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Abstract

New Statistical Methods for Complex Survival Analysis Problems

By

Bo Wei

In biomedical studies, the analysis of time-to-event data may encounter various com-
plex problems. One such scenario is that the observation of recurrent events can be
terminated by a dependent event. Another example is that treatment choice is not
random, possibly outcome-dependent, and therefore standard approaches comparing
treated group versus untreated group generally do not lead to valid estimates for the
causal treatment effect of interest. In this dissertation, we develop new statistical
methods to handle these complications in survival analysis.

In the first project, we propose two sensible adaptations of the generalized acceler-
ated recurrence time (GART) model (Sun et al., 2016) to handle the recurrent events
terminated by a dependent event. Our modeling strategies align with the rationale
underlying the use of the survivors’ rate function or the adjusted rate function to ac-
count for the presence of the dependent terminal event. We establish the asymptotic
properties of the new estimators. Simulation studies demonstrate good finite-sample
performance of the proposed methods. An application to a dataset from the Cystic
Fibrosis Foundation Patient Registry (CFFPR) illustrates the practical utility of the
new methods.

In the second project, we propose a new IV framework with randomly censored
outcomes where the causal treatment effect is quantified as complier quantile causal
effect (CQCE). Employing the special characteristic of IV and adapting the principle
of conditional score, we uncover a simple weighting scheme that can be incorporated
into the standard censored quantile regression procedure to estimate CQCE. We de-
velop robust nonparametric estimation of the derived weights in the first stage, which
permits stable implementation of the second stage estimation based on existing soft-
ware. We establish rigorous asymptotic properties for the proposed estimator, and
confirm its validity and satisfactory finite-sample performance via extensive simula-
tions. The proposed method is applied to a dataset from the Center for International
Blood and Marrow Transplant Research (CIBMTR) to evaluate the causal effect of
rituximab in diffuse large B-cell lymphoma (DLBCL) patients.

In the third project, we study the IV estimation of the population quantile causal
effect (PQCE) with the randomly censored data. Employing the rank similarity
assumption, we propose an estimating equation based on the observed quantities. We
develop a simple and easily-implemented two-step estimation procedure to solve the
non-monotonous estimating equation, and propose a sample-based inference approach
to avoid computation burden in resampling-based approaches. We rigorously justify
the asymptotic properties for the proposed estimator. Extensive simulations and
an application to a dataset from CIBMTR demonstrates the practical utility of the
proposed method.
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Chapter 1

Introduction
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1.1 Background

In biomedical studies, the analysis of time-to-event data may encounter various com-

plex problems. One such scenario is that the observation of recurrent events can be

terminated by a dependent event. Another example is that treatment choice is not

random, possibly outcome-dependent, and therefore standard approaches comparing

treated group versus untreated group generally do not lead to valid estimates for the

causal treatment effect of interest. In this dissertation, we develop new statistical

methods to handle these complications in survival analysis.

In the first project, we consider the survival settings with recurrent events, such

as hospitalizations and infections, which are commonly encountered in longitudinal

follow-up studies of chronic disease. In practice, the observation of the recurrent

events may be stopped by some disease-related events, such as death. One motivating

example is the Cystic Fibrosis Foundation Patient Registry (CFFPR) study. Cystic

Fibrosis (CF) is one of the most common, life-shortening genetic disorders in the

United States (Russell et al., 2012). Pseudomonas aeruginosa (PA) is one of the

major pathogens in CF lungs, which is associated with poor clinical outcomes and

greater mortality (Davies, 2002). Respiratory tract cultures are routinely obtained

for identifying PA and characterizing its phenotypes (mucoid or non-mucoid). The

early PA infection is usually non-mucoid and antibiotic sensitive. But recurrent of

non-mucoid PA infection leads to chronic PA infection, then to mucoid PA phenotype

(Mathee et al., 1999). The development of mucoid PA yet can be more complicated

than this widely held paradigm (Heltshe et al., 2018). Mucoid PA is more resistant

to antibiotics and more difficult to eradicate (Lyczak et al., 2002). As a result, rarely

patients can go back to the non-mucoid PA infection stage once acquiring a mucoid PA

infection. Under these considerations, a mucoid PA infection constitutes a dependent

terminal event to the recurrent process of non-mucoid PA infections (in addition

to death). The treatment strategy for the PA infections is to conduct eradication
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therapy at the stage of non-mucoid PA infections. Therefore, there is a scientific

interest to characterize association between the timing of non-mucoid PA infection

recurrences before a mucoid PA infection and the potential risk factors. To address

the complication from the dependent terminal event (i.e. mucoid PA infection), we

have developed two sensible adaptations of the generalized accelerated recurrence

time (GART) model (Sun et al., 2016) to provide useful alternative analyses that

can offer physical interpretations while rendering extra flexibility beyond the existing

work based on the accelerated failure time model.

In the second and third projects, we consider to quantify two types of causal

effects, the complier causal effect and population causal effect, under the survival sce-

nario where treatment choice decision may be outcome-dependent. Such a scenario

is commonly present in observational studies. Even in the perfectly randomized ex-

periments, the non-compliance of treatment assignments may lead to the dependency

between the treatment decision and outcomes. A valid estimate of the causal treat-

ment effects of interest may not be directly obtained by comparing the treated and

untreated groups. Instrumental variable (IV) methods are important approaches to

identify the causal effects in causal inference. An instrumental variable is a variable

that is associated with treatment and independent of unmeasured confounding given

covariates. The effect of the instrumental variable on the outcome is only through

its effect on the treatment given covariates (Baiocchi et al., 2014). A valid IV could

introduce the variation in the treatment but has no effect on the unmeasured con-

founders. This quasi-randomization from the IV can be used to identify the causal

treatment effects. IV methods have been extensively studied for settings with stan-

dard uncensored outcomes. One major type of approaches concerns population (or

global) causal effects of treatment defined by contrasting potential outcomes under

different treatments based on the whole population. Another type of approaches stud-

ies complier (or local) causal treatment effects under the latent class framework of IV
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analyses, where the IV and the treatment are both binary. That is, the whole pop-

ulation is divided into the latent compliance subgroups: compliers whose treatment

choices always coincide with the IV, always takers who always take the treatment,

never takers who always decline the treatment, and defiers whose treatment choices

are always opposite to the IV. Each type of the causal effect has its own advantages

and disadvantages. For example, the population causal effect has advantages in inter-

pretation (Heckman and Urzua, 2010; Deaton, 2009), and can be applied to different

types of IVs and treatment variables. In another perspective, estimating compiler

treatment effect relies on fewer untestable assumptions than estimating the popula-

tion (or global) causal treatment effect. Thus, compared to global causal treatment

effects, complier causal treatment effects may permit more robust inference and is

often of substantive interest in real applications.

Our motivating example in the second and third projects is from an analysis of a

retrospective dataset from the Center for International Blood and Marrow Transplant

Research (CIBMTR) was aimed to evaluate the efficacy of pre-transplant rituximab

treatment in diffuse large B-cell lymphoma (DLBCL) patients for improving progres-

sion free survival, as compared to standard intervention without rituximab. It was

found that patients in the rituximab group tended to be older and have had more

chemotherapy regimens than patients in the standard intervention group. The selec-

tion of pre-transplant treatment may also relate to factors, such as molecular subtype

of lymphoma, which potentially influence the post-transplant outcomes but were not

captured in this dataset. Ignoring these unmeasured confounders, a direct comparison

of the two treatment groups, even after adjusting for measured confounders, may still

fail to provide a valid estimate for the causal effect of rituximab in DLBCL patients.

To assess the causal treatment effect of rituximab, we address these complications by

utilizing a binary IV, which, in the CIBMTR example, is the indicator of whether

treatment was received after the FDA approval date of the rituximab. In the sec-
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ond project, we propose a new IV framework with randomly censored outcomes to

study complier (or local) causal treatment effects under the latent class framework of

IV analyses, where the IV and the treatment are both binary. In the third project,

we propose a censored population quantile causal effect (CPQCE) model under IV

framework to quantity population causal effect with randomly censored outcomes and

unmeasured confounders by employing the rank similarity assumption.

In the next section, we will present literature reviews on regression methods for

recurrent events data in the presence of a dependent terminal events and IV methods

for time-to-event data. At the end of this chapter, we will give an outline of this

dissertation.

1.2 Literature Review

1.2.1 Existing regression methods for recurrent events data

subject to a dependent terminal event

The presence of a dependent terminal event for recurrent events is common in biomed-

ical research. ’Net’ quantities that correspond to the setting without the dependent

terminal event are often of interest. Net quantities, such as the marginal rate and

mean function, however, are not nonparametrically identifiable in the presence of a

dependent terminal event (Ghosh and Lin, 2003). Tackling such quantities generally

requires additional assumptions about the association between the terminal event and

the recurrent events. Various types of joint models of the recurrent events and the

dependent terminal event have been studied in literature (Ghosh and Lin, 2003; Liu

et al., 2004; Huang and Wang, 2004; Ye et al., 2007, among others). Ghosh and Lin

(2003) considered the accelerated failure time models for both the recurrent events

and the terminal event. Huang and Wang (2004) adopted the proportional hazards

model for the terminal event and the proportional rate model for the recurrent events,
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given a latent variable capturing the within-subject connection between the recurrent

events and the terminal event. Liu et al. (2004) studied the proportional hazards

models for both the terminal event and the recurrent event, and further incorporated

a shared frailty to capture the dependency between the recurrent events and the

terminal event.

Alternatively, one may be interested in ’crude’ quantities. These quantities ac-

count for both the recurrent events and the terminal event, rather than targeting the

recurrent event process for the hypothetical setting where the terminal event does

not exist. Examples of such quantities include the adjusted rate function (Luo et al.,

2010), which depicts the rate of recurrent events before the occurrence of the terminal

event, and the survivors’ rate function, which represents the rate of recurrent events

conditioning on the terminal event hasn’t occurred (Cook and Lawless, 1997). The

interpretations of such ’crude; quantities do not assume the existence of the latent

recurrent event process after the occurrence of the terminal event (which may be

controversial in some practical situations). In particular, the interpretations of the

survivors’ rate function and the adjusted rate function bear a similar flavor to those

of cause-specific hazard function and cumulative incidence function, which are pop-

ularly used for competing risks data analyses. In addition, these quantities can be

estimated without imposing additional modeling of the terminal event. Many authors

(Ghosh and Lin, 2002; Schaubel and Cai, 2005; Liu et al., 2004; Zeng and Cai, 2010,

among others) have investigated either nonparametric or semiparametric estimation

of this type of quantities. For example, Schaubel and Cai (2005) and Liu et al. (2004)

studied proportional survivors’ rate model and an additive survivors’ rate model was

proposed by Zeng and Cai (2010). Ghosh and Lin (2002) studied a proportional ad-

justed rate model and proposed counting-process based estimation procedures, which

handle random censoring by either inverse weighting the probability of censoring or

inverse weighting the survival probabilities of the terminal event time.
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In the first project, we study how to address the presence of a dependent terminal

event under the generalized accelerated recurrence time (GART) model (Sun et al.,

2016). The GART model is a generalization of the traditional AFT modeling and

offers additional flexibility to explore potential heterogeneous effects of covariates.

Section 2.2 provides a brief review of the GART model. There is no existing work for

dealing with a dependent terminal event under the GART model. Our work under

the first topic is to fill this gap and render the above advantages of GART model.

1.2.2 Existing work on IV methods in time-to-event data

Instrumental variables (IV) is a common approach to handle the unobserved con-

founders in the estimation of the causal effect. Formally, an instrumental variable is

a variable that is correlated with treatment and associated the outcome through the

treatment and uncontaminated by unmeasured confounders (Baiocchi et al., 2014).

A valid IV can introduce quasi-randomization characteristic to eliminate bias caused

by unmeasured confounders. IV methods, initially motivated by applications in eco-

nomics, have been extensively studied for the standard uncensored outcomes. There

are two major types of approaches of IV methods in existing literature. One major

type of approach concerns complier (or local) causal treatment effects under the la-

tent class framework of IV analyses with binary IV and treatment variable (Imbens

and Angrist, 1994; Angrist et al., 1996a; Imbens and Rubin, 1997; Abadie et al.,

2002; Abadie, 2003; Cheng, Small, Tan and Ten Have, 2009, among others). Another

type of IV methods is designed for evaluating the causal effect over the entire pop-

ulation, and can be applied to binary, discrete, and continuous treatment variables

and IVs (Heckman and Robb Jr, 1985; Angrist and Imbens, 1995; Vansteelandt and

Goetghebeur, 2003; Chernozhukov and Hansen, 2005, 2006, 2008, among others).
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1.2.2.1 Existing work on IV methods for estimating complier causal effect

in time-to-event data

The setting with a binary IV and a binary treatment is frequently encountered in

time-to-event data. A common example is a randomized two-arm clinical trial with

treatment non-adherence issue, where a binary IV corresponds to the random group

assignment, which clearly influences the actual treatment but may not be always the

same as the actual treatment. The setting with binary IV and treatment can also arise

in an observational study, for example, to assess a new intervention versus standard

care, with a binary IV indicating a change in treatment guideline or availability of

the new intervention.

Among existing methods that concern a survival outcome with binary treatment

and IV, the local causal treatment effect has been commonly formulated based on

the hazard of the event of interest. For example, Baker (1998) and Nie et al. (2011)

studied the causal hazard difference in compliers using likelihood-based inference. Fol-

lowing the popular proportional hazard modeling in survival analysis, many authors

(Loeys and Goetghebeur, 2003; Vansteelandt and Goetghebeur, 2003; Cuzick et al.,

2007; Li and Gray, 2016; Kianian et al., 2019, among others) formulated the treat-

ment effect as a complier causal proportional hazard ratio (CCPHR) and developed

estimation procedures based on the partial or full likelihood technique or weighted

estimating equations. However, the CCPHR, like the traditional hazard ratio, does

not offer a straightforward physical interpretation (Reid, 1994), and is confined by

the proportional hazard constraint to only confer a static view of treatment effect.

A local causal treatment effect defined on the time scale of a survival outcome

may be preferred by some practitioners given its physical interpretation, but was

only studied sparsely in literature. Lin et al. (2014) and Yu et al. (2015) studied the

estimation of the complier location shift causal effect of treatment on a transformed

time scale with randomly censored data. Their likelihood-based approaches require
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a transformation model (Zeng and Lin, 2007) is assumed for each latent compliance

subgroup, despite the interest lies only in the complier subgroup. A quantile treatment

effect is conceptually more flexible than a location shift effect for describing how the

treatment affects the potential outcome distributions (Koenker, 2005). To the best of

our knowledge, a quantile causal treatment effect was considered only in the “global”

setting under structural quantile regression models with control variables (Blundell

and Powell, 2004; Chernozhukov et al., 2015). The available two-stage estimation

procedures were also limited to handle survival data with censoring that is always

known or observed.

In the second project, we made the first effort to tackle the problem of assessing

complier (or local) quantile causal effect (CQCE) of treatment with time-to-event

outcomes subject to standard random censoring. It is worth emphasizing that com-

pared to causal average casual effect (CACE), CQCE, the causal estimand proposed

in the second project, is more suitable for survival settings. This is because the pres-

ence of censoring often precludes the identifiability of average event time and hence

CACE in the first place. By employing the concept of quantiles, CQCE can provide a

more comprehensive picture about the causal treatment effect on the time-scale than

CACE, and is less restrictive than a complier location shift effect.

1.2.2.2 Existing work on IV methods for estimating population causal

effect in time-to-event data

Another type of IV methods is designed for evaluating the causal effect over the entire

population. Compared to the estimands of local causal effects which only work for

binary IV, the estimands of population causal effect can be applied to general settings

of IV, such as continuous IV. Besides, the estimands of population causal effect may

have more desirable interpretations than the estimands of local causal effect (Heckman

and Urzua, 2010; Deaton, 2009).
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Recently, many methods have been proposed for estimating the population causal

effects for time-to-event data. For example, Li et al. (2015) and Tchetgen et al.

(2015) proposed methods to estimate a linear structural additive hazards model for

right censored data, where the causal treatment effect corresponded to the causal

difference in the hazard function. Their approaches adapted either the standard two-

stage least squares (2SLS) estimation or “control function approach” for structural

linear models (Wooldridge, 2010). Zheng et al. (2017) extended Li et al. (2015)’s

approach to estimate the causal treatment effect on the subdistribution hazard of

a competing risks outcome. Recently, many methods is considered to estimate the

causal hazard ratio through the popular Cox proportional hazard model. Mart́ınez-

Camblor et al. (2019) proposed a two-stage residual inclusion procedure with an

individual frailty in Cox proportional hazard model. Sørensen et al. (2019) proposed

a structural Cox proportional hazard model, which includes a baseline model and

a selection bias function to separately describe the effect of covariates and selection

mechanism on the survival outcomes in the scenario without exposure. However,

the hazard function does not have a straightforward physical interpretation (Reid,

1994), and has limitations in causal inference because of its built-in selection bias

(Hernán, 2010). To avoid these issues, Huling et al. (2019) incorporated IVs in the

semiparametric accelerated failure time (AFT) model, and developed a rank-based

estimator of the causal effect of the treatment on the log transformed event time. All

of these methods assume the time-constant causal effects, which does not hold in the

heterogeneous causal effect scenario.

PQCE, which is a quantile counterpart of the PACE, can capture heterogeneous

causal effects on different points of the potential outcome distribution. Like the

classical quantile treatment effect, PQCE on the time scale of a survival outcome

may be preferred because of its advantages in physical interpretation and flexibility

in describing heterogeneous effects among the distributions of the potential outcome



11

(Koenker, 2005). Blundell and Powell (2007) proposed a two-stage estimator with

additive models for first stage and control variables in second stage. Chernozhukov

et al. (2015) proposed a two stage model, and allowed a non-additive model for the

control variables. Both methods impose strong structural assumptions on the control

variables, and are only applied to survival data with all observed censoring time. Hong

and Tamer (2003) proposed a conditional moment inequality formulation to quantile

causal treatment effect with all observed censoring time. Khan and Tamer (2009)

extended Hong and Tamer (2003)’s method to allow for standard covariate dependent

right censoring. However, their estimation procedures are quite complicated which

involve a third order U-process. Chen (2018) proposed a sequential instrumental

variable censored quantile regression procedure to estimate PCQE for censored data.

In this procedure, a subsample at each quantile, for which the censoring does not affect

the conditional quantile function, is constructed based on the estimators at previous

quantiles. The estimator can be obtained by applying IVQR model (Chernozhukov

and Hansen, 2005, 2006) in the constructed subsample. However, this approach is

limited to time-to-event data with fixed censoring time. Harding and Lamarche (2012)

studied the quantile regression panel duration models with endogenous covariates,

which can be applied for right censored data. It is remarkable that their model is

similar to our proposed model in this paper. However, our approach use different

estimating equation and estimation procedure. Moreover, we can not find rigorously

theoretical justification and clear estimation procedure in their work.

In the third work, we formally develop a censored population quantile causal effect

model (CPQCE) model to assess PQCE on a time-to-event outcome subject to stan-

dard conditionally independent right censoring. In the CPQCE model, we propose

a sequentially two-stage estimation procedure to solve the non-monotone estimating

equation, and establish asymptotic theory that fully justifies the proposed estimation

procedure and the sample-based inference procedure. Similar to the comparison be-
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tween CACE and CQCE, PQCE, the causal estimand in the third project, is a more

suitable causal estimand than population average causal effect (PACE) in the context

of time-to-event data.

1.3 Outline

In Chapter 2, we propose two sensible adaptations of the generalized accelerated

recurrence time (GART) model (Sun et al., 2016) to handle the recurrent events

terminated by a dependent event. The modeling strategies align with the rationale

underlying the use of the survivors’ rate function or the adjusted rate function to

account for the presence of the dependent terminal event. We identify and develop

estimation and inference procedures, and establish the asymptotic properties of the

new estimator. Simulation studies demonstrate good finite-sample performance of the

proposed methods. An application to a dataset from the Cystic Fibrosis Foundation

Patient Registry (CFFPR) illustrated the practical utility of the new methods.

In Chapter 3, we propose a new IV framework with randomly censored out-

comes where the causal treatment effect is quantified as complier quantile causal

effect (CQCE). Compared to the commonly studied complier average causal effect

(CACE), CQCE has better identifiability when outcomes are subject to censoring,

and can provide more dynamic insight about the potential outcome difference un-

der different treatments. Employing the special characteristic of IV and adapting

the principle of conditional score, we uncover a simple weighting scheme that can

be incorporated into the standard censored quantile regression procedure to estimate

CQCE. We develop robust nonparametric estimation of the derived weights in the

first stage, which permits stable implementation of the second stage estimation based

on existing software. We establish rigorous asymptotic properties for the proposed

estimator, and confirm its validity and satisfactory finite-sample performance via ex-
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tensive simulations. The proposed method is applied to a dataset from the Center

for International Blood and Marrow Transplant Research (CIBMTR) to evaluate the

causal effect of rituximab in diffuse large B-cell lymphoma (DLBCL) patients.

In Chapter 4, we propose a censored population quantile causal effect (CPQCE)

model under instrumental variable (IV) framework to quantity the population quan-

tile causal effect (PQCE) for the randomly censored data with unmeasured con-

founders. As the comparison between CQCE and CACE, PQCE has advantages

in identifiability and capturing heterogeneous effects compared to population aver-

age causal effect (PACE). Employing the rank similarity assumption, an estimating

equation based on the observed quantities has been provided. We develop a simple

and easily-implemented two-step estimation procedure to solve the non-monotonous

estimating equation, and propose a sample-based inference approach to avoid compu-

tation burden in resampling-based approaches. We rigorously justify the asymptotic

properties for the proposed estimator. Extensive simulations have been conducted

to confirm its validity and satisfactory finite-sample performance. An application to

a dataset from the Center for International Blood and Marrow Transplant Research

(CIBMTR) demonstrates the practical utility of the proposed method.

In Chapter 5, we provide a summary of our dissertation work and briefly discuss

our plan of future work.
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Chapter 2

Generalized Accelerated

Recurrence Time Model in the

Presence of a Dependent Terminal

Event
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2.1 Notation and Data Scenario

We first introduce notation and describe the data scenario of interest. Let T (j) denote

the time to the jth recurrent event (j = 1, 2, · · · ), D denote the time to a dependent

terminal event, and (L,R] denote a random observation window for the recurrent

events. Define R̃ = R ∧ D, δ = I(D ≤ R), and Z = (1, Z̃>)>, where Z̃ denotes

a p × 1 vector of covariates, ∧ is the minimum operator, and I(·) is the indicator

function. The observed counting process of recurrent events is defined as N(t) =∑∞
j=1 I(L < T (j) ≤ t ∧ R̃). The underlying recurrent event counting process without

accounting for the presence of the terminal event is given byN∗0 (t) =
∑∞

j=1 I(T (j) ≤ t).

The underlying recurrent event counting process that accounts for the presence of

the dependent terminal event is given by N∗(t) =
∑∞

j=1 I(T (j) ≤ t ∧ D). Clearly,

N∗(t) does not jump for t > D, meaning it does not involve the information on

the recurrent events that occur after the time D. We define the at-risk process

as Y (t) = I(L < t ≤ R̃), acknowledging that a subject who has experienced the

terminal event would not be considered as at risk for the recurrent event. We define

SC(t|Z) = Pr(L < t ≤ R|Z).

The observed data include n i.i.d replicates of (L, R̃, δ,N, Z), namely, {(Li, R̃i, δi, Ni, Zi)}ni=1.

We assume that (L,R] and N∗(t) are conditionally independent given Z.

2.2 A Review of the GART model

Sun et al. (2016) proposed the generalized accelerated recurrence time (GART) model

for recurrent events data in the absence of the terminal event (i.e. D = ∞). Define

µZ(t) = E{N∗0 (t)|Z} and τZ(u) = inf{t ≥ 0 : µZ(t) ≥ u}. The quantity µZ(t)

represents the mean function of recurrent events, and the quantity τZ(u) is the so-

called time to expected frequency u (Huang and Peng, 2009). Suppose µZ(t) is smooth

and strictly increasing. By the definition of τZ(u), the expected frequency (or mean
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function) of recurrent events given covariates in Z at time τZ(u) would equal u. This

suggests that τZ(u) can be roughly viewed as the inverse function of the mean function.

By its definition, τZ(u) has a direct “physical” interpretation on the time-scale (Reid,

1994).

Under the GART model, covariate effects are formulated on the time to expected

frequency:

τZ(G(u)) = exp
{
ZTβ0(u)

}
, u ∈ (0, U ]. (2.1)

where G(u) =
∫ u

0
g(s)ds and g(·) is a known positive and continuous function, and U

is a positive constant in the frequency scale. The non-intercept coefficients in β0(u)

represent the effects of the corresponding covariates on time to expected frequence

G(u). When all the non-intercept coefficients in β0(u) are constant over u and G(u) =

u, it can be shown that model (2.1) reduces to the accelerated failure time (AFT)

model for recurrent events data (Lin et al., 1998). If the event of interest is not

recurrent (i.e. T (j) = ∞ for j ≥ 2), then τZ(u) becomes the conditional quantile

function of T (1) given Z, and consequently model (2.1) reduces to a quantile regression

model for T (1).

Sun et al. (2016) showed that the GART model has an equivalent formulation in

terms of the counting process:

E{N(eZ
T β0(u))|Z} = E{

∫ u

0

Y (eZ
T β0(s))g(s)ds|Z}, u ∈ (0, U ], (2.2)

with g(u) = G′(u). This counting process formulation of the GART model greatly

facilitates the estimation of β0(u). Specifically, it suggests the following stochastic

integral based estimating equation:

n−1/2

n∑
i=1

Zi

{
Ni(exp{Z>i β(u)})−

∫ u

0

Yi(exp{Z>i β(s)})g(s)ds

}
= 0 (2.3)
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As elaborated in Sun et al. (2016), the estimating equation (2.3) can be stably and

effectively solved by a sequence of L1-minimization problems. Desirable asymptotic

properties, such as uniform consistency and weak convergence to mean-zero Gaussian

process, were established for the estimator derived based on Equation (2.3).

2.3 The Proposed Models and Inference Proce-

dure

2.3.1 An extension of the GART model based on survivors’

rate function

The survivors’ rate function, defined as λSZ(t)
.
= E{dN∗(t)|D ≥ t,Z}/dt, has been

used as a variant of the classic rate function for accounting for the presence of the

terminal event (Cook and Lawless, 1997). The interpretation of λSZ(t) targets the

subgroup with D ≥ t and this shares the same rationale as that adopted by cause-

specific hazard which is confined to a specific failure type in a competing risks setting.

Let ΛS
Z(u)

.
=
∫ u

0
λZ(t)dt and we shall refer it to as the cumulative survivors’ rate

function.

We propose an extension of the GART model in the presence of the terminal event

by viewing ΛS
Z(u), the integral of the survivors’ rate function, as the counterpart of the

mean function µZ(u), which is the integral of the classic rate function. Specifically,

the GART model (2.1) is transformed to

τSZ (G(u)) = exp
{
ZTβS0 (u)

}
, u ∈ (0, U ], (2.4)

where τSZ (u)
.
= inf{t ≥ 0 : ΛS

Z(t) ≥ u} stands for the time to expected cumulative

survivors’ rate u. Here G(u) is defined the same as in model (2.1).
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Interestingly, we can show that model (2.4) has the same counting process formu-

lation as in (2.2); see Proposition 1 in Appendix A:

E{N(eZ
>βS0 (u))|Z} =

∫ u

0

Y (eZ
>βS0 (u))g(s)ds, u ∈ (0, U ]. (2.5)

An important implication from this finding is that we can directly apply Sun et al.

(2016)’s estimation procedure, theory, and inference procedures, which were origi-

nally designed for the setting without the dependent terminal event, to address the

proposed model (2.4). The critical distinction is about the coefficient interpretation.

In the presence of the terminal event, the non-intercept coefficients in βS0 (u) represent

the covariate effects on the time to cumulative survivors’ rate G(u). The situation

discussed here is analogous to that for univariate survival setting with dependent

censoring. That is, the proportional cause-specific hazard regression for dependently

censored data shares the same procedure with the standard proportional hazards

regression for randomly censored data (Kalbfleisch and Prentice, 2002).

Following Sun et al. (2016), we can obtain an estimator of βS0 (·), denoted by β̂S(·),

as a right continuous piecewise-constant function that jumps only at the grid points

of SL(n) = {0 = u0 < u1 < · · · < uL(n) = U}. We set exp{XT
i β̂

S(0)} = 0 for all i,

and then obtain β̂S(uk), k = 1, 2, . . . , L(n), by sequentially locate the minimizer of

the L1-type convex function,

lk(h) =
n∑
i=1

∞∑
j=1

I(Li ≤ T
(j)
i ≤ R̃i)

∣∣∣log T
(j)
i − ZT

ih
∣∣∣+

∣∣∣∣∣R∗ −
{

n∑
i=1

∞∑
j=1

I(Li ≤ T
(j)
i ≤ R̃i)(−Zi)

Th

}∣∣∣∣∣
+

∣∣∣∣∣R∗ −
{

n∑
i=1

2ZT

ih
k−1∑
m=0

Yi(exp{ZT

i β̂
S(um)})

∫ um+1

um

g(s)ds

}∣∣∣∣∣ ,
where R∗ is a very large number and j = 1, . . . , L(n). Based on the results of Sun

et al. (2016), β̂S(u) is uniformly consistent in u and weakly convergence to a mean-

zero Gaussian process at the root-n rate under some regularity conditions. Similarly,
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the inferences about βS0 (·) can be carried out by bootstrapping-based procedures.

2.3.2 Extension of the GART model based on the adjusted

rate function

The counting process N∗(t)
.
=
∑∞

j=1 I(T (j) ≤ t ∧D) naturally accounts for the pres-

ence of the terminal event, and provides the base for defining the adjusted rate func-

tion. That is, the adjusted rate function can be defined as λAZ(t)
.
= E{dN∗(t)|Z}/dt.

We call ΛA
Z(t)

.
=
∫ u

0
λAZ(t)dt the cumulative adjusted rate function. It is easy to

see that ΛA
Z(t) = E{N∗(t)|Z}, which reflects the expected frequency of recurrent

events before the occurrence of the terminal event. In the non-recurrent event set-

ting, ΛA
Z(t) reduces to the so-called cumulative incidence function (Kalbfleisch and

Prentice, 2002).

Following the strategy of using the adjusted rate function to account for the pres-

ence of the terminal event, we propose an extension of the GART model that takes

the form,

τAZ (G(u)) = exp{Z>βA0 (u)}, u ∈ (0, U ] (2.6)

where τAZ (u) = inf{t ≥ 0 : ΛA
Z(t) ≥ u}, and G(u) is defined in the same way as in

the GART model (2.1). The non-intercept coefficients in βA0 (t) can be interpreted as

covariate effects on time to cumulative adjusted rate G(u).

In Proposition 2 in the Appendix, we show that model (2.6) implies

E

{
∞∑
j=1

1

SC(T (j)|Z)
I(L < T (j) ≤ eZ

>βA0 (u) ∧ R̃|Z)

}
=

∫ u

0

g(s)ds, u ∈ (0, U ]. (2.7)

By this result, we propose to estimate βA0 (u) based on the the estimating equation:

Sn(β, u) = 0 (2.8)
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where

Sn(β, u) = n−1/2

n∑
i=1

Zi

{
∞∑
j=1

1

ŜC(T
(j)
i |Z)

I(L < T
(j)
i ≤ eZ

>
i β(u) ∧ R̃)−

∫ u

0

g(s)ds

}
(2.9)

and ŜC(·|Z) is a reasonable estimator of SC(·|Z).

It could be directly estimated from non-parametric methods, such as Dabrowska

estimator. When adjusting with Z, given L < R, we could use Cox PH model or

AFT model to estimate marginal survival function ŜL(·|Z) and ŜR(·|Z) of L and R

given Z and ŜC(·|Z) = ŜR(·|Z)− ŜL(·|Z).

For the presentation simplicity, in the sequel, we assume that L and R are inde-

pendent of Z. In this case, SC(t|Z) is free of Z and equals Pr(R ≥ t) − Pr(L ≥ t).

Since R is only subject to the independent censoring by D and L is always observed,

we can estimate Pr(R ≥ t) by the left-continuous version of the Kaplan-Meier es-

timator of Pr(R > t), denoted by ĜR(t), and estimate Pr(L ≥ t) by its empirical

counterpart. When L and R are believed to be covariate-dependent, we can impose

regression modeling of L and R given Z to provide a reasonable estimate for SC(·|Z).

Note that Equation (2.8) is monotone but not continuous. Thus, an exact solution

may not exist. We then define an estimator of βA0 (u), β̂A(u), as a generalized solution

to Equation (2.8), which belongs to a convex set of size O(n−1) (Fygenson and Ritov,

1994). Following the arguments in Peng and Fine (2009), we only need to solve

Equation (2.8) on a fine grid SAL(n) = {0 = u0 < u1 < · · · < uL(n) = U}, and then let

β̂A(·) be a right continuous piecewise-constant function that jumps only at the grid

points of SAL(n). We can show that locating β̂A(uk) (k = 1, · · · , L(n)) is equivalent to



21

finding the minimizer of

Un(h, u) = n−1/2

n∑
i=1

∞∑
j=1

1

ŜC(T
(j)
i |Z)

I(Li < T
(j)
i ≤ R̃i)

∣∣ log T
(j)
i −Z>i h

∣∣
+
∣∣∣R∗ − { n∑

i=1

∞∑
j=1

1

ŜC(T
(j)
i |Z)

I(Li < T
(j)
i ≤ R̃i)(−Zi)

>h
}∣∣∣+

∣∣∣R∗ − { n∑
i=1

2Z>i h

∫ u

0

g(s)ds
}∣∣∣

(2.10)

where R∗ is a sufficiently large number. This is because ∂Un(h, u)/∂h equals to two

times n1/2Sn(β, u) whenR∗ is chosen large enough to bound |
∑n

i=1

∑∞
j=1

1

ŜC(T
(j)
i |Z)

I(Li <

T
(j)
i ≤ R̃i)(−Zi)

>h| and |
∑n

i=1 2Z>i h
∫ uk

0
g(s)ds|. The minimization of Un(h, u) can

be easily solved by using standard statistical software, such as the l1fit() function in

S-PLUS or the rq() function in R package quantreg.

2.3.3 Asymptotic properties

We establish the uniform consistency and weak convergence of the proposed estimator

β̂A(·). We first state the regularity conditions:

(C1) There exists vR > 0 such that Pr(R = vR) > 0 and Pr(R > vR) = 0. In

addition, Pr(R > L) = 1.

(C2) Z and N(R̃) are bounded.

(C3) (i) βA0 (u) is Lipschitz continuous in u ∈ [0, U ]; (ii) λAZ(t) = E{dN∗(t)Z}/dt

is bounded above uniformly in t and Z.

(C4) For some ρ0 > 0 and c0 > 0, infb∈B(ρ0) eigminA(b) ≥ c0, where B(ρ) = {b ∈

Rp+1 : infu∈[0,U ] ||b − β0(u)|| ≤ ρ} and A(b) = E{Z⊗2λAZ(t)|Z}. Here || · || is the

Euclidean norm, and we define u⊗2 = uu> for a vector u.

Condition (C1) is assumed to ensure the inverse weights {SC(T
(j)
i )}−1 can be

consistently estimated. This condition is usually satisfied in follow-up studies with

administrative censoring or by imposing artificial truncation to the observed recur-
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rent events. Conditions (C2) and (C3) are realistic assumptions; similar conditions

are also adopted in Sun et al. (2016) for the GART model in the absence of the de-

pendent terminal event. Condition (C4) implies that Sn(β, u) is strictly monotone in

a neighborhood of β0(u) for u ∈ (0, U ]. This entails the identifiability of β0(u) and

the consistency of β̂(u).

Under the regularity conditions (C1)-(C4), we have the following theorems:

Theorem 2.1. Suppose model (2.6) holds for u ∈ [0, U ]. Then under conditions

C1-C4, limn→∞ supu∈[ν,U ] ||β̂A(u)− β0(u)|| →p 0, where 0 < ν < U .

Theorem 2.2. Suppose model (2.6) holds for u ∈ [0, U ]. Then under conditions

C1-C4, n1/2{β̂A(u) − β0(u)} converge weakly to a mean zero Gaussian process for

u ∈ [0, U ] with covariance Φ(u′, u) = A{βA0 (u′)}−1E{ξ(u′)ξ(u)>}A{βA0 (u)}−1, where

ξ(u) is defined in Equation (2.15) in Appendix B.

The proofs of Theorems 2.1-2.2 follow the similar arguments in Peng and Fine

(2009). The detailed proofs are provided in Appendix B.

2.3.4 Inference

To make inference on β0(u), we can apply a bootstrapping procedure such as the

classical resampling with replacement, or resampling perturbed estimating equation

Jin et al. (2001).

Alternatively, we can also perform sample-based inference following the lines of

Peng and Fine (2009). More specifically, let Σ̂(u, v) denote a consistent plug-in esti-

mator of Σ(u, v), which stands for the asymptotic covariance matrix of Sn(β0(u), u)

and is defined in (2.18) in Appendix B. An consistent estimator Σ̂(u, u) for Σ(u, u)

maybe given by

Σ̂(u, u) =
1

n

n∑
i=1

(ξ̂1,i(u)− ξ̂2,i(u))⊗2
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where ξ̂1,i(u) = Zi{
∑∞

j=1
1

ŜC(T
(j)
i |Z)

I(Li < T
(j)
i ≤ eZ

>
i β̂

A(u)∧R̃i)−
∫ u

0
g(s)ds}, ξ̂2,i(u) =

1
n

∑n
k=1Zk

{∑∞
j=1

ξ̂ŜC ,i
(T

(j)
k )

Ŝ2
C(T

(j)
k )

× I(Lk < T
(j)
k ≤ eZ

>
k β̂

A(u) ∧ R̃k)
}

, and ξ̂Ŝc,i(T
(j)
k ) =

ĜR(T
(j)
k )I(T

(j)
k ≥ R̃i, δi = 0)/

∑n
m=1 I(R̃m ≥ R̃i) − {I(Li ≥ t) − 1

n

∑n
m=1 I(Lm ≥

T
(j)
k )}.

Then, find a symmetric and nonsigular (p+ 1)× (p+ 1) matrix En(u) = {en,1(u),

. . . , en,p+1(u)} such that Σ̂(u, u) = {En(u)}2. Next, calculateDn(u) = (S−1
n {en,1(u), u}

−β̂(u), . . . ,S−1
n {en,p+1(u), u} − β̂(u)), where S−1

n {e, u} is defined as the solution

to Sn{b, u} = e. Finally, we can estimate the asymptotic covariance matrix of

n1/2{β̂(u)−β0(u)} and n1/2{β̂(u′)−β0(u′)} by nDn(u′)En(u′)−1Σ̂(u′, u)En(u)−1Dn(u)T .

With u = u′, the asymptotic variance matrix of n1/2{β̂(u) − β0(u)} can then be es-

timated by n{Dn(u)}⊗2.

2.4 Numerical Studies

2.4.1 Monte-Carlo simulations

We conduct Monte-Carlo simulations to evaluate the proposed method for the ex-

tended GART model (2.6) based on the adjusted rate function. We generate co-

variates, Z1 and Z2, respectively from Bernoulli(0.5) and Uniform(−5, 5) distri-

butions. Define ηj = I(T (j) ≤ D). We generate ηj (j = 1, 2, . . .) as Bernoulli

random variables that satisfy Pr(η1 = 1) = p and Pr(ηj+1 = 1|ηj = 1) = p,

Pr(ηj+1 = 1|ηj = 0) = 0. The value of p determines the number of recurrent events

before the terminal event; setting a larger p tends to generate more recurrent events

before the terminal event. Define Tj,D = exp{T ∗(j)
3γ

Z1 + min(0.2, T
∗(j)

15γ
)Z2}T ∗(j)/γ,

where {T ∗(j), j = 1, 2, . . . } are produced from a standard homogeneous Poisson pro-

cess and γ follows the Gamma(2, 2) distribution. For j ≥ 1 with ηj = 1, we let

T (j) = Tj,D; for j corresponding to the first ηj = 0, we let D = Tj,D. Under this
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set-up, we can show that

τAZ (u) = exp

{
log
( 1

1− p
[ 2

{1− u(1− p)/p}1/2
− 2
])

+
1

3− 3p

[ 2

{1− u(1− p)/p}1/2
− 2
]
Z1

+ min
(

0.2,
1

15− 15p

[ 2√
1− u(1− p)/p

− 2
])
Z2

}
.

This indicates that model (2.6) holds with g(u) = u. The effect of Z1 on τAZ (u) is

increasing with u, and the effect of Z2 rises first and then becomes constant as u

increases. Finally, we generate L as w1 ·Unif(0, 1), where w1 follows Bernoulli(0.8),

and generate R as w2 · Unif(L, 30) + (1− w2) · 30, where w2 follows Bernoulli(0.8).

In our simulations, we consider p = 0.8, 0.85, 0.9, 0.95. In each setting, we generate

1, 000 datasets with sample size 200. The estimator β̂A(u) is calculated on an equally

spaced u-grid with 150 grid points. For p = 0.8, 0.85, 0.9, 0.95, the range of the u-

grid is set as (0, 1.5], (0, 2.0], (0, 2.5] and (0, 3.0] respectively. When carrying out

bootstrapping-based inference, we set the size of resampling as 100.

In Figure 2.1, we present the estimated coefficients for model (2.6) based on the

method proposed in Section 3.2. We also plot the coefficient estimates obtained from

applying Sun et al. (2016)’s method, which assesses the covariate effects on τSZ (u)

(instead of τAZ (u)). It is clearly shown that the proposed estimator β̂A(u) is virtually

unbiased. Naively using Sun et al. (2016)’s method would produce biased estimates

for the covariate effects on τAZ (u), particularly when u is large. It is also noted as

p increases, the departure of the empirical averages of Sun et al. (2016)’s estimates

from the true βA0 (u)’s decrease. This is reasonable because when p is closer to 1,

the terminal event is more unlikely to occur before the end of the observation (i.e.

R). Consequently, we expect τAZ (u) and τSZ (u) would be more similar and hence the

method targeting τAZ (u) and Sun et al. (2016)’s method which targets τSZ (u) would

produce more agreeable results.

In Figure 2.2, we compare the estimated standard errors (SE) based on the sample-
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Figure 2.1: The proposed coefficient estimates for model (2.6) (solid lines), along with
the true coefficients βA0 (u) (dashed lines) and the coefficient estimates obtained from
applying Sun et al. (2016)’s method (dotted lines) when sample size n=200
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based inference procedure and those based on bootstrapping with the empirical stan-

dard deviations (SD) of the coefficient estimates. It is shown that both sample-based

SEs and bootstrapping-based SEs are close to the empirical SDs in each setting ex-

cept those at very small u’s. The bootstrapping-based SEs are slightly closer to the

empirical SDs as compared to sample-based standard errors.

Figure 2.2: Estimated standard errors based on sample-based inference procedure

(solid lines), estimated standard errors based on bootstrapping (dashed lines), and

empirical standard deviations (dotted lines) with sample size n=200

We also evaluate the empirical coverage probabilities of the 95% confidence inter-

vals (CI) constructed based on the sample-based and bootstrapping-based inference

procedures. Figure 2.3 shows that the empirical coverage probabilities for the coeffi-
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Figure 2.3: Empirical coverage probabilities of the 95% confidence intervals con-
structed based on the sample-based inference procedure (solid lines) and bootstrap-
ping procedure (dashed lines) with sample size n=200

cients for Z1 and Z2 are fairly close to the nominal value 95%. The bootstrapping-

based confidence intervals perform slightly better than the sample-based confidence

intervals. For the intercept, the confidence intervals seem to be undercovered, par-

ticularly for small u’s. In simulations with sample size 400 (unreported here), we

observe a clear improvement in the empirical coverage probabilities for the intercept.
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2.4.2 An application to a dataset from the Cystic Fibrosis

Foundation Patient Registry

Cystic Fibrosis (CF) is one of the most common, life-shortening genetic disorders

with an incidence of 1:3500 in newborns in the United States (Russell et al., 2012).

The leading cause of the premature death is obstructive lung disease with recurrent

respiratory infections, inflammations, and structural airway damage. Pseudomonas

aeruginosa (PA), a ubiquitous environmental bacterium, is one of the major pathogens

in CF lungs, which is associated with poor clinical outcomes and greater mortality

(Davies, 2002). Respiratory tract cultures are routinely obtained for identifying PA

and characterizing its phenotypes (mucoid or non-mucoid). The early PA infection is

usually non-mucoid and antibiotic sensitive. But recurrent of non-mucoid PA infection

leads to chronic PA infection, then to mucoid PA phenotype (Mathee et al., 1999).

The development of mucoid PA yet can be more complicated than this widely held

paradigm (Heltshe et al., 2018). Mucoid PA is more resistant to antibiotics and more

difficult to eradicate (Lyczak et al., 2002). As a result, rarely patients can go back

to the non-mucoid PA infection stage once acquiring a mucoid PA infection. Under

these considerations, a mucoid PA infection constitutes a dependent terminal event

to the recurrent process of non-mucoid PA infections (in addition to death).

We apply the proposed method to a sub-dataset from the 2008 Cystic Fibrosis

Foundation Patient Registry (CFFPR) data, which includes 1, 974 children who were

born in or after 2000 with CF and had more than 5 years’ follow-up. The objective of

our analysis is to assess how several potential risk factors influence the recurrence of

non-mucoid PA infections prior to the mucoid PA infection while alive. To this end,

we set the time origin as the birth. We define the recurrent event time T (j) as the age

at the j-th non-mucoid infection, and time to the terminal event D as the age at the

first mucoid PA infection or death, whichever occurred first. Age at the first CFFPR

visit and age at the last follow-up visit correspond to the L and R respectively.
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Table 2.1: Summary statistics of the potential risk factors in the CFFPR dataset
(n = 1974)

Potential risk factors n(%)
Sex Female 1024 (51.9%)

Male 950 (48.1%)

F508del Heterogeneous 1274(64.5%)
Homogeneous/Other 700 (35.5%)

Meconuim ileus Yes 534 (72.9%)
No 1440 (27.1%)

Pancreatic insufficiency Insufficient 1810 (91.7%)
status Sufficient 164 (8.3%)

In our dataset, a total of 3, 459 non-mucoid PA infections before mucoid PA in-

fections were documented, and 472 subjects experienced mucoid PA infections during

the follow-up. There are 14 subjects who died before the first mucoid PA infection.

Within each subject, the number of non-mucoid PA infections before the first mu-

coid PA infection range from 0 to 19, with mean and median equal to 1.75 and 1

respectively. We consider risk factors including sex (coded as Sex = 1 if female

and 0 otherwise), patient’s CFTR genotype (coded as F508/Other = 1 if F508del

heterogeneous and 0 otherwise) meconium ileus (MI) status (coded as MI = 1 if hav-

ing the diagnosis of MI and 0 otherwise, and pancreatic insufficiency status (coded

as Pancreat = 1 if pancreatic insufficient and 0 otherwise). Table 2.1 provides a

summary of these potential risk factors.

We first fit our dataset the extended GART model based on the adjusted rate

function, model (2.6), with g(u) = 1. In Figure 2.4, we plot the estimated regression

coefficients with 95% pointwise confidence intervals (CI). The intercept coefficient

estimates represent the estimated log time to cumulative adjusted rate (or alterna-

tively, expected frequency of non-mucoid PA infection before mucoid PA infection and

death) for the reference group, which included CF boys with homozygous F508del mu-



30

tations who had no MI and were pancreatic sufficient. For example, the estimated

intercept coefficient plot suggests that the expected frequency of non-mucoid PA in-

fection before mucoid PA infection while alive reaches 1 approximately at the age of

4.5 years.

The non-intercept coefficients estimates represent the estimated effects of covari-

ates on τAZ (u).For example, the estimated effects of MI at u = 1 suggests the estimated

time to cumulative adjusted rate u = 1 between CF boys with homozygous F508del

mutations who had MI and were pancreatic sufficient is 0.6 times of the time to cu-

mulative adjusted rate u = 1 for reference group. Negative estimates indicate quicker

progression to non-mucoid PA infection recurrence in the presence of mucoid PA in-

fection and death. From Figure 2.4, it is observed that the coefficients for Sex and

F508 are mostly small with the 95% CIs fully covering zero. This suggests that gen-

der and F508 genotype may have little effect on the acquisition and the recurrence

of non-mucoid PA infections. The coefficients for MI and Pancreat are all negative

and moreover the upper bounds of the corresponding 95% CIs are mostly below zero.

This indicates that CF children with MI or pancreatic insufficiency tend to have more

rapid recurrence of non-mucoid PA infections compared to those without MI or pan-

creatic insufficiency. This finding is consistent with our expectation because MI and

pancreatic insufficiency are generally known to be associated with worse prognosis of

CF outcomes.

We also plot the coefficient estimates for the extended GART model (2.4) based

on the survivors’ rate function. As justified in Section 3, we obtain the coefficient es-

timates from implementing Sun et al. (2016)’s method while treating the mucoid PA

infection as a part of the random observation window (i.e. setting R as the age at the

first mucoid PA infection or death if either of these events occurred, otherwise the age

at the last follow-up visit).The intercept coefficient estimate represents the estimated

log time to cumulative survivors’ rate for the reference group, which included CF boys
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with homozygous F508del mutations who had no MI and were pancreatic sufficient.

For example, the estimated intercept coefficient plot suggests that the expected fre-

quency of non-mucoid PA infection before mucoid PA infection among the subjects

that who are free of mucoid-PA infections and death reaches 1 approximately at the

age of 4.05 years. The coefficient estimates are quite similar to those for model (2.6)

except for the estimated coefficients for MI. In Figure 2.4, the coefficient estimates

for MI suggest that given mucoid PA and death haven’t occurred, the timing of non-

mucoid PA infection may be similar between CF children with MI and those without

MI, while the MI phenotype seems to have a significant negative impact on time to

cumulative adjusted rate of non-mucoid infections. The discrepancy relating to MI’s

effect can be explained by appropriately understanding the distinction between τSZ (u)

and τAZ (u). More specifically, the MI phenotype is generally associated with poorer

clinical and survival outcomes in CF patients (Sawyer et al., 1994; Oliveira et al.,

2002). Based on this dataset, a simple log-rank test suggests worse mucoid PA infec-

tion free survival (i.e. Pr(D > t)) for the MI group compared to the non-MI group

(p = 0.036). We also use the Peng and Huang (2008)’s model to assess the effects of

MI on the mucoid PA infections and death at different quantiles. The results shows

patients with MI have higher risk of mucoid PA infections and death. As discussed

in Luo et al. (2010), the adjusted rate function and survivors’ rate function are not

identical to the rate function. Specifically, we may expect that the survivors in the

MI group tend to be “stronger” or “less fragile” than the survivors in the non-MI

group (where “survivors” in the context of this example refer to as subjects who

haven’t died and developed mucoid PA infection). Consequently, the comparison of

the survivors’ timing of recurrent non-mucoid PA infections between the MI group

and the non-MI group would be shifted in favor towards the MI group. This may

result in the observed attenuated effect of MI on τSZ (u).

Overall, the presented analyses of the CFFPR dataset provide alternative views of
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risk factors for recurrent nonmucoid PA infections under the GART framework. The

possible dependent termination by mucoid PA infection and death are appropriately

handled and interpreted based on the proposed models and estimation methods.

Figure 2.4: CFFPR data example: coefficient estimates (solid lines) and 95% point-

wise CIs (dotted lines) for the extended GART model (6) based on the adjusted rate

function, and the coefficient estimates for the extended GART model (4) based on

the survivors’ rate function (dashed lines)

2.5 Remarks

In this paper, we investigate two extensions of the generalized accelerated recur-

rence time (GART) model for recurrent events data with a dependent terminal event.
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We adapt the GART modeling based on survivors’ rate function and adjusted rate

function, which are established crude quantities for accommodating the presence of

the terminal event in recurrent events settings. Through our investigation, we find

that directly applying the existing GART method that assumes a random observa-

tion window (Sun et al., 2016) exactly renders the estimates for the extended GART

model (2.4) based on the survivors’ rate function. Such a connection is analogous to

the situation where one applies the standard Cox regression to dependently censored

non-recurrent event data. The procedure would remain valid as long as the inter-

pretation of coefficient estimates is tuned towards cause-specific proportional hazards

regression.

The survivors’ rate function and adjusted rate function are the extensions of cause-

specific hazard rate and cumulative incidence rate in competing risk data. Similar

to the comparison between cause-specific hazard rate and cumulative incidence rate

in Lau et al. (2009), the extension of GART model based on the survivors’ rate

function should be better for studying the etiology of the disease since the survivors’

rate function denotes the instantaneous rate of the recurrent event in those subjects

who are currently event free. The extension of GART model based on adjusted rate

function is more preferable if the primary interest is to estimate the effect of covariates

on the incidence of the recurrent event or evaluate actual risks and prognosis (Koller

et al., 2012).

For simplicity, we assume the independence between (L,R) and Z to simplify the

estimation of Sc(·), which is needed in the proposed extension of GART model based

on the adjusted rate function. Similar to Peng and Fine (2009), this assumption can

be relaxed providing some reasonable modeling of the relationship between (L,R)

and Z.
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2.6 Appendix

2.6.1 Appendix A: Justification of the Counting Process For-

mulations of Model (4) and Model (6)

The following are some regularity conditions:

(B0) (L,R) and T (j) are independent given Z;

(B1) (L,R) and D are independent given Z;

(B2) βS0 (u) is continuously differentiable.

(B3) SC(eZ
>βS0 (u)|Z) > 0 and Pr{eZ>βS0 (u) < D|Z} > 0 for Z ∈ Z and u ∈ (0, U ]

Proposition A1. Under conditions (B0)-(B3), model (4) and model (5) are equivalent.

Proof of Proposition A1: Given the random observation window assumptions in (B0)

and (B1), we get

E{dN(eZ
>βS0 (u))|Z}

= E{
∞∑
j=1

I(eZ
>βS0 (u) ≤ T (j) < eZ

>βS0 (u+du), eZ
>βS0 (u) ≤ D,L < eZ

>βS0 (u) ≤ R)|Z}(2.11)

·eZ>βS0 (u)Z>dβS0 (u)

= E{
∞∑
j=1

I(eZ
>βS0 (u) ≤ T (j) < eZ

>βS0 (u+du), eZ
>βS0 (u) ≤ D|Z}Pr{L < eZ

>βS0 (u) ≤ R)|Z}

·eZ>βS0 (u)Z>dβS0 (u)

= E{dN∗(eZ>βS0 (u))|eZ>βS0 (u) ≤ D,Z}Pr{eZ>βS0 (u) ≤ D|Z}SC(eZ
>βS0 (u)|Z)

= dΛS
Z(eZ

>βS0 (u))Pr{eZ>βS0 (u) ≤ D|Z}SC(eZ
>βS0 (u)|Z) (2.12)
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and

E{Y (eZ
>βS0 (u))g(u)du}

= E{I(L < eZ
>βS0 (u) ≤ R)I(eZ

>βS0 (u) ≤ D)|Z}g(u)du

= E{I(L < eZ
>βS0 (u) ≤ R)|Z}E{I(eZ

>βS0 (u) < D)|Z}g(u)du

= SC(eZ
>βS0 (u)|Z)Pr{eZ>βS0 (u) < D|Z}g(u)du (2.13)

Given assumption (B3), by comparing (2.12) and (2.13), we can easily see that

model (4) implies model (5) and, on the other hand, model (5) implies model (4).

This completes the proof of Proposition A1.

Proposition A2. Under conditions (B0)–(B3), model (6) implies (7).

Proof of Proposition A2: Define T ∗(j) = I(T (j) ≤ D)×T (j) +I(T (j) > D)×∞. Given

the random observation window assumptions, (B0) and (B1), and by the definition

of T ∗(j), we get

E{
∞∑
j=1

1

SC(T (j)|Z)
I(L < T (j) ≤ eZ

>βA0 (u) ∧ R̃)|Z}

= E{
∞∑
j=1

1

SC(T ∗(j)|Z)
I(L < T ∗(j) ≤ eZ

>βA0 (u) ∧R)|Z}

= E

{
E{

∞∑
j=1

1

SC(T ∗(j)|Z)
I(L < T ∗(j) ≤ R)I(T ∗(j) ≤ eZ

>βA0 (u))|T ∗(j),Z}|Z

}

= E

{
E{

∞∑
j=1

1

SC(T ∗(j)|Z)
SC(T ∗(j)|Z)I(T ∗(j) ≤ eZ

>βA0 (u))|T ∗(j),Z}|Z

}

= E(N∗(eZ
>βA0 (u))|Z)

= µZ(eZ
>βA0 (u))

(2.14)

By the definition of τZ(·), model (6) implies µZ(eZ
>βA0 (u)) = G(u) and hence (7) holds.
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2.6.2 Appendix B: Proofs of Theorem 2.1 and Theorem 2.2

Define GR(t) = Pr(R ≥ t), GL(t) = Pr(L ≥ t), NR
i (t) = I(R̃i ≤ t, δi = 0), Y R

i (t) =

I(R̃i ≥ t), Y
(j)
i (t) = I(T

(j)
i ≥ t), yR(t) = Pr(R̃ ≥ t), λR(t) = lim∆→0 Pr(R̃ ∈

(t, t + ∆), δ = 0|R̃ ≥ t)/∆, ΛR(t) =
∫ t

0
λR(s)ds, MR

i (t) = NR
i (t) −

∫ t
0
Y R
i (s)dΛR(s),

and ξSC ,i(t) = GR(t)
∫ t

0
yR(s)−1dMR

i (s)− {I(Li ≥ t)− Pr(L ≥ t)} . Define

ξi(u) = ξ1,i(u)− ξ2,i(u), (2.15)

where ξ1,i(u) = Zi{
∑∞

j=1
1

SC(T
(j)
i |Z)

I(Li < T
(j)
i ≤ eZ

>
i β

A
0 (u) ∧ R̃i) −

∫ u
0
g(s)ds}, and

ξ2,i(u) = E(L,R,D,Z,T̄ ){Z
∑∞

j=1 ξSC ,i(T
(j))I(L < T (j) ≤ eZ

>βA0 (u) ∧ R̃)/S2
C(T (j))}, where

T̄ = (T (1), T (2), . . .) and E(L,R,D,Z,T̄ ) means expectation w.r.t. (L,R,D,Z, T̄ ).

We also assume the following regularity conditions (also stated in the main manuscript):

(C1) There exists vR > 0 such that Pr(R = vR) > 0 and Pr(R > vR) = 0. In

addition, Pr(R > L) = 1.

(C2) Z and N(R̃) are bounded.

(C3) (i) βA0 (u) is Lipschitz continuous in u ∈ [0, U ]; (ii) λAZ(t) = E{dN∗(t)Z}/dt

is bounded above uniformly in t and Z.

(C4) For some ρ0 > 0 and c0 > 0, infb∈B(ρ0) eigminA(b) ≥ c0, where B(ρ) = {b ∈

Rp+1 : infu∈[0,U ] ||b − βA0 (u)|| ≤ ρ} and A(b) = E{Z⊗2λAZ(t)|Z}. Here || · || is the

Euclidean norm, and we define u⊗2 = uu> for a vector u.

Proof of Theorem 2.1: Define SGn (b, u) = n−1/2
∑n

i=1Zi

[∑∞
j=1

1

SC(T
(j)
i )

I(Li <

T
(j)
i ≤ eZ

>
i b ∧ R̃)−

∫ u
0
g(s)ds

]
, S̃n(b, u) = n−1/2

∑n
i=1Zi

[
E{N∗(eZ>i b)} −

∫ u
0
g(s)ds

]
,

and µ(b, u) = E{n−1/2S̃n(b, u)}. Hereafter we use supb or supu to denote supremum

taken over b ∈ Rp+1 or u ∈ [ν, U ] respectively.

First, by condition (C1), for every r > 0, we have supt<vR |ŜC(t) − SC(t)| =
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o(n−1/2+r), a.s.. Coupled with conditions (C2), it implies that

sup
b,u
||n−1/2Sn(b, u)− n−1/2SGn (b, u)|| = o(n−1/2+r), a.s.

Define F = {Zi

(∑∞
j=1

1

SC(T
(j)
i )

I(Li < T
(j)
i ≤ eZ

>
i b ∧ R̃) −

∫ u
0
g(s)ds

)
, b ∈ Rp+1, u ∈

[0, U ]}. The function class F is Donsker (Vaart and Wellner, 1996) and thus Glivenko-

Cantelli (van der Vaart and Wellner 1996) because the class of indicator function

is Dnosker and both Zi and 1/SC(T
(j)
i ) are uniformly bounded. It then follows

from the Clivenko-Cantelli theorem that supb,u ||n−1/2SGn (b, u)−µ(b, u)|| = o(1), a.s..

Therefore,

sup
b,u
||n−1/2Sn(b, u)− µ(b, u)|| = o(1), a.s. (2.16)

Secondly, for anyw ∈ Rp+1 satisfying ||w||2 = 1, w>µ(βA0 (u)+wδ, u) is increasing

in δ. Then for δ > ρ0,

w>[µ(βA0 (u) +wδ, u)− µ(βA0 (u), u)] ≥ w>[µ(βA0 (u) +wρ0, u)− µ(βA0 (u), u)] ≥ 0

From the Cauchy-Schwarz inequality, we have

||µ(βA0 (u) +wδ, u)− µ(βA0 (u), u)||2 · ||w||2

≥ (w>[µ(βA0 (u) +wδ, u)− µ(βA0 (u), u)])2

≥ (w>[µ(βA0 (u) +wρ0, u)− µ(βA0 (u), u)])2

= (w>A(βA0 (u) +wρ∗)wρ0)2 ≥ c2
0ρ

2
0

where ρ∗ ∈ [0, ρ0]. Since βA0 (u) +wρ∗ ∈ B(ρ0), the last above inequality follows from

the Condition (C4). Therefore, we have infb6∈B(ρ0) ||µ(b, u)− µ(βA0 (u), u)|| ≥ c0ρ0.
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Next, simple algebraic manipulation shows that

µ(β̂A(u), u)− µ(βA0 (u), u) =n−1/2Sn(β̂A(u), u)− µ(βA0 (u), u)

− [n−1/2Sn(β̂A(u), u)− µ(β̂A(u), u)]

By the definitions of β̂A(·) and βA0 (·), we have Sn(β̂A(u), u) = o(n−1/2), a.s., and

µ(βA0 (u), u) = 0. From (2.16), we have that

µ(β̂A(u), u)− µ(βA0 (u), u) = o(1), a.s. (2.17)

and thus there existsN0 > 0 such that for n > N0, supu ||µ(β̂A(u), u)−µ(βA0 (u), u)|| <

c2
0ρ

2
0/2 with probability 1. Consequently, {β̂A(u) : u ∈ [0, U ]} ∈ B(ρ0) with probabil-

ity 1 when n is large enough. Note that

sup
u
||β̂A(u)− βA0 (u)|| = sup

u
||A(β̌A(u))−1[µ(β̂A(u), u)− µ(βA0 (u), u)]||,

where β̌A(u) is between β̂A(u) and βA0 (u). Therefore β̌A(u) ∈ B(ρ0) for n large

enough. Uniform consistency follows from (2.17) and (C4).

Lemma 2.1. For any positive sequence {dn}∞n=1 satisfying dn → 0,

lim
n→∞

sup
b,b′∈B(ρ0),‖b−b′‖≤dn

∥∥∥∥∥n−1/2

n∑
i=1

Zi

{ ∞∑
j=1

1

SC(T
(j)
i )

{
I(Li < T

(j)
i ≤ eZ

>
i b ∧ R̃i)

−I(Li < T
(j)
i ≤ eZ

>
i b
′ ∧ R̃i)

}}
− n1/2{µ(b, u)− µ(b′, u)}

∥∥∥∥∥ = 0, a.s.

Proof of Lemma 2.1: This lemma can be proved by using the results in Alexander

(1984) and the arguments for theorem 1 of Lai and Yang (1988). The main step is to
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show that there exists G0 > 0 such that

Var

(
Zi

{ ∞∑
j=1

1

SC(T
(j)
i )

{
I(Li < T

(j)
i ≤ eZ

>
i b ∧ R̃i)− I(Li < T

(j)
i ≤ eZ

>
i b
′ ∧ R̃i)

}})
≤ G0‖b− b′‖

This follows from the uniform boundedness of λAZ(t) and the boundedness of

1/SC(·), Z and B(ρ0), which are implied by conditions (C1)–(C4).

Proof of Theorem 2.2: From Pepe (1991), we have

sup
t∈[0,vR)

||n1/2{ĜR(t)−GR(t)} − n−1/2

n∑
i=1

GR(t)

∫ t

0

yR(s)−1dMR
i (s)|| →a.s. 0.

and therefore

sup
t∈[0,vR)

||n1/2{ŜC(t)− SC(t)} − n−1/2

n∑
i=1

[
GR(t)

∫ t

0

yR(s)−1dMR
i (s)− {I(Li ≥ t)

−Pr(L ≥ t)}
]
||

= sup
t∈[0,vR)

||n1/2{ŜC(t)− SC(t)} − n−1/2

n∑
i=1

ξSC ,i(t)|| →a.s. 0.

In addition, we have supt∈[0,vR) ‖ŜC(t) − SC(t)‖ →a.s. 0. Based on these results,

it follows from standard asymptotic arguments and an applicationsof the Glivenko-
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Cantelli Theorem that

Sn{βA0 (u), u}

= SGn {βA0 (u), u}+ [Sn{βA0 (u), u} − SGn {βA0 (u), u}]

= n−1/2

n∑
i=1

ξ1,i(u)− n−1/2

n∑
i=1

Zi

{
∞∑
j=1

ŜC(T
(j)
i )− SC(T

(j)
i )

ŜC(T
(j)
i ) · SC(T

(j)
i )

I(Li < T
(j)
i ≤ eZ

>
i β

A
0 (u) ∧ R̃i)

}

× I(Li < T
(j)
i ≤ eZ

>
i β

A
0 (u) ∧ R̃i)

}
≈ n−1/2

n∑
i=1

ξ1,i(u)

− n−1

n∑
i=1

Zi

{ ∞∑
j=1

n−1/2
∑n

k=1 ξSC ,k(T
(j)
i )

S2
C(T

(j)
i )

× I(Li < T
(j)
i ≤ eZ

>
i β

A
0 (u) ∧ R̃i)

}
= n−1/2

n∑
i=1

ξ1,i(u)

− n−1/2

n∑
k=1

1

n

n∑
i=1

Zi

{ ∞∑
j=1

ξSC ,k(T
(j)
i )

S2
C(T

(j)
i )

× I(Li < T
(j)
i ≤ eZ

>
i β

A
0 (u) ∧ R̃i)

}
= n−1/2

n∑
i=1

{ξ1,i(u)− ξ2,i(u)} .= n−1/2

n∑
i=1

ξi(u),

where ≈ denotes asymptotic equivalence uniformly in u ∈ [ν, U).

We can show that F∗ = {ξ1,i(u), u ∈ [0, U)} and F∗∗ = {ξ2,i(u), u ∈ [0, U)} are

Donsker. First, given the Lipschitz continuity of βA0 (·), we can show F∗ is Donsker

by applying the similar arguments for F and using the fact that the Donsker prop-

erty preserves under Lipschitz transformation. The Donsker property of F∗∗ follows

similarly. Since the Donsker property preserves under addition and subtraction, we

can apply the Donsker theorem to n−1/2
∑n

i=1 ξi(u). It then follows that Sn(βA0 (u), u)

converges weakly to a mean zero Gaussian process with covariance matrix

Σ(u′, u) = E{ξ(u′), ξ(u)} (2.18)

Next, simple algebric manipulations show that Sn(β̂A(u), u) − Sn(βA0 (u), u) =
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(I) + (II), where

(I) = n−1/2

n∑
i=1

Zi

{ ∞∑
j=1

1

SC(T
(j)
i )

{
I(Li < T

(j)
i ≤ eZ

>
i β̂

A(u)∧R̃i)−I(Li < T
(j)
i ≤ eZ

>
i β

A
0 (u)∧R̃i)

}}

and

(II) = n−1/2

n∑
i=1

Zi

{ ∞∑
j=1

{ 1

ŜC(T
(j)
i )
− 1

SC(T
(j)
i )

}{
I(Li < T

(j)
i ≤ eZ

>
i β̂

A(u) ∧ R̃i)

− I(Li < T
(j)
i ≤ eZ

>
i β

A
0 (u) ∧ R̃i)

}}
From Lemma 1 and the uniform consistency of β̂A(u), we have (I) ≈ n1/2[µ{β̂A(u), u}−

µ{βA0 (u), u}]. Since supi{ŜC(T
(j)
i )

−1
−SC(T

(j)
i )

−1
} = op(1), we can see that Sn(β̂A(u), u)−

Sn(βA0 (u), u) is dominated by (I). Taylor expansions of µ(b) around b = βA0 (u) along

with the facts that β̂A(u) uniformly converges to βA0 (u) gives that

Sn(β̂A(u), u)− Sn(βA0 (u), u) = [A{βA0 (u)}+ εn(u)] · n1/2{β̂A(u)− βA0 (u)}

where supu‖εn(u)‖ → 0. Given Sn(β̂A(u), u) ≈ 0, this further implies that n1/2{β̂A0 (u)−

βA0 (u)} = −A{βA0 (u)}−1Sn(βA0 (u), u)+ε∗n(u), where supu‖ε∗n(u)‖ → 0. It follows that

n1/2{β̂A0 (u)− βA0 (u)} ≈ n−1/2

n∑
i=1

A{βA0 (u)}−1ξi(u)

It follows from the Donsker Theorem (Vaart and Wellner, 1996) that n1/2{β̂0(u)−

β0(u)} converges weakly to a mean zero Gaussian process for u ∈ [0, U ] with covari-

ance

Φ(u′, u) = A{βA0 (u′)}−1E{ξ(u′)ξ(u)>}A{βA0 (u)}−1. (2.19)
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Chapter 3

Estimation of Complier Causal

Quantile Effects with a Binary

Instrumental Variable and

Censored Data
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3.1 Potential Outcomes Framework and Assump-

tions

Let D and V denote a binary treatment indicator and a binary IV respectively. Let

Dv denote the potential treatment selection given V = v, Td denote the potential

survival time given D = d, and Tvd denote the potential survival time with V = v

and D = d, where v = 0, 1 and d = 0, 1. Following the terminology of Angrist et al.

(1996a), subjects are classified into four latent subgroups: compliers (i.e. D1 > D0),

always takers (i.e. D1 = D0 = 1), never takers (i.e. D1 = D0 = 0), and defiers (i.e.

D1 < D0). Let X represent the d−dimensional vector of covariates, and ⊥⊥ represent

statistical independence.

We adopt the following standard IV assumptions:

(A1) Independence of IV: (T00, T01, T10, T11, D0, D1) ⊥⊥ V |X.

(A2) Exclusion of IV: P (T1d = T0d|X) = 1 for d = 0, 1.

(A3) First stage: 0 < P (V = 1|X) < 1 and P (D1 = 1|X) > P (D0 = 1|X).

(A4) Monotonicity: P (D1 ≥ D0|X) = 1.

The potential outcome framework and assumptions described above are rather

standard in IV literature (Abadie et al., 2002, for example). By assumption (A1),

the IV, V , mimics a random assignment conditional on X. Assumption (A2) requires

that the variation in V only affects the potential survival time through its effects on

the treatment D. This assumption also implies T0 = T00 = T10 and T1 = T01 = T11.

Assumption (A3) guarantees that D and V are correlated conditional on X, and that

each subject can have V = 0 or V = 1 with a non-zero probability conditional on X.

Assumptions (A4) excludes the existence of defiers.
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3.2 The Proposed Method

3.2.1 A causal censored quantile regression model

In this work, we study a complier quantile regression model specified as

QTd(τ |X, D1 > D0) = exp{βd(τ)d+ βx(τ)TX}, τ ∈ (0, τU), d = 0, 1 (3.1)

where QTd(τ |X, D1 > D0) = inf{t : Pr(Td ≤ t|X, D1 > D0) ≥ τ}, and 0 < τU < 1. It

is easy to show that the treatment coefficient βd(τ) in model (3.1) satisfies

βd(τ) = Qlog T1(τ |X, D1 > D0)−Qlog T0(τ |X, D1 > D0).

This implies a causal interpretation that βd(τ) represents the difference in complier’s

τ -th quantile of the potential survival time (in the logarithm scale) between the

scenario where the treatment is received versus the scenario where the treatment

is not received, given the covariates in X. By this interpretation, we shall refer

βd(τ) to the complier τ -th quantile causal effect of treatment, denoted by CQCE(τ).

Compared to the commonly used complier average causal effect (CACE), namely

E(T1 − T0|X, D1 > D0), CQCE(τ) is a more flexible venue to depict the causal

treatment effect in compliers, a subgroup that does not have any treatment preference

and serves to reveal the treatment efficacy of a substantive interest. In the presence

of censoring to T , CQCE(τ) can be identifiable when CACE is not.

Consider a special case, one-sided compliance case, where subjects with V = 0

have no access to the treatment (i.e. Pr(D0 = 0|X) = 1). The one-sided compliance

assumption is reasonable in many practical settings. For example, in a randomized

clinical trial comparing a new treatment versus placebo, where IV is chosen as the

random group assignment, the one-sided compliance means that patients assigned to

the placebo group has no access to the new treatment. In an observational study
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comparing a new inpatient treatment versus standard care, where IV is chosen as the

approval status of the new treatment at hospital admission, this assumption means

that patients have no access. We can further show that

βd(τ) = Qlog T1(τ |X, D = 1)−Qlog T0(τ |X, D = 1);

see Proposition 3.1 in Section 3.5.1 of the Appendix C. This means, CQTE(τ) in the

one-sided compliance case has an alternative simpler interpretation as the quantile

causal treatment effect for the treated population (i.e. D = 1).

To address the interest in βd(τ), our key finding is that under assumptions (A1)

and (A2), model (3.1) is equivalent to

QT (τ |D,X, D1 > D0) = exp{βd(τ)D + βTXX}, τ ∈ (0, 1), (3.2)

where T = D × T1 + (1−D)× T0 and Qlog T (τ |D,X, D1 > D0) = inf{t : Pr(log T ≤

t|D,X, D1 > D0) ≥ τ}. The justification for this result is provided in Proposition

3.2 in Section 3.5.1 of the Appendix C. Note that under model 3.2,

βd(τ) is linked with the conditional quantile of T , the observed survival time (in

the absence of censoring), rather than the potential survival time Td. Hence, model

3.2 provides a more convenient venue to estimate βd(τ) than model 3.1.

3.2.2 Estimation procedure with randomly censored data

Suppose the event time of interest T is subject to right censoring time by C. Define

W = min{T,C} and δ = I(T ≤ C). The observed data consist of n i.i.d. replicates of

O
.
= (W, δ,D,X, V ) denoted by Oi

.
= {(Wi, δi, Di,Xi, Vi)}ni=1. We adopt the following

censoring assumption:

(A5) C is independent of T given (V,D,X), and C is independent of V given X.
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By this assumption, T is subject to the standard conditionally independent cen-

soring. The conditional independence between C and V is consistent with the inde-

pendence of IV assumption, (A1).

Let U = (W, δ,D,X), Z = (D,X) and β = (βd,βx). Define FT (t|Z) = Pr(T ≤

t|Z), ΛT (t|Z) = − log{1−FT (t|Z)}, N(t) = I(W ≤ t, δ = 1) andM(t) = N(t)−ΛT (t∧

W |Z). We use the subscript i to denote sample analogues, and β0(·) to represent the

true coefficient function in model (3.1).

To estimate β0(·), a key observation from applying the result of Peng and Huang

(2008) for censored quantile regression is that under model (3.2),

E

{
Z

(
N(exp{β0(τ)TZ)−

∫ τ

0

I[W ≥ exp{β0(u)TZ}]dH(u)

) ∣∣∣∣D1 > D0

}
= 0.

This immediately implies

E

{
I(D1 > D0)Z

(
N(exp{β0(τ)TZ)−

∫ τ

0

I[W ≥ exp{β0(u)TZ}]dH(u)

)}
= 0.

(3.3)

Equation (3.3) cannot be directly translated into an estimating equation because

D1 and D0 cannot be observed at the same time and thus the complier indicator

I(D1 > D0) is not observable. Following the spirit of conditional score principal

for handling measurement errors (Stefanski and Carroll, 1987), we consider uti-

lizing the conditional expectation of I(D1 > D0)Z
(
N(exp(β0(τ)>Z) −

∫ τ
0
I[W ≥

exp{β0(u)>Z}]dH(u)
)

given U to construct an estimating equation for β0(·). Here,

the observed U plays the same role as the complete and sufficient statistic used by

Stefanski and Carroll (1987) to transform their original score function that involves

unknown covariates to a conditional score function free of unknown covariates. With

κv(U) = Pr(D1 > D0|U), it is easy to see that the resulting “conditional score”

equals κv(U)Z
(
N(exp(β0(τ)>Z)−

∫ τ
0
I[W ≥ exp{β0(u)>Z}]dH(u)

)
, which does not
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depend on the unobservable D0 and D1, and has expectation zero, i.e.

E

{
κv(U)Z

(
N(exp{β0(τ)TZ)−

∫ τ

0

I[W ≥ exp{β0(u)TZ}]dH(u)

)}
= 0, (3.4)

Equation 3.4 suggests a simple weighting scheme that transforms Peng and Huang

(2008)’s estimating equation to produce a valid estimate for CQCE(τ). The weight

κv(U), by its definition, represents an observed surrogate of the unobseravable com-

plier indicator I(D1 > D0).

With further manipulations, we can show that

κv(U) = 1− D(1− v(U))

1− π(X)
− (1−D)v(U)

π(X)
, (3.5)

where v(U) = Pr(V = 1|U) and π(X) = Pr(V = 1|X); see Proposition 3.3 in Section

3.5.1 of the Appendix C.

Suppose κv,i
.
= κv(Ui) is known, an estimating equation for β0(·) is given by

n−1/2

n∑
i=1

κv,iZi

(
Ni[exp{β(τ)TZi}]−

∫ τ

0

I[Wi ≥ exp{βT (u)Zi}]dH(u)

)
= 0. (3.6)

In practice, κv,i is usually unknown. To estimate κv,i, parametric modeling of

the IV, such as logistic regression modeling of V given U or X, can be used. Such

a procedure is easy to implement but can induce considerable bias if the assumed

models are misspecified, as suggested by the simulation studies in Section 3.3.1. To

overcome this issue, we propose nonparametric estimation of κv,i. Specifically, let

Y = (W,X>)>, and define vij(Y) = Pr(V = 1|Y, δ = i,D = j) and v(Ui) =∑1
j=0

∑1
k=0 I(δi = j,Di = k)vjk(Yi). Let K∗σ1(u) and K∗∗σ2(u) denote two kernel

functions with bandwidths σ1 and σ2 respectively, subject to the technical conditions

(C7)-(C8) in Section 3.2.3. For example, these kernel functions can be the multiplica-

tive second order Epanechnikov kernels, K∗σ1(u) =
∏q

i=1
3
4

1
σ1

(1 − ui
σ1

)2I(| ui
σ1
| ≤ 1) and
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K∗∗σ2(u) =
∏q

i=1
3
4

1
σ2

(1− ui
σ2

)2I(| ui
σ2
| ≤ 1), with u = (u1, · · · , uq)>. Asymmetric kernels

may be considered to adjust for tail problems when needed. When all components of

X are continuous, we can estimate π(x) and vjk(u) respectively by

π̂(x) =

∑n
i=1K∗σ1(x−Xi)Vi∑n
i=1K∗σ1(x−Xi)

, and v̂jk(y) =

∑n
i=1 I(δi = j,Di = k)K∗∗σ2(y −Yi)Vi∑n
i=1 I(δi = j,Di = k)K∗∗σ2(y −Yi)

.

Subsequently we estimate v(Ui) by v̂(Ui) =
∑1

j=0

∑1
k=0 I(δi = j,Di = k)v̂jk(Ui).

When X involves discrete components, we can obtain kernel estimates stratified on

the discrete covariates and then combine them into nonparametric estimates for π(Xi)

and v(Ui).

To determine the bandwidths, σ1,n and σ2,n, we can use cross-validation. For

example, let π̂σ(X) denote the estimator of π(X) obtained from the training dataset

with bandwidth σ. We may choose σ1,n as the σ that minimizes
∑

i∈test set |Vi−π̂σ(Xi)|

or some other appropriate criterion. The bandwidth σ2,n can be selected in a similar

way.

A non-parametric estimator of κv,i is then given by

κ̂v,i = 1− Di(1− v̂(Ui))

1− π̂(Xi)
− (1−Di)v̂(Ui)

π̂(Xi)
.

Note that κv,i = Pr(D1 > D0|Ui) and thus should be bounded between 0 and 1, we

propose to further adjust κ̂v,i by κ̃v = min(max(κ̂v,i, cl,n), cu,n), where cl,n and cu,n are

positive constants approaching 0 and 1 respectively as n increases.

Replacing κv,i in equation (3.6) by κ̃v,i , the proposed estimating equation is given

by

n1/2Sn(β, τ) = 0 (3.7)
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where

Sn(β, τ) = n−1

n∑
i=1

κ̃v,iZi

(
Ni[exp{βT (τ)Zi}]−

∫ τ

0

I[Wi ≥ exp{βT (u)Zi}]dH(u)

)
.

It is important to note that equation (3.7) can be viewed as a weighted version

of Peng and Huang (2008)’s equation for standard censored quantile regression. The

specific procedure to carry out the proposed estimation procedure is described as

follows:

Step 1 Specify a fine τ -grid SL(n) = {0 = τ0 < τ1 < · · · < τL(n) = τU < 1}, and define

the proposed estimator β̂(τ) as a piecewise-constant right-continuous function

that only jumps at the grid points on SL(n).

Step 2 Calculate π̂(Xi) and v̂(Ui) with bandwidth σ1 and σ2 selected by cross-

validation, and then compute κ̃v,i, i = 1, . . . , n.

Step 3 Obtain β̂(τk), k = 1, . . . , L(n) based on equation (3.7). This can be im-

plemented by using the R function crq : fit : peng() or the SAS procedure

QUANTLIFE, with the time-to-event outcomes, covariates, and weights speci-

fied by (Wi, δi),Zi and κ̃v,i respectively.

3.2.3 Asymptotic properties

In this section, we establish the uniform consistency and weakly convergence of the

proposed estimator β̂(·). Beyond Peng and Huang (2008)’s results on a similar esti-

mating function with the fixed weight 1, we need to properly account for the variation

induced by the estimated weight κ̃v,i in the stochastic integral process. This may con-

siderably complicate the derivation and the justification of the limit process of the

proposed estimator. The nonparametric nature of κ̃v,i adds another layer of complex-

ity, as the asymptotic properties of κ̃v,i are rather delicate in comparison to parametric
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modeling of the weight, owing to the estimated weight converging at a slower rate

than usual parametric weight estimates.

Before presenting the regularity conditions used in the asymptotic properties, we

firstly introduce some new notation to simplify the presentation.

Denote F (t|Z) = Pr(W ≤ t|Z, D1 > D0), F̄ (t|Z) = 1−F (t|Z),F̃ (t|Z) = Pr(W ≤

t, δ = 1|Z, D1 > D0). Let f(t|Z) = dF (t|Z)/dt, f̄(t|Z) = dF̄ (t|Z)/dt and f̃(t|Z) =

dF̃ (t|Z)/dt. Define µc(b) = E{κvZN(exp Z>b)} = E{I(D1 > D0)ZN(exp Z>b)},

µ̃c(b) = E[κvZI{W ≥ exp(Z>b)}] = E[I(D1 > D0)ZI{W ≥ exp(Z>b)}], νn(b) =

n−1
∑n

i=1 κv,iZiNi{exp(Z>i b)}−µc(b) and ν̃n(b) = n−1
∑n

i=1 κv,iZiI{Wi ≥ exp(Z>i b)}−

µ̃c(b). Let B(b) = E[I(D1 > D0)Z⊗2f̃{exp(Z>b|Z)} exp(Z>b)], J(b) = E[I(D1 >

D0)Z⊗2f̄{exp(Z>b|Z)} exp(Z>b)]. For d > 0, define B(d) = {b ∈ Rp : infτ∈(0,τU ] ‖µc(b)−

µc(β0(τ))‖ ≤ d}. Besides, we define α0(τ) = µc{β0(τ)} and α̂(τ) = µc(β̂(τ)). De-

fine A(d) = {µc(b) : b ∈ B(d)}.

For simplify the notation, let v, v̂, π, π̂ denote v(U), v̂(U), π(X) and π̂(X) respec-

tively. Similarly, let vi, v̂i, πi, π̂i denote v(Ui), v̂(Ui), π(Xi) and π̂(Xi) respectively.

Moreover, let fX(·) denote the density function of X, and let f ijY(·) denote the den-

sity function of Y = (W,X>)> conditional on δ = i and D = j for i, j ∈ {0, 1}. De-

fine m(U, τ) = Z[N(exp{Zβ0(τ)}) −
∫ τ
v
I(W ≥ exp{Z>β0(u)})dH(u)], mij(U, τ) =

I(δ = i,D = j)m(U, τ), a(U, τ) = m(U, τ) ·
(

(1−D)·v
π2 − D·(1−v)

(1−π)2

)
, and

H(X, τ) = E{a(U, τ)|X} = E

[
m(U, τ) · (−D · (1− V )

(1− π)2
+

(1−D) · V
(1− π)2

)|X
]
.

Let X and U denote the support of X and the support of U respectively. For a

vector v, we let v(j) denote the j-th component of v, and ‖v‖ denote the Euclidean

norm of v. Let oI(an) (or OI(an)) denote a function of τ with its supremum over

τ ∈ I being op(an) (or Op(an)). Without loss of generality, we assume that τ1, · · · , τL1

are equally spaced between 0 and τU . Let an = ‖SL(n)‖ and bn = an/(1− τU).
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We assume the following regularity conditions:

(C1) (a) Each discrete component of X takes on finite values, and (b) conditional

on D, δ and the discrete components of X, (W,Xc) has a support equal to a

product of compact intervals and has a density at least third order continuously

differentiable and bounded away from zero and infinity. Here Xc denotes the

subvector of X corresponding to continuous covariates.

(C2) (a) Each component of E(I(D1 > D0)ZN [exp{Z>β0(τ)}]) is a Lipschitz func-

tion of τ , and (b) f̃(t|Z) and f(t|Z) are bounded uniformly in t and Z; (c) there

exists CH > 0 such that ‖H(X, τ)−H(X, τ ′)‖ ≤ CH |τ − τ ′| for all x ∈ X and

0 < τ < τ ′ < τU .

(C3) (a) f̃{exp(Z>b)|Z} > 0 for all b ∈ B(d0); (b) E(I(D1 > D0)Z⊗2) > 0; (c)

each component of E[I(D1 > D0)Z⊗2f̄{exp(Z>b|Z)} exp(Z>b)] × (E[I(D1 >

D0)Z⊗2f̃{exp(Z>b|Z)} exp(Z>b)])−1 is uniformly bounded in b ∈ B(d0); (d)

each component of exp(Z>b)B(b)−1 is uniformly bounded in b ∈ B(d0) and Z.

(C4) For some c0 > 0, infb∈B(d0) eigminE(I(D1 > D0)Z⊗2f̃ [exp{Z>β0(τ)|Z}] exp{Z>β0(τ)}) >

c0 for any v ∈ (0, τU ], where eigmin(·) denotes the minimum eigenvalue of a ma-

trix.

(C5) (a) For some c > 0,κv(U) > c almost surely; (b) for some 0 < c1 < c2 < 1,

c1 < π(X) < c2 almost surely.

(C6) cl,n = o(n−1/2) and 1− cu,n = o(n−1/2)

(C7) (a) There is a positive integer ∆, such that K∗σ1(u) and K∗∗σ2(u) are differentiable

of order ∆ and the derivatives of order ∆ are Lipschitz in a bounded support.

K∗σ1(u) and K∗∗σ2(u) have bounded support; (b) K∗σk(u) = 1 for k = 1, 2; (c) for

some positive integers s1 and s2,
∫
K∗σk(u)[⊗jl=1u]du = 0 for all j < sk, where

k = 1, 2, and ⊗jl=1u stands for executing j times Kronecker product on u.
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(C8) (a) v(·) and π(cdot) are at least p-th order continuous differentiable; (b)p ≥ si;

(c) nσ2p
i,n → 0 and

nσ2d+2
i,n

(logn)2
→∞.

Condition (C1) implies the boundedness of X and Z, and the positiveness and

boundedness of the density of W or X, which are reasonable in practice. Conditions

(C2) and (C3) are similar to the assumptions adopted in Peng and Huang (2008), and

impose realistic assumptions for covariates, and underlying coefficient processes and

density functions. Like in Peng and Huang (2008), condition (C4) is the key assump-

tion to ensure the identifiablilty of {β0(τ), τ ∈ (0, τU ]}. By condition (C5), κv(U) and

π(X) are bounded away from 0 and 1 almost surely. Condition (C6) implies that trun-

cating κ̂v by I = (cl,n, cu,n) would only lead to negligible impact on the asymptotic

results with cl,n and cu,n approaching 0 and 1 respectively. Conditions (C7)-(C8) are

similar to the regularity conditions in Newey (1994) for kernel estimators. With these

conditions, we are able to strengthen Newey (1994)’s result for the kernel estimators of

full means based on π̂(x) and v̂(x). By condition (C8), we require v(·) and π(·) should

be smooth enough, and bandwidths satisfy σk,n = o(n−1/(2p)∧ (log n)1/(d+1)n−1/(2d+2),

k = 1, 2.

We establish the uniform consistency and weakly convergence of the proposed

estimator in the following theorems:

Theorem 3.1 (Uniform consistency). Under the Condition (C1)-(C8) and limn→∞

‖SL‖ = 0, we have sup[v,τU ] ‖β̂(τ)− β0(τ)‖ →p 0, where 0 < v < τU .

Theorem 3.2 (Weakly convergence). Under the Conditions (C1)-(C8) and limn→∞

n1/2‖SL‖ = 0, we have n1/2{β̂(τ) − β0(τ)} weakly converges to a Gaussian process

for τ ∈ [v, τU ], where 0 < v < τU .

To prove Theorem 3.1, following the rationale presented in Peng (2012), the key

step is to show that using κv,i in place of κ̂v,i in Sn(β, τ) only induces a small vari-

ation to Sn(β, τ), which converges to 0 uniformly in τ . Such a result is essentially
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entailed by the uniform convergence of the kernel estimator of κv(U) (Newey, 1994;

Hansen, 2008). However, it is much more challenging to investigate the asymptotic

distribution of β̂(·). For example, one substantial challenge is about how to mit-

igate the bias of the kernel weight estimate,which can be larger than O(n−1/2) to

achieve the weak convergence of β̂(·) at the root-n rate. Another complication is that

the variability induced to n−1/2Sn(β0, τ) by κ̃v,i is not asymptotically negligible and

takes a complex form involving stochastic integrals. To overcome these difficulties,

in the proof of Theorem 2, we first delicately strengthen the uniform convergence

result of Peng and Huang (2008). Combining this new result with the properties

of the kernel estimate κ̃v,i and empirical process arguments, we are able to estab-

lish a smooth approximation to the change in the discontinuous n−1/2Sn(β, τ)as β is

slightly moved away from β0. We show that this smooth approximation may not be

affected by the bias of κ̃v,i (see Lemma 3.2). This plays an important role to justify

an elegant relationship between nβ̂(τ)−β0(τ) and n−1/2Sn(β0, τ) via a production in-

tegration. We also establish a stronger uniform version of Newey (1994)’s result for

kernel estimators of full means. This consequently allows us to derive a uniform i.i.d.

sum representation of n1/2Sn(β0, τ) (see Lemma 3.3). This finding, coupled with the

link between n1/2{β̂(τ)− β0(τ)} and n1/2Sn(β0, τ), implies the weak convergence of

n1/2{β̂(τ)− β0(τ)} to a Gaussian process. The detailed proofs of Theorems 3.1 and

3.2 are provided in section 3.5.2 of Appendix D.

3.2.4 Inference

Given the complexity in the asymptotic distribution of β̂(τ) derived in Theorem 3.2,

we propose to make inference on β0(·) using bootstrapping. For example, to esti-

mate the asymptotic variance of β̂(τ), we first resample n samples from the observed

dataset {Oi}ni=1 with replacement, and then obtain an estimate, β̂∗(τ) by applying

the same estimation procedure described in Section 3.2.2 to the resampled dataset.
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By repeating this procedure for many times, we can get a large number of resampled

estimates, denoted by {β̂∗b (τ)}Bb=1. The variance of β̂(τ) can be estimated by the

empirical variance of {β̂∗b (τ)}Bb=1.

As suggested by the asymptotic studies, for the proposed IV estimator, the first-

order term of the Edgeworth expansion involves B{β0(τ)}−1, which would approach

∞ as the proportion of compliers goes to zero. This means, given a weak IV that

yields a low proportion of compliers, the first-order term of the Edgeworth expansion

would be large and dominated by higher-order terms for a given sample size. Thus,

the Edgeworth expansion may not provide a good finite-sample approximation to

the distribution of interest. Consequently, unstable and inaccurate estimation and

bootstrap inference may be expected when the proportion of compliers is small and the

sample size is not large enough. This issue shares a similar spirit with the drawback

of the two-stage least squares estimator in the global IV estimation setting (Horowitz,

2001).

Given the uniform consistency and weak convergence established in Theorems 3.1

and 3.2, we can further conduct second-stage inference to test the overall signifi-

cance and the constancy of CQCE(τ) or other regression coefficients over τ ∈]v, τU ].

The specific inference procedure can follow similar lines of existing work on censored

quantile regression (Peng and Huang, 2008, for example).

3.3 Numerical Studies

3.3.1 Monte-Carlo simulations

Extensive simulations are conducted to assess the finite-sample performance of the

proposed method. To satisfy assumptions (A1)-(A4), the data are generated as fol-

lows:

1 Generate X = (X1, X2), where X1 ∼ Unif(0, 1) and X2 ∼ Bernoulli(0.5).
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2 Generate the latent compliance subgroup membership from a multinomial distri-

bution with pc = 2/3, pa = pn = 1/6, where pc. pa and pn denote proportion of

compliers, proportion of always takers, and proportion of never takers respec-

tively.

3 Given X, generate V from Bernoulli(π(X)), where

π(X) =
exp(0.1 ∗X2 +X2

1 +X1X2 + ε)

1 + exp(0.1 ∗X2 +X2
1 +X1X2 + ε)

.

Here ε ∼ Normal(0, 0.52), and controls the variation of π(X) from a logistic

regression model.

4 Determine D based on V and the latent compliance subgroup membership from

Step 2.

5 Generate the survival time T separately for compliers and non-compliers from

models specified below.

6 Independently draw censoring time from a uniform distribution to generate about

30% censoring.

In Step 5, we consider two scenarios for generating survival time T :

(A)

T =

 exp(−0.2X1 − 0.3X2 + 0.5D + εc), D1 > D0

exp(−0.1X1 − 0.2X2 + 0.2D + εnc), otherwise
, (3.8)

where εc ∼ Extremevalue(1) and εnc ∼ Normal(0, 0.52).

(B)

T =

 exp(log τ − 0.2X1 − 0.3X2 + 0.5× exp(0.3τ)×D), D1 > D0

exp(−0.1X1 − 0.2X2 + 0.2D + εnc), otherwise
,

(3.9)
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where τ ∼ Unif(0, 1) and εnc ∼ Normal(0, 0.52).

We can show that in scenario (A),

Qlog T (τ |D,X, D1 > D0) = log(− log(1− τ))− 0.2X1 − 0.3X2 + 0.5D (3.10)

holds, and in scenario (B),

Qlog T (τ |D,X, D1 > D0) = log(τ)− 0.2X1 − 0.3X2 + 0.5× exp(0.3τ)D (3.11)

holds. Note that the CCQTE βd(τ) is constant over τ under model (3.10), and varies

with τ under model (3.11).

For each scenario, we consider two different sample sizes, 1000 and 2000. In each

setting, we generate 1000 simulated datasets and choose B = 250 as the number

of bootstrapping. To obtain the κ̃v,i in the proposed method, we adopt the second

order of Epanechnikov kernel as the kernel functions in our estimation procedure. For

computational simplicity, we let bandwidths σ1,n and σ2,n both equal σ, where σ is

chosen from {0.1, 0.2, · · · , 0.9} and minimizes
∑

i∈test set |Vi− v̂(Ui)|+
∑

i∈test set |Vi−

π̂(Xi)| respectively. We set cl,n = 10/n and cu,n = 1− 10/n. Except for the proposed

method, we consider the naive as-treated method which directly applies Peng and

Huang (2008) to the whole dataset, an oracle benchmark method, which applies

Peng and Huang (2008)’s method to the true latent complier group, and a modified

proposed method with weights, κv,i’s estimated by performing logistic regression of

V over X or Y.

Figure 3.1 and Figure 3.2 show the simulation results from scenarios (A) and (B)

respectively, with n = 1000. The results include the average estimated coefficients,

average variance estimates along with empirical variances, and coverage probabilities

of 95% confidence intervals based on the proposed method, the naive method and the

benchmark method for τ ∈ [0.1, 0.6]. Not surprisingly, the estimates from the bench-
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mark method are the best among all three methods in both settings. Impressively,

the performance of the proposed method is fairly close to that of the benchmark

method. For scenario (A), based on the proposed method, the coefficient estimates

are very close to true coefficients, the empirical coverage probabilities of 95% CI are

close to the nominal level, and the bootstrapping-based variance estimates agree with

the empirical variances quite well. In contrast, the naive as-treated method produces

substantially biased estimates, and the resulting empirical coverage probabilities de-

viate from the nominal level. This suggests that ignoring treatment endogeneity by

the unobserved confounders, as in the naive as-treated method, can lead to problem-

atic estimation and inference. In Figure 3.1, we also note that, when the weights in

our two-stage estimation procedure are calculated based on logistic regression models

that are misspecified, the resulting estimation and empirical coverage probabilities of

95% CI can be considerably biased. This observation highlights the importance of

using the proposed nonparametric weight estimates, κ̃v,i’s.

We have similar observations for scenario (B). The results are presented in Figure

3.1, suggesting that the proposed method also works well when CQCE(τ)is τ -varying.

That is, the empirical estimation biases and the departures of the empirical coverage

probabilities from 95%, though slightly larger than those in scenario (A), are still

rather minimal and moreover decrease with the sample size. We also observe a very

good agreement between the estimated variances and empirical variance

Figure 3.3 and Figure 3.4 show the simulation results with n = 2000 for scenar-

ios (A) (B). We note that the biases of the proposed estimator further diminish as

the sample size increases. The performance regarding the variance estimation and

confidence intervals also improves with the sample size.

Next, we consider scenarios (C) and (D), which are the same as scenarios (A) and

(B) respectively, except that the proportion of compliers, pc, is reduced from 2/3 to

1/3, and the proportion of always takers and the proportion of never takers are both
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set as 1/3. The results with n = 1000 and n = 2000 are presented in Figure 3.5-3.8.

As expected, we observe that the empirical biases and variances from the proposed

estimator increase as the proportion of compliers decreases to 1/3. Nevertheless, the

resulting estimates are still fairly close to the true values, and have smaller biases

than the naive methods. The empirical variances and the estimated variances still

agree well with each other, and their agreement improves with n.

Figure 3.1: The simulation results in scenario (A) with sample size n=1000. In the
first and the third rows, black lines correspond to true or nominal values; red lines
correspond to the proposed method; blue lines correspond to the benchmark method;
green lines correspond to the naive as-treated method; purple lines correspond to
a modified proposed method with weights estimated by logistic regression. In the
second row, red solid lines represent the average variance estimates from the pro-
posed method, and red dashed lines represent the empirical variances of the proposed
estimator.
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3.3.2 An application to a dataset from the Center for Inter-

national Blood and Marrow Transplant Research

Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin

lymphoma (NHL). A dataset from the Center for International Blood and Marrow

Transplant Research (CIBMTR) includes 986 DLBCL patients between 18 to 76 years

old with autologous hematopoietic stem cell transplantation (TX) between 1996 and

2003. Among these 986 patients, 174 patients used rituximab in the pre-transplant

treatment, while other 812 patients did not. Excluding 38 patients who have missing

data, Table 3.1 presents the summary statistics of covariates and the endpoint of

interest, which is the composite of progressive lymphoma post-transplant, lymphoma

recurrence, and death from any cause. One specific interest from analyzing this

dataset is to investigate whether the pre-transplant rituximab treatment can improve

the progression free survival (PFS), defined as time to the composite endpoint, in

DLBCL patients. The overall rate of censoring to PFS is 36%.

A complication is that selecting rituximab as a pre-transplant treatment may be

influenced by the observed and unobserved patient characteristics and risk factors.

For example, Table 1 shows that patients in the rituximab group tended to be older,

and have received more chemotherapy regimens than patients in the control group.

This suggests that treatment selection may be confounded by factors that poten-

tially influence the PFS. Some of these factors, for example, molecular subtype of

lymphoma, were not captured by this dataset (Zheng et al., 2017).

Controlling for the covariates captured in this dataset, including age, number

of chemotherapy regimens, disease status, and Karnofsky performance score, Fenske

et al. (2009) reported that using rituximab in the pre-transplant treatment may im-

prove the PFS in DLBCL patients. We apply the proposed IV method to further

account for the impact of unmeasured confounders in the estimation of causal treat-

ment effect. We adopt the IV variable suggested in Zheng et al. (2017), which is
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the indicator of whether the treatment started after FDA approval of the use of rit-

uximab on November 26, 1997. During the relatively short study period from 1996

to 2003, there were no major changes in clinical practice or technical improvements

for the autologous hematopoietic stem cell transplantation, except for the FDA ap-

proval of rituximab. Therefore, it is reasonable to assume that the adopted IV affects

the PFS outcome only through the use of rituximab, and is independent of unmea-

sured confounders. These then justify the independence of IV assumption (A1) and

the exclusion assumption (A2). Note that DLBCL patients could not receive the pre

transplant rituximab treatment before the FDA approval of rituximab. Consequently,

this confers a one-sided compliance case, and the monotonicity assumption (A4) is

automatically satisfied.

Table 2 3.2 presents the summary statistics stratified by the IV variable. From

Table 2, we observe a strong positive association between using rituximab in the

pre-transplant treatment and starting treatment after the FDA approval. This fur-

ther justifies the validity of the adopted IV. Age and Karnofsky performance scores

are similar between patients who began their treatments before FDA approval of

rituximab and those who started their treatments after the FDA approval. The dis-

tributions of disease status and number of chemotherapy regimens however may differ

between these two groups of patients. This suggests the need to include these factors

as covariates in our model (3.1). Note that the rituximab became available only after

the FDA approval date. Thus, this example renders a one-sided compliance IV set-

ting. As discussed in Section 3.2.1, the proposed estimate for βd can be interpreted

as the estimated causal quantile treatment effect for the treated population.

We apply the proposed method, the modified proposed method, and the as-treated

analysis based on the method of Peng and Huang (2008), all of which adjust for all

the observed covariates. To implement the proposed method, we adopt the second

order Epanechnikov kernel and choose bandwidths σ1,n and σ2,n in the same way as in
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simulation studies, except that we select from {0.02, 0.04, . . . , 0.2}. The results on the

treatment coefficients are presented in Figure 3.9, and results on the other coefficients

can be found in Figure 3.10. By Figure 3.9, the estimated CQCE(0.5) equals 1.42,

which, combined with the corresponding intercept coefficient estimate, 3.39, in Figure

3.10 indicates a clinically significant treatment effect on median PFS time. That is,

for rituximab treated patients with covariates set at their reference levels (i.e. younger

than 55 years, having 0 or 1 chemotherapy regimens, with CR1 disease status and

karnofsky score < 90), receiving rituximab may have prolonged their median PFS

from 26.67 (= exp(3.39)) months to 122.73 (= exp(3.39 + 1.42)) months. Similarly,

the estimate for CQCE(0.25), 0.56, suggests a causal effect of rituximab in prolonging

the 25th percentile of the same potential PFS from 15.3 months to 26.9 months for

treated patient with reference covariate values. This shows that assessing CQCE(τ)

based on Figure 3.9 can depict a comprehensive picture of the causal treatment effect

of rituximab.

As noted from Figure 3.9, the proposed method reveals a stronger beneficial effect

of rituximab than the as-treated analysis. By the proposed method, CQCE(τ) of

rituximab, is significantly above 0 across all τ ’s between 0.1 and 0.6, while by the

as-treated analysis, the positive effect of rituximab is not significant on the quantiles

of PFS time with τ < 0.3. This suggests that the naive as-treated analysis may

underestimate the effect of rituximab for the patients with poor PFS. This result

is interesting and also sensible. A reasonable explanation is that sicker patients are

more likely to choose rituximab treatment, as suggested by Table 3.1. Because sicker

patients tend to have more rapid disease progression, implying shorter PFS, ignoring

the unmeasured sickness related confounders, as in the as-treated analysis, as in the

as-treated analysis, can lead to an attenuated positive effect of rituximab, particu-

larly on the lower quantiles of the potential PFS. The modified proposed method

with weights estimated from logistic regression suggests stronger effects of rituximab
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than does the as-treated analysis, but still fails to identify the beneficial effects of

rituximab at lower quantiles of PFS with τ < 0.27. Such a discrepancy may reflect

the estimation bias from incorrectly assuming a logistic regression model for the IV,

a phenomenon clearly demonstrated by the simulation studies. Our finding about rit-

uximab’s effect generally agrees with the results in Zheng et al. (2017) that the mean

effect of rituximab was underestimated in the standard analysis without addressing

the bias from the endogenous treatment selection.

3.4 Remarks

In this work, we quantify causal treatment effect by complier quantile causal effect

(CQCE), which is a meaningful counterpart of the complier average causal effect

(CACE) that has been commonly studied in standard IV literature. For a time-to-

event outcome subject to censoring, CQCE is identifiable under weaker conditions

than CACE, which generally cannot be estimated with bounded censoring. CQCE

also offers greater flexibility in depicting the causal treatment effect than other causal

estimands in survival analysis, such as CCPHR and complier location shift effect. We

develop a simple and rigorously justified two-stage estimation procedure, and elabo-

rate how it can readily be implemented by existing software. The ease of implemen-

tation should facilitates future applications of the proposed method.

To apply the proposed method, a prerequisite step is to identify a binary IV for

which (A1)-(A4) are plausible assumptions. One also needs to make sure the resulting

interpretation of CQCE is scientifically relevant. Readers may refer to Baiocchi et al.

(2014) for discussions and examples of reasonable IVs.

Like many other IV approaches, the proposed method faces challenges when the

selected IV is a weak IV that is characterized by a low proportion of compliers in the

present IV setting (Sovey and Green, 2011). As explained in Section 3.2.4, when a
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weak IV is used, the proposed estimation and the associated bootstrap inference can

produce unstable and inaccurate results. This is confirmed by our simulation studies.

Another potential problem from a weak IV is high sensitivity to the violation of

the independence of IV assumption, as discussed in Baiocchi et al. (2014). That

is, when the IV has only a minor association with unmeasured confounders, the

resulting estimation bias can be exacerbated when the IV is weak. Therefore, caution

is warranted when a weak IV is suspected.

3.5 Appendix

3.5.1 Appendix C: Propositions and their proofs

Proposition 3.1. Under assumptions (A1) and (A2), in the one-sided compliance

case, where subjects with V = 0 have no access to the treatment (i.e. Pr(D0 = 0|X) =

1), βd(τ) = Qlog T1(τ |X, D = 1)−Qlog T0(τ |X, D = 1)

Proof. First, Pr(D0 = 0|X) = 1 implies that subjects with D = 1 must belong to the

complier group. Given the fact that T = D × T1 + (1 −D) × T0, we have It follows

that

Qlog T (τ |D = 1,X, D1 > D0) = inf{t : Pr(log T1 ≤ t|D = 1,X, D1 > D0) ≥ τ}

= inf{t : Pr(log T1 ≤ t|D = 1,X) ≥ τ}

= Qlog T1(τ |X, D = 1).
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At the same time,

Qlog T (τ |D = 0,X, D1 > D0) = inf{t : Pr(log T0 ≤ t|D = 0,X, D1 > D0) ≥ τ}

= inf{t : Pr(log T0 ≤ t|V = 0,X, D1 = 1) ≥ τ}

= inf{t : Pr(log T0 ≤ t|V = 1,X, D1 = 1) ≥ τ}

= inf{t : Pr(log T0 ≤ t|D = 1,X) ≥ τ}

=Qlog T0(τ |X, D = 1).

The second equality follows from the one-sided compliance constraint, Pr(D0 =

0|X) = 1, and the third equality is ensured by assumption (A1). Assumption (A1),

combined with Pr(D0 = 0|X) = 1, further implies the fourth equality.

Therefore, βd(τ) is equivalent to Qlog T1(τ |X, D = 1)−Qlog T0(τ |X, D = 1).

Proposition 3.2. Under assumptions (A1) and (A2), model (3.1) and model (3.2)

are equivalent.

Proof of Proposition 3.2: Given the fact that T = D × T1 + (1−D)× T0, we

have

Qlog T (τ |D = 1,X, D1 > D0) = inf{t : Pr(log T ≤ t|D = 1,X, D1 > D0) ≥ τ}

= inf{t : Pr(log T1 ≤ t|D = 1,X, D1 > D0) ≥ τ}

Since V = D for the compliers, then inf{t : Pr(log T1 ≤ t|D = 1,X, D1 > D0) ≥

τ} = inf{t : Pr(log T1 ≤ t|V = 1,X, D1 > D0) ≥ τ}. Under assumption (A1) and

(A2), we have

inf{t : Pr(log T1 ≤ t|V = 1,X, D1 > D0) ≥ τ} = inf{t : Pr(log T1 ≤ t|X, D1 > D0) ≥ τ}

=Qlog T1(τ |X, D1 > D0)

Similarly, we have Qlog T (τ |D = 0,X, D1 > D0) = Qlog T0(τ |X, D1 > D0).
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These imply that Qlog T (τ |D = d,X, D1 > D0) = Qlog Td(τ |X, D1 > D0), d = 0, 1.

Thus, model (3.1) and model (3.2) are equivalent.

Proposition 3.3. Under assumption (A1)-(A5), suppose κv(U) = Pr(D1 > D0|U),

then κv(U) = 1 − D(1−v(U))
1−π(X)

− (1−D)v(U)
π(X)

, where v(U) = Pr(V = 1|U) and π(X) =

Pr(V = 1|X).

Proof. Recall U = (W, δ,D,X). Note that D(1 − V ) only differs from zero only if

D = 1 and V = 0. By the monotonicity assumption, D0 = 1 implies D1 = 1. Then

E(D(1− V )|U) = Pr(D(1− V ) = 1|U) = Pr(D1 = D0 = 1, V = 0|U)

= Pr(D1 = D0 = 1|U)Pr(V = 0|D1 = D0 = 1,W1 = min(T1, C), δ = I(T1 < C),X)

= Pr(D1 = D0 = 1|U)Pr(V = 0|X).

The last equality holds because assumptions (A1) and (A5) imply that V is

independent of (D1, D0, T1, T0) and C conditional on X. Similarly, we can show

thatE((1−D)V |U) = Pr(D1 = D0 = 0|U)Pr(V = 1|X).. Therefore

1− D(1− v(U))

1− π(X)
− (1−D)v(U)

π(X)

=E
{

1− D(1− V )

Pr(V = 0|X)
− (1−D)V

Pr(V = 1|X)
U
}

=1− Pr(D1 = D0 = 1|U)− Pr(D1 = D0 = 0|U) = Pr(D1 > D0|U).

The last equality follows from the monotonicity assumption.
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3.5.2 Appendix D: Proofs of Theorem 3.1 and Theorem 3.2

3.5.2.1 Technical lemmas and their proofs

Lemma 3.1. Under the Conditions (C1)-(C8) and limn ‖SL‖ = o(n−1/2),

n1/4 sup
τ∈(0,τU ]

‖µc(β̃n(τ))− µc(β0(τ))‖ →p 0

Proof. Define γn,j = n−1
∑n

i=1(κ̂v,i−κv,i)Zi[Ni(exp{Z>i β̂n(τj)})−
∫ τj

0
I(Wi ≥ exp{Z>i β̂n(u)})dH(u)].

Because supi |κ̂v,i−κv,i| = op(n
−1/4) and the boundedness of Z, we have sup1≤j≤L(n) ‖γn,j‖ =

op(n
−1/4).

Given β̂(τ) is defined as a generalized solution of model (3.2), we have

n−1

n∑
i=1

κ̂v,iZiNi(exp{Z>i β̂n(τj)}) = n−1

n∑
i=1

κ̂v,iZi−
∫ τj

0

I(Wi ≥ exp{Z>i β̂n(u)})dH(u)+ξn,j

where maxj=1,2,··· ,M ‖ξn,j‖ ≤ supi ‖κ̂v,iZi‖/n ≤ supi ‖Zi‖/n = o(n−1/4). After some

algebraic manipulations, we have

n1/4{µc(β̂n(τj))− µc(β0(τj))} =− n1/4νn(β̂n(τj)) + n1/4

∫ τj

0

ν̃n(β̂n(u))dH(u)

+

j∑
k=1

∫ τk

τk−1

n1/4[µ̃c(β̂n(u))− µ̃c(β0(u))]dH(u)

+ n1/4{ξn,j − γn,j},

where supi n
1/4‖ξn,j − γn,j‖ = o(1) a.s.

From the Law of Iterated Logarithm for empirical process on Vapnik-C̆rvonenkis

(VC) (Alexander et al., 1989), supb nνn(b) =
∑n

i=1 κv,iZiNi{exp(Z>i b)} − µc(b) =

O(n1/2(log log n)), which implies supb n
1/4νn(b) = o(1). Similarly, we have supb n

1/4ν̃n(b) =

o(1). Therefore, as n is sufficient large, we have supi n
1/4‖ξn,j − γn,j‖ < C2 and

supb n
1/4‖{νn(b) +

∫ τj
0
ν̃n(β̂n(u))dH(u)}‖ < C1, where C1 and C2 can be arbi-
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trary small constants. From C2(a), there is a constant C3, such that ‖µc{β0(τ ′)} −

µc{β0(τ)}‖ = C3|τ ′−τ |. From C3(c), there is a constant C4, such that ‖{B(b)}−1J(b)x‖ ≤

C4‖x| for any x ∈ Rp+1 and b ∈ B(d0).

Let ãn = n1/4an and bn = an/(1 − τU). Since an = o(n−1/2), we have ãn = o(1)

and bn = o(1). Define ε0 = C3ãn, ε1 = C1 + ε0C4bn + C2 + C3ãn, and εl = C1 +

(
∑l−1

k=0 εk)C4bn +C2 +C3ãn for l = 2, · · · , L− 1. It can be shown εl is increased with

l. and εl = (1+C4bn)(l−1)(C1 +ε0C4bn+C2 +C3ãn). Since ãn = o(1) and L = τU/an,

we get limn→∞(1 + C4bn)L−1 = exp exp{C4τU/(1− τU)}. Thus with C1 chosen small

enough for n ≥ some N0, we have εl ≤ x exp{τU/(1− τU)}C1 < d0 for l = 1, . . . , L

Following the similar arguments in the proof of Theorem 1 in Peng and Huang

(2008), we can show that εL−1 is the upper bound for sup(0,τU ] n
1/4‖µc{β̂n(τ)} −

µc{β0(τ)}‖ with probability 1. Since ãn = o(1) and bn = o(1), and C1 and C2 can be

arbitrarily small, we have sup(0,τU ] n
1/4‖µc{β̂n(τ)} − µc{β0(τ)}‖ = op(1).

Lemma 3.2. For any sequence {β̃n(τ), τ ∈ (0, τU ]}∞n=1 that satisfies n1/4 supτ∈(0,τU ] ‖µc(β̃n(τ))−

µc(β0(τ))‖ →p 0, then

sup
τ∈(0,τU ]

‖n−1/2

n∑
i=1

κ̂v,iZi[Ni( exp{Z>i β̃(τ)})−Ni(exp{Z>i β0(τ)})]

− n1/2[µc{β̃(τ)} − µc{β0(τ)}]‖ →p 0.

(3.12)

Proof. By the assumption that n1/4 supτ∈(0,τU ] ‖µc(β̃n(τ)) − µc(β0(τ))‖ →p 0 , we

have β̃n(τ) ∈ B(d0), τ ∈ (0, τU ]. We first note that

n−1/2

n∑
i=1

κ̂v,iZi[Ni(exp{Z>i β̃n(τ)})−Ni(exp{Z>i β0(τ)})]− n1/2[µc{β̃n(τ)} − µc{β0(τ)}]

=In(τ) + IIn(τ),

(3.13)
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where

In(τ) =n−1/2

n∑
i=1

κv,iZi

{
Ni(exp{Z>i β̃n(τ)})−Ni(exp{Z>i β0(τ)})

}
− n1/2

{
µc{β̃n(τ)} − µc{β0(τ)}

}
,

and

IIn(τ) = n−1/2

n∑
i=1

(κ̂v,i − κv,i)Zi[N(exp{Z>i β̃n(τ)})−N(exp{Z>i β0(τ)})].

We first show supτ∈(0,τU ] ‖In(τ)‖ →p 0 by using the results of Alexander et al.

(1984) and Lai and Ying (1988). Let φ(b, τ) = κv,i{Ni(exp{Z>i b})−Ni(exp{Z>i β0(τ)})},

σ2(b, τ) = Var(φi(b, τ)),

Φn,ν = sup
τ∈(0,τU ],supτ∈(0,τU ] σ

2(b,τ)≤ν

∣∣∣n−1/2

n∑
i=1

{φ(b, τ)− E(φ(b, τ))}
∣∣∣,

and

Φ̃n = sup
τ∈(0,τU ]

∣∣∣n−1/2

n∑
i=1

κv,i[Ni(exp{Z>i β̃n(τ)})−Ni(exp{Z>i β0(τ)})]

− n1/2[µ(2)
c {β̃(τ)} − µ(2)

c {β0(τ)}],

where µ
(2)
c {b} = E{κvN(exp Z>b)} = E{I(D1 > D0)N(exp Z>b)}.

We can show that the entropy condition (2.4) in Lai and Ying (1988) with 0 < r <

2 is satisfied by the function class Fν = {φ(b, τ)−E(φ(b, τ)) : τ ∈ (0, τU ], supτ∈(0,τU ] σ
2(b, τ) ≤

ν}. By (2.6) in Lai and Ying (1988), there exists some constant C∗ > 0 such that if

C∗ν
(2−r)/4 and n(r−2)/2(r+2) < s, then

P (Φn,ν ≥ s) ≤ 5 exp{−s2ν−1g(2s · n−1/2v−1)/4}, (3.14)
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where g(t) = 2t−2{(1 + t) log(1 + t)− t}.

Given supτ∈(0,τU ] ‖µc(β̃n(τ))−µc(β0(τ))‖ = op(1), we can show that supτ∈(0,τU ] σ
2(β̃n(τ), τ)→p

0 by using similar arguments for Lemma 1 of Peng and Huang (2008). This means

for any ε > 0 and s > 0, there exists Nε,s,1 > 0 such that for n ≥ Nε,s,1,

P ( sup
τ∈(0,τU ]

σ2(β̃n(τ), τ) > νε,s) < ε/2,

where νε,s satisfies C∗ν
(2−r)/4
ε,s ≤ s and 5 exp{−C1s

2ν−1
ε,s /4} < ε/2, with C1 being a

fixed constant between 0 and 1.

At the same time, there exist Nε,s,2 > 0 such that for n ≥ Nε,s,2, it holds that

n(r−2)/2(r+2) < s and g(2s · n−1/2ν−1
ε,s ) > C1. Then by (3.14),

P (Φn,νε,s ≥ s) ≤ 5 exp{−C1s
2ν−1
ε,s /4} < ε/2.

For n > max(Nε,s,1, Nε,s,2), we have

P (Φ̃n ≥ s) ≤ P (Φn,νε,s ≥ s) + P ( sup
τ∈(0,τU ]

σ2(β̃n(τ), τ) > νε,s) < ε/2 + ε/2 = ε.

This implies Φ̃n →p 0. Note that Φ̃n corresponds to the supremum of the second

component of In(τ) over τ ∈ (0, τU ]. Given the boundedness of Z, we can similarly

show the uniform convergence to 0 for the other components of In(τ). Therefore,

supτ∈(0,τU ] ‖In(τ)‖ →p 0.
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To assess IIn(τ), we note that

sup
τ∈(0,τU ]

‖IIn(τ)‖ = sup
τ∈(0,τU ]

‖n−1/2

n∑
i=1

(
κ̂v,i − κv,i

κv,i
)κv,iZi[N(exp{Z>i β̃n(τ)})−N(exp{Z>i β0(τ)})]‖

≤ sup
τ∈(0,τU ]

n−1/2

n∑
i=1

| κ̂v,i − κv,i
κv,i

| · ‖κv,iZi[N(exp{Z>i β̃n(τ)})−N(exp{Z>i β0(τ)})]‖

≤ sup
i
n

1
4 | κ̂v,i − κv,i

κv,i
|n−

3
4 sup
τ∈(0,τU ]

n∑
i=1

‖κv,iZi[N(exp{Z>i β̃n(τ)})−N(exp{Z>i β0(τ)})]‖

(3.15)

Let Oi(τ) = ‖κv,iZi[N(exp{Z>i β̃n(τ)}) − N(exp{Z>i β0(τ)})]‖. From (3.15), we

have

sup
τ∈(0,τU ]

‖IIn(τ)‖ ≤ sup
i
n

1
4

∣∣∣ κ̂v,i − κv,i
κv,i

∣∣∣n− 3
4 sup
τ∈(0,τU ]

n∑
i=1

Oi

= sup
i
n

1
4

∣∣∣ κ̂v,i − κv,i
κv,i

∣∣∣n− 3
4 sup
τ∈(0,τU ]

n∑
i=1

(Oi(τ)− E(Oi(τ))

+ sup
i
n

1
4

∣∣∣ κ̂v,i − κv,i
κv,i

∣∣∣n 1
4 sup
τ∈(0,τU ]

E(O(τ))

(3.16)

From conditions (C7) and (C8), we have supi n
1
4 |κ̂v,i−κv,i| = op(1) (Newey, 1994).

By the Law of the Iterated Logarithm for empirical processes on Vapnik-C̆rvonenkis

(VC) (Alexander et al., 1989), we have

sup
τ∈(0,τU ]

n∑
i=1

(Oi(τ)− E(Oi(τ))) = O(n1/2(log log n))

Then supi n
1
4

∣∣∣ κ̂v,i−κv,iκv,i

∣∣∣n− 3
4 supτ∈(0,τU ]

∑n
i=1(Oi(τ)− E(Oi(τ)) = op(1).

Next, we show supτ∈(0,τU ] E(O(τ)) = op(n
−1/4). Note that E(O(τ)) = E‖I(D1 >

D0)Z[N(exp{Z>β̃n(τ)})−N(exp{Z>β̃0(τ)})]‖ and the boundness of Z, we only need

to show that supτ∈(0,τU ] E(O(2)(τ)) = E‖I(D1 > D0)[N(exp{Z>β̃n(τ)})−N(exp{Z>β̃0(τ)})]‖ =
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op(n
−1/4). Then

sup
τ∈(0,τU ]

E(O(2)(τ))

= sup
τ∈(0,τU ]

E‖I(D1 > D0)[N(exp{Z>β̃n(τ)})−N(exp{Z>β0(τ)})]‖

≤ sup
τ∈(0,τU ]

E‖I(D1 > D0){N(exp{Z>β̃0(τ)}+ | exp{Z>β̃n(τ)} − exp{Z>β0(τ)|)

−N(exp{Z>β̃0(τ)} − | exp{Z>β̃n(τ)} − exp{Z>β0(τ)|)}‖

≤2 sup
t
|f̃(t|Z)|| exp{Z>β̃n(τ)} − exp{Z>β0(τ)}|

.

Let A(d0) = {µc(b) : b ∈ Bd0}. Using similar arguments in the proof of Theorem

1 in Peng and Huang (2008), we can show that there exists an inverse function of

µc, denoted by h, from A(d0) to B(d0), such that h(µc(b)) = b for any b ∈ Bd0 .

Note that Z> exp{Z>β(τ)}B−1(β(τ)) = d exp(Z>h{µc{β(τ)}}
dµc{β(τ)} = d exp{Z>β(τ)}

dµc{β(τ)} . From ad-

ditional condition (C3), we have that supZ,τ∈(0,τU ] ‖ exp{Z>h(α(τ))}B−1(h{α(τ)})‖

is bounded, and f̃(t|Z) is uniformly bounded in t and Z. Under the boundness of Z,

there exists a constant C7, such that

2 sup
t
|f̃(t|Z)| sup ‖Z>‖ sup

Z,τ∈(0,τU ]

‖ exp{Z>β(τ)}B−1(β(τ))‖ ≤ C7.

.



72

Then

2 sup
t
|f̃(t|Z)|| exp{Z>β̃n(τ)} − exp{Z>β0(τ)}|

≤2 sup
t
|f̃(t|Z)| sup ‖Z>‖ sup

Z,τ∈(0,τU ]

‖ exp{Z>β̌n(τ)})}B−1{β̌n(τ)}}‖

· sup
τ∈(0,τU ]

‖µc{β̃n(τ)} − µc{β0(τ)}‖

≤C7 sup
τ∈(0,τU ]

‖µc{β̃n(τ)} − µc{β0(τ)}‖.

Since n1/4 supτ∈(0,τU ] ‖µc(β̃n(τ))−µc(β0(τ))‖ →p 0, then supτ∈(0,τU ] E(O(2)(τ)) =

o(n−1/4). It follows that supτ∈(0,τU ] ‖IIn(τ)‖ →p 0. Therefore, we complete the proof

of Lemma 3.2.

Lemma 3.3. Under conditions (C1)-(C8),

sup
τ∈(0,τU ]

‖n1/2Sn(β0, τ)− n−1/2

n∑
i=1

ψi(τ)‖ = op(1)

where ψi(τ) = m(Ui, τ)
(

1− Di(1−Vi)
1−πi −

(1−Di)Vi
πi

)
+ H(Xi, τ)(Vi − π(Xi)).

Proof. By condition (C6), using κ̂v,i in place of κ̃v,i in Sn(β, τ) only lead to a difference

of o(0,τU ](1). Thus, after some algebra manipulations, we have

n1/2Sn(β0(τ)) =
1√
n

n∑
i=1

m(Ui, τ) ·
(

1− Di(1− v̂i)
1− πi

− (1−Di)v̂i
πi

)
+

1√
n

n∑
i=1

m(Ui, τ) ·
(

(1−Di) · vi
π2
i

− Di · (1− vi)
(1− πi)2

)
· (π̂i − πi)

+ Rn,1 + Rn,2

(3.17)

where Rn,1 = 1
n

∑n
i=1 m(Ui, τ) ·

(
(1−Di)
πiπ̂i

− Di
(1−πi)(1−π̂i)

)
·n1/4(π̂i−πi) ·n1/4(v̂i− vi) and

Rn,2 = 1
n

∑n
i=1 m(Ui, τ) ·

(
(1−Di)·vi
π2
i π̂i

− Di·(1−vi)
(1−πi)2(1−π̂i)

)
· n1/2(π̂i − πi)2.
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Applying Lemma B.3 in Newey (1994) with condition (C8), we have supi ‖π̂i −

πi‖ = o(n−1/4) and supi ‖v̂i − vi‖ = o(n−1/4). Thus, we have ‖Rn,1‖ ≤ n1/4 sup ‖π̂ −

π‖n1/4 sup ‖v̂ − v‖ 1
n

∑n
i=1 ‖m(Ui, τ) ·

(
(1−Di)
πiπ̂i

− Di
(1−πi)(1−π̂i)

)
‖ = o(0,τU ](1). Similarly

Rn,2 = o(0,τU ](1).

Next, we show that

1√
n

n∑
i=1

m(Ui, τ) ·
(

(1−Di) · vi
π2
i

− Di · (1− vi)
(1− πi)2

)
· (π̂i − πi)

=
1√
n

n∑
i=1

H(Xi, τ) · (Vi − π) + o(0,τU ](1),

(3.18)

and

1√
n

n∑
i=1

m(Ui, τ) ·
(

1− Di(1− v̂i)
1− πi

− (1−Di)v̂i
πi

)
=

1√
n

n∑
i=1

m(Ui, τ) ·
(

1− Di(1− Vi)
1− πi

− (1−Di)Vi
πi

)
+ o(0,τU ](1).

(3.19)

Note that directly applying Theorem 4.2 in Newey (1994) can lead to the point-

wise counterparts of (3.18) and (3.19), where o(0,τU ](1) is replaced by op(1). The

assumptions required by Theorem 4.2 in Newey (1994) are ensured by the fact that

V is a binary variable, and conditions (C1), (C7) and (C8).

To establish the results in (3.18) and (3.19), we can follow the same lines in the

proof of Newey (1994)’s Theorem 4.2, while applying some strengthened arguments

at various steps. First, consider (3.18), and without loss of generality, confine our

attention to the second component of both sides of the equation, (i.e, corresponding

to the constant component in Z). Following the proofs of Newey (1994)’s Theorem

4.2, we see that the application of his Lemma 5.4 can lead to a stronger conclusion

with op(1) replaced by o(0,τU ](1) provided |a(2)(U, τ)| is uniformly bounded in u ∈ U

and τ ∈ (0, τU ]. In order to reach a stronger uniform version of the conclusion from
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the subsequent application of his Lemma 5.2, we need to show that

n−1/2

n∑
i=1

{εσi (τ)− E(εσi (τ))} = o(0,τU ](1), (3.20)

where εσi (τ) = ζσi (τ)− ζi(τ) with ζσi (τ) =
∫
H(2)(x, τ){Vi − π(x)}K∗σ(x−Xi)dx and

ζσi (τ) = H(2)(x, τ)(Vi−πi). By K∗σ(·) having a bounded support and given the uniform

boundeness of |a(2)(U, τ)| and condition (C5), we have |ζσi (τ)| is bounded above by

a positive constant free of σ. By the Dominated Convergence Theorem, for each

τ ∈ (0, τU ], we have ζσi (τ) →p ζi(τ) as σ → 0 and consequently, E({εσ1,ni (τ)}2) → 0

as n→∞. By condition (C2), we can show that E({εσ1,ni (τ)}2) is equicontinuous in

τ . Then it follows from Arzelà-Ascoli Theorem that supτ∈(0,τU ] E({εσ1,ni (τ)}2) → 0,

which implies that supτ∈(0,τU ](n
−1
∑n

i=1 Var{εσ1,ni (τ)}) can be bounded above by a

sequence converging to 0. Following similar arguments of Lai and Ying (1988) for

their Lemma 1, we can show that supτ∈(0,τU ] E({εσ1,ni (τ)}2) → 0 implies the result

in (3.20) after checking that the entropy assumption (2.4) in Lai and Ying (1988) is

satisfied for the function class {εσi (τ) : τ ∈ (0, τU ]}. Upon proving (3.20), we can

achieve a modified version of Newey (1994)’s proof for his Theorem 4.2, which lead

to the stronger uniform result in (3.18).

Similarly, an application of Newey (1994)’s Theorem 4.2 to 1√
n

∑n
k=1 mij(Uk, τ) ·(

1− Dk(1−v̂ij,k)

1−πk
− (1−Dk)v̂ij,k

πk

)
enlightens the following result:
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1√
n

n∑
k=1

mij(Uk, τ) ·
(

1− Dk(1− v̂ij,k)
1− πk

− (1−Dk)v̂ij,k
πk

)
=

1√
n

n∑
k=1

mij(Uk, τ) ·
(

1− Dk(1− vij,k)
1− πk

− (1−Dk)vij,k
πk

)
+

1√
n

n∑
k=1

mij(Uk, τ) ·
(

1 +
Dk

1− πk
− (1−Dk)

πk

)
(Vk − vij(Uk)) + o(0,τU ](1)

=
1√
n

n∑
k=1

mij(Uk, τ) ·
(

1− Dk(1− Vk)
1− πk

− (1−Dk)Vk
πk

)
+ o(0,τU ](1).

(3.21)

We can prove the results in (3.21) using the same strategy for showing (3.18).

Summing equation (3.21) for all i, j on both sides, we obtain (3.19).

By (3.17),(3.18) and (3.19), and Rn,k = o(0,τU ](1)(k = 1, 2), it follows that

n1/2Sn(β0(τ)) = n−1/2

n∑
i=1

ψi(τ) + o(0,τU ](1).

This completes the proof of Lemma 3.3.

3.5.2.2 Proof of theorems

Proof of Theorem 3.1: Define γn,j = n−1
∑n

i=1(k̂v,i − kv,i)Zi[Ni(exp{Z>i β̂(τj)} −∫ τj
0
I(Wi ≥ exp{Z>i β̂(u)})dH(u)], j = 1, . . . L(n). Under conditions (C7) and (C8),

Lemma B.3 of (Newey, 1994) implies supu∈U |v̂(u)−v(u)| = op(n
−1/4) and supx∈X |π̂(x)−

π(x)| = op(n
−1/4). It follows from condition (C6) that

sup
i
|κ̃v,i − κv,i| = op(n

−1/4). (3.22)

Coupled with the boundedness of Z, we have sup1≤j≤L(n) ‖γn,j‖ = o(1), a.s.



76

Given that β̂(τ) is defined as the generalized solution of (3.2), we have

n−1

n∑
i=1

κ̂v,iZiNi(exp{ZT
i β̂(τj)}) = n−1

n∑
i=1

∫ τj

0

κ̂v,iZiI(Wi ≥ exp{Z>i β̂(u)})dH(u)+ξn,j

where maxj=1,··· ,M ‖ξn,j‖ ≤ supi ‖k̂v,i‖ supi ‖Zi‖/n.

Condition C3(b) implies the above equation holds if and only if b = b′. Therefore,

there exists an inverse function of µc, denoted as κc from A(d0) to B(d0), such that

κc(µc(b)) = b for any b ∈ B(d0).

According to definition of generalized solution, for j = 1, · · · , L, we have

n−1

n∑
i=1

k̂v,iZiNi(exp{ZT
i β̂(τj)}) = n−1

n∑
i=1

∫ τj

0

k̂v,iZiI(Wi ≥ exp{Z>i β̂(u)})dH(u)+ξn,j

where maxj=1,··· ,M ‖ξn,j‖ ≤ supi ‖k̂v,i‖ supi ‖Zi‖/n. After simple algebra manipula-

tions, it could be shown

µc(β̂(τj))− µc(β0(τj)) =− νn(β̂(τj)) +

∫ τj

0

ṽn(β̂(u))dH(u)

+

j∑
k=1

∫ τk

τk−1

[µ̃c(β̂(τj))− µ̃c(β̂0(u))]dH(u) + ξn,j − γn,j,

(3.23)

and supj ‖ξn,j − γn,j‖ = o(1), a.s.

Note that equation (3.23) closely resembles to the equation (A.1) in Peng and

Huang (2008). The key distinction lies in the inclusion I(D1 > D0) (or P (D1 >

D0|U)) within the expectation (or empirical averages) involved in µc(·), µ̃c(·), and

νn(·), and ν̃n(·). Therefore, based on equation (3.23), we can apply the same line

of arguments in the proof of Theorem 1 of Peng and Huang (2008) to show that for

0 < v < τU ,

sup
τ∈[v,τU ]

‖β̂(τ)− β0(τ)‖ →p 0.
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Proof of Theorem 3.2: By Lemma 3.1 and Lemma 3.1, we have

sup
τ∈(0,τU ]

‖n−1/2

n∑
i=1

k̂v,iZi[Ni( exp{Z>i β̂(τ)})−Ni(exp{Z>i β0(τ)})]

− n1/2[µc{β̂(τ)} − µc{β0(τ)}]‖ →p 0.

(3.24)

Similarly, we could have

sup
τ∈(0,τU ]

‖n−1/2

n∑
i=1

k̂v,iZi[I(Wi ≥ exp{Z>i β̂(τ)})− I(Wi ≥ exp{Z>i β0(τ)})]

− n1/2[µ̃c{β̂(τ)} − µ̃c{β0(τ)}]‖ →p 0.

(3.25)

By the definition of β̂(·),

sup
τ∈[τj ,τj+1]

n1/2‖Sn(β̂, τ)− Sn(β̂, τj)‖

≤ n1/2C1 sup
u∈U
|κ̂v|{H(τj+1)−H(τj)}

≤ n1/2C1an/(1− τU).

(3.26)

Given that n1/2‖SL‖ → 0, we have n1/2Sn(β̂, τ) = o(0,τU ](1).

By equations (3.24) and (3.25), and the result that µc{β̂(τ)} converges uniformly

to µc{β0(τ)} for τ ∈ (0, τU ], we have

− n1/2Sn(β0, τ)

=n1/2[µc{β̂(τ)} − µc{β0(τ)}]

−
∫ τ

0

n1/2[µ̃c{β(u)} − µ̃c{β0(u)}]dH(u) + o(0,τU ](1)

= n1/2[µc{β̂(τ)} − µc{β0(τ)}]

−
∫ τ

0

[J{β0(u)}B{β0(u)}−1 + o(0,τU ](1)]

× n1/2[µc{β̂(u)} − µc{β0(u)}]dH(u) + o(0,τU ](1).

(3.27)



78

The above equation can be viewed as a stochastic differential equation for n1/2[µc{β̂(τ)}−

µc{β0(τ)}]. From the production integration theory (Gill et al., 1990), we have

n1/2[µc{β̂(τ)} − µc{β0(τ)}] = φ{n1/2Sn(β0, τ)}+ o(0,τU ](1) (3.28)

where φ is a map from F to F such that for g ∈ F ,

φ(g)(τ) =

∫ τ

v

I(s, τ)dg(s)

with I(s, τ) =
∏

u∈(s,t][Ip + J{β0(u)}B{β0(u)}−1dH(u)] and F = {g : (0, τU ],→

Rp, g is left-continuous with right limit, g(v) = 0}

From Lemma 3.3, −n1/2Sn(β0, τ) converge weakly to a tight Gaussian process,

G(τ), with mean 0 and covariance matrix Σ(s, t) = E[ψj(s)ψj(t)
>], where ψj(s) is

defined in Lemma B.3. Besides, φ is a linear operator. φ{G(τ)} for τ ∈ [v, τU ] is

Gaussian process, and B{β0(u)}−1 is bounded uniformly for τ ∈ [v, τU ]. Following

the arguments in Peng and Huang (2008), it could be shown that n1/2{β̂(τ)−β0(τ)}

converges weakly to B{β0(τ)}−1φ{G(τ)} for τ ∈ [v, τu] by using the Taylor ex-

pansion of κc[µc{β̂(τ)}] − κc[µc{β0(τ)}] and continuous mapping theorem. Since

B{β0(τ)}−1φ{G(τ)} is a Gaussian process, we complete the proof of Theorem 3.2.
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Figure 3.2: The simulation results in scenario (B) with sample size n=1000. In the
first and the third rows, black lines correspond to true or nominal values; red lines
correspond to the proposed method; blue lines correspond to the benchmark method;
green lines correspond to the naive as-treated method; purple lines correspond to
a modified proposed method with weights estimated by logistic regression. In the
second row, red solid lines represent the average variance estimates from the pro-
posed method, and red dashed lines represent the empirical variances of the proposed
estimator.
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Figure 3.3: The simulation results in scenario (A) with sample size n=2000. In the
first and the third rows, black lines correspond to true or nominal values; red lines
correspond to the proposed method; blue lines correspond to the benchmark method;
green lines correspond to the naive as-treated method; purple lines correspond to
a modified proposed method with weights estimated by logistic regression. In the
second row, red solid lines represent the average variance estimates from the pro-
posed method, and red dashed lines represent the empirical variances of the proposed
estimator.
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Figure 3.4: The simulation results in scenario (B) with sample size n=2000. In the
first and the third rows, black lines correspond to true or nominal values; red lines
correspond to the proposed method; blue lines correspond to the benchmark method;
green lines correspond to the naive as-treated method; purple lines correspond to
a modified proposed method with weights estimated by logistic regression. In the
second row, red solid lines represent the average variance estimates from the pro-
posed method, and red dashed lines represent the empirical variances of the proposed
estimator.
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Figure 3.5: The simulation results in scenario (C) with sample size n=1000. In the
first and the third rows, black lines correspond to true or nominal values; red lines
correspond to the proposed method; blue lines correspond to the benchmark method;
green lines correspond to the naive as-treated method; purple lines correspond to
a modified proposed method with weights estimated by logistic regression. In the
second row, red solid lines represent the average variance estimates from the pro-
posed method, and red dashed lines represent the empirical variances of the proposed
estimator.
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Figure 3.6: The simulation results in scenario (D) with sample size n=1000. In the
first and the third rows, black lines correspond to true or nominal values; red lines
correspond to the proposed method; blue lines correspond to the benchmark method;
green lines correspond to the naive as-treated method; purple lines correspond to
a modified proposed method with weights estimated by logistic regression. In the
second row, red solid lines represent the average variance estimates from the pro-
posed method, and red dashed lines represent the empirical variances of the proposed
estimator.
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Figure 3.7: The simulation results in scenario (C) with sample size n=2000. In the
first and the third rows, black lines correspond to true or nominal values; red lines
correspond to the proposed method; blue lines correspond to the benchmark method;
green lines correspond to the naive as-treated method; purple lines correspond to
a modified proposed method with weights estimated by logistic regression. In the
second row, red solid lines represent the average variance estimates from the pro-
posed method, and red dashed lines represent the empirical variances of the proposed
estimator.
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Figure 3.8: The simulation results in scenario (D) with sample size n=2000. In the
first and the third rows, black lines correspond to true or nominal values; red lines
correspond to the proposed method; blue lines correspond to the benchmark method;
green lines correspond to the naive as-treated method; purple lines correspond to
a modified proposed method with weights estimated by logistic regression. In the
second row, red solid lines represent the average variance estimates from the pro-
posed method, and red dashed lines represent the empirical variances of the proposed
estimator.
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Table 3.1: The descriptive statistics of patients in CIBMTR between rituximab and
control groups

Variable

Entire
Sample

(N=948)

Ritux
Group

(N=164)

Control
Group

(N=784) p-value

Age> 55
No 543 (57.3%) 74 (45.1%) 469 (59.8%) < 0.0011

Yes 405 (42.7%) 90 (54.9%) 315 (40.2%)

Number
of chemo
regimen

1 128 (13.5%) 12 (7.3%) 116 (14.8%) < 0.0011

2 413 (43.6%) 58 (35.4%) 355 (45.3%)

3 290 (30.6%) 61 (37.2%) 229 (29.2%)

4 96 (10.1%) 31 (18.9%) 65 (8.3%)

5 21 (2.2%) 2 (1.2%) 19 (2.4%)

Status

PIF sensitive 172 (18.1%) 31 (18.9%) 141 (18%) 0.0061

PIF resistant 51 (5.4%) 10 (6.1%) 41 (5.2%)

CR1 158 (16.7%) 36 (22%) 122 (15.6%)

REL sensitive 291 (30.7%) 43 (26.2%) 248 (31.6%)

REL resistant 65 (6.9%) 12 (7.3%) 53 (6.8%)

CR2+ 154 (16.2%) 32 (19.5%) 122 (15.6%)

Other 57 (6%) 0 (0%) 57 (7.3%)

Karnofsky
performance

score

< 90% 354 (37.3%) 63 (38.4%) 291 (37.1%) 0.8231

90-100% 594 (62.7%) 101 (61.6%) 493 (62.9%)

Event

Progression
or Death 608 (64.1%) 82 (50%) 526 (67.1%) 0.0062

Censoring 340 (35.9%) 82 (50%) 258 (32.9%)

1 P-value is calculated from Chi-square test.
2 P-value is calculated from Log-rank test which compares the PFS between two groups.
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Table 3.2: The descriptive statistics of patients in CIBMTR before and after FDA
approval date

Variable

Entire
Sample

(N=948)

Before
Approval
(N=314)

After
Approval
(N=634) p-value

Treatment
Ritux 164 (17.3%) 0 (0%) 164 (25.9%) < 0.0011

Control 784 (82.7%) 314 (100%) 470 (74.1%) )

Age> 55
No 543 (57.3%) 189 (60.2%) 354 (55.8%) 0.2281

Yes 405 (42.7%) 125 (39.8%) 280 (44.2%)

Number
of chemo
regimen

1 128 (13.5%) 53 (16.9%) 75 (11.8%) 0.0131

2 413 (43.6%) 125 (39.8%) 288 (45.4%)

3 290 (30.6%) 98 (31.2%) 192 (30.3%)

4 96 (10.1%) 26 (8.3%) 70 (11%)

5 21 (2.2%) 12 (3.8%) 9 (1.4%)

Status

PIF sensitive 172 (18.1%) 57 (18.2%) 115 (18.1%) < 0.0011

PIF resistant 51 (5.4%) 13 (4.1%) 38 (6%)

CR1 158 (16.7%) 37 (11.8%) 121 (19.1%)

REL sensitive 291 (30.7%) 112 (35.7%) 179 (28.2%)

REL resistant 65 (6.9%) 20 (6.4%) 45 (7.1%)

CR2+ 154 (16.2%) 42 (13.4%) 112 (17.7%)

Other 57 (6%) 33 (10.5%) 24 (3.8%)

Karnofsky
performance

score

< 90% 354 (37.3%) 113 (36%) 241 (38%) 0.5921

90-100% 594 (62.7%) 201 (64%) 393 (62%)

Event

Progression
or Death 608 (64.1%) 239 (76.1%) 369 (58.2%) < 0.0012

Censoring 340 (35.9%) 75 (23.9%) 265 (41.8%)

1 P-value is calculated from Chi-square test.
2 P-value is calculated from Log-rank test which compares the PFS between two groups.
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Figure 3.9: The results on treatment coefficients from analyzing the bone marrow
transplant dataset based on the proposed IV method, the as-treated censored quan-
tile regression analysis, and the modified proposed IV method with weights estimated
from the logistical regression. Black solid and dashed lines respectively represent the
coefficient estimates and 95% confidence intervals based on the proposed IV method.
Red solid and dashed lines respectively represent the coefficient estimates and 95%
confidence intervals based on the as-treated censored quantile regression analysis.
Green solid and dashed lines respectively represent the coefficient estimates and 95%
confidence intervals based on the modified proposed IV method with weights esti-
mated from the logistical regression.
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Figure 3.10: The results from analyzing CIBMTR data based on the proposed IV
method, the as-treated censored quantile regression analysis, and the modified pro-
posed IV method with weights estimated from the logistical regression. Black solid
and dashed lines respectively represent the coefficient estimates and 95% confidence
intervals based on the proposed IV method. Red solid and dashed lines respec-
tively represent the coefficient estimates and 95% confidence intervals based on the
as-treated censored quantile regression analysis. Green solid and dashed lines respec-
tively represent the coefficient estimates and 95% confidence intervals based on the
modified proposed IV method with weights estimated from the logistical regression.
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Chapter 4

Estimation of Population Causal

Quantile Effects with Instrumental

Variables and Censored Data
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4.1 Potential Outcomes Framework and Assump-

tions

Let D ∈ Rq1 and V ∈ Rq2 denote the treatment variables and instrumental variables,

where q2 ≥ q1. Let T d denote the potential survival time given D = d, and X

represent the p−dimensional vector of covariates. If q2 > q1, we can linearly project

D on V and X to construct a new instrument with q1 dimension. Thus, we can assume

q1 = q2 = q without loss of generality. Define Qlog Td(τ |X) = inf{t : Pr(T d ≤ t|X) ≥

τ}. Besides, ⊥⊥ represents the statistical independence. We adopt the following

standard IV assumptions.

(A1) Given X = x, for each d, log T d = q(d,x, Ud), where q(d,x, τ) is strictly increas-

ing in τ and Ud ∼ Uniform(0, 1)

(A2) Independence of IV: Ud ⊥⊥ V|X.

(A3) Selection : There exists an unknown function g and random variable R, such

that g(R,X,V) = D

(A4) Rank Similarity: Ud|X,V,R are identical distributions for varying d.

The above potential outcome framework and assumptions have been commonly

adopted in the IV literature, such as Chernozhukov and Hansen (2005, 2006, 2008).

Assumption (A1) provides the Skorohod Representation of the potential outcome

log T d (Chernozhukov and Hansen, 2006). Assumption (A2) implies that the potential

outcomes are independent of V given X. The assumption (A3) is a representation

of the treatment selection mechanism, which is a weaker assumption compared to

the monotoncity assumption in complier causal effect approach and avoid functional

form assumptions between treatment variables and IVs. Assumption (A4) is the key

assumption in identifying the population quantile causal effect, which restricts the
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evolution of the distribution of the ranks across treatment states (Chernozhukov and

Hansen, 2005).

4.2 The Proposed Model

4.2.1 Censored population quantile causal effect (CPQCE)

model

In this work, we propose the following censored population quantile causal effect

(CPQCE) model:

Qlog Td(τ |X) = q(d,X, τ), τ ∈ (0, τU ], (4.1)

where q(d,X, τ) = d>β0(τ) + X>γ0(τ), Qlog Td(τ |X) = inf{t : Pr(T d ≤ t|X) ≥ τ},

and τU is a constant between (0, 1). Besides, define q(D,X, τ) = D>β0(τ)+X>γ0(τ).

After simple algebraic manipulation, we have β0(τ) = ∂Qlog Td(τ |X)/∂d, which repre-

sents effects of the treatment covariates among τ−th quantile of the potential survival

time (in the logarithm scale) given the covariates in X. Thus, β0(τ) will be referred

as population τ−th quantile causal effect.

To estimate β0(τ), model (4.1) can not be directly estimated because it includes

potential survival outcomes, which are not all observable in practice. To address

the estimation of β0(τ), we find that CPQCE model (4.1) can imply the following

equation under assumption A1-A4,

Pr(log T < q(D,X, τ)|X,V) = Pr(log T ≤ q(D,X, τ)|X,V) = τ, τ ∈ (0, τU ], (4.2)

where T = T d when D = d. The justification of equation (4.2) has been shown

in Proposition 4.1 in Appendix E. Unlike model (4.1), the equation (4.2) is linked

with the observed survival time T , and thus can be used to construct an estimating
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equation of β0(τ) without potential outcome T d.

4.2.2 Estimation procedure with randomly censored Data

The right censoring data, where observed survival time T is often right censored by

C, is very common in biomedical studies. In this work, we consider the standard right

censoring case that we only observe W = min{T,C} and δ = I(T ≤ C). We adopt

the following censoring assumption:

(A5) UC|D,X,V ⊥⊥ (UD|D,X,V)|X,V.

Here, UC|D,X,V = sup{u : logC ≥ q(D,X, u)} and UD|D,X,V = Ud|D = d,X,V

when D = d. The observed data consist of n independent replicates of O, denoted

by Oi = {Wi, δi,Di,Vi,Xi}ni=1.

To simplify the notations, let Z = (D>,X>)> and U = (X>,V>)>. Suppose

N(t) = I(W ≤ t, δ = 1) and H(x) = − log(1−x). From Proposition 4.2, we have the

following estimating equation from equation (4.2):

n1/2Qn(β,γ, τ) = 0, (4.3)

whereQn(β,γ, τ) = n−1
∑n

i=1 Ui

{
Ni(exp{D>i β(τ)+X>i γ(τ)})−

∫ τ
0
I(Wi ≥ exp{D>i β(u)+

X>i γ(u)})dH(u)
}

. Since equation (4.3) is not monotone, it may not be reliably

solved by the standard numerical optimization algorithms. It is remarkable that

the X−part of Qn(β,γ, τ), n−1
∑n

i=1 Xi

{
Ni(exp{D>i β(τ) + X>i γ(τ)}) −

∫ τ
0
I(Wi ≥

exp{D>i β(u) + X>i γ(u)})dH(u)
}

is a monotone function with β(τ) fixed. Following

the work of Chernozhukov and Hansen (2006, 2008), we propose a two-step esti-

mator procedure to estimate β(τ) and γ(τ). Let the estimators of β(τ) and γ(τ),

denoted by β̂(τ) and γ̂(τ), be piece-wise constant functions that only jump on a grid,
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SL(n) = {0 = τ0 < τ1 · · · < τL(n) = τU < 1}. Let N(exp{D>β̂(0) + X>γ̂(0)}) ≡ 0 and

Sn(β̂, γ̂,β,γ, τ) = n−1

n∑
i=1

Xi

{
Ni(exp{D>i β + X>i γ})

−
∫ τ

0

I(Wi ≥ exp{D>i β̂(u) + X>i γ̂(u)})dH(u)
}
.

The two-step estimation procedure for β̂(τ) and γ̂(τ) can be implemented by

applying grid-search and solving L1 convex minimization problem iteratively from

τ0 to τL(n). Specifically, suppose β̂(τm) and γ̂(τm) have been solved for m < j, for

any j = 1, · · · , L(n). Let γ̂(β, τj) denote the solution of Sn(β̂, γ̂,β,γ, τj) = 0 given

β ∈ [−M,M ]p and (β̂(τj)
>, γ̂(τj)

>)>. Then β̂(τj) is defined as the solution to

Un(β̂, γ̂,β, τj) = 0
¯

where Un(β̂, γ̂,β, τj) = n−1
∑n

i=1 Ui

{
Ni(exp{D>i β(τ) + X>i γ̂(β, τj)}) −

∫ τ
0
I(Wi ≥

exp{D>i β̂(u) + X>i γ̂(u)})dH(u)
}

. Finally, define γ̂(τj) = γ̂(β̂(τj), τj). The detailed

estimation procedure for β̂(τj) and γ̂(τj) is described as follows:

Step 1 Let N(exp{D>β̂(0) + X>γ̂(0)}) ≡ 0

Step 2 : For j = 1, . . . , L(n)

Step 2.1 Define a grid of values {βk, k = 1, · · ·K} in [−M,M ]p andGβ = maxs∈[−M,M ]p mink=1,···K L∞‖s−

βk‖

Step 2.2 For each βk, solve γ̂(βk, τj) by minimizing the following L1-type convex
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objective function:

lj(γ) =
n∑
i=1

∣∣δi logWi − δi(D>i βk + X>i γ)
∣∣

+
∣∣∣R∗ − γ>{ n∑

l=1

(−δlXl)
}∣∣∣

+

∣∣∣∣∣R∗ − γ>
n∑
r=1

(
2Xr ×

j−1∑
m=0

I
[
Wr ≥ exp

{
D>r β̂(τm) + X>r γ̂(τm)

}]
× {H(τm+1)−H(τm)}

)∣∣∣∣∣
(4.4)

Step 2.3 Let k0 = argmink=1,··· ,K‖Un(β̂, γ̂,βk, τj)‖. Denote β̂(τj) = βk0 and γ̂(τj) =

γ̂(βk0 , τj)

In practice, the grid search used for obtaining β̂(τ) may lead to large variation

of β̂(τ) at some neighborhood of quantiles. To address this undesirable numerical

properties, we can apply smoothing techniques, such as moving average method, on

β̂(τ) and γ̂(τ) to obtain smoothed estimator β̃(τ) and γ̃(τ), for any v ∈ (0, τU ].

The Lipschitz continuity of β0(τ) and γ0(τ) and the uniformly continuity and weak

convergence of β̂(τ) and γ̂(τ) for tau ∈ [v, τU ] ensure the uniformly continuity and

weak convergence of β̃(τ) and γ̃(τ) for any v ∈ (0, τU ].

4.2.3 Asymptotic properties

To establish the asymptotic properties of the proposed estimator (β̂>(τ), γ̂>(τ))>,

we firstly introduce some new notations.

Let ‖SL(n)
‖ = max{τj − τj−1 : j = 1, 2 · · ·L(n)}. Recall Z = (D>,X>)> and

U = (V>,X>)>. From assumptions (A1) and (A5), we have T ⊥⊥ V|X,D and

W ⊥⊥ V|X,D. Thus, we denote F (t|Z) = F (W ≤ t|Z) = F (W ≤ t|X,D,V),

F̄ (t|Z) = 1 − F (t|Z), F̃ (t|Z) = F (W ≤ t, δ = 1|Z) = F (W ≤ t, δ = 1|X,D,V),

f̄(x|Z) = −f(x|Z) = dF̄ (x|Z)/dx, and f̃(x|Z) = dF̃ (x|Z)/dx. Define θ = (β>,γ>)>,
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θ0(τ) = (β>0 (τ),γ>0 (τ))> and θ̂(τ) = (β̂>(τ), γ̂>(τ))>. Besides, define B(θ) =

E{UZ>f̃(exp(Z>θ)|Z) exp(Z>θ)}, and J(θ) = E{UZ>f̄(exp(Z>θ)|Z) exp(Z>θ)}.

Let Bx(b, c) = E{X⊗2f̃(exp(D>b + X>c)|Z) exp(D>b + X>c)}, where u⊗2 denotes

uu>. Define BS(θ) = {B(θ)+B>(θ)}/2, and B(d) = {θ ∈ Rp+q : infτ∈(0,τU ] ‖E[UN(exp{Z>θ})]−

E[UN(exp{Z>θ0(τ)})]‖ ≤ d} for d > 0. We adopt the following regularity conditions:

(C1) (D>,X>,V>)> belongs to a compact set.

(C2) (i)For v ∈ (0, τU ], each component of E
{

UN(exp{Z>θ0(τ)})
}

is Lipschitz func-

tion of τ ; (ii)f̃(t|Z) and f(t|Z) are bounded above uniformly in t and Z.

(C3) For some d0 > 0, (i) f̃(exp(Z>θ)|Z) > 0 for all θ ∈ B(d0); (ii)E(X⊗2) > 0; (iii)

each component ofE{UZ>f̄(exp(Z>θ)|U) exp(Z>θ)}×E{UZ>f̃(exp(Z>θ)|U) exp(Z>θ)}−1

is uniformly bounded in all θ ∈ B(d0); (iv) each component of exp(D>β0(τ) +

X>γ)Bx(β0(τ),γ)−1 is uniformly bounded in (β0(τ),γ) ∈ B(d0) for τ ∈ (0, τU ]

and Z.

(C4) For some d0 > 0, (i) BS(θ) is positive-definite or negative-definite for all θ ∈

B(d0); (ii) for any v ∈ (0, τU ], the absolute value of each component of

E−1{UZ>f̃(exp[Z>θ0(τ)]|Z) exp[Z>θ0(τ)]} is uniformly bounded for τ ∈ [v, τU ]

Condition (C1) implies the boundedness of the covariates D, X and V. Con-

ditions (C2) and (C3) are the similar conditions that adopted in Peng and Huang

(2008), which assume realistic assumptions for on covariates, the underlying coeffi-

cient process, and the density functions. Condition (C4) ensures the identifiability of

the {θ(τ) : τ ∈ (0, τU ]} and its uniform consistency.

We establish the uniform consistency and weak convergence of the proposed es-

timator under regularity conditions C1-C4 described above. The main asymptotic

results are stated in the Theorems 4.1 and 4.2.
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Theorem 4.1 (Uniform consistency). Under conditions C1-C4, if limn→∞ ‖SL‖ = 0,

then for any v ∈ (0, τU ],

sup
τ∈[v,τU ]

‖θ̂(τ)− θ0(τ)‖ →p 0

Theorem 4.2 (Weak convergence). Under conditions C1-C4, if limn→∞ n
1/2‖SL(n)

‖ =

0, then for any v ∈ (0, τU ], n1/2{θ̂(τ)−θ0(τ)} converges weakly to a Gaussian Process

for τ ∈ [v, τU ].

The proofs of Theorems 4.1 and 4.2 follow the similar arguments in Peng and

Huang (2008). One of the complication is to justify the existence of a one-to-one map

between θ and E{UN{Z>θ}} in a neighborhood of {θ0(τ), τ ∈ (0, τU ]}. The deriva-

tive of E{UN{Z>θ}} is a function of UZ>, which may not be positive-definiteness in

generally. To overcome this difficulty, we require the positive or negative definiteness

of Bs(θ) to ensure the existence of this one-to-one map. Another complication is to

bound ‖θ̂(τ)−θ0(τ)‖. The proposed estimator θ̂(τ) = (β̂(τ)>, γ̂(τ)>)> is obtained by

a two-step procedure, which estimates γ(τ) with β(τ) fixed firstly, and estimate β(τ)

based on the estimated γ(τ). Thus, it is difficult to bound ‖θ̂(τ)−θ0(τ)‖ by directly

applying the procedure in Peng and Huang (2008). To solve this problem, we use an

estimator with β̂(τ) = β0(τ), θ̃(τ) = (β0(τ)>, γ̂(β0(τ), τ)>)>, as a intermediate step

to bound ‖θ̂(τ) − θ0(τ)‖ with an upper bound ‖θ̂(τ) − θ̃0(τ)‖ + ‖θ̃(τ) − θ0(τ)‖. In

this upper bound, ‖θ̃(τ) − θ0(τ)‖ can be bounded by directly applying the sim-

ilar procedure in Peng and Huang (2008) since β̃(τ) = β0(τ). Another part of

this upper bound, ‖θ̂(τ) − θ̃0(τ)‖ can be bounded by delicately using the result

‖Un(β̂, γ̂, β̂(τ), τ)‖ ≤ ‖Un(β̂, γ̂,β0(τ), τ)‖, which is implied by the definition of θ̂(τ).

The detailed proofs are provided in Appendix F.



98

4.3 Inference

To make inference on θ0(τ), the standard bootstrapping procedures can be used, such

as the classical resampling with replacement or resampling with pertubed estimating

equation proposed in Jin et al. (2001). However, these methods need long computation

time for resampling and repeating grid-search in each resampled dataset.

In this work, we propose a sample-based inference approach for covariance estima-

tion by following the lines of Sun et al. (2016). This sample-based approach inference

does not involve resampling, and thus can save considerable computation time. The

key idea of this procedure is to find consistent estimators for B(θ0(τ)) and J(θ0(τ)),

and then plug them into the closed form derived for the asymptotic covariance matrix

of n1/2{θ̂(τ)− θ0(τ)} to obtain an consistent estimator.

To describe this inference procedure, let Ln(b, c) = n−1/2
∑n

i=1(X>i ,V
>
i )>Ni(exp(D>b+

X>i c)), L̃n(b, c) = n−1/2
∑n

i=1(X>i ,V
>
i )>Yi(exp(D>b+X>i c)), ιj(u) = (X>j ,V

>
j )>Ni(exp(D>β̂(u)+

X>i γ̂(u))) and Ω(u) = n−1
∑n

j=1{ιj(u)}⊗2. The procedure for estimating B(θ0(u))

and J0(θ(u)) can be described as below.

1. Find a symmetric and nonsingular (p+q)×(p+q) matrix En(u) = {en,1(u), · · · , en,p+q(u)},

such that Ω(u) = {En(u)}2

2. Find the solution of

Ln(b, c) = Ln(β̂(u), γ̂(u)) + en,j(u),

and the solution is denoted by (b̂n,j(u), ĉn,j(u)). The following steps are used to

solve this equation.

2.1. Define a grid of values {βk, k = 1, · · · , K} around β̂(u).
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2.2. For each βk, obtain ĉ(βk) by solving

n−1/2

n∑
i=1

XiNi(exp(D>βk+X>i c)) = n−1/2

n∑
i=1

XiNi(exp(D>β̂(u)+X>i γ̂(u)))+ẽn,j(u),

where ẽn,j(u) is the first p elements of en,j(u)

2.3. Let k0 = argmink=1,··· ,K‖Wn(β̂(u), γ̂(u),βk, ĉ(βk))‖, where

Wn(β̂(u), γ̂(u),βk, ĉ(βk))

=n−1/2

n∑
i=1

(X>i ,V
>
i )>Ni(exp(D>βk + X>i ĉ(βk)))

− n−1/2

n∑
i=1

(X>i ,V
>
i )>Ni(exp(D>β̂(u) + X>i γ̂(u)))− en,j(u),

Denote (βk0 , ĉβk0 ) as (b̂n,j(u), ĉn,j(u)).

3. Calculate the Dn(u) ≡ {(b̂n,1(u)−β̂(u), ĉn,1(u)−γ̂(u)), · · · , (b̂n,p+q(u)−β̂(u), ĉn,p+q(u)−

γ̂(u))} and Ẽn(u) ≡ {L̃n(b̂n,1(u), ĉn,1(u))−L̃n(β̂(u), γ̂(u)), · · · , L̃n(b̂n,p+q(u), ĉn,p+q(u))−

L̃n(β̂(u), γ̂(u))}

4. Compute n−1/2En(u)Dn(u)−1 and Compute n−1/2Ẽn(u)Dn(u)−1, which provide

consistent estimator for B0(θ0(u)) and J0(θ0(u))

Steps 2.1 to 2.3 are used to solve the non-monotone equation, Ln(b, c) = Ln(β̂(u), γ̂(u))+

en,j(u). The motivation in these step is to utilize the monotoncity of the X-part of

Ln(b, c) given fixed b, n−1/2
∑n

i=1 XiNi(exp(D>βk + X>i c)), to overcome numerical

optimization issues from non-monotoncity of Ln(b, c), which is similar to estimating

procedure described in Section 4.2.2. In this inference procedure, we only need to

do grid search p + q times. In practice, the p + q is generally much smaller than

the numbers of the resampled datasets in resampling approach, and thus can save

considerable times compared to bootstrapping procedure.
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Let B̂(u) and Ĵ(u) denote the estimators of B(θ0(u)) and J(θ0(u)). Like Sun et al.

(2016), the sample-based estimator for the covariance matrix of n1/2{θ̂(τ) − θ0(τ)}

can be expressed by

n−1/2

n∑
i=1

ξ̂i(u)ξ̂>i (v)

where ξ̂>i (u) = B̂−1(u)Φ̂(Ψ̂i(u)). Here

Ψi(u) = Ui

{
Ni(exp{Z>i θ0(u)})−

∫ u

0

I(Wi ≥ exp{Z>i θ0(s)})dH(s)
}
, i = 1, 2, · · · , n,

and Φ̂(·) is plug-in estimate for the operator Φ(·) defined in the proof of Theorem 4.2

in Appendix F. The justification of the proposed covariance estimator is in Appendix

G.

4.4 Numerical Studies

4.4.1 Monte-Carlo simulations

We conduct extensive Monte-Carlo simulations to evaluate the proposed estimator for

CPQCE model in the finite samples. To satisfy assumptions A1-A4, the simulated

data {W, δ,D,X, V } is generated as follows.

1. Generate (ε, v1) from the multivariate normal distribution N2(0,Σ), where Σ = 0.25 0.1

0.1 0.25

 .

2. Generate V from N(0, 1), and X from N(0, 0.52) independently.

3. Determine D by D = Φ(V + v1 + 2X), where Φ is the cumulative distribution

function of the standard normal distribution.

3. Generate event time T for two scenarios (A) and (B).
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(A) Generate T = exp(1 +D + 0.5X + (0.5 +D)ε).

(B) Generate T = exp(1 +D + 0.5X + 0.5ε).

4. Generating UC from uniform distribution to yield around 30% censoring in each

scenario. Here censoring time C is determined by C = 1 + 0.25q(min(UC , 1)) +

{1+0.5q(min(UC , 1))}D+0.5X in scenario (A) and C = 1+0.25q(min(UC , 1))+

0.25q(min(UC , 1))D + 0.5X in scenario (B).

5. Determine W and δ by W = min(T,C), and δ = 1(T ≤ C).

In this simulation, we consider two scenarios, (A) and (B), for generating survival

time T . We can show that in scenario (A), Qlog T d(τ |X) = 1 + 0.25q(τ) + {1 +

0.5q(τ)}d+ 0.5X, and in scenario (B), Qlog T d(τ |X) = 1 + 0.25q(τ) + d+ 0.5X,where

q(τ) denotes the τ -th quantile of Normal(0, 1). The population quantile causal effect

in scenario (A) is quantile-varying but constant in scenario (B).

In our simulations, two sample sizes n = 1000 and n = 2000 are considered for

each scenario. In each setting, we generate 1000 datasets. In the proposed method,

the coefficient of D is grid searched in [0, 3] with step size 0.01 in both settings.

Except for the proposed method, we consider the naive as-treated method which

directly applies Peng and Huang (2008) to the whole dataset without considering the

unmeasured confounders. Figure 4.1 and Figure 4.2 present the results from both

methods under scenario (A) and (B) with n = 1000. The results include the average

coefficient estimates and the coverage probabilities of 95% confidence intervals from

both methods, and the empirical variances and the average sample-based variance

estimators in the proposed method for τ ∈ [0.1, 0.8].

From Figure 4.1, the average coefficient estimators for all covariates, and the

coverage probabilities of 95% confidence intervals from the proposed method are fairly

close to the true value or nominal level. Besides, the difference between average

sample-based variance estimators and the empirical variances in the proposed model
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are quite small. All these results suggest the satisfied performance of the proposed

method for the scenario of quantile-varying PQCE. In contrast, the average coefficient

estimates and their coverage probabilities of 95% confidence intervals in the as-treated

method are far away from the true value or the nominal level. It indicates the as-

treated method would lead to a biased estimator. Similar to the results in Figure

4.1, Figure 4.2 suggests the propose method works well for the scenario of quantile-

constant PQCE. The as-treated method would still lead to a biased estimator even

with quantile-constant PQCE.

Figure 4.3 and Figure 4.4 show the simulation results from the proposed method

and the as-treated method for scenario (A) and (B) with n = 2000. The observations

in these two figures are similar to the Figure 4.1 and Figure 4.2. The biases and

differences between average of estimated sample-based variance and the empirical

variance in the proposed method decrease as the sample size increases from 1000 to

2000.

4.4.2 Application to bone marrow transplant Dataset

Diffuse large B-cell lymphoma (DLBCL) is a common type of fast-growing non-

Hodgkin lymphoma. In this work, we consider a dataset from the Center for In-

ternational Blood and Marrow Transplant Research (CIBMTR), which includes 986

DLBCL patients between 18 to 76 years old with autologous hematopoietic stem cell

transplantation (TX) between 1996 and 2003. There are 38 patients with missing

data. After excluding these 38 patient, 164 patients are in the pre-transplant ritux-

imab treatment group, while others are in the control group. The primary objective

in this study is to evaluate the effect of the pre-transplant rituximab treatment on the

progression free survival (PFS), which is defined as time to the composite endpoint

of progressive lymphoma post-transplant, lymphoma recurrence, and death from any

cause, in DLBCL patients. 340 (35.9%) subjects are censored in this dataset. The dei-
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Figure 4.1: The simulation results in scenario (A) with sample size n=1000. In the
first and the third rows, red lines correspond to the proposed method; green lines
correspond to the naive as-treated method; dashed black lines correspond to true
or nominal values. In the second row, red solid lines represent the average variance
estimates from the sample-based inference procedure in the proposed method, and
red dashed lines represent the empirical variances of the proposed estimator.

dentified SAS dataset can be found at the CIBMTR webisite: https://www.cibmtr.

org/ReferenceCenter/PubList/PubDsDownload/Pages/default.aspx.

In this retrospective study, the observed variables, except the treatment choice,

include age, number of chemotherapy regimens, disease status, and Karnofsky per-

formance score. Their summary statistics are shown in Table 4.1. From Table 4.1,

the patients in the rituximab group tended to be older and had more chemother-

apy regimens than patients in the control group. It suggests the existence of some

confounders that affect both of the pre-transplant treatment choices and the PFS in

DLBCL patients. Some of these factors, such as the molecular subtype of lymphoma,

are not measured in this dataset (Zheng et al., 2017). The standard method without

considering unobserved confounders may lead to a biased estimator for the efficacy
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Figure 4.2: The simulation results in scenario (B) with sample size n=1000. In the
first and the third rows, red lines correspond to the proposed method; green lines
correspond to the naive as-treated method; dashed black lines correspond to true
or nominal values. In the second row, red solid lines represent the average variance
estimates from the sample-based inference procedure in the proposed method, and
red dashed lines represent the empirical variances of the proposed estimator.

of rituximab in DLBCL patients.

We apply the proposed CPQCE model to account for the impact of unmeasured

confounders in the estimation of causal treatment effect of the pre-transplant rit-

uximab in DLBCL patients. The IV adopted in this analysis is whether the start

date of the treatment is after the FDA approval date of rituximab. The use of this

IV is motivated by the fact that no major changes in clinical practice or technical

improvements for the autologous hematopoietic stem cell transplantation, except for

the FDA approval of rituximab, happened during this study period. It is reasonable

to assume this IV can only affect the PFS through the treatment choice, and is inde-

pendent to unmeasured confounders. The association between IV and the treatment

choice can be validated by the fact that only patients with start year after FDA ap-
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Figure 4.3: The simulation results in scenario (A) with sample size n=2000. In the
first and the third rows, red lines correspond to the proposed method; green lines
correspond to the naive as-treated method; dashed black lines correspond to true
or nominal values. In the second row, red solid lines represent the average variance
estimates from the sample-based inference procedure in the proposed method, and
red dashed lines represent the empirical variances of the proposed estimator.

proval date can choose pre-treatment rituximab as their treatment choice. Because

the treatment choice may also affected by unobserved factors, such the molecular sub-

type of lymphoma, the selection assumption is reasonable for the treatment choice.

To best of knowledge, there is no formal test of rank similarity assumption for cen-

sored data. To check the rank similarity assumption, we follow the arguments in

Frandsen and Lefgren (2018) and Dong and Shen (2018) to test H0 : ω = 0 under

F̂Di(Ti) = α + Diβ + X>i γ + DiX
>
i ω + ε for the uncensored subjects in CIBMTR

dataset. Here Di, Xi and F̂Di(·) denote the treatment choice and observed covariates,

and the estimated cumulative distribution function of the potential outcome TDi con-

ditional on Xi from the proposed CPQCE model. The p-value of this test is 0.369,

which suggests the rank similarity assumption may be a reasonable assumption for
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Figure 4.4: The simulation results in scenario (B) with sample size n=2000. In the
first and the third rows, red lines correspond to the proposed method; green lines
correspond to the naive as-treated method; dashed black lines correspond to true
or nominal values. In the second row, red solid lines represent the average variance
estimates from the sample-based inference procedure in the proposed method, and
red dashed lines represent the empirical variances of the proposed estimator.

this CIBMTR dataset.

We also apply the proposed CPQCE model, the censored complier quantile casual

effect (CCQCE) model with the same binary IV, and the as-treated analysis based

on the method of Peng and Huang (2008) by adjusting for all the observed covariates

in this CIBMTR dataset. In the proposed CPQCE model, we do grid search for β(τ),

the coefficient of the treatment choice, between [−1, 3] with step size 0.005. The local

polynomial regression with degree 2 and α = 0.1 has been applied in here to smooth

the estimator of β(τ). The results on the treatment coefficients from all methods

are presented in Figure 4.5. The results of other covariates are shown in Figure

4.6. From Figure 4.5, the estimated PQCE(0.5), which equals to 2.47, indicates a

significant treatment effect on median PFS survival time. This estimator indicates for
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the patients with covariates set at their reference levels (i.e. younger than 55 years,

having 0 or 1 chemotherapy regimens, with CR1 disease status and karnofsky score

< 90), receiving rituximab may prolong their median PFS 11.83 (exp(2.47)) times

compared to receiving standard intervention.

Figure 4.5 shows the estimated benefit of rituximab on prolonging PFS in CPQCE

model is strongest among all methods. The PQCE(τ) of rituximab from CPQCE

model is significantly above 0 across all τ ’s between 0.1 and 0.6, and signficantly

above 2 across all τ ’s between 0.25 to 0.4. The CQCE(τ) of rituximab from CCQCE

model is significantly above 0 across all τ ’s between 0.1 and 0.6, but significantly

below 2 for τ ∈ [0.2, 0.4]. The as-treated method provides the weakest benefit of

rituximab on PFS, which only signficantly prolongs PFS until τ > 0.3. The find-

ing that the as-treated method underestimates the benefit of that rituximab on PFS

is consistent with the conclusion in Zheng et al. (2017). Another interesting find-

ing is that the benefit of rituximab in populations is stronger than the benefit in

treated population. These findings can be explained by the difference characteris-

tics of patients between treated group and whole population. Table 4.1 shows the

patients with high-risk, such as older patients with more chemo regimens, are more

likely in the treated group. Since the high-risk patients generally imply shorter PFS,

the as-treated method can underestimate the benefit of rituximab, particularly on

low-quantiles of PFS, without considering the selection bias induced by unmeasured

confounders. The differences in characteristics between treated group and whole pop-

ulation may also lead to difference of effect of rituximab on PFS between these groups.

From Table 4.1, the treated population has large percentage of high risk patients than

the whole population. Since the high-risk patients always imply shorter PFS, the dif-

ference between treated population and whole population is large at low quantiles of

PFS, and becomes small at high quantiles of PFS. Besides, CQCE(τ) denotes the

quantile causal effect in the treated population because this study is one-compliance.
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Therefore, the difference between PQCE(τ) and CQCE(τ) is large at low-quantiles,

specially for τ ∈ [0.2, 0.4], and becomes small at high quantiles, such as τ > 0.5.

Our finding about rituximab’s effect is consistent with that from Zheng et al. (2017),

that the standard analysis without address the endogenous treatment selection would

underestimate the effect of the rituximab.

Table 4.1: Summary statistics of patients in the CIBMTR dataset, overall and strat-
ified by the treatment group

Variable

Entire
Sample

(N=948)

Ritux
Group

(N=164)

Control
Group

(N=784) p-value

Age> 55
No 543 (57.3%) 74 (45.1%) 469 (59.8%) < 0.0011

Yes 405 (42.7%) 90 (54.9%) 315 (40.2%)

Number
of chemo
regimen

1 128 (13.5%) 12 (7.3%) 116 (14.8%) < 0.0011

2 413 (43.6%) 58 (35.4%) 355 (45.3%)

3 290 (30.6%) 61 (37.2%) 229 (29.2%)

4 96 (10.1%) 31 (18.9%) 65 (8.3%)

5 21 (2.2%) 2 (1.2%) 19 (2.4%)

Status

PIF sensitive 172 (18.1%) 31 (18.9%) 141 (18%) 0.0061

PIF resistant 51 (5.4%) 10 (6.1%) 41 (5.2%)

CR1 158 (16.7%) 36 (22%) 122 (15.6%)

REL sensitive 291 (30.7%) 43 (26.2%) 248 (31.6%)

REL resistant 65 (6.9%) 12 (7.3%) 53 (6.8%)

CR2+ 154 (16.2%) 32 (19.5%) 122 (15.6%)

Other 57 (6%) 0 (0%) 57 (7.3%)

Karnofsky
score

< 90% 354 (37.3%) 63 (38.4%) 291 (37.1%) 0.8231

90-100% 594 (62.7%) 101 (61.6%) 493 (62.9%)

Event

Progression
or Death 608 (64.1%) 82 (50%) 526 (67.1%) 0.0062

Censoring 340 (35.9%) 82 (50%) 258 (32.9%)

1 P-value is calculated from Chi-square test.
2 P-value is calculated from Log-rank test which compares the PFS between two groups.
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Figure 4.5: The results on treatment coefficients from analyzing the bone marrow
transplant dataset based on the proposed CPQCE method, the as-treated censored
quantile regression analysis, CCQCE method. Black solid and dashed lines respec-
tively represent the coefficient estimates and 95% confidence intervals based on the
proposed CPQCE method. Red solid and dashed lines respectively represent the
coefficient estimates and 95% confidence intervals based on the as-treated censored
quantile regression analysis. Green solid and dashed lines respectively represent the
coefficient estimates and 95% confidence intervals based on the CCQCE method

4.5 Remarks

In this work, we propose a censored population quantile causal effect model to quan-

tify the population quantile causal effect (PQCE) for standard right censoring data.

PQCE is the quantile counterpart of population average causal effect (PACE), which

has been commonly studies among IV literatures. Like the standard quantile treat-

ment effect, PQCE requires weaker conditions for identifiability than PACE under

censoring data (Klein and Moeschberger, 2006; Peng and Fine, 2007), and has advan-

tages in capturing heterogeneous causal effects among potential outcome distribution.

We propose a simple and justified two-stage estimation procedure to solve the nu-
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Figure 4.6: The results on all coefficients from analyzing the bone marrow transplant
dataset based on the proposed CPQCE method, the as-treated censored quantile
regression analysis, CCQCE method. Black solid and dashed lines respectively rep-
resent the coefficient estimates and 95% confidence intervals based on the proposed
CPQCE method. Red solid and dashed lines respectively represent the coefficient
estimates and 95% confidence intervals based on the as-treated censored quantile re-
gression analysis. Green solid and dashed lines respectively represent the coefficient
estimates and 95% confidence intervals based on the CCQCE method

merical issues from the non-monotonicity of the estimating equation. Furthermore, a

sample-based covariance estimator has been proposed to reduce the burden of com-

putation in inference procedure. The proposed two-stage estimation procedure can

easily be implemented by existing software for quantile regression with grid search.

The main assumption in this work is the rank similarity assumption, which re-

stricts the evolution of the distribution of the ranks across treatment states to identify

the PQCE (Chernozhukov and Hansen, 2005). The rank similarity assumption can

be a more plausible assumption if a rich set of covariates exists(Chernozhukov and

Hansen, 2006). Several approaches (Frandsen and Lefgren, 2018; Dong and Shen,

2018) have been proposed to test this assumption. These approaches work only for
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uncensored data, and can not be directly applied to censored data. Based on our

knowledge, there is no existing literature about testing this assumption for censored

data. It may be desirable to develop methods to test rank similarity for censored

data in future studies.

The proposed two-step estimation procedure solves the non-monotonous the esti-

mating equation by minimizing L1 convex function after fixing β(τ) on a fine grid.

It can be solved fast when β(τ) is a scalar. The computation burden may grow fast

when the dimension of β(τ) increases. When the dimension β(τ) is high, some other

numerical optimization approaches may be considered, such as Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm or a mixed integer linear programming (Pouliot,

2019), to reduce the computation burden.

4.6 Appendix

4.6.1 Appendix E: Propositions 4.1 and 4.2 and their proofs

4.6.1.1 Proposition 4.1 and its proof

Proposition 4.1. Under assumptions A1-A4, P (log T < q(D,X, τ)|X,V) = P (log T ≤

q(D,X, τ)|X,V) = τ for τ ∈ (0, 1) a.s.

Proof. For presentation simplicity, we will omit X in the following proof. From As-

sumption A3, we have g(R,V) = D. Thus we can obtain

P (log T ≤ q(D, τ)|R,V) =P (log TD ≤ q(D, τ)|R,V)

=P (q(D, UD) ≤ q(D, τ)|R,V)

=P (UD ≤ τ |R,V).

(4.5)

The last equation holds because q(d,x, τ) is strictly increasing in τ from assumption

A1.
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From Assumption A4, there exists a specified d0 ∈ D, such that P (UD ≤ τ |R,V) =

P (Ud0 ≤ τ |R,V). By (4.5), we have

P (log T ≤ q(D, τ)|V) =

∫
P (log T ≤ q(D, τ)|R,V)dP (R|V)

=

∫
P (Ud0 ≤ τ |R,V)dP (R|V)

= P (Ud0 ≤ τ |V)

= P (Ud0 ≤ τ)

= τ.

The last second equation holds because of Ud ⊥⊥ V|X in assumption A2.

Similarly, we can show P (log T < q(D, τ)|V) = τ .

4.6.1.2 Proposition 4.2 and its proof

Proposition 4.2. Under assumptions A1-A5, model (4.1) and equation (4.2) has the

following estimating equation

n1/2Qn(β,γ, τ) = 0, (4.6)

whereQn(β,γ, τ) = n−1
∑n

i=1 Ui

{
Ni(exp{D>i β(τ)+X>i γ(τ)})−

∫ τ
0
I(Wi ≥ exp{D>i β(u)+

X>i γ(u)})dH(u)
}

.

Proof. Based on equation (4.2), we have the following equation after simple algebra

manipulation:

∫ τ

0

Pr{logC ≥ q(D,X, u)|U}d(Pr{log T ≤ q(D,X, u)|U})

=

∫ τ

0

Pr{logC ≥ q(D,X, u)|U}Pr{log T ≥ q(D,X, u)|U} du

1− u
.

(4.7)
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For the LHS of equation (4.7), we have

∫ τ

0

Pr{logC ≥ q(D,X, u)|U}d(Pr{log T ≤ q(D,X, u)|U})

=

∫ τ

0

ED|U{Pr(UC|U,D ≥ u)}ED|U[d{Pr(UD ≤ u|D,U)}]

=

∫ τ

0

ED|U[Pr(UC|U,D ≥ u)d{Pr(UD ≤ u|D,U)}]

=ED|U[

∫ τ

0

Pr(UC|U,D ≥ u)d{Pr(UD ≤ u|D,U)}]

=ED|U(Pr[T ≤ exp{q(D,X, τ)}, C ≥ T |D,U])

=E(I[T ≤ exp{q(D,X, τ)}, C ≥ T ]|U).

(4.8)

The second equation holds because UC|D,U ⊥⊥ (UD|D,U)|U.

For the RHS of equation (4.7), we have

∫ τ

0

Pr{logC ≥ q(D,X, u)|U}Pr{log T ≥ q(D,X, u)|U} du

1− u

=

∫ τ

0

ED|U{Pr(UC|U,D ≥ u)}ED|U{Pr(UD ≥ u|D,U)} du

1− u

=

∫ τ

0

ED|U[Pr(UC|U,D ≥ u)Pr(UD ≥ u|D,U)]
du

1− u

=ED|U

[ ∫ τ

0

Pr(UC|U,D ≥ u)Pr(UD ≥ u|D,U)
du

1− u

]
=ED|U

[ ∫ τ

0

Pr[W ≥ exp{q(D,X, u)}|D,U]
du

1− u

]
=ED|U

(
E
[ ∫ τ

0

I[W ≥ exp{q(D,X, u)}] du

1− u
|D,U

])
=E
[ ∫ τ

0

I[W ≥ exp{q(D,X, u)}] du

1− u
|U
]
.

(4.9)

The second equation holds because UC|D,U ⊥⊥ (UD|D,U)|U.

Note that N(t) = I(W ≤ t, δ = 1). Plugging equations (4.8) and (4.9) into (4.7),

we can have

E
(
Ni[exp{q(Di,Xi, u)}]−

∫ τ

0

I[Wi ≥ exp{q(Di,Xi, u)}] du

1− u
|Ui

)
= 0,
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Then, we can get

n1/2Qn(β,γ, τ) = 0,

whereQn(β,γ, τ) = n−1
∑n

i=1 Ui

{
Ni(exp{D>i β(τ)+X>i γ(τ)})−

∫ τ
0
I(Wi ≥ exp{D>i β(u)+

X>i γ(u)})dH(u)
}

.

4.6.2 Appendix F: Proofs of Theorems 4.1 and 4.2

4.6.2.1 Proof of Theorem 4.1

Proof. Define µ(θ) = E[UN{exp(Z>θ)}] and vn(θ) = n−1
∑n

i=1 UiN{exp(Z>i θ)} −

µ{θ}. Define µ̃(θ) = E[UI{W ≥ exp(Z>θ)}] and ṽn(θ) = n−1
∑n

i=1 UiI{Wi ≥

Z>i θ} − µ{θ}. Moreover, denote µx(θ) = E[XN{exp(Z>θ)}] and

vx,n(θ) = n−1
∑n

i=1 XiN{exp(Z>i θ)}−µx{θ}. Define µ̃x(θ) = E[XI{W ≥ exp(Z>θ)}]

and ṽx,n(θ) = n−1
∑n

i=1 XiI{Wi ≥ exp(Z>i θ)} − µ{θ}. Without loss of general-

ity, we assume that τ1 < τ2 < · · · < τL − 1 are equally spaced between 0 and

τU . Let an = ‖SL‖, then L = τU/an. Besides, let bn = an/(1 − τU), and thus we

have0 < H(τj)−H(τj−1) ≤ bn for j = 1, · · · , L

Besides, let γ̂(β0(τ), τ) denote the generalized solution of

Sn(β̂, γ̂,β0(τ),γ, τ) = n−1

n∑
i=1

Xi

{
Ni(exp{D>i β0(τ) + X>i γ})

−
∫ τ

0

I(Wi ≥ exp{D>i β̂(u) + X>i γ̂(u)})dH(u)
}
.

Let A(d) = {µ(θ) : θ ∈ B(d)}. We can show µ is a one-to-one map from B(d0)
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to A(d0). Suppose θ′ and θ ∈ B(d0) such that µ(θ′) = µ(θ). Then

0 = (θ′ − θ′){µ(θ′)− µ(θ)}

= E
(
(U>θ′ −U>θ)[F̃{exp(Z>θ′)|Z} − F̃{exp(Z>θ)|Z}]

)
= E

(
f̃{exp(Z>θ̃)|Z} exp(Z>θ̃)(θ′ − θ)>UZ>(θ′ − θ)

)
= (θ′ − θ)>B(θ̃)(θ′ − θ)

= (θ′ − θ)>BS(θ̃)(θ′ − θ),

where θ̃ is between θ and θ′. By condition C3(i) and C4(i), the foregoing equation

holds if and only if θ′ = θ with probability 1. Thus, there exists an inverse function

of µ denoted by κ from A(d0) to B(d0), such that κ(µ(θ)) = θ

Besides, letAβ(d) = {µx(β,γ) : (β>,γ>)> ∈ B(d)} and Bβ(d) = {γ : (β>,γ>)> ∈

B(d)}. Given β, we can show µx is a one-to-one map from Bβ(d0) to Aβ(d0). Suppose

γ ′ and γ ∈ Bβ(d0), and µx(β,γ
′) = µx(β,γ). Then

0 = (γ ′ − γ)>{µx(β,γ ′)− µx(β,γ)}

= E
(
(X>γ ′ −X>γ)[F̃{exp(D>β + X>γ ′)|Z} − F̃{exp(D>β + X>γ)|Z}]

)
By condition C3(i), the foregoing equation holds if and only if X>γ ′ = X>γ with

probability 1. Because of the positive definiteness of E(X⊗2), we have γ ′ = γ.

Therefore, there exists an inverse function of µx(β, ·) denoted by κβ from Aβ(d0) to

Bβ(d0), such that κβ(µx(β,γ)) = γ.

For j = 1, · · · , L, we have

n−1

n∑
i=1

XiNi(exp{D>i β0(τj) + X>i γ̂(β0(τj), τj)})

=n−1

n∑
i=1

∫ τj

0

XiI(Wi ≥ exp{D>i β̂(u) + X>i γ̂(u)})dH(u) + ξn,j

where supj ‖ξn,j‖ ≤ supi ‖Xi‖/n.
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Denote θ̃(τ) = (β>0 (τ), γ̂(β0(τ), τ)). Since µx(θ0(τj)) =
∫ τj

0
µ̃x{θ0(u)}dH(u), we

have

µx{θ̃(τj)} − µx{θ0(τj)}

=− vx,n{θ̃(τj)}+

∫ τj

0

ṽx,n{θ̂(u)}dH(u) +

j∑
k=1

∫ τk

τk−1

[µ̃x{θ̂(u)} − µ̃x{θ0(u)}]dH(u) + ξn,j

(4.10)

Following the similar arguments in the Proof of Theorem 1 in Peng and Huang

(2008) and Glivenko-Cantelli theorem, we have supθ∈Rp+q ‖vx,n(θ)}‖ →a.s. 0,

supθ∈Rp+q ‖vn(θ)}‖ →a.s. 0, supθ∈Rp+q ‖ṽn(θ)}‖ →a.s. 0 and supθ∈Rp+q ‖ṽx,n(θ)}‖ →a.s.

0. Therefore, for any given C1 > 0, ‖−vx,n{θ̃(τj)}+
∫ τj

0
ṽx,n{θ̂(u)}dH(u)‖ ≤ C1 and

‖−vn{θ̃(τj)}+
∫ τj

0
ṽn{θ̂(u)}dH(u)‖ ≤ C1 with probability 1 as n is sufficiently large.

By condition C1, there exists C2 > 0, such that supi ‖Xi‖ < C2. Condition C2(i) im-

plies there exists constant C3 > 0, such that ‖µ{θ0(τ ′)}−µ{θ0(τ)}‖ ≤ C3|τ ′− τ | for

any τ ′, τ ∈ (0, τU ]. From the condition C3(iii), we have ‖{B(θ)}−1J(θ)y‖ ≤ C4‖y‖

for any y ∈ Rp+q and θ ∈ Dd0 . By the condition C1, C2(ii) and C3(iv), for

(β0(τj),γ1), (β0(τj),γ2) ∈ Bd0 , there exists a constant C5, such that

supj,Z,γ1,γ2 ‖{Uf̃(exp(D>β0(τj)+X>γ1)|Z)X> exp(D>β0(τj)+X>θ2)Bx[β0(τj),θ3]−1} ≤

C5. Besides, let C6 = C5 + 2

Define ε0 = C3an, ε1 = C6(C1 + ε0C4bn + C2/n + C3an), and εl = C6(C1 +∑l−1
i=1(εi)C4bn + C2/n + C3an) for l = 2, · · · , L − 1. We can obtain that εl = (1 +

C6C4bn)l−1(C1 + ε0C4bn + C2/n + C3an). Given limn→∞ an = 0 and L = τU/an, we

have limn→∞(1 + C6C4bn)l−1 = exp{C6C4τU/(1− τU)}. Because εl is increasing with

l, it is easy to see that for N ≥ some N0, C0 can be chosen sufficiently small so that

εl ≤ 2 exp{C6C4τU/(1− τU)}C1 < d0, for l = 0, · · ·L− 1.

Next, we show εl is an upper bound for supτ∈[τl,τl+1) ‖µ{θ̂(τ)}−µ{θ0(τ)}‖. From

the definition of θ̂(τ), it is easy to see that supτ∈[τ0,τ1) ‖µ{θ̂(τ)} − µ{θ0(τ)}‖ =
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supτ∈[τ0,τ1) ‖µ{θ0(τ)}‖ ≤ C3an = ε0. Following the similar argument in Peng and

Huang (2008), for τ ∈ [τ0, τ1),

‖µx{θ̂(τ)} − µx{θ0(τ)}‖ ≤ ‖µ{θ̂(τ)} − µ{θ0(τ)}‖ ≤ C4ε0

Thus, from (4.10),

sup
τ∈[τ1,τ2)

‖µx{θ̃(τ)} − µx{θ0(τ)}‖

≤‖µx{θ̃(τ1)} − µx{θ0(τ1)}‖+ sup
τ∈[τ1,τ2)

‖µx{θ(τ)} − µx{θ0(τ1)}‖

≤C1 + ε0C4bn + C2/n+ C3an

By the definition of β̂(τ1), we know that

‖Un(β̂, γ̂, β̂(τ1), τ1)‖ ≤ ‖Un(β̂, γ̂,β0(τ1), τ1)‖, (4.11)

where Un(θ̂,β, τ1) = n−1
∑n

i=1 Ui

{
Ni(exp{D>i β+X>i γ̂(β, τ1)})−

∫ τ1
0
I(Wi ≥ exp{Z>i θ̂(u)})dH(u)

}
.

Coupled with µ(θ0(τ1)) =
∫ τ1
τ0
µ̃(θ0(u))dH(u), we have

Un(θ̂, β̂(τ1), τ1)

=µ{θ̂(τ1)} − µ{θ0(τ1)} −
∫ τ1

τ0

(µ̃{θ̂(u)} − µ̃{θ0(u)})dH(u)

+ vn{θ̂(τ1)} −
∫ τ1

0

ṽn{θ̂(u)}dH(u)

(4.12)

and

Un(θ̂,β0(τ1), τ1)

=µ{θ̃(τ1)} − µ{θ0(τ1)} −
∫ τ1

τ0

(µ̃{θ̂(u)} − µ̃{θ0(u)})dH(u)

+ vn{θ̃(τ1)} −
∫ τ1

0

ṽn{θ̂(u)}dH(u).

(4.13)
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From (4.11), (4.12) and (4.13), we have

‖µ(θ̂(τ1))− µ(θ0(τ1))‖

≤‖µ{θ̃(τ1)} − µ{θ0(τ1)}‖+ 2
∥∥∥∫ τ1

τ0

(µ̃{θ̂(u)} − µ̃{θ0(u)})dH(u)
∥∥∥

+ ‖vn{θ̂(τ1)} −
∫ τ1

0

ṽn{θ̂(u)}dH(u)‖+ ‖vn{θ̃(τ1)} −
∫ τ1

0

ṽn{θ̂(u)}dH(u)‖

Since

µ{θ̃(τ1)} − µ{θ0(τ1)}

=E{Uf̃(exp(Z>θ̌)|Z)[exp(Z>θ̃(τ1)− exp(Z>θ0(τ1)]}

=E{Uf̃(exp(Z>θ̌)|Z)[exp(D>β0 + X>κβ0(τ1)(µx{θ̃(τ1)}))− exp(D>β0 + X>κβ0(τ1)(µx{θ0(τ1)}))]}

=E{Uf̃(exp(Z>θ̌)|Z)X> exp(D>β0 + X>κβ0(τ1){ǎ})Bx[κβ0(τ1){ǎ}]−1[µx{θ̃(τ1)} − µx{θ0(τ1)}]}

where ǎ is on the line segment between µx{θ̃(τ1)} and µx{θ0(τ1)}, and θ̌ is on the line

segment between θ̃(τ1) and θ0(τ1). Then ‖µ(θ̂(τ1))−µ(θ0(τ1))‖ ≤ C5(C1 + ε0C4bn +

C2/n+ C3an) + 2ε0C4bn + 2C1, and thus

sup
τ∈[τ1,τ2)

‖µ(θ̂(τ))− µ(θ0(τ))‖

≤‖µ(θ̂(τ1))− µ(θ0(τ1))‖+ sup
τ∈[τ1,τ2)

‖µ(θ0(τ))− µ(θ0(τ1))‖

≤C5(C1 + ε0C4bn + C2/n+ C3an) + 2ε0C4bn + 2C1 + C3an

≤C6(C1 + ε0C4bn + C2/n+ C3an).

Inductively for l = 2, · · · , L−1, we can obtain supτ∈[τl,τl+1) ‖µ{θ̂(τ)}−µ{θ0(τ)‖ ≤

εl and θ̂(τl) ∈ B(d0). Since an = o(1), bn = o(1), and C1 can be arbitrary small as

n increases, it follows that supτ∈(0,τU ] ‖µ{θ̂(τ)} − µ{θ0(τ)}‖ = op(1). Coupled with

Condition C4 with taylor expansions of κ(α(τ)) around α(τ) = µ(θ0(τ)) for [v, τU ],

we can apply the same line of arguments in the proof of Theorem 1 in Peng and
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Huang (2008) to prove that supτ∈[v,τU ] ‖θ̂(τ)− θ0(τ)‖ = op(1).

4.6.2.2 Lemma 4.1 and its proof

Before proving Theorem 4.2, we first prove the following Lemma 4.1.

Lemma 4.1. For any {θ(τ), τ ∈ (0, τU ]}, which satisfies supτ∈(0,τU ] ‖µ{θ(τ)} −

µ{θ0(τ)}‖ →p 0, we have

sup
τ∈(0,τU ]

∥∥∥n−1/2

n∑
i=1

Ui

(
Ni(exp{Z>i θ(τ)})−Ni(exp{Z>i θ0(τ)})

)
− n1/2[µ{θ(τ)} − µ{θ0(τ)}]

∥∥∥→p 0

Proof. Denote µ1(θ) = E[N{exp(Z>θ)}] and σ2
d(θ) = Var[N(exp{Z>θ)})−N(exp{Z>θ0(τ)})−

µ1{θ}+ µ1{θ0(τ)}]. Following the arguments of Alexander et al. (1984) and Lai and

Ying (1988), σ2
d(θ)→p 0 is sufficient to prove Lemma 1. We can apply the same line

of arguments in Lemma B.1. in Peng and Huang (2008) to prove σ2
d(θ)→p 0,

4.6.2.3 Proof of Theorem 4.2

Proof. Let oI(an) denote a term which converges to 0 in probability uniformly in τ ∈ I

after being divided by an, and OI(an) denote a term which is bounded in probability

uniformly in τ ∈ I after being divided by an. From Theorem 2 and Lemma 1, we can

apply the similar arguments in the proof of Theorem 3 in Peng and Huang (2008)

and obtain that

−n1/2Qn(θ0, τ) =n1/2[µ{θ̂(τ)} − µ{θ0(τ)}]

−
∫ τ

0

[J{θ0(τ)B{θ0(τ)−1}+ o(0,τU ](1)]×

n1/2[µ{θ̂(τ)} − µ{θ0(τ)}]dH(u) + o(0,τU ](1).
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The above estimating equation can be viewed as a stochastic differential equation

for n1/2[µ{θ̂(τ)}−µ{θ0(τ)}]. By using the production integration theory (Gill et al.,

1990), we have

n1/2[µ{θ̂(τ)} − µ{θ0(τ)}] = Φ{−n1/2Qn(θ0, τ)}+ o(0,τU ](1),

where Φ is a map from F to F , such that for g ∈ F ,

Φ(g)(τ) =

∫ τ

0

I(s, τ)dg(s)

with I(s, t) =
∏

u∈(s,t][Ip+q + J{θ0(u)B{θ0(u)−1dH(u) and F = {g : (0, τU ] →

Rp+q, g(·) is left continuous with right limit, g(0) = 0}

Note that −n1/2Qn(θ0, τ) = n1/2Ψi(τ), where Ψi(τ) = Ui

{
Ni(exp{Z>i θ0(τ)}) −∫ τ

0
I(Wi ≥ exp{Z>i θ0(τ)})dH(u)

}
. Given the boundedness of Ui, Zi and Lips-

chitz continuity of
∫ τ

0
I(Wi ≥ exp{Z>i θ0(τ)})dH(u) in τ , we can easily obtain that

{Ψi(τ) : τ ∈ (0, τU ]} is a Donsker class. By the Donsker Theorem, −n−1/2Qn(θ0, τ)

converges weakly to a tight Gaussian process G(τ) with mean 0 and covariance ma-

trix Σ(s, t) = E[Ψ1(τ)Ψ1(τ)>]. Since Φ is a linear operator, Φ(G)(τ) for τ ∈ [v, τU ]

is Gaussian process. Note that B{θ0(τ)}−1 is uniformly bounded for τ ∈ [v, τU ] by

condition C4. Coupled with continuous mapping theorem and the taylor expansion

of n1/2[µ{θ̂(τ)}−µ{θ0(τ)}], we can obtain that n1/2{θ̂(τ)−θ0(τ)} converges weakly

to B{θ0(τ)}−1Φ(G)(τ) for τ ∈ [v, τU ], which is a mean zero Gaussian process
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4.6.3 Appendix G: Justification of the Proposed Covariance

Estimator

The justification of the proposed covariance estimator can be shown by following the

similar arguments in Sun et al. (2016). The key step is to proof supu∈[v,τU ] ‖B(β0(u),γ0(u))−

n−1/2En(u)Dn(u)−1‖ →p 0 and supu∈[v,τU ] ‖J(β0(u),γ0(u))−n−1/2Ẽn(u)Dn(u)−1‖ →p

0.

Following the similar arguments in Sun et al. (2016), we can easily show sup(0,τU ] ‖Ωn(u)‖ =

Op(1) and sup(0,τU ] ‖En(u)‖ = Op(1). Here ‖ · ‖ with a matrix argument means the

entrywise Euclidean norm. Thus, we have

lim
n→∞

sup
u∈(0,τU ]

‖n−1/2{Ln(bn,j(u), cn,j(u))−Ln(β̂(u), γ̂(u))}‖ = lim
n→∞

sup
u∈(0,τU ]

‖n−1/2en,j(u)‖ = 0

(4.14)

Recall µ(b, c) = E{UN(exp(D>b + X>c))}. From Glivenko-Cantelli Theo-

rem, we have supu∈(0,τU ] ‖n−1/2Ln(bn,j(u), cn,j(u)) − µ(bn,j(u), cn,j(u))‖ = op(1) and

supu∈(0,τU ] ‖n−1/2Ln(β̂(u), γ̂(u))− µ(β̂(u), γ̂(u))‖ = op(1).

Coupled with supτ∈(0,τU ] ‖µ{θ̂(τ)} − µ{θ0(τ)}‖ = op(1) in the proof of Theorem

4.1, the above equations and Equation (4.14) can imply

sup
u∈(0,τU ]

‖µ(bn,j(u), cn,j(u))− µ(β0(u),γ0(u))‖ →p 0

From Lemma 4.1 and uniform consistency of (β̂, γ̂), we have

Ln(bn,j(u), cn,j(u))− Ln(β̂(u), γ̂(u))

={B(β0(u),γ0(u)) + εn,j(u)}n1/2{(bn,j(u)>, cn,j(u)>)> − (β0(u)>,γ0(u)>)>},

where supu∈[v,τU ] εn,j(u)→p 0. Therefore, supu∈[v,τU ] ‖B(β0(u),γ0(u))−n−1/2En(u)Dn(u)−1‖ →p

0.

Given the supτ∈[v,U ] ‖(β̂(u)>, γ̂(u)>)> − (β0(u)>,γ0(u)>)>‖ = op(1) from Theo-
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rem 4.1 and supτ∈[v,U ] ‖(bn,j(u)>, cn,j(u)>)>− (β0(u)>,γ0(u)>)>‖ = op(1) implied by

Equation (4.14), the following results can be shown by adopting similar argument in

the proof of Theorem 4 in Huang and Peng (2009), we have

sup
u∈(0,τU ]

‖L̃n(bn(u), cn(u))−L̃n(β̂(u), γ̂(u))−n1/2{µ̃(bn(u), cn(u))−µ̃(β0(u),γ0(u))}‖ = op(1)

(4.15)

where (bn(u)>, cn(u)>)> can be either (bn,j(u)>, cn,j(u)>)> or (β̂(u)>, γ̂(u)>)>, and

we can show that

L̃n(bn,j(u), cn,j(u))− L̃n(β̂(u), γ̂(u))

={J(β0(u),γ0(u)) + εn,j(u)}n1/2{(bn,j(u)>, cn,j(u)>)> − (β0(u)>,γ0(u)>)>},

L̃n(bn,j(u), cn,j(u))−L̃n(β̂(u), γ̂(u)) = {J(β0(u),γ0(u))+ε∗n,j(u)}n1/2{(bn,j(u)−β̂(u), cn,j(u)−γ̂(u))},

where supu∈[v,τU ] ε
∗
n,j(u)→p 0. Therefore,

sup
u∈[v,τU ]

‖J(β0(u),γ0(u))− n−1/2Ẽn(u)Dn(u)−1‖ →p 0



123

Chapter 5

Summary and Future Work
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5.1 Summary

In this dissertation, we developed new statistical methods for two complex issues in

survival analysis: recurrent events terminated by a dependent event and treatment

selection bias. In this dissertation, we develop new statistical methods to handle these

complications in survival analysis.

In the first project, we propose two sensible adaptations of the generalized acceler-

ated recurrence time (GART) model (Sun et al., 2016) to handle the recurrent events

terminated by a dependent event. The modeling strategies align with the rationale

underlying the use of the survivors’ rate function or the adjusted rate function to

account for the presence of the dependent terminal event. We identify and develop

estimation and inference procedures, and establish the asymptotic properties of the

new estimator. Simulation studies demonstrate good finite-sample performance of the

proposed methods. An application to a dataset from the Cystic Fibrosis Foundation

Patient Registry (CFFPR) illustrate the practical utility of the new methods.

In the second project, we quantify causal treatment effect by complier quantile

causal effect (CQCE), which is a meaningful counterpart of the complier average

causal effect (CACE) that has been commonly studied in standard IV literature.

For a time-to-event outcome subject to censoring, CQCE is identifiable under weaker

conditions than CACE, which generally cannot be estimated with bounded censoring.

CQCE also offers greater flexibility in depicting the causal treatment effect than other

causal estimands in survival analysis, such as CCPHR and complier location shift

effect. We develop a simple and rigorously justified two-stage estimation procedure,

and elaborate how it can readily be implemented by existing software. The ease

of implementation should facilitates future applications of the proposed method. We

applied the proposed method to a dataset from the Center for International Blood and

Marrow Transplant Research (CIBMTR) to evaluate the causal effect of rituximab in

diffuse large B-cell lymphoma (DLBCL) patients.
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In the third project, we propose an IV method to quantify the population quan-

tile causal effect (PQCE) for standard right censoring data. PQCE is the quantile

counterpart of population average causal effect (PACE), which has been commonly

studies among IV literatures. Like the standard quantile treatment effect, PQCE

requires weaker conditions for identifiability than PACE under censoring data (Klein

and Moeschberger, 2006; Peng and Fine, 2007), and has advantages in capturing het-

erogeneous causal effects among potential outcome distribution. We propose a simple

and justified two-stage estimation procedure to solve the numerical issues from the

non-monotonicity of the estimating equation. Furthermore, a sample-based covari-

ance estimator has been proposed to reduce the burden of computation in inference

procedure. The proposed two-stage estimation procedure can easily be implemented

by existing software for quantile regression with grid search. An application to a

dataset from the Center for International Blood and Marrow Transplant Research

(CIBMTR) demonstrates the practical utility of the proposed method.

5.2 Future work

In the second and third projects, we proposed new IV methods to estimate the com-

plier quantile causal effect and global quantile causal effect. All proposed methods

face challenges when the selected IV is a weak IV that is characterized by a weak

association between IVs and treatment variables. when weak IVs are appeared, the

proposed estimation and the associated inference can produce unstable and inaccurate

results. Another potential problem from a weak IV is high sensitivity to the violation

of the independence of IV assumption, as discussed in Baiocchi et al. (2014). That

is, when the IV has only a minor association with unmeasured confounders, the re-

sulting estimation bias can be exacerbated when the IV is weak. Therefore, we plan

to extend the proposed method to incorporate the weak IV setting.
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In the third project, the main assumption in this work is the rank similarity as-

sumption, which restricts the evolution of the distribution of the ranks across treat-

ment states to identify the PQCE (Chernozhukov and Hansen, 2005). Based on best

of our knowledge, only a few approaches have been proposed to test this assumption

(Frandsen and Lefgren, 2018; Dong and Shen, 2018). No existing testing approach

has been proposed for censored data. We plan to develop methods to test rank sim-

ilarity for censored data in future. Besides, the rank similarity assumption may not

hold in practice, we want to investigate how to extend the proposed method without

rank similarity assumption.
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