum 

decoherence (Fig 17 c, d). Within each 2.5ps window, eGFP exhibits smaller chromophore and 

protein RMSD, which indicate a more stable structure, likely due to specific interactions and steric 

constraints (Fig 17 c, d). This reduced structural dynamicss in eGFP may lead to a more stable 
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electronic structure and lower quantum decoherence effects, as evident in its lower HOMO-LUMO gap 

fluctuation compared to GFP and citrine (Fig 17 c, d). 

 

 

Fig. 17 Root mean square deviation (RMSD) analysis. a) Chromophore RMSD b) Protein RMSD c) 

Chromophore RMSD vs Energy Fluctuation d) Protein RMSD vs Energy Fluctuation 

 

Higher Structural Dynamics of Individual Residues in Explicit Solvent Models 

Root Mean Square Fluctuation (RMSF) calculates the structural dynamics of individual residues 

throughout the simulation. All three systems display similar RMSF patterns (Fig 18). Notably, the explicit 

water models have higher RMSF values compared to the implicit models, indicating that, on average, 

residues are more dynamic due to their interactions with water (Fig 18).  



 

 

 

28 

 

Fig 18. Root Mean Square Fluctuation (RMSF) analysis. 

 

Q65M and T199Y in Citrine Increase Protein-Chromophore Contact 

The interactions between the chromophore and the protein were evaluated using the 

contact strength metric, as well as the closest distance between their atoms (Fig 19, Table 3). 

Citrine exhibits high contact strength at Q65M and T199Y, and the Q65M has a smaller distance 

to the chromophore (Fig 19 a, b). The mutated methionine is larger than the original glutamine, 

which brings closer to the chromophore, potentially resulting in steric clashes or hydrophobic 

interactions. (Fig 19 c). The mutated tyrosine engages in a 𝜋−𝜋 interaction with the aromatic ring 

of the chromophore, and its hydroxyl group can establish polar interactions with the mutated 

methionine (Fig 19 c). The peak corresponding to N117 is prominent in eGFP and GFP but is 

absent in citrine (Fig a, b). Notably, in citrine, N117 is oriented away from the chromophore, 

potentially driven by unfavorable interactions with water as an allosteric effect of the mutations 

(Fig 19 c). These heightened interactions and potential steric clashes provide an explanation for 

the larger energy gap fluctuations and shorter decoherence time observed in citrine.  
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On the other hand, the contact strength pattern of eGFP closely resembles that of GFP (Fig 19 a). 

Within eGFP, the F62L mutation is directly linked to the chromophore, while the Q72R mutation is 

positioned far from the binding site (Fig 19 c).  As a result, neither of eGFP's two mutations makes 

additional contacts with the chromophore. In addition, the standard deviation of eGFP’s contact distance 

is smaller compared to the other two systems (Table 3). 

Overall, residues with high contacts with the chromophore display low RMSF (Fig 18, Fig 19). 

This is because they are oriented inward, interacting with the chromophore, rather than outward, where 

they would interact with the solvent. 

 

 



 

 

 

30 

 

Fig 19. Native contacts between the protein and the chromophore. a) contact strength, b) average 

distance, c) structure illustrations 

 

Table 3. Mean values and standard deviations of contact distance between chromophore and the protein 
at selected residues. 

  Mean distance   Standard deviation  

Res  citrine  egfp  gfp  citrine  egfp  gfp  

40  2.81  3.34  3.09  0.42  0.30  0.46  

62  1.34  1.33  1.33  0.02  0.03  0.02  

65  2.04  2.94  2.39  0.21  0.31  0.25  

92  2.24  2.05  2.28  0.27  0.23  0.18  

117    2.69  2.87    0.34  0.22  

146  2.49  2.19  2.84  0.41  0.15  0.42  

161  2.81  2.73  2.68  0.22  0.18  0.30  
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199  2.47  1.75  3.37  0.29  0.15  0.39  

Avg  2.31  2.38  2.61  0.26  0.21  0.28  

 

Greater Water Density Around GFP 

The radial distribution function was used to assess the water density around the chromophore. It 

is evident that there is a greater concentration of water molecules near GFP than eGFP and citrine (Fig 

20). This observation explain the higher decoherence observed in GFP compared to eGFP, due to the 

dynamics water interaction. 

  

Fig. 20 Solvent radial distribution function. 

 

Dimensionality Reduction and Clustering Analysis of Simulations 

To extract important structures and dynamics from the simulation, I used tICA to reduce the 

dimensionality of the data and K-means clustering to group various frames into macrostates. The first few 

tICA components represent the slowest motions in the simulation. The resulting macrostates and their 

transitions can be further examined in relation to their HOMO-LUMO energy fluctuations (Fig 21). 
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Fig 21. tICA and clustering analysis of the simulations. 

 

Mismatch between TDDFT Results and Experimental Absorption Spectrum 

To validate and refine the computational model, we compared the absorption spectrum calculated 

by TDDFT to existing experimental observations. Previous experiments and computational 

simulations have consistently shown that the absorption peak of GFP is higher in energy than that of 

eGFP and citrine (Table 4). In the implicit model, we found that citrine peak was higher in energy 

than eGFP and GFP, which is opposite to experimental observations. In explicit model, we found that 

eGFP absorbs higher energy than citrine than GFP. The order between citrine and eGFP is correctly 

predicted since explicit water molecules conjugate with the chromophore. However, the model for 

GFP still does not match the experimental results. The TDDFT results remain consistent when 

employing different QM methods, such as B3LYP and 𝝎PBEH, and considering various QM regions, 

such as the chromophore and atoms within a 5 Å radius of the chromophore. This suggests that while 

the TDDFT results are reproducible, the simulation fails to accurately reproduce experimental 

observations. 

 

Table 4. Experimental absorption spectrum. 32 

 citrine egfp gfp 

absorption wavelength (nm) 516 488 396,475 

photon energy (eV) 2.40 2.54 3.13, 2.61 

 

https://sciwheel.com/work/citation?ids=15600617&pre=&suf=&sa=0&dbf=0
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Fig. 22 TDDFT modeled absorption spectrum. (a) B3LYP implicit solvent (b) 𝜔PBEH implicit solvent 

(c) B3LYP explicit solvent (d) 𝜔PBEH explicit solvent  

Conclusion 

 This study contributes to the understanding of quantum decoherence in fluorescent proteins and 

establishes a knowledge base for the rational design of quantum batteries. Quantum batteries, rooted in 

the principles of quantum mechanics, stand as an emerging and transformative technology in the field of 

energy storage and retrieval. Unlike conventional batteries, quantum batteries exhibit superextensive 

charging, which allows them to charge rapidly as their capacity increases. Acknowledging limitations in a 

previous prototype employing an organic microcavity with polaritons as "qubits," attributed to exciton-
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exciton annihilation, we proposed replacing organic dyes in the microcavity with fluorescent proteins. 

Fluorescent proteins can utilize their protein cylinder as a "molecular bumper" to effectively mitigate 

annihilation, enabling them to operate efficiently even at high concentrations. In our research, we delve 

into the impact of protein and solvent environments on energy gap fluctuations. Our hypothesis suggests 

that targeted mutations, reducing interactions and collisions, hold the potential to delay quantum 

decoherence. 

We conducted a comprehensive study on three distinct GFP variants—citrine, eGFP, and GFP—

using hybrid quantum mechanics-molecular mechanics (QMMM) simulations with both explicit and 

implicit models. Surprisingly, citrine, despite having the smallest energy gap, exhibits the largest gap 

fluctuation and the shortest estimated decoherence time. Mutations, such as Q65M and T199Y, introduce 

π-π interactions and steric clashes with the chromophore, modifying the energy surface of the ground or 

excited state and resulting in less correlated energy level changes. Furthermore, the explicit models 

demonstrate shorter decoherence times. Notably, the wild-type GFP, characterized by higher water 

density around the chromophore, also displays a shorter decoherence time compared to eGFP. Solvent 

interactions couple chromophore excitation with other vibrational modes, introducing small perturbations 

in the potential energy surfaces. Therefore, it is advisable to avoid bulkier amino acids and π-π 

interactions with the chromophore while minimizing solvent exposure in the development of fluorescent 

proteins for quantum batteries. 

Additionally, we show that structural dynamics metrics like RMSD and RMSF are correlated 

with energy gap fluctuations, so they can be valuable metrics for future rational design to minimize the 

quantum decoherence. In the next stages of our research, we aim to refine the model to fit the 

experimental absorption spectrum, accounting for factors such as temperature, pH, and the presence of 

cofactors or other molecules. We also plan to enhance force field parameters, utilize more advanced 

quantum mechanical methods, and extend simulations to capture additional conformational states. Based 

on the tICA and clustering result, we can build a Markov State Model to compute stationary distribution, 

free energy landscape and other experimental observables. Looking ahead, we plan to simulate the 
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behavior of fluorescent proteins within the microcavity, considering the intricate interactions between 

light and matter. This research not only provides a fundamental understanding of quantum decoherence in 

fluorescent proteins but also establishes a knowledge base for the rational design of quantum batteries. 
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Supplement Code 

 

Implicit solvent (generalized Born) minimization 

&cntrl 

imin=1, ntb=0, maxcyc=100, ntpr=10, cut=1000., igb=8,  

/ 

 

Implicit solvent heating 

&cntrl 

imin=0, irest=0, ntx=1, 

ntpr=1000, ntwx=1000, nstlim=100000, 

dt=0.002, ntt=3, tempi=10, 

temp0=300, gamma_ln=1.0, ig=-1, 

ntp=0, ntc=2, ntf=2, cut=1000, 

ntb=0, igb=8, ioutfm=1, nmropt=1, 

/ 

&wt 

TYPE='TEMP0', ISTEP1=1, ISTEP2=100000, 

VALUE1=10.0, VALUE2=300.0, 

/ 

 

https://sciwheel.com/work/bibliography/356813
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39 

Implicit solvent molecular dynamics 

 &cntrl 

   imin=0, irest=1, ntx=5, 

   ntpr=1000, ntwx=1000, ntwr = 1000 

   nstlim=500000, dt=0.002,  

   ntt=3, ig=-1, !Langevin thermostat 

   tempi=300, temp0=300,  

   gamma_ln=1.0, ntp=0, 

   ntc=2, ntf=2, cut=1000, 

   ntb=0, igb=8, ioutfm=1, 

 / 

 

Explicit solvent setup 

source leaprc.protein.ff14SB 

source leaprc.water.opc 

loadAmberPrep cro.prepin 

loadAmberParams frcmod2.cro 

loadAmberParams frcmod1.cro 

x = loadPDB ${protein}.pdb 

solvateBox x TIP3PBOX 12 

charge x 

addions2 x Cl- 0 

addions2 x Na+ 0 

saveAmberParm x ${protein}.parm7 ${protein}.crd 

 

Explicit solvent minimization 
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&cntrl 

ntx = 1, irest = 0, ntrx = 1, ntxo = 1, 

ntpr = 50, ntwx = 0, ntwv = 0, ntwe = 0, 

ntf = 1, ntb = 1, 

cut = 9.0, nsnb = 10, 

ibelly = 0, ntr = 1, 

imin = 1, 

maxcyc = 20000, 

ncyc = 10000, 

ntmin = 1, dx0 = 0.1, drms = 0.0001, 

ntc = 1, tol = 0.00001, 

&end 

Hold solvent fixed 

1.0 

RES 225 9999999 

END 

 

Explicit solvent heating from 0 to 100 K 

&cntrl 

imin=0, ! Molecular dynamics 

ntx=1, ! Coordinates formatted with no initial velocities 

irest=0, ! No restart velocities assigned 

tol=0.000001, ! SHAKE tolerance 

nstlim=2000000, ! Number of MD steps 

ntt=3, ! Langevin dynamics 
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gamma_ln=5.0, ! Collision frequency Langevin dynamics, external heat bath, transfer KE to system in 

velocity, collide 

ig=-1, ! Random seed Langevin dynamics, stochastic 

ntpr=25000, 

ntwr=25000, 

ntwx=25000, ! Write to trajectory file every ntwx steps 

dt=0.001, ! Timestep (fs) 

ntb=1,  ! Constant volume periodic boundary conditions 

ntp=0, 

cut=9.0, 

tempi=0.0,  ! Starting temperature is 0 K from minimization 

TEMP0=100.0, ! Reference temperature (held here) 

&end 

 

Explicit solvent heating from 100 to 300 K 

&cntrl 

imin=0, ! Molecular dynamics 

ntx=5, ! Positions and velocities read NetCDF (or formatted) 

irest=1, ! Restart calculation 

ntc=2, ! SHAKE algorithm bonds with hydrogen 

ntf=2, ! No force evaluation bonds with hydrogen 

tol=0.0000001, ! SHAKE tolerance 

nstlim=4000000, ! Number of MD steps 

ntt=3, ! Langevin dynamics 

gamma_ln=5.0, ! Collision frequency Langevin dynamics 

ig=-1, ! Random seed Langevin dynamics 
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ntpr=2500, 

ntwr=2500, 

ntwx=2500, ! Write to trajectory file every ntwx steps 

dt=0.001, ! Timestep (ps) 

ntb=2,  ! Constant pressure periodic boundary conditions 

ntp=1, ! Monte Carlo Barostat  

cut=9.0, 

&end 

&wt  

type='TEMP0', ! Varies the target temperature TEMP0 

istep1=1000001, ! Initial step 

istep2=3000000, ! Final step 

value1=100.0, ! Initial temp0 (K) 

value2=310.0, ! final temp0 (K) 

&end 

&wt 

type='TEMP0', ! Varies the target temperature TEMP0 

istep1=3000001, ! Initial step 

istep2=4000000, ! Final step 

value1=310.0, ! Initial temp0 (K) 

value2=310.0, ! final temp0 (K) 

&end 

 

Explicit solvent molecular dynamics 

 &cntrl 

  imin=0,          ! Molecular dynamics 
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  ntx=5,           ! Positions and velocities read NetCDF (or formatted) 

  irest=1,         ! Restart calculation 

  ntc=2,           ! SHAKE on for bonds with hydrogen 

  ntf=2,           ! No force evaluation for bonds with hydrogen 

  tol=0.0000001,   ! SHAKE tolerance 

  nstlim=5000000,  ! Number of MD steps - 10 ns at 4 fs timestep 

  ntt=3,           ! Langevin dynamics 

  gamma_ln=2.0,    ! Collision frequency for Langevin dyn. 

  temp0=310.0,     ! Simulation temperature (K) 

  ntpr=2500,       ! Print to mdout every ntpr steps 

  ntwr=2500,       ! Write a restart file every ntwr steps - 10ps 

  ntwx=2500,       ! Write to trajectory file every ntwx steps 

  ntwprt=3542, 

  dt=0.002,        ! Timestep (ps) is 4 fs 

  ig=-1,           ! Random seed for Langevin dynamics 

  ntb=2,           ! Constant pressure periodic boundary conditions 

  ntp=1,           ! Isotropic pressure coupling 

  cut=9.0,         ! Nonbonded cutoff (Angstroms) 

  ioutfm=1,        ! Write binary NetCDF trajectory 

  ntxo=2,          ! Write binary restart file 

  barostat=2,      ! Use Monte Carlo barostat (Amber 14+) 

  iwrap=1, 

 &end 

 

Explicit solvent QM/MM simulation  

gfp and its mutant CRO QM/MM EXTERN(tc_job.tpl) production 12500 steps (dt=0.2fs) = 2.5 ps 
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&cntrl 

imin = 0, ! no minimization 

ntx = 5, ! 1-read in coordinates, but not velocity, 5-both 

irest = 1, ! Restart calculation 

ig = -1, ! random seed 

cut = 9.0, ! Nonbonded cutoff (Angstroms) 

dt = 0.0002, ! 0.2fs time step 

nstlim = 20000, ! num steps 

temp0 = 310.0, ! Simulation temperature (K) 

ntc = 2,  

ntf = 2, ! Shake is used for solvent 

tol = 0.0000001, ! SHAKE tolerance 

ntb = 2, ! Constant pressure periodic boundary conditions 

ntt = 3, ! 0-const E, 1-rescale 3-Langevin dynamics 7-bussi 

tautp = 0.01, ! time constant, in ps, for heat bath coupling for the system 

gamma_ln = 5.0, ! Langevin dynamics collision frequency 

ntpr = 10, ! print details to log every step 

ntwx = 10, ! write coordinates to mdcrd every 500 steps (every 250fs) 

ntwr = 10, ! write restart file at last step 

ifqnt = 1, ! turn on QM/MM 

ntb = 2, ! Constant pressure periodic boundary conditions 

ntp = 1, ! Isotropic pressure coupling 

cut = 9.0, ! Nonbonded cutoff (Angstroms) 

barostat=2, ! Use Monte Carlo barostat (Amber 14+) 

iwrap = 1, 

/ 
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&qmmm 

qmmask = ':CRO', ! only cro residue, 300  

qmcharge = 0, 

qmcut = 8.0, !point charge in mm - long range electrostatic, non continous ! qm region  

qmshake = 0, !Shake QM H atoms if shake is turned on (NTC>1) (default) 

qm_theory = 'EXTERN', 

qm_ewald = 0, 

qmgb = 0, 

verbosity = 2, 

writepdb = 1,  

/ 

&tc 

executable = 'terachem', 

use_template = 1, 

/ 

tc_job.tpl 

basis lacvps_ecp 

method b3lyp 

dispersion yes 

scf diis+a 

threall 1e-13 

convthre 1e-6 

xtol 1e-4 

maxit 200 

dftgrid 1 

charge 0 
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spinmult 1 

scrdir ./scr 

keep_scr yes 

end 

 

TDDFT 

run            energy # compute the electronic energy 

gpus           1 # number of Graphics Processing Units (GPUs) 

method         wpbeh # DFT functional 

basis          lacvps_ecp # basis set 

charge         0 # total charge of zero, neutral species 

spinmult       1 # spin multiplicity, closed-shell configuration 

sphericalbasis yes 

guess          generate 

maxit          100 

scf            diis+a # DIIS method to accelerate SCF convergence 

precision      dynamic 

convthre       3.0e-5 

xtol           1.0e-6 

dftgrid        1 

dynamicgrid    no 

dispersion     no 

purify         yes  

pointcharges   ptchrg.xyz 

  

cis            yes # configuration interaction singles (CIS) method is being used for excited state calculations 
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cisnumstates   30 

cismax         150 

cismult        1 

cistarget      1 

cismaxiter     100 

cisprintthresh 0.1 

cistransdensity        no 

cisdiffdensity         no 

 

cpptraj total energy, temperature, RMSD, RMSF, native contacts, RDF 

readdata ${out}.out 

writedata ${out}_etot.dat ${out}.out[Etot] time ${time} 

writedata ${out}_temp.dat ${out}.out[TEMP] time ${time} 

parm ${PROTEIN}.parm7  

trajin ${TRIAL}.nc 

autoimage 

rms :CRO first out ${TRIAL}_rmsd_CRO.dat 

rms :CRO<:5.5 out ${TRIAL}_rmsd_surround.dat 

atomicfluct !:WAT out ${PROTEIN}_rmsf.dat byres 

nativecontacts :CRO !:CRO byresidue writecontacts ${PROTEIN}_nativebyresidue.dat \ 

distance 5.0 contactpdb ${PROTEIN}_nativecontacts.pdb \ 

map mapout ${PROTEIN}_nativebyresidue.map 

radial out ${TRIAL}_water.dat 0.1 15.0 :CRO :WAT 

run 

 

tICA and Kmeans clustering 
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def featurize_data(topfile): 

    feat = coor.featurizer(topfile) 

    residue_pairs = [[62, i] for i in range(1, 224)] 

    feat.add_residue_mindist(residue_pairs) 

    print(feat) 

    print('number of features ', feat.dimension()) 

    return feat 

def build_tica(data): 

    tica = pyemma.coordinates.tica(data, lag=5) 

    tica_output = tica.get_output() 

    tica_concatenated = np.concatenate(tica_output) 

    cluster = pyemma.coordinates.cluster_kmeans( 

        tica_output, k=200, max_iter=50, stride=10, fixed_seed=1) 

    dtrajs_concatenated = np.concatenate(cluster.dtrajs) 

    fig, ax = plt.subplots(figsize=(6,4)) 

    pyemma.plots.plot_density( 

        *tica_concatenated[:, :2].T, ax=ax, cbar=True, alpha=0.3,logscale=True) 

    ax.scatter(*cluster.clustercenters[:, :2].T, s=5, c='C1') 

    ax.set_xlabel('IC 1') 

    ax.set_ylabel('IC 2') 

    fig.tight_layout() 

top = '1huy.parm7' 

feat = featurize_data(top) 

data = coor.load(['1huy_prod_2.nc', '1huy_prod_2.0007.nc', '1huy_prod_2.0008.nc'], features=feat) 

build_tica(data) 

plt.savefig('1huy-tica.png') 
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