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ABSTARCT 
 

Urinary metabolite profiles associated with Multiple Chemical Sensitivity: a pilot study  
 

By: Kelsey A. Fuchs 
 
 

Purpose: To perform a pilot test to discover urinary metabolites associated with Multiple 
Chemical Sensitivity (MCS), an environmentally triggered and potentially debilitating 
condition. 
 
Methods: Urine samples were collected from female participants (n=8) with or without 
MCS consecutively for 5 days and analyzed using ultra high-resolution liquid 
chromatography mass spectrometry. Data were analyzed with biostatistics, 
bioinformatics, and metabolic pathway enrichment. Levels of urinary metabolites were 
creatinine normalized. Enriched metabolites were identified based on MSI criteria. 
 
Results: A total of 1284 metabolic features in urine samples differed between MCS 
cases and controls (P<0.05). Metabolites were enriched in immune response pathways 
such as histidine metabolism. There were 16 confirmed metabolite identities associated 
with perturbations in histidine metabolism, 9 of which differed between groups (e.g. 
higher urinary histamine in MCS cases; P< 0.05). Results indicated a potential role of 
altered metabolism in MCS cases. 
 
Conclusion: This pilot study detected higher levels of inflammatory metabolites in 
individuals with MCS. This proof-of-concept study also establishes the feasibility of 
global metabolic profiling of MCS urine as a non-invasive and affordable approach to aid 
in mechanistic research of MCS and inform precision medicine. 
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INTRODUCTION 

Multiple Chemical Sensitivity (MCS) is an environmentally triggered syndrome 

characterized by the manifestation of adverse health outcomes upon low-level 

exposures to common environmental chemicals. Triggers include perfumes, insecticides, 

flame retardant treated carpets, petrol fumes, cigarette smoke, cleaning products, and 

more. Symptoms involve multiple organ systems and can include headache, dizziness, 

nausea, muscle and joint pain, respiratory problems, gastric problems, extreme fatigue 

and unusual memory loss. After exposures are removed, symptom improvement can 

take a few hours to several days, and sensitivity can increase over time (Rossi & Pitidis, 

2018). A recent study on national prevalence of MCS found that 12.8% of adult 

Americans reported medically diagnosed MCS and 25.9% self-reported chemical 

sensitivity (Steinemann, 2018). The etiology of MCS and underlying pathological 

mechanisms are unknown. Consensus criteria for a case definition of MCS has not been 

updated since 1999 (Arch Environ Health, 1999). Therefore, understanding potential 

causes of MCS and the mechanisms leading to its debilitating symptoms are crucial for 

disease prevention and treatment.  

 

MCS is a highly under-researched chronic condition affecting the lives of many 

individuals who struggle seeking therapeutic care (Gibson et al., 2016). However, a 

handful of dedicated researchers have been searching for reliable biomarkers of disease 

in MCS by testing for genetic, immunologic, and metabolic markers (De Luca et al., 

2011). It is suggested that individuals may be pre-disposed to MCS through genetic 

variants affecting xenobiotic metabolism. MCS polymorphisms are found in cytochrome 

450 enzymes (CYPs), glutathione-S-transferases (GSTs), UDP-glucoronosyl 

transferases (UGTs), N-acetyl transferases (NATs), paraoxonases (PONs), and 

superoxide dismutases (SODs) (Baines et al., 2004; Hojo et al., 2009). Others suggest 
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these polymorphisms reflect the general population rather than MCS specifically, and 

thus altered patterns of redox and cytokine activity associated with MCS may be due to 

inhibition of gene expression or enzyme activity (De Luca et al., 2010). A recent study 

found increased plasma levels of pro-inflammatory cytokines and interleukin-2 

associated with MCS (Dantoft et al., 2014). As case-control studies aim to identify 

immunologic profiles unique to MCS, there is no consistency in altered parameters 

across multiple studies (Bornschein et al., 2008). Inconsistencies may arise from wide 

range of case definitions used and low number of epidemiologic MCS studies performed.  

 

Regarding metabolism, studies with PET scans identified increased metabolism in the 

olfactory brain regions among MCS cases upon chemical exposure (Alessandrini et al., 

2016). Several studies suggest neurogenic inflammation as the principal mechanism 

underlying MCS based on similar disease characteristics with chronic fatigue syndrome 

and fibromyalgia (Pall, 2003; McFadden, 1996). However, only a couple studies have 

been able to quantify inflammatory metabolites associated with MCS. One study looked 

at human MCS plasma and found increased levels of nitrites/nitrates, decreased 

glutathione reduced form, and decreased linolenic and arachidonic acids (De Luca et al., 

2010). Mechanistic studies such as these are lacking in sheer quantity, which reflects 

the global issue that information on MCS etiology and pathophysiology is scarce. Many 

questions and few consistencies exist regarding our biological understanding of this 

disease. Therefore, more research is needed to explore a full spectrum of altered 

metabolic pathways potentially associated with MCS. 

 

Only one study has attempted to characterize the entire metabolic profile – the 

metabolome – for individuals clinically diagnosed with MCS. Results showed higher 

levels of environmental chemicals, such as pelargonic acid herbicide, as well as lower 
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levels of the endogenous metabolite, acetylcarnitine, in Japanese patients with MCS 

(Katoh et al., 2016). Metabolomics research is a quickly expanding field based on 

advancements in ultrahigh resolution mass spectrometry and bioinformatic data analysis 

using advanced computational algorithms (Uppal et al., 2016). High-resolution 

metabolomics can measure metabolites of over 100 metabolic pathways and provide 

global information on the biochemical processes. Such techniques prove useful for 

environmental health research by characterizing metabolomes associated with metal 

exposure and adverse health outcomes (Chandler et al., 2016; Eguchi et al., 2018).  

 

In the present study, we employ high-resolution metabolomics (HRM) as a non-targeted 

biomonitoring approach to discover metabolic profiles unique to MCS. This pilot study is 

the first of its kind to assess the metabolome of a United States-based MCS cohort. We 

conducted metabolomics and pathway analysis of urinary metabolites altered between 

study group participants (n=3 MCS cases; n=5 non-MCS controls). Our study aims to 

establish the feasibility of global metabolic profiling to promote further investigation into 

mechanisms underlying MCS. Additionally, urinary analysis serves as a non-invasive 

and low-burden method for assessing MCS metabolism, as compared to collecting blood 

plasma, because it is more affordable, non-invasive, and minimizes symptom-triggering 

exposures. This study brings the MCS community under the scope of advanced 

biomedical research to expand our understanding of the disorder and inform precision 

medicine. 

 

METHODS 

Study Population and Urine Collection 

The study subjects consisted of 4 MCS (case) and 5 non-MCS (control) female 

participants residing in the Atlanta area (GA, USA). Cases were defined as having MCS 
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for at least 5 years, while controls were healthy women without history of allergies, 

sensitivity to chemicals or food items, respiratory or other chronic diseases, and use of 

any chronic medications during the previous 12 months. Ages of selected participants 

ranged from 48-80 for MCS and 24-60 for non-MCS. One MCS case dropped out and 

the remaining 8 participants completed 5 consecutive days of follow-up in July of 2018. 

Each day participants collected their bedtime urine (last void prior to sleep), any 

nighttime voids, and their first morning void in separate labeled containers. Specimens 

were stored in participants’ refrigerators until transported to the laboratory for analysis. 

Analysis of urine collected from bedtime to first morning voids were considered a proxy 

for the previous day’s exposures. All participants provided informed consent and the 

study was approved by the Emory University Institutional Review Board. 

 

Sample Preparation for High-Resolution Mass Spectrometry 

For metabolomics analysis, 100 µl of acetonitrile containing internal standards were 

added to 50 µl of urine samples and allowed for equilibration on ice for 30 min, then 

centrifuged (16.1 x g at 4dC) for 10 min to remove precipitates. Supernatants were 

added to autosampler vials and stored at -80 ºC until analysis (Chandler et al., 2016). 

 

High-Resolution Mass Spectrometry and Data Extraction  

Prepared samples were injected and analyzed using liquid chromatography (LC) with 

Fourier transform mass spectrometry (Dionex Ultimate 3000, Q-Exactive HF, Thermo 

Scientific). For 60 urine samples (15 from 3 cases, 45 from 5 controls), 10 µL aliquots of 

each sample were analyzed in triplicate using hydrophilic interaction liquid 

chromatography (HILIC) with electrospray ionization (ESI) source operated in positive 

mode and C18 hydrophobic reversed-phase chromatography with ESI operated in 

negative mode (Walker et al., 2019). Analyte separation for HILIC was performed with a 
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Waters XBridge BEH Amide XP HILIC column (2.1 mm x 50 mm, 2.6 μm particle size); 

C18 chromatography was performed on an end-capped C18 column (Higgins Targa C18 

2.1 mm x 50 mm, 3 μm particle size). The high-resolution mass spectrometer operated 

at 120,000 resolution while scanning a mass-to-charge ratio (m/z) range of 85-1275. 

Two quality control pooled reference plasma samples, NIST 1950 (NIST, 2014) and 

QStd-3, were included at the beginning and end of each batch of 20 samples for 

normalization, batch effect evaluation, and post hoc quantification. Raw data files were 

extracted and aligned using apLCMS (Yu et al., 2013) followed by xMSanalyzer (Uppal 

et al., 2013). Detected ions, referred to as m/z features, consisted of their unique mass-

to-charge ratio (m/z), retention time, and ion abundance. Prior to data analysis, batch-

effect correction was performed by ComBat (Johnson et al., 2007). 

 

Creatinine Levels Quantitation 

Levels of creatinine in individual urine samples were quantified based on colorimetric 

detection using a creatinine assay kit (ab65340, Abcam). Ion abundance of m/z features 

were normalized to individual sample creatinine levels to account for differences in water 

consumption and urine dilution across days and between study participants. 

 

Metabolomics Data Analysis 

Intensities for each m/z feature were summarized using the median of three replicates. 

Data was then filtered to only keep features with at least 80% non-missing values across 

all samples and 80% non-missing values in at least one group. Data was further 

processed by log2 transformation, then quantile normalization. A two-way ANOVA 

repeated measures using LIMMA was performed to find m/z features that significantly 

differed between MCS cases and controls. Metabolites with raw P < 0.05 were selected 

for metabolic pathway analysis. Using FDR adjustment was not realistic due to the small 
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number of subjects. Therefore, we used a less stringent criteria to obtain optimal 

coverage of metabolites (100-500 metabolites) for permutation testing. In addition to the 

limma test, pathway enrichment analysis protects against type 1 statistical error. Final 

data was visualized with unserpervised two-way hierarchal clustering analysis (HCA) to 

illustrate the clustering pattern of selected m/z features and samples by group. Levels of 

selected metabolites were quantified by using reference standardization with NIST 1950 

certified values (Go et al., 2015). 

 

Pathway Analysis 

To define metabolic pathways associated with changes in metabolism between groups, 

mummichog pathway analysis was performed (Li et al., 2013). Selected m/z features 

with corresponding P values from positive and negative mode ionizations were inputted 

into mummichog2.0 to search for (M+H) and (M+Na) adduct matches, and (M-H), (M-H-

H), (M-H2O), (M+Cl) adducts, respectively. The algorithm performed 100 permutation 

tests with P < 0.05 to identify significant modules and metabolic pathways that are most 

likely to be associated with true biological activity networks. Significant pathways were 

then cross-referenced in Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(http://www.genome.jp/kegg/pathway.html) to confirm directionality of mapped 

metabolites. 

 

Metabolite Annotation and Identification: 

Metabolites were annotated by matching accurate mass m/z for adducts formed under 

positive and negative ESI conditions using xMSannotator (Uppal et al., 2017), which 

cross-references physiochemical properties of possible chemical identities with online 

databases such as Human Metabolome Database (HMDB) (Wishart et al., 2012) and 

KEGG, with a match tolerance of 10 ppm.  

http://www.genome.jp/kegg/pathway.html
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Levels of identification confidence were assigned using Metabolomics Standards 

Initiative (MSI) (Sumner et al., 2007). Identities of selected metabolites were confirmed 

by co-elution and ion dissociation mass spectrometry (MS/ MS) relative to an internal 

library of 500 authentic reference standards analyzed under identical experimental 

conditions (Liu et al., manuscript submitted) [Level 1 identification]. In the absence of 

authentic standards, putative identities were confirmed by MS/ MS relative to spectral 

databases such as METLIN (http://metlin.scripps.edu) or MetFrag (Ruttkies et al., 2016) 

[Level 2 (high) identification]. Level 2 (medium) was assigned to metabolites whose 

identify was matched to multiple co-eluting adducts in addition to its most common 

adduct, M+H adduct detected in positive mode or M-H detected in negative mode. 

Having just the M+H or M-H adduct as well as multiple metabolites from the same 

pathway received Level 2 (low) identification. Level 3 identification was conservatively 

assigned to tentative candidates of compound classes (Wang et al., 2018). 

 

RESULTS 

High-Resolution Metabolomics 

Urine samples were collected from individuals suffering from Multiple Chemical 

Sensitivity to investigate possible alterations in their daily metabolism upon exposure to 

low levels of ubiquitous, man-made chemicals. Analysis was conducted with an 

established high-resolution metabolomics workflow (Walker et al., 2019). Extraction and 

processing of the LC-MS data resulted in two feature tables, one from ionization on the 

HILIC+ column, and one from the C18- column. Each feature table contained unique m/z 

features detected among 40 urine samples from n=8 over 5 days. Of the 16068 m/z 

features detected via HILIC+, 984 metabolic features differed significantly between MCS 

cases and controls (raw P < 0.05). Of the 6547 m/z features detected via C18-, 300 

metabolic features differed significantly between MCS cases and controls (raw P < 0.05). 
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Unsupervised hierarchical clustering of these significant features was visualized for both 

ionization modes in Figure 1A-B. 

  

 

Figure 1. Unsupervised two-way hierarchical cluster analysis (HCA) and heat maps 

showed differences in metabolic response between MCS and non-MCS (control) urine. 

Clustering of 40 samples (n=8, 5 days) with relative abundance of significant m/z 

features (raw P < 0.05). (A). Data were collected on HILIC column with positive 

ionization mode. Displaying 984 m/z features. (B). Data were collected on C18 column 

with negative ionization mode. Displaying 300 m/z features. 

 

In Figure 1A-B, the MCS samples (green) clustered as the control (red) samples, 

indicating more similarities within groups than between groups. Moreover, rows 

represent individual m/z features and their relative abundance in each sample shown by 

a z-score of 4 to -4. For example, the furthest left cluster of 8 MCS samples (e & h) in 

A B 
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Figure 1A aligned based on similar ion abundances across most features. This specific 

cluster of MCS samples had 498 metabolic features in greater abundance (dark red) in 

their urine compared to non-MCS urine, and 486 metabolic features in less relative 

abundance (dark blue) as detected with HILIC+. Overall, results from unsupervised two-

way HCA of both detection modes show daily urine samples of one study participant 

clustering together more often than with another participant’s samples (color-coded by 

the subject ID, Figure 1A-B). These results indicate MCS subjects have different 

metabolic profiles compared to healthy controls, and thus should be investigated further. 

 

Pathway Enrichment Analysis 

We used a non-targeted approach to identify biological pathways associated with 

metabolic differences among MCS cases. This top-down profiling method successfully 

detects metabolites in targeted pathways and metabolites in unsuspected pathways to 

best capture disease-associated metabolomes (Johnson et al., 2010). Pathway 

enrichment analysis tested for whether a list of metabolic features was altered more than 

would be expected by chance (Reimand et al., 2019). Algorithms used, mummichog2.0, 

were able to predict functional activity from our spectral feature tables based on 

collective power of known metabolic pathways and networks, without a priori 

identification of metabolites (Li et al., 2013). 

  

With positive ionization feature table, we identified 984 m/z features with corresponding 

raw P values. These 984 features showed enrichment across ten significant pathways, 

as shown in Figure 2A. Top three pathways were prostaglandin formation from 

arachidonate, leukotriene metabolism, and histidine metabolism, all of which contain 

several inflammatory metabolites and play key roles in immune response. Algorithms 

matched the 984 significant m/z features to 150 Empirical Compounds from a reference 
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network of 838 Empirical Compounds. An Empirical Compound is a computational unit 

for a tentative metabolite; it groups multiple potential ions for potential adducts of the 

tentative metabolite (Li et al., 2013). Of all ten pathways listed in Figure 2A, histidine 

metabolism had greatest overlap size of 11/33, meaning a total of 33 Empirical 

Compounds (i.e. tentative metabolites) matched to our feature table were related to 

histidine metabolism, 11 of which showed a statistically significant association with said 

pathway via permutation testing. Therefore, histidine metabolism was selected for further 

investigation of key metabolites. 

 

Figure 2. Pathway enrichment analysis of MCS urinary metabolites. Pathway 

enrichment rate analysis of MCS urine compared with non-MCS control urine. (A). A 

total of (10/ 119) enriched pathways determined significant (P < 0.05; as shown by 

dotted line), using HILIC+ feature table. (B). A total of (13/ 119) enriched pathways 

determined significant (P < 0.05), using C18- feature table. 

 

With negative ionization (Figure 2B), 300 m/z features were detected with raw P values 

< 0.05. Overall, algorithms matched our inputted feature table to 99 Empirical 

Compounds from a reference map of 514. Glutamate metabolism is the top pathway in 

the list of 13 significant pathways shown in Figure 2B. Glutamate acts as a precursor or 

A B 
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substrate in the biosynthesis of several amino acids, nucleic acids, nucleotides and 

metabolites (Yelamanchi et al., 2016). In fact, 10 of the 13 significantly enriched 

pathways listed in Figure 2B contained glutamate, including glutamate metabolism and 

histidine metabolism. Histidine metabolism was the only significantly enriched pathway 

detected in both positive and negative ionization modes. Therefore, histidine metabolism 

was selected for further investigation of key metabolites. 

 

Histidine Metabolism 

Our targeted focus on histidine metabolism resulted from non-targeted pathway analysis. 

A total of 16 m/z features significantly enriched histidine metabolism. Tentative 

metabolites were selected when common adducts, M+H or M-H, were present. Tentative 

identities represented Level 3 identification confidence according to Metabolomics 

Standards Initiative (MSI) criteria. Metabolite identification shifted to Level 2 confidence 

when adducts were in agreement with annotations by xMSannotator (Uppal et al., 2017). 

Putative identities from xMSannotator were compared to authentic chemical standards. 

Level 1 confidence was assigned when accurate mass and retention time of detected 

features were comparable. Overall, we identified 16 metabolites associated with histidine 

metabolism. Table 1 lists each metabolite characterized by accurate mass-to-charge 

ratios (m/z), retention times for how long the ions remained on the liquid chromatography 

columns, adduct(s) formed upon ionization, and confidence levels of identification. 
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Table 1. Identification of selected metabolic features for histidine metabolism.  

Name m/z 

Retention 

Time (s) Adduct 

Confidence 

Level 

Glutamate 149.0638 98.9 M+H 1 

Glutamate 146.0460 34.9 M-H 1 

Glutamate 128.0353 35.1 M-H2O-H 3 

4-Imidazolone-5-propanoate 155.0463 43.9 M-H 2 (low) 

4-Imidazolone-5-propanoate 179.0427 94.9 M+Na 2 (medium) 

4-Imidazolone-5-propanoate 157.0608 95.9 M+H 2 (medium) 

Formiminoglutamate 173.0568 33.7 M-H 2 (high) 

Formiminoglutamate 175.0714 91.2 M+H 2 (high) 

2-Hydroxyglutarate 147.0300 36.8 M-H 2 (high) 

2-Hydroxyglutarate 149.0431 46.3 M+H 2 (low) 

2-Oxoglutarate 145.0143 34.5 M-H 2 (high) 

Glutarate 131.035 42.0 M-H 1 

Fumarate 115.0037 37.3 M-H 1 

β-alanine  88.0404 41.6 M-H 1 

Carnosine 227.1135 133.8 M+H 1 

Carnosine 226.1067 58.2 M[1+] 3 

Histamine 112.0869 130.6 M+H 1 

Methylhistamine 126.1026 118.3 M+H 1 

Histidine 154.0623 45.1 M-H 1 

Methylhistidine 168.0779 46.3 M-H 1 

Imidazole-4-acetaldehyde 111.0553 103.0 M+H 2 (low) 

Imidazole-4-acetate 125.0356 43.8 M-H 1 

Imidazole-4-acetate 127.0502 81.7 M+H 1 

Methylimidazole acetaldehyde 125.0709 131.9 M+H 2 (low) 

 

Ten metabolites were identified with Level 1 confidence (Table 1). Common adducts for 

Level 1 metabolites were graphically represented in Figure 3. Median ion abundances 

for 8 histidine-related metabolites were higher among MCS cases than that of controls 

(histamine, histidine, glutamate, fumarate, methylhistamine, carnosine, 
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formiminoglutamate, imidazole-4-acetate) (Figure 3). However, the overall distributions 

of methylhistamine and fumarate were comparable between MCS cases and controls 

(Figure 3). Histamine levels were statistically significantly higher in MCS urine relative to 

control (P < 0.05 student’s t-test). Histamine acts as neurotransmitter in the 

hypothalamus to regulate circadian rhythms (Hsieh et al., 2019). Histamine secreted 

from mast cells plays key roles in allergic response and inflammation from tissue 

damage (Pagliarini et al., 2016).  

 

 

Figure 3. Creatinine-normalized abundance of selected metabolites differ between MCS 

and non-MCS (control) urine. *P < 0.05 student’s t-test. 

 

Figure 4 shows the connectedness of all 16 key metabolites involved in histidine 

metabolism pathway. To avoid making skewed comparisons of overall ion abundance 

between cases and controls, both the mean and the median ion abundance for MCS 

cases were entirely above or below corresponding non-MCS control parameters in order 

to be shaded red or blue, respectively (Figure 4). 
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Figure 4. Mapped pathway of selected metabolic features for histidine metabolism.  

 

Including histidine, the central molecule of this pathway, 6 identified metabolites were 

detected in overall greater abundance for MCS cases relative to their non-MCS 

counterparts (Figure 4 red). Abundances of 7 intermediate metabolites were distributed 

equally across both groups (Figure 4 gray). We detected lower abundance of 3 

metabolites among MCS cases versus controls (Figure 4 blue).  

 

DISCUSSION  

Overall, results from HRM of MCS urine showed metabolic differences among MCS 

cases, and one perturbed central pathway was histidine metabolism. Higher abundance 

of several inflammatory markers, such as histamine, were found in MCS urine samples. 

Metabolomics data such as this can be used to test associations with specific exposure, 

health behavior, and demographic characteristics of study participants in metabolome-

wide association studies (MWAS) to understand the risk factors for the metabolic 

perturbations. For example, a recent study plasma levels of carnosine and 

methylhistamine among healthy individuals detected through LC-MS were positively 

associated with meat consumption, especially for processed meats (Mitry et al., 2019). 

Another study showed that inhibition and overexpression of the transcription factor, 
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MYC, disrupted normal circadian rhythms and histidine and histamine levels (Hsieh et 

al., 2019). Interestingly, histidine can only be converted to glutamate in the liver, while 

conversion to histamine can occur anywhere, even though to a much lesser extent 

(Pagliarini et al., 2016). On the other hand, previous studies have suggested that 

xenobiotic metabolism may be altered among MCS, and majority of this metabolism 

would take place in the liver (Baines et al., 2004; Hojo et al., 2009).Therefore, liver 

metabolism of histidine may play an important role in MCS and studies can also use 

HRM results to investigate gene-environment interactions affecting liver metabolism.  

 

The regulatory effects of histamine among MCS should continue to be investigated. 

Researchers measured higher levels of histamine in MCS serum as compared to 

controls (De Luca et al., 2010). Since the olfactory regions of the brain are near the 

histaminergic neurons of the limbic system, models of neuronal hypersensitivity in these 

areas have also been proposed as mechanisms of MCS (Alessandrini et al., 2016). 

Thus, exposure assessments involving olfactory stimulation among MCS could 

incorporate HRM data as potential markers of altered neuronal response. Data from this 

study are not enough to make significant claims on certain metabolites, such as 

histamine, acting as reliable biomarkers for research because of our small sample size 

(n=8) and lack of statistical power. However, our pilot study has demonstrated the utility 

of urinary metabolomics in MCS research and the biological relevance to metabolism 

perturbation. More studies with a larger sample size and longer longitudinal follow-up are 

warrantied and will address day-to-day variability of urinary metabolites. 

 

Our goal was to explore urinary metabolomics as a non-invasive and affordable 

approach for assessing MCS-associated metabolism. This goal was encouraged by the 

strong need for more biomedical research regarding MCS while causing little to no harm 
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to MCS cases during assessment. Urine sample collection minimized participants’ 

exposure to clinicians and medical equipment needed for blood sampling, which also 

reduced cost. As this study was the first of its kind, results showed that innovative HRM 

methodology was capable of characterizing metabolic profiles of human participants. 

This proof-of-concept study establishes the feasibility of global metabolic profiling to 

promote future research into precision medicine and further investigation into 

mechanisms underlying MCS. We hope to build a research program providing a practical 

approach integrating robust biomedical research with community needs. Such research 

will lead to understanding of biological mechanisms underlying chemical sensitivity and 

evaluation of interventions to inform precision medicine. 
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