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Abstract

Freudenthal triple systems via root system methods
By Fred W. Helenius

For a Lie algebra g of type B, D, E or F , we can apply a grading g =
g−2⊕g−1⊕g0⊕g1⊕g2 and then define a quartic form and a skew-symmetric
bilinear form on g1, thereby constructing a Freudenthal triple system. The
structure of the Freudenthal triple system is examined using root system
methods available in the Lie algebra context. In the important cases g = E8

and g = D4, we determine the groups stabilizing the quartic form and both
the quartic and bilinear forms.
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Chapter 1

Introduction

In this chapter, we begin by providing an overview of the contents of the

subsequent chapters. Section 1.2 contains a brief history of the algebraic

structures known as Freudenthal triple systems. Finally, Section 1.3 describes

related work in the existing literature, noting in particular which of the results

we present are parallel to those in other published papers.

1.1 Outline

Following this introductory chapter, Chapter 2 describes the background ma-

terial needed for the results that will follow. This includes the definition and

fundamental properties of the root system of a Lie algebra, the classification

of irreducible root systems, the properties of the structure constants that

define the multiplication in a Lie algebra; most of the material in the first

three sections is standard, so proofs are only provided when there is no con-

venient reference to the literature. The later sections are concerned with a

specific class of Lie algebras in which we will identify a particular subspace,

denoted g1, which will be equipped with the necessary operations to con-

struct a Freudenthal triple system. We cite known results about the orbits

in g1 under a group action, and then collect some useful facts about the roots

corresponding to the root subspaces that make up g1.
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The real work begins in Chapter 3, which contains results that are valid

for any of the Lie algebras we consider. We first define a quartic form and a

bilinear form on g1, and establish their basic properties. After using the forms

to define a triple product on g1, we define a class of elements called “strictly

regular” for which the triple product behaves in a particularly simple way.

Several alternative characterizations of strictly regular elements are given

and specific examples are identified; these enable us to produce a formula for

the triple product in a special case. This in turn allows us to finally show

that the structure defined on g1 by these operations satisfies the axiomatic

definition of a Freudenthal triple system. In the final section of the chapter,

we show how to compute the quartic form on g1 in several cases; these cases

cover all possibilities for simply-laced Lie algebras.

Chapter 4 contains results which only apply to particular Lie algebras.

The first three sections apply to simply-laced Lie algebras. In the first, we

exhibit a decomposition of g1 into four eigenspaces in a way that mirrors

the construction of Freudenthal triple systems from Jordan algebras; in the

second, we give simple characterizations of elements in the different orbits

in g1; in the the third, we study the groups that preserve either the quartic

form or the bilinear form up to a scalar factor. Results from all three sections

are then applied to precisely determine the groups that stabilize either the

quartic form or both forms in the case that the Lie algebra is of type E8.

The last section applies similar techniques to answer the same questions for

the Lie algebra D4.

The final chapter summarizes the results and indicates some directions that

future work may take.
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1.2 History

The history of the study of Lie algebras and their representations is a complex

and interesting subject; here we only mention the steps that led directly to

the definition of a Freudenthal triple system. For more detail about the

early period of this history, up to 1926, the reader may wish to refer to the

comprehensive survey by Hawkins ([16]).

The classification of simple Lie groups and their Lie algebras over C was

first attempted by Wilhelm Killing in a series of articles published in Mathe-

matische Annalen from 1888 to 1890. In the last article, [19], he exhibited his

classification, which consists of four sequences of Lie algebras of the so-called

“classical” types and six others. Killing had made a mistake—two of his six

new Lie algebras were actually isomorphic—but he had also inaugurated the

study of “exceptional” Lie algebras.

Killing’s work was corrected, revised and expanded by Élie Cartan in his

1894 thesis, [6], in which he established the notation now used for the five

exceptional Lie algebras: E6, E7, E8, F4 and G2. Cartan also studied the

representations of these Lie algebras; our interest lies in the 56-dimensional

faithful irreducible representation of E7 that he described. This represen-

tation, now known as the minuscule representation of E7 (meaning that its

weights form a single orbit under the Weyl group), is the prototypical exam-

ple of a Freudenthal triple system. Cartan found that there was a quartic

form on this representation that was invariant under the action of the Lie

group E7, and gave an expression for the quartic form as a sum of 7784 terms

([6], p. 274). This unwieldy expression, however, was not correct.

Cartan’s error was noted by Hans Freudenthal in [12], one of several papers

in which he studied E7, its minuscule representation and the invariant quartic

form using a variety of techniques.

In [23], Kurt Meyberg gave an axiomatic definition (which he credited to
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T.A. Springer) for an algebraic structure which he called a Freudenthalsches

Tripelsystem, or, in English, a Freudenthal triple system. This structure gen-

eralizes the properties of the minuscule representation of E7 and its invariant

quartic form as described by Freudenthal and applies over general fields, with

some restrictions on the characteristic. An equivalent definition was found

independently by Robert B. Brown ([5]). In the next section we will review

related work on these structures.

1.3 Prior work

The work presented in this dissertation involves two related lines of inquiry

that have been considered by many authors. The first consists of the study of

Freudenthal triple systems in general or specifically of the minuscule repre-

sentation of E7 and its invariant quartic. One of our principal results, which

has been obtained previously in varying degrees of generality, is the deter-

mination of the group of linear transformations which stabilize the quartic

form.

The second line of inquiry concerns the construction of Freudenthal triple

systems from Lie algebras. Although such constructions have been given

before, the one we use does not seem to have been explicitly described.

We now examine a broad selection of related work, in chronological order.

The descriptions are limited to the topics in these papers that are related

to our results; in most cases the papers contain much unrelated material as

well.

As mentioned in the previous section, Freudenthal studied E7 extensively.

In a 1953 paper, [12], he defines the quartic form (correcting Cartan’s error)

and uses a remarkable series of indicial tensor calculations to determine the

stabilizer. In [13], published one year later, he obtains the same result, but

using a definition of the quartic form in terms of 3× 3 matrices of octonions
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(in effect, the exceptional Jordan algebra). In both papers he implicitly works

over C.

In unpublished notes ([25]) from 1962, Seligman also uses the exceptional

Jordan algebra to determine the stabilizer of the quartic form, but takes care

to obtain a result valid for fields of characteristic other than 2 or 3.

Meyberg’s 1968 paper, [23], as mentioned earlier, introduces the abstract

definition of a Freudenthal triple system.

In 1969, Brown ([5]) also gives axioms defining a Freudenthal system, but

with the aim of applying them to determine the stabilizer of the quartic

form on the 56-dimensional representation of E7. This approach entails a

large number of intricate calculations, yielding a result valid for fields of

characteristic not 2 or 3. Brown also shows how some Freudenthal triple

systems may be constructed from Jordan algebras.

Ferrar’s 1972 paper, [11], uses the axiomatic definition to study Freudenthal

triple systems, putting particular emphasis on analyzing their structure by

use of so-called strictly regular elements. The properties he deduces were

a useful guide in our investigation; the parallels between his results and

ours are detailed at the end of this section. Like Brown, he also constructs

Freudenthal triple systems from Jordan algebras.

The 1978 paper by Kantor and Skopec, [18], is the earliest we know of

that constructs Freudenthal triple systems from Lie algebras. They use a

grading on the Lie algebra as we do, but define the operations in a less

transparent way. To obtain their results they have to weaken the definition

of Freudenthal triple system by allowing the quartic form to be zero and

require the characteristic to be zero. Where both our methods apply, the

resulting Freudenthal triple systems appear to coincide.

In a 1979 paper, [1], Allison used the language of structurable algebras to

apply a construction similar to that of Kantor and Skopec to Lie algebras in

characteristic other than 2, 3 or 5. Since he does not use the terminology of
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Freudenthal triple systems, it is not obvious when his construction produces

them.

Cooperstein’s paper from 1995, [9], presents a unique construction of the

quartic form on a 56-dimensional space, beginning with two 28-dimensional

spaces acted on by a group of type A7. The introduction of an incidence

structure preserved by the stabilizer is used to identify the group; here the

result is valid outside of characteristic 2.

The 2001 paper by Lurie, [21], contains yet another determination of the

stabilizer of the quartic form, but extends the result so that it is valid in

all characteristics. To include characteristic 2 it is necessary to replace the

quartic form with its linearization; an impressive array of technical machinery

is also employed.

In 2003, Clerc ([8]) published a paper that includes many elements of our

construction of a Freudenthal triple system from a Lie algebra: he defines

a grading of the algebra into five parts, and defines the same quartic form

on one of the parts. However, Clerc does not explicitly identify the resulting

structure as a Freudenthal triple system. He does examine the orbits under

a group action, obtaining a result similar to our Proposition 4.2.

Although Springer’s involvement with Freudenthal triple systems extends

over decades, the paper we cite ([26]) is an expository work from 2006. His

approach to determining the stabilizer of the quartic form, which we partially

adopt in our proof, depends upon first determining the smaller automorphism

group resulting when additional structure is defined on the 56-dimensional

Freudenthal triple system.

Krutelevich’s 2007 paper, [20], considers Freudenthal triple systems defined

from Jordan algebras. Like Clerc, he considers their orbit structure, obtain-

ing a resulting very similar to ours.

As its title indicates, the present work is distinguished by the fact that the

structure which we construct from a Lie algebra is examined and proved to
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be a Freudenthal triple system by means of root system computations. The

operations we use are defined directly in terms of the Lie algebra multiplica-

tion. As a result, the calculations we require, although not always easy, are

generally much simpler than those required when working with the axiomatic

definition of a Freudenthal triple system. In fact, we make no essential use of

the axiomatic definition; it does not appear until section 3.3, and then only

for the verification that the structure we study is in fact a Freudenthal triple

system.

Our determination of the stabilizer of the quartic form on the minuscule

representation of E7 is clearly not a new result. However, we also apply our

techniques to answer the question for an 8-dimensional Freudenthal triple

system derived from the Lie algebra D4; this result is apparently new.

Although the axiomatic approach used by Ferrar in [11] is quite different

from the methods used here, our choice of results to prove was often guided by

the content of his article. The table below indicates results here that parallel

those of Ferrar as well as results in the articles by Clerc ([8]) and Krutelevich

([20]). The many papers cited above that determine the stabilizer of the

quartic form, parallel to Theorem 4.6, are not shown in the table.

Lemma 3.11 [11], Cor. 2.5

Prop. 3.15 [11], Cor. 6.2

Lemma 3.16 [11], (5)

Prop. 3.21 [11], Lemma 3.1

Lemma 3.23 [11], Lemma 3.6

Prop. 4.1 [11], §4
Prop. 4.2 [8], §§8,9; [20], Def. 22

Prop. 4.4 [11], Lemma 7.3

Table 1.1: Parallel results in other papers
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Chapter 2

Technical background

This chapter presents essential facts about the root systems of Lie algebras

and the structure constants defining the Lie algebra multiplication as well as

results concerning the orbits of in a particular subspace of Lie algebra under

a group action. The material in the first three sections is standard; the main

reference used is the textbook by Humphreys ([17]). Similar statements

can also be found in Bourbaki ([4]). The next two sections contain more

specialized results relevant to the particular situation we study; they are

drawn from articles by Röhrle ([24]) and by Borel and Tits ([3]). The final

section is a one-page summary of the notations and definitions in this chapter.

2.1 Root systems

Throughout this chapter, we consider a Lie algebra g over a field F . Specif-

ically, we assume that g is the Lie algebra of a semisimple linear algebraic

group G that is split over F ; thus ([2], Theorem 13.18) g has a Cartan sub-

algebra which we fix and denote by h, and g decomposes into the direct sum

of h and the root subspaces, with each root subspace being one-dimensional.

In other words, even though Humphreys works over C in [17], his results also

apply to the Lie algebras we consider.

The roots of g with respect to h are vectors in the dual space h∨, but as

their coordinates are rational ([17], §8.5), they can be seen as vectors in Rn,



9

where n is the rank of g. Thus for any roots β, γ of g we have the usual

inner product (β, γ). A particular combination of inner products arises often

enough to deserve a special notation; we define 〈−,−〉 as follows:

〈β, γ〉 = 2
(β, γ)

(γ, γ)
.

Note that the expression 〈β, γ〉 is linear in the first variable, but not in the

second. We will sometimes use this notation with arguments which are sums

of roots, but not necessarily roots themselves.

We can now define the subject of this section.

A subset Ψ of Rn is a root system if

• Ψ consists of finitely many nonzero vectors that span Rn,

• for β ∈ Ψ, the only other scalar multiple of β in Ψ is −β,

• for all β, γ ∈ Ψ, the value 〈β, γ〉 is an integer,

• for all β, γ ∈ Ψ, the reflection of β in the hyperplane orthogonal to γ,

which is given by β − 〈β, γ〉γ, is also in Ψ.

It will be no surprise that the roots of a semisimple Lie algebra form a root

system ([17], §8.5).

The roots of g give rise to a root space decomposition, namely

g = h⊕
⊕
β∈Ψ

Fxβ

where xβ is a nonzero representative of the one-dimensional root subspace

corresponding to the root β ([17], §§8.1, 8.4).

The root space decomposition interacts in a simple way with the Lie algebra

product:

Fact 2.1. For roots β, γ ∈ Ψ such that β + γ 6= 0, the product [xβ, xγ] is in

the root space corresponding to β + γ, if that is a root; otherwise, it must be

zero.
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This is Proposition 8.1 in [17]. Fulton & Harris refer to this fact as “the

fundamental calculation” ([14], §11.1).

Within any root system, there are severe constraints on the angle between

two roots and the ratio of their lengths. There are only four possibilities

([17], §9.4):

1. The roots are orthogonal; in this case their lengths may have any ratio.

2. The angle between the roots is π/3 or 2π/3 and their lengths are equal.

3. The angle between the roots is π/4 or 3π/4 and one length is
√

2 times

the other.

4. The angle between the roots is π/6 or 5π/6 and one length is
√

3 times

the other.

By choosing a hyperplane through the origin that does not include any of

the roots, it is possible to partition Ψ into two sets: we call the roots on

one side of the hyperplane positive roots and the others negative roots ([17],

§10.1). Since −β is a root whenever β is, there are equal numbers of positive

and negative roots.

Once such a partition of Ψ is chosen, there is a unique set of n positive roots,

say αi for 1 ≤ i ≤ n (again, n is the rank of g), called simple roots such that

every positive root is a sum of simple roots; that is, every positive root β

can be written as β =
∑n

i=1 kiαi with the coefficients ki being nonnegative

integers ([17], §10.1). We call
∑n

i=1 ki the height of β and denote it by ht β.

We define a partial order on the positive roots as follows: if β =
∑n

i=1 kiαi

and β′ =
∑n

i=1 k′iαi are positive roots, then β′ is above β if k′i ≥ ki for each i.

In other words, β′ is above β if β′ can be obtained from β by adding simple

roots.

A root system is reducible if it can be partitioned into two nonempty sets

such that each root in one set is orthogonal to all roots in the other; otherwise
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it is irreducible. In an irreducible root system, the roots can have at most

two different lengths which we call short and long ([17], Lemma 10.4.C). If

all roots are the same length, we call them long and say that Ψ is simply

laced. Henceforth we will assume that Ψ is irreducible.

In an irreducible root system, there is a unique maximal element in the

partial order defined above; it is called the highest root. We will denote

the highest root by ρ. The highest root, ρ, is always a long root ([17],

Lemma 10.4.D).

When performing computations in root systems, it is frequently important

to know whether the sum (or difference) of two roots is again a root. The

following facts will be used repeatedly in such situations.

Fact 2.2. For β, γ ∈ Ψ, if 〈β, γ〉 < 0 then β + γ is a root or zero. Likewise,

if 〈β, γ〉 > 0 then β − γ is a root or zero.

This is Lemma 9.4 in [17].

We will also use a partial converse to this:

Fact 2.3. If β, γ are long roots and 〈β, γ〉 ≥ 0, then β + γ is not a root.

Proof. Let r be the length of β and γ, then

〈β, γ〉 = 2
(β, γ)

(γ, γ)
= 2 cos θ,

where θ is the angle between β and γ. By hypothesis, cos θ ≥ 0, so 0 ≤ θ ≤
π/2. The length of β + γ is then 2 sin(θ/2)r ≥

√
2r, so β + γ cannot be a

root since it is longer than a long root.

The hypothesis that the roots are long is necessary as the sum of orthogonal

short roots may be a root; in the root system for the Lie algebra G2 (see

Section 2.2), β + γ may be a root even if 〈β, γ〉 > 0.

Fact 2.4. If the sum (or difference) of long roots is a root, it is a long root.
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Proof. Since the negative of a long root is also long, it suffices to consider

sums of roots. Suppose β and γ are long roots; the angle θ between them

must be one of π/2, π/3 or 2π/3. If β + γ is also a root, θ must be greater

than π/2 by the previous fact; thus θ = 2π/3. The length of β + γ is then

2 sin(π/3) = 1 times the length of β and γ, so it is long.

2.2 Classification of root systems

The classification of simple Lie algebras possessing a Cartan subalgebra, due

to Killing ([19]) and Cartan ([6]), proceeds by the following reductions: such

a simple Lie algebra has an irreducible root system ([17], Proposition 14.1),

and an irreducible root system is determined by the configuration of a set of

simple roots ([17], Proposition 11.1).

The geometry of a set of simple roots can be described by giving the relative

lengths of and angle between each pair of simple roots. The angle θ between

any two simple roots cannot be acute: suppose β, γ were simple roots with

〈β, γ〉 > 0; then β − γ would be a root (Fact 2.2), which is impossible

since β − γ is neither a positive root nor a negative root. Thus the possible

relations between two simple roots are reduced to these cases: the roots may

be orthogonal, they may be of equal length with θ = 2π/3, the ratio of their

lengths may be
√

2 with θ = 3π/4, or the ratio of their lengths may be
√

3

with θ = 5π/6. These relationships may be encoded succinctly by means of

a Dynkin diagram. A Dynkin diagram is a graph with vertices representing

the simple roots. Orthogonal roots are not joined by an edge, roots with

θ = 2π/3 are joined by a single edge, roots with θ = 3π/4 are joined by a

double edge, and roots with θ = 5π/6 are joined by a triple edge. In the latter

two cases, the edge is decorated with a wedge pointing toward the shorter

root. If the root system is irreducible, the corresponding Dynkin diagram is

connected.
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For example, the Dynkin diagram shown in Figure 2.1 describes a root

system with four simple roots; the two on the left being long and the other two

short. This is the Dynkin diagram for the root system F4, which corresponds

to a 52-dimensional Lie algebra.

Figure 2.1: The Dynkin diagram for the root system F4

By straightforward geometric arguments ([17], §11), all connected Dynkin

diagrams are shown to belong to four infinite sequences (corresponding to the

so-called classical Lie algebras) except for five exceptional cases. Conversely,

every such Dynkin diagram corresponds to an isomorphism class of simple

Lie algebras ([17], Theorems 12.1, 18.4).

The classical types are shown in Figure 2.2, where there are n vertices in

each diagram.

nB Dn

1 2 n−2 n−1 n

1 2 n−2 n−1 n

1 2

1 2

nCnA
n−2 n−1 n

n−3 n−2

n−1

(n > 0)

(n > 1)

(n > 2)

(n > 3) n

Figure 2.2: Dynkin diagrams for root systems of types A, B, C, D

The exceptional cases are shown in Figure 2.3.
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6E
1 3 4 5

1 3 4 5 6

1 3 4 5 6 7

1 2

1 2

4F

G
27

E

8
E

6

2

2

2

7

8

3 4

Figure 2.3: Dynkin diagrams for root systems E6, E7, E8, F4, G2

2.3 Structure constants

The multiplication in an algebra over a field can be defined by choosing a

basis and writing each possible product of two basis elements as a linear

combination of basis elements. The coefficients in the linear combinations

are called structure constants; they depend upon the choice of basis. A

good choice of basis will result in simple structure constants. For a split

semisimple Lie algebra, there is basis called a Chevalley basis for which the

structure constants become particularly simple.

For roots β and γ that are not opposite, we define the structure constant

cβ,γ so that [xβ, xγ] = cβ,γxβ+γ if β + γ is a root; if β + γ is not a root, we

define cβ,γ = 0. We will also find it convenient to define xβ+γ to be zero in

the case that β + γ is not a root.

A Chevalley basis for g consists of an element xβ in the root subspace

corresponding to β for each root β and elements hi = [xαi
, x−αi

] for αi a

simple root, 1 ≤ i ≤ rk g, such that the multiplication of these elements

satisfies the following ([17], §25.2):

• [hi, hj] = 0.
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• [hi, xβ] = 〈β, αi〉xβ.

• If β, γ are roots and β + γ 6= 0, then cβ,γ = −c−β,−γ.

• [xβ, x−β] is a Z-linear combination of the hi, denoted by hβ. This

element satisfies [hβ, xγ] = 〈γ, β〉xγ.

If the roots β, γ are long and β+γ is a root, then cβ,γ = ±1 ([17], Proposition

25.2(c)).

Henceforth, we will always assume that the basis elements xβ, hi are in a

Chevalley basis.

Theorem 4.1.2 in [7] provides the following information about the structure

constants:

Fact 2.5. Let β, γ, δ, ε be roots in Ψ.

(a) In all cases, cβ,γ = −cγ,β.

(b) If β, γ, δ are long roots such that β + γ + δ = 0, then cβ,γ = cγ,δ = cδ,β.

(c) If β, γ are long roots, then cβ,γ = −c−β,−γ.

(d) If β, γ, δ, ε are long roots such that β + γ + δ + ε = 0 and no two are

opposite, then

cβ,γcδ,ε + cγ,δcβ,ε + cδ,βcγ,ε = 0. (2.6)

For (b), (c) and (d) we have simplified the statements given in [7] by requiring

the roots to be long.

For the reader’s convenience, we prove these rules here.

Proof. Since cβ,γxβ+γ = [xβ, xγ] = −[xγ, xβ] = −cγ,βxβ+γ, (a) follows imme-

diately.
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In (b), the sum of each pair of roots is again a root (e.g., β + γ = −δ), so

we have in particular that 〈δ, β〉 = 〈δ, γ〉 = −1. By the Jacobi identity,

0 = [xβ, [xγ, xδ]] + [xγ, [xδ, xβ]] + [xδ, [xβ, xγ]]

= cγ,δ[xβ, x−β] + cδ,β[xγ, x−γ] + cβ,γ[xδ, x−δ]

= cγ,δhβ + cδ,βhγ + cβ,γhδ.

Computing the Lie bracket of this expression with xδ yields

0 = cγ,δ[hβ, xδ] + cδ,β[hγ, xδ] + cβ,γ[hδ, xδ]

= cγ,δ〈δ, β〉xδ + cδ,β〈δ, γ〉xδ + cβ,γ〈δ, δ〉xδ

= (−cγ,δ − cδ,β + 2cβ,γ)xδ.

Thus −cγ,δ − cδ,β + 2cβ,γ = 0; by permuting the indices, we also have −cδ,β −
cβ,γ + 2cγ,δ = 0. By subtracting, we find cβ,γ = cγ,δ; by again permuting the

indices, we have cβ,γ = cγ,δ = cδ,β.

Although (c) holds more generally, for us it is a consequence of having

chosen to work in a Chevalley basis.

For (d), we again apply the Jacobi identity:

0 = [xβ, [xγ, xδ]] + [xγ, [xδ, xβ]] + [xδ, [xβ, xγ]]

= cγ,δ[xβ, xγ+δ] + cδ,β[xγ, xδ+β] + cβ,γ[xδ, xβ+γ]

= cγ,δcβ,γ+δx−ε + cδ,βcγ,δ+βx−ε + cβ,γcδ,β+γx−ε,

where we have extended our notation slightly by writing, for example, cβ,γ+δ

even though γ + δ might not be a root; however, in that case the factor cγ,δ

is already zero. When γ + δ is a root, we have cβ,γ+δ = cε,β by (b); in the

other case, substituting one for the other is harmless. Thus we have

cγ,δcε,β + cδ,βcε,γ + cβ,γcε,δ = 0.

Applying (a) to the second factor of each term and reordering the terms gives

the result.
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2.4 Our situation

Our goal is to use root system techniques to define and describe an algebraic

structure (namely, that of a Freudenthal triple system) on a subspace of a

Lie algebra. The methods we use are inspired by Röhrle’s work in [24]. In

this section we describe restrictions that we require on the Lie algebra to use

his results and summarize the definitions and results that we will apply to

this situation.

Let F be an arbitrary field of characteristic 6= 2, 3, and let G be a simple,

connected linear algebraic group that is split over F , and let g be its Lie alge-

bra. As mentioned in Section 2.1, g then has a root space decomposition and

so belongs to one of the types given by the classification in Section 2.2. The

restriction on characteristic will be needed when we define the Freudenthal

triple system.

Let Ψ be the root system of g with respect to a fixed Cartan subalgebra h;

thus Ψ ⊂ h∨. Also fix a set of simple roots in Ψ, and let ρ be the highest

root in the resulting partial order on the positive roots.

The negative of the highest root, −ρ, can be added to the usual Dynkin

diagram for each root system to form an extended (or completed) Dynkin

diagram. Figure 2.4 shows the extended Dynkin diagrams for all the root

systems of simple Lie algebras; −ρ is represented by the unmarked vertex in

each diagram.

Except in type A, we see that −ρ (and thus ρ itself) is orthogonal to

all but one of the simple roots. In the remaining cases other than type

C, the unique simple root not orthogonal to ρ is long. Henceforth we will

assume g is not of type A or C, so there is a unique simple root α such that

〈α, ρ〉 = −〈α,−ρ〉 = 1 and α is a long root. We also need to assume that

the rank of g is at least 4, so we are thereby assuming that g is not of type

G (and also is not B3). In most of Chapter 4, we will also assume that g is

simply-laced and thus of type D or E.



18

n−2 n−1 n21 n−2 n−1 n21

1 3 4 5 6 7

1 3 4 5 6 7

A

G
7

E

8
E

nB

F6E

2

4

Dn

Cnn

n−2 n−1 n21 1 2
n

n−1

n−3 n−2

1 3 4 5 6

2

8

2

2

1 2 3 4

1 2

Figure 2.4: Extended Dynkin diagrams

For each β ∈ Ψ, the α-height of β is given by 〈β, ρ〉; equivalently, the α-

height of β is the coefficient of α when β is expressed as a linear combination

of the simple roots. Since 〈β, ρ〉 = 2 (β,ρ)
(ρ,ρ)

and ρ is long, it can only take

on values from −2 to 2. In particular, 〈β, ρ〉 = 2 only if β = ρ; likewise,

〈β, ρ〉 = −2 only if β = −ρ.

The α-height induces a grading on the Lie algebra g: We write g = g−2 ⊕
g−1 ⊕ g0 ⊕ g1 ⊕ g2, where, for each k 6= 0, gk is the direct sum of the root

subspaces for roots of α-height k; g0 is the direct sum of the root subspaces

for roots of α-height 0 and of h. Equivalently, each gk contains all x ∈ g for

which [hρ, x] = kx. Since 〈β, ρ〉 = −2 (resp. 2) only when β = −ρ (resp. ρ),

we see that g−2 and g2 are one-dimensional, consisting of the root subspaces

corresponding to −ρ and ρ, respectively.
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The grading on g allows us to define several operations on the subspace g1

in a natural way. If we take the element x−ρ ∈ g−2 and form the Lie bracket

of it with some x ∈ g1, the grading implies that the result [x, x−ρ] is in g−1.

If we again apply x, we obtain [x, [x, x−ρ]] in g0. Continuing twice more, the

value [x, [x, [x, [x, x−ρ]]]] is in g2; that is, it is a scalar multiple of xρ. The

coefficient of xρ is thus the value of a quartic form q(x) defined on g1:

[x, [x, [x, [x, x−ρ]]]] = q(x)xρ.

Using the standard notation ad x for the map y 7→ [x, y], we can write this

more concisely as

(ad x)4(x−ρ) = q(x)xρ.

Given the quartic form q(x), there is a corresponding fully-symmetric 4-

linear form q(x, y, z, w) defined by linearization. To specify the scalar factor,

we define q(x, x, x, x) = q(x) for all x ∈ g1.

Since the Lie bracket of any two elements of g1 lies in g2, we can define

a skew-symmetric bilinear form 〈x, y〉 on g1 by [x, y] = 〈x, y〉xρ. (We used

the same notation for a function of two roots; since this is a function of Lie

algebra elements, no confusion should result.) If we fix any three elements

x, y, z ∈ g1, the expression q(w, x, y, z) is thus a linear form on w. The form

〈−,−〉 will be shown to be nondegenerate (Lemma 3.1); thus there is a unique

element in g1 which we denote by xyz such that q(w, x, y, z) = 〈w, xyz〉 for

all w ∈ g1. We call xyz the triple product of x, y, z; since q is a symmetric

4-linear form, the triple product is symmetric and trilinear.

By a result of Vinberg ([28], Proposition 2), if F is algebraically closed the

Levi complement of a parabolic subgroup of the linear algebraic group G

acts on the unipotent radical of the parabolic subgroup with finitely many

orbits. Let G0 be the subgroup of G that corresponds to g0, more precisely,

the centralizer of hρ in G. In terms of the Lie algebra, G0, acts on g1 and

actually partitions g1 into finitely many orbits.
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In Theorem 2.6 of [24], Röhrle gives the number of G0-orbits in g1 for each

Lie algebra g satisfying our common hypotheses. For the Lie algebras E6,

E7, E8, there are five orbits. Each orbit is represented by an element of

the form
∑k

i=1 xβi
for k = 0, . . . , 4 where {β1, β2, β3, β4} is a set of mutually

orthogonal roots of α-height 1 ([24], Theorem 4.8). We refer to these as

orbit 0 through orbit 4. We may, and frequently do, take β1 = α; indeed, the

sets of four mutually orthogonal roots of α-height 1 exhibited in Section 2.5

all contain α.

For Lie algebras of type Dn, each orbit has a representative as above, but

there are either two (n > 4) or three (n = 4) distinct orbits generated by

sums with two terms; that is, “orbit 2” is split into two or three orbits in this

case; we refer to each of them as a level 2 orbit. Similarly, for Lie algebras

of type Bn, n ≥ 4, or F4 there are two level 2 orbits.

For all of the types, orbit 4 is also represented by xα +xρ−α ([24], Corollary

4.4).

The semisimple part of G0, which we denote by (G0)
ss, also acts on g1; here

there are finitely many orbits in the projective space P(g1). These projective

orbits correspond to the nonzero orbits under the action of G0. The action

of (G0)
ss is of interest because of the following fact.

Fact 2.7. The quartic form, skew-symmetric bilinear form and triple product

on g1 are preserved by the action of (G0)
ss.

Proof. The elements of (G0)
ss act on g by Lie algebra homomorphisms, so

their action preserves the Lie bracket. For any basis element of the Lie

subalgebra of g corresponding to (G0)
ss, i.e., any xβ where β is a root of α-

height 0 or any hγ where γ is a simple root other than α, we have [xβ, xρ] = 0

and [hγ, xρ] = 0 because ρ is orthogonal to every root of α-height 0. Similarly,

we also have [xβ, x−ρ] = 0 and [hγ, x−ρ] = 0. Thus elements of (G0)
ss fix xρ

and x−ρ. The quartic form and bilinear form we have defined on g1 depend
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only on the Lie bracket, xρ and x−ρ, so both are preserved by the action of

(G0)
ss; likewise for the triple product, which is defined in terms of the two

forms.

By Théorème 3.13 in Borel & Tits ([3]), the orbits are “nested” in the

following sense: the closure of any of the G0-orbits is its union with all

smaller (i.e., lower level) orbits. In particular, the largest orbit, orbit 4, is

dense in g1.

The statements about orbits are made under the assumption that F is

algebraically closed. In general, geometric statements about orbits will at

least be true over the algebraic closure of F . The algebraic consequences,

such as Fact 2.7 above, remain true for any F , since they involve polynomial

relations defined over F . To avoid repetition in what follows, we make this

convention: all statements about orbits are understood to refer to the orbits

over the algebraic closure.

The preceding Fact and the nesting of the orbits provide us with a valuable

proof technique. To prove an algebraic relation holds on all of g1, it suffices

to show it for elements of the dense orbit. However, if the relation is defined

in terms of the quartic and bilinear forms and the triple product and is

preserved by scaling, it suffices to show it only for a single representative of

the dense orbit, such as xα + xρ−α; then the action of (G0)
ss combined with

scaling guarantee it holds for the entire orbit. Similarly, if we show some

scale-independent relation of the forms holds for a representative of a given

orbit, it holds for the entire orbit and the smaller ones in its closure; if the

relation fails, it cannot hold anywhere in that orbit or any larger one.

2.5 Roots of α-height 1

In much of the sequel we will be concerned with roots of α-height 1 and the

root subspaces Fxβ where β is such a root. Indeed, the direct sum of these
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root subspaces, the space we have called g1, will prove to be (Theorem 3.26)

the Freudenthal triple system of the title. Here we establish a few useful

facts about these roots.

We begin by considering the map β 7→ ρ−β where β is a root of α-height 1.

This map preserves many properties of roots of α-height 1.

Fact 2.8. If β is root of α-height 1, then ρ − β is also a root, is also of

α-height 1, and has the same length as β. If β and γ are orthogonal roots of

α-height 1, then ρ− β and ρ− γ are also orthogonal.

Proof. We have 〈β, ρ〉 = 1, so ρ − β is a root by Fact 2.2. The α-height of

ρ− β is 〈ρ− β, ρ〉 = 〈ρ, ρ〉 − 〈β, ρ〉 = 2− 1 = 1. The highest root ρ is long,

so if β is long, then so is ρ − β by Fact 2.4. If β is short, ρ − β cannot be

long, for we then have that ρ− (ρ− β) = β is long.

If 〈β, γ〉 = 0, then

〈ρ− β, ρ− γ〉 =
2

(ρ− γ, ρ− γ)
(ρ− β, ρ− γ)

=
2

(ρ− γ, ρ− γ)
((ρ, ρ)− (γ, ρ)− (β, ρ) + (β, γ))

=
(ρ, ρ)

(ρ− γ, ρ− γ)
(〈ρ, ρ〉 − 〈γ, ρ〉 − 〈β, ρ〉)

=
(ρ, ρ)

(ρ− γ, ρ− γ)
(2− 1− 1)

= 0.

Fact 2.9. If β1, β2, β3, β4 are mutually orthogonal roots of α-height 1, then

β1 + β2 + β3 + β4 = 2ρ.

This is Corollary 1.4 in [24].

Proof. Since β1 has α-height 1, ρ−β1 is a root. Since β2 is orthogonal to β1,

〈ρ− β1, β2〉 = 〈ρ, β2〉− 〈β1, β2〉 = 〈ρ, β2〉 = 1, so ρ− β1− β2 is also a root. In
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the same way, ρ− β1 − β2 − β3 and, finally, ρ− β1 − β2 − β3 − β4 are roots;

since the latter has α-height −2, it must be −ρ.

Fact 2.10. If four roots of α-height 1 are mutually orthogonal, then they are

all long roots.

Proof. Call the roots β1, β2, β3, β4. By Fact 2.9, β1 +β2 +β3 +β4 = 2ρ; since

the roots are mutually orthogonal we then have

4(ρ, ρ) = (2ρ, 2ρ)

= (β1 + β2 + β3 + β4, β1 + β2 + β3 + β4)

= (β1, β1) + (β2, β2) + (β3, β3) + (β4, β4).

Since ρ is long, (βi, βi) ≤ (ρ, ρ) for each i, 1 ≤ i ≤ 4. Thus we must have

(βi, βi) = (ρ, ρ) for each i; that is, each root is long.

Röhrle remarks that sets of four mutually orthogonal roots of α-height 1

are easily exhibited for the Lie algebras we are considering, but does not

give explicit examples. For completeness, we do so here. The verification is

simplified by the observation that, once we have three such roots, we get the

fourth “for free”.

Lemma 2.11. If β, γ and δ are three mutually orthogonal long roots of α-

height 1, then ε = 2ρ− β − γ − δ is a root of α-height 1 that is orthogonal to

β, γ and δ.

Proof. By Fact 2.8, ρ− β and ρ− γ are orthogonal long roots of α-height 1.

Since 〈ρ − γ, δ〉 = 〈ρ, δ〉 − 〈γ, δ〉 = 1 − 0 = 1, ρ − γ − δ is a root. We then

have

〈ρ− γ − δ, ρ− β〉 = 〈ρ− γ, ρ− β〉 − 〈δ, ρ− β〉

= 0 + 〈β − ρ, δ〉

= 0− 1

= −1,
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so ε = (ρ− γ − δ) + (ρ− β) is a root. We check that

〈ε, β〉 = 〈2ρ− β − γ − δ, β〉

= 2〈ρ, β〉 − 〈β, β〉 − 〈γ, β〉 − 〈δ, β〉

= 2− 2− 0− 0

= 0,

so ε is orthogonal to β; by symmetry, it is orthogonal to γ and δ as well.

Types Bn and Dn are similar, so we handle them simultaneously. They

have the following in common, which are all the facts we will need:

• The roots α1, α2, α3 are all long (since we are assuming n ≥ 4 in the

Bn case).

• The root α = α2, so 〈α2, ρ〉 = 1 and 〈α1, ρ〉 = 〈α3, ρ〉 = 0.

• The root α2 is joined by a single edge to each of α1 and α3 in the Dynkin

diagram, but α1 and α3 are not joined; that is, 〈α1, α2〉 = 〈α3, α2〉 = −1

and 〈α1, α3〉 = 0.

We claim that the following are mutually orthogonal long roots of α-height 1:

α = α2, β = α1 +α2 +α3, γ = ρ−α1−α2, δ = ρ−α2−α3. First, we see that

the first three are roots: α is a simple root; 〈α1, α2〉 = −1 implies that α1+α2

is a root, and 〈α1+α2, α3〉 = 〈α1, α3〉+〈α2, α3〉 = 0+(−1) = −1 implies that

β is a root; ρ−α2 is a root by Fact 2.8 and 〈ρ−α2, α3〉 = 〈ρ, α3〉−〈α2, α3〉 =

0− (−1) = 1 implies that γ is a root. Each of the three is of α-height 1, and

is long by Fact 2.4. Since α + β + γ + δ = 2ρ, by Lemma 2.11 it now suffices

to check that the first three are mutually orthogonal:

〈β, α〉 = 〈α1, α2〉+ 〈α2, α2〉+ 〈α3, α2〉

= −1 + 2− 1

= 0.
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〈γ, α〉 = 〈ρ, α2〉 − 〈α1, α2〉 − 〈α2, α2〉

= 1− (−1)− 2

= 0.

〈γ, β〉 = 〈ρ, β〉 − 〈α1, β〉 − 〈α2, β〉

= 〈β, ρ〉 − 〈β, α1〉 − 〈β, α〉

= 1− (〈α1, α1〉+ 〈α2, α1〉+ 〈α3, α1〉)− 0

= 1− (2− 1 + 0)

= 0.

In the four remaining cases (E6, E7, E8 and F4) we simply list suitable

sets of four mutually orthogonal roots of α-height 1 (Table 2.1). We use the

compact notation of [4] for the roots; for example, 1220 means α1+2α2+2α3.

In each case, α is one of the roots used; we also include the value of ρ for

reference.

E6 E7 E8 F4

ρ 122321 2234321 23465432 2342

α 010000 1000000 00000001 1000

β 112221 1224321 23465421 1242

γ 111210 1122100 11232221 1220

δ 011211 1122221 12233221 1222

Table 2.1: Sets of four mutually orthogonal roots of α-height 1

2.6 Summary

Table 2.2 is a partial list of notations and definitions from this chapter in-

cluded for ease of reference.
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F a field of characteristic 6= 2, 3

G a simple, connected linear algebraic group, split over F ,

not of type A or C, with rank ≥ 4

g the Lie algebra of G

[x, y] the Lie bracket in g

h a fixed Cartan subalgebra of g

Ψ the roots of g with respect to h

(β, γ) the inner product on the roots (or on h∨)

〈β, γ〉 2
(β, γ)

(γ, γ)

xβ, hi elements of a Chevalley basis for g

cβ,γ the structure constant defined by [xβ, xγ] = cβ,γxβ+γ

αi a fixed set of simple roots of Ψ

ρ the highest root with respect to the αi

α the unique simple root not orthogonal to ρ

g−2, . . . , g2 parts of a grading of g

q(x) the quartic form on g1 defined by (ad x)4(x−ρ) = q(x)xρ

q(w, x, y, z) the linearization of q(x) given by q(x, x, x, x) = q(x)

〈x, y〉 the bilinear form on g1 defined by [x, y] = 〈x, y〉xρ

xyz the triple product on g1 defined by q(w, x, y, z) = 〈w, xyz〉

Table 2.2: Summary of principal notations and definitions
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Chapter 3

General Results

In this chapter, we present results that apply to all the types of Lie algebras

we consider (viz., types B, D, E and F ); the next chapter will contain results

that apply only to some types or just to a specific Lie algebra.

In the previous chapter, we established a Z/5Z-grading on the Lie algebras

in question and used it to define a quartic form and a bilinear form on

the grade 1 elements. We repeat the definitions of these forms and establish

their basic properties in section 3.1. After characterizing the so-called strictly

regular elements (section 3.2), we will verify that g1 is a Freudenthal triple

system (section 3.3). Finally, we show how to explicitly compute the quartic

form in the simply-laced case (section 3.4).

3.1 The bilinear and quartic forms

In this section, we define a bilinear form and a quartic form on the space

g1 and establish basic facts about them. For later use, we also compute the

value of the quartic form and its associated 4-linear form on some special

arguments.

The bilinear form on g1 is defined in a natural way. Given any x, y ∈ g1,

the Lie algebra product lies in g2 = Fxρ, so we define the bilinear form 〈x, y〉
to be the resulting coefficient of xρ; that is, 〈x, y〉 is given by [x, y] = 〈x, y〉xρ.

This form is clearly skew-symmetric.
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Lemma 3.1. The bilinear form 〈−,−〉 on g1 is nondegenerate.

Proof. The elements xβ with β a root of α-height 1 form a basis for g1.

Consider the matrix of the form with respect to this basis; the entries are

of the form 〈xβ, xγ〉 with β, γ roots of α-height 1. Such an entry is zero

unless [xβ, xγ] is a nonzero element of Fxρ; that is, unless β + γ = ρ. By

Fact 2.8, ρ − β is a root of α-height 1; hence each row and each column of

the matrix contains exactly one nonzero entry. Such a matrix (sometimes

called a monomial matrix) can be written as the product of a diagonal matrix

with nonzero entries on the diagonal and a permutation matrix, hence it is

invertible. Thus the form is nondegenerate.

The definition of the quartic form is also straightforward. Since x−ρ is an

element of g−2, for any x ∈ g1 the value [x, [x, [x, [x, x−ρ]]]], or, more briefly,

(ad x)4(x−ρ), is in g2. Thus we may define the quartic form q(x) for x ∈ g1

by (ad x)4(x−ρ) = q(x)xρ. This in turn gives rise to a fully symmetric 4-

linear form q(x, y, z, w) defined by setting q(x, x, x, x) = q(x) and extending

by linearization.

Lemma 3.2. Let β1, β2, β3, β4 be roots of α-height 1. The value of the 4-

linear form q(xβ1 , xβ2 , xβ3 , xβ4) is given by

q(xβ1 , xβ2 , xβ3 , xβ4)xρ =

1

4!

∑
π∈S4

(ad xβπ(1)
◦ ad xβπ(2)

◦ ad xβπ(3)
◦ ad xβπ(4)

)(x−ρ),

where S4 is the symmetric group on {1, 2, 3, 4}.

Proof. Let λ, µ, ν be indeterminates. By the definition of the quartic form,

we have

q(xβ1 + λxβ2 + µxβ3 + νxβ4)xρ = (ad xβ1 + λxβ2 + µxβ3 + νxβ4)
4(x−ρ).
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Replacing the quartic form on the left-hand side by the equivalent 4-linear

form and expanding this expression by linearity, the resulting coefficient of

λµν is 24q(xβ1 , xβ2 , xβ3 , xβ4)xρ. On the right-hand side, the coefficient of

λµν is
∑

π∈S4
(ad xβπ(1)

◦ ad xβπ(2)
◦ ad xβπ(3)

◦ ad xβπ(4)
)(x−ρ). Equating the

coefficients yields the result.

Corollary 3.3. Let β1, β2, β3, β4 be roots of α-height 1; then the 4-linear

form q(xβ1 , xβ2 , xβ3 , xβ4) = 0 whenever β1 + β2 + β3 + β4 6= 2ρ.

Proof. If the summand (ad xβπ(1)
◦ ad xβπ(2)

◦ ad xβπ(3)
◦ ad xβπ(4)

)(x−ρ) in the

previous lemma is nonzero, it must be some multiple of xρ. By Fact 2.1, that

means we must have β1 + β2 + β3 + β4 + (−ρ) = ρ. The result follows.

To establish that the quartic form is nonzero, we will use some of the facts

that were given in Section 2.3 about the structure constants that define the

multiplication in g; the reader may wish to review them. These facts allow

us to compute the value of the 4-linear form on some special arguments.

Lemma 3.4. If β is a long root of α-height 1, then

q(xβ, xβ, xρ−β, xρ−β) = 1. (3.5)

Proof. By Fact 2.8, ρ−β is also a long root of α-height 1, so the 4-linear form

is defined on the specified arguments. We begin by finding q(xβ + λxρ−β),

which is given by (ad xβ + λxρ−β)4(x−ρ) = q(xβ + λxρ−β)xρ. The left-hand

side can be calculated by repeatedly applying ad xβ + λxρ−β. For the first

step,

[xβ + λxρ−β, x−ρ] = cβ,−ρxβ−ρ + λcρ−β,−ρx−β,

where the structure constants are not zero since β − ρ and −β are roots.

Writing a for cβ,−ρ and b for cρ−β,−ρ, we continue, keeping in mind the mul-

tiplication rules for a Chevalley basis given in Section 2.3. For the second

step, we have

[xβ + λxρ−β, axβ−ρ + λbx−β] = λahρ−β + λbhβ;
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the other terms are zero since 2β − ρ (resp. ρ − 2β) is not a root; indeed,

〈β − ρ, β〉 = 1, so Fact 2.3 applies.

The remaining two steps are as follows:

[xβ + λxρ−β, λahρ−β + λbhβ] = −2λ2axρ−β − 2λbxβ + λaxβ + λ2bxρ−β,

[xβ + λxρ−β,−2λ2axρ−β − 2λbxβ + λaxβ + λ2bxρ−β] =

3λ2cβ,ρ−β(b− a)xρ.

Since β, −ρ and ρ−β are long roots that sum to zero, we can apply Fact 2.5 to

find a = cβ,−ρ = cρ−β,β = −cβ,ρ−β and b = cρ−β,−ρ = cβ,ρ−β = −a. Since the

structure constant cβ,ρ−β is ±1, the result is 6λ2c2
β,ρ−β = 6λ2. On the other

hand, the term in λ2 resulting from expanding q(xβ + λxρ−β) by linearity is

6λ2q(xβ, xβ, xρ−β, xρ−β), so we have

q(xβ, xβ, xρ−β, xρ−β) = 1,

as required.

Since there is always a long root of α-height 1 (e.g., α itself), we have

established that the 4-linear form and thus also the quartic form are not

identically zero. In particular, taking β = α and λ = 1, we have q(xα +

xρ−α) = 6.

In the next section we will also need to know that the 4-linear form is

nonzero in another special case. We show this after the following lemma,

which is a fact about structure constants that will also be used in Section 3.4.

Lemma 3.6. Let β and γ be two orthogonal long roots of α-height 1. Each

of β− ρ, γ− ρ and ρ−β− γ is a root; each of the structure constants cβ,γ−ρ,

cγ,β−ρ, cβ,−ρ, cγ,−ρ is ±1 and their product is 1.

Proof. By Fact 2.8, ρ− β and ρ− γ are long roots, so their negatives are as

well. Since β and γ are orthogonal, 〈ρ − β, γ〉 = 〈ρ, γ〉 = 1, so ρ − β − γ is
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a root; by Fact 2.4 it is long. Since these are roots, the specified structure

constants are nonzero; since all roots involved are long, they are ±1.

We apply (2.6), replacing β, γ, δ, ε with ρ− β − γ, β, γ,−ρ to yield

cρ−β−γ,βcγ,−ρ + cβ,γcρ−β−γ,−ρ + cγ,ρ−β−γcβ,−ρ = 0.

As β and γ are orthogonal long roots, β + γ (likewise −β − γ) is not a root;

thus the structure constants in the middle term are zero. Thus we find

cρ−β−γ,βcγ,−ρ = −cγ,ρ−β−γcβ,−ρ.

By Fact 2.5, we have cρ−β−γ,β = cβ,γ−ρ and cγ,ρ−β−γ = cβ−ρ,γ = −cγ,β−ρ;

substituting these yields

cβ,γ−ρcγ,−ρ = cγ,β−ρcβ,−ρ.

Since each side is ±1, the product of all four structure constants is 1.

Lemma 3.7. If β and γ are two orthogonal long roots of α-height 1, then

q(xβ, xγ, xρ−β, xρ−γ) = −1

2
cβ,−ρcγ,−ρ 6= 0. (3.8)

Proof. By Lemma 3.2, there are 24 terms to consider. We divide them into

three classes.

Class 1: These are the terms in which the first two elements applied to x−ρ

are xβ and xρ−β, in either order, or, likewise, xγ and xρ−γ. The result in g0

is thus in h. By Fact 2.8, since β and γ are orthogonal, so are ρ − β and

ρ − γ. As a result, half the terms in this case are zero; e.g., [xρ−β, [xβ, x−ρ]]

is a multiple of hρ−β, and [xρ−γ, hρ−β] = 〈ρ − β, ρ − γ〉xρ−γ = 0. There are



32

eight terms in all:

[xγ, [xρ−γ, [xρ−β, [xβ, x−ρ]]]] = 0,

[xρ−γ, [xγ, [xβ, [xρ−β, x−ρ]]]] = 0,

[xβ, [xρ−β, [xρ−γ, [xγ, x−ρ]]]] = 0,

[xρ−β, [xβ, [xγ, [xρ−γ, x−ρ]]]] = 0,

[xρ−γ, [xγ, [xρ−β, [xβ, x−ρ]]]] = −cρ−γ,γcβ,−ρxρ,

[xγ, [xρ−γ, [xβ, [xρ−β, x−ρ]]]] = −cγ,ρ−γcρ−β,−ρxρ,

[xρ−β, [xβ, [xρ−γ, [xγ, x−ρ]]]] = −cρ−β,βcγ,−ρxρ,

[xβ, [xρ−β, [xγ, [xρ−γ, x−ρ]]]] = −cβ,ρ−βcρ−γ,−ρxρ.

By Fact 2.5, we have cγ,−ρ = cρ−γ,γ = −cγ,ρ−γ = −cρ−γ,−ρ, and, replacing γ

with β, cβ,−ρ = cρ−β,β = −cβ,ρ−β = −cρ−β,−ρ. Thus each of the four nonzero

terms computed above is equal to −cγ,−ρcβ,−ρxρ.

Class 2: Here the terms are those in which the first two elements applied

to x−ρ are xβ and xρ−γ, in either order, or, likewise, xγ and xρ−β. Since β−γ

(resp. γ − β) is not a root, each of these eight terms is zero:

[xρ−β, [xγ, [xρ−γ, [xβ, x−ρ]]]] = 0,

[xγ, [xρ−β, [xρ−γ, [xβ, x−ρ]]]] = 0,

[xρ−β, [xγ, [xβ, [xρ−γ, x−ρ]]]] = 0,

[xγ, [xρ−β, [xβ, [xρ−γ, x−ρ]]]] = 0,

[xρ−γ, [xβ, [xρ−β, [xγ, x−ρ]]]] = 0,

[xβ, [xρ−γ, [xρ−β, [xγ, x−ρ]]]] = 0,

[xρ−γ, [xβ, [xγ, [xρ−β, x−ρ]]]] = 0,

[xβ, [xρ−γ, [xγ, [xρ−β, x−ρ]]]] = 0.

Class 3: The remaining terms are those in which the first two elements

applied to x−ρ are xβ and xγ, in either order, or, likewise, xρ−γ and xρ−β.
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Since β + γ − ρ is a root by Lemma 3.6, the result in g0 is nonzero and

not in h, so we compute each term by simply accumulating the structure

constants. Here are the eight terms with the results simplified by use of the

properties of the structure constants:

[xρ−γ, [xρ−β, [xγ, [xβ, x−ρ]]]] = cρ−γ,γcρ−β,β+γ−ρcγ,β−ρcβ,−ρxρ

= cγ,−ρc−γ,ρ−βcγ,β−ρcβ,−ρxρ

= −cγ,−ρcβ,−ρxρ,

[xγ, [xβ, [xρ−γ, [xρ−β, x−ρ]]]] = cγ,ρ−γcβ,ρ−β−γcρ−γ,−βcρ−β,−ρxρ

= c−ρ,γcγ−ρ,βcρ−γ,−βc−ρ,βxρ

= −cγ,−ρcβ,−ρxρ,

[xρ−β, [xρ−γ, [xγ, [xβ, x−ρ]]]] = cρ−β,βcρ−γ,β+γ−ρcγ,β−ρcβ,−ρxρ

= cβ,−ρc−β,ρ−γcγ,β−ρcβ,−ρxρ

= −cβ,γ−ρcγ,β−ρ,

[xβ, [xγ, [xρ−γ, [xρ−β, x−ρ]]]] = cβ,ρ−βcγ,ρ−β−γcρ−γ,−βcρ−β,−ρxρ

= cβ,ρ−βcβ−ρ,γcρ−γ,−βcβ,ρ−βxρ

= −cβ,γ−ρcγ,β−ρ,

[xρ−β, [xρ−γ, [xβ, [xγ, x−ρ]]]] = cρ−β,βcρ−γ,γ+β−ρcβ,γ−ρcγ,−ρxρ

= cβ,−ρc−β,ρ−γcβ,γ−ρcγ,−ρxρ

= −cβ,−ρcγ,−ρxρ,
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[xβ, [xγ, [xρ−β, [xρ−γ, x−ρ]]]] = cβ,ρ−βcγ,ρ−γ−βcρ−β,−γcρ−γ,−ρxρ

= c−ρ,βcβ−ρ,γcρ−β,−γc−ρ,γxρ

= −cβ,−ρcγ,−ρxρ,

[xρ−γ, [xρ−β, [xβ, [xγ, x−ρ]]]] = cρ−γ,γcρ−β,γ+β−ρcβ,γ−ρcγ,−ρxρ

= cγ,−ρc−γ,ρ−βcβ,γ−ρcγ,−ρxρ

= −cγ,β−ρcβ,γ−ρ,

[xγ, [xβ, [xρ−β, [xρ−γ, x−ρ]]]] = cγ,ρ−γcβ,ρ−γ−βcρ−β,−γcρ−γ,−ρxρ

= cγ,ρ−γcγ−ρ,βcρ−β,−γcγ,ρ−γxρ

= −cγ,β−ρcβ,γ−ρ.

These eight terms thus consist of four terms equal to −cβ,−ρcγ,−ρxρ and four

equal to −cβ,γ−ρcγ,β−ρxρ.

Combining all the terms, we have

q(xβ, xγ, xρ−β, xρ−γ) = −1

3
cβ,−ρcγ,−ρ −

1

6
cβ,γ−ρcγ,β−ρ;

but it follows from Lemma 3.6 that the two products of structure constants

are equal. Thus we have

q(xβ, xγ, xρ−β, xρ−γ) = −1

2
cβ,−ρcγ,−ρ.

In particular, it is not zero.

3.2 Strictly regular elements

We recall the definition of the triple product on g1. For any fixed x, y, z ∈ g1,

the expression q(w, x, y, z) with w ∈ g1 is a linear function of w. Since the

skew-symmetric bilinear form 〈−,−〉 is nondegenerate (Lemma 3.1), we may
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define the triple product of x, y, z to be the unique element xyz of g1 such

that q(w, x, y, z) = 〈w, xyz〉 for all w ∈ g1.

Following Ferrar ([11], §3), we call a nonzero element x ∈ g1 strictly regular

if xxy ∈ Fx for all y ∈ g1. In this section we will give several equivalent

characterizations of strictly regular elements.

Lemma 3.9. The basis element xα is strictly regular.

Proof. Let β, γ be roots of α-height 1. By Corollary 3.3, if 〈xγ, xαxαxβ〉 =

q(xγ, xα, xα, xβ) is nonzero, then 2α + β + γ = 2ρ. Since the simple root α

has height 1, this implies ht(β + γ) = 2 ht ρ− 2. As ρ is the unique highest

root, β and γ have smaller heights than ρ, so this can only occur if both

have height ht ρ− 1. Since the only simple root not orthogonal to ρ is α, the

only root of that height is ρ − α, and 〈xγ, xαxαxβ〉 is therefore zero unless

β = γ = ρ − α. The orthogonal complement of any xαxαy thus includes

the space generated by all the xγ, γ 6= ρ − α. Since this is the orthogonal

complement of xα, we have xαxαy ∈ Fxα.

Corollary 3.10. For any long root β of α-height 1, xβ is strictly regular.

Proof. Since the property of being strictly regular depends only on the triple

product, it is preserved by the action of (G0)
ss by Fact 2.7. It is also preserved

by scaling, so it is preserved by the action of G0. By Lemma 2.1 in [24], all

the elements xβ with β a long root of α-height 1 are in the same G0-orbit,

so they are are all strictly regular since xα is.

Lemma 3.11. Let x ∈ g1 be such that xxy = 0 for all y ∈ g1; then x = 0.

Proof. The set of all x such that xxg1 = {0} is invariant under the action

of G0 on g1, so it is a union of G0-orbits; it is also closed (in the Zariski

topology). Thus it suffices to show that xxg1 6= {0} for a representative x

of the smallest nonzero orbit (i.e., orbit 1); this follows if there are y, z ∈ g1
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such that q(x, x, y, z) 6= 0. A representative of the smallest nonzero orbit is

x = xα; we let y = z = xρ−α. By (3.5), we have q(x, x, y, z) = 1.

Lemma 3.12. Let α, β, γ, δ be mutually orthogonal roots of α-height 1; then

q(xα, xβ, xγ, xδ) 6= 0.

We will give an explicit expression for this value in Proposition 3.35.

Proof. Since xα + xβ + xγ + xδ is a representative of the dense orbit and q is

not identically zero, q(xα+xβ +xγ +xδ) 6= 0. Expanding the corresponding 4-

linear form, we obtain five kinds of terms, corresponding to the five partitions

of 4:

• Those with four equal arguments, e.g., q(xβ, xβ, xβ, xβ). Since 2β is

not a root, we cannot have 4β = 2ρ, so this expression is zero by

Lemma 3.2.

• Those with exactly three equal arguments, e.g., q(xβ, xβ, xβ, xγ). Since

α, β, γ, δ are mutually orthogonal, they are long by Fact 2.10. Thus xβ

is strictly regular (Corollary 3.10), so this expression is 〈xγ, xβxβxβ〉 =

λ〈xγ, xβ〉 for some λ ∈ F ; but 〈xγ, xβ〉 = 0 because γ + β is not a root.

Thus these terms are also zero.

• Those with two pairs of equal arguments, e.g., q(xβ, xβ, xγ, xγ). The

sum of the orthogonal long roots β and γ is not a root; in particular it

is not ρ. Thus 2β + 2γ 6= 2ρ, so this expression is zero.

• Those with exactly two equal arguments, e.g., q(xβ, xβ, xγ, xδ). By

Fact 2.9, α + β + γ + δ = 2ρ; thus 2β + γ + δ 6= 2ρ, so those terms are

zero.

• Those with four unequal arguments, e.g., q(xα, xβ, xγ, xδ), which by

elimination must be nonzero.
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Proposition 3.13. The strictly regular elements of g1 are those contained

in the smallest nonzero orbit.

Proof. The set of strictly regular elements is a union of orbits; its union with

0 is a closed set. Since xα is a representative of the smallest nonzero orbit and

is strictly regular by Lemma 3.9, all elements of the smallest nonzero orbit

are also strictly regular. It thus suffices to show that representatives of level 2

orbits are not strictly regular. Let α, β, γ, δ be four mutually orthogonal roots

of α-height 1. We take xα + xβ as a representative of a level 2 orbit.

We compute

〈xδ, (xα + xβ)(xα + xβ)xγ〉 = q(xα + xβ, xα + xβ, xγ, xδ)

= q(xα, xα, xγ, xδ) + 2q(xα, xβ, xγ, xδ)

+ q(xβ, xβ, xγ, xδ)

= 2q(xα, xβ, xγ, xδ),

the other terms being zero since α+α+γ + δ and β +β +γ + δ cannot equal

2ρ since α+β+γ+δ = 2ρ by Fact 2.9. By Lemma 3.12, the result is nonzero,

so in particular the triple product (xα + xβ)(xα + xβ)xγ is not orthogonal to

xδ. However, 〈xα + xβ, xδ〉 = 〈xα, xδ〉 + 〈xβ, xδ〉 = 0 since neither α + δ nor

β + δ is a root. Hence the triple product (xα +xβ)(xα +xβ)xγ is not a scalar

multiple of xα + xβ; thus xα + xβ is not strictly regular.

Lemma 3.14. The strictly regular elements span g1.

Proof. By Proposition 3.13, orbit 1 consists of strictly regular elements. The

span of orbit 1 is invariant under the action of G0; thus it is a union of orbits.

Both xα and xρ−α are in orbit 1, so xα + xρ−α is in their span, but is also a

representative of the dense orbit. Thus all of the dense orbit is in the span

of orbit 1. Since the dense orbit is not contained in a proper subspace, the

span of orbit 1 is all of g1.
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An element x ∈ g1 is rank one if xxg1 is a one-dimensional vector space

over F .

Proposition 3.15. An element x ∈ g1 is strictly regular if and only if it is

rank one.

Proof. Suppose x is strictly regular. By definition, xxg1 is contained in the

one-dimensional space Fx. In the case x = xα, we know xαxαg1 is not zero

because 〈xρ−α, xαxαxρ−α〉 = q(xρ−α, xα, xα, xρ−α), which is 1 by (3.5). The

condition that xxg1 is not zero is invariant under the action of G0, so it holds

for all of orbit 1.

As in the proof of the previous proposition, let α, β, γ, δ be four mutually

orthogonal roots of α-height 1, and choose x = xα +xβ as a representative of

a level 2 orbit. Since the set of rank one elements is a closed union of orbits,

it will suffice to show that x is not rank one. We have

〈xρ−β, xxxρ−α〉 = q(xρ−β, xα, xα, xρ−α) +

q(xρ−β, xβ, xβ, xρ−α) + 2q(xρ−β, xα, xβ, xρ−α)

= 2q(xρ−β, xα, xβ, xρ−α)

6= 0,

by Corollary 3.3 and (3.8). However,

〈xρ−β, xxxγ〉 = q(xρ−β, xα, xα, xγ) + q(xρ−β, xβ, xβ, xγ) + 2q(xρ−β, xα, xβ, xγ)

= 0,

where we know the first term is zero because it is 〈xρ−β, xαxαxγ〉 and the

triple product is a scalar multiple of xα; the other two terms are zero by

Corollary 3.3. On the other hand, we know that xxxγ is nonzero since

〈xδ, xxxγ〉 = q(xδ, xα, xα, xγ) + q(xδ, xβ, xβ, xγ) + 2q(xδ, xα, xβ, xγ)

= 2q(xα, xβ, xγ, xδ),
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where once again the other terms are zero by Corollary 3.3; the remaining

term is not zero by Lemma 3.12. Thus xxxρ−α is not orthogonal to xρ−β

but xxxγ is; hence they do not lie in the same one-dimensional subspace.

Therefore x is not rank one.

The following result allows us to compute the triple product and the 4-

linear form if two of the arguments are the same strictly regular element. It

will be useful in several proofs and computations.

Lemma 3.16. For x strictly regular and any y, z ∈ g1,

xxy = 〈y, x〉x, (3.17)

q(x, x, y, z) = 〈y, x〉〈z, x〉. (3.18)

Proof. Since x is strictly regular, for any y ∈ g1 we have xxy ∈ Fx. If

〈y, x〉 = 0, then for any z ∈ g1 we have 〈z, xxy〉 = q(z, x, x, y) = 〈y, xxz〉 = 0,

thus xxy = 0. Define f : g1 → F by xxy = f(y)x; then f is a linear form

and f(y) is zero whenever 〈y, x〉 is zero. Thus f(−) is a scalar multiple of

〈−, x〉.
By Proposition 3.13, x is in orbit 1; by Lemma 3.9, so is xα. Hence there is

some element g ∈ (G0)
ss such that g · x = cxα for some c ∈ F×; by Fact 2.7,

the action of g stabilizes the bilinear and 4-linear forms. Let x′ = g−1 · xρ−α;

since the bilinear form is preserved, we have 〈x′, x〉 = 〈xρ−α, cxα〉 = ±c. We

can now compute q(x, x, x′, x′) in two ways. On the one hand, since the

4-linear form is preserved, we have

q(x, x, x′, x′) = q(cxα, cxα, xρ−α, xρ−α)

= c2q(xα, xα, xρ−α, xρ−α)

= c2 (by (3.5))

= 〈x′, x〉2.
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On the other hand, it is 〈x′, xxx′〉 = 〈x′, f(x′)x〉 = f(x′)〈x′, x〉. Thus f(x′) =

〈x′, x〉, and therefore f(y) = 〈y, x〉 for any y ∈ g1.

By the definition of f , we now have xxy = 〈y, x〉x for all y ∈ g1. Further,

for any z ∈ g1 we have q(x, x, y, z) = 〈z, xxy〉 = 〈y, x〉〈z, x〉.

Lemma 3.19. Let β, γ be roots of α-height 1. The triple product xβxβxγ is

zero unless β + γ = ρ.

Proof. Since xβ is strictly regular (Corollary 3.10), (3.17) gives xβxβxγ =

〈xγ, xβ〉xβ. As 〈xγ, xβ〉 is zero unless β + γ = ρ, the result follows.

Lemma 3.20. If β1, β2, β3 are roots of α-height 1 such that xβ1xβ2xβ3 6= 0,

then β4 = 2ρ− β1 − β2 − β3 is a root and xβ1xβ2xβ3 ∈ Fxρ−β4.

Proof. By Corollary 3.3, if 〈xη, xβ1xβ2xβ3〉 = q(xη, xβ1 , xβ2 , xβ3) 6= 0 for some

root η of α-height 1, then we have η+β1+β2+β3 = 2ρ. Since, by hypothesis,

the triple product is nonzero, there must be some such η and it must be

β4 = 2ρ − β1 − β2 − β3. For any basis element xη of g1 other than xβ4 , we

have q(xη, xβ1 , xβ2 , xβ3) = 0; therefore the triple product is orthogonal to all

basis elements other than xβ4 . Thus it is a scalar multiple of xρ−β4 .

Proposition 3.21. An element x ∈ g1 is strictly regular or zero if and only

if xxx = 0 and x = xxy for some y ∈ g1.

Proof. First, assume that x is either strictly regular or zero. If x = 0 then

xxx = 0 and xxy = x for any y ∈ g1. On the other hand, if x is strictly

regular, then (3.17) gives xxx = 〈x, x〉x = 0. Furthermore, by Lemma 3.11,

xxy is not identically zero, but it is in Fx since x is strictly regular. Thus

xxy takes on all values of Fx, including x itself.

The set of elements x for which xxx = 0 is a closed union of G0-orbits; for

the present we will show that it does not include orbit 3. Let β1, β2, β3, β4

be mutually orthogonal roots of α-height 1, and take x = xβ1 + xβ2 + xβ3 as
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a representative of orbit 3. We have xxx = 6xβ1xβ2xβ3 since the other terms

vanish by Lemma 3.19. Thus we have 〈xβ4 , xxx〉 = 6q(xβ1 , xβ2 , xβ3 , xβ4),

which is not zero by Lemma 3.12. Hence xxx 6= 0.

Thus if xxx = 0 then x is in the closure of the level 2 orbits; so we need

only show that if x is in a level 2 orbit then there is no y ∈ g1 such that

x = xxy. We take x = xβ + xγ as a representative of a level 2 orbit, where

β, γ are orthogonal roots of α-height 1. For any root η of α-height 1, we have

xxxη = xβxβxη + xγxγxη + 2xβxγxη.

Since xβ is strictly regular, the first term lies in Fxβ and is zero unless

η = ρ − β (Lemma 3.19); likewise, the second is in Fxγ and is zero unless

η = ρ − γ. If the final term is a nonzero element in the span of xβ and xγ,

then η must be ρ − γ or ρ − β by Lemma 3.20. Thus xρ−β and xρ−γ are

the only basis elements of g1 that can yield a triple product with nonzero

coordinates for xβ or xγ. Hence if there is some y such that xxy = xβ + xγ,

then there is such a y in Fxρ−β ⊕ Fxρ−γ.

Write y = axρ−β + bxρ−γ; then we have

xxy = axβxβxρ−β + bxγxγxρ−γ + 2axβxγxρ−β + 2bxβxγxρ−γ.

Define aij for 1 ≤ i, j ≤ 2 by the following relations:

xβxβxρ−β = a11xβ,

2xβxγxρ−γ = a12xβ,

2xβxγxρ−β = a21xγ,

xγxγxρ−γ = a22xγ,

so we may write

xxy =
[
xβ xγ

] [
a11 a12

a21 a22

] [
a

b

]
. (3.22)
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We compute

a11〈xρ−β, xβ〉 = 〈xρ−β, xβxβxρ−β〉

= q(xρ−β, xβ, xβ, xρ−β)

= 1

by (3.5). Since 〈xρ−β, xβ〉 = cρ−β,β = ±1, we have a11 = cρ−β,β = cβ,−ρ by

Fact 2.5(b). Similarly,

a22〈xρ−γ, xγ〉 = 〈xρ−γ, xγxγxρ−γ〉

= q(xρ−γ, xγ, xγ, xρ−γ)

= 1;

thus a22 = cρ−γ,γ = cγ,−ρ.

For a21, we have

a21〈xρ−γ, xγ〉 = 〈xρ−γ, 2xβxγxρ−β〉

= 2q(xρ−γ, xβ, xγ, xρ−β)

= −cβ,−ρcγ,−ρ

= −cβ,−ρcρ−γ,γ

by (3.8). Thus a21cρ−γ,γ = −cβ,−ρcρ−γ,γ, so a21 = −cβ,−ρ. Similarly, for a12,

a12〈xρ−β, xβ〉 = 〈xρ−β, 2xβxγxρ−γ〉

= 2q(xρ−β, xβ, xγ, xρ−γ)

= −cγ,−ρcβ,−ρ

= −cγ,−ρcρ−β,β.

Thus a12cρ−β,β = −cγ,−ρcρ−β,β, so a12 = −cγ,−ρ.

Thus the 2× 2 matrix in (3.22) is[
cβ,−ρ −cγ,−ρ

−cβ,−ρ cγ,−ρ

]
=

[
1

−1

] [
cβ,−ρ −cγ,−ρ

]
,
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a rank-1 matrix. Therefore xxy is a scalar multiple of xβ − xγ. This cannot

be xβ + xγ, as required.

Lemma 3.23. Each element in the dense orbit of g1 can be expressed as the

sum of two strictly regular elements in one and only one way.

Proof. Since the action of (G0)
ss and scaling by elements of F× both preserve

strictly regular elements, it suffices to prove this for any representative of

the dense orbit. We choose x = xα + xρ−α as the representative, which

immediately establishes the existence of an expression as the sum of two

strictly regular elements.

Suppose x = u+v with u, v strictly regular. The triple product xxx is thus

(u + v)(u + v)(u + v) = uuu + 3uuv + 3uvv + vvv

= 〈u, u〉u + 3〈v, u〉u + 3〈u, v〉v + 〈v, v〉v

= 3〈v, u〉(u− v);

in particular, this is true if u = xα and v = xρ−α, so we have shown that

3〈v, u〉(u− v) = 3〈xρ−α, xα〉(xα − xρ−α). (3.24)

The quartic form q(x) = 〈x, xxx〉 is thus

〈u + v, 3〈v, u〉(u− v)〉 = 3〈v, u〉(−〈u, v〉+ 〈v, u〉)

= 6〈v, u〉2;

again, this must be the same as 6〈xρ−α, xα〉2. Thus 〈v, u〉 = ±〈xρ−α, xα〉, so

(3.24) yields u− v = ±(xα − xρ−α). Combined with u + v = xα + xρ−α, one

choice of sign yields u = xα, v = xρ−α, and the other u = xρ−α, v = xα, so

the choice of u and v is determined up to order.
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3.3 Freudenthal triple systems

In this section we verify that g1 equipped with the quartic and bilinear forms

defined above is in fact a Freudenthal triple system, a term which we now

formally define. A Freudenthal triple system is a finite-dimensional vector

space V over a field F (with characteristic not 2 or 3) such that

• There is a nonzero quartic form q defined on V . A corresponding 4-

linear form, also called q, is given by linearization, with q(x, x, x, x) =

q(x) for all x ∈ V .

• There is a nondegenerate skew-symmetric bilinear form 〈−,−〉 defined

on V . Thus for given x, y, z ∈ V we may define the triple product xyz

to be the unique vector in V such that q(w, x, y, z) = 〈w, xyz〉 for all

w ∈ V .

• The triple product satisfies the following identity:

2(xxx)xy = 〈y, x〉xxx + 〈y, xxx〉x. (3.25)

Definitions of Freudenthal triple system in the literature vary. For example,

in [11] the coefficient 2 on the left-hand side of (3.25) is omitted; in [26] the 2

becomes a 6 and the triple product is defined so that 8q(w, x, y, z) = 〈xyz, w〉.
However, these variations are inessential; it is easy to convert one definition

to another by rescaling the quartic and bilinear forms as needed.

Theorem 3.26. The vector space g1 equipped with the quartic form q and

the bilinear form 〈−,−〉 is a Freudenthal triple system.

Proof. We established in Section 3.1 that 〈−,−〉 is skew-symmetric and non-

degenerate and that q is nonzero. Hence it remains only to show that the

triple product identity (3.25) is satisfied.
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We first set x = xα + xρ−α. As in the proof of Lemma 3.23, we use (3.17)

to compute

xxx = (xα + xρ−α)(xα + xρ−α)(xα + xρ−α)

= xαxαxα + 3xαxαxρ−α + 3xαxρ−αxρ−α + xρ−αxρ−αxρ−α

= 3〈xρ−α, xα〉xα + 3〈xα, xρ−α〉xρ−α

= 3〈xρ−α, xα〉(xα − xρ−α).

Thus the left-hand side of (3.25) is

2(xxx)xy = 6〈xρ−α, xα〉(xα − xρ−α)(xα + xρ−α)y

= 6〈xρ−α, xα〉(xαxαy − xρ−αxρ−αy)

= 6〈xρ−α, xα〉(〈y, xα〉xα − 〈y, xρ−α〉xρ−α).

The right-hand side is

〈y, x〉xxx + 〈y, xxx〉x = 3〈xρ−α, xα〉(〈y, xα〉+ 〈y, xρ−α〉)(xα − xρ−α)

+ 3〈xρ−α, xα〉(〈y, xα〉 − 〈y, xρ−α〉)(xα + xρ−α)

= 6〈xρ−α, xα〉(〈y, xα〉xα − 〈y, xρ−α〉xρ−α);

thus (3.25) holds for x = xα + xρ−α and any y ∈ g1.

Since the action of (G0)
ss on g1 stabilizes the bilinear form and the triple

product, and since (3.25) is preserved if x is adjusted by a scalar factor, it

holds for the entire orbit of x, which is the dense orbit. Since the identity is

a polynomial condition it also holds on the closure of that orbit, which is all

of g1.

3.4 Computation of the 4-linear form

In this section we show how to evaluate the expression q(xβ, xγ, xδ, xε) when-

ever β, γ, δ, ε are long roots of α-height 1. Among the Lie algebras we are
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considering, the roots are always long in types D and E, so, by linearity, this

will suffice to compute q for any values in g1 in these cases.

By Corollary 3.3, q(xβ, xγ, xδ, xε) is zero unless the roots satisfy β +γ + δ +

ε = 2ρ. As the following lemma shows, this is a very restrictive condition;

indeed, the subsequent proposition will show that there are only three ways

long roots can add up to 2ρ.

Lemma 3.27. Suppose β1, β2, β3, β4 are long roots of α-height 1 and that

their sum is 2ρ. It follows that

〈β1, β2〉+ 〈β1, β3〉+ 〈β1, β4〉 = 0 (3.28)

and

〈β1, β2〉 = 〈β3, β4〉. (3.29)

Proof. Whenever β and γ are roots of the same length, we have 〈β, γ〉 =

2 (β,γ)
(γ,γ)

= 2 (β,γ)
(β,β)

= 〈γ, β〉; hence we may reverse the arguments of 〈−,−〉 when

both are long roots. Thus to show (3.28) we compute

〈β1, β2〉+ 〈β1, β3〉+ 〈β1, β4〉 = 〈β2, β1〉+ 〈β3, β1〉+ 〈β4, β1〉

= 〈β2 + β3 + β4, β1〉

= 〈2ρ− β1, β1〉

= 2〈ρ, β1〉 − 〈β1, β1〉

= 2〈β1, ρ〉 − 2

= 0.

To show (3.29), we expand the equal expressions (β1 +β2, β1 +β2) and (2ρ−
β3− β4, 2ρ− β3− β4). Taking the long roots to have unit length, we have on

the one hand

(β1 + β2, β1 + β2) = (β1, β1) + 2(β1, β2) + (β2, β2)

= 2 + 2(β1, β2).
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Keeping in mind that, for example, 2(ρ, β3) = 〈ρ, β3〉 = 1, we have on the

other hand

(2ρ− β3 − β4, 2ρ− β3 − β4) = 6− 4(ρ, β3)− 4(ρ, β4) + 2(β3, β4)

= 2 + 2(β3, β4).

Thus 2(β1, β2) = 2(β3, β4); that is, 〈β1, β2〉 = 〈β3, β4〉.

Proposition 3.30. If the sum of four long roots of α-height 1 is 2ρ, then

one of the following three cases must hold:

(a) The four roots consist of two equal pairs; that is, they are of the form

β, β, ρ− β, ρ− β for some β.

(b) The four roots consist of distinct pairs that sum to ρ; that is, they are

of the form β, ρ− β, γ, ρ− γ for distinct β, γ. Moreover, we may take

β and γ to be orthogonal.

(c) The four roots are mutually orthogonal.

Proof. Let β1, β2, β3, β4 be four such roots. No two can be opposite since all

have α-height 1. If any two are equal, say β1 = β2, then by (3.29) we have

2 = 〈β1, β2〉 = 〈β3, β4〉, so β3 = β4 as well. This is case (a).

Suppose some root, say β1, is not orthogonal to all of the others. By (3.28)

we have 〈β1, β2〉+〈β1, β3〉+〈β1, β4〉 = 0; since each term is −1, 0 or 1 and not

all are zero, we must have one of each. Without loss of generality, assume

〈β1, β2〉 = −1 and 〈β1, β3〉 = 0; then β1 +β2 is a root. Since it has α-height 2,

it must be ρ. By (3.29), we also have 〈β3, β4〉 = −1, thus also β3 + β4 = ρ.

Thus we are in case (b). As indicated, we have β1 and β3 orthogonal.

The only remaining possibility is that the four roots are mutually orthog-

onal, which is case (c).
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We now proceed to give the value of q(β1, β2, β3, β4) in each of the three

cases. We remind the reader that we will be making extensive use of the

facts about structure constants previously mentioned in Section 2.3.

The first case was already handled in Lemma 3.4, where we showed that

q(xβ, xβ, xρ−β, xρ−β) = 1 for any long root β of α-height 1. The second

case was computed in Lemma 3.7; there we found q(xβ, xγ, xρ−β, xρ−γ) =

−1
2
cβ,−ρcγ,−ρ where β and γ are orthogonal long roots of α-height 1. The

remaining case is covered by the following lemma.

Lemma 3.31. If β1, β2, β3, β4 are mutually orthogonal roots of α-height 1,

then

q(xβ1 , xβ2 , xβ3 , xβ4) = cβ1,β4−ρcβ2,β1−ρcβ3,β4−ρcβ4,β1−ρ 6= 0. (3.32)

Proof. By Fact 2.9, the sum of four mutually orthogonal roots of α-height 1

is 2ρ, and by Fact 2.10 they are all long roots. We will apply (2.6) with

β = β1, γ = β2, δ = β3 − ρ and ε = β4 − ρ. Observe that β + γ + δ + ε = 0,

as required, all four roots are long (Fact 2.4), and no two of β, γ, δ, ε are

opposite; for example, β + δ = 0 implies β1 + β3 = ρ, but β1 and β3 are

orthogonal. With these values, (2.6) becomes

cβ1,β2cβ3−ρ,β4−ρ + cβ2,β3−ρcβ1,β4−ρ + cβ3−ρ,β1cβ2,β4−ρ = 0.

The structure constants in the first term are zero since β1 + β2 is not a

root and thus (β3 − ρ) + (β4 − ρ) = −β1 − β2 is also not a root. The

remaining structure constants are nonzero, since for distinct i, j we have

〈βi − ρ, βj〉 = 〈βi, βj〉 − 〈ρ, βj〉 = −1; thus βi + βj − ρ is a root.

We now have

cβ2,β3−ρcβ1,β4−ρ = −cβ3−ρ,β1cβ2,β4−ρ,

or, more symmetrically,

cβ2,β3−ρcβ1,β4−ρ = cβ1,β3−ρcβ2,β4−ρ.
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Using aij as an abbreviation for cβi,βj−ρ, we can rewrite this as

a23a14 = a13a24. (3.33)

Since the numbering of the indices is arbitrary, we think of this as saying

that, in a product of the form aijakl that uses four different indices, we may

interchange the first subscripts of the two factors; that is, aijakl = akjail

when i, j, k, l are distinct.

Since all the aij are ±1, we can freely move them across the equals sign; in

particular, we also have

a13a23 = a14a24; (3.34)

in other words, in a product of the form aijakj involving three different in-

dices, the repeated index may be replaced by the unused one.

The term in the sum for q(xβ1 , xβ2 , xβ3 , xβ4) given by Lemma 3.2 arising

from the term (ad xβ4 ◦ ad xβ3 ◦ ad xβ2 ◦ ad xβ1)(x−ρ) is

c−ρ,β1cβ1−ρ,β2cρ−β3−β4,β3cρ−β4,β4 = cβ1,−ρcβ2,β1−ρcβ3,β4−ρcβ4,−ρ

= cβ1,β4−ρcβ2,β1−ρcβ3,β4−ρcβ4,β1−ρ

= a14a21a34a41,

where we have used Lemma 3.6 in the form cβ1,−ρcβ4,−ρ = cβ1,β4−ρcβ4,β1−ρ for

the second equality. Every other term in the sum is obtained by permuting

the indices; we will show that the value is unchanged in each case. Since the

two permutations given by 1 7→ 2 7→ 3 7→ 4 7→ 1 and by 1 7→ 2 7→ 1 generate

the symmetric group, it suffices to show that a21a32a41a12 and a24a12a34a42

are the same as the product above.

We first apply the principle of (3.34) in the form a14a34 = a12a32 to find

that

a14a21a34a41 = a12a21a32a41

= a21a32a41a12,
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so the first required equality holds. Proceeding from the last expression, we

alternately apply (3.34) and (3.33) as follows:

a21a32a41a12 = a23a32a43a12, (since a21a41 = a23a43)

= a23a32a13a42, (since a43a12 = a13a42)

= a24a32a14a42, (since a23a13 = a24a14)

= a24a12a34a42, (since a32a14 = a12a34)

which is the required product.

Thus all 24 summands are equal, so we have

q(xβ1 , xβ2 , xβ3 , xβ4) = a14a21a34a41,

which, by substituting for the aij, becomes the desired equation.

To summarize, we have the following result.

Proposition 3.35. If β1, β2, β3, β4 are long roots of α-height 1, then the

value of q(xβ1 , xβ2 , xβ3 , xβ4) is one of the following:

• 0, if β1 + β2 + β3 + β4 6= 2ρ;

• 1, if β1 + β2 + β3 + β4 = 2ρ and there are two pairs of equal roots;

• −1
2
cβ,−ρcγ,−ρ if the roots are, in some order, β, γ, ρ − β, ρ − γ with

〈β, γ〉 = 0 for some β, γ; or

• cβ1,β4−ρcβ2,β1−ρcβ3,β4−ρcβ4,β1−ρ if the four roots are mutually orthogonal.

In particular, q(xβ1 , xβ2 , xβ3 , xβ4) is nonzero whenever β1 +β2 +β3 +β4 = 2ρ.
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Chapter 4

Special Results

This chapter presents results that are valid for specific Lie algebras or types

of Lie algebras. In Section 4.1 we show that, for types D and E, the Freuden-

thal triple system has an eigenspace decomposition into four subspaces. For

the same types, we characterize the G0-orbits of the Freudenthal triple sys-

tem in Section 4.2. The remaining sections examine groups whose actions

preserve the Freudenthal triple system operations (either exactly or up to

scalar multiples); in the case g = E8, we find that E7 is the group that

stabilizes both the forms on the prototypical Freudenthal triple system, the

56-dimensional minuscule representation of E7. In the case g = D4, we obtain

similar results, extended to allow for the symmetry of the Dynkin diagram

of D4.

4.1 Eigenspace decomposition of g1

In this section we assume that g is a Lie algebra of type D or E. We show

that there is an element h in the Cartan subalgebra h such that g1 is the

direct sum of the four eigenspaces under ad h corresponding to the eigenvalues

−3,−1, 1, 3, and that the eigenspaces corresponding to the eigenvalues −3

and 3 are one-dimensional (cf. [11], §4).
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Proposition 4.1. Let g be a Lie algebra of type D or E. For any root β of

α-height 1 we have

〈ρ− 2α, β〉 =


−3 if β = α,

3 if β = ρ− α,

±1 otherwise.

Moreover, the cases 〈ρ−2α, β〉 = −1 and 〈ρ−2α, β〉 = 1 occur equally often.

Proof. Let β be a root of α-height 1, necessarily a long root since g is simply

laced. For each such root, ρ − β is another long root of α-height 1, and we

have 〈α, β〉 + 〈α, ρ− β〉 = 〈β, α〉 + 〈ρ− β, α〉 = 〈ρ, α〉 = 1. Since 〈α, β〉 = 2

only if β = α, it follows that 〈α, β〉 = −1 only if β = ρ − α. Thus for the

remaining pairs of roots β, ρ−β we have 〈α, β〉 = 0 or 1 and correspondingly

〈α, ρ− β〉 = 1 or 0.

As 〈ρ, β〉 = 1, we have 〈ρ − 2α, β〉 = 1 − 2〈α, β〉. Thus 〈ρ − 2α, α〉 =

1−2〈α, α〉 = −3 and 〈ρ−2α, ρ−α〉 = 1−2〈α, ρ−α〉 = 3, with the remaining

cases split equally between 〈ρ− 2α, β〉 = 1 and 〈ρ− 2α, β〉 = −1.

The above proposition can be generalized by using ρ−2α′ with α′ any root

of α-height 1 in place of ρ−2α; the proof goes through unchanged. However,

we do not make use of this added generality.

At this point, we know that the promised element of h exists because the

Chevalley basis gives an isomorphism between h and the coroot lattice with

scalars extended to F . Explicitly, we recall from Section 2.3 that, for any

root β, the element hβ ∈ h is defined to be [xβ, x−β] and has the property

that [hβ, xγ] = 〈γ, β〉xγ for any root γ. Setting h = hρ−α − hα ∈ h, we then

have [h, xβ] = (〈β, ρ−α〉−〈β, α〉)xβ = 〈ρ−2α, β〉xβ, yielding the eigenvalue

decomposition described above.
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4.2 Characterization of the orbits

Proposition 4.2. In the cases where there are five G0-orbits in g1, namely

for g of type E6, E7 or E8, the orbits are characterized as follows:

• x is in orbit 0 iff x = 0,

• x is in the closure of orbit 1 iff xxy ∈ Fx for all y ∈ g1,

• x is in the closure of orbit 2 iff xxx = 0,

• x is in the closure of orbit 3 iff q(x) = 0, and

• x is in orbit 4 iff q(x) 6= 0.

Proof. The statement for orbit 0 is clear; the statement for orbit 1 is Propo-

sition 3.13.

The conditions for orbits 2 and 3 are invariant under the action of G0 and

define closed sets, so it suffices to consider representatives of the orbits. Let

β1, β2, β3, β4 be four mutually orthogonal roots of α-height 1.

Choose x = xβ1 + xβ2 as a representative of orbit 2. The triple product

xxx contains the terms xβ1xβ1xβ1 , xβ2xβ2xβ2 , xβ1xβ1xβ2 and xβ1xβ2xβ2 . All

are zero by Lemma 3.19; thus xxx = 0 for any x in orbit 2.

Conversely, for x = xβ1 + xβ2 + xβ3 in orbit 3, we have xxx = 6xβ1xβ2xβ3

since the other terms vanish by Lemma 3.19. Thus we have 〈xβ4 , xxx〉 =

6q(xβ1 , xβ2 , xβ3 , xβ4), which is not zero by Lemma 3.12. Hence xxx 6= 0 for

any x in orbit 3.

For x = xβ1 + xβ2 + xβ3 in orbit 3, all the terms arising when q(x, x, x, x) is

expanded are zero: some xβi
must be repeated, so we have terms of the form

q(xβi
, xβi

, xβj
, xβk

) with i, j, k not necessarily distinct; such a term equals

〈xβj
, xβi

xβi
xβk

〉, which is 0 by Lemma 3.19. Thus q(x) = 0 for any x in

orbit 3.
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Finally, recall that the fourth orbit is represented by x = xα + xρ−α ([24],

Corollary 4.4). By the remark following Lemma 3.4, we have q(x) = 6; hence

q(x) 6= 0 for any x in orbit 4.

A similar result applies for Lie algebras of type Dn, except that the elements

x ∈ g1 satisfying xxx = 0 are those that belong to any of the level 2 orbits or

their closures. As these orbits are each represented by elements of the form

xβ1 + xβ2 , but for different choices of β1, β2, β3, β4, the proof goes through

unchanged.

Krutelevich ([20], Definition 22) defines the rank of an element of Freuden-

thal triple system constructed from a cubic Jordan algebra using characteri-

zations which are nearly the same as those given in the preceding proposition.

His definition of rank 1 differs from the characterization of orbit 1; it is equiv-

alent (apart from a different convention on scalars) to (3.17).

4.3 Related groups

As in Ferrar’s article ([11], §7), we define two subgroups of the group of linear

automorphisms of g1. The first, Q, preserves the quartic form on g1 up to a

nonzero scalar factor, that is,

Q = {η ∈ GL(g1) : ∀x ∈ g1, q(η(x)) = rq(x) for some r ∈ F×}.

We call r the ratio of η in Q.

Similarly, the elements of B are those that preserve the bilinear form up to

a nonzero scalar:

B = {η ∈ GL(g1) : ∀x, y ∈ g1, 〈η(x), η(y)〉 = r〈x, y〉 for some r ∈ F×}.

In this case, we call r the ratio of η in B.

Lemma 4.3. The set of strictly regular elements is invariant under any

η ∈ GL(g1) that preserves the quartic form.
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The following argument is adapted from Ferrar ([11], Cor. 7.2).

Proof. Suppose x ∈ g1 is rank one; that is, the elements of the form xxy with

y ∈ g1 constitute a one-dimensional subspace. Then q(x, x, y, z) = 〈z, xxy〉
is zero for all y ∈ g1 and all z in a codimension-1 subspace. Conversely,

if x 6= 0 and q(x, x, y, z) = 〈z, xxy〉 is zero for all y ∈ g1 and all z in a

codimension-1 subspace, then the elements xxy lie in a 1-dimensional space.

Since the elements xxy are not all zero (Lemma 3.11), x is rank one. Thus

this condition on the 4-linear form characterizes the rank one elements among

the nonzero elements of g1.

Since any map η in GL(g1) is nonsingular, it preserves the dimension of

subspaces. If η preserves the quartic form (and hence the 4-linear form),

then the condition on the 4-linear form is true of η(x) if it is for x. Thus

η maps rank one elements to rank one elements; by Proposition 3.15, this

is the same as saying it maps strictly regular elements to strictly regular

elements.

Proposition 4.4. Q is a subgroup of B.

Proof. Let η be an element of Q. To show that η preserves 〈x, y〉 up to a

scalar factor, it suffices to show it for all x in a spanning set, such as the

strictly regular elements (Lemma 3.14), and all y ∈ g1.

By (3.18), for x strictly regular and any y ∈ g1 we have q(x, x, y, y) =

〈x, y〉2. By Lemma 4.3, η(x) is also strictly regular, so

〈η(x), η(y)〉2 = q(η(x), η(x), η(y), η(y)) = r · q(x, x, y, y) = r〈x, y〉2,

where r is the ratio of η in Q. Thus r is a square, say r = s2; we then have

〈η(x), η(y)〉 = ±s〈x, y〉. The choice of sign does not depend on y, since for any

y1, y2 ∈ g1 we have ±s〈x, y1 + y2〉 = 〈η(x), η(y1 + y2)〉 = ±s〈x, y1〉 ± s〈x, y2〉,
so the signs must be the same whenever the bilinear forms are nonzero. Let
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us say that x is associated with s if 〈η(x), η(y)〉 = s〈x, y〉 for all y ∈ g1, or

that x is associated with −s otherwise.

The set of strictly regular elements associated to s (resp., to −s) is a rel-

atively closed subset of the set of all strictly regular elements, and the set

of strictly regular elements is the disjoint union of these two sets. However,

since the set of strictly regular elements is an orbit under the action of the

connected set G0 (Proposition 3.13), it is connected. Thus all strictly regular

elements are associated to the same square root of r, so η is in B.

Corollary 4.5. Any element η ∈ GL(g1) that stabilizes the quartic form also

preserves orthogonality.

Proof. If η stabilizes the quartic form, it is in Q (with ratio 1); thus it is in

B (with ratio ±1). Therefore, for any x, y ∈ g1, we have 〈x, y〉 = 0 if and

only if 〈η(x), η(y)〉 = 0.

4.4 The stabilizer of the quartic form: G = E8

Suppose that G is of type E8 and g is thus the Lie algebra E8, which has

dimension 248 ([4], §VI.4.10). In this case the simple root α is, in the labeling

of [4], α8. The root subspaces within g0 are then generated by the xβ where β

is a root of α-height 0; that is, a root of the Lie algebra of type E7 produced

by removing α = α8 from the Dynkin diagram of E8. There are 126 such roots

([4], §VI.4.11); combined with the 8-dimensional Cartan subalgebra of E8,

we have dim g0 = 134. Thus G0 is the subgroup E7 plus a one-dimensional

torus, so (G0)
ss is E7.

Since dim g−2 = dim g2 = 1, we have dim g−1 = dim g1 = 56. We see

that the action of (G0)
ss on g1 is irreducible since the dense orbit cannot be

contained in any proper subspace, so g1 is the well-known minuscule repre-

sentation of E7.
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As noted in Section 1.2, it has been known since Cartan, in the case where

F = C, that there is a quartic form on the minuscule representation, V , of

E7 that is invariant under E7; indeed, the subgroup of GL(V ) stabilizing

this quartic form and a skew-symmetric bilinear form is exactly E7. In this

section we use our techniques to establish the subgroup stabilizing the quartic

form and the subgroup stabilizing both forms in our more general context.

Theorem 4.6. For G = E8, the subgroup of GL(g1) stabilizing the quartic

form, Stab(q), is generated by E7 and µ4, where µ4 is the group of the fourth

roots of unity.

Proof. First, E7 = (G0)
ss stabilizes the quartic form by Fact 2.7.

Next, for k ∈ µ4, we have q(k · x) = k4q(x) = q(x) for any x ∈ g1, so µ4

also stabilizes the quartic form. Thus Stab(q) contains the group generated

by E7 and µ4.

To show the reverse inclusion, suppose g ∈ Stab(q). Let v = xα + xρ−α.

Since v is in the dense orbit, we have by Proposition 4.2 that q(v) 6= 0 and

also, since q(g · v) = q(v) 6= 0, that g · v is in the dense orbit. Thus there

exists some z ∈ E7 such that zg · v = kv for some k ∈ F×. Let g′ = zg;

then g′ is also in Stab(q), so q(v) = q(g′ · v) = k4q(v). Thus k ∈ µ4. Let

g′′ = k−1g′, then g′′ · v = v, so g′′ both stabilizes q and fixes v.

Lemma 4.12 below, which is the key to the proof, shows that any element

that stabilizes q and fixes v is in the group generated by E7 and µ4; thus g′′

is in that group and so is g. Therefore Stab(q) ⊆ 〈E7, µ4〉.

Before completing the proof, we use the preceding theorem to determine

the group that stabilizes both q and the bilinear form 〈−,−〉.

Corollary 4.7. For G = E8, the subgroup of GL(g1) stabilizing both the

quartic form and the skew-symmetric bilinear form, Stab(q, 〈−,−〉), is E7.
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Proof. The previous proposition and the fact that E7 stabilizes both forms

yield the following containments:

E7 ⊆ Stab(q, 〈−,−〉) ⊆ Stab(q) = 〈E7, µ4〉.

Let L0 be the root lattice of E7 and L1 its weight lattice. Then L1/L0 is a

group with two elements (see, for example, [17], §13.1 or [27], p. 45). From

[27], p. 45, the center of E7 is isomorphic to Hom(L1/L0, F
×), so the center

of E7 consists of the elements 1 and −1. Thus the group 〈E7, µ4〉 has two

components: E7 and iE7, where i is a primitive fourth root of unity. However,

i is not in Stab(q, 〈−,−〉) since 〈ix, iy〉 = −〈x, y〉 for any x, y ∈ g1. Therefore

Stab(q, 〈−,−〉) = E7.

In the remainder of this section we complete the proof of the two preceding

propositions by using a result of Springer ([26]) on so-called E6-structures.

An E6-structure consists of two 27-dimensional F -vector spaces, A and B,

with a nondegenerate pairing 〈−,−〉 along with two irreducible cubic forms,

f1 : A → F and f2 : B → F . After defining corresponding trilinear forms

by f1(a, a, a) = f1(a) and f2(b, b, b) = f2(b), we can also define symmetric

bilinear products maps A × A → B and B × B → A, each denoted by

juxtaposition, that are given implicitly by

3f1(a, a1, a2) = 〈a, a1a2〉, 3f2(b, b1, b2) = 〈b1b2, b〉;

Finally, these maps must satisfy the following conditions:

(aa)(aa) = f1(a)a, (bb)(bb) = f2(b)b (4.8)

for all a ∈ A, b ∈ B.

We will take A and B to be the eigenspaces in g1 described in Proposi-

tion 4.1 corresponding to the eigenvalues +1 and −1. Thus A is generated

by elements xβ where β has α-height 1 and 〈α, β〉 = 0, whereas B is gener-

ated by elements xγ where γ has α-height 1 and 〈α, γ〉 = 1. When g = E8,
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g1 has dimension 56, so A and B are 27-dimensional, as required. However,

none of our results before Lemma 4.12 make use of the dimension, so they

apply equally well if g is any Lie algebra of type D or E; in particular, we

will apply Lemma 4.11 with g = D4 in the next section. For the pairing on

A and B, we use the skew-symmetric bilinear form 〈−,−〉 previously defined

on all of g1.

We define the cubic forms f1 and f2 as follows:

f1(a) =
1

6
q(xα, a, a, a), f2(b) =

1

6
q(xρ−α, b, b, b).

To verify that we have an E6-structure, we begin by computing the bilinear

products on A and B. For convenience, we will assume without loss of

generality that the structure constant cρ−α,α is 1.

Lemma 4.9. For basis elements xβ, xγ ∈ A, if β and γ are orthogonal the

bilinear product is given by xβxγ = kβ,γxρ−δ, where δ = 2ρ − α − β − γ and

kβ,γ = 1
2
cδ,ρ−δq(xα, xβ, xγ, xδ). Similarly, for basis elements xβ, xγ ∈ B with

β and γ orthogonal, the bilinear product is given by xβxγ = k′β,γxρ−δ′, where

δ′ = ρ + α− β − γ and k′β,γ = 1
2
cδ′,ρ−δ′q(xρ−α, xβ, xγ, xδ′). In both cases, if β

and γ are not orthogonal, the bilinear product is zero.

Proof. We first check that the specified δ and δ′ are actually roots. In the

first case, β and γ are orthogonal to each other and also to α, so we have

〈ρ−α, β〉 = 〈ρ, β〉−〈α, β〉 = 1, so ρ−α−β is a root, and 〈ρ−α−β, ρ−γ〉 =

〈ρ − β, ρ − γ〉 − 〈α, ρ − γ〉 = −1, so δ = 2ρ − α − β − γ is also a root. In

the second case, we now have that ρ − α, β, γ are mutually orthogonal, so

by Fact 2.8 the same is true of α, ρ − β, ρ − γ. The work for the first case

thus shows that 2ρ−α− (ρ− β)− (ρ− γ) = β + γ−α is a root; since it has

α-height 1, it follows that δ′ = ρ− (β +γ−α) is also a root. Note that δ and

δ′ have α-height 1 and that 〈δ, α〉 = 0 and 〈δ′, α〉 = 1; thus xρ−δ is indeed in

B and xρ−δ′ is in A.
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By the definitions of the bilinear product and of the cubic form f1, we have

in the first case

〈a, xβxγ〉 = 3f1(a, xβ, xγ) =
1

2
q(xα, xβ, xγ, a)

for any a ∈ A. By Corollary 3.3, the only basis element for which the right-

hand side is not zero is a = xδ; the same must be true of the left-hand side,

so xβxγ is a scalar multiple of xρ−δ. Setting a = xδ and xβxγ = kxρ−δ, we

find k = 1
2
cδ,ρ−δq(xα, xβ, xγ, xδ).

In the second case, we have

〈xβxγ, b〉 = 3f2(xβ, xγ, b) =
1

2
q(xρ−α, xβ, xγ, b)

for any b ∈ B. The only basis element for which the right-hand side is not

zero is b = xδ′ ; thus xβxγ is a scalar multiple of xρ−δ′ . We find xβxγ = k′xρ−δ′ ,

with k′ = 1
2
cδ′,ρ−δ′q(xρ−α, xβ, xγ, xδ′).

When xβ and xγ are in A, the bilinear product can be nonzero only if there

is a root δ such that α + β + γ + δ = 2ρ. If β and γ are not orthogonal,

then Proposition 3.30 implies that some two of α, β and γ must sum to ρ.

However, since β and γ are each orthogonal to α, neither α + β nor α + γ is

a root. Also, β + γ 6= ρ, since 〈β + γ, α〉 = 0 but 〈ρ, α〉 = 1. Thus xβxγ is

zero if β and γ are not orthogonal.

Likewise, if xβ and xγ are in B, then the bilinear product can be nonzero

only if there is a root δ′ such that (ρ−α)+β +γ +δ′ = 2ρ. Again, if β and γ

are not orthogonal, some two of ρ− α, β and γ must sum to ρ. In this case,

ρ−α is orthogonal to each of β and γ, so neither (ρ−α)+β nor (ρ−α)+ γ

is a root. Finally, β + γ 6= ρ, since 〈β + γ, ρ− α〉 = 0 but 〈ρ, ρ− α〉 = 1.

Lemma 4.10. With the preceding definitions, (A, B, 〈−,−〉, f1, f2) is an E6-

structure.

Proof. We need to show that equations (4.8) are satisfied. First, we show

that any element a ∈ A is not in orbit 4. Since the elements of the form xβ
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with β having α-height 1 and 〈α, β〉 = 0 are a basis for A, we may write a

as an F -linear combination of such elements, say a =
∑

λixβi
. Thus q(a) is

a sum of terms of the form λq(xβ, xγ, xδ, xε) with λ ∈ F and where β, γ, δ, ε

are roots, not necessarily distinct, of α-height 1 that are orthogonal to α.

However, the sum β + γ + δ + ε cannot equal 2ρ since 〈β + γ + δ + ε, α〉 = 0,

but 〈2ρ, α〉 = 2. Hence all such terms are zero by Corollary 3.3, so we have

q(a) = 0. By Proposition 4.2, a is thus not in orbit 4, so it is in the closure

of orbit 3.

The equation (aa)(aa) = f1(a)a is preserved by scaling and all the oper-

ations being used are defined in terms of the forms that are stabilized by

(G0)
ss, so to verify the equation on A it will suffice to choose a to be any

representative of orbit 3. Choose β, γ, δ so that α, β, γ, δ are mutually or-

thogonal; by Fact 2.9, α + β + γ + δ = 2ρ. Now a = xβ + xγ + xδ is a

representative of orbit 3. Using the notation of the preceding lemma, we

compute

aa = 2xβxγ + 2xγxδ + 2xδxβ

= 2kβ,γxρ−δ + 2kγ,δxρ−β + 2kδ,βxρ−γ,

and thus

(aa)(aa) = 8kβ,γkγ,δxρ−δxρ−β + 8kγ,δkδ,βxρ−βxρ−γ + 8kδ,βkβ,γxρ−γxρ−δ

= 8kβ,γkγ,δk
′
ρ−δ,ρ−βxγ + 8kγ,δkδ,βk′ρ−β,ρ−γxδ + 8kδ,βkβ,γk

′
ρ−γ,ρ−δxβ.

Applying the definitions of the scalars k and k′, we find that the coefficient

of each term is −cβ,ρ−βcγ,ρ−γcδ,ρ−δq
2
1q2, where q1 = q(xα, xβ, xγ, xδ) and q2 =

q(xρ−α, xρ−β, xρ−γ, xρ−δ). Thus (aa)(aa) is proportional to a; it remains to

show that the coefficient is equal to f1(a).

By definition, f1(a) = 1
6
q(xα, a, a, a). Since a = xβ +xγ +xδ, the expansion

of the 4-linear form includes six terms equal to q(xα, xβ, xγ, xδ); all other

terms include a repeated argument and thus are seen to be zero by applying
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Lemma 3.19. Hence f1(a) = q(xα, xβ, xγ, xδ); that is, f1(a) = q1. Thus it will

suffice to show that −cβ,ρ−βcγ,ρ−γcδ,ρ−δq1q2 = 1.

By Proposition 3.35, we have

q1 = cα,δ−ρcβ,α−ρcγ,δ−ρcδ,α−ρ

and

q2 = cρ−α,−δcρ−β,−αcρ−γ,−δcρ−δ,−α.

Some of the factors are equal, and so will cancel in the product:

cα,δ−ρ = cρ−δ,−α,

cδ,α−ρ = cρ−α,−δ.

The product −cβ,ρ−βcγ,ρ−γcδ,ρ−δq1q2 is thus

−cβ,ρ−βcγ,ρ−γcδ,ρ−δcβ,α−ρcγ,δ−ρcρ−β,−αcρ−γ,−δ

Introducing two factors of cα,ρ−α and substituting cρ−β,−α = cα,β−ρ and

cρ−γ,−δ = cδ,γ−ρ, we regroup the resulting nine factors as

−cα,ρ−α(cα,ρ−αcβ,ρ−βcβ,α−ρcα,β−ρ)(cγ,ρ−γcδ,ρ−δcγ,δ−ρcδ,γ−ρ).

Applying Lemma 3.6 to the orthogonal roots α and β (resp. γ and δ) yields

cα,β−ρcβ,α−ρcα,−ρcβ,−ρ = 1 (resp. cγ,δ−ρcδ,γ−ρcγ,−ρcδ,−ρ = 1). These are the

same as the parenthesized products, so the complete product is −cα,ρ−α.

Since we are assuming cρ−α,α = 1, this is 1, as required.

For an element b ∈ B, the result (bb)(bb) = f2(b)b follows in similar fashion.

Specifically, we take b = xρ−β +xρ−γ +xρ−δ as a representative of orbit 3 and

compute

bb = 2xρ−βxρ−γ + 2xρ−γxρ−δ + 2xρ−δxρ−β

= 2k′ρ−β,ρ−γxδ + 2k′ρ−γ,ρ−δxβ + 2k′ρ−δ,ρ−βxγ
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and thus

(bb)(bb) = 8k′ρ−β,ρ−γk
′
ρ−γ,ρ−δxδxβ + 8k′ρ−γ,ρ−δk

′
ρ−δ,ρ−βxβxγ

+ 8k′ρ−δ,ρ−βk′ρ−β,ρ−γxγxδ

= 8k′ρ−β,ρ−γk
′
ρ−γ,ρ−δkδ,βxρ−γ + 8k′ρ−γ,ρ−δk

′
ρ−δ,ρ−βkβ,γxρ−δ

+ 8k′ρ−δ,ρ−βk′ρ−β,ρ−γkγ,δxρ−β.

Once again, the coefficients are equal; each is −cβ,ρ−βcγ,ρ−γcδ,ρ−δq1q
2
2, where

q1 and q2 are as before. This must be the same as f2(b) = 1
6
q(xρ−α, b, b, b);

here the resulting nonzero terms are the six equal to q(xρ−α, xρ−β, xρ−γ, xρ−δ),

so f2(b) = q2. Hence it suffices to show −cβ,ρ−βcγ,ρ−γcδ,ρ−δq1q2 = 1, exactly

as in the previous case.

The following lemma allows us to move from an element that stabilizes the

quartic form and fixes v to one that preserves even more structure. It will

be used again in the next section.

Lemma 4.11. If g ∈ GL(g1) is an element that stabilizes the quartic form

and fixes v = xα +xρ−α, then there is an element g′ that preserves the spaces

A and B and stabilizes 〈−,−〉 and the cubic forms defined on A and B such

that g′g−1 ∈ 〈(G0)
ss, µ4〉.

Proof. Let g be an element that stabilizes q and fixes v. By Lemma 4.3,

the action of g takes strictly regular elements to strictly regular elements, so

g · xα and g · xρ−α are strictly regular. Since g fixes v, we have v = g · v =

g · xα + g · xρ−α. However, by Lemma 3.23, the expression of v as a sum

of two strictly regular elements is unique, so g must either fix both xα and

xρ−α or interchange them. By §12.10 in [15], there is an element z ∈ i(G0)
ss

that interchanges xα and xρ−α; of course, such an element also stabilizes q.

Hence either g or zg is an element that stabilizes q and fixes xα and xρ−α;

call whichever element does so g′. Thus we have g′g−1 ∈ 〈(G0)
ss, µ4〉.
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Let W be the subspace of g1 consisting of elements orthogonal to both xα

and xρ−α; by Corollary 4.5, W is invariant under g′. All the basis elements

xβ with β of α-height 1 except for xα and xρ−α are in W , and they form

a basis of W . Thus W is the direct sum of the +1 and −1 eigenspaces of

Proposition 4.1, the spaces we have named A and B.

Let A′ be the subspace of elements x ∈ W such that q(xρ−α, x, y, z) = 0

for all y, z ∈ W , and define a cubic form on A′ by 1
6
q(xα, x, x, x). Clearly g′

preserves A′ and stabilizes the cubic form. We claim A′ is in fact A, the +1

eigenspace of Proposition 4.1.

On the one hand, if xβ is a basis element of the +1 eigenspace, then we have

〈ρ− 2α, β〉 = 1. Since 〈ρ, β〉 = 1, it follows that 〈α, β〉 = 0. By writing ele-

ments y, z ∈ W as linear combinations of the basis elements, q(xρ−α, xβ, y, z)

expands into a linear combination of terms of the form q(xρ−α, xβ, xγ, xδ) with

γ, δ such that 〈γ, α〉 and 〈δ, α〉 are each either 0 or 1. But then we cannot have

(ρ−α)+β+γ+δ = 2ρ, since 〈(ρ−α)+β+γ+δ, α〉 = −1+0+〈γ, α〉+〈δ, α〉
is at most 1, but 〈2ρ, α〉 = 2. Hence all the terms q(xρ−α, xβ, xγ, xδ) are zero,

so xβ is in A′. Thus A ⊆ A′.

Conversely, if x ∈ W is not in the +1 eigenspace, then it has a nonzero

component involving some basis element xβ with 〈β, α〉 = 1. Thus 〈ρ −
α, β〉 = 0, so ρ − α and β are orthogonal roots of α-height 1. It follows

from Lemma 2.4 in [24] that any such pair of roots can be extended to a

set of four mutually orthogonal roots, say ρ − α, β, γ, δ. By Lemma 3.12,

q(xρ−α, xβ, xγ, xδ) is then nonzero, and thus q(xρ−α, x, xγ, xδ) is also nonzero,

since no other component of x contributes to the value of the form. Thus x

is not in A′. Therefore A′ ⊆ A.

Interchanging the roles of xα and xρ−α, we similarly define B′ to be the

subspace of elements x ∈ W such that q(xα, x, y, z) = 0 for all y, z ∈ W , and

define a cubic form on B′ by 1
6
q(xρ−α, x, x, x). As before, g′ preserves B′ and

stabilizes the cubic form. We show that B′ is actually B, the −1 eigenspace,
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by an argument parallel to that for A′ and A.

On the one hand, if xβ is a basis element of the −1 eigenspace, then we

have 〈ρ − 2α, β〉 = −1 and thus 〈α, β〉 = 1. Writing elements y, z ∈ W as

linear combinations of the basis elements, q(xα, xβ, y, z) expands into terms

of the form q(xα, xβ, xγ, xδ) with γ, δ such that 〈γ, α〉 and 〈δ, α〉 are each

either 0 or 1. But then α + β + γ + δ is not 2ρ, since 〈α + β + γ + δ, α〉 =

2 + 1 + 〈γ, α〉 + 〈δ, α〉 is at least 3, but 〈2ρ, α〉 = 2. Hence all the terms

q(xα, xβ, xγ, xδ) are zero, so xβ is in B′. Thus B ⊆ B′.

Conversely, if x ∈ W is not in the −1 eigenspace, then it has a nonzero

component involving some basis element xβ with 〈β, α〉 = 0. The pair of

orthogonal roots α and β can be extended to a set of four mutually orthogonal

roots, say α, β, γ, δ. Then q(xα, xβ, xγ, xδ) is nonzero, so q(xα, x, xγ, xδ) is also

nonzero, since no other component of x contributes to the value of the form.

Thus x is not in B′. Therefore B′ ⊆ B.

As in the proof of Corollary 4.5, since g′ stabilizes the quartic form, it

preserves the bilinear form up to a scalar factor of ±1. However, since g′

fixes xα and xρ−α and 〈xα, xρ−α〉 6= 0, the scalar factor is 1; thus g′ preserves

〈−,−〉.

Lemma 4.12. The group that stabilizes the quartic form and fixes the ele-

ment v = xα + xρ−α is contained in the group generated by E7 and µ4.

Proof. As the reader will have anticipated, we are going to apply Lemma 4.10,

which says that A and B equipped with 〈−,−〉 and the cubic forms defined

above is an E6-structure. By Lemma 4.11, if g is an element that stabilizes q

and fixes v, there is a g′ ∈ g〈E7, µ4〉 such that A and B are invariant under

g′ and 〈−,−〉 and the cubic forms are stabilized by g′. In other words, g′ is

an automorphism of the E6-structure. Proposition 1.6 of [26] shows that the

automorphism group of an E6-structure is, as the name suggests, E6. Thus

g′ ∈ E6; and therefore g is in 〈E7, µ4〉.



66

4.5 The stabilizer of the quartic form: G = D4

In this section, we again consider the group stabilizing the quartic form and

the group stabilizing both the quartic and the bilinear forms on g1, this time

in the case G = D4.

Although we will not make use of it in the proof, we present a convenient

matrix representation of the Lie algebra D4, derived from the representation

of the group D4 given in [22], §5.IV. This will serve to provide a concrete

example of a Freudenthal triple system embedded in a Lie algebra in a form

conducive to making explicit calculations.

D4 may be represented by the set of 8 × 8 matrices A = (aij) such that

A is negated when it is reflected in the anti-diagonal; i.e., aij = −a9−j,9−i.

This condition may also be expressed as JAtJ = −A, where J is the ma-

trix (sometimes called the exchange matrix) with ones on the anti-diagonal

and zeros elsewhere. The diagonal matrices in this set form a 4-dimensional

commuting subalgebra which we take as the Cartan subalgebra h. Writing

eij for the unit matrix with a 1 in the i, j-entry, the 24 root subspaces are

represented by matrices of the form eij − e9−j,9−i for i 6= j and i + j ≤ 8;

we take those with i < j (that is, with entries above the main diagonal) to

correspond to the positive roots. The representatives of the corresponding

negative roots are obtained by interchanging i and j. This set of represen-

tatives is extended to form a Chevalley basis by setting hi = [xαi
, x−αi

] for

1 ≤ i ≤ 4 (note that these are not the obvious basis elements of h of the form

eii − e9−i,9−i). The root subspaces for the simple roots are then represented

by xα1 = e12 − e78, xα = xα2 = e23 − e67, xα3 = e34 − e56 and xα4 = e35 − e46;

here the numbering of α1, α3 and α4 is arbitrary because of the symmetry of

the Dynkin diagram of D4.

This representation of D4 is shown schematically in Figure 4.1. The eight

root subspaces making up g1 appear in the rectangle which has xα and xρ−α
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at opposite corners.

∗ xα1 · · · xρ−α xρ 0

∗ xα · · · 0 −xρ

∗ xα3 xα4 0 · −xρ−α

∗ 0 −xα4 · ·

0 −∗ −xα3 · ·

0 −∗ −xα ·

0 −∗ −xα1

0 −∗




Figure 4.1: A matrix representation for the Lie algebra D4

From another viewpoint, the diagram that results when α = α2 is removed

from the Dynkin diagram of D4 consists of three unconnected vertices; that

is, it represents the Lie algebra which is the product of three copies of sl2.

Thus g0 is 10-dimensional, generated by the three pairs of roots xαi
, x−αi

for

i = 1, 3, 4 and the four-dimensional Cartan subalgebra of D4; (G0)
ss is thus

SL3
2. Since D4 has dimension 28, there are 18 other roots; setting aside ρ

and −ρ, we again see that g1 and g−1 are eight-dimensional. Here is a list

of the roots β of α-height 1, sorted according to eigenspace decomposition of

Proposition 4.1:

β 〈ρ− 2α, β〉 〈α, β〉
ρ− α 3 −1

α + α1 + α3, α + α1 + α4, α + α3 + α4 1 0

α + α1, α + α2, α + α3 −1 1

α −3 2
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To establish the stabilizer of the quartic form, we follow a similar strategy

to that employed in the proof of Theorem 4.6: We define the spaces A and

B and cubic forms on them as in the previous section. We adjust an element

g ∈ GL(g1) that stabilizes the quartic form to obtain an element that also

fixes xα + xρ−α, then apply Lemma 4.11 to obtain a g′ that preserves the

spaces A and B and stabilizes the cubic forms on them. In this case A

and B are simple enough so that we can give the cubic forms explicitly and

determine a suitable subgroup of GL(g1) that contains g′.

Theorem 4.13. The stabilizer of the quartic form on g1 when G = D4 is

〈SL3
2, µ4〉oS3, where S3 is the symmetric group corresponding to the diagram

automorphisms of D4.

Proof. Since (G0)
ss = SL3

2 and µ4 both stabilize the quartic form, 〈SL3
2, µ4〉 is

in Stab(q). We will now show that the diagram automorphisms also stabilize

the quartic form.

It will suffice to show that a diagram automorphism fixes xρ and x−ρ. By

Corollaire 5.5 bis in [10], an outer automorphism of g may be taken to act

on the Chevalley basis elements xαi
corresponding to the simple roots by

permuting the subscripts, and to act on the elements hi = [xαi
, x−αi

] by

applying the same permutation to the subscripts; thus the elements x−αi
are

also permuted in the same way. We will write xρ in terms of the xαi
, and

show that this expression is unaltered by a permutation of the subscripts 1,

3 and 4; the same argument with the negatives of the roots will show that

x−ρ is fixed as well.

The highest root of D4 is ρ = α1 + 2α2 + α3 + α4. We write this as

ρ = α2 +α1 +α3 +α4 +α2; in this expression each partial sum is also a root.

Thus we have

xρ = c[xα2 , [xα4 , [xα3 , [xα1 , xα2 ]]]], (4.14)

where c is a constant (in fact, c = ±1 since all the roots are long and thus the
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structure constants are ±1). Our claim is that this expression is unaltered

when the factors xα1 , xα3 , xα4 are permuted.

To verify the claim for the permutation that interchanges 1 and 3, we must

show that

[xα3 , [xα1 , xα2 ]] = [xα1 , [xα3 , xα2 ]];

this is equivalent to the following structure constant equation:

cα1,α2cα3,α1+α2 = cα3,α2cα1,α2+α3 . (4.15)

To obtain (4.15), we apply (2.6) with β = α1 + α2, γ = α2 + α3, δ = −α2

and ε = −α1 − α2 − α3; this yields

cα1+α2,α2+α3c−α2,−α1−α2−α3 +

cα2+α3,−α2cα1+α2,−α1−α2−α3 + c−α2,α1+α2cα2+α3,−α1−α2−α3 = 0.

The sum α1 + 2α2 + α3 has α-height 2 but is not equal to ρ, so it is not a

root; thus the first term is zero. Applying Fact 2.5, we have

cα2+α3,−α2 = c−α2,−α3

= cα3,α2 ,

cα1+α2,−α1−α2−α3 = cα3,α1+α2 ,

c−α2,α1+α2 = c−α1,−α2

= −cα1,α2 ,

cα2+α3,−α1−α2−α3 = cα1,α2+α3 .

Thus we have cα3,α2cα3,α1+α2 − cα1,α2cα1,α2+α3 = 0. Since all the structure

constants involved are ±1, this is equivalent to the statement that their

product is 1; this in turn is equivalent to (4.15).

By permuting the roots in the expression for ρ, the same argument applies

to any transposition of two of the subscripts 1, 3 and 4. Since all the transpo-

sitions fix xρ and x−ρ, all the diagram automorphisms do. Thus 〈SL3
2, µ4〉oS3

is contained in the stabilizer of the quartic form.
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We now consider the reverse inclusion. Let v = xα + xρ−α. As in the proof

of Theorem 4.6, given some g ∈ GL(g1) which stabilizes q, there exists some

z ∈ (G0)
ss such that zg · v is a scalar multiple of v, and there is some k ∈ µ4

such that g′′ = kzg fixes v and still stabilizes q.

Applying Lemma 4.11 to g′′, we obtain an element g′ that preserves A and

B and stabilizes 〈−,−〉 and the cubic forms on A and B.

By definition, the subspace A is generated by the root subspaces corre-

sponding to roots orthogonal to α; examining the list of roots in g1, these

are β = α + α1 + α3, γ = α + α1 + α4 and δ = α + α3 + α4. Either by

checking orthogonality directly or by using the formulas given in Section 2.5,

we find that α, β, γ and δ are mutually orthogonal. For an arbitrary element

x = λ1xβ + λ2xγ + λ3xδ of A, we find that the cubic form is

1

6
q(xα, x, x, x) = λ1λ2λ3q(xα, xβ, xγ, xδ),

since the terms with a repeated argument are zero by Lemma 3.19. By

Proposition 3.35, this is ελ1λ2λ3, where ε = ±1 is a product of structure

constants.

Let T = (aij), 1 ≤ i, j ≤ 3, be the matrix of the linear transformation on

A given by x 7→ g′ · x with respect to the basis xβ, xγ, xδ. The value of the

cubic form is the same for x = λ1xβ + λ2xγ + λ3xδ and g′ · x, so we have

λ1λ2λ3 = (a11λ1 +a12λ2 +a13λ3)(a21λ1 +a22λ2 +a23λ3)(a31λ1 +a32λ2 +a33λ3)

for all λ1, λ2, λ3 ∈ F . By unique factorization in F [λ1, λ2, λ3], the three

factors on the right-hand side are (up to units) λ1, λ2, λ3, say c1λ1, c2λ2, c3λ3,

with c1c2c3 = 1. If the factors occur in that order, then T is diagonal, with

the third entry determined by the first two; each such T corresponds to an

element (c1, c2, c3) of Gm × Gm × Gm for which the product of the three

components is 1. However, the order of the factors may be different, so in

general T may be an element of (Gm ×Gm ×Gm) o S3.
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The subspace B is generated by the root subspaces corresponding to the

roots ρ − β = α + α4, ρ − γ = α + α3 and ρ − δ = α + α1. As α, β, γ, δ are

mutually orthogonal, so are ρ− α, ρ− β, ρ− γ, ρ− δ. The cubic form on B

is given by 1
6
q(xρ−α, x, x, x); for x = λ1xρ−β + λ2xρ−γ + λ3xρ−δ this is, as in

the previous case, ±λ1λ2λ3. As before, g′ must map xρ−β, xρ−γ and xρ−δ to

scalar multiples of the same basis elements, possibly permuted.

However, since g′ stabilizes 〈−,−〉, the action of g′ on B can be computed

given its action on A. Suppose, for example, that g′ maps xβ to cxγ in A, then

〈xβ, xρ−β〉 = 〈cxγ, g
′ ·xρ−β〉; since this must be cβ,ρ−β, we have that g′ ·xρ−β is

necessarily cβ,ρ−βcγ,ρ−γc
−1xρ−γ. In general, β and γ may be replaced by any

of β, γ or δ, with a similar result. Hence the action of g′ on B is determined

by its action on A; in particular, if acts diagonally on A, it also does so on

B.

It remains only to show that an element g′ that corresponds to element of

Gm×Gm×Gm is an element of SL3
2. We will consider the action of an element

of SL3
2 that corresponds to an element of h of the form t1hα1+t3hα3+t4hα4 . By

Lemma 19(c) in [27], the action of the element corresponding to t1hα1 takes

xβ to t
〈β,α1〉
1 xβ, which is t1xβ since 〈β, α1〉 = 1. Similarly, it takes xγ to t1xγ

since 〈γ, α1〉 = 1 and takes xδ to t−1
1 xδ since 〈δ, α1〉 = −1; thus its action on

A is that of the element (t1, t1, t
−1
1 ) in Gm×Gm×Gm. In the same fashion, we

find that t3hα3 corresponds to (t3, t
−1
3 , t3) and t4hα4 to (t−1

4 , t4, t4). Since these

classes of elements are multiplicatively independent, they generate Gm×Gm×
Gm; the elements with the product of the components equal to 1 come from

elements of the form t1hα1 + t3hα3 + t4hα4 with t1t3t4 = 1. Since 〈α, αi〉 = −1

for i = 1, 3, 4, this element takes xα to t−1
1 t−1

3 t−1
4 xα = xα, so it fixes xα just as

g′ does. The action on the remaining basis elements, namely xρ−α and those

of B, must also correspond to that of g′ because an element of SL3
2 stabilizes

the bilinear form.

Thus g′ is in SL3
2 oS3, from which it follows that the original g ∈ GL(g1)
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stabilizing the quartic form is in 〈SL3
2, µ4〉o S3.

The determination of the group that stabilizes both q and the bilinear form

〈−,−〉 is parallel to Corollary 4.7.

Corollary 4.16. In the case G = D4, the subgroup of GL(g1) stabilizing both

the quartic form and the skew-symmetric bilinear form, Stab(q, 〈−,−〉), is

SL3
2 oS3

Proof. The previous theorem and the fact that SL3
2 and the diagram auto-

morphism stabilize both forms yield the following containments:

SL3
2 oS3 ⊆ Stab(q, 〈−,−〉) ⊆ Stab(q) = 〈SL3

2, µ4〉o S3.

Since−1 ∈ SL2, we also have−1 ∈ SL3
2. Thus SL3

2 oS3 is an index 2 subgroup

of 〈SL3
2, µ4〉 o S3. However, the coset containing i, a primitive fourth root

of unity, is not in Stab(q, 〈−,−〉) since 〈ix, iy〉 = −〈x, y〉 for any x, y ∈ g1.

Therefore Stab(q, 〈−,−〉) = SL3
2 oS3.
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Chapter 5

Conclusion

In this final chapter, we summarize the preceding results and suggest di-

rections for further research.

5.1 Summary of results

For g the Lie algebra of an algebraic group G of type B, D, E or F and

rank ≥ 4 over a field of characteristic not 2 or 3, we define a grading g =

g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 where x ∈ gk when [hρ, x] = kx. The subspaces

g−2 and g2 are one-dimensional, containing the basis elements x−ρ and xρ,

respectively. We define a nondegenerate skew-symmetric bilinear form 〈−,−〉
on g1 by [x, y] = 〈x, y〉xρ and a quartic form q(−) by (ad x)4(x−ρ) = q(x)xρ.

Using the linearization of the quartic form determined by q(x, x, x, x) = q(x),

we define a triple product xyz on g1 by q(w, x, y, z) = 〈w, xyz〉.

We find q(xβ, xβ, xρ−β, xρ−β) = 1 and q(xβ, xγ, xρ−β, xρ−γ) = −1
2
cβ,−ρcγ,−ρ,

where β and γ are orthogonal long roots of α-height 1,

An element x ∈ g1 is defined to be strictly regular if xxg1 is the linear

subspace spanned by x. The basis elements xβ with β a long root of α-

height 1 are strictly regular. The following conditions are equivalent:

• x ∈ g1 is strictly regular,
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• x is in the smallest nonzero G0-orbit,

• xxg1 is a one-dimensional subspace (i.e., x is rank one),

• x 6= 0, xxx = 0 and x ∈ xxg1,

• q(x, x, y, z) = 0 for all y ∈ g1 and all z in a codimension-1 subspace.

The strictly regular elements span g1. Any element in the dense orbit is

uniquely the sum of two strictly regular elements. For x strictly regular and

y, z ∈ g1, xxy = 〈y, x〉x and q(x, x, y, z) = 〈y, x〉〈z, x〉.

The vector space g1 with the operations defined above is a Freudenthal

triple system.

The 4-linear form q(xβ1 , xβ2 , xβ3 , xβ4) is zero unless β1 + β2 + β3 + β4 = 2ρ.

If the roots are long, this condition is met if and only if the roots consist of

two pairs that each sum to ρ or the roots are mutually orthogonal. In the

latter case, q(xβ1 , xβ2 , xβ3 , xβ4) = cβ1,β4−ρcβ2,β1−ρcβ3,β4−ρcβ4,β1−ρ.

If g is of type D or E, then g1 is the direct sum of four eigenspaces under

ad(hρ−α − hα):

• The −3-eigenspace is spanned by xα,

• The −1-eigenspace is spanned by the xβ with 〈α, β〉 = 1,

• The +1-eigenspace is spanned by the xβ with 〈α, β〉 = 0,

• The +3-eigenspace is spanned by xρ−α.

The −1- and +1-eigenspaces have the same dimension.

For g of type E6, E7 or E8,

• x is in orbit 0 iff x = 0,

• x is in the closure of orbit 1 iff xxg1 ⊂ Fx,
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• x is in the closure of orbit 2 iff xxx = 0,

• x is in the closure of orbit 3 iff q(x) = 0, and

• x is in orbit 4 iff q(x) 6= 0.

For g of type Dn, a similar result holds except that the elements for which

xxx = 0 form two (n > 4) or three (n = 4) orbits.

Any element of GL(g1) that preserves the quartic form up to a scalar factor

must likewise preserve the bilinear form, and thus orthogonality.

When G = E8, the subgroup of GL(g1) stabilizing the quartic form is

Stab(q) = 〈E7, µ4〉. Stab(q, 〈−,−〉) = E7.

When G = D4, Stab(q) = 〈SL3
2, µ4〉o S3 and Stab(q, 〈−,−〉) = SL3

2 oS3.

5.2 Future work

We have a decomposition of g1 as the direct sum of four eigenspaces, two

of which are one-dimensional. In light of other well-known constructions of

Freudenthal triple systems and Lie algebras, it seems likely that the remain-

ing eigenspaces can be described as Jordan algebras or as a Jordan pair.

It would be desirable to describe a natural Jordan structure on them and

thus complete the process of starting with the Lie algebras and reversing the

known constructions.

Some of our results apply only to simple Lie algebras with simply-laced

root systems (or, only to the long roots of a Lie algebra meeting the other

hypotheses); for example, the explicit determination of the 4-linear form

in Proposition 3.35, and the fact that a nonzero element of a root subspace

corresponding to a long root is strictly regular (Corollary 3.10). The situation

in the presence of short roots is more complicated: there are then more cases
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than those listed in Proposition 3.35, and xβ need not be strictly regular if

β is a short root. Further study is needed to better illuminate these issues.

The stabilizer subgroups for the forms have been determined in two im-

portant cases. It would be of interest to work out other cases as well; in

particular, the case G = E6 appears to both manageable and of interest.

All of the results assume the characteristic of the underlying field is not 2

or 3. Finding an appropriate way to generalize these findings to low charac-

teristic would certainly be desirable, but is likely more challenging than the

other questions.
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