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Abstract 

Computational Fluid Dynamics for Coronary Diseases: Analysis of Different Murray’s Law 
Based Boundary Conditions  

By Shuang Gao 

Coronary Disease is becoming the one of the most serious threat toward human health. In 
most cases, atherosclerosis is responsible for the coronary artery stenosis, which further leads to 
coronary diseases. Investigating the abnormal blood flow pattern in coronary artery provides a 
way to inspect the existence of coronary artery stenosis. In this paper, we will first study the use 
of Murray’s law in computational fluid dynamics and specify how to construct the Murray’s law 
based boundary condition. 

Further, we will introduce the general form of Navier-Stokes equation, which offers a 
mathematical model for fluid flow and related phenomena. In this research, the blood flow is our 
main interest. Several simplifications on Navier-Stokes equation allow us to depict blood flow in 
the vessel properly. Such modification leaves us the steady three-dimensional Navier-Stokes 
equation for incompressible Newtonian viscous fluid. The weak formulation of the modified 
Navier-Stokes equation is then introduced, which will be utilized in the computational fluid 
dynamic procedure to approximate the solution. In order to solve the Navier-Stokes equation 
with FreeFem++, the finite element method is chosen for space discretization and Picard 
iteration scheme is selected to linearize the problem. The previous steps together provide the 
algorithm to solve for the pressure and velocity of blood.  

With the solutions of Navier-Stokes equations with different Murray’s law based 
boundary conditions, we calculated and compared the pressure drop and flow split. The results 
showed the choosing exponent between 2.25 to 2.75 in Murray’s law will not significantly affect 
the Navier-Stokes solutions.	
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Chapter 1  

Introduction  

1.1 Coronary Arteries Disease 

The Cardiovascular system is an essential component of the human body, which 

guarantees all the physiological processes functioning properly. In the cardiovascular system, 

there are two fundamental constituents: the heart and blood vessels (aorta, arteries, arterioles, 

capillaries, venules, veins, venae cavae)[1]. The human heart, the pump of the cardiovascular, 

pushes blood to flow through aortas and carries nutrients including oxygen to every cell in 

human body. In this process, each organ receives enough supplements to keep physiological 

activities functioning at a normal level. The deoxygenated blood then goes back from peripheral 

capillaries to the heart through the veins. The muscle pump, a vital part of blood circulation, 

generates the force to contract surrounding muscles. Such skeletal-muscle pump action, 

happening during breathing, facilitates the return of venous blood to the heart [2]. 

Aorta, as the main blood carrier in a human body, originates from the left ventricle of the 

heart [3]. It then splits into two daughter branches: the left coronary artery and the right coronary 

artery. The right coronary artery brings blood volume to the right portion of the heart. The left 

coronary artery carries blood supply to the left side of the heart. Both of these two main coronary 

blood vessels reside on the surface of the heart and then branch off into smaller arteries, 

supplying blood output to every tissue and organ in the human body [1, 4]. 
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Coronary Arteries Disease, mostly appearing with the chest pain and symptoms 

consistent with myocardial ischemia, is responsible for about 8% to 10% of the 119 million 

Emergency Department visits every year [7]. According to the data from World Health 

Organization, “coronary artery disease was responsible for 7.2 million deaths, or 12.2% of all 

deaths globally and 5.8% of all years of life lost. The disease is highly prevalent: at any given 

time, 54 million people in the world suffer from angina pectoris and 23.2 million people 

experience moderate to severe disability as a result of ischemic heart disease “[8]. As the modern 

society develops rapidly, people have to adapt to fast-pace lives, which results in unhealthy life 

style, such as smoking and excessive alcohol. As the outcome of these harmful habits, 

hypertension, hyperlipidemia, obesity and high blood cholesterol symptoms occur and raise the 

cardiovascular risk [9]. 

 

Figure 1.1 Illustration of aorta branches in human heart [1] 

However, Coronary Arteries Disease is not only prevalent and recognized in recent years. 

Tracing back to 18th century, the symptom of atherosclerosis was first recognized and then 
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recorded by the Italian anatomist Giovanni Morgani [10]. A few years later, the British 

physicians, Edward Jenner and Caleb Parry, realized the connection between the disorder of the 

breast and atherosclerosis described by Giovanni Morgagni [10]. As more and more people 

suffered from the sudden cardiac death, doctors and physicians shifted their focus onto the 

pathological cause of these demises. Until 20th century, the American doctor, James Herrick, 

proposed that “thrombotic occlusion of the coronary arteries plays a central role in myocardial 

infarction”, and built the pathophysiological foundation of coronary artery disease [10]. As the 

first one to offer pathological explanation of real patients’ symptoms, Herrick undoubtedly lead 

later scientists to discover the unknowns of coronary arteries diseases.   

A common symptom of coronary arteries disease is chest pain. Several seconds of chest 

pain may not be considered as a sign of serious heart disease. However, the underlying pathology 

of this acute cardiac disorder is “cute intraluminal coronary thrombus formation within an 

epicardial coronary artery leading to total or near total acute coronary occlusion” [5]. If human 

organs function normally, the blood supply along with nutrients will be pumped out from the 

heart and to the rest of the body to maintain physiology. Nevertheless, when heart muscle cannot 

generate enough force to push blood volume out or other cases, the terminal parts of the human 

body will not receive sufficient amount of supplement to complete their own tasks. As a result, 

physical functions of organs and systems decline, which later cause the sudden cardiac death. 

As the carrier of blood supply, arteries act a crucial role of passing supplement from heart 

to the rest part of a body. To be specific, the two main coronary arteries, the （two daughter 

branches of aorta）have the responsibility of delivering blood to the myocardium (heart muscle). 

Nevertheless, sometimes abnormal situations occur, such as hardening or clogging of the blood 
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vessels. In these cases, the coronary arteries begin to narrow down or be blocked by the blood 

clot. The narrowed coronary arteries lose their abilities to alter the blood flow and pressure 

properly and cannot supply adequate blood along with oxygen and nutrients to the myocardium. 

Then the heart does not have enough energy to control the muscle pump action, which results in 

the occurrence of heart attack or angina [11]. The coronary artery disease, caused by the 

coronary arteries stenosis, is the leading cause of death in industrialized society. In the U.S., 

coronary artery disease accounts for one-sixth of total death in 2010 [12]. As the etiology of 

coronary artery disease, the narrowing or the blockage of the coronary arteries are usually caused 

by atherosclerosis [11]. 

1.2 Atherosclerosis 

Nowadays, people suffered from serious coronary arteries diseases caused by 

atherosclerosis and have no effective treatment to cure the morbidity. Although atherosclerosis 

has been recognized for a long time, the discoveries of the pathological mechanism are not 

complete [13]. 

Atherosclerosis is the accumulation of cholesterol and fat on the arterial walls and 

therefore is the syndrome that affecting the blood vessel conditions [11]. As the white blood cells 

and fibrofatty plaque accumulate on the inner surface of blood vessels, the coronary arteries 

walls thicken and the blood supplying path is blocked [13]. In normal cases, coronary arteries are 

smooth and elastic vessels, which allow blood flow through. On the surface of inner wall of 

coronary arteries, the layer of cells called endothelium separate blood flow from the arterial 

surface. The endothelium also releases chemical signals, in order to give responses to different 

stimuli. In this way, the endothelium assists to regulate the artery functions [13]. With the 



	 5	

elasticity and the help of endothelium, coronary arteries can adapt themselves to different blood 

pressure and guarantee the blood supply to the heart. However, as the fibrofatty in the blood flow 

passing by, they addict to the inner arterial wall. With the other substances, such as cholesterol, 

all the substances gather to form plaque. After atherosclerosis occurs, the plaque on the inner 

surface may lead to the formation of blood clots and then block the coronary arteries. The 

abnormality of endothelium reaction can also make the artery squeeze improperly, which 

account for the coronary arteries stenosis. Due to atherosclerosis, the arteries become rigid and 

narrowed, and cannot response to blood pressure changes appropriately. The coronary arteries 

obstruction limits blood flow passing through the arteries to the heart. Lacking adequate 

nutrients, the heart muscles do not function normally and finally get injured, inducing sudden 

cardiac death [14]. 

 

Figure 1.2 Accumulation of fibrofatty results in coronary artery stenosis [26] 

1.3 Computational Fluid Dynamics 

In the twentieth century, the invention of digital computers boosted the development of 

computing, as people solved for numerical solutions by powerful computer instead of by hands 

[15]. Such change incredibly speeded up computation process, limited calculation error made by 
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hands and allowed operating a lot of calculations at the same time. The good performance of 

computers prompted the development of computational fluid dynamics. 

Fluid is the smallest molecule structure, which will be deformed by any force. Such 

structure “offers no resistance to external shear forces” [16]. When any external force is applied 

to fluids, the fluid flow forms. In the common approach, the simplified equations of fluid 

dynamics are solved with approximation and dimensional analysis, where empirical data is 

needed. However, for some flows (air around aircraft etc.), the dimensionless parameters are 

required. In these cases, experiments are not helpful to give the scales of the actual flow [16]. 

With the help of the computer, the field of computational fluid dynamics developed and became 

the alternatives to experiments, in order to provide the numerical analysis of fluid flows. CFD 

provides the prediction and qualitative analysis by solving the partial differential equations 

describing fluid flows. 

CFD methodology is implemented in the following procedures: 

1. Mathematical model: choose an appropriate model for the stated problem. Make sure 

the conservation law of matter, momentum, and energy is satisfied. Include plausible 

assumptions to the equations used in the model, in order to reduce the computational effort. 

Impose boundary and initial conditions to the model. 

2. Discretization: for the given geometry, discretize the domain and generate the mesh 

with proper polynomials, in order to approximate the differential equations by a system of 

algebraic equations [16]. There are many useful discretization methods, such as finite difference, 

finite volume, and finite element methods. 
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3. Iteration scheme: For the system of algebraic equations yielded by discretization, 

choose the proper iteration scheme to solve for the solution. The iteration process stops when the 

convergence criteria are satisfied. 

4. Post-processing: extract the targeted information from the computed fluid field. 

Visualize the simulation results with graph. 

Compared to the experimental approach to fluid dynamics, using computer simulations in 

CFD field provides complimentary advantages: 

1.    Physical models can be only generated at a laboratory scale. For some unrealistic 

conditions, it is impossible to solve for the solutions of simplified mathematical models. 

However, for CFD, the realistic conditions can be imposed to the model. The computer 

simulations will replicate the extreme requirements and provide the numerical solutions. This 

indicates the CFD approach can be used for more cases. 

2.    Restricted to the precisions of laboratory instruments, experiments provide the 

solutions at a limited number of space positions and restrictive time points. CFD approach with 

high resolution is able to solve for solutions at more points in space and time. 

3.    The efficiency of experiments depends on the complexity of fluid flow models. In 

common conditions, it is expensive to conduct experiments. The experimental results may take a 

long time to achieve. The alternative CFD approach generates the mesh and runs simulations on 

a computer. The efficiency depends on the computing ability of computers. As the technology 

advances rapidly, the computing cost is relatively low and simulation process takes less time, 

compared to conducting experiments.   
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Despite the advantages, CFD technique has, simulation results are not always reliable. 

The numerical errors may come from each step of CFD approach. The approximation in the 

discretization step accounts for the truncation error. The round-off error depends on the 

computing ability of the machine. The accuracy of the solutions needs to be stressed. The results 

may be sensitive to the input boundary conditions.  

CFD methodologies are implemented in biology, astrophysics, meteorology and other 

fields [17]. The relatively low cost and fast speed of simulation attract engineers’ interest and 

enable them to perform numerical experiments. The large demand for CFD application leads to 

the development of simulating software, such as FreeFem++, Fluent, and FemLab. 

 

Figure 1.3 Pressure result of the three-branch geometry simulation viewed by Paraview  

1.4 Previous Study 

Nowadays, coronary artery disease seriously threatens the health of people worldwide, 

accounting for hundreds of thousands of death each year [5]. The coronary artery disease is 

caused by the coronary artery stenosis, which is usually resulted by atherosclerosis. There is a 

study conducted to examine the relation between vessel wall shear stress and the rate of 
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atherosclerosis progression, which clearly indicates the existence of the connection between 

atherosclerosis and blood flow patterns [18]. From the previous section, the fluid flow can be 

analyzed by computational fluid dynamics approach, in order to further discover the knowledge 

of atherosclerosis. 

In the study conducted by Doutel, they focused on the application of Murray’s law on 

bifurcation cases and utilized CFD methodology in a real case to indicate the power of including 

Murray’s law into the numerical analysis of fluid dynamics. They took Murray’s law as a 

reference and studied the left coronary artery bifurcation by numerical simulation. They designed 

the idealized left coronary artery geometry with the average value of human left coronary artery 

data. Because Murray’s law gives the relation between the radius of parent branch and radius of 

its daughter branches. More restrictions were required for the size of the vessel geometry. 

Murray’s law also gives the restriction on the allocation of the flow rate in the branches, which 

are significant for constructing boundary conditions. In Doutel’s study, they also set the angles 

between the branches with the reference to Murray’s relation. After the blood properties were 

included, the Navier-Stokes equations for the 3D incompressible flow was constructed. Then the 

boundary conditions of inlet, wall, and outlet were imposed on the chosen model. The CFD 

scheme was implemented to solve Navier-stokes equations for various surface area of the 

outflow branches with the same inlet diameter and same inlet wall shear stress. 

The various radiuses of outlet and angles between branches were considered in the 

configurations of the left coronary artery. The results indicated that geometries constructed 

according to Murray’s law “minimize the energy cost and keep the blood flow in circulation” 

[19]. This study concluded that for the numerical analysis in bifurcations, Murray’s law should 

be referenced in the geometry construction and flow allocation process. Also, the exponent in 
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Murray’s law is adjusted to be in the range of 2 to 3, in order to deal with real arteries, which do 

not follow the original Murray’s law [19]. 

 

Figure 1.4 The designed LAD geometry in study [19] 

1.5 Objective and significance 

The blood flow through vessels in a human body is governed by physical laws, in order 

to fulfill the physiological requirements [21]. For the circulation system in the organism, the 

branching vasculature assists to supply blood volume to every organ, in order to transport the 

oxygen and nutrients. As the bifurcation appears in the vessel structure, the blood flow divides 

into branches naturally. By analyzing the branching system, Cecil D. Murray realized that 

“physiological vascular systems, subjected through evolution to natural selection, must have 

achieved an optimum arrangement such that in every segment of vessel flow is achieved with the 

least possible biological work” [21]. From Murray’s study, in the numerical analysis of the 

allocation of blood flow in branches, energy minimization principles need to be considered. As 

the result, Murray’s law was introduced, which gave the relation between radius of a parent 

vessel and radii of the daughter branches by the following formula, 

                              𝑅!"! =  𝑅!! + 𝑅!! +⋯+ 𝑅!!                                                        (1.1) 
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Where 𝑅!" is the radius of parent vessel, and 𝑅!, 𝑅!, 𝑅!… 𝑅! are the radii of the respective 

daughter branches [20].  

A large amount of branching system obeys Murray’s law. The validity of Murray’s law 

guarantees its application into the various study. For instance, Murray’s law is regarded as a 

biomimetic design tool in engineering and also utilized in research on vascular network changes 

in the retina [20, 22]. In the previous section, Doutel’s study also indicated the power of 

Murray’s law in fluid dynamics. This study demonstrated the reference to Murray’s law provided 

additional information for boundary conditions and vessel geometry generation, and the 

exponent in Murray’s law could be adjusted in the range of 2 to 3. Although the study conducted 

by Doutel discussed the use of Murray’s law in bifurcation cases, it did not clearly state how 

sensitive the flow pattern result is to the chosen exponent in Murray’s law.  

The objective of this research is to further study the application of Murray’s law in 

human coronary artery. Different values of the exponent (between 2 and 3) in Murray’s law will 

be considered into the research. The geometry of coronary artery with three branches will be 

utilized for each case. The steady Navier-Stokes equation is selected as the mathematical model 

of the flow pattern in the chosen geometry. With the help of FreeFem++, the blood velocity field 

and pressure results will be simulated numerically with the CFD approach. It is hypothesized that 

the change of exponent in Murray’s law will affect the flow in the coronary arteries. The results 

of pressure drop and flow split will be examined in Matlab. The comparisons between each case 

with a different exponent in Murray’s law will be analyzed, which lead to the conclusion of the 

impact of changing the exponent.  
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  The pressure field results help to measure the pressure difference in the branches of the 

coronary arteries. Such information is required for calculating the fractional flow reserve, which 

is a technique used to study the influence of the coronary artery stenosis on pressure change [23]. 

This research of the impact of changing exponent on blood flow pattern gives the guideline on 

selecting the proper parameter for Murray’s law. As a result, the method of allocating blood flow 

in branches based on Murray’s law will not greatly arouse the change in fluid velocity and 

pressure field. In this way, physicians can achieve a better result of fractional flow reserve, 

which will give them some insights on the study and coronary arteries disease. 
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Chapter 2 

Methods 

In this section, the chosen geometry and flow profile will be introduced. The three-

dimensional Navier-Stokes equations stemming from conservation of mass and momentum are 

selected for the mathematical model of the blood flow. A set of boundary conditions is imposed 

on the mathematical model. A detailed description of the numerical simulations will be included. 

2. 1 Data 

2.1.1 Geometry 

In order to study the exponent changes in Murray’s law, a geometry with bifurcation is 

needed for this research. From a real patient, we get the coronary artery data to form the three-

dimensional structure of blood vessel. To focus on the allocation ratio of blood supply in the 

coronary artery, the blood vessel with three daughter branches is chosen for the study. The data 

of the geometry is retrieved from a clinical study on real patients. The geometry is reconstructed 

from images with vascular modeling toolkit.  

For the upcoming analysis with finite element method, which will be introduced in later 

session, the mesh of the given geometry needs to be generated. For such step, the automatic 

mesh generator, Netgen, is utilized. It can generate mesh for solid geometry or boundary 

representation. It can also label the sub boundary in the given figure. Both two and three 

dimensional surface meshing and three dimensional volume meshing are allowed in Netgen [24]. 

This software can efficiently generate mesh for later computational fluid dynamics study. 
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Figure 2.1 The mesh generated for specific 3D structure with Netgen 

 For the chosen geometry in Figure 2.1, Netgen is used to create a fine mesh. As a result, 

7466 vertices, 13074 triangles, and 35026 elements are created for the structure. 

 

Figure 2.2 The label of surface in the geometry for later study on boundary conditions: (1) inflow 
labeled as 2 (2) wall labeled as 1 (3) branch 1 labeled as 3 (4) branch 2 labeled as 4 (5) branch 3 labeled as 5 (6) 
outflow labeled as 6 
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For the later study on boundary conditions, the surfaces of the coronary artery structure 

need to be labeled in a certain sequence. We label the whole wall of the vessel as region 1, label 

the inflow as region 2, and label the three branches respectively as 3, 4 and 5, and finally, label 

the outflow as 6. All the labels and blood flow are introduced in Figure 2.2. 

2.1.2 Boundary Conditions 

 For specific mathematical model, the boundary conditions of the blood flow on the given 

domain are required to give more information for the differential equation. In this research, the 

use of Murray’s law imposes the energy minimization principle for the blood supply in the 

coronary artery branches. In this manner, the flow rate in each branch will be calculated by the 

following formula: 

                                                           𝑄! =  !!
!!"

 ! ∗ 𝑄!"                                                                  (2.1) 

where 𝑄!" is the given flux of the inlet, 𝑟!" is the radius of the parent branch, 𝑟! is the radius of 

the daughter branches, 𝑄! is the flux flowing in the corresponding branch and p is the exponent 

in Murray’s law. In order to study the impact of changing exponent in Murray’s law, we let p to 

be 3.00, 2.75, 2.50 and 2.25 respectively and analyze the pressure changes in each branch in the 

following sections. 

The selected geometry of coronary artery with three branches is a three-dimensional 

structure. Thus, the blood flow in the vessels also needs to be interpreted in the three-

dimensional space. In order to set up the boundary conditions for the inflows and outflows, we 

need to construct the flow profile for the blood flowing through according to the blood 

characteristics.  
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For fluid, one property we need to consider is the viscosity, which means its resistance to 

the deformation of the structure by shear stress [25]. In this research, we assume that the velocity 

of blood flow in this study will achieve its maximum at the center of the vessel and have zero 

value on the boundary. As a result, the blood flow in the coronary artery can be characterized by 

laminar flow, which depicted by concentric layers moving parallel to the vessel wall. To consider 

the velocity u as a function of position x, the velocity will have the largest value at the center of 

the vessel and reach the lowest value at the edges. Thus, the parabolic profile function is 

introduced to depict the blood flow in the vessels. However, the center of mass needs to take into 

account for the center shift of the blood flow. From the FreeFem++, the center of mass along 

three perpendicular axis is measured as𝑀!, 𝑀! and 𝑀! for each boundary. Then the parabolic 

profile of the blood flow is characterized by the following function, 

𝑓 𝑥,𝑦, 𝑧 = 2 ∗ 1− !!!! !! !!!!
!! !!!! !

!!
∗ !
!
                                            (2.2) 

where r is the radius of the branch, A is the area of the boundary surface. This formula gives the 

parabolic profile of blood and helps to investigate the boundary conditions needed for the 

mathematical model.  

With the parabolic function of blood flow and the calculated flux at the boundary of each 

branch, this research focuses on five different cases, varying in boundary conditions or exponent 

in Murray’s law. To be specific, the five cases are stated as below. 

Case 1: blood flow model with traction free conditions at the outflow (roughly corresponding to 

zero pressure) and exponent = 3.00 for the collateral vessels 

Case 2: blood flow model with Dirichlet boundary condition and exponent = 3.00 
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Case 3: blood flow model with Dirichlet boundary condition and exponent = 2.75 

Case 4: blood flow model with Dirichlet boundary condition and exponent = 2.50 

Case 5: blood flow model with Dirichlet boundary condition and exponent = 2.25 

The comparison between the first two cases aims at investigating the significance of 

imposing boundary conditions to the model. The comparison between the last four cases aims at 

investigating the impact of changing the exponents in Murray’s law. 

2.2 Mathematical Model 

2.2.1 Navier-Stokes equation  

Fluid dynamics is the area where the motion of fluid particles gains the great interest of 

scientists. In the microscopic level, fluid is a series of infinitesimally small molecules. When the 

density of the fluid is very large, we can regard the fluid as a continuum. In this manner, we can 

investigate the pressure, velocity and other properties at each point [27]. To study the behavior of 

the fluid, the system of Navier-Stokes equations is introduced. With the conservation of 

momentum, mass, and energy, the Navier-Stoke equation describes the motion of the fluid and 

related flow phenomena. The general form of Navier-Stokes equation describing a viscous, 

incompressible Newtonian fluid in a bounded domainΩ⊂ ℝ!is shown as follow: 

                          
𝐮
!
− 𝑣∆𝐮+ 𝒖 · ∇ 𝒖+ ∇𝑝 = 𝒇    𝑖𝑛 Ω×(0,𝑇]

∇ · 𝐮 = 0                                            𝑖𝑛 Ω×(0,𝑇]
                                     (2.3) 

Where u is the fluid velocity, p is the pressure divided by density, f is the forcing term, 𝜌 

is the density of the fluid, 𝜇 is the dynamic viscosity, and 𝑣 =  !
!
 is the kinematic viscosity. The 

first equation in (2.3) is derived from the conservation of linear momentum. The second equation 
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in (2.3) comes represents the incompressibility condition. 𝐮
!
 term indicates that the fluid is 

unsteady, which means the fluid changes with time. 𝑣∆𝐮 is the diffusion term, which describes 

how fluid is damped. 𝒖 · ∇ 𝒖 is the nonlinear transport term. Together with the appropriate 

initial condition and boundary conditions, the system of Navier-Stokes equation forms. 

Blood, which takes 8% body weights, is composed of blood cells and plasma [28]. As a 

complex mixture, blood is not homogeneous and thus cannot be considered as Newtonian fluid. 

However, the blood plasma is a Newtonian fluid, because most of its composition is water [29]. 

Also, it is hard to model the non-Newtonian fluid, due to its complexity. Thus, we assumes that 

blood in large vessel is considered as a Newtonian fluid. We also make the assumption that the 

blood flow in coronary artery does not change with time, which means the blood flow is steady. 

To further simplify the problem, we take the forcing term as zero. Such assumptions lead the 

choice of three-dimensional Navier-Stokes equations and continuity equation for incompressible 

Newtonian viscous fluid. Thus, the equations in (2.3) changes into the following form, 

 −𝑣∆𝐮+ 𝒖 · ∇ 𝒖+ ∇𝑝 = 𝟎          𝑖𝑛 Ω
∇ · 𝐮 = 0                                            𝑖𝑛 Ω

                                             (2.4) 

where u is the fluid velocity, p is the pressure divided by density,  𝜌 is the density of the fluid,  𝜇 

is the dynamic viscosity, and  𝑣 =  !
!
 is the kinematic viscosity. The domain  Ω is defined as the 

geometry in Figure 2.2 and 𝜕Ω = Γ! ∪ Γ! ∪ Γ! ∪ Γ! ∪ Γ! ∪ Γ! (regions are labeled in Figure 2.2). 

The Dirichlet boundary conditions are shown as below, 
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𝒖 = 𝟎                 ∀𝒙 ∈ Γ! 
𝒖 𝒙 = 𝑄!"𝑓𝒏   ∀𝒙 ∈ Γ!
𝒖 𝒙 = 𝑄!𝑓𝒏   ∀𝒙 ∈ Γ!
𝒖 𝒙 = 𝑄!𝑓𝒏   ∀𝒙 ∈ Γ!
𝒖 𝒙 = 𝑄!𝑓𝒏   ∀𝒙 ∈ Γ!
𝒖 𝒙 = 𝑄!𝑓𝒏   ∀𝒙 ∈ Γ!

                    (2.5) 

where 𝑄!" is the inlet, 𝑄!, 𝑄!, and 𝑄! are the flux in the corresponding side branches, 𝑄! is the 

outlet, and f is the parabolic profile of blood flow given in equation (2.2). 

 Another Neumann boundary condition for pressure takes into account. The first 

derivative of pressure in outflow equals to the given distal pressure. However, this Neumann 

boundary condition is only utilized for case 2 to 6. Because in case 1, there is no Dirichlet 

condition for velocity. Thus imposing the pressure condition to this case will lead to the 

reallocation of the flux, in order to fulfill the conservation law. As a result, the solution with no 

physical meaning, such as positive flux for outflowing branches, appears.  

2.2.2 Weak formulation  

First weak formulation of equation (2.4) needs to be derived for later use in finite element 

method. We start by multiplying the first equation in (2.4) by the test function v and multiplying 

the second continuity equation in (2.4) by the test function q and integrating on the domain Ω, 

           
−𝑣∆𝐮 · 𝐯! + 𝒖 · ∇ 𝒖 · 𝐯! + ∇𝑝 · 𝐯! = 𝟎          

− (∇ · 𝐮) · q! = 0                                            
                                  (2.6) 

Where v ∈ 𝐻! (Ω) and 𝑞 ∈ 𝐿!!(Ω). Although we have the nonhomogeneous boundary conditions 

for some region, the lifting function 𝑙(𝒙)  ∈ 𝐺 in 𝐻! (Ω) can be introduced to reduce the equation 

into the homogeneous case [30]. Applying the Divergence theorem and imposing homogeneous 
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boundary conditions the original problem changes into: Find 𝑢 ∈  𝐺 + 𝐻! (Ω) and 𝑝 ∈ 𝐿!!(Ω) 

such that for any v ∈ 𝐻!!(Ω) and any 𝑞 ∈ 𝐿!!(Ω), where 

                              
𝑣 ∇𝒖 · ∇𝐯! + 𝒖 · ∇ 𝒖 · 𝐯! − 𝑝(∇ · 𝐯)! = 𝟎          

− (∇ · 𝐮) · q! = 0                                            
                              (2.7) 

2.3 Space discretization  

The Navier-Stokes equation, which describes the fluid flow and related fluid phenomena, 

is difficult to achieve the full understanding and gains a lot of attention in this area. Along with 

some simplified assumptions, some numerical methods are required, in order to solve for the 

numerical solution of Navier-Stokes equation.  

After the mathematical model is selected to represent the initial problem, the space 

discretization method is introduced. With the appropriate discretization method in space, the 

differential equation in Navier-Stokes can be approximated by a system of algebraic equations at 

discrete location in space. In the space discretization step, we approximate the exact solution u 

by a finite number of values 𝑢!  at discrete nodes. Different approximation method leads to 

different way to represent the nodal values. In the discretization process, the appropriate 

polynomials with the easiness in differentiation and integration are selected to be the basis 

functions, which span the solution space. 

In this study, finite element method is chosen for the space discretization step. In each 

element, the velocity is approximated by a quadratic polynomial and the pressure is 

approximated by a linear polynomial [30]. Thus, given the subspaces 𝑉! ⊂ 𝐻!!(Ω) and 𝑄!  ⊂

 𝐿!!(Ω) , the equations in (2.7) changes into the following form: 
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𝑣 ∇𝒖! · ∇𝐯!! + 𝒖! · ∇ 𝒖! · 𝐯!! − 𝑝(∇ · 𝐯!)! = 𝟎 

− (∇ · 𝒖!) · q! = 0    
                            (2.8) 

Where 𝒖! ∈ 𝑉! and 𝑝!  ∈ 𝑄!.  

 With the Galerkin method, we introduce two basis functions, 𝜙! for velocity and 𝜓! for 

pressure. Then we approximate the solutions for velocity and pressure with the following 

formula, 

                                               𝒖! = 𝒖𝒋
!!
!!! 𝜙!                                                                        (2.9) 

                                                      𝑝! =  𝑝!
!!
!!! 𝜓!                                                                     (2.10) 

Where 𝑁! is the number of degree of freedom for velocity and 𝑁! is the number of degree of 

freedom for pressure [31]. Then we substitute the linear combination of the basis functions for 

velocity and pressure into equation (2.8). The Galerkin formulation is shown as follow: 

           
𝑣 ∇𝒖! · ∇𝜙!! + 𝒖! · ∇ 𝒖! · 𝜙!! − 𝑝!(∇ · 𝜙!)! = 𝟎 

− (∇ · 𝒖!) · 𝜓!! = 0    
                         (2.11) 

Where for the first equation, 𝑖 =  1,2,3… ,𝑁! and for the second equation, 𝑖 =1,2,3… ,𝑁!. After 

the space discretization process, the system of algebraic equations is formed. The matrix form of 

the system is 

        

                                                              𝐴𝑢 + 𝐵
!𝑝 + 𝑁 𝑢 = 𝟎
𝐵𝑢 = 𝟎

                                                   (2.12) 
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Where u is the vector of unknown velocity, p is the vector of unknown pressure, Au is the 

discretized form of diffusion term, 𝑁 𝑢  is the discretized form of nonlinear convection, 𝐵!𝑝 is 

the discretized pressure term, and 𝐵𝑢 is the discretized form of the divergence of u [30]. 

2.4 Linearization Scheme  

In equations (2.12), the convection term is nonlinear. Thus, an appropriate linearization 

scheme is necessary to apply here. In this study, the Picard iteration method is utilized.   

2.4.1 Picard Iteration 

 For the non-linear convection term 𝒖 · ∇ 𝒖, the Picard iteration utilizes the information 

from previous iteration to convert the non-linear term into linear form. Let k denotes the previous 

iteration step, and k+1 denotes the current iteration. The convection term is approximated by the 

following formula, 

                                  𝑢!!! · ∇ 𝑢!!! ≈  𝑢! · ∇ 𝑢!!!                                           (2.13) 

This approximation changes the equation (2.4) as states, 

                    −𝑣∆𝐮
!!! + 𝐮! · ∇ 𝐮!!! + ∇p!!! = 𝟎          𝑖𝑛 Ω

∇ · 𝐮!!! = 0                                                            𝑖𝑛 Ω
                                (2.14) 

The initial guess of the solution is obtained by solving the corresponding Stokes equation. 

With the initial guess, 𝑢!, the original Navier-Stokes equations are linearized at each iteration 

step [31].  

2.4.2 Implemented algorithm  
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 By solving the Stokes problem with no convection, we obtain the initial guess of 𝑢 and 𝑝. 

Then the non-linear term N(u) in equation (2.12) is linearized by approximation in equation 

(2.13). By the Picard Iteration scheme, we create a linearized matrix L = 𝐴𝑢 + 𝑁 𝑢  [31]. Then 

the system (2.12) becomes, 

𝐿 𝐵!
𝐵 0

𝑢
𝑝 = 𝟎

𝟎                        (2.15) 

In order to help the solution converges, the relaxation parameter = 0.2 is added. This 

means that the new solution is composed by 20% of the previous solution and 80% of the current 

solution. The iteration of solving the Navier-Stokes equations terminates when the residual of the 

solution is less than 0.001 or the number of iteration steps reach the preset max number of 

iterations.  

The above algorithm is implemented by FreeFem++, which is a partial differential 

equation solver with finite element method.  

2.5 Streamline Stabilization  

Although the relaxation parameter is added to the Picard iteration scheme, there is case 

where the solution does not converge. One way to enforce the stability of the problem is to 

decrease the amount of inflow. Another way to help the solution to converge is adding the 

streamline-diffusion term.  

Considering the advantage of upwind artificial viscosity method, in this three-

dimensional case, we also try to introduce the artificial diffusion term to help stabilize the initial 

problem. The general stabilization term is shown as  
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 −𝑄ℎ𝑑𝑖𝑣 𝒃 ∙ ∇𝑢 𝒃 = −𝑄ℎ𝑑𝑖𝑣(!"
!𝒃
)𝒃                                              (2.16) 

Where b is the transport field, and Q = 𝒃 !![32]. 

For case 2 to case 6, we decrease the inflow, which helps the convergence of the 

solutions in these cases. However, for case1, the convergence is not achieved by only reducing 

the inflow. Without imposing Dirichlet boundary conditions on branches, there is less restriction 

to impose on the problem. In this case, adding the streamline-diffusion term guarantees the 

convergence of solution.  
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Chapter 3 

Results 

This research followed the computational fluid dynamics procedure to investigate 

changes in pressure and flow split with respect to different exponents used in Murray’s law. The 

geometry of coronary artery was generated with the data from a real patient. The 3D mesh 

generator, Netgen, was utilized to create the fine mesh of the given geometry. In this process, 

7466 vertices and 35026 elements were generated for later simulation process. In Netgen, six 

regions were labeled to define the boundary conditions. We labeled wall as region 1, the inlet as 

region 2, the three branches as 3, 4 and 5 respectively, and finally the outlet as 6.  

In this study, five cases were categorized by exponent in Murray’s law and boundary conditions. 

Based on Murray’s law and given inflow, the flow was calculated for each branch by FreeFem++ 

shown in Table 1, where Qin denotes inflow, Qout denotes outflow, Q1, Q2, Q3 denote the flows in 

side branches respectively.  

 exponent  boundary 
condition 

Qin 

(ml/s) 

Q1 

(ml/s) 

Q2 

(ml/s) 

Q3 

(ml/s) 

Qout 

(ml/s) 

Case 1 3.00 No 3 1.4847 0.0688 0.1585 1.2879 

Case 2 3.00 Yes 3 1.4847 0.0688 0.1585 1.2879 

Case 3 2.75 Yes 3 1.5744 0.0943 0.2025 1.1288 

Case 4 2.5 Yes 3 1.6694 0.1291 0.2587 0.9427 

Case 5 2.25 Yes 3 1.7701 0.1769 0.3306 0.7223 

Table 3.1 Calculated flow for each branch based on Murray’s law 
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The physical parameters used in the simulation were also collected from real patients. 

The density of the blood flow was 1.06 𝑔/𝑐𝑚!. The dynamic viscosity was 0.035 𝑔/𝑐𝑚 ∙ 𝑠. The 

distal pressure was 85 mmHg, which was used to set Neumann boundary condition. For the 

Picard iteration scheme, the Picard tolerance was set to 0.001 and the maximum number of 

iterations was set to 100. This means the simulation will stop either the residual is less than 0.001 

or the process goes through 100 times.  

 With the use of FreeFem++, the numerical results of the solution were simulated with the 

algorithm stated in section 2.4.2. The pressure field and velocity result was generated by solving 

the Navier-Stokes equation with Picard iteration scheme. The computed flux at each branch was 

calculated by integrating the velocity on the cross-section of the vessel. The computed pressure 

and flux results are shown in the following tables.  

 Inflow  Branch1 Branch2 Branch3 Outflow 

Pressure(mmHg*1333) 742.738 0.014 1.391 0.881 0.259 

Flux(ml/s) 2.999 -1.740 -0.086 -0.185 -0.988 

Table 3.2 Pressure and flux results for case 1 

 Inflow  Branch1 Branch2 Branch3 Outflow 

Pressure(mmHg*1333) 114345 113755 113594 113544 113305 

Flux(ml/s) 2.999 -1.483 -0.068 -0.157 -1.290 

Table 3.3 Pressure and flux results for case 2 

 Inflow  Branch1 Branch2 Branch3 Outflow 

Pressure(mmHg*1333) 114189 113556 113341 113335 113305 

Flux(ml/s) 2.999 -1.573 -0.093 -0.201 -1.132 

Table 3.4 Pressure and flux results for case 3 
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 Inflow  Branch1 Branch2 Branch3 Outflow 

Pressure(mmHg*1333) 114022 113344 113012 113071 113305 

Flux(ml/s) 2.999 -1.668 -0.127 -0.257 -0.947 

Table 3.5 Pressure and flux results for case 4 

 Inflow  Branch1 Branch2 Branch3 Outflow 

Pressure(mmHg*1333) 113847 113117 112573 112734 113305 

Flux(ml/s) 2.999 -1.769 -0.174 -0.328 -0.728 

Table 3.6 Pressure and flux results for case 5 

The results calculated by FreeFem++ were also viewed in a visualization software, 

Paraview. In Figure 3.1 to Figure 3.5, the geometries with pressure field and velocity solution 

were shown. Red color indicated large value and blue indicated small value. The scale of the 

magnitude was shown in the legend. 

 

 

(a)  Pressure                                       (b) Velocity 
Figure 3.1 The visualization of numerical results in pressure and velocity for case 1 

(a) Pressure                                                (b)Velocity  
Figure 3.2. The visualization of numerical results in pressure and velocity for case 2 
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(a) Pressure                                                            (b)Velocity  
Figure 3.3 The visualization of numerical results in pressure and velocity for case 3 

 

 

(a) Pressure                                                             (b) Velocity  
   Figure 3.4 The visualization of numerical results in pressure and velocity for case 4 

 

 

(a) Pressure                                                       (b) Velocity  
Figure 3.5 The visualization of numerical results in pressure and velocity for case 5 
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Chapter 4  

Discussion and Conclusion  
In Table 3.1, the flux in each branch was calculated according to Murray’s law, which 

was different in exponent only. With the flux data, the flow split, the ratio of outflowing flux and 

the inflow, was easy to obtain. We added up the flow split and compared that to 1. Because the 

difference between the sum of flow split and 1 was less than 0.01, the flow splitting is consistent. 

This indicated that every flux data we obtained has physical meaning. Such consistence allowed 

us to run simulations with the calculated flux information.  

In Figure 3.1 to 3.5, the solutions of the Navier-Stokes equation were visualized in 

Paraview. We had a direct impression on the pressure and velocity changes in the given 

geometry. For the pressure field, the red part started from the inlet and extended to the other 

branches. Then the red part faded, gradually shifted to light blue, and finally became dark blue at 

the end of side branches and outlet in all cases. Because the color bar utilized red as the large 

value and blue as the small value, the pressure field solutions demonstrated the blood flow 

entered from the left side of the geometry and went out from the side branches and outlet. This 

result matched with the blood flow assumption.  

The cross-section of the vessel with the velocity solution was shown in Figure 4.1. It has 

dense red in the center, faded to white, and gradually changed to dark blue. This indicated that 

the blood flow achieved its maximum velocity at the center of the vessel and had the zero 

velocity on the boundary. This visualization of velocity agreed with the parabolic blood profile. 

To analyze the impact of changing exponent in Murray’s law, we need to investigate the 

pressure drop and flow split results in each case. Based on the data in Table 3.2 to 3.6, the 
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pressure drop and flow split in side branches and outlet were determined (shown in Table 4.1 and 

4.2). 

  

Figure 4.1 The cross-section of vessel with visualized velocity solution 

Flow Split Branch1 Branch2 Branch3 Outflow 

Case1 0.5804 0.0285 0.0616 0.3295 

Case2 0.4947 0.0226 0.0525 0.4302 

Case3 0.5246 0.0310 0.0670 0.3775 

Case4 0.5562 0.0424 0.0856 0.3157 

Case5 0.5898 0.0581 0.1094 0.2427 

Table 4.1 The flow split in each side branches and outflow for all five cases 

 

Pressure Drop 
(mmHg) 

Branch1 Branch2 Branch3 Outflow 

Case1 0.5572 0.5561 0.5565 0.5570 

Case2 0.4426 0.5634 0.6009 0.7802 
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Case3 0.4749 0.6362 0.6407 0.6632 

Case4 0.5086 0.7577 0.7134 0.5379 

Case5 0.5476 0.9557 0.8350 0.4066 

Table 4.2 The pressure drop in each side branches and outflow for all five cases 

To compare the results respect to exponent changes, we plotted the pressure drop and 

flow split statistics in all five cases in each branch (shown in Figure 13 and 14). First we looked 

at the differences in pressure drop and flow split for case 1 and case 2. Except for pressure drop 

in branch 2 and 3, there are relatively large change between case 1 and case 2 for all other 

conditions. Case 1 and case 2 share the same exponent in Murray’s law, but only in case 2, 

boundary conditions are imposed. This shows that imposing boundary conditions on inflow and 

side branches will influence the pressure drop in the first side branch and outflow and flow 

split.in all branches.  

 For the data in later four cases, the monotone shift is observed. For case 2 to 5, the 

boundary conditions are applied, but they are different in exponent in Murray’s law. Such 

monotone change indicates that the change of exponent in Murray’s law influence the blood flow 

pattern. However, there is not sufficient data to investigate what kind of relationship between 

exponent and solution is.  

To further investigate the impact of changing exponent, we plot the graphs on the same 

figure for pressure drop and flow split respectively (Figure 4.4 and 4.5). From Figure 4.4 and 4.5, 

there is less change in pressure drop and flow split for side branches and outflow from case 3 to 

case 4. This demonstrates that for exponents in range between 2.75 to 2.50, there is relatively 

less change in solution.  
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                       (a) Branch 1                                                               (b) Branch 2 

 

 

 

 

 

 

                       (c) Branch 3                                                                (d) Outflow 

 

                       Figure 4.2 Flow split in five cases for side branches and outflow  
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                          (a) Branch 1                                                          (b) Branch 2  

 

 

 

            (c) Branch 3                                                            (d) Outflow 

Figure 4.3 Pressure drop (mmHg) in five cases for side branches and outflow 

To further investigate the impact of changing exponent, we plot the graphs on the same 

figure for pressure drop and flow split respectively (Figure 15 and 16). From Figure 15 and 16, 

there is less change in pressure drop and flow split for side branches and outflow from case 3 to 

case 4. This demonstrates that for exponents in range between 2.75 to 2.50, there is relatively 

less change in solution.  
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Figure 4.4 Pressure drop of five cases in side branches and outflow 

 

Figure 4.5 Flow split for side branches and outflow in five cases 
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In a conclusion, changing exponents in Murray’s law has an impact on the blood flow 

pattern. However, the clear relation cannot be stated in this research. Choosing the exponent in 

range from 2.25 to 2.75 will help to reduce the sensitivity in solution resulted from the Murray’s 

law. The results reveals the successful implement of Murray’s law into real patient case and the 

power of CFD approach in clinical issues.  
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