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Abstract

This thesis is about analytic number theory. In particular, I prove theorems about

class numbers, L-functions, and partitions, by using methods from the theory of

modular forms and a generalization of modular forms called harmonic Maass forms.

Class numbers of quadratic number fields count classes of quadratic forms, and

information about their arithmetic properties percolates into many areas of number

theory. I quantified a recent theorem of Wiles, who proved the existence of imaginary

quadratic fields with prescribed local conditions whose class numbers are indivisible

by a given odd prime. I extended Wiles’ result by proving a lower bound on the

number of such fields with discriminant down to a given bound. I used this estimate

to count rank 0 twists of certain elliptic curves.

Partition numbers are given by a simple combinatorial definition, but are con-

nected to deep ideas in math. I proved Hardy-Ramanujan-type effective estimates for

the number of k-regular partitions for low k. With Bessenrodt, I used these estimates

to prove formulas for multiplicative partition functions arising in group theory.

I studied parts of partitions lying in given residue classes with respect to a fixed

modulus. For large n, how many parts of a partition of n should one expect to

be equivalent to r (mod m)? Mertens and I used the Circle Method, a technique for

estimating the coefficients of modular forms that have a pole, to answer this question.

The theory of modular forms is the two-dimensional case of a larger body of work

called the Langlands Program. A challenge in this area is studying the analytic

properties of L-functions for automorphic forms; the Rankin-Selberg method allows

one to do this in certain settings. Recent work to extend this technique has led to the

development by Hoffstein and Hulse of shifted convolution L-series. Making use of

mock modular properties of a class of these series, I proved bounds for special values

of symmetrizations of the shifted convolution series.
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Chapter 1

Introduction

1.1 Class numbers, partitions, and L-functions

In this thesis, I present original results in the areas of class numbers, L-functions,

and partitions. Each of these areas played a major role in the some of the most

important developments in number theory of the twentieth century. Before I delve

into the details of my work, let me give a brief overview of these three areas and their

significance.

Class numbers were defined by Gauss to count classes of binary quadratic forms

up to matrix equivalence. At first glance this may seem boring, but it turns out

that class numbers are also the orders of groups which describe the obstruction to

unique factorization for rings of integers of number fields, and consequences of deep

knowledge about these groups percolate through virtually every important question

in algebraic number theory.

Dirichlet found that although algebraic in their definition, class numbers are pro-

duced by special values of L-functions, giving class numbers an analytic interpreta-

tion. So, the theory of L-functions can be used to study class numbers. This idea also

connects class numbers to the group structure of elliptic curves through the work of
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Birch and Swinnerton-Dyer, who conjectured an important relationship between the

analytic and algebraic approaches to studying elliptic curves. Moving forward, the

Langlands philosophy connects the behavior of automorphic L-functions to the struc-

ture of number fields and important ideas in representation theory and arithmetic

geometry.

Partition numbers were first studied by Euler and Ramanujan for their combina-

torial properties. They seem like child’s play: they simply count the nonincreasing

sequences of positive integers with a fixed sum. This elementary idea has played

a role in the representation theory of finite groups through the use of Young dia-

grams and in mathematical physics through the work of Okounkov. Partitions have

also served as a testing ground throughout the development of the entire theory of

modular forms. Hardy and Ramanujan developed the Circle Method to estimate the

partition numbers, and this technique has been used throughout the study of modular

forms and beyond it to classical problems in analytic number theory, including War-

ing’s problem and the Odd Goldbach Conjecture. The Ramanujan Congruences were

proved years before Atkin realized that they are the manifestations for the Dedekind

eta-function of the action of the U(p) operator on modular forms. This led to Atkin

and Lehner’s extension of this work to the theory of Hecke operators and the theory of

newforms, which are necessary for understanding the structure of spaces of modular

forms and for stating the most well-known formulation of the Modularity Theorem.

The Ramanujan Congruences can also be viewed as consequences of properties of the

Deligne-Serre Galois representations for modular forms, which played a central role

in the proof of Fermat’s Last Theorem.

I describe my results in Sections 2-5 of the present chapter, and present their

proofs in Chapters 3 - 6. Chapter 2 introduces the primary objects used in these

proofs: modular forms and harmonic Maass forms.
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1.2 Class Numbers

Ideal class numbers of imaginary quadratic fields have been studied since Gauss, who

conjectured that for any given h, there are only finitely many negative fundamental

discriminants D such that h(D) = h. The history of Gauss’ Conjecture is rich. The

conjecture was shown to be true by work of Heilbronn [Hei34], who did not show how

to find the imaginary quadratic fields with a given class number. Siegel [Sie35] proved

that h(−D) grows like |D|1/2, but did so ineffectively. In other words, for each ε > 0

he proved that for sufficiently large D that there are positive constants c1 and c2 for

which

c1D
1/2−ε < h(−D) < c2D

1/2+ε

While explicit upper bounds for h(−D) are known, the constants c1 are ineffective for

all ε. Baker [Bak66] and Heegner [Hee52]and Stark [Sta67] computed the complete

finite list of negative fundamental discriminants D for which h(D) = 1. The works

Gross and Zagier [GZ86] and Goldfeld [Gol85] produce a lower bound for h(D) which

is asymptotically smaller than Siegel’s bound, but is effective and allows one (in

principle) to compute the complete list of imaginary quadratic fields with any given

class number.

It is natural to ask what else can be said about the structure of ideal class groups.

For example, how often should we expect the `-torsion subgroup of the class group

to be trivial for a given odd prime `? The Cohen-Lenstra heuristics [CL84] predict

an answer:

lim
X→∞

#{−X < D < 0 : ` - h(D)}
X

=
∞∏
n=1

(
1− 1

`n

)
= 1− 1

`
− 1

`2
+

1

`5
· · · (1.1)

Here the numbers D are fundamental discriminants. Note that the Cohen-Lenstra

heuristics actually predict much more about the structure of the class groups, give

similar predictions for real quadratic fields, and have been generalized by others to
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other number fields. For a concise description for the quadratic number field case,

the reader is encouraged to read Chapter 5 Section 10 of [Coh93].

Numerical data provides some evidence for the Cohen-Lenstra heuristics, and for

` = 3, strong theorems supporting equation (1.1) are known. Gauss’ genus theory

says that the number of order 2 elements of the class group is 2t−1− 1, where t is the

number of distinct prime divisors of the discriminant (see Proposition 3.11 of [Cox97]).

For ` = 3, a theorem of Davenport and Heilbronn [DH71] says that if ε > 0, then for

X sufficiently large we have

#{−X < D < 0 : 3 - h(D)}
#{−X < D < 0}

≥ 1

2
− ε.

They proved this by showing that the cubic number fields are in a discriminant

preserving correspondence with a certain set of classes of binary cubic forms, and

they used this fact to count the order 3 elements of class groups of quadratic number

fields.

For ` > 3 much less is known about the `-torsion of class groups. Soundararajan

[Sou00] used analytic techniques to count `-torsion points of class groups, and showed

#{−X < D < 0 : `|h(D)} � X
1
2

+ε(`),

where ε(`) > 0 approaches 0 as `→∞. Kohnen and Ono [KO99] used the theory of

modular forms to study the occurrence of class groups with trivial `-torsion for ` > 3.

They proved for any ε > 0, for sufficiently large X we have

#{−X < D < 0 : ` - h(D)} ≥
(

2(`− 2)√
3(`− 1)

− ε
) √

X

logX
.

Information about the structure of class groups of quadratic fields can be used to

study questions about Mordell-Weil groups of elliptic curves in families of quadratic
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twists, however, additional information about the splitting and ramification data of

the quadratic number fields is often required for such applications. For E : y2 = p(x)

an elliptic curve over Q with p(x) in Weierstrass form, we define the twist of E by a

fundamental discriminant D to be the elliptic curve defined by

ED : y2D = p(x).

Note that ED is isomorphic to E over Q(
√
D), but not over Q. The Heegner hypotheses

are a set of conditions about how the rational primes of bad reduction of an elliptic

curve split in an imaginary quadratic field. The work of Kolyvagin on the Birch

and Swinnerton-Dyer Conjecture (see [Kol89a], [Kol89b]) is based on the existence of

suitable quadratic twists of elliptic curves in which the twisting discriminant satisfy

prescribed Heegner hypotheses. Combining his work with an important theorem of

Gross and Zagier, who showed that the height of the Heegner point is a multiple of

the derivative of the L-series of the elliptic curve at 1, it follows that the Birch and

Swinnerton-Dyer Conjecture holds when the analytic rank is at most 1.

Heegner points have played an important role in studying Goldfeld’s Conjecture,

which concerns the ranks of the twists as D varies over the set of fundamental dis-

criminants. Define M r
E(X) := #{D : |D| < X : ords=1L(s, ED) = r}. If E/Q is an

elliptic curve and r is 0 or 1, then

M r
E(X) ∼ X

2
, X →∞.

The best general results on Goldfeld’s Conjecture were, until recently, due to Perelli,

Pomykala, and Skinner (see [OS98] and [PP97]). For the rank 0 case, Ono and

Skinner [OS98] showed that

M0
E(X)� X

logX
. (1.2)
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For the rank 1 case, Perelli and Pomykala [PP97] showed

M1
E(X)�ε X

1−ε (1.3)

for any ε > 0.

Recently, Kriz and Li [KL17] showed for a large class of elliptic curves,

M r(X)� X

log
5
6 (X)

.

Strong results on Goldfeld’s conjecture have been obtained for special elliptic

curves by making use of the aformentioned theorem of Davenport and Heilbronn on

the 3-indivisibility of class numbers. Using the half-integral weight modular forms

established by Waldspurger and a theorem of Frey [Fre88], James [Jam98] showed

that the elliptic curve with Cremona label 14B satisfies M0
E(X)� X.

Showing that an elliptic curve has a positive proportion of twists with rank one

requires more than Waldspurger’s modular forms. Vatsal [Vat98] used a theorem of

Gross and Zagier [GZ86] to show that the elliptic curve E = X0(19) has M r
E(X)� X

for r = 0, 1. Vatsal’s argument was extended by Byeon [Bye12] to elliptic curves in

the isogeny class of an elliptic curve with a nontrivial cuspidal 3-torsion point and

square-free conductor.

The results toward Goldfeld’s conjecture described above apply to certain elliptic

curves with residually reducible mod 3 Galois representations, and rely on a refine-

ment of the theorem of Davenport and Heilbronn due to Horie and Nakagawa [HN88].

Their refinement showed that a positive proportion of imaginary quadratic fields have

trivial `-torsion and satisfy prescribed local conditions. One might hope to extend

the work of Horie and Nakagawa to a theorem on `-indivisibility of class groups for

` > 3 by refining the work of Kohnen and Ono [KO99] in an analogous way.

A barrier to refining Kohnen and Ono’s theorem is showing that the modular forms
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arising in their argument have Fourier coefficients which are supported on prescribed

arithmetic progressions and are nontrivial modulo `. This is difficult because for

many modular forms this property doesn’t hold. For example, the values of the

partition function p(n) are the Fourier coefficients for the modular form 1/η(z), and

the Ramanujan congruences tell us p(5n+4) ≡ 0 (mod 5), and so sieving the Fourier

expansion of this form can return a modular form which is trivial modulo 5. Here

η(z) := q1/24
∏∞

n=1(1− qn) (throughout we use the notation q := e2πiz) is Dedekind’s

eta-function, a weight 1/2 holomorphic modular form.

Recently, Wiles [Wil15] established the existence of imaginary quadratic fields

with prescribed local data whose class numbers are indivisible by a given odd prime

`.

Theorem. (Wiles) Let ` ≥ 5 be prime, and let S0, S+, S− be finite disjoint sets of

distinct odd primes not containing ` such that the following are true:

1. S0 does not contain any primes which are 1 (mod `)

2. S+ does not contain any primes which are −1 (mod `)

3. S− does not contain any primes which are 1 (mod `) and −1 (mod 4).

Then there exists a negative fundamental discriminant D such that ` - h(D), and

Q(
√
D) splits at every prime in S+, is inert at every prime in S−, and ramifies at

every prime in S0.

In view of the work of Horie and Nakagawa when ` = 3 [HN88], I prove a quantified

version of the theorem of Wiles for the ` > 3 case by obtaining an estimate for the

number of imaginary quadratic fields which satisfy the conclusion of Wiles’ theorem,

similar to the estimate of Kohnen and Ono.

Define the following:

MΣ :=
1

8
[Γ0(1) : Γ0(NΣ)] (1.4)
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and

NΣ := 4Q6
Σ(

∏
q∈S0∪S−∪S+

q6), (1.5)

where QΣ is equal to 1 if S− is nonempty and otherwise is the smallest odd prime not

contained in S+ ∪ S− ∪ S0 which is not congruent to 1 modulo ` and -1 modulo 4.

In Chapter 3, I prove the following estimate for the smallest discriminant divis-

ible by a given prime p lying in a certain arithmetic progression which satisfies the

conclusion of Wiles’ theorem.

Theorem 1.2.1. Suppose p > MΣ is a prime such that the following are true:

1. We have that
(
p
`

)
= 1 and p 6≡ 1 (mod `),

2. We have that p ≡ 1 (mod 8),

3. For odd primes q ≤MΣ, q 6= `, we have
(
p
q

)
= 1.

Then there is some kp ≤ pMΣ such that p - kp and ` - h(−kpp) and Q(
√
−kpp)

ramifies at all primes of S0, splits at every prime in S+, and is inert at every prime

in S−.

Combining this result with Dirichlet’s Theorem on primes in arithmetic progres-

sions, I obtained the following corollary, which can viewed as an extension of [KO99]

to allow for local conditions. To state it, let TΣ,` denote the set of all fundamental

discriminants which satisfy the conclusions of Theorem 1.2.1. That is, TΣ,` contains

the set of negative fundamental discriminants D of quadratic fields K which ramify

at all primes of S0, split at every prime in S+, and are inert at every prime in S−,

and have ` - h(D). Also, let rΣ be the number of odd primes less than MΣ, excluding

`. Then we have the following:

Corollary 1.2.2. Let ` be an odd prime. If ε > 0, then for sufficiently large X we
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have

#{−X < D < 0 : ` - h(D), D ∈ TΣ,`} ≥
(

`− 2

(`− 1)2rΣ+4
√
MΣ

− ε
) √

X

logX
.

One can apply Corollary 1.2.2 to count quadratic twists of certain elliptic curves

which have Mordell-Weil rank 0 over Q and trivial `-Selmer group. To state this result,

it is convenient to define the following subsets of primes dividing the conductor NE.

Let S̃E be the subset of odd primes dividing the conductor NE of E defined by

S̃E := {p|NE : p ≡ −1 (mod `), ` - ordp(∆E)}, (1.6)

where ∆E is the discriminant of E. Also, we set

T+ = {p|NE, ordp(jE) < 0;E/Qp is not a Tate Curve}, (1.7)

and

T− = {p|NE : p /∈ T+, p ≡ 3 (mod 4)}. (1.8)

A Tate curve E/Qp is such that E/Qp ' Q∗p/qZ for some q ∈ Qp, for details see

Appendix C of [Sil86].

Corollary 1.2.3. Suppose E/Q is an elliptic curve with odd conductor NE, and

suppose E has a Q-rational torsion point P of odd prime order `, and suppose P is

not contained in the kernel of reduction modulo `. Assume ord`(j(E)) ≥ 0. Also

assume S̃E = ∅ and neither T+ nor T− contain a prime which is 1 (mod `). Then we

have

#{−X < D < 0 : Sel`(ED) = {1}} �
√
X

logX
.
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1.3 Shifted Convolution L-functions

Let f1, f2 ∈ Sk(Γ0(N)) be cusp forms with L-series given by

L(fi, s) =
∞∑
n=1

ai(n)

ns
, i = 1, 2.

Rankin and Selberg independently defined the Rankin-Selberg convolution series L(f1⊗

f2, s) as

L(f1 ⊗ f2, s) :=
∞∑
n=1

a1(n)a2(n)

ns

for <(s) > k and by analytic continuation elsewhere. Rankin-Selberg convolution

series were first used to bound Fourier coefficients of cusp forms in the direction of

the Ramanujan conjecture, and the idea has also been important in studying the

Langlands program. Selberg [Sel65] later defined shifted convolution L-functions,

which have been important in studying the Lindelöf hypothesis.

In [HH16] Hoffstein and Hulse defined shifted convolution series as follows:

D(f1, f2, h; s) :=
∞∑
n=1

a1(n+ h)a2(n)

ns
. (1.9)

Hoffstein and Hulse established meromorphic continuation for this series and used

it to prove strong estimates for certain shifted sums (see Theorem 1.3 of [HH16]).

From these estimates a subconvexity bound for Dirichlet character twists of modular

L-functions was obtained.

Shifted convolution sums such as the ones in [HH16] arise frequently in the the-

ory of automorphic L-function and have been studied by many authors, who often

use them to prove subconvexity bounds. Duke, Friedlander, and Iwaniec [DFI93]

were the first to study bounds for shifted convolution sums of Hecke eigenvalues for

holomorphic forms and their applications to subconvexity estimates. Harcos [Har03]

extended their work to similar results for Maass forms. Works of Blomer, Harcos,
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and Michel [Blo04] [BHM07] extended the work of [Har03], proving a Burgess-type

estimate in the latter paper. Note that Blomer [Blo04] showed, as a corollary of his

main result, that if ε > 0 is fixed, and h ≤M
64
39
−ε, there exists δ > 0 such that

∑
m≤M

a1(m)a1(m+ h)�ε M
1−δ. (1.10)

Remark 1.3.1. The convergence of the sum considered in the present work (see

equation 1.11) is implied by equation (1.10). Although Blomer only states his result

for the case that f1 = f2, his argument can be extended to the case that f1 6= f2.

These results were extended using automorphic spectral decomposition by Blomer

and Harcos in [BH08] and [BH10]. In [BH08], a sum very similar to the one studied

in [HH16] and in the present work was considered. In [BH10], a Burgess-type estimate

was obtained. Maga [Magar] [Mag13] generalized the bound and Burgess-type bound

of [BH10] to automorphic GL2 twisted L-functions over general number fields (note

that Maga was not the first to obtain a Burgess-type estimate in this generality, but

the first to do so using shifted convolution sums). For an overview of these results

and their applications to quadratic forms, see [Har14].

We consider symmetrized shifted convolution series D̂(f1, f2, h; s) for f1, f2 ∈

Sk(Γ0(N)), which were first defined by Mertens and Ono [MO16]. They are defined

as follows:

D̂(f1, f2, h; s) := D(f1, f2, h; s)−D(f1, f2,−h; s). (1.11)

This symmetrized series has conditional convergence at s = k − 1.

In view of the works described above, it is natural to ask for bounds for the L-

values in h-aspect. In Chapter 4, I use the theory of harmonic Maass forms to obtain

a polynomial bound in h aspect for D̂(f1, f2, h, k − 1) as h→∞.
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Theorem 1.3.2. Let f1, f2 ∈ Sk(2(Z)). Then

|D̂(f1, f2, h, k − 1)| �f1,f2 h
k
2 , h→∞.

Remark 1.3.3. These methods would probably also work for forms of higher level,

but for simplicity I only do the level 1 case here. By making use of the full strength of

theorem of Mertens and Ono which involves the Rankin-Cohen bracket, these methods

could probably be generalized to the case that the weight of f1 is greater than the weight

of f2, rather than their weights being equal.

1.4 Multiplicative Partition Functions

A partition of a natural number n is a finite weakly decreasing sequence of positive

integers that sums to n. For k ∈ N, k > 1, let pk(n) count the k-regular partitions of

n, i.e., partitions of n for which no part is divisible by k. These generating functions

arise in many different contexts, in particular in connection with the representation

theory of the symmetric groups, Hecke algebras, and related groups and algebras; for

a long time, this has been studied both in combinatorics and number theory.

For the classical (unrestricted) partition function p(n), explicit formulae are known

due to the work of Hardy, Ramanujan and Rademacher, and more recent work of

Bruinier and Ono [BO13]. Based on a result due to Lehmer, the following inequality

was shown in a recent article by the Bessendrodt and Ono [BO16]:

For any integers a, b such that a, b > 1 and a+ b > 9, we have p(a)p(b) > p(a+ b).

Also the cases of equality were determined in [BO16]. The inequality above was

then used to study an “extended partition function”, given by defining for a partition

µ = (µ1, µ2, . . .):

p(µ) =
∏
j≥1

p(µj).
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With P (n) denoting the set of all partitions of n, the maximum

maxp(n) = max(p(µ) | µ ∈ P (n))

was determined explicitly in [BO16]; see Chapter 5 for the complete statement.

In Chapter 5, I present the results of a joint project with Christine Bessenrodt, in

which we obtain results analogous to the theorems [BO16] for pk(n). My contribution

to this project was proving a result corresponding to the inequality above for an

extension of the generating function pk(n) to a function on the set Pk(n) of all k-

regular partitions of n, defined for µ = (µ1, µ2, . . .) ∈ Pk(n) by:

pk(µ) =
∏
j≥1

pk(µj).

We then determine on which partitions the maximum

maxpk(n) = max(pk(µ) | µ ∈ Pk(n))

is attained, and we use this to give an explicit formula for the maximum.

By the work of Bessenrodt and Ono [BO16], for k > 6 nothing new happens, as

all the partitions providing the maximal values maxp(n) are already k-regular; hence

we may restrict our considerations to the cases where 2 ≤ k ≤ 6. For this case, we

first show in Theorem 1.4.1 that pk(n) satisfies a similar inequality as the one given

for p(n) above, where again we specify the corresponding bounds explicitly.

For the maximum problem, we found that the behavior is quite similar to the

one observed in [BO16], though we lose uniqueness for small k; see Theorem 5.3.2 in

Chapter 5 for the detailed results.

The key to understanding the maximal values is the following analytic inequality

for the generating function pk(n). As mentioned above, Theorem 1.4.1 is the analogue
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of a result for the ordinary partition function p(n) in recent work by Bessenrodt and

Ono [BO16].

Theorem 1.4.1. For k ∈ N, 2 ≤ k ≤ 6, we define parameters nk,mk by the following

table:

k 2 3 4 5 6

nk 3 2 2 2 2

mk 22 17 9 9 9

Then for any a, b ∈ N with a, b ≥ nk and a+ b ≥ mk we have

pk(a)pk(b) > pk(a+ b).

Furthermore, all the pairs (a, b) with 2 ≤ a ≤ b for which this inequality fails are

given in the table below.

k (a, b) with pk(a)pk(b) = pk(a+ b) (a, b) with pk(a)pk(b) < pk(a+ b)

2 (3, 3), (3, 5), (3, 6), (3, 7), (3, 8), (4, 15), (2, ∗), (3, 4), (4, 4), (4, 5), (4, 6), (4, 7),

(4, 16), (4, 17), (5, 6), (5, 7), (5, 8) (4, 8), (4, 9), (4, 10), (4, 11), (4, 12),

(4, 13), (4, 14), (5, 5)

3 (2, 2), (2, 3), (3, 3), (3, 4), (3, 5), (3, 6), (3, 11), (3, 13)

(3, 7), (3, 8), (3, 9), (3, 10)

4 (2, 2), (2, 3), (2, 5), (3, 3) (2, 4), (3, 5)

5 (2, 3), (2, 4) (2, 2), (2, 5), (3, 3), (3, 5)

6 (2, 4), (2, 5), (2, 6) (2, 2), (2, 3), (3, 3)

My main tool for deriving Theorem 1.4.1 was an analogue of a classical result

of D. H. Lehmer [Leh38]. In particular, I derive precise approximations for pk(n)

which have effectively bounded error, which we obtain using work of Hagis [Hag71].

I present these proofs in Chapter 5.
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Remark 1.4.2. Recently, Alanazi, Gagola, and Munagi [AGM17] gave a combinato-

rial proof of Theorem 1.4.1 and of the analogous partition inequality of [BO16].

1.5 Parts of partitions in given residue classes

The Circle Method, certainly one of the most important techniques in analytic number

theory, originates in the investigation of the partition function. Exploiting the modu-

larity of the generating function of partition function, Hardy and Ramanujan [HR18]

found their famous asymptotic formula for the number p(n) of partitions of a natural

number n,

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
.

Later, Rademacher [Rad37] was able to refine the method of Hardy-Ramanujan to

obtain his exact formula

p(n) =
2π

(24n− 1)
3
4

∞∑
k=1

Ak(n)

k
I 3

2

(
π
√

24n− 1

6k

)
, (1.12)

where I 3
2

is the modified Bessel function of the first kind and Ak(n) is a certain

Kloosterman sum (see Chapter 6).

In Chapter 6, I present results on the number of parts in all partitions in certain

congruence classes. These results are joint with Michael Mertens. The first work

addressing the related question of how many parts does a “generic” partition of an

integer n contain, is the seminal work by Erdős and Lehner [EL41]. To be more

precise, they showed that for large n, almost all partitions of n contain

(1 + o(1))

√
6n

2π
log n

parts.

If λ = (λ0, . . . , λk) is a partition, i.e. a non-increasing sequence of positive integers,
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we let

Tr,N(λ) = |{λj : λj ≡ r (mod N)}|. (1.13)

For a positive integer n we then define

T̂r,N(n) =
∑
|λ|=n

Tr,N(λ), (1.14)

where the summation runs over all partitions of size n. The quantity T̂r,N(n) counts

the number of parts congruent to r (mod N) in all partitions of n. For example, all

partitions of 5 are

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1),

hence T̂1,3(5) = 13 and T̂2,3(5) = 5. We will study differences between these functions

for N ≥ 3 and gcd(r,N) = 1.

A formula giving a lower bound for the number of parts of a partition of n in a

residue class r (mod d) for a proportion of partitions was proved by Dartyge, Sarkozy,

and Szalay [DSS05] for d < n
1
2
−ε. The same authors in [DSS06] proved a formula for

the expected number of parts of a partition in a residue class when the parts must

be distinct.

In [DS05a] Dartyge and Sarkozy proved an inequality that suggests that some

residue classes occur as parts in a partition more frequently than others. They showed

that for sufficiently large n and 1 ≤ r < s ≤ N , a positive proportion of the partitions

of n satisfy

Tr,N(λ)− Ts,N(λ) >
(r + s)

√
n

50rs
.

In Chapter 6, I use the Circle Method to prove an asymptotic formula for T̂r,N(n)−

T̂N−r,N(n) for gcd(r,N) = 1. I prove the following:
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Theorem 1.5.1. Let r,N be coprime positive integers with N ≥ 3 and 1 ≤ r < N
2

.

Then we have that

T̂r,N(n)− T̂N−r,N(n) =
1

2
√

2ϕ(N)N

 ∑
ψ(−1)=−1

ψ(r′)
N−1∑
c=1

ψ(c) cot
(πc
N

) e

(
π
√

2
3(n− 1

24)
)

√(
n− 1

24

)
− 1

4
√

3ϕ(N)

∑
ψ(−1)=−1

ψ(r′)L(0, ψ)
e

(
π
√

2
3(n− 1

24)
)

n− 1
24

+O

(
n2e

(
π
2

√
2
3(n− 1

24)
))

,

where ψ runs through all odd Dirichlet characters modulo N , L(s, ψ) denotes the

Dirichlet L-series associated to ψ, and r′ denotes the multiplicative inverse of r modulo

N .

Remark 1.5.2. In the proof of 1.5.1, we also give further terms of an asymptotic

expansion of T̂r,N(n)− T̂N−r,N(n).

Example 1.5.3. Let N = 3 and r = 1. Then the formula in 1.5.1 simplifies to

T̂1,3(n)− T̂2,3(n) ∼ 1

6
√

6

 1√
n− 1

24

− 1

2
√

2
(
n− 1

24

)
 e

π
√

2
3(n− 1

24).

We denote by Q(n) the quotient of the left-hand side of the above asymptotic equation

by its right-hand side. Table 1.1 contains numerical values of Q(n) for various n,

illustrating that the above asymptotic is a relatively good approximation for large n.

n 10 100 1, 000 10, 000 100, 000
Q(n) 1.00417 1.00142 1.00013 1.00001 1.00000

Table 1.1: Numerics for Theorem 1.5.1

As it turns out, the generating function of T̂r,N(n)−T̂N−r,N(n) is a weakly holomor-

phic modular form of weight 1
2

for Γ1(N) so that we can essentially follow Rademacher’s

proof for his exact formula for p(n).
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The generating function of T̂r,N(n) is not modular, but we use a variant of the

circle method due to Wright to prove the following asymptotic formula for T̂r,N(n).

This is possible due to the fact that T̂r,N(n) is monotonically increasing in n.

Theorem 1.5.4. For fixed numbers r,N ∈ N, r ≤ N , we have the asymptotic

T̂r,N(n) = eπ
√

2n
3 n−

1
2

1

4πN
√

2

[
log n− log

(
π2

6

)
− 2 (ψ

( r
N

)
+ logN

)
+O

(
n−

1
2 log n

)]
,

where ψ(z) = Γ′(z)
Γ(z)

denotes Euler’s digamma function, as n→∞.

Remark 1.5.5. Since the digamma function ψ(x) is monotonically increasing and

negative for real arguments x ≤ 1, we see at once that for 1 ≤ r < s ≤ N we have

the inequality

T̂r,N(n) ≥ T̂s,N(n)

for all sufficiently large N .

Example 1.5.6. Let N = 3. We want to illustrate the asymptotic formula from

Theorem 1.5.4 for T̂r,3(n) for r = 1, 2, 3. Let Qr(n) denote the quotient of T̂r,3(n) by

the respective main term. Table 1.2 gives the numerical values (decimal expansions

are truncated, not rounded).

n 10 100 1, 000 10, 000 100, 000
Q1(n) 0.982155 0.992241 0.997608 0.999273 0.999778
Q2(n) 1.149645 1.017114 1.003063 1.000592 1.000115
Q3(n) 1.792248 1.067095 1.011771 1.002470 1.000563

Table 1.2: Numerics for Theorem 1.5.4
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Chapter 2

Background

This chapter introduces objects which are vital tools for the proofs presented in

the subsequent chapters. First, we introduce classical modular forms and some of

their important properties, and then we introduce harmonic Maass forms. As an

example of a harmonic Maass form, in Section 2.3 we introduce a harmonic Maass

form discovered by Zagier whose Fourier coefficients are Hurwitz class numbers. This

form will be important in Chapter 3.

We present only a few of the important and interesting properties and examples

of these functions. The reader is encouraged to see other sources for more complete

treatments of these theories, including [Ono00] or [DS05b] for modular forms, and

[BFOR17] or [BF04] for harmonic Maass forms.

2.1 Modular Forms

Famous for their important role in proving Fermat’s Last Theorem in the 1990s,

modular forms are connected to many areas of mathematics, including number theory,

representation theory, combinatorics, and mathematical physics. A recent example of

their relevance in mathematics is Viazovska’s solution to the sphere packing problem

in R8 [Via17] and its extension by several authors to the dimension 24 sphere packing
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problem [CKM+17].

Modular forms are holomorphic functions on the upper-half plane which transform

nicely under discrete groups of isometries of the hyperbolic plane. Every modular

form has a weight, and the set of modular forms of the same weight satisfying certain

nice asymptotic properties form finite-dimensional vector spaces. Modular forms

are periodic, and their Fourier coefficients are often full of arithmetic meaning. The

following sections make these ideas precise. In Section 2.1.1, the important subgroups

of SL2(R) are introduced. In Section 2.1.2, modular forms are defined and a few of

their important properties are stated. In Section 2.1.3, a few well-known examples of

modular forms are presented.

2.1.1 The Modular Group

Here, we introduce some important matrix groups and state some of their properties.

The modular group and its finite-indexed subgroups arise naturally in the study of

geometry of the Poincaré half plane model for the hyperbolic plane H as discrete

subgroups of the group of isometries of H. While this may seem far removed from

number theory at first glance, these groups give rise to moduli spaces for complex

elliptic curves and are foundational objects in the theory of modular forms.

Throughout the rest of this thesis, let H := {x+ iy ∈ C : y > 0} denote the upper

half plane. The group SL2(R) of 2 × 2 determinant one matrices with real entries

acts on H by Möbius transformation. For γ = ( a bc d ) ∈ SL2(R), we have the following

action on H:

γz =
az + b

cz + d
.

These transformations act isometrically on H with with respect to the Poincaré

metric, which is given by

(ds)2 := y−2
(
(dx)2 + (dy)2

)
.
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With respect to this metric, H is a Riemannian manifold. Its geodesics are given

by half circles centered on the real line and the vertical lines (Euclidean lines which

are orthogonal to R).

The modular group SL2(Z) is the subgroup of SL2(R) consisting of two by two

determinant one matrices with integer entries. This group has many nice properties.

The modular group (and any finite index subgroup of the modular group) acts on H in

a nice way, in particular, it acts discontinuously in that for any x ∈ H, the orbit of x

under SL2(Z) has no limit points. Consequently, one can find a set of representatives

for the orbits of H under the SL2(Z) action which is finite in volume and is actually

polygonal (the edges are geodesics with respect to the hyperbolic metric, not the

euclidean metric). One can use these facts and a few other properties to show that

the quotient SL2(Z)\H when compactified is a genus zero Riemann surface. Its points

parametrize the isomorphism classes of complex elliptic curves via τ → C/{Z+ τZ}.

The modular group has a family of important subgroups known as congruence

subgroups, which also satisfy the interesting properties discussed in the last paragraph.

The principal congruence subgroup of level N , where N ≥ 1, is given by

Γ(N) := {( a bc d ) ∈ SL2(Z) : ( a bc d ) ≡ ( 1 0
0 1 ) (mod N)}.

More generally, a congruence subgroup of level N is a subgroup of SL2(Z) that

contains Γ(N). Here are two important families of level N congruence subgroups:

Γ1(N) := {( a bc d ) ∈ SL2(Z) : ( a bc d ) ≡ ( 1 ∗
0 1 ) (mod N)},

and

Γ0(N) := {( a bc d ) ∈ SL2(Z) : ( a bc d ) ≡ ( ∗ ∗0 ∗ ) (mod N)}.

The action of a congruence subgroup on H extends to an action on Q∪{i∞}. The

orbit classes of Q∪ {i∞} under the action of a congruence subgroup Γ are called the
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cusps of Γ. For example, SL2(Z) has just a single cusp i∞, because every reduced

rational −d
c

is mapped to i∞ by ( a bc d ).

Similar to the modular group, the compactifications of the quotients Γ\H are

Riemann surfaces (although the genus is rarely zero). It turns out that these quotients

are also algebraic curves whose points parametrize isomorphism classes of elliptic

curves enhanced with torsion data.

Congruence subgroups and cusps are needed to define modular forms, which we’ll

do in the next section.

2.1.2 What is a modular form?

For each integer k and each γ = ( a bc d ) ∈ SL2(Z), we define the operator |kγ on smooth

functions f : H→ C by

(f |kγ)(z) := (cz + d)−kf(γz).

Let k be an integer, and let Γ be a congruence subgroup.

Definition 2.1.1. Let f : H → C be holomorphic. Then f is a weight k modular

form with respect to Γ if the following are true:

(i) f is weight k invariant under Γ, that is, for all γ ∈ Γ, (f |kγ) = f .

(ii) f(τ) has at most polynomial growth in Im(τ) as τ → i∞, and analogous

conditions hold at the other cusps of Γ.

When k is an even integer, condition (i) basically says that we can interpret a

modular form of weight k as an order k/2 differential form on H/SL2(Z).

If Γ contains Γ(N), then we say that a modular form with respect to Γ has level

N . Since Γ(N) always contains ( 1 N
0 1 ), condition (i) ensures that all modular forms

are periodic. The second condition then ensures that f has a Fourier expansion of
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the form
∑∞

n=0 anq
n/N , and (f |kγ) for γ ∈ SL2(Z) have similar expansions, where

through q := e2πiz.

A modular form that vanishes at every cusp of Γ is called a cusp form. Cusp

forms are an important family of examples of these functions.

We let Mk(Γ) (resp. Sk(Γ)) denote the complex vector space of modular (resp.

cusp) forms of weight k with respect to Γ. The spaces Mk(Γ) and Sk(Γ) are both

finite dimensional for all congruence subgroups.

The spaces Mk(Γ1(N)) each admit a useful decomposition as a direct sum of

subspaces. Let χ be a character modulo N . We let Mk(Γ0(N), χ) denote the space

of holomorphic functions f : H→ C which satisfy (f |kγ) = χ(d)f for all γ = ( a bc d ) ∈

Γ0(N) as well as condition (ii) from the definition above. Then we have

Mk(Γ1(N)) = ⊕χMk(Γ0(N), χ),

where the sum is over all Dirichlet characters moduloN . The eigenspacesMk(Γ0(N), χ)

will be important in Chapters 3 and 6, where we will use them to construct modular

forms with Fourier coefficients supported on specific residue classes.

Note that while we only define integral weight modular forms here, the definitions

above can be modified to allow for half-integer values of k. Many important modular

forms are of half integral weight, including the generating function for the partition

numbers p(n).

Another space that is important is the space of weakly holomorphic modular forms,

which is denoted M !
k(Γ). The difference between weakly holomorphic modular forms

and ordinary modular forms is that weakly holomorphic modular forms are allowed

to have poles at the cusps of Γ. The vector space M !
k(Γ) is infinite dimensional.

Remarks on the structure of Mk(Γ): The remainder of this subsection is not

essential for understanding this thesis, but is included to provide a more complete
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summary of the theory of modular forms.

The weight k cusp forms are endowed with a Hilbert space structure given by

the Petersson inner product, < f, g >Petersson, which can be viewed as a hyperbolic

analogue of the L2(R) inner product. While < f, g >Petersson does not extend to an

inner product on all of Mk(Γ), it is well defined if the product fg vanishes at all

cusps. We can therefore decompose Mk(Γ) as

Mk(Γ) = Sk(Γ)⊥ ⊕ Sk(Γ).

The orthogonal complement of Sk(Γ) consists of the Eisenstein series ofMk(Γ). When

k ≥ 3, the space of Eisenstein series can be described explicitly by constructing, for

each cusp α of Γ, a modular form which is nonvanishing at α and vanishes at all

other cusps. When k = 2, this construction produces functions which do not satisfy

the modular transformation law (it turns out that they are quasi-modular), and the

weight two Eisenstein series are obtained by taking the linear combinations of these

forms for which the sum of the constant terms in the Fourier expansions is zero. There

is also an analogous construction of Eisenstein series when k = 1. The weight one

Eisenstein series are used extensively in Chapter 6.

Bases for Sk(Γ) are less straightforward to construct. One can quickly see that,

as Γ(dN) ⊆ Γ(N), the space Sk(Γ) can be decomposed as the direct sum of the space

of old forms of cusp forms of lower level, and the space of newforms Sk(Γ0(N))new.

The Hecke operators Tn are a family of commuting operators on Mk(Γ) that act

on Fourier series in a nice way. It turns out that the Hecke operators form an algebra

of linear operators acting on Mk(Γ) which are fundamental for understanding many

of the arithmetic properties of modular forms, such as the famous Ramanujan Con-

gruences for p(n). The Hecke operators are self-adjoint with respect to the Petersson

inner product on the space of newforms, and it follows that Sk(Γ0(N))new has a basis
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of simultaneous eigenforms for the Hecke operators.

A typical feature of modular forms is for their Fourier coefficients to encode various

kinds of arithmetically important information. In the next subsection, we give some

examples of this.

2.1.3 Examples

Here, we give three examples of classical modular forms.

Modular forms can often be constructed by averaging some function over the

action of modular group. Here is the simplest example:

Ek(z) =
1

2ζ(k)

∑
(m,n)∈Z2 (0,0)

1

(mz + n)k
.

For even k > 2, this is a modular form of weight k with respect to the full modular

group. Its Fourier series is given as follows:

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

where Bk is the kth Bernoulli number and σk−1(n) is the well known sum of divisors

function given by:

σk−1(n) :=
∑
d|n

dk−1.

An important half weight modular form is the Jacobi theta function, which is

defined by

Θ(z) :=
∑
n∈Z

qn
2

.

This is a weight 1/2 modular form with respect to Γ0(4). By taking its cube, we

obtain the weight 3/2 modular form Θ(z)3 =:
∑∞

n=0 r(n)qn. This modular form is
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intimately tied to class numbers for imaginary quadratic fields. It is well known that

the r(n) are given by Hurwitz class numbers H(n) (see Section 2.3).

Theorem 2.1.2 (Gauss).

r(n) =



12 h(−m)
w(−m)

∑
d|f µ(d)

(−m
d

)
σ1(f

d
) n ≡ 1, 2 (mod 4)

24 h(−m)
w(−m)

∑
d|f µ(d)

(−m
d

)
σ1(f

d
) n ≡ 3 (mod 8)

r(n/4) n ≡ 0 (mod 4)

0 n ≡ 7 (mod 8)

I conclude the chapter with a famous example arising in the study of partitions.

Let η(z) be defined by

η(z) = q1/24

∞∏
n=1

(1− qn).

This is a weight 1
2

modular form on SL2(Z) and consequently 1/η(z) is a weight −1
2

modular form on SL2(Z). It is easily seen that q1/24/η(z) is the generating function

for the partition numbers p(n).

The proofs in Chapter 6 rely on the Circle Method. We record here, for later

use, the explicit transformation formula for η(z), in a form that is convenient for

ascertaining the behavior of η near a cusp h
k
. Assuming (h, k) = 1, there is an

element of SL2(Z given by αh,k :=
(
−h hH+1

k
−k H

)
.

For τ ′ = H
k

+ i
z

and τ = h
k

+ iz
k2 , where z is complex, we have α−1

h,k(τ) = τ ′.

Theorem 2.1.3. Let h, k,H, τ, τ ′ be as described above. Then we have

q
1
24

η(τ)
=
e2πi τ

′
24

η(τ ′)

(z
k

) 1
2
e−

πz
12k2 + π

12z
+πis(−H,k),
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where s(h, k) denotes the Dedekind sum,

s(h, k) =
k−1∑
r=1

r

k

(
hr

k
−
⌊hr
k

⌋
− 1

2

)
. (2.1)

See Theorem 5.1 in [Apo90] for a proof.

2.2 Harmonic Maass Forms

A harmonic Maass form is a certain kind of nonholomorphic modular form that has

a natural decomposition into a holomorphic and nonholomorphic part. The holomor-

phic part of a harmonic Maass form is called a mock modular form, and every mock

modular form naturally has a cusp form associated to it called its shadow. In this sec-

tion, we define level 1 harmonic Maass forms (harmonic Maass forms of level greater

than 1 are defined as the natural generalization of the definition given here) and state

some of their important properties. For more on mock modular forms and harmonic

Maass forms, see references such as [BF04], [Ono09], and [BFOR17]. Throughout,

the variable z lies in H with z = x+ iy, where x, y ∈ R.

The weight k hyperbolic Laplacian operator ∆k is defined as follows:

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

Bruinier and Funke in [BF04] first defined harmonic weak Maass forms.

Definition 2.2.1. Let F : H→ C be real-analytic, and assume that k ≥ 2 is an even

integer. Then F is a weight 2− k harmonic weak Maass form if the following hold:

(i) F is weight 2 − k invariant under SL2(Z), that is, for all γ ∈ SL2(Z),

(F |2−kγ) = F .

(ii) The weight 2−k hyperbolic Laplacian operator annihilates F , that is, ∆2−kF =

0.
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(iii) There is a polynomial PF (q) ∈ C[q−1] such that F (z) − PF (q) = O(e−εy) as

y →∞.

We let H2−k denote the vector space of weight 2− k harmonic weak Maass forms.

For convenience, we refer to harmonic weak Maass forms as harmonic Maass forms,

and omit the word “weak”.

The following fact is straightforward from the definition.

Theorem 2.2.2. Every F ∈ H2−k can be written in the following way:

F (z) = F+(z) +
(4πy)1−k

k − 1
c0(y) + F−(z),

where F+ and F− have Fourier expansions as follows, for some m0 ∈ Z:

F+(z) =
∞∑

n=m0

c+
F (n)qn,

and

F−(τ) =
∑
n>0

c−F (n)Γ(1− k, 4πny)q−n.

In the theorem, F+ is called the holomorphic part of F , and (4πy)1−k

k−1
c0(y) +F−(τ)

is called the nonholomorphic part of F . When the nonholomorphic part is nonzero,

F+ is called a mock modular form.

The following theorem, due to Bruinier and Funke [BF04], explains why we con-

jugate the coefficients of the nonholomorphic part in Theorem 2.2.2.

Theorem 2.2.3 (Bruinier, Funke). The operator ξ2−k : H2−k → Sk given by ξ2−k =

2iy2−k ∂
∂τ

is well defined and surjective. Moreover, for F ∈ H2−k,

ξ2−k(F ) = −(4π)k−1
∑
n>0

c−F (n)nk−1qn ∈ Sk,

where c−F (n) and n0 are as in Theorem 2.2.2.



29

For any F ∈ H2−k, the cusp form (−4π)k−1
∑∞

n=n0
c−F (n)qn ∈ Sk is called the

shadow of the mock modular form F+.

2.3 Hurwitz Eisenstein Series

In this section, we give an example of a harmonic Maass form that will be useful in

the next chapter.

For nonzero integers D, we let h(D) be the class number of Q(
√
D). In other

words, h(D) is the size of the index of the group of fractional ideals for OQ(
√
D)

over its subgroup of principal fractional ideals. Recall that h(D) = 1 precisely when

OQ(
√
D) is a Unique Factorization Domain.

The class numbers h(D) count classes of binary quadratic forms with discriminant

D up to matrix equivalence. The Hurwitz class numbers H(n) come from counting

equivalence classes of binary quadratic forms inversely weighted by the size of their

stabilizer in SL2(Z). Specifically, we define H(n) as follows for positive integers n.

Suppose −n = Df 2, where D < 0 is a square-free fundamental discriminant.

H(n) =
h(D)

w(D)

∑
d|f

µ(d)

(
D

d

)
σ1(

f

d
),

where w(−n) is half the number of units in the integer ring of Q(
√
−n), that is

w(−m) =


4 m = 1

3 m = 3

2 m = 2, n > 3

Let H(z) be defined by

H(z) := − 1

12
+
∞∑
n=1

H(n)qn +
1

4
√
π

∞∑
n=1

Γ(−1

2
, 4πn2y)q−n

2

+
1

8π
√
y
.
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Zagier showed that H(z) is a harmonic Maass form [Zag75].

Theorem 2.3.1. (Zagier) H(z) is a weight 3
2

harmonic Maass form of moderate

growth on Γ0(4). Moreover, ξ3/2(H) = − 1
16π

Θ.

By “moderate growth”, I mean that instead of (iii) in the definition of harmonic

Maass form, we have H(z) = O(yr) as y → ∞ for some real value r, and analogous

conditions hold at all cusps. We have to modify condition (iii) due to the presence of

the third term in the definition of H(z). Harmonic Maass forms which satisfy certain

weakened or altered growth conditions have shadows which are modular forms but

are not cusp forms, as we see in Theorem 2.3.1.

In the next chapter, I show how one can use H(z) to construct modular forms

whose coefficients are the Hurwitz class number for fields with desired splitting con-

ditions.
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Chapter 3

Indivisibility of Class Numbers of

Imaginary Quadratic Fields

This chapter is devoted to the proof of Theorem 1.2.1, Corollary 1.2.2, and Corollary

1.2.3.

Theorem 1.2.1 gives a bound on the smallest discriminant satisfying Wiles’ the-

orem. The proof relies on Zagier’s weight 3/2 harmonic Maass form H(z), which is

discussed in Chapter 2.3. The idea is to take linear combinations of twists of H(z)

to construct a modular form that is only supported on discriminants satisfying the

desired local data. Then we use the theory of modular forms to bound the smallest

Fourier coefficient that is indivisible by p.

Corollary 1.2.2 follows from using Dirichlet’s Theorem on primes in arithmetic

progression to count discriminants given by Theorem 1.2.1. Specifically, one obtains

an imaginary quadratic field whose discriminant is divisible by p for every p in a

certain arithmetic progression.

Corollary 1.2.3 follows from using the primes of bad reduction of an elliptic curve

to generate the local conditions, and applying Corollary 1.2.2. A theorem of Frey

relates the indivisibility of the class numbers to that of Selmer groups of quadratic
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twists.

Remark on the necessity of harmonic Maass forms: The Θ3 modular form was

used in most modular forms results on indivisibility of class numbers, such as [KO99].

However, it is insufficient for our result, because its Fourier coefficients are not sup-

ported on all arithmetic progressions. For the square free n with n ≡ 7 (mod 8), the

class numbers h(−n) are not represented. We do not have this problem when working

with H(z), because its Fourier coefficients represent all class numbers.

3.1 Sieving Zagier’s Harmonic Maass Form

We require the following result, which shows that we can define holomorphic modular

forms whose coefficients are supported on fundamental discriminants satisfying local

conditions and are given by class numbers. Given sets S+, S−, S0 as in Theorem 1.2.1,

we let AΣ be defined as the set of positive integers n such that the following hold:

1. For p ∈ S+ ∪ S− ∪ S−, p2 - n.

2. Q(
√
−n) splits at the primes in S+, ramifies at the primes in S0, and is inert at

the primes in S−.

Lemma 3.1.1. Let S+, S−, S0 be sets as in Theorem 1.2.1, and assume that S− is

nonempty.

Then there is a weight 3
2

modular form HΣ(z) =
∑∞

n=1 a(n)qn on Γ0(NΣ), where

Nσ is as in equation (1.5), such that

a(n) =


H(n) n ∈ AΣ

0 otherwise

The idea is to take combinations of twists of Zagier’s function H(z) to obtain

holomorphic modular form. The key properties of H(z) that allow us to do this are
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1. The Fourier expansion of the non-holomorphic part is supported on terms of the

form q−n
2
, which allows us to use twisting to annihilate the non-holomorphic

part of H(z), and

2. H(z) has moderate growth at poles, which ensures that any linear combina-

tion of twists of H(z) will not have any exponential singularities, as a weakly

holomorphic modular form would.

For χ, ψ Dirichlet characters modulom andN , the twist of G(z) :=
∑∞

n=0 a(n, y)qn ∈

Hk(Γ0(N), ψ) by χ is given by

Gχ(z) =
∑
n∈Z

χ(n)a(n, y)qn.

If d is a positive integer, the operators U(d), V (d) are defined, as one does when

working with holomorphic modular forms, by

(G|U(d))(z) :=
∑
n∈Z

a(dn, y)qn

and

(G|V (d))(z) :=
∞∑
n∈Z

a(n, y)qdn.

It is well known that a twist of a modular form is itself a modular form, for

a proof, see Proposition 17 on page 127 of [Kob93]. The same proof shows that

twists of harmonic Maass forms are also harmonic Maass forms. Specifically, for

G(z) ∈ Hmg

k+ 1
2

(Γ0(4N), ψ), the form Gχ(z) belongs to Hmg

k+ 1
2

(Γ0(4Nm2), ψ · χ2), and

(G|V (d)) and (G|U(d)) lie in Hmg

k+ 1
2

(Γ0(4Nd), ψ ·
(

4d
·

)
).

Proof of Lemma 3.1.1: First, we take a combination of twists for which the nonholo-
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morphic part of H(z) is annihilated. Let p be in S−. We have

f(z) :=
1

2
(H(z)−

(
−1

p

)
H( ·p)

(z))

=
∞∑
n=1

1

2

(
1−

(
−n
p

))
H(n)qn +

1

16
√
π

∑
p|n

Γ(−1

2
, 4πn2y)q−n

2

.

Note that the coefficient of qn in the holomorphic part of f(z)is 1
2
H(n) if p|n,

H(n) if (−n
p

) = −1, and 0 if
(
−n
p

)
= 1. The nonholomorphic part of f is supported

on multiples of p, because twisting the nonholomorphic part by the Legendre symbol

annihilates those coefficients. To eliminate what remains of the nonholomorphic part

and the multiples of p in the holomorphic part, we take the twist f
( ·p)

2 .

Repeating the above steps for every p ∈ S+ ∪ S−, we obtain a form which is

supported on n for which the primes in S+ ∪ S− split or are inert in Q(
√
−n) as

desired.

To obtain a modular form which is supported on coefficients which are multiples

of the primes in S0, let d be the product of the primes in S0. We apply the U(d),

operator, then twist by
(
−n
q

)2

for each q ∈ S0, and then apply the V (d) operator.

3.2 Proof of Theorem 1.1

The proof of Theorem 1.2.1 requires a well known result of Sturm [Stu80], which

says that if a modular form with integer Fourier coefficients is nonvanishing modulo

a prime `, then there is a bound on the index of the first coefficient which is nonzero

modulo `. To state his theorem, for a rational prime ` and a modular form f(z) =∑∞
n=0 a(n)qn ∈Mk(Γ0(N), χ) with coefficients in Z, we define

ord`(f) := minn{n : ` - a(n)},
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and we say ord`(f) :=∞ if `|a(n) for all n.

Theorem 3.2.1 (Sturm). For a modular form f(z) =
∑∞

n=0 a(n)qn ∈ Mk(Γ0(N), χ)

with integer Fourier coefficients, if

ord`(f) >
k

12
[Γ0(1) : Γ0(N)],

then ord`(f) =∞.

Remark 3.2.2. Note that Sturm’s theorem was originally only formulated for holo-

morphic modular forms of integer weight, but the proof carries over to half-integral

weight modular forms by raising half-integral weight forms to even powers.

Proof of Theorem 1.2.1: Let HΣ(z) be the modular form from Lemma 3.1.1 for S+,

S−, and S0, replacing S− with {QΣ} if S− = ∅. Let

F(z) :=
(
HΣ|U(p)

)
− p

(
HΣ|V (p)

)
.

By Lemma 3.1.1, the form F(z) is a modular form of weight 3
2

on Γ0(pNΣ). By

Theorem 1 of Wiles [Wil15], F(z) has a Fourier coefficient which is indivisible by `.

Therefore Sturm’s Theorem tells us that we have

np := ord`(F) ≤ 3

24
[Γ0(1) : Γ0(pNΣ)].

It follows from a well-known formula for [Γ0(1) : Γ0(N)] (see for example [Ono00])

that we have

np ≤MΣ(p+ 1).

We have that np must be of the form f 2
pkp, with kp square free. It follows from

conditions (1)-(3) in Theorem 1.2.1 that for all n ≤ MΣ, the npth Fourier coefficient

of F(z) is divisible by `, so p - kp. Therefore either −pkp or −4pkp is a fundamental
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discriminant for an imaginary quadratic field satisfying the desired local conditions

and whose class number is indivisible by `.

3.3 Proof of Theorem 1.2

Note that at least half of the values kpp from the main theorem must be distinct as

p varies over the primes greater than MΣ satisfying the conditions of Theorem 1.2.1.

If instead we had kpp = kqq = krr with p < q < r, we would have qr|kp, which would

violate the bound on kp.

To count the fundamental discriminants down to −X which satisfy the desired

conditions, it suffices to count the primes which satisfy the conditions of Theorem

1.2.1 for which the fundamental discriminant from Theorem 1.2.1 is greater than −X.

The primes p that satisfy the third condition of Theorem 1.2.1 are those for

which for each q up to MΣ, p lies one of q−1
2

arithmetic progressions modulo q,

which correspond to p being a quadratic residue modulo q. Similarly, the other two

conditions amount to restricting p to certain arithmetic progressions modulo 2 and `.

For the fundamental discriminant corresponding to p obtained from Theorem 1.2.1

to be guaranteed to be greater than −X, it suffices to require

4pMΣ(p+ 1) ≤ X.

It follows from Dirichlet’s Theorem for primes in arithmetic progressions that

given ε > 0 for sufficiently large X, we have

#{−X < D < 0 : ` - h(D), D ∈ TΣ} ≥
(
`− 2

`− 1

1

2rΣ+4
√
MΣ

− ε
) √

X

logX
.
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3.4 Twists of Elliptic Curves

First we recall a theorem of Frey [Fre88], which gives a relationship between Selmer

groups of quadratic twists of certain elliptic curves E and the ideal class group of

the quadratic field associated with the twisting discriminant. For the quadratic fields

Q(
√
D) appearing in Frey’s result, all of the primes of bad reduction of E factor

(i.e. split, ramify, or remain inert) in OQ(
√
D) in a prescribed way depending on their

reduction type.

To state Frey’s conditions precisely, we must define Tate curves, which are a class

of elliptic curves over local fields. The local fields we will refer to are simply the p-adic

completions of Q, denoted by Qp. Tate curves admit a uniformizing map (which here

means a complex analytic isomorphism of Riemann surfaces that also preserves the

group structure) that is analogous to one admitted by all elliptic curves over C. We

recall the analogous facts for elliptic curves over C in the next paragraph.

Every elliptic curve over C admits a uniformization E(C) ∼= C/Λ, where Λ is an

additive discrete subgroup of C which can be taken to be of the form Λ = Z+τZ, with

τ ∈ H. The map z → e2πiz applied to C/Λ yields the uniformization E(C) ∼= C/e2πiτZ,

where C∗ is the multiplicative subgroup of C and e2πiτZ denotes the subgroup of C∗

generated by e2πiτ .

Now let K be a local field which is complete with respect to a discrete valuation

v. A Tate curve over K is an elliptic curve E over K which admits a uniformization

K∗/qZ ∼= E(K) for some q ∈ K∗with |q|v < 1, where qZ is the subgroup of K∗ (the

multiplicative subgroup of K) generated by q. A Weierstrass form and uniformizing

map for such curves can be defined explicitly by series expansions in terms of q. The j-

invariant and discriminant ∆ are given by 1
q
+744+196884q+· · · and q

∏
n≥1(1−qn)24

respectively, which are identical to the formulas in the complex case. See Appendix

C.14 of [Sil86] for a much more detailed introduction to Tate curves.

Let E be an elliptic curve over Q with conductor NE, j-invariant jE, and discrim-
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inant ∆E, and suppose that E contains a point P of odd prime order `. We let SE

denote the set of primes q dividing NE such that q ≡ −1 (mod `), and vq(∆E) 6≡ 0

(mod `), and vq(jE) < 0. Let Sel`(ED,Q)` denote the elements of order ` in the

Selmer group of ED.

Theorem 3.4.1 (Frey). Suppose E/Q is an elliptic curve with a Q-rational torsion

point P of odd prime order `, and suppose P is not contained in the kernel of reduction

modulo `. Suppose S̃E = ∅. Suppose that D is a negative square-free integer coprime

to `NE and satisfies

1. If 2|NE then d ≡ 3 (mod 4)

2. If ord`(j(E)) < 0, then
(
D
`

)
= −1,

3. If p|NE is an odd prime, then

(
d

p

)
=


−1 if ordp(jE) ≥ 0

−1 if ordp(jE) < 0 and E/Qp is a Tate curve

1 otherwise

Then Sel`(ED,Q)p is nontrivial if and only if `|h(D).

Now to prove the corollary, note that the twists ED have trivial ` torsion over Q.

We set

S+ = {p|NE, ordp(jE) < 0 : E/Qp is not a Tate Curve},

and

S− = {p|NE : p /∈ S+},

and S0 = ∅. It follows from Corollary 1.2.2 that there are at least O(
√
X

logX
) funda-

mental discriminants down to −X which satisfy Frey’s conditions, and so the result

follows from Theorem 3.4.1.
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3.5 Examples

Here we illustrate Theorem 1.2.1 and Corollary 1.2.3.

Example 3.5.1. Suppose that ` = 5 and that the sets are S+ = {3}, S− = S0 = ∅.

The smallest prime which satisfies the conditions of Theorem 1.2.1 is 394969. The

smallest discriminant bounded by Theorem 1.2.1 is a multiple of this prime, however,

it is clear that one shouldn’t need to look at numbers that large to find imaginary

quadratic fields which split at 3 and have a class number which is not divisible by 5.

By direct calculation, we see that for the primes p less than 100, for all but 79 we have

5 - h(−p), out of which 11 of the 21 corresponding imaginary quadratic fields split at

3. This discrepancy between the bounds predicted by Theorem 1.2.1 and the actual

fundamental discriminants we observe is typical of these theorems, and it illustrates

the main obstacles which remain in attacking the original Cohen-Lenstra conjectures.

Example 3.5.2. Let E : y2 + y = x3 − x2 + 20x − 8 be the elliptic curve with

Cremona label 203.a1. Then E(Q) ' Z/5Z. The conductor of E is 7 · 29. It follows

from Corollary 1.2.3 that we have

#{−X < D < 0 : rk(ED) = 0, Sel5(ED) = {1}} �
√
X

logX
.
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Chapter 4

Shifted Convolution L-functions

The goal of this chapter is to prove Theorem 1.3.2.

The main ingredients of the proof, in addition to many basic facts about har-

monic Maass forms which are discussed in Chapter 2, are a theorem of Mertens and

Ono [MO16], which says that the generating function for the symmetrized shifted

convolution L-values is nearly the product of a mock modular and modular form, and

the Eichler-Shimura isomorphism theorem which we use to describe the obstruction

to modularity for our generating functions.

This chapter is organized into three subsections. The first subsection describes the

theory of period polynomials and the Eichler-Shimura theorem, the second describes

the work of Mertens and Ono [MO16], and the third proves Theorem 1.3.2.

4.1 Period Functions

We require some facts about period polynomials and their relationship to the ob-

structions to modularity for mock modular forms. We first recall the definition and

important properties of periods polynomials.

Definition 4.1.1 (Period Polynomial). Let f ∈ Sk(Γ0(N)) be a cusp form where
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k ≥ 2 is even. We define the nth period of f by

rn(f) :=

∫ ∞
0

f(it)tndt.

The period polynomial of f is defined by

r(f ; z) := r+(f, z) + ir−(f, z),

where

r−(f, z) =
∑

0≤n≤k−2
2-n

(−1)
n−1

2

(
k − 2

n

)
rn(f)zk−2−n

and

r+(f, z) =
∑

0≤n≤k−2
2|n

(−1)
n
2

(
k − 2

n

)
rn(f)zk−2−n.

Remark 4.1.2. One can show that L(f, n + 1) = (2π)n+1

n!
rn(f), where L(f, s) is the

L-series for f .

The Eichler-Shimura isomorphism theorem and the work of Kohnen and Zagier

[KZ84] imply that the maps r+ and r− define correspondences between Sk(Γ0(N))

and explicitly defined subspaces of the vector space of degree k− 2 polynomials with

coefficients in C. These important bijections can be used to efficiently compute spaces

of cusp forms.

Bringmann, Guerzhoy, Kent, and Ono in [BGKO13] connected period polynomi-

als to the theory of harmonic Maass forms. They showed that the obstruction to

modularity for a mock modular form can be described in terms of the periods of its

shadow.

Definition 4.1.3 (Period Function). Let F+(τ) be a mock modular form of weight

2 − k with respect to SL2(Z), and γ ∈ SL2(Z). The period function of F+ with
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respect to γ is defined as follows:

P(F+, γ; τ) :=
(4π)k−1

Γ(k − 1)
(F+ − F+|2−kγ))(τ).

Theorem 4.1.4 (Bringmann, Guerzhoy, Kent, Ono). Let S = ( 0 −1
1 0 ). Then we have

that the period function with respect to S is given by

P(F+, S; τ) =
k−2∑
n=0

L(f, n+ 1)

(k − 2− n)!
(2πiτ)k−2−n.

We require a generalization of this result due to Bringmann, Fricke, and Kent

in [BFK14]. Among other results, they proved that the period functions correspond-

ing to other modular transformations are also polynomials whose coefficients are

essentially values of additive twists of L(f, s).

Let L(f, e−2πid/c; s) be defined for c 6= 0, c, d ∈ Z by

L(f, e−2πid/c, s) :=
∞∑
n=1

e−2πidn/can
ns

for <(s) sufficiently large and by analytic continuation elsewhere. The analytic con-

tinuation is given by

L(f, e−2πid/c; s) =
(2π)s

Γ(s)

∫ ∞
0

f

(
iy − d

c

)
dy.

Theorem 4.1.5 (Bringmann, Fricke, Kent). Let γ = ( a bc d ) ∈ SL2(Z) satisfy c 6= 0.

Then

P(F+, γ, z) =
k−2∑
n=0

L(f, e−2πid/c, n+ 1)

(k − 2− n)!
(−2πi)k−2−n

(
cz + d

c

)k−2−n

. (4.1)
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4.2 Work of Mertens and Ono

Mertens and Ono related the values D̂(f1, f2, h; k−1) to the theory of harmonic Maass

forms by studying the generating function

L(f1, f2; τ) :=
∞∑
h=1

D̂(f1, f2, h; k − 1)qh,

where q = e2πiτ for τ ∈ H. They proved that L(f1, f2; τ) is the sum of a a weakly

holomorphic modular or quasimodular form and the product of a mock modular form

and a cusp form.

To state their theorem, we need to define a few spaces. Let M̃k(Γ0(N)) be as

follows for even k ≥ 2:

M̃k(Γ0(N)) :=

 Mk(Γ0(N)) if k ≥ 4

M2(Γ0(N))⊕ CE2 if k = 2

 (4.2)

Moreover, let M̃ !
k(Γ0(N)) be the extension of M̃k(Γ0(N)) by the weight k weakly

holomorphic modular forms on Γ0(N). A weakly holomorphic modular form is a

meromorphic modular form whose poles are supported at cusps.

We say that a harmonic Maass form F is good for a cusp form f if f is the shadow

of F+ and F (τ)f(τ) is bounded at all cusps. Note that there are cusp forms f for

which there is no mock modular form that is good for f .

Theorem 4.2.1. For f1, f2 ∈ Sk(Γ0(N)), we have

L(f1, f2; τ) = − 1

(k − 1)!
M+

f1
(τ)f2(τ) + F (τ), (4.3)

where M+
f1

is a mock modular form whose shadow is f1 and F (τ) ∈ M̃ !
2(Γ0(N)). If

Mf1 is good for f2, then F ∈ M̃2(Γ0(N)).
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Remark 4.2.2. They actually prove a more general result for when f1 and f2 are cusp

forms of weight k1 and k2 respectively with k1 ≥ k2. In this case, the formula involves

the Rankin-Cohen bracket [M+
f1

(τ), f2(τ)] k1−k2
2

, and the form F lies in M̃ !
k1−k2

2

(Γ0(N)).

The form F (τ) in Theorem 4.2.1 can be described as the image of Mf1f2 under

a modified holomorphic projection operator. Recall that if f is a smooth (that is,

analytic in the variables Re(τ) and Im(τ), and not necessarily holomorphic) weight

k ≥ 2 modular form for Γ0(N) with moderate growth at cusps, then its holormorphic

projection πholf lies in M̃k(Γ0(N)). For more on the classical holomorphic projection

operator, see [Stu80], [IRR14], [Mer] and [GZ86].

The regularized holormorphic projection operator πreghol is an extension of πhol to

an operator on smooth modular forms with certain exponential singularities at cusps.

This definition is due to Mertens and Ono [MO16] who based it on Borcherds’ [Bor98]

regularized Petersson inner product.

Definition 4.2.3. Regularized Holomorphic Projection Let f : H → C be real-

analytic, weight k ≥ 2 modular with respect to Γ0(N), and have Fourier series∑
n∈Z af (n, y)qn . Let the cusps of Γ0(N) be denoted κ1, · · · , κs where κ1 = i∞.

For each κj, fix some γj ∈ 2(Z) with γjκj = i∞. Suppose that for each κj, there is a

polynomial Hκj(X) ∈ C[X] such that

(f |kγ−1
j )(τ)−Hκj(q

−1) = O(v−ε),

for some ε > 0. Also, suppose af (n, y) = O(y2−k) as y → 0 for all n > 0. Then we

define the regularized holomorphic projection of f by

(πregholf) = Hi∞(q−1) +
∞∑
n=1

c(n)qn,
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where

c(n) = lim
s→0

(4πn)k−1

(k − 2)!

∫ ∞
0

af (n, y)e−4πnyyk−2−sdy.

It turns out that if f is a real analytic modular form, πregholf is a weakly holomorphic

modular or quasimodular form.

Theorem 4.2.4 (Mertens, Ono). Suppose f is as in the previous definition. Then

πreghol (f) lies in M̃ !
k(Γ0(N)).

Remark 4.2.5. In Theorem 4.2.1, we have

F (τ) =
1

(k1 − 1)!
πreghol (M

+
f1
· f2)(τ).

4.3 Proof of Theorem 1.3.2

In this section we prove Theorem 1.3.2. First we prove a lemma which gives a bound

for the obstruction to modularity for a mock modular form. Throughout the section,

let F denote the usual fundamental domain for H, given by

F := {τ ∈ H : |τ | > 1,−1 ≤ <(τ) < 1}.

4.3.1 Lemma

We prove an estimate for P(M+
f , α; τ) (defined in Section 4.1).

Lemma 4.3.1. Let f ∈ Sk be a cusp form, and M+
f be a harmonic Maass form whose

shadow is f . Then there exists a constant C(f) > 0 such that for all α = ( a bc d ) ∈ 2(Z)

with c 6= 0 and τ ∈ F , we have

|P(M+
f , α; τ)| ≤ C(f)|cτ + d|k−2.
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Proof. By Theorem 4.1.5, we have

P(M+
f , α; τ)

(cτ + d)k−2
=

k−2∑
n=0

L(f, e−2πid/c, n+ 1)

(k − 2− n!)
(−2πi)k−2−n

(
1

ck−2−n(cτ + d)n

)
. (4.4)

One can show that
∫∞

0
f(iy − x)ys−1dy is a periodic continuous function in x, thus

for fixed n the values L(f, e−2πid/c;n + 2) can be bounded independently of c and d.

Since |c| ≥ 1 and |cτ + d| ≥
√

3
2

for τ ∈ F , the right hand side of equation (4.4) is

bounded uniformly in α and τ ∈ F .

4.3.2 Proof of Theorem 1.3.2

Let F (τ) := πreghol (Mf1f2)−M+
f1
f2 = πreghol (M

−
f1
f2). By Theorem 4.2.1, we have F (τ) =

(k − 1)! · L(f1, f2; τ).

Since F is holomorphic, by Cauchy’s integral formula the coefficients of L(f1, f2, τ)

are given by a contour integral as follows.

(k − 1)!D̂(f1, f2, h; k − 1) =
1

2πi

∫
C

F (τ)

qh+1
dq

=

∫ 1

0

F

(
x+

i

h

)
e−2πih(x+(i/h))dx.

Choose β ∈ C so that G(τ) := πreghol (M
−
f1
f2)− βE2(τ) lies in M !

2(SL2(Z)), and let

E∗2(τ) be the completed weight 2 nonholomorphic modular form E∗2(τ) = E2(τ) −
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3
π=(τ)

. We rewrite the integral in the previous expression as follows:

(k − 1)!D̂(f1, f2, h; k − 1) =

∫ 1

0

e−2πih(x+(i/h))

(
βE∗2

(
x+

i

h

)
+G

(
x+

i

h

))
dx

−
∫ 1

0

e−2πih(x+(i/h))Mf1

(
x+

i

h

)
f2

(
x+

i

h

)
dx

+

∫ 1

0

M−
f1

(
x+

i

h

)
f2

(
x+

i

h

)
e−2πih(x+(i/h))dx

− β
∫ 1

0

e−2πih(x+(i/h)) 3

=(x+ i
h
)π
dx.

By direct evaluation, the fourth integral is 0.

The difference of the first and second integrals satisfies an O(h) estimate. This

follows from the fact that the difference of the integrands is a smooth weight 2 modular

form which vanishes as e2πiτ as τ → i∞.

To complete the proof, it is sufficient to show that the third integral satisfies an

O(h
k
2 ) estimate, and for this it is sufficient to establish that h(τ) := M−

f1
(τ)f2(τ)y

k
2

is bounded on H.

As τ → i∞, h(τ) has exponential decay because of the exponential decay of f2.

Thus, h is bounded on the fundamental domain F .

It is sufficient to show that for α = ( a bc d ) ∈ SL2(Z), h(ατ) is bounded on F

uniformly with respect to α. Rewriting |h(ατ)| using the modular invariance of

|f2(τ)=(τ)
k
2 |, we have

|h(ατ)| = |f2(τ)M−
f1

(ατ)||=(τ)|
k
2 .

Substituting

M−
f1

(τ) + P(f, α, τ) = M−
f1
|2−k(α)(τ)
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gives

|h(ατ)| ≤ |f2(τ)=(τ)|
k
2

(
|

M−
f1

(τ)

(cτ + d)k−2
|+ | 1

(cτ + d)k−2
P(f, α; τ)|

)
.

The second factor is bounded on F because of Lemma 4.3.1, the fact that |cτ+d| ≥
√

3
2

on F , and the exponential decay of M−
f1

(τ) as τ → i∞. On the other hand,

f2(τ)|=(τ)| k2 has exponential decay at i∞. Thus, |h(ατ)| is bounded for τ ∈ F . This

completes the proof.

4.3.3 Example

When f1 = f2 = ∆, where ∆(τ) is the modular discriminant, that is, the unique

normalized cusp form of weight 12, Theorem 4.2.1 says

L(∆,∆; τ) =
Q+(−1, 12, 1; τ)∆(τ)

11!β
− E2(τ)

β
= 33.38465...q + 266.447...q2 + · · · ,

where Q+(−1, 12, 1; τ) is the holomorphic part of the Maass-Poincare series of weight

12 and level 1 with a simple pole at i∞. It follows from Theorem 1.3.2 that the

Fourier coefficients of L(∆,∆; τ) grow as O(n6). The following table illustrates the

significant cancellation that occurs. Here, c+
∆(n) denotes nth Fourier coefficient of

Q+(−1, 12, 1; τ), which grows exponentially with n.

n 1 10 100 1000
c+

∆(n)/11! −1842.89.... 4.94...1010 5.19...1042 1.30...10155

D̂(∆,∆, n; 11) 33.384... 538192.6... 80949379532.2... 5.4234...1015

Table 4.1: Numerics for Theorem 1.3.2
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Chapter 5

Multiplicative Partition Functions

The purpose of this chapter is to describe the maxpk(n) functions, which were intro-

duced in Chapter 1.6. The values of maxpk(n) are given explicitly in the third section

of this chapter for all k and n. The key to determining these values is an effective

estimate for pk(n), which we obtain in Section 5.1. The estimate that we show allows

us to prove inequality Theorem 1.4.1, and the complete finite list of the pairs (a, b)

for which the inequality fails, which are necessary for understanding the maxpk(n)

values. We prove Theorem 1.4.1 in 5.2.

This was joint work with Christine Bessenrodt.

5.1 Explicit estimates for pk(n)

Hagis [Hag71] proved an explicit formula for pk(n) that is analogous to Rademacher’s

formula for p(n). Before describing his theorem, we introduce several necessary quan-

tities, most importantly the Kloosterman-type sums A(m, t, n, s,D) and the expres-

sions L(m, t, n, s,D).

Let D divide t + 1, let J = J(t,D) := (t/D)−D
24D

, and let a = a(t) := t
24

. Let I1

be the order one modified Bessel function of the first kind, and let L(m, t, n, s,D) be
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given by

L(m, t, n, s,D) := D
3
2m−1

(
J − s
n+ a

) 1
2

I1

(
4πDm−1

(
(J − s)(n+ a)

(t+ 1)

) 1
2

)
. (5.1)

Several definitions are needed to define the modified Kloosterman sumsA(t,m, n, s,D).

First g = g(m) is defined to be gcd(3,m) when m is odd, and 8 gcd(3,m) when m

is even. We define M = M(m,D) := m
D

. Additionally, we define f = f(m) := 24
g

,

and define r = r(m) to be any integer such that fr ≡ 1 (mod gm). Further, G is

defined to be analogous to g, in that G = G(m,D) := gcd(3,M) when M is odd and

G := 8 gcd(3,M) when M is even. Then we also let B = B(m,D) := g
G

, and we define

A to be any integer such that AB ≡ 1 (mod GM). We also let T = T (t,D) := t+1
D

,

and choose T ′ = T ′(t,D) to satisfy TT ′ ≡ 1 (mod GM). More importantly:

U = U(t,m,D) := 1− AB(t+ 1), V = V (t,m,D) := ABT ′D − 1.

Hagis defines special roots of unity, w(h, t,m,D), which satisfy the following:

w(h, t,m,D) = C(h, t,m,D) exp(2πi(rUh+ rV h′)/gm).

The C(h, t,m,D) satisfy |C(h, t,m,D)| = 1, and are independent of h if m is odd,

or if m is even and we restrict to h ≡ d (mod 8) for some odd d. In what follows we

will not explicitly use the definitions of C(h, t,m,D).

Then we define A(m, t, n, s,D) to be the Kloosterman sum with multiplier system

given by

A(m, t, n, s,D) =
∑

h (mod m),
gcd(h,m)=1

w(h, t,m,D) exp(−2πi(nh−DT ′sh′)/m), (5.2)

where hh′ ≡ 1 (mod gm).
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Let p′(s) be the number of partitions of s into an even number of distinct parts

minus the number of partitions of s into an odd number of distinct parts; by Euler’s

pentagonal number theorem, p′(s) is ±1 if s is a pentagonal number, and 0 otherwise.

Recall Glaisher’s partition identity saying that the number pk(n) of k-regular parti-

tions of n is equal to the number of partitions of n where no part has a multiplicity

≥ k. Using the previous notation, Hagis proved the following for the numbers pk(n)

in [Hag71, Theorem 3].

Theorem 5.1.1. For all k ≥ 2, the number of k-regular partitions of n ∈ N is given

by

pk(n) =
2π

k

∑
D|k
D<k

1
2

∞∑
m

gcd(k,m)=D

∑
s<J(k,D)

p′(s)A(m, k − 1, n, s,D)L(m, k − 1, n, s,D).

(5.3)

For 2 ≤ k ≤ 6, in the summations above, we only have s = 0 and D ≤ 2. Thus,

the formulae needed for Theorem 1.4.1 consist of one or two of the inner sums in

Theorem 5.1.1.

5.1.1 Estimates in the theorem of Hagis

In this section, we obtain an asymptotic for pk(n) with an explicitly bounded error

term.

Let αk be defined as follows:

αk :=



1.8 if k = 2

9.84 if k = 3

1.8 · 3 1
2 if k = 4

14.37 if k = 5

1.23 · 5 1
2 if k = 6

(5.4)
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We also let α′6 := 19.68.

Theorem 5.1.2. For n ∈ N, let µ = µ(n, k) := π((k−1)2+24n(k−1))
1
2

6k
1
2

.

1. For 2 ≤ k ≤ 5 we have:

pk(n) =
2π

k

(
k − 1

k − 1 + 24n

) 1
2

I1(µ) + Ek(n)

where

|Ek(n)| < αkπ

k

(
k − 1

(k − 1) + 24n

) 1
2 1

µ
eµ(1 + 5µ2e−µ).

2. For k = 6 we have:

p6(n) =
π

3

(
5

24n+ 5

) 1
2

I1(µ) + E6(n)

where

|E6(n)| < π

3

(
5

24n+ 5

) 1
2 α6

2

eµ

µ
(1 + δ(n)) +

π

3

(
1

24n+ 5

) 1
2

I1

(
µ

10
1
2

)
,

where δ(n) := 5µ2e−µ +
2

4
3 α′6
α6

e
µ
(

1√
10
−1
) (

1 + e
− µ√

10
µ2

2

)
.

Remark 5.1.3. Theorem 5.1.2 is analogous to [Leh38, (4.14)] in the case of p(n).

To prove this theorem, we need some preparations. The first is a bound on the

divisor counting function d(n).

Lemma 5.1.4. Let d(n) denote the number of positive divisors of a positive integer

n.

1. For all n, d(n) ≤ 3.57n
1
3 .

2. If n is odd, then d(n) ≤ 1.8n
1
3 .



53

3. If gcd(n, 3) = 1, then d(n) ≤ 2.46n
1
3 .

4. If gcd(n, 5) = 1, then d(n) ≤ 3.05n
1
3 .

5. If gcd(n, 6) = 1, then d(n) ≤ 1.23n
1
3 .

Proof. Let n =
∏M

i=1 pi
ai , where each pi is prime. Then d(n) =

∏M
i=1(1 + ai). We

follow the classical method in [HW08] of bounding
∏M

i=1
ai+1

p
ai
3
i

. For pi ≥ 11, we have

ai+1

p
ai
3
i

≤ 1 for ai ≥ 1. For the remaining pi, the quantity ai+1

p
ai
3
i

is maximized when

ai is equal to 3, 2, 1 and 1 for pi equal to 2, 3, 5 and 7, respectively. The lemma

follows by maximizing
∏M

i=1
ai+1

p
ai
3
i

over n which respect each of the given divisibility

constraints.

The next lemma is a bound on A(m, k−1, n, 0, D), which is related to the classical

Kloosterman sums defined below; it is a slight modification of [Leh38, Theorem 12].

Definition 5.1.5. Let a, b,m ∈ N. The Kloosterman sum S(a, b,m) is defined by

S(a, b,m) :=
∑

1≤h≤m−1
gcd(h,m)=1

e2πi(ah+bh′)/m,

where h′ is the multiplicative inverse of h modulo m.

Weil proved the following bound (see [Iwa97, Theorem 4.5]):

Theorem 5.1.6. Let a, b,m ∈ N.

|S(a, b,m)| ≤ d(m)m
1
2 gcd(a, b,m)

1
2 .

We will use this bound in the following lemma.

Lemma 5.1.7. 1. For 2 ≤ k ≤ 6, and for all n,m ≥ 1 with gcd(k,m) = 1, we

have

|A(m, k − 1, n, 0, 1)| < αkm
5
6 .
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2. For all n,m ≥ 1 with gcd(6,m) = 2, we have

|A(m, 5, n, 0, 2)| < α′6m
5
6 .

Proof. We will follow Hagis’ argument in [Hag71, Theorem 2]. Our strategy is to

rewrite A(m, k − 1, n, 0, D) as a sum of ordinary Kloosterman sums and apply The-

orem 5.1.6.

In order to bound the ordinary Kloosterman sums, we will need to be able to bound

certain greatest common divisors. We use the notation introduced at the beginning of

the section, and we begin by stating a series of bounds for gcd(Ur− gn, rV, gm) and

gcd(Ur− gn, rV + wgm
8
, gm) which depend on k and D. These are straightforward to

verify from their definitions.

For D = 1, 2 ≤ k ≤ 6 we have gcd(r, gm) = 1 and gcd(k, gm) = 1, thus

gcd(rV, gm) = gcd(kV, gm). Then since kV = k(T ′ − 1) ≡ 1− k (mod gm), we have

gcd(rV, gm) = (1− k, gm) ≤ k − 1.

Let k = 3, 5, let D = 1, and let m be even. Note that gcd(r, g) = 1 and U = k−1,

which implies gcd(Ur − gn, g) = gcd(k − 1, g). Also for 1 ≤ w ≤ 8, we have

gcd(rV +
wgm

8
,m) = gcd(V,m) = gcd(1− k,m).

Therefore gcd(Ur− gn, rV + wgm
8
, gm) divides (k− 1)2, so it must be 1, 2, 4, 8, or 16.

However, the highest power of 2 that Ur− gn can be divisible by is k − 1, because g

is divisible by 8, and r is odd, and Ur − gn = r(1− k)− gm. Thus we have:

gcd(Ur − gn, V r +
wgm

8
, gm) ≤ k − 1.
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For the last bound, we let k = 6 and D = 2. Then we have g = 8, T = 3, M = m
2

,

and gcd(6,m) = 2. So gcd(rV + wgm
8
,m) = gcd(V,m) = gcd(2ABT ′− 1,m). Now we

have 2AB ≡ 2 (mod m) and 6T ′ ≡ 2 (mod m), thus

gcd(V,m) = gcd(2T ′ − 1,m) = gcd(3(2T ′ − 1),m) = 1.

Therefore we have gcd(rU − gn, rV + wgm
8
, gm) ≤ g = 8.

To use these bounds, we rewrite A(m, k − 1, n, 0, D) as a sum over a reduced

residue class modulo gm:

A(m, k−1, n, 0, D) =
1

g

∑
h mod m

gcd(h,m)=1

C(h, k−1,m,D) exp (2πi((Ur − gn)h+ rV h′)/gm)).

For odd m, C(h, k − 1,m,D) does not depend on h. Therefore we have

A(m, k − 1, n, 0, 1) = C(1, k − 1,m, 1)
1

g

∑
h mod m

gcd(h,m)=1

exp(2πi((rU − gn)h+ rV h′)/gm).

The sum on the right is an ordinary Kloosterman sum, so by Theorem 5.1.6 we have,

for all odd m:

|A(m, k − 1, n, 0, 1)| = |S(Ur − gn, rV, gm)| ≤ 1

g
d(gm) gcd(Ur − gn, rV, gm)

1
2 (gm)

1
2 .

Then by Lemma 5.1.4 and the bounds at the beginning of the proof, it follows that

for all m such that 2 - m and gcd(k,m) = 1, we have:

|A(m, k − 1, n, 0, 1)| ≤ (k − 1)
1
2 · 1.8 ·m

5
6 .

This proves the lemma for k = 2, 4, and for k = 3, 5 in the case of m being odd.
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Similarly, for k = 6, by Lemma 5.1.4, we have:

|A(m, 5, n, 0, 1)| ≤ (k − 1)
1
2 · 1.23 ·m

5
6 .

For k = 6, D = 1, the proof is complete.

If m is even, we write

A(m, k − 1, n, 0, D)

= A1(m, k − 1, n, 0, D) + A3(m, k − 1, n, 0, D) + A5(m, k − 1, n, 0, D) + A7(m, k − 1, n, 0, D),

where

Ad(m, k−1, n, 0, D) =
1

g

∑
h mod gm,
h≡d mod 8,
gcd(h,m)=1

C(h, k−1,m,D) exp (2πi((rU − gn)h+ rV h′)/gm).

Over each d, the coefficient C(h, k − 1,m,D) does not depend on h, so

Ad(m, k−1, n, 0, D) = C(d, k−1,m,D)
1

g

∑
h (mod gm),
h≡d (mod 8),

gcd(h,m)=1

exp (2πi((rU − gn)h+ rV h′)/gm).

By the formula on page 266 of [Sal33], for dd′ ≡ 1 (mod 8), we have:

Ad(k − 1,m, n, 0, D) =
1

8g
C(d, k − 1,m,D)

8∑
w=1

e2πi d
′w
8 S(Ur − gn, V r +

wgm

8
; gm).

By Theorem 5.1.6,

Ad(m, k − 1, n, 0, D) =

1

8g
C(d, k − 1,m,D)

8∑
w=1

e−
2πi
8
d′w gcd(Ur − gn, V r +

wgm

8
, gm)

1
2d(gm)(gm)

1
2 .
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For k = 3, by the bounds at the beginning of the proof we have:

Ad(m, 2, n, 0, 1) ≤ 8 · 1

8g
· 2

1
2 · 2.46(gm)

1
3 · (gm)

1
2 ≤ 2.46m

5
6 .

Similarly for k = 5, if 3|m, by our previous bounds we have:

Ad(m, 4, n, 0, 1) ≤ 8 · 1

8 · 24
· 4

1
2 · 3.05 · (24m)

1
3 · (24m)

1
2 ≤ 3.592m

5
6 .

If 3 - m, then we have:

|Ad(m, 4, n, 0, 1)| ≤ 8 · 1

8 · 8
· 4

1
2 · 2.46 · (8m)

1
3 · (8m)

1
2 ≤ 3.48m

5
6 .

We note that |A(m, k−1, n, 0, D)| ≤ 4|Ad(m, k−1, n, 0, D)|. Comparing these bounds

to the bounds in the odd m case, we conclude that for k = 3, 5, the desired bound

holds whenever gcd(m, k) = 1.

For gcd(6,m) = 2, we have:

|A(m, 5, n, 0, 2)| ≤ 4|Ad(m, 5, n, 0, 2)| ≤ 4 · (8 · 8
1
2 · 1

8g
· 2.46(gm)

1
3 · (gm)

1
2 ) ≤ 19.6m

5
6 .

This completes the proof.

Now we come to the proof of Theorem 5.1.2. For 2 ≤ k ≤ 5, Theorem 5.1.1

says

pk(n) =
2π

k

∞∑
m=1

gcd(k,m)=1

m−1

(
k − 1

(k − 1) + 24n

) 1
2

A(m, k − 1, n, 0, 1)I1

( µ
m

)
, (5.5)
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and for k = 6, Theorem 5.1.1 says

p6(n) =
π

3

51/2

(5 + 24n)
1
2

∞∑
m=1

1

m
A(m, 5, n, 0, 1)I1

( µ
m

)
+
π

3

1

(5 + 24n)
1
2

∞∑
(3,a)=1

1

a
A(2a, 5, n, 0, 2)I1

(
µ

10
1
2a

)
.

(5.6)

Let α = 1
6
. Our proof works by bounding the sums in (5.5) and (5.6). We have,

for any ν 6= 0,

|
∞∑

m=N+1

m−1A(m, k − 1, n, 0, 1)I1

( ν
m

)
| ≤

∞∑
m=N+1

αkm
−α

∞∑
j=0

( ν
2m

)2j+1

j!(j + 1)!

< αk

∫ ∞
N

x−α
∞∑
j=0

( ν
2x

)2j+1

j!(j + 1)!
dx.

We substitute t = ν
2x

.

|
∞∑

m=N+1

m−1A(m, k − 1, n, 0, 1)I1

( ν
m

)
| ≤ αk

∫ ν
2N

0

(
ν

2t
)−α

∞∑
j=0

t2j+1

j!(j + 1)!

ν

2t2
dt

= αk(
ν

2
)1−α

∫ ν
2N

0

∞∑
j=0

(t2j−1+α)

j!(j + 1)!
dt

≤ αk (
ν

2
)1−α

∞∑
j=0

( ν
2N

)2j+α

j!(j + 1)!(2j + α)

≤ αk(
ν

2
)1−α

(
( ν
N

)α

2α
+
∞∑
j=2

(( ν
N

)2j−2+α)

(2j)!

)
21−α

≤ αkN
2+α 1

ν

(
cosh(ν/N)− 1 +

5

2

( ν
N

)2
)
.

To bound
∑∞

a=N+1(2a)−1A(2a, 5, n, 0, 2)I( ν
2a

), we replace α6 with α′6 in the previ-

ous argument. To complete the proof, we let N = 1, and apply the above inequality

to the sums in Theorem 5.1.1, where ν = µ for 2 ≤ k ≤ 5, and for k = 6, ν is set to

be µ and µ√
10

in the first and second sum, respectively.
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5.2 Proof of Theorem 1.4.1

This proof is analogous to the proof of [BO16, Theorem 2.1].

By well known properties of Bessel functions, such as the bounds in (9.8.4) of

[AS72], for x ≥ 37.5 the modified Bessel function I1(x) is bounded by

N ≤ x
1
2 e−xI1(x) ≤M

where N = 0.394, M = 0.399.

First, let 2 ≤ k ≤ 5, and let β := αk
2

. Then by Theorem 5.1.2, for n ≥ 450 we

have:

2π

k

(
k − 1

k − 1 + 24n

) 1
2
(
N − β

√
µ

(
1 + 5µ2e−µ

)) eµ
√
µ
< pk(n)

<
2π

k

(
k − 1

k − 1 + 24n

) 1
2 eµ
√
µ

(
M +

β
√
µ

(
1 + 5µ2e−µ

))
.

We assume a ≤ b and write b = λa for some λ ≥ 1. Then it is sufficient to show

eµ(a)+µ(λa)−µ(λa+a) > Sa,k(λ)(k − 1 + 24a)
3
4 ,

where

Sa,k(λ) := Ck

(
M + β√

µ(λa+a)

(
1 + 5µ(λa+ a)2e−µ(λa+a)

))
(
N − β√

µ(λa)
(1 + 5µ(λa)2e−µ(λa))

)(
N − β√

µ(a)
(1 + 5µ(a)2e−µ(a))

) ,

for Ck := k
3
4

2(π(k−1))
1
2

. For a fixed a, the left-hand side of the inequality is increasing

for all λ ≥ 1, and the right-hand side is decreasing. Thus, for any given a, to prove

Theorem 1.4.1 for b ≥ a, it suffices to verify the inequality for λ = 1. Taking the

natural logarithm of each side, it is straightforward to verify that the inequality holds
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for a ≥ 1000 for k = 2, 4, and holds for a ≥ 5 · 104 for k = 3, 5. Then for each of the

remaining a, we wish to find λa,k such that for λ ≥ λa,k:

pk(a)
2π

k

(
k − 1

k − 1 + 24λa

) 1
2

(
N − β√

µ(λa)

(
1 + 5µ(λa)2e−µ(λa)

)) eµ(λa)√
µ(λa)

>

2π

k

(
k − 1

k − 1 + 24(λa+ a)

) 1
2 eµ(λa+a)√

µ(λa+ a)

(
M +

β√
µ(λa+ a)

(
1 + 5µ(λa+ a)2e−µ(λa+a)

))
.

For a ≥ 20, k = 2, 4, λa,k = 1000
a

suffices. For a ≤ 20, k = 3, 5, λa,k = 50000
a

suffices.

For smaller a, the needed aλa,k values can be as large as 4·105, except when k = 5 and

a = 2, where the larger bound in Theorem 5.1.7 for k = 5 causes the needed λa,k values

to be much larger. All other cases are reduced to checking a large but finite number

of pairs (a, b), where a ≤ 5 ·104 and b ≤ λa,ka. We carried out these calculations using

Sage mathematical software [S+14]. To ease our calculation, we proved the inequality

p5(2) · p5(b) > p5(b+ 2) for b ≥ 75 with a combinatorial argument (see the end of the

section), and used Sage [S+14] to check the remaining pairs.

Now we handle the k = 6 case. This case is very similar to the cases for 2 ≤ k ≤ 5,

but because of the second summation in (5.6), we have additional, non-dominant

terms in our expressions. Using Theorem 5.1.2 and factoring out the leading term,

we obtain

π

3

√
5√

24n+ 5

eµ
√
µ6

(
N (1− η(n))− β

√
µ

(1 + δ(n))

)
< p6(n)

<
π

3

√
5√

24n+ 5

eµ
√
µ6

(
M (1 + η(n)) +

β
√
µ

(1 + δ(n))

)
,

where η(n) :=
(

2
5

) 1
4 e

µ
(

10−
1
2−1

)
. The desired inequality is implied by

eµ(a)+µ(λa)−µ(λa+a) > Sa,k(λ)(k − 1 + 24a)
3
4 ,
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where

Sa(λ) = C6

(
M(1 + η(λa+ a)) + β√

µ((λ+1)a)
(1 + δ(λa+ a))

)
(
N(1− η(a))− β√

µ(λa)
(1 + δ(λa))

)(
N(1− η(a))− β

2
√
µ6(a)

(1 + δ(a))

) ,

and C6 = 3
π
√

5
( 6

3
2√
5π

)
1
2 . As before, it suffices to verify that this is true for λ = 1, which

is straightforward for a ≥ 3500. Then for each a ≤ 3500, we wish to find λa,6 such

that for all λ ≥ λa,6,

p6(a)
π

3

√
5√

24(λa) + 5

eµ(λa)√
µ(λa)

(
N(1− η(λa))− β√

µ(λa)
(1 + δ(λa))

)
>

π

3

√
5√

24(λa+ a) + 5

eµ(λa+a)√
µ((λ+ 1)a)

(
M(1 + η(λa+ 1)) +

β√
µ(λa+ a)

(1 + δ(λa+ a))

)
.

It is straightforward to verify that the inequality holds for λ ≥ 3500
a

for all a ≥ 4. For

a = 2, 3, 4, the inequality holds for λ ≥ 50000
a

. This reduces the k = 6 case to a finite

number of pairs (a, b) to check, which we computed with Sage [S+14].

Finally, we prove that for b ≥ 75, we have p5(b + 2) < 2 p5(b). To do this, we

separate the 5-regular partitions of b + 2 into two disjoint sets. Let S1 be the set of

5-regular partitions of b+ 2 which contain 1 as a part with multiplicity at least two.

Let S2 contain all the other 5-regular partitions of b+ 2. Let S be the set of 5-regular

partitions of b. We map S1 and S2 each injectively into S. To map S1 injectively into

S, for each partition in S1, simply remove two parts 1.

Next, we define an injective map from S2 into S. Let γ = (γ1, γ2, . . . , γ`) be a

partition in S2. If γ` ≥ 2 and γ1 ≥ 7, then γ is mapped to (γ2, . . . , γ`, 1
γ1−2) (here,

we use exponential notation for multiplicities). If γ` ≥ 2 and γ1 < 7, then if 2 has

multiplicity at least 5 in γ, replace five parts 2 with eight parts 1. Otherwise, if γ

has five parts 3, we replace them with thirteen parts 1. If γ has five parts 4, then we

replace them with eighteen parts 1. Otherwise, γ must have at least five parts 6, which
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we replace with 28 parts 1. Finally, assume γ` = 1. If γ`−1 ≡ 1 (mod 5), then we map

γ to (γ1, . . . , γ`−2, γ`−1 − 4, 13). Otherwise, γ is mapped to (γ1, . . . , γ`−2, γ`−1 − 1).

Note that the mapping from S2 to S is not onto by considering any 5-regular partition

of b which contains exactly two ones. Thus we obtain the inequality p5(b+2) < 2p5(b)

for b ≥ 75.

This completes the proof of the inequality stated in Theorem 1.4.1.

The exceptional pairs given in the table are then easily obtained by direct com-

putations.

5.3 The maximum property

We first recall [BO16, Theorem 1.1].

Theorem 5.3.1. Let n ∈ N. For n ≥ 4 and n 6= 7, the maximal value maxp(n)

of the partition function on P (n) is attained exactly at the partitions (in exponential

notation)

(4
n
4 ) when n ≡ 0 (mod 4)

(5, 4
n−5

4 ) when n ≡ 1 (mod 4)

(6, 4
n−6

4 ) when n ≡ 2 (mod 4)

(6, 5, 4
n−11

4 ) when n ≡ 3 (mod 4)

For n = 7, the maximal value is maxp(7) = 15, attained at the two partitions (7) and

(4, 3).

In particular, if n ≥ 8, then

maxp(n) =



5
n
4 if n ≡ 0 (mod 4),

7 · 5n−5
4 if n ≡ 1 (mod 4),

11 · 5n−6
4 if n ≡ 2 (mod 4),

11 · 7 · 5n−11
4 if n ≡ 3 (mod 4).
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Since the partitions where the maximum of p(n) is attained on P (n) are k-regular

for any k > 6, in the following it suffices to consider the cases k ∈ {2, 3, 4, 5, 6}.

Theorem 5.3.2. Let k ∈ N, k > 1. Let n ∈ N.

(i) k = 2. For n ≥ 9 and n 6= 11, the maximal value maxp2(n) of p2(n) on P2(n)

is attained exactly at the partitions

(9a, 3b) when n ≡ 0 (mod 3)

(9a, 7, 3b) when n ≡ 1 (mod 3)

(9a, 7, 7, 3b) when n ≡ 2 (mod 3)

where a, b ∈ N0 may be chosen arbitrarily as long as we have partitions of n.

In particular, we have

maxp2(n) =


2
n
3 when n ≡ 0 (mod 3)

5 · 2n−7
3 when n ≡ 1 (mod 3)

52 · 2n−14
3 when n ≡ 2 (mod 3)

(ii) k = 3. For n ≥ 2 and n 6= 3, the maximal value maxp3(n) of p3(n) on P3(n) is

attained exactly at the partitions

(4a, 2b) when n ≡ 0 (mod 2)

(5, 4a, 2b) when n ≡ 1 (mod 2)

where a, b ∈ N0 may be chosen arbitrarily as long as we have partitions of n.

In particular, we have

maxp3(n) =

 2
n
2 when n ≡ 0 (mod 2)

5 · 2n−5
2 when n ≡ 1 (mod 2)

(iii) k = 4. For n ≥ 2, the maximal value maxp4(n) of p4(n) on P4(n) is attained
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exactly at the partitions

(6a, 3b) when n ≡ 0 (mod 3)

(6a, 3b, 2, 2), (7, 6a, 3b), (6a, 5, 3b, 2), (6a, 5, 5, 3b) when n ≡ 1 (mod 3)

(6a, 3b, 2), (6a, 5, 3b) when n ≡ 2 (mod 3)

where a, b ∈ N0 may be chosen arbitrarily as long as we have partitions of n,

and with the understanding that partitions with given parts 2, 5, 7 of positive

multiplicity do not occur when n is too small.

In particular, we have

maxp4(n) =


3
n
3 when n ≡ 0 (mod 3)

4 · 3n−4
3 when n ≡ 1 (mod 3)

2 · 3n−2
3 when n ≡ 2 (mod 3)

(iv) k = 5. For n ≥ 2, the maximal value maxp5(n) of p5(n) on P5(n) is attained

exactly at the partitions

(4
n
4 ) when n ≡ 0 (mod 4)

(4
n−5

4 , 3, 2), (6, 4
n−9

4 , 3) when n ≡ 1 (mod 4)

(4
n−2

4 , 2), (6, 4
n−6

4 ) when n ≡ 2 (mod 4)

(4
n−3

4 , 3) when n ≡ 3 (mod 4)

with the understanding that partitions with given parts 2, 3, 6 of positive multi-

plicity do not occur when n is too small.
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In particular, we have

maxp5(n) =



5
n
4 when n ≡ 0 (mod 4)

6 · 5n−5
4 when n ≡ 1 (mod 4)

2 · 5n−2
4 when n ≡ 2 (mod 4)

3 · 5n−3
4 when n ≡ 3 (mod 4)

(v) k = 6. For n ≥ 2, the maximal value maxp6(n) of p6(n) on P6(n) is attained

exactly at the partitions

(4
n
4 ) when n ≡ 0 (mod 4)

(5, 4
n−5

4 ) when n ≡ 1 (mod 4)

(4
n−2

4 , 2) when n ≡ 2 (mod 4)

(4
n−3

4 , 3) when n ≡ 3 (mod 4)

In particular, we have

maxp6(n) =



5
n
4 when n ≡ 0 (mod 4)

7 · 5n−5
4 when n ≡ 1 (mod 4)

2 · 5n−2
4 when n ≡ 2 (mod 4)

3 · 5n−3
4 when n ≡ 3 (mod 4)

Proof. (i) We will need the partitions where maxp2(n) is attained for n ≤ 22; these

are given in Table 5.1 (computed by Maple [Map]). We see that the assertion holds

as stated up to n = 22.

Now take n > 22. Let µ ∈ P2(n) be such that p2(µ) is maximal; let mj be

the multiplicity of a part j in µ. Suppose µ has a part j = 2h + 1 ≥ 19; let

{h, h+ 1} = {2l, h′}. Then by Theorem 1.4.1 and Table 5.1, replacing j by the parts
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Table 5.1: Maximum value partitions µ for k = 2

n p2(n) maxp2(n) µ

1 1 1 (1)
2 1 1 (1,1)
3 2 2 (3)
4 2 2 (3,1)
5 3 3 (5)
6 4 4 (32)
7 5 5 (7)
8 6 6 (5,3)
9 8 8 (9), (33)

10 10 10 (7,3)
11 12 12 (11), (5, 32)
12 15 16 (9, 3), (34)
13 18 20 (7, 32)
14 22 25 (72)
15 27 32 (9, 32), (35)
16 32 40 (9, 7), (7, 33)
17 38 50 (72, 3)
18 46 64 (92), (9, 33), (36)
19 54 80 (9, 7, 3), (7, 34)
20 64 100 (72, 32)
21 76 128 (92, 3), (9, 34), (37)
22 89 160 (9, 7, 32), (7, 35)

h′, 2l − 3, 3 in µ would produce a partition ν ∈ P2(n) such that p2(ν) > p2(µ). Thus

µ has no parts j ≥ 19. By Table 5.1, a part j ∈ {13, 15, 17} could be replaced in µ

by a partition in P2(j) giving a partition ν ∈ P2(n) of larger p2-value. Thus µ only

has odd parts j ≤ 11.

Any two parts (112), (11, 9), (11, 7), (11, 5), (11, 3), (11, 1) can be replaced by a

2-regular partition to obtain a higher p2-value, see Table 5.1; thus m11 = 0. Also

(73), (7, 5), (7, 1) can be replaced to obtain a higher p2-value. Thus m7 ≤ 2, and the

part 7 can only occur when µ is of the form (9a, 7, 3b) or (9a, 72, 3b); in the first case

n ≡ 1 mod 3, in the second case we have n ≡ 2 mod 3. Also (52) can be replaced by

(7, 3) to obtain a higher p2-value, so m5 ≤ 1; then replacing (9, 5) or (5, 33) by (72),

and (5, 1) by (32) shows that µ has no part 5. Hence if µ has no part 7, then µ is of
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the form (9a, 3b), and n ≡ 0 mod 3. As p2((9)) = p2((33)), the part 9 and the parts

3, 3, 3 can always be used interchangeably. Now for n ≥ 19 and any congruence n ≡ c

mod 3, c ∈ {0, 1, 2}, we have found just one type of 2-regular partition maximizing

the p2-value, namely (9a, 7c, 3b), with a, b ∈ N0 such that (3a+ b) · 3 + c · 7 = n, where

p2((9a, 7c, 3b)) = 23a+b5c = maxp2(n). This proves the claim for k = 2.

(ii) By Table 5.2 the claim holds for n ≤ 16. So we assume now that n > 16.

Table 5.2: Maximum value partitions µ for k = 3

n p3(n) maxp3(n) µ

1 1 1 (1)
2 2 2 (2)
3 2 2 (2,1)
4 4 4 (4), (22)
5 5 5 (5)
6 7 8 (4, 2), (23)
7 9 10 (5,2)
8 13 16 (42), (4, 22), (24)
9 16 20 (5, 4), (5, 22)

10 22 32 (42, 2), (4, 23), (25)
11 27 40 (5, 4, 2), (5, 23)
12 36 64 (43), (42, 23), (4, 24), (26)
13 44 80 (5, 42), (5, 4, 22), (5, 24)
14 57 128 (43, 2), (42, 23), (4, 25), (27)
15 70 160 (5, 42, 2), (5, 4, 23), (5, 25)
16 89 256 (44), (43, 22), (42, 24), (4, 26), (28)

Let µ ∈ P3(n) be such that p3(µ) is maximal. Suppose µ has a part j ≥ 17.

Replace j by νj = (j − 2, 2) if j ≡ 1 mod 3, and by νj = (j − 4, 4) if j ≡ 2 mod 3.

By Theorem 1.4.1 we have p3(j) < p3(νj). Thus µ only has parts ≤ 16. By Table 5.2,

any of these can be replaced by a partition of the form (5a, 4b, 2c, 1d) to increase the

p3-value, and we note that the parts 4 and 2, 2 can be used interchangeably. Hence

only parts 1, 2, 4, 5 can appear in µ. By Table 5.2, the following replacements would

increase the p3-value: (52) → (25), (5, 1) → (23), (4, 1), (22, 1) → (5), (12) → (2).

This implies that µ can only have one of the forms (4a, 2b) or (5, 4a, 2b), where in the
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first case n ≡ 0 mod 2, in the second case n ≡ 1 mod 2. Hence maxp3(n) = 2
n
2

when n is even, and maxp3(n) = 5 · 2n−5
2 when n is odd.

(iii) By Table 5.3 the claim holds for n ≤ 15, so now take n ≥ 16. Let µ ∈ P4(n)

be such that p4(µ) is maximal. Note that by Table 5.3, we may always exchange a

part 6 against the parts 3, 3 without changing the p4-value. Suppose µ has a part

j ≥ 9. Replace j by νj = (j − 2, 2), when j 6≡ 2 mod 4, or by νj = (j − 3, 3)

when j ≡ 2 mod 4. By Theorem 1.4.1, p4(j) < p4(νj); hence µ only has parts ≤ 7.

Replacing (72) by (62, 2), (7, 5) by (62), (7, 2) by (6, 3), (7, 1) by (6, 2) shows that µ

can have a part 7 only when it is of the form (7, 6a, 3b), and then n ≡ 1 mod 3. By

Table 5.3, in these partitions we may exchange 7 with (5, 2) or (3, 22), and (7, 3) with

(52) without changing the p4-value.

Now assume that µ has no part 7. Replacing (53) by (62, 3), (52, 2) by (62), (5, 1)

by 6, shows that µ can have a part 5 only when n ≡ 1 mod 3 and it is of the

form (6a, 5, 3b, 2) or (6a, 52, 3b) already discussed above, or n ≡ 2 mod 3 and it is of

the form (6a, 5, 3b). Note that 5 can be exchanged with (3, 2) without changing the

p4-value.

Finally, when µ has no parts 5 and 7, the replacements of (6, 1) by 7, (23) by 6,

(3, 1) by (22), (2, 1) by 3, (12) by 2 show that µ can have no part 1 and m2 ≤ 2. Then

µ has one of the forms (6a, 3b), (6a, 3b, 2) or (6a, 3b, 22), when n is congruent to 0, 2, 1

mod 3, respectively.

Together with the remarks above, we then have maxp4(n) = 3
n
3 when n ≡ 0

mod 3, maxp4(n) = 4 ·3n−4
3 when n ≡ 1 mod 3, and maxp4(n) = 2 ·3n−2

3 when n ≡ 2

mod 3, attained at the partitions as stated in the claim for k = 4.

(iv) Table 5.4 shows that the assertion is true for n ≤ 12. Take n ≥ 13, and let

µ ∈ P5(n) be such that p5(µ) is maximal. Note that by Table 5.4 we may always

exchange a part 6 against the parts 4, 2 without changing the p5-value. Suppose µ has

a part j ≥ 7. Replace j by νj = (j − 3, 3), when j 6≡ 3 mod 5, or by νj = (j − 4, 4)
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Table 5.3: Maximum value partitions µ for k = 4

n p4(n) maxp4(n) µ

1 1 1 (1)
2 2 2 (2)
3 3 3 (3)
4 4 4 (2,2)
5 6 6 (5), (3,2)
6 9 9 (6), (32)
7 12 12 (7), (5, 2), (3, 22)
8 16 18 (6, 2), (5, 3), (32, 2)
9 22 27 (6, 3), (33)

10 29 36 (7, 3), (6, 22), (52), (5, 3, 2)(32, 22)
11 38 54 (6, 5), (6, 3, 2), (5, 32), (33, 2)
12 50 81 (62), (6, 32), (34)
13 64 108 (7, 6), (7, 32), (6, 5, 2), (6, 3, 22), (52, 3), (5, 32, 2), (33, 22)
14 82 162 (62, 2), (52, 3), (6, 32, 2), (5, 33), (34, 2)
15 105 243 (62, 3), (6, 33), (35)

when j ≡ 3 mod 5. By Table 5.4 and Theorem 1.4.1 p5(j) < p5(νj); hence µ only

has parts ≤ 6.

Replacing (62) by (43), (6, 2) by (42), (6, 1) by (4, 3), (32) by 6, (3, 1) or (22) by

4, (2, 1) by 3 and (12) by 2 increases the p5-value. Hence µ can only have the forms

stated in (iv), and the assertion about the maxp5-value also follows.

(v) Table 5.5 shows that the assertion is true for n ≤ 10. Let n ≥ 11, and let

µ ∈ P6(n) be such that p6(µ) is maximal. Suppose µ has a part j ≥ 7. Replace j by

νj = (j − 3, 3), when j ≡ 4 mod 6, or by νj = (j − 4, 4) when j 6≡ 4 mod 6. By

Table 5.5 and Theorem 1.4.1 p6(j) < p6(νj); hence µ only has parts ≤ 5. Replacing

(52) by (42, 2), (5, 1) by (4, 2), (5, 2) by (4, 3), (5, 3) by (42), (32) by (4, 2), (3, 2) by 5,

(3, 1) or (22) by 4, (2, 1) by 3 and (12) by 2 increases the p6-value. Hence µ can only

have the forms stated in (v), and the assertion about the maxp6-value also follows in

this final case.
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Table 5.4: Maximum value partitions µ for k = 5

n p5(n) maxp5(n) µ

1 1 1 (1)
2 2 2 (2)
3 3 3 (3)
4 5 5 (4)
5 6 6 (3,2)
6 10 10 (6), (4,2)
7 13 15 (4,3)
8 19 25 (42)
9 25 30 (6,3), (4,3,2)

10 34 50 (6, 4), (42, 2)
11 44 75 (42, 3)
12 60 125 (43)

Table 5.5: Maximum value partitions µ for k = 6

n p6(n) maxp6(n) µ

1 1 1 (1)
2 2 2 (2)
3 3 3 (3)
4 5 5 (4)
5 7 7 (5)
6 10 10 (4,2)
7 14 15 (4,3)
8 20 25 (42)
9 27 35 (5,4)

10 37 50 (42, 2)
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Chapter 6

Parts of partitions in residue

classes

The purpose of this chapter is to prove Theorems 1.5.1 and 1.5.4.

This is joint work with Michael Mertens.

6.1 Generating function

We prove a formula for the generating function for T̂r,N(n).

Lemma 6.1.1. T̂r,N has the following generating function,

∞∑
n=1

T̂r,N(n)qn =

(∏
n≥1

1

(1− qn)

) ∞∑
n=1

 ∑
d|n

d≡r (mod N)

qn


 .

Proof. Note that

qm

(1− qm)2
=
∞∑
k=1

kqkm.

Then, modifying the proof of Euler’s formula for the generating function of p(n),

we have that
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∞∑
n=0

a(n)qn =
qm

(1− qm)2
·
∏
n≥1
n6=m

1

1− qn
,

where a(n) equals the number of times m appears as a part in a partition of n.

Thus, summing over m ≡ r (mod N), we have

∞∑
n=1

T̂r,N(n)qn =
∑
m≥1

m≡r (mod N)

qm

(1− qm)2
·
∏
n≥1
n 6=m

1

1− qn

=

(∏
n≥1

1

1− qn

) ∑
m≥1

m≡r (mod N)

(
∞∑
k=1

qkm

)

=

(∏
n≥1

1

(1− qn)

) ∞∑
n=1

 ∑
d|n

d≡r mod N

qn


 .

This proves the lemma.

6.2 Odd Dirichlet Characters

In the next section, we relate the generating function for T̂r,N(n) − T̂N−r,N(n) to

modular forms. We begin by showing that the odd Dirichlet characters satisfy the

same orthogonality relations as the usual Dirichlet characters.

Lemma 6.2.1. Let G be a finite abelian group containing an element u ∈ G \ {1}

with u2 = 1. Fix such a u, then we have the following equality,

2

n

∑
ψ∈Ĝ

ψ(u)=−1

ψ(g) =


1 g = 1

−1 g = u

0 otherwise.

,

where n := |G| and Ĝ := Hom(G,C∗) denotes the dual group of G.
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Proof. Since G is finite and abelian, it is a direct product of cyclic groups

G ∼= Cd1 × ...× Cd`

with d1|...|d`. Since we can define characters on each component separately, we can

assume without loss of generality that G = 〈g〉 is cyclic. Note that the existence of an

element u of order 2 in G assures that at least one of the cyclic factors above has even

order. Now if ζn is a primitive nth root of unity, each character ψ of G is uniquely

determined by setting

ψ(g) = ζkn

for some k ∈ {0, ..., n− 1}. Since u = g
n
2 , we see that the condition ψ(u) = −1 forces

k to be odd. Thus we have for any j ∈ {0, ..., n− 1} that

∑
ψ∈Ĝ

ψ(u)=−1

ψ(gj) =
n∑
k=0
k odd

ζjkn = ζj

n
2∑

k=0

ζ2jk
n = ζj

n
2∑

k=0

ζjkn
2
.

Now, unless j is a multiple of n
2
, the last sum vanishes because it ranges over all

dth roots of unity, where d = gcd(jk, n
2
). For j = 0, the whole expression obviously

becomes n
2
, for j = n

2
, we obtain −n

2
, proving the assertion.

Corollary 6.2.2. Let gcd(r,N) = 1. Then

φr,N(n) :=
2

ϕ(N)

∑
ψ (mod N)
ψ(−1)=−1

ψ(n · r′) =


1, if n ≡ r (mod N)

−1, if n ≡ −r (mod N)

0 otherwise

where ϕ(N) := |(Z/NZ)∗| denotes Euler’s totient function. The summation over

ψ runs over all odd characters modulo N and r′ is any integer such that rr′ ≡ 1

(mod N).
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Proof. This is an immediate consequence of 6.2.1.

6.3 Weight one Eistenstein series

In this section, we recall the relevant facts about Eisenstein series of weight 1. For a

general reference, the reader is referred to Section 4.8. in [DS05b].

For v = (cv, dv) ∈ ((Z/NZ)∗)2 with order N we define

gv1(τ) = δ(cv)ζ
dv(1) +

2πi

N

(
cv
N
− 1

2

)
− 2πi

N

∞∑
n=1

 ∑
m|n

n
m
≡cv (mod N)

sign(m)e
2πidvm
N

 q
n
N .

In this formula, cv denotes the integer such that 0 ≤ cv < N and cv ≡ cv (mod N).

We also define

δ(cv) :=


1 cv = 0,

0 otherwise,

and the function ζd(k) by

ζd(s) :=
∑
n∈Z

n≡d (mod N)

1

ns

for <(s) > 1 and otherwise by analytic continuation. We shall mainly need the special

value (see [DS05b], Equation (4.22) and Exercise 4.4.5)

ζd(1) =
πi

N
+
π

N
cot

(
πd

N

)
(gcd(d,N) = 1). (6.1)

The formula for gv1(τ) is very similar to the typical Eisenstein series for k ≥ 3,

but contains a correction term. One can show that gv1(τ) is a weight 1 modular form

with respect to the principal congruence subgroup Γ(N), and satisfies the equation

gv1 [γ]1(τ) = g
γ(v)
1 (τ),
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with

γ(v) = (acv + cdv, bcv + ddv).

for any ( a bc d ) ∈ SL2(Z).

To obtain forms which are weight 1 invariant with respect to Γ1(N), one generally

takes special linear combinations of the gv1 functions as follows: Let ψ, χ be Dirichlet

characters modulo u and v respectively with uv = N such that χ is primitive and ψχ

is odd. Define Gψ,χ
1 as follows:

Gψ,χ
1 (τ) =

u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)χ(d)g
(cv,d+ev)
1 (τ). (6.2)

In our arguments, we choose to take v to be 1 so that χ is trivial and ψ is an odd

character with respect to modulus N . We let Eψ
1 (τ) denote the normalized series

given by − 1
2πi
Gψ,1

1 (τ). The Fourier series of Eψ
1 (τ) is given by (see [DS05b], p. 140)

Eψ
1 (τ) = L(0, ψ) + 2

∞∑
n=1

∑
d|n

ψ(d)

 qn. (6.3)

The next result connects the Eψ
1 series to the generating function for T̂r,N(n) −

T̂N−r,N(n).

Proposition 6.3.1. If N ≥ 3 and gcd(r,N) = 1, then

Gr,N(q) :=
∑
n≥1

(
T̂r,N(n)− T̂N−r,N(n)

)
qn

=
1

ϕ(N)

q
1
24

η(τ)

cr,N +
∑

ψ (mod N)
ψ(−1)=−1

ψ(r′)Eψ
1 (τ)

 ,
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where

cr,N = −
∑

ψ (mod N)
ψ(−1)=−1

ψ(r′)L(0, ψ)

and L(s, ψ) denotes the Dirichlet L-series associated to ψ.

Proof. First, we rewrite Gr,N(q) using Lemma 6.1.1.

Gr,N(q) =
∞∏
n=1

1

1− qn

 ∞∑
m=1

 ∑
d|m

d≡r (mod N)

−
∑
d|m

d≡−r (mod N)

 qm

 .

By 6.2.2 we see that the coefficient of qm is
∑

d|m φr,N(d), so that we can write

Gr,N(q) =
1

ϕ(N)

∞∏
n=1

1

1− qn

 ∞∑
n=1

∑
d|n

∑
ψ (mod N)
ψ(−1)=−1

ψ(d)ψ(r′)

 qn

 .

Finally, we write this expression in terms of the Eisenstein series given in (6.3).

Gr,N(q) =
1

ϕ(N)

q
1
24

η(τ)

 ∑
ψ (mod N)
ψ(−1)=−1

(
ψ(r′)Eψ

1 (τ)− ψ(r′)L(0, ψ)
)

=
1

ϕ(N)

q
1
24

η(τ)

cr,N +
∑

ψ (mod N)
ψ(−1)=−1

ψ(r′)Eψ
1 (τ)

 .

Our proof will also require some information about the behavior of the Eisenstein

series in 6.3.1 near the cusps, that is, near τ = h
k
.
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Let Er,N(τ) denote the Eisenstein series in 6.3.1, that is

Er,N(τ) :=
∑

ψ (mod N)
ψ(−1)=−1

ψ(r′)Eψ
1 (τ).

Lemma 6.3.2. Let r,N be fixed positive integers with gcd(r,N) = 1. Let h, k be

integers with h ≤ k and gcd(h, k) = 1. Let H be such that 1 ≤ H ≤ k and hH ≡ −1

(mod k). As introduced in Chapter 2, we let

αh,k :=

−h hH+1
k

−k H


Then

Er,N [α]1(τ) =
∞∑
n=0

an(h, k)q
n
N

where the following are true:

a0(h, k) =
∑

ψ (mod N)
ψ(−1)=−1

cψ(h, k)ψ(r′) (6.4)

where

cψ(h, k) =

− 1

2πi

N−1∑
c=0

N−1∑
e=0

ψ(c)

(
δ(−hc− ke)ζ(hH+1

k
)c+He(1) +

2πi

N

(
(−hc− ke)

N
− 1

2

))

and rr′ ≡ 1 (mod N).

Also, we have the following:

|a0(h, k)| ≤ C0,
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and for all n ≥ 1,

|an(h, k)| ≤ C1n,

where C0, C1, depend on N but do not depend on h or k.

Proof. Recall that

Er,N [αh,k]1(τ) =
∑

ψ (mod N)
ψ(−1)=−1

ψ(r′)Eψ
1 [αh,k]1(τ).

We have

Eψ
1 [αh,k]1(τ) = − 1

2πi

N−1∑
c=0

N−1∑
e=0

ψ(c)g
αh,k(c,e)
1 (τ)

where

αh,k(c, e) =

(
−hc− ke,

(
hH + 1

k

)
c+He

)
.

Using the Fourier expansion for gv1(τ), we obtain the following expressions for the

coefficients of Eψ
1 [α](τ):

a0(h, k) =
∑

ψ (mod N)
ψ(−1)=−1

ψ(r′)cψ(h, k)

where

cψ(h, k) = − 1

2πi

N−1∑
c=0

N−1∑
e=0

ψ(c)

(
δ(−hc− ke)ζ(hH+1

k
)c+He(1) +

2πi

N

(
(−hc− ke)

N
− 1

2

))
.

and for n ≥ 1:

an(h, k) =
∑

ψ (mod N)
ψ(−1)=−1

ψ(r′)

N−1∑
c=0

N−1∑
e=0

 ∑
d|n

n
d
≡−hc−ke (mod N)

sign(d)e
2πi
N
d(hH+1

k
c+He)


 .

The inner sum is bounded by the divisor counting function 2d(n) which is less than
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2n, so the whole expression is bounded by ϕ(N)N2n. Note that much stronger bounds

for d(n) exist, in fact d(n) = O(nε) for any ε > 0, however we require only the crude

bound d(n) ≤ n. This proves the second inequality in the proposition.

6.4 Proof of Theorem 1.5.1

We will follow the proof of Rademacher’s formula for the partition function, as de-

scribed by Apostol in Chapter 5 of [Apo90]. Throughout the proof, let r and N be

fixed coprime integers with N ≥ 3.

By Cauchy’s integral formula, we have:

T̂r,N(n)− T̂N−r,N(n) =
1

2πi

∫
C

Gr,N(q)

qn+1
dq,

where C is any positively oriented contour lying inside the unit circle, which contains

the origin in its interior. By Proposition 6.3.1, we can decompose this integral into

two integrals, as follows,

T̂r,N(n)− T̂N−r,N(n) = T1 + T2 := (6.5)

1

2πiϕ(N)
cr,N

∫
C

q
1
24

η(τ)

1

qn+1
dq +

1

2πiϕ(N)

∫
C

q
1
24Er,N(τ)

η(τ)qn+1
dq. (6.6)

The first integral is basically the one Rademacher considered, which yields (see

(1.12))

T1 =
cr,N
ϕ(N)

2π

(24)
3
4

(
n− 1

24

)− 3
4
∞∑
k=1

Ak(n)k−1I 3
2

(
π

k

√
2

3

(
n− 1

24

))
,
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where I 3
2

is the order 3
2

modified Bessel function of the first kind,

Ak(n) =
∑

0≤h<k
(h,k)=1

eπis(h,k)−2πinh
k , (6.7)

and s(h, k) is as in (2.1).

For the rest of the subsection, we will use Rademacher’s technique to obtain an

asymptotic formula for T2. We define the contour C to be given by q = e2πiτ where

τ follows Rademacher’s path of integration P (n) which takes τ from i to i + 1 by

going along the upper arcs of the Farey circles Ch,k where h
k

is in the Farey sequence

of order n. That is, gcd(h, k) = 1, and 1 ≤ h ≤ k ≤ n. Let γ(h, k) denote the upper

arc of the Ford circle Ch,k. Changing variables from q to τ , we have:

T2 =
1

ϕ(N)

∑
0≤h≤k≤n
gcd(h,k)=1

∫
γ(h,k)

q
1
24Er,N(τ)

η(τ)qn
dτ.

As in [Apo90], we make the change of variables z = −ik2
(
τ − h

k

)
, so that τ =

h
k

+ iz
k2 . This maps γ(h, k) to an arc of the circle of radius 1

2
centered at 1

2
. The contour

goes in the clockwise direction from the image of the left end point of γ(h, k) to the

image of the right endpoint of γ(h, k). It is well-known (see Theorem 5.8 in [Apo90])

that if h1

k1
< h

k
< h2

k2
are adjacent in the Farey sequence of order M , then the image

under the change of variables from τ to z of the point where γ(h1, k1) and γ(h, k)

intersect is given by

z1(h, k) =
k2

k2 + k2
1

+ i
kk1

k2 + k2
1

.

Similarly, the point where γ(h, k) meets γ(h2, k2) is mapped to

z2(h, k) =
k2

k2 + k2
2 −

ikk2

k2 + k2
2 .



81

This gives us the following:

T2 =
i

ϕ(N)

∑
h,k

1

k2

∫ z2(h,k)

z1(h,k)

q
1
24Er,N(τ)

η(τ)qn
dz.

Now we will estimate the integrand by its behavior near the cusps. Let an(h, k)

be as in 6.3.2. First we decompose the integrand,

(
q

1
24Er,N(τ)

)
η(τ)qn

= Ψ1(τ) + Ψ2(τ) :=

− i
(z
k

)− 1
2 1

qn
e−

πz
12k2 + π

12z
+πis(−H,k)a0(h, k)

+


(
q

1
24Er,N(τ)

)
η(τ)qn

+ i
(z
k

)− 1
2 1

qn
e−

πz
12k2 + π

12z
+πis(−H,k)a0(h, k)

 .

Now we show that Ψ2(τ) is negligible. We can adjust to the contour of integration so

that we are integrating along the chord adjoining z1(h, k) and z2(h, k) instead of the

arc. This yields

|Ψ2(τ)| =

∣∣∣∣∣(zk)− 1
2
e−

πz
12k2 + π

12z
+πis(h,k) 1

qn

(
∞∑
m=1

(
∑

Nj+`=m

a`(h, k)p(j))e2πim
N

(H
k

+ i
z

)

)∣∣∣∣∣
≤
√
k√
|z|
e2π<(z)n/k2

(
∞∑
m=1

(
∞∑

Nj+`=m

a`(h, k)p(j))e−2π<( 1
z )(m

N
− 1

24
)

)
.

For z inside the circle, <
(

1
z

)
≥ 1 ( [Apo90], page 107). By Lemma 6.3.2, we have

|an(h, k)| ≤ C1n for n ≥ 1. Thus:

∞∑
m=1

(
∞∑

i+j=m

ai(h, k)p(j)

)
e−2π<( 1

z )(m−
1
24) ≤

∞∑
m=1

C1m
2p(m)e−2π(m− 1

24
)

The known asymptotics for p(n) ensure that the sum is convergent.

By Theorem 5.9 in [Apo90], we have <(z) ≤ |z| ≤
√

2k
n

on the chord, thus we have
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e2π<(z)n/k2 ≤ e8π. Using the formulas for z1(h, k), z2(h, k), we have that for z on the

chord,

|z| ≥ min{Re(z1(h, k)),Re(z2(h, k))} ≥ 1

2n2
.

Thus we have the following:

|Ψ2(τ)| ≤ Ck
1
2n,

for some constant C, independent of h, k, or n. The length of the chord at most 2
√

2k
n

,

so we have ∫ z2(h,k)

z1(h,k)

Ψ2(τ)dz ≤ C2
√

2k
3
2 .

Considering all the integrals over Ψ2 that contribute the calculation of T2, we estimate:

∣∣∣∣∣ i

ϕ(N)

∑
h,k

1

k2

∫ z2(h,k)

z1(h,k)

Ψ2(τ)dz

∣∣∣∣∣ ≤ C2
√

2

ϕ(N)
n

3
2 .

This allows us to approximate T2 as follows:

T2 =
i

ϕ(N)

∑
h,k

1

k2

∫ z2(h,k)

z1(h,k)

−i
(z
k

)− 1
2 1

qn
e−

πz
12k2 + π

12z
+πis(−H,k)a0(h, k)dz

+
i

ϕ(N)

∑
h,k

1

k2

∫ z2(h,k)

z1(h,k)

Ψ2(τ)dz

=
1

ϕ(N)

∑
h,k

1

k2

∫ z2(h,k)

z1(h,k)

(z
k

)− 1
2 1

qn
e−

πz
12k2 + π

12z
+πis(−H,k)a0(h, k)dz +O(n

3
2 ).

To evaluate the integral, we adjust the contour of integration.Let x1(n) be the

point on the upper half of the circle K with |x1(n)| = 1
n
, and let x2(n) be the

point on the lower half of the circle with |x2(n)| = 1
n
, and we rewrite the integral as∫ z2(h,k)

z1(h,k)
=
∫ x2(n)

x1(n)
−
∫ z1(h,k)

x1(n)
−
∫ x2(n)

z2(h,k)
.

We will show that the second two integrals are negligible. On the arc between

x1(n) and z1(h, k), and on the arc between z2(h, k) and x2(n), we have 1
n
≤ |z| ≤

√
2k
n

.

For z on the circle, <
(

1
z

)
= 1. Combining these facts, we have that the integrand is
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bounded as follows:

∣∣∣∣∣ 1

k2

(
k

z

) 1
2

a0(h, k)e−
2πinh
k e

2πnz
k2 e−

πz
12k2 + π

12z
+πis(h,k)

∣∣∣∣∣ ≤
1

k2

√
k|z|−

1
2 |a0(h, k)|e2πn<(z)/k2−π<(z)

12k2 +
π<( 1

z )
12

≤ k−
3
2
√
nC0ke

2π
√

2/k+ π
12

≤ C0e
2
√

2π+ π
12k−

1
2n

1
2

Thus, making use of the fact that the length of both arcs is bounded by π, we have

the following bound for the integral over these two arcs:

∣∣∣∣∣
(∫ z1(h,k)

x1(n)

+

∫ x2(n)

z2(h,k)

)(
1

k2

(
k

z

) 1
2

a0(h, k)e−
2πinh
k e

2πnz
k2 e−

πz
12k2 + π

12z
+πis(h,k)

)∣∣∣∣∣ ≤ C0πe
2
√

2π+ π
12 .

Summing over h, k, we get the total contribution to the asymptotic from these

arcs,

∣∣∣∣∣ 1

ϕ(N)

∑
h,k

(∫ z1(h,k)

x1(n)

+

∫ x2(n)

z2(h,k)

)(
1

k2

(
k

z

) 1
2

a0(h, k)e−
2πinh
k e

2πnz
k2 e−

πz
12k2 + π

12z
+πis(h,k)

)∣∣∣∣∣
≤ C0πe

2
√

2π+ π
12n2.

Therefore, we can rewrite T2 as follows:

T2 =
1

ϕ(N)

∑
h,k

Bk(n)

∫ x2(n)

x1(n)

1

k
3
2

(
1

z

) 1
2

e
2πnz
k2 −

πz
12k2 + π

12z dz +O(n2),

where

Bk(n) =
∑

1≤h≤k
gcd(h,k)=1

a0(h, k)eπis(h,k)− 2πinh
k .
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We change variables by taking t = π
12z

. This yields the following:

T2 = −
( π

12

) 1
2 1

ϕ(N)

∑
h,k

Bk(n)k−
3
2

∫ π
12

+i π
12

√
n2−1

π
12
−i π

12

√
n2−1

t−
3
2 e

2π2n
12tk2−

π2

t122k2 +tdt+O(n2).

Finally, we rewrite all this in terms of modified I Bessel functions. We have the

following well-known description of the I-Bessel function of order ν in terms of contour

integrals (see [Apo90], p. 109)

Iν(z) =

(
1
2
z
)ν

2πi

∫ c+i∞

c−i∞
t−ν−1et+

z2

4t dt. (6.8)

Furthermore, one can express the I-Bessel functions whose order is half of an odd

integer as an elementary function, e.g.,

I 1
2
(z) =

√
2

πz
sinh(z) =

1√
2πz

(ez − e−z).

It is straightforward to show

∣∣∣∣∣
∫ π

12
+i∞

π
12

+i π
12

√
n2−1

t−
3
2 e

2π2n
12tk2−

π2

t122k2 +tdt

∣∣∣∣∣ = O(n−
1
2 )

and ∣∣∣∣∣
∫ π

12
−i π

12

√
n2−1

π
12
−i∞

t−
3
2 e

2π2n
12tk2−

π2

t122k2 +tdt

∣∣∣∣∣ = O(n−
1
2 ).

Applying the trivial bound |Bk(n)| ≤ C0k, we have the following:

T2 = −
( π

12

) 1
2 1

ϕ(N)

∑
h,k

Bk(n)k−
3
2

(∫ π
12

+i∞

π
12
−i∞

t−
3
2 e

2π2n
12tk2−

π2

t122k2 +tdt+O(n−
1
2 )

)
+O(n2)

= −
( π

12

) 1
2 1

ϕ(N)

∑
h,k

Bk(n)k−
3
2

∫ π
12

+i∞

π
12
−i∞

t−
3
2 e

2π2n
12tk2−

π2

t122k2 +tdt+O(n2).
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We take z = 2
√

π2

6k2

(
n− 1

24

)
in (6.8) and find

T2 = (6.9)

− 2πi
1

ϕ(N)

( π
12

) 1
2

(
π2

6

(
n− 1

24

))− 1
4

n∑
k=1

Bk(n)k−1I 1
2

(
π

k

√
2

3

(
n− 1

24

))
+O(n2).

(6.10)

To compute the asymptotic, we need the k = 1 term of this sum. We find with (6.1)

and 6.3.2 the following formula for B1(n),

B1(n) = a0(0, 1) = − 1

2Ni

∑
ψ (mod N)
ψ(−1)=−1

ψ(r′)
N−1∑
c=0

ψ(c) cot
(πc
N

)
.

We compute the error:

2π
1

ϕ(N)

( π
12

) 1
2

(
π2

6

(
n− 1

24

))− 1
4

n∑
k=2

∣∣∣∣∣Bk(n)k−1I 1
2

(
π

k

√
2

3

(
n− 1

24

))∣∣∣∣∣
≤ π

ϕ(N)

(
n− 1

24

)− 1
2

C0

(
n

5
2 e

π
2

√
2
3(n− 1

24) +O(1)

)

Thus we have:

T2 = (6.11)

1

2
√

2ϕ(N)N

 ∑
ψ(−1)=−1

ψ(r′)
N−1∑
c=0

ψ(c) cot
(πc
N

) e

(
π
√

2
3(n− 1

24)
)

√(
n− 1

24

) (6.12)

+O

(
n2e

(
π
2

√
2
3(n− 1

24)
))

. (6.13)
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6.5 Euler-Maclaurin Summation

In this subsection we recall a maybe not too widely known version of the Euler-

Maclaurin summation formula. For asymptotic exansions in the strong sense, we use

the notation

h(t) ∼
∞∑

k=−1

akt
k, (t→ 0).

This means that for every M ≥ 0 we have

h(t)−
M−1∑
k=−1

akt
k = O(tM), (t→ 0).

In the following, we will often encounter Bernoulli polynomials Bn(x) for n a

non-negative integer, which can be defined via their generating function

∞∑
n=0

Bn(x)
tn

n!
=

text

et − 1
, |t| < 2π,

and the Bernoulli numbers Bn := Bn(0).

The Bernoulli polynomials are also given explicitly in terms of the Bernoulli num-

bers as follows:

Bn(x) =
n∑
k=0

(
n

k

)
Bn−kx

k (6.14)

and they satisfy the following relations,

Bn(x+ 1)−Bn(x) = nxn−1 (6.15)

and

Bn(1− x) = (−1)nBn(x), (6.16)

see e.g. equations (24.4.1) and (24.4.3) in [OLBC10].

In Proposition 3 in [Zag75], Zagier gives the following formula, which we use.
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He proves a slightly more restrictive version of the following theorem, but states the

version displayed here1. The reader is also referred to formula 23.1.32 in [AS] as well

as [Lam01] and the references therein.

Proposition 6.5.1. Let f be a C∞ function on the positive real line which has an

asymptotic expansion f(t) ∼
∑∞

n=0 bnt
n as t → 0, and satisfies the property that it

and all of its derivatives are of rapid decay at infinity. Then we have the asymptotic

expansion

∞∑
m=0

f((m+ a)t) ∼ 1

t

∫ ∞
0

f(t)dt−
∞∑
n=0

bn
Bn+1(a)

n+ 1
tn, (t→ 0).

for every a > 0.

Remark 6.5.2. An inspection of the proof of Proposition 6.5.1 shows that the given

asymptotic expansion is actually valid whenever t is a complex variable with | arg(t)| <
π
2
− δ for some δ > 0 provided that f (n)(eiθx) is of rapid decay for real x → ∞,

|θ| < π
2
− δ and all non-negative integers n.

For the convenience of the reader, we give a proof of 6.5.1.

Proof. For some t, Let g(x) := f((a + x)t). Note that g is still smooth and has

derivatives of rapid decay at infinity. Applying the first formula on page 13 of [Zag75]

to g(x) gives us the following:

∞∑
m=1

f((m+a)t) =

∫∞
at
f(x)dx

t
+
N−1∑
n=1

(−1)nBn+1

(n+ 1)!
g(n)(0)− (−1)N

∫ ∞
0

g(N)(x)
B̂N(x)

N !
dx.

where B̂N(x) := Bn(x− bxc).
1The equation he gives (see eq. (44) in [Zag75]), however, contains a slight typo, the + sign in

front of the sum should be a - sign.
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We notice that the first term is given by

∫∞
at
f(x)dx

t
=

∫∞
0
f(x)dx

t
−
∫ at

0
f(x)dx

t

Using the asymptotic expansion for f , we have

∫ at
0
f(x)dx

t
=

N−1∑
n=0

bna
n+1tn

n+ 1
+O(tN), (t→ 0).

We notice that the last integral is O(tN) as t→ 0, since

−(−1)N
∫ ∞

0

g(N)(x)
B̂N(x)

N !
dx = (−t)N−1

∫ ∞
0

f (N)(x+ a)
B̂N(x

t
)

N !
dx,

and since B̂N(x) is bounded and f (N) is of rapid decay.

Now we consider the second sum. We have g(n)(0) = tnf (n)(at), which has the

following expansion:

g(n)(0) = tn

(
N−1−n∑
m=0

bm+n
(m+ n)!

m!
amtm +O(tN−n)

)
, (t→ 0).

Substituting this formula and switching the order of summation, we find the

asymptotic expansion as t→ 0 for the middle sum:

N−1∑
n=1

(−1)nBn+1

(n+ 1)!
g(n)(0)

=
N−1∑
n=1

(−1)nBn+1

(n+ 1)!
tn

(
N−1−n∑
m=0

bm+n
(m+ n)!

m!
amtm +O(tN−n)

)
, (t→ 0)

=
N−1∑
k=0

bkt
k

k + 1

k∑
n=0

(−1)nBn+1a
k−n
(
k + 1

n+ 1

)
+O(tN), (t→ 0).
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Now we can put everything together to obtain

∞∑
m=0

f((m+ a)t) = f(at) +
∞∑
m=1

f((m+ a)t)

=
N−1∑
n=0

bna
ntn +

∫∞
0
f(x)dx

t
−

N−1∑
n=0

bna
n+1

n+ 1
tn

+
N−1∑
n=0

bn
n+ 1

[
n∑
k=0

(−1)kBk+1a
n−k
(
n+ 1

k + 1

)]
tn +O(tN)

=

∫∞
0
f(x)dx

t
+

N−1∑
n=0

bna
ntn +

N−1∑
n=0

bn
n+ 1

[
n+1∑
k=0

(
n+ 1

k

)
Bk(−a)n+1−k

]
(−t)n

+O(tN).

By (6.14) we recognize the sum in square brackets as the Bernoulli polynomial

Bn+1(−a). Then using (6.15) and (6.16), one easily sees that the coefficient of tn

(n ≥ 0) in the above expansion is given by −Bn+1(a)
n+1

, which is what we claimed.

6.6 Wright’s Circle Method

In this section, we briefly recall two propositions from [NR], based on Wright’s version

of the Circle Method [Wri71], that allow to obtain asymptotic results for products of

functions in a fairly general setting.

Suppose ξ(q) and L(q) are analytic functions for complex arguments |q| < 1 and

q /∈ R≤0, such that

ξ(q)L(q) =:
∑
n

a(n)qn

is analytic for |q| < 1. Further assume the following hypotheses, where 0 < δ < π
2

and c > 0 are fixed constants.

1. As t→ 0 in the cone | arg(t)| < π
2
− δ and |=(t)| ≤ π we have, for some B ∈ R,
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either

L(e−t) = t−B

(
k−1∑
`=0

α`t
` +Oδ(t

k)

)
, (6.17)

in which case we say that L is of polynomial type near 1, or

L(e−t) =
log t

tB

(
k−1∑
`=0

α`t
` +Oδ(t

k)

)
, (6.18)

in which case we call L of logarithmic type near 1.

2. As t→ 0 in the cone | arg(t)| < π
2
− δ and |=(t)| ≤ π we have

ξ(e−t) = tβe
c2

t

(
1 +Oδ(e

− γ
t )
)

(6.19)

for real constants β ≥ 0 and γ > c2.

3. As t→ 0 in the cone π
2
− δ ≤ | arg(t)| < π

2
and |=(t)| ≤ π one has

|L(e−t)| �δ |t|−C , (6.20)

where C = C(δ) > 0.

4. As t→ 0 in the cone π
2
− δ ≤ | arg(t)| < π

2
and |=(t)| ≤ π one has

|ξ(e−t)| �δ ξ(|e−t|)e−K<(
1
t ), (6.21)

where K = K(δ) > 0.

These hypotheses in (6.17)–(6.19) ensure the asymptotics of L and ξ on the so-

called major arc, those in (6.20)–(6.21) their asymptotics on the so-called minor arc

of the unit circle.

For our purposes, we require the following two propositions (see Propositions 1.8

and 1.10 in [NR]).
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Proposition 6.6.1. Suppose the hypotheses (1)–(4) are satisfied and that L has poly-

nomial type near 1. Then there is an asymptotic expansion

a(n) = e2c
√
nn

1
4

(2B−2β−3)

(
M−1∑
r=0

prn
− r

2 +O(n−
M
2 )

)
, (6.22)

where

pr =
r∑
s=0

αsws,r−s (6.23)

with αs as in (6.17) and

ws,r =
cs+β−B+ 1

2

(−4c)r2π
1
2

·
Γ
(
s+ β −B + r + 3

2

)
r!Γ
(
s+ β −B − r + 3

2

) (6.24)

for the coefficients a(n) of ξ(q)L(q) as n→∞.

Note that Proposition 6.6.1 is originally due to Wright [Wri71].

Proposition 6.6.2. Suppose hypotheses (1)–(4) are satisfied and that L has logarith-

mic type near 1 such that B−β = 1
2
, with B and β as in equations (6.18) and (6.19)

respectively. Then we have

a(n) = −e2c
√
nn−

1
2
α0

4π
1
2

(
log n− 2 log c+O(n−

1
2 log n)

)

as n→∞.

6.6.1 A Preliminary Lemma

Here we prove a preliminary result that will be the key step towards the proof of

Theorem 1.5.4. For the rest of this thesis, let

f(t) =
1

et − 1
, <(t) > 0
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Lemma 6.6.3. Let r,N be greater than zero. Then we have for | arg(t)| < π
2
− δ for

some 0 < δ < π
2
:

∞∑
m=0

f
((
m+

r

N

)
t
)
∼ −

log(t) + ψ
(
r
N

)
t

+O(log t), , (t→ 0),

where ψ(z) = Γ′(z)
Γ(z)

denotes Euler’s digamma function.

Proof. From the definition of the Bernoulli numbers we have

f(t) =
∞∑
k=0

Bk

k!
tk−1.

Let f ∗(t) := f(t)− t−1e−t. Then we have for <(t) > 0,

∞∑
m=0

f
((
m+

r

N

)
t
)

=
∞∑
m=0

1(
m+ r

N

)
t
e−(m+ r

N )t +
∞∑
m=0

f ∗
((
m+

r

N

)
t
)
. (6.25)

To find the asymptotic expansion of the second sum in the right hand side of 6.25,

we note that

f ∗(t) ∼
∞∑
k=0

bkt
k, (t→ 0),

where

bk := (Bk+1 − 1)
1

(k + 1)!
.

Then it follows from Proposition 6.5.1 that we have

∞∑
m=0

f ∗
((
m+

r

N

)
t
)
∼
∫∞

0
f ∗(t)dt

t
−
∞∑
n=0

bn
Bn+1

(
r
N

)
n+ 1

tn, (t→ 0).

Next we consider the first sum of the right hand side of (6.25).

First, since

1

m+ r
N

=

(
1

m+ r
N

− 1

m

)
+

1

m
,
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we have the following:

∞∑
m=0

1

m+ r
N

e−mt =
N

r
+
∞∑
m=1

e−mt

m
−
∞∑
m=1

r
N

m(m+ r
N

)
e−mt.

The first sum is equal to − log(1− e−t). Differentiating once with respect to t, we

see that the following holds:

− log
(
1− e−t

)
∼ log

(
1

t

)
−
∞∑
n=1

Bn

n · n!
tn, (t→ 0).

The second sum is absolutely and uniformly convergent for <(t) ≥ 0 and we have

lim
t→0

∞∑
m=1

1

m(m+ r
N

)
e−mt =

∞∑
m=1

1

m(m+ r
N

)
=
N

r

(
γE + ψ

( r
N

))
+
N2

r2

by equation (5.7.6) in [OLBC10], where γE denotes the Euler-Mascheroni constant.

We have that in fact

∞∑
m=1

1

m(m+ r
N

)
e−mt =

N

r

(
γE + ψ

( r
N

))
+
N2

r2
+O(t log t), (t→ 0),

or, equivalently, that

lim
t→0

∞∑
m=1

1

m(m+ r
N

)

e−mt − 1

t log t

exists, which can easily be seen by applying de l’Hôpital’s Rule (since the series is

still absolutely and locally uniformly convergent for <(t) > 0, we can differentiate

each summand).

Assembling all of this gives the following:
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∞∑
m=0

f
((
m+

r

N

)
t
)
∼ e−

r
N
t

t

(
N

r
+ log

(
1

t

)
−
∞∑
n=1

Bn

n · n!
tn +

∞∑
m=1

− r
N

m(m+ r
N

)
e−mt

)

+

∫∞
0
f ∗(t)dt

t
−
∞∑
n=0

bn
Bn+1( r

N
)

n+ 1
tn, (t→ 0).

Simplifying, we have

∞∑
m=0

f
((
m+

r

N

)
t
)
∼ −

log(t) + ψ
(
r
N

)
t

+O(log t), (t→ 0).

Here we used the fact (see eq. (5.9.18) in [OLBC10]) that

∫ ∞
0

f ∗(t)dt =

∫ ∞
0

1

et − 1
− e−t

t
dt = γE.

6.7 Proof of Theorem 1.5.4

Now we prove the Theorem 1.5.4.

Proof. By Lemma 6.1.1 we have

∞∑
n=1

T̂r,N(n)qn =

(∏
n≥1

1

1− qn

) ∞∑
n=1

 ∑
d|n

d≡r (mod N)

qn




Letting f be as defined in the previous section and setting q = e−t, we simplify this

as follows:
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∞∑
n=1

T̂r,N(n)qn =

(∏
n≥1

1

1− qn

) ∑
m≡r (mod N)

qm

1− qm

=

(∏
n≥1

1

1− qn

)
∞∑
m=0

f
((
m+

r

N

)
Nt
)
.

Now we wish to apply the method outlined in Section 6.6 with ξ(e−t) = (2π)
1
2

η( it
2π

)
and

L(e−t) = (2π)−
1
2 q

1
24

∑∞
m=0 f

((
m+ r

N

)
Nt
)
. The function ξ(q) is known to satisfies

hypotheses 2 and 4 in Section 6.6 with c2 = π2

6
, β = 1

2
, and γ = 4π2 (see Theorem

4.1 in [NR]).

From Lemma 6.6.3 we see that L(q) satisfies hypothesis 1. By the straightforward

estimate ∣∣∣∣∣∣
∑

m≡r (mod N)

qm

1− qm

∣∣∣∣∣∣ ≤
∞∑
m=1

|q|m

1− |q|m

and Corollary 4.5 in [NR] we see that

∑
m≡r (mod N)

qm

1− qm
�δ t

− 3
2

in the bounded cone π
2
− δ ≤ | arg(t)| < π

2
and |=(t)| ≤ π, so that L(q) also satisfies

hypothesis 3 so that we can apply Propositions 6.6.1 and 6.6.2.

To be more precise, the asymptotic expansion as t → 0 has both a polynomial

and logarithmic asymptotic component. The logarithmic component is as follows:

L1(e−t) = − log(t)

(2π)
1
2Nt

(1 +O(1)),

to which we can apply Proposition 6.6.2, with B = 1 and α0 = − 1

(2π)
1
2N

.
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For the polynomial part, we have the following:

L2(e−t) = − logN

Nt(2π)
1
2

−
ψ
(
r
N

)
Nt(2π)

1
2

.

For L2, we apply Proposition 6.6.1, withB = 1, M = 1, α0 = − 1

N(2π)
1
2

(
ψ
(
N
r

)
+ logN

)
.

Putting these results together completes the proof.
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