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Abstract 

 

Evaluating the Impact of Fire Emissions Inventories on Air Quality Simulation  

and Health Impact Assessment during the 2012 Colorado Wildfire Season 

By Lois Chang 

 

 

Wildfires are a global phenomenon and pose a threat to human health. Exposure 

to wildfire smoke has been associated with a variety of cardiovascular and 

respiratory problems as well as cancer. In order to assess these associations in fire 

epidemiological studies, it is crucial to utilize methods that most accurately 

measures concentrations of air pollutants. Recently, researchers have begun using 

high resolution fire inventories such as Fire INventory from NCAR (FINN) and 

Quick Fire Emissions Dataset (QFED) to quantify emissions from wildfires. This 

study evaluated these two fire inventories by comparing their PM2.5 estimates to 

those calculated by Environmental Protection Agency’s (EPA’s) ground monitor 

stations, which is considered the golden standard. Then, these fire inventories 

were applied in a conditional logistic regression that yielded effect estimates for 

six respiratory and seven cardiovascular endpoint. This study found that QFED 

generated a higher correlation coefficient and thus, revealed that it more 

accurately estimated PM2.5  than FINN of both 12 km and 4 km resolutions. 

Additionally, FINN and QFED resulted in similar patterns of significant effect 

estimates, which suggested that horizontal resolutions was a stronger predictor for 

effect estimates than the other factors in the fire inventory equations. 
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1. Introduction: 

1.1. Wildfires and Adverse Health Outcomes 

Wildfires occur globally and pose threat to human health because they increase 

levels of air pollutants such as carbon monoxide (CO), nitrogen oxides (NOx), 

volatile organic compounds (VOCs), ozone (O3) and particulate matter (PM2.5) in 

the affected areas (DeBell et al, 2004; Lewtas et al 2007). Exposure to increased 

levels of ambient CO may contribute to cardiovascular problems (Ritz et al 2002) 

as well as induce haematological problems and cancer (Kampa et al 2008). NOx , 

VOCs, and O3 are types of gaseous pollutants mainly affect the respiratory 

system. NOx and VOCs also interact through a series of reactions in the 

atmosphere that further produce O3 in the troposphere.   

 

Among the myriad of air pollutants emitted from wildfires, PM2.5 has been most 

frequently associated with adverse health outcomes (Fowler 2003; NRC, 2004; 

Pope et al 2009; U.S. EPA, 2004). PM2.5 and PM10 are two types of particulate 

matter that are categorized by size (U.S. EPA 2016). PM10, or coarse particles, is 

defined as a mixture of solids and liquids suspended in the atmosphere that are 2.5 

to 10 micrometers in diameter. PM2.5 are fine particles that are 2.5 in diameter or 

less in size. A plethora of literature point to PM2.5 as an important category of air 

pollutants that has shown to greatly impact the mortality and morbidity rates of 

various populations across the globe (U.S. EPA, 2004b). PM2.5 are considered to 

be hazardous to health because of their physiochemical properties that enable 

them to be deposited deep into the respiratory system (Dockery and Pope 1994). 
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PM2.5 is comprised of a variety of chemical compounds, including organic 

compounds, nitrates, sulfates, and various metals (Schlesinger et al 2007). 

Wildfires directly release PM2.5 into the atmosphere and also produce precursor 

gaseous pollutants such as NOx, VOCs, and ammonia (NH3) that can react in the 

atmosphere to form secondary PM2.5 (U.S. EPA, 2004a). Exposure to high 

concentrations of PM2.5 can result in adverse cardiorespiratory health outcomes, 

since these particulate matters can be deposited in the alveoli of the human lungs 

and consequently, diffuse into the circulatory system (Dieme et al 2012)). 

Inhaling PM2.5 has been linked to asthma, upper and lower respiratory tract 

infections, chronic obstructive pulmonary disease (COPD), and ischemic 

cardiomyopathy. Cancer has also been associated with exposure to wildfire smoke 

(Adam et al. 2002). Particulate matter can also exacerbate pre-existing conditions 

such as asthma and cardiovascular diseases (Du et al 2016; Xing et al 2016). 

 

A considerably large amount of effort has been put into establishing policies that 

regulate the sources and emissions of PM2.5 in the U.S. One way the federal 

government has attempted to regulate PM2.5 is by categorizing it under criteria 

pollutants (U.S. EPA 2011). Criteria pollutants are a set of air pollutants regulated 

by the EPA that cause smog, acid rain, and that are associated with various health 

hazards. The EPA has established national ambient air quality standards 

(NAAQS) for short-term and long-term exposure to PM2.5. The short-term 

standard is 35 μg/m3, which is calculated by obtaining the 3 year average of the 
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98th percentile of the daily maximum 24 hour concentration (U.S. EPA 2011). The 

long-term standard is 12 μg/m3 which is obtained by getting the 3 year average of 

the annual mean PM2.5 concentrations.  

 

Particulate matter has been widely used in fire epidemiological models to quantify 

their association with emergency department visits and hospitalizations (Reid et 

al. 2016). In this study, PM2.5 is the primary exposure variable of interest due to 

their high emissions during wildfires and important association with 

cardiorespiratory diseases. 

 

1.2. 2012 Colorado wildfire season 

The geographical context of this study is the 2012 Colorado wildfire season due 

to the expansive impact it had in destroying homes and posing threats to the 

health of the residents. In addition to burning down 600 homes and forcing 32,000 

to evacuate from areas near actively burning fires, Breanna et al. 2016 found that 

exposure to the smoke was associated with respiratory diseases. Martin et al. 2013 

also found that PM2.5 levels were higher than the norm and reached unhealthy 

levels. The high intensity and long duration of the Colorado wildfire season made 

it an optimal case study for the purposes of our inquiry.  

 

A series of large wildfires burned from May to July due to extremely dry winter 

and low precipitation. The summer of 2012 also saw temperatures near and in 

excess of 100 °F. Smoke released by the large fires such as the High Park fire in 
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An increase in large wildfires (>405 ha) has been reported across the western U.S. 

from 1984 to 2011 (Dennison et al 2014). Littell et al 2009 has observed an 

increase in annual western U.S. burned areas since the 1970’s based on observed 

and reconstructed databases that range from 1916 to 2004. These changes have 

been ascribed to higher annual mean temperatures that lead to earlier snowmelt 

and various land use alterations that prolong the wildfire season (Westerling et al 

2006; Dennnison et al 2014; Riley et al 2013). The Intergovernmental Panel on 

Climate Change’s moderate emission scenario A1B has predicted that this trend is 

likely to continue with increased average maximum air temperature and drought 

severity in these regions (IPCC, 2013). 

 

1.3. Fire Inventories 

One of the goals for this study is to assess whether different types of fire 

inventories and different horizontal resolutions of the same fire inventories lead to 

varying PM2.5 emission estimates. Fire inventories serve as important set of tools 

to detect changes in atmospheric chemistry that occur from open biomass 

burnings (e.g...Wiedinmyer et al., 2006). Open biomass burnings are a type of 

biomass burning that occur outdoors and encompass three main categories, 

including prescribed burning, agricultural burnings and wildfires. Emissions from 

wildfires are of special public health interest in recent years due to reasons 

aforementioned. 
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In order to characterize emissions from wildfires, fire inventories include 

variables such as emission mass of species, area burned at a specific time and 

location, fraction of the biomass that is burned in the fire, and the emission factor 

of species (Wiedinmyer et al., 2011). Estimated emissions are then integrated into 

numerical weather prediction models, such as WRF-Chem, to place emissions in a 

larger meteorological context and to provide a final enumeration of emissions.  

 

Much of the effort to create and enhance these inventories has been driven by the 

need to account for burning activities on managed lands as well as to inform 

policy regarding air quality laws and regulations (Battye et al. 2002). With the 

threat of increasing intensity and frequency of wildfires (e.g., Westerling et al 

2006), however, fire inventories are being recognized as important tools to 

quantify the public health impacts of exposure to fire smoke.  

 

A wide variety of fire inventories exist. However, Fire Inventory from NCAR 

(FINN) and Quick Fire Emissions Dataset (QFED) are two high temporal and 

spatial resolution fire inventories that draw interest from the scientific 

community. Fire Inventory from NCAR version 1.5 (FINNv1.5) is an updated 

inventory of FINNv1 that provides global estimates of trace gas and particle 

emissions from open burning of biomass at a daily, 1km resolution. FINN has 

been utilized in various studies to quantify the air quality and health effects of 

wildfire events in the Western United States. QFED is a fire inventory developed 

by NASA with the aim to be included in the NASA Goddard Earth Observing 
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System (GEOS) modeling and data assimilation systems. QFED emission 

estimates are based on the fire radiative power (FRP) to estimate emissions of key 

atmospheric constituents from fire. QFED and FINN both offer high spatial and 

temporal resolution of estimation of trace gases and aerosols and are the focus of 

this study.  

 

2. Materials and Methods: 

2.1. Aims and Hypothesis 

The goal of this study is to evaluate whether different types fire inventories and 

different horizontal resolutions of the same inventories result in differing PM2.5 

emission estimates. Specifically, we will be calculating QFED and FINN, both 12 

km resolution, and their estimates of PM2.5 in the context of the 2012 Colorado 

wildfire season. Then, we will calculate and compare PM2.5 estimates calculated 

from FINN with 12km horizontal resolution and FINN with 4km horizontal 

resolution. We also discuss the difference between FINNv1.5 and FINNv2.0 that 

is in beta.  

 

In order to be able to compare QFED with FINN as well as FINN 4km resolution 

with FINN 12km resolution, it is integral to assess the accuracy of each of the 

inventory’s calculation of emissions. To accomplish this, each of the inventory 

will be compared against the EPA’s ground monitor stations, which will be 

considered the gold standard.   
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Aim 1: 

a. To obtain PM2.5 estimates from EPA’s ground monitor stations over a 

specific time period (June 5th 2012 to July 6th 2012) and obtain PM2.5 data 

from QFED, FINN 4km resolution and FINN 12km emission dataset for 

the same time period. 

 

b. Determine the correlation coefficient between each fire emissions dataset 

and EPA’s ground monitor stations for PM2.5 estimates.  

 

Hypotheses:  

1st hypothesis: 

QFED will generally estimate higher PM2.5 estimates than FINN 12km resolution, 

since past analyses have shown this pattern (Park, M et al 2015).  

2nd hypothesis: 

FINN 4km resolution will detect higher PM2.5 than FINN 12km resolution since 

the higher resolution obtains less diluted fire estimates and better captures the 

variability, or extreme values, of the fire emissions.  

3rd hypothesis:  

QFED will yield a higher correlation coefficient than both the 12km and 4km 

resolution FINN when compared against EPA’s ground monitor stations’ 

estimations of PM2.5. This hypothesis is proposed with the current understanding 

of QFED measurements of PM2.5, which is that it generally reports accurate 

estimates of air pollutants. The FINN and QFED intercomparisons demonstrated 
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that FINN estimated lower concentrations of air pollutants in the western United 

States (Park et al. 2015). Consequently, it can be postulated that FINN generally 

underestimates PM2.5.  

 

In order to be able to compare inventories and their effect estimates from the 

Colorado wildfires, we ran a conditional logistic regression developed by 

Breanna, A., et al 2016. 

Aim 2: 

To perform regression analysis for each of the fire inventories with emergency 

department visits and acute hospitalizations for asthma and the dependent variable 

and PM2.5 as the independent variable controlling for temperature, day of the 

week, and ozone.  

Hypothesis:  

FINN 12 km resolution and FINN 4 km resolution will produce similar significant 

results. There are several reasons for making this assertion. Mainly, the theory is 

that the similar method of detecting wildfires and vegetation layers will play the 

most important role in determining effect estimates in fire epidemiological 

models, than the horizontal resolution. We postulate that the horizontal resolution 

is an unpredictable variable in the fire inventory equations. 

 

Strickland, M., et al 2015 has found that time series analyses produced noticeable 

biases caused by spatial variability and spatial heterogeneity in outdoor air 

pollutant concentrations, instrument imprecision, and choice of daily pollutant 
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metric on effect estimates. The study found that the biases were lessened, 

although not eliminated, by scaling results to interquartile range (IQR) increases 

in concentration. In Aim 3, we use the increases in IQR values in concentration 

for PM2.5 for each inventory to obtain the effect estimates. 

Aim 3: 

To perform the same regression analysis as that of Aim 2, but using increases in 

IQR values for analyzing effect estimates. 

Hypothesis: 

Scaling the concentrations of PM2.5 to individual IQRs will produce similar 

patterns of effect estimates across the models as those seen in Aim 2. The reason 

for this is that horizontal resolutions still remain the same, and the only variable 

that changed in the epidemiological model is the unit change for the air pollutant 

concentration. 

 

2.2. WRF-Chem Model 

In this study, the forest fires smoke event of Colorado in 2012 has been simulated 

using WRF-Chem with FINN and QFED fire emissions datasets. Weather 

Research and Forecasting Model with Chemistry (WRF-Chem) is a numerical 

weather prediction system that was used to model hourly PM2.5 between June 5th 

and July 6th 2012 for both FINN and QFED emission inputs. For analyses 

purposes, the hourly outputs were organized into daily values. FINN was run at 

both 12 km x 12 km and 4 km x 4 km horizontal resolution. QFED was run at 12 

km x 12 km horizontal resolution. 
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WRF-Chem is a regional model that makes use of chemical compounds in its 

calculation and allows for coupled simulations of atmospheric chemistry and 

meteorology (Fast JD et al 2006; Fast JD et al 2009; Grell GA 2005). WRF-Chem 

is functionally similar to CMAQ, but differs from the version used by Appel et al. 

2012 in that WRF-Chem predicts meteorological quantities and air pollution 

concentrations simultaneously. This allows researchers to update the meteorology 

quantities more frequently. Although combined meteorology and chemical 

transport models can be more computationally demanding than standalone 

chemical transport models, with specified domain and settings, meteorological 

modeling may account for only about 10% of the total computational expense 

(Tessum et al 2015). 

 

Many studies have been conducted in evaluating the performance of WRF-Chem 

in air quality simulations across the contiguous U.S with simulation periods of 

several weeks or months (Ahmadov et al., 2012; Chuang et al., 2011; Fast et al., 

2006; Grell et al., 2005; McKeen et al., 2007; Misenis and Zhang, 2010; Zhang et 

al., 2010, 2012). Recently, some researchers have modeled the largest fire-

induced haze episode in the past decade in Indonesia using WRF-Chem 

(Aouizerats B et al 2014) with simulations run at 15 km 15 km horizontal 

resolution. Jaffe et al 2013 also performed simulations with the regional WRF-

Chem at a horizontal resolution of 24 x 24 km to quantify O3 concentrations after 

wildfires in three U.S. metropolitan regions in the western U.S. WRF-Chem is a 



11 
 

widely used atmospheric model that serve as an important tool in understanding 

meteorological variables and their effects on air quality.  

 

2.3. FINNv1.5: 

FINN emission estimates are calculated from the framework described by 

Wiedinmyer et al. [2006;2011]. FINN utilizes satellite observations of active fires 

and land cover in addition to emission factors and estimated fuel loadings to 

provide daily, 1km open burning emission estimates. FINNv1.5 is an improved 

version of FINNv1.0 that includes updated emission factors and the inclusion of 

specific generic vegetation code for temperate evergreen forest. In addition, fuel 

loadings for crops were set to 1200 g/m2 (Akagi et al. 2011) and the Global Land 

Cover (GLC) class was used if Land Cover Type (LCT) was bare or snow. 

 

Both meteorological and chemical processes in WRF-Chem may be sensitive to 

horizontal grid spacing. In this study, two different horizontal grid spacings were 

analyzed-12 km and 4 km. 12 km horizontal resolution is often used in the current 

operational meteorological models (Mass et al., 2002), down from hundreds of 

kilometers in the late 1950s. Models that are currently under development are 

designed to operate at even finer scales from 1 to 10 km (Michalakes et al 2001). 

Models that use finer horizontal spacing, as compared with that at coarser grid 

spacing, model performance may be better, worse, or similar. The reason for this 

is that uncertainties exist in the performance of various physical parameterizations 

and the complexity in chemistry and meteorology and their response to grid 
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resolution (Jang et al., 1995; Zhang et al., 2006a, b; Wu et al., 2008; Queen and 

Zhang, 2008). Several studies reported that increasing grid resolution may lead to 

better reproduction of fine-scale meteorological processes (e.g., Mass et al 2002; 

Jimenez et al. 2006, Liu and Westphal 2001). However, this does not necessarily 

mean better overall model accuracy (Gego et al 2005).  

 

2.4. QFEDv2.4: 

The biomass burning emissions for QFED are obtained using the FRP approach. 

The daily-mean FRP and precise location of fires are acquired from the MODIS 

Collection 5 Active Fire product (MOD14 and MYD14) and the MODIS 

Geolocation product (MOD03 and MYD03). The category of the vegetation, 

selection of emission factor, and assigning of FRP to the corresponding QFED 

vegetation class are determined by the combination of location of fires and the 

vegetation classification dataset. Each pixel and area for MOD14 and MYD14 are 

placed into a global grid to allow for the calculation of the biomass burning 

emissions. QFEDv2.4 is set apart from the previous versions for its sequential 

approach when treating pixels obscured by clouds (Darmenov et al. 2015). Also, 

QFEDv2.4 horizontal resolutions are produced at 0.1°x0.1°, which is equivalent 

to 11.13km x 11.13 km whereas previous versions are available at 0.3124°x0.25°. 

 

2.5. Difference between Fire Inventories: 

QFED and FINN differ their method of detecting fires and categorizing 

vegetation type. FINN uses MODIS active fire product to detect fires in 1km 
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pixels that are burning at the time of overpass under relatively cloud-free 

conditions. The MODIS Rapid Response (MRR) fire detections are utilized to 

specify burn time and location, and the MODIS vegetation Continuous Fields 

(VCF) and Land Cover Type (LCT) products are used to identify the type and 

density of the vegetation burned at each fire point. QFED uses MODIS Fire 

Radiative Power (FRP), which provides information on the measured radiant heat 

output of detected fires. The vegetation cover used by FINN and QFED differ in 

that FINN uses MODIS Collection 5 Land Cover Type (LCT) while QFED 

utilizes IGBP-INPE dataset. 

 

2.6 Methods: 

2.6.1. Comparison with Observations: 

In order to compare PM2.5 estimates from models and ground-based observations, 

ground-truthing analyses was conducted using EPA’s AQS Data Mart. The AQS 

Data Mart is a database that contains every measured value that the EPA has 

collected through the national ambient air monitoring program. Daily arithmetic 

mean for both parameters were obtained for comparison analyses. EPA values 

were treated as the golden standard for emission estimates. 

 

We used ArcMap10.3.1 to map out the specific locations of EPA’s ground 

monitor stations and the models estimations of PM2.5. Spatial Join was utilized to 

pair each monitors to the nearest estimation of air pollutants from each model. To 
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evaluate the fire emission inventories and to compare the estimates with those of 

EPA’s monitor stations, linear regression analyses were conducted.  

 

2.6.2. Statistical Analysis: 

To retrieve the effect estimates for the fire inventories, a conditional logistic 

regression was performed. This approach was used to estimate associations 

between PM2.5 concentrations and the occurrence of ED and acute hospitalizations 

for upper respiratory disease, pneumonia, bronchitis, chronic obstructive 

pulmonary diseases (COPD), asthma and wheeze and respiratory diseases. The 

cases were categorized using the primary International Classification of Diseases 

version 9 (ICD 9). The data and methods are described in detail in Alman et al., 

2016. Three different lag periods were evaluated: lag 0, lag 0-1 moving average, 

and lag 0-1-2 moving average.  

 

Conditional logistic regression was chosen because it allowed for easily matching 

a grid to itself over the study period, with the grids being the strata. This allowed 

us to control for demographic variables, which likely wouldn’t vary within a grid 

over the 32-day period, but would likely vary from grid to grid. Conditional 

logistic regression is a method of matching in case control studies, which leads to 

tighter confidence intervals, that is more precision around the odds ratio than 

would be achieved without matching.  

 

3. Results 
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Figures 1, 2 and 3 show the results for the correlation coefficients. For PM2.5, 

there was a total of 224 matched observations for FINNv1.5, 223 matched pairs 

for QFEDv2.4. The highest linear correlation coefficient was found between 

QFEDv2.4 and EPA’s monitor stations in the measurement of PM2.5 with 0.547, 

followed by FINNv1.5 4 km resolution and EPA’s monitor stations measuring 

PM2.5 with a correlation coefficient of 0.305. The lowest correlation coefficient 

was between FINNv1.5 12 km resolution and EPA’s monitor stations that resulted 

in a coefficient of 0.268.  

 

Odds ratios were determined for respiratory and cardiovascular endpoints for 

continuous change in 1 hour as well as 24 hour PM2.5 concentrations for QFED 12 

km resolution, FINN 12 km resolution and FINN 4 km resolution. The results are 

presented in Tables 1 through 6. The statistically significant results appear to be 

similar between FINN 12 km resolution and QFED 12 km resolution. For 

instance, the association between PM2.5 concentration and asthma and wheeze for 

all ages are significant for both QFED 12 km resolution and FINN 12 km 

resolution for both 1 hour and 24 hour continuous changes. The estimates also 

increase with increasing lag. For FINN 12 km resolution, the odds ratios for 24 

hour PM2.5 concentrations lag 0, lag 0-1, lag 0-1-2 are 1.011 (1.004, 1.018), 1.118 

(1.067, 1.171), and 1.177 (1.106, 1.253), respectively. For QFED 12 km 

resolution, the odds ratios for 24 hour PM2.5  concentrations lag 0, lag 0-1, lag 0-1-

2 are 0-1-2, are 1.017 (1.011, 1.024), 1.130 (1.083, 1.179), and 1.161 (1.104, 
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1.221), respectively. This pattern can be observed with the different age groups, 

with increasing odds ratios with higher lags.  

 

For FINN 12 km resolution and QFED 12 km resolution, the 24 hour-mean 

respiratory disease odds ratios for all ages are very similar. For FINN, the odds 

ratios for lag 0, lag 0-1, and lag 0-1-2, are 1.008 (1.004, 1.012), 1.060 (1.32, 

1.090), and 1.075 (1.039, 1.113) respectively. For QFED, the odds ratios for lag 0, 

lag 0-1, and lag 0-1-2, are 1.008 (1.004, 1.011), 1.042 (1.009, 1.075), and 1.052 

(1.025, 1.079), respectively.  

 

QFED results seem to be generally higher than that of FINN 12 km resolution. 

Amid the many examples, the lag 0, 0-1, and 0-1-2 for 24-h PM2.5 concentrations 

for QFED for asthma and wheeze for all ages are 1.017 (1.011, 1.024), 1.130 

(1.083, 1.179), and 1.161 (1.104, 1.221), respectively. Comparatively, the lag 0, 

0-1, and 0-1-2 for 24-h PM2.5 concentrations for FINN 12 km resolution for 

asthma and wheeze for all ages are 1.011 (1.004, 1.018), 1.118 (1.067, 1.171) and 

1.177 (1.106, 1.253), respectively.  

 

FINN 4 km resolution presents its effect estimates far differently than FINN 12 

km and QFED 12 km resolution odds ratios. The asthma and wheeze for ages 65+ 

for lags 0-1 and 0-1-2 show random error. The wide confidence intervals for the 

effect estimates show that they do not convey valuable information about PM2.5 

and asthma and wheeze for ages 65+.  
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In an attempt to reduce biases in calculating the odds ratios in this study, increases 

in IQR was utilized to determine the effect estimates. Generally, when comparing 

QFED with FINN 12 km resolution, the significant results are higher for the 

QFED odds ratios than those of FINN 12 km resolution. For instance, lag 0-1 and 

lag 0-1-2 for asthma and wheeze for all ages with a continuous change in 1 h 

PM2.5 concentrations for FINN 12 km resolution is 1.011 (1.007, 1.015) and 1.015 

(1.010, 1.021), respectively. Lag 0-1 and lag 0-1-2 for asthma and wheeze for all 

ages with a continuous change in 24 h PM2.5 concentrations for QFED is 1.026 

(1.018, 1.034) and 1.030 (1.021, 1.039), respectively. These are just a few of 

many examples that show that QFED with its IQR increases estimate higher 

significant results than FINN 12 km resolution with its IQR increases.  

 

Broadly, the association seen in QFED and its IQR increases is similar to FINN 

12 km resolution and its IQR increases. This conclusion was reached by roughly 

comparing the cardiovascular and respiratory endpoints which showed to be 

significant. Specifically, the 24 hour mean ORs for QFED and FINN appear to 

generate significant results for the OR outputs. For instance, asthma and wheeze, 

bronchitis, and COPD seem to have significant results that parallel one another.  

 

4. Discussions: 

4.1. Interpretation of Results 
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Due to the multifaceted nature of this study, there were five a priori hypotheses 

regarding the association between PM2.5 and ED and acute hospitalizations for 

selected cardiovascular and respiratory diseases. The first postulated that QFED 

will estimate higher PM2.5 estimates than FINN 12km resolution. Figure 1 to 3 

shows that QFED generally records higher PM2.5 than FINN 12 km resolution. 

This result is consistent from past studies that compared QFED and FINN 

estimation of air pollutants from wildfires. Although the study conducted by Park 

et al. 2015 used carbon monoxide (CO) as the representative indicator for air 

pollutants, CO can be treated as a general predictor of how other air pollutants, 

such as PM2.5 will be quantified by the fire inventories.  

 

The second hypothesis posited that FINN 4km resolution will detect higher PM2.5 

than FINN 12km resolution since the higher resolution obtains less diluted fire 

estimates and better captures the variability, or extreme values, of the fire 

emissions. Figures 1, 2 and 3 show that FINN 4 km resolution generally records 

higher PM2.5 than FINN 12 km resolution. The results show this hypothesis to be 

correct, leading to the conclusion that higher resolutions may more accurately 

reveal the size and number of active fires within each grid. Consequently, FINN 

4km resolution is able to report the extreme, or higher estimations for PM2.5  

concentrations. 

 

The third hypothesis proposed that QFED will yield a higher correlation 

coefficient than both the 12km and 4km resolution FINN when compared against 
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EPA’s ground monitor stations’ estimates of PM2.5. The Pearson’s correlation 

coefficients show that QFED more accurately captures the concentrations of 

PM2.5. Validation of QFED is nearly impossible because the direct field 

measurement is very complex. Alternatively, comparison of emission calculation 

can be made between inventories. The QFED was compared with the commonly 

used GFED, the FRP based GFAS and the FLAMBE inventories with monthly 

mean emissions in various regions (Darmenov and da Silva, 2013). The results 

from 2003-2010 demonstrate that QFED values are distributed within a 

reasonable range. The correlation coefficient confirm past research that showed 

that QFED closely estimates the actual concentrations of air pollutants. 

 

The  fourth hypothesis asserted that FINN 12 km resolution and FINN 4 km 

resolution will produce similar patterns of significant odds ratios (ORs). The 

examples of ORs given in the prior section show this trend to be false. Instead, 

FINN 12 km resolution and QFED of the same resolution showed similar patterns 

of significant results. This may be explained by the theory that horizontal 

resolutions play a more important role in the epidemiological model’s estimation 

of effect estimates. Subsequently, it can be stated that differences in vegetation 

layers and method of detecting wildfires are relatively weaker variables in the fire 

inventory equations and their measurement of PM2.5. 

 

The last hypothesis investigated the odds ratios across models by scaling the 

concentrations of PM2.5 to individual IQRs. It postulated that no significant 
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changes would occur in regards to inter-model comparisons. This hypothesis 

implies that FINN 4 km resolution and FINN 12 km resolution would yield 

similar patterns for the significant effect estimates. However, the results show that 

FINN 12 km resolution and QFED shared more similarities in regards to the 

significant results. This can be explained by previous discussions on the dominant 

role that horizontal resolutions play in the fire inventories. 

 

4.2. Potential Biases and Limitations 

This study evaluates the accuracy of models that estimate air pollutants during 

wildfires by attempting to validate FINN and QFED using EPA’s monitors as the 

gold standard. Several issues arise with the study’s method of validation. 

Although EPA’s monitors are widely considered the gold standard of detecting air 

pollutants, wildfires create smoke plumes that exist too high up in the atmosphere 

for the EPA monitors to effectively detect PM2.5. EPA ground monitor stations are 

also spatially and temporally sparse. For these reasons, the process of ground-

truthing inevitably presents the challenges of acquiring the optimal method of 

measuring the true value of PM2.5.  

 

Another major limitation to the study is that the fire epidemiological model 

utilized in this study do not use EPA’s ground-based measurements, which is 

theoretically more accurate than the models. There is no means to make 

meaningful comparisons between the models’ effect estimates and the “true” odds 

ratios generated by an epidemiological model that incorporates the actual 
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estimates of air pollutants. One way to address the issue of sparse monitors is to 

simply place EPA monitors evenly throughout the state of Colorado that has the 

capacity to detect air pollutants in the smoke plumes. This would allow for a more 

effective and accurate process of validating the models.  

 

When examining the effect estimates produced from scaling the PM2.5 

concentrations to the increases in IQR, a clear limitation is the absence of true 

odds ratios. Having access to true odds ratios would allow for us to evaluate 

whether using the IQR values reduced biases in the epidemiological models. 

Since this is not a part of the study, we can only conduct an inter-model 

comparison in regards to the patterns of significant effect estimates. 

 

For the purposes of this study, it is imperative to understand the mechanisms 

behind acquiring the true effect estimates. As mentioned before, an improved and 

increased spatial and temporal coverage of EPA monitors would more accurately 

reproduce the associations between exposure to wildfire air pollutants and adverse 

health outcomes. Since this is not possible, we can only generate potential 

scenarios that would best reflect the relationship between air pollutant exposure 

and cardiovascular and respiratory health problems. Due to the nature of this 

study’s epidemiological research, ED visits and hospitalizations dataset are 

obvious choices for outcome variables. Ecological time series are also the 

dominating type of research conducted to assess the impact of wildfires on human 

health. However, a stronger study would be cohort research that follows a selected 
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population and to describe the health outcomes of interest. Only a few wildfire 

epidemiological studies are based upon cohort studies.  

 

5. Conclusion 

This study evaluated FINN 12 km and 4 km resolution and QFED 12 km 

resolution in order to validate the PM2.5 estimates.  This research found the 

importance of horizontal resolution in generating odds ratios than other factors in 

the fire inventory equations. Only QFEDv2.4 and FINNv1.5 were utilized in this 

study. Many other types of fire inventories exist and should be considered when 

determining which models to use in fire epidemiological models. For instance, 

FINNv2, which is in beta, has shown that FINNv2 detects higher concentrations 

of air pollutants in comparison to FINNv1.5. However, before FINNv2 can be 

incorporated into epidemiological research, validation of its estimation of air 

pollutants need to be conducted. Future wildfire exposure assessment research 

should focus on using more recent and updated versions of fire inventories. 

 

Exposure assessment studies such as this one is crucial to increase confidence in 

measuring accurate estimates of air pollutant emitted from wildfires. Fire 

inventories not only allow for researchers to acquire information about the 

pollutants in the atmosphere quickly, but they also allow for the calculation of 

emissions with more temporal and spatial coverage in comparison to the EPA 

ground monitor stations.  
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The results of this study calls for public health researchers to rethink the methods 

of acquiring emission estimates of air pollutants from wildfires. Not only are 

more accurate fire inventories needed, but more robust epidemiological studies 

may be necessary to accurately measure the association between exposure to air 

pollutants and adverse health outcomes.  
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7. Tables and Figures 

 

 
 

 

 

 

 

 

 

 

 

 

        Figure 1. Comparison between QFEDv2.4 and EPA estimates of  PM2.5    

 

 

 

 

  

 

 

 

 

 

        Figure 2. Comparison between FINNv1.5 12 km resolution and EPA  
                         estimates of PM2.5    
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         Figure 3. Comparison between FINNv1.5 4 km resolution and EPA 
                         Estimates of PM2.5 
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Table 1a. Odds Ratios for respiratory and cardiovascular endpoints for continuous 

change in 1-h PM
2.5

 concentrations for FINN 4 km resolution. 

a
 Change per 10 μg/m

3
 

b
 Moving average 
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Table 1b. Odds Ratios for respiratory and cardiovascular endpoints for continuous change in 
24-h PM

2.5
 concentrations for FINN 4 km resolution. 

a
 Change per 5 μg/m

3
 

b
 Moving average 
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Table 2a. Odds Ratios for respiratory and cardiovascular endpoints for continuous 

change in 1-h PM
2.5

 concentrations for FINN 12 km resolution. 

a
 Change per 10 μg/m

3
 

b
 Moving average 
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Table 2b. Odds Ratios for respiratory and cardiovascular endpoints for continuous change in 
24-h PM

2.5
 concentrations for FINN 12 km resolution. 

a
 Change per 5 μg/m

3
 

b
 Moving average 
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Table 3a. Odds Ratios for respiratory and cardiovascular endpoints for continuous change in 1-

h PM
2.5

 concentrations for QFED 12 km resolution. 

a
 Change per 10 μg/m

3
 

b
 Moving average 



36 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3b. Odds Ratios for respiratory and cardiovascular endpoints for continuous change in 
24-h PM

2.5
 concentrations for QFED 12 km resolution. 

a
 Change per 5 μg/m

3
 

b
 Moving average 
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Table 4a. Odds Ratios for respiratory and cardiovascular endpoints for continuous change 
in 1 h PM

2.5
 concentrations for FINN 4 km resolution. 

a
 Change per 3.06108 μg/m

3
 

b
 Moving average 
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Table 4b. Odds Ratios for respiratory and cardiovascular endpoints for continuous 

change in 24-h PM
2.5

 concentrations for FINN 4 km resolution. 

a
 Change per 1.81817 μg/m

3
 

b
 Moving average 
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Table 5a. Odds Ratios for respiratory and cardiovascular endpoints for continuous change in 
1 h PM

2.5
 concentrations for FINN 12 km resolution. 

a
 Change per 2.61467 μg/m

3
 

b
 Moving average 
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Table 5b. Odds Ratios for respiratory and cardiovascular endpoints for continuous 

change in 24-h PM
2.5

 concentrations for FINN 12 km resolution. 

a
 Change per 1.69876 μg/m

3
 

b
 Moving average 
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Table 6a. Odds Ratios for respiratory and cardiovascular endpoints for continuous change 

in 1 h PM
2.5

 concentrations for QFED 12 km resolution. 

a
 Change per 4.72214 μg/m

3
 

b
 Moving average 
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Table 6b. Odds Ratios for respiratory and cardiovascular endpoints for continuous 

change in 24-h PM
2.5

 concentrations for QFED 12 km resolution. 

a
 Change per 2.65656 μg/m

3
 

b
 Moving average 


