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Abstract 

Hierarchical Transformer for Early Detection of Alzheimer’s Disease 

 

By Renxuan Li 

Alzheimer’s disease is an irreversible disease that severely affect the brain functions and life 

quality of the patients. For now, there is no effective cure for the disease. Therefore, this 

unfortunate fact makes the early detection of Alzheimer’s disease vital. The early stage of the 

Alzheimer’s disease, Mild Cognitive Impairment (MCI), normally involve loss in memory, 

language ability, and object recognition ability. In this paper, we present a new dataset that 

includes the transcribed audio of the MCI patients and healthy subject. We also present a 

hierarchical transformer-based model and the corresponding analysis for the MCI/health 

classification task on our dataset  
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Chapter 1

Introduction

Alzheimer’s disease (AD) is a progressive neuro-degenerative disorder

that is associated with loss of functional autonomy. The symptoms normally

include memory loss and declines in several major brain functions including

language and object recognition. [3][10] Current diagnosis methods are usually

time-consuming and expensive since the methods requires often time lengthy

clinical tests and usage of medical instruments with high precision such

as MRI. As a result the fact that seniors are way more likely to develop

Alzheimer’s Disease[3] and the rapid increase in global life expectancy and

aged population [11], the lengthy and expensive diagnosis process may cause

increasing pressures on global public health system. In addition, Alzheimer’s

disease is known as irreversible and not curable [4]. With recent advances in

the field of Natural Language Processing(NLP), attempts have been made

to develop simpler and faster AD detection methods based on the language



2

of the potential patients. Meanwhile, to help developing tools and models

for AD detection, the speech of the patients and healthy people have been

recorded, transcribed into texts, and packed into datasets. One of the best

known datasets is the DementiaBank from University of Pittsburgh[1]. The

DementiaBank collects recorded speech of patients with and without dementia,

and also includes annotated grammatical features.

The irreverible nature of the disease makes the detection of the early stage

of the disease vital. The early stage of the Alzheimer’s disease, also known

as Mild Cognitive Impairment (MCI), is usually associated with language

change and impairment in reasoning ability. MCI is more difficult to identify,

since it’s the very beginning stage of AD and therefore the degradation of

language may not be very obvious. In this study, we present the B-SHARP

dataset that focuses on MCI detection. The dataset is consists of plain

text transcripts of MCI and normal subjects’ speech on three different tasks

including events recall, environment description, and picture description.

We also perform experiments on the dataset and build a fully automated

hierarchical transformer-based model based on the hierarchy established by

our three tasks in the dataset. The model achieves 74% accuracy on five-fold

cross validation. In addition, we perform analysis to comprehend what the



3

words are and are picked out by the model, and analyze which questions in

the speech protocol is more important.
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Chapter 2

Related Works

2.1 Detection of Alzheimer’s Disease

There have been studies conducted to work on the detection of Alzheimer’s

disease (AD) or its early stage, known as Mild Cognitive Impairment(MCI), us-

ing the speech or speech transcripts of the patients with early stage Alzheimer’s

disease. In particular, the current widely studied dataset, the DementiaBank

(Becker:1994) , is collected by the Alzheimer and Related Dementias Study

at the University of Pittsburgh School of Medicine. The dataset is consists

of audio recordings and transcripts of the recorded audios of elderly adults.

Subjects are divided into two groups: 1. Dementias, who are clinically diag-

nosed with Alzheimer’s disease or Dementia. 2. Controls, who are healthy

elderly adults without Dementia related diseases. Each subject visits on

a yearly basis and contributes a new transcript to the dataset. Any error
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that occurred during transcribing process is corrected. Moreover, for each

sentence, corresponding grammar structures and information are also added

to the transcriptions. Research has been conducted on the DementiaBank to

help the detection of AD. Orimaye et al (Orimaye:2014) uses several Machine

Learning Algorithms on the syntactic and lexical features of the transcripts

to build predictive model that achieved F-measures over 74%. Pou-Prom and

Rudzicz(multiview) use the linguistic features of the transcription to learn a

multi-view embedding for AD and achieved F1 score of 0.82 in classification

task.

While the approaches involving extracted language features do achieve

good performance, the annotation process is time consuming, and potentially

restricts our understanding of the language of patients with MCI. Many re-

searchers have explored approaches of AD detection using neural networks and

plain text/audio. Karlekar et al (Karlekar:2018) have proposed a CNN-LSTM

network approach and achieved around 85% accuracy on DementiaBank.

They have also done some important visualization and analysis to under-

stand the reasons behind the conclusion of the neural network. Attention

Mechanism, a recent significant breakthrough in NLP research, is also used

to detect dementia in some studies. Di Palo and Parde(clstm+att) have
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proposed a model with both plain text and handcrafted features based on

C-LSTM and attention mechanism. They have successfully pushed the F1

score of DementiaBank to 0.929.

While most of the previous work focuses on the DementiaBank dataset,

there are also some studies that try to utilize new data. Choi et al (choi-etal-

2019-meta) propose a new Meta-Semantic Representation to predict early

stage of AD. The study uses 100 transcripts from audio recordings collected

by Emory University School of Medicine. The 100 transcripts are also the

subset of the dataset we use in this study.

2.2 Transformers for Natural Language Un-

derstanding

BERT(Bidirectional Encoder Representations from Transformers) (devlin-

etal-2019-bert) is a variant of the transformer model that is consisted of

12 or 24 layers of the transformer encoders depends on the size of BERT

model. BERT is pre-trained with English Wikipedia on several tasks, and

can be fine-tuned to downstream NLP tasks. The BERT model achieved

state-of-art performance in 11 tasks,including document classification, in

the GLUE benchmark(glue). Therefore we would like to experiment using
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the BERT model on our dataset, and hope to get some new insights or

inspirations. RoBERTa (liu-etal-2020-roberta) has the same structure with

the BERT model, but RoBERTa uses different training approaches and

outperforms BERT on GLUE benchmark test. While the BERT model and

the RoBERTa model perform very well on many NLP tasks, the huge sizes

of the models also entail strict memory constraints and longer and more

difficult fine-tuning processes. The ALBERT (lan-etal-2019-albert) model,

which adopt two parameter reducing techniques, reduces the model size to be

17 times smaller than regular BERT model while pushing the GLUE score to

the new state-of-art level of 89.4. Both RoBERTa and ALBERT model make

some improvement to the original BERT model, and we also hope that these

two models can provide us with better result or some inspirations.

In addition, as we will explain in details later in the DataSet Section, our

dataset is consists of several tasks, which makes our dataset inherently suitable

to a more hierarchical model. Several models have been proposed for hierarchi-

cal document summarization from which we take some inspirations. Document

Level Pre-training of Hierarchical Bidirectional Transformers for Document

Summarization(HIBERT) (zhang-etal-2019-hibert) is a transformer-based
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model on two levels: the sentence level and the document level. The authors

also perform large-scale pre-training on HIBERT models to achieve state-

of-art performance on two major datasets in document summerization field.

Although the main focus of our study is not document summarization, we

can still use the ideas in this paper to build hierachical models using BERT,

RoBERTa, and ALBERT models.
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Chapter 3

Dataset

3.1 B-SHARP: Brain, Stress, Hypertension,

and Aging Research Program

Data from 326 subjects collected as part of the Brain, Stress, Hypertension,

and Aging Research Program, B-SHARP, are used for this work 1. 185

cognitively normal controls and 141 patients with Mild Cognitive Impairment

(MCI) were selected based on neuropsychological and clinical assessments.

Every subject has been examined with two well-known standardized cognitive

tests, the Montreal Cognitive Assessment (MoCA; nasreddine:05a) and the

Boston Naming Test (BNT; kaplan:83a), and followed the speech task protocol

for voice recording (Section 3.2).51.5% and 23.9% of the subjects thus far

came back for their 2nd and 3rd visits to take new voice recording, respectively.

1B-SHARP: http://medicine.emory.edu/bsharp
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This is an ongoing program; voice recordings of 20-25 subjects are taken every

month such that the data is still growing.

Group Subjects 2nd Visits 3rd Visits Recordings MoCA BNT

Control 185 100 50 385 26.2 (±2.6) 14.2 (±1.2)
MCI 141 68 28 265 21.5 (±3.5) 13.4 (±1.5)

All 326 168 78 650 24.2 (±3.8) 13.9 (±1.4)

Table 3.1: Statistics of the control and MCI groups. Subjects: # of subjects;
2nd/3rd Visits: # of subjects who made 2nd/3rd visits; Recordings: #
of voice recordings; MoCA/BNT: average scores and standard deviations
from MoCA/BNT; Note that subjects with the 2nd/3rd visits take one/two
additional voice recordings respectively; thus, Recordings = Subjects + 1·(2nd
Visits) + 2·(3rd Visits).

Table 3.1 shows the statistics of the control and the MCI groups. The

scores from both MoCA and BNT between these two groups show significant

difference (p < 0.0001; Welch’s t-test).

Note that when subjects make multiple visits, there is a year gap in between

so that subjects do not necessarily remember much from their previous visits.

Thus, recordings from the same subject are not any more similar than ones

from the other subjects. In fact, most recordings across subjects, regardless

of their groups, are very similar when they are transcribed into text since all

subjects follow the same speech protocol.
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3.2 Speech Task Protocol

A speech task protocol has been conducted to collect voice recordings of

the subjects who are asked to speak about Q1: today’s activity, mostly

different psychological and medical tests done on subjects; Q2: environment

description, in this question subjects are asked to describe the item they see

in the examination room; Q3: picture description. The picture is shown in

figure3.1. For each task, subjects are asked to speak for 1-2 minutes. All

subjects are provided with the same instructions in Table 3.2, and visual

abilities of the subjects are confirmed before recording. To reduce potential

variance, the subjects are guided to follow similar activities before Q1, located

to similar room settings before Q2, and shown the same picture in Figure3.1,

“The Circus Procession” copyrighted by McLoughlin Brothers as part of the

Juvenile Collection, for Q3.

Type 1cInstruction

3*1 I would like you to describe to me everything we did from the moment we met today until now.
Please try to recall as many details as possible in the order the events actually happened where we met,
what we did, what we saw, where we went, and what you felt or thought during each of these events.

2 I would like you to describe everything that you see in this room.

2*3 I am going to show you a picture and ask you to describe what you see in as much detail as possible.
You can describe the activities, characters, and colors of things you see in this picture.

Table 3.2: Instructions of Q1, Q2, and Q3 provided to the subjects.

The collected voice recordings are automatically transcribed by the online
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[The Circus Procession used in B-SHARP.]

[Boston Cookie Theft used in DementiaBank.]

Figure 3.1: The pictures used in (on the top) and DementiaBank (on the
bottom).
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tool, Temi.2 The transcripts are then processed by the open-source NLP

toolkit called ELIT3. We use ELIT to analyze various linguistic features about

this dataset. As shown in Table 3.3, transcripts from the control group show

significantly higher numbers of tokens, nouns, and complex structures while

ones from the MCI group show a significantly higher number of discourse

elements on average, implying that the control subjects give more expressive

descriptions while the MCI subjects include more disfluency in their speeches.

2c—— 1c—Tokens 1c—Sentences 1c—Nouns 1c—Verbs 1c—Conjuncts 1c—Complex 1cDiscourse

2*1 Control 186.6 (±60.4) 10.4 (±4.5) 28.1 (±9.6) 30.4 (±11.5) 8.5 (±4.5) 2.3 (±1.7) 8.1 (±5.4)
MCI 175.6 (±54.5) 9.8 (±4.1) 23.7 (±8.3) 29.3 (±10.4) 8.5 (±4.2) 2.0 (±1.6) 9.2 (±6.0)

2*2 Control 191.5 (±11.8) 11.7 (±4.7) 41.1 (±13.3) 24.3 (±11.2) 6.6 (±4.5) 3.6 (±2.7) 7.1 (±4.8)
MCI 178.6 (±11.7) 11.6 (±4.7) 36.7 (±12.1) 23.2 (±10.6) 6.4 (±4.4) 2.9 (±2.3) 8.4 (±5.3)

2*3 Control 193.4 (±63.4) 12.6 (±5.4) 39.5 (±13.5) 28.4 (±10.1) 8.0 (±4.8) 3.3 (±2.1) 6.1 (±5.5)
MCI 187.8 (±63.4) 12.7 (±5.1) 36.2 (±13.2) 27.7 (±10.9) 7.2 (±4.2) 2.6 (±2.0) 7.3 (±5.5)

3*All Control 578.1 (±149.8) 34.5 (±10.7) 110.5 (±27.9) 84.2 (±25.4) 23.5 (±10.1) 9.3 (±4.5) 21.4 (±13.0)
MCI 548.7 (±140.6) 34.0 (±10.5) 98.1 (±26.1) 81.2 (±24.1) 22.5 (±9.7) 7.7 (±4.2) 25.3 (±15.0)
p 1c—0.0110 1c—0.5541 1c—< 0.0001 1c—0.1277 1c—0.2046 1c—< 0.0001 1c0.0006

Table 3.3: Average counts and standard deviations of linguistic features
per transcript in the B-SHARP dataset. Complex: the occurrences of com-
plex structures such as relative clauses or non-finite clauses, Discourse: the
occurrences of discourse elements such as interjections or disfluency.

3.3 Comparison to DementiaBank

DementiaBank is currently the largest public dataset that comprises audio

recordings and their transcripts for four language tasks, picture description,

verbal fluency, story recall, and sentence construction, from a large longitudinal

2Temi (Transcriber): https://www.temi.com
3(NLP Toolkit): https://github.com/elitcloud/elit
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study [1]. Subjects in this study are divided into two groups, normal controls

and dementia patients. Among the four tasks, data from only the picture

description task can be used for classification since the other tasks give data of

dementia patients only.4 The design of this task is similar to 1 in (Section 3.2);

each subject is shown the “Boston Cookie Theft” picture in Figure 3.2 to

describe for 1-2 minutes.

Group Subjects 2nd Visits 3rd Visits 4th Visits 5th Visits Recordings

Control 99 29 28 9 8 243
Dementia 194 53 13 8 3 309

All 293 82 41 17 11 552

Table 3.4: Statistics of the control and the dementia groups in DementiaBank.
Note that subject with i’th visits take (i − 1) additional recordings; thus,
Recording = Subjects +

∑5
i=2(i− 1)′thV isit.

Table 3.4 shows the statistics of DementiaBank in comparison to Table 3.1.

Subjects in this study made up to 5 visits compared to 3 in B-SHARP although

the number of subjects in each visit is larger in B-SHARP. B-SHARP has

≈100 more recordings than DementiaBank, more importantly, B-SHARP is

still growing, which makes it the largest dataset for NLP research related to

the detection of Alzheimer’s Disease. Unlike DementiaBank where 66.2% of

the subjects are dementia patients, 43.3% of the subjects belong to the MCI

group in B-SHARP; this makes sense because MCI is closer to the pre-clinical

4The verbal fluency task gives 1 audio recording of a normal control, that is still not
enough to train classification models.
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phase that has a much fewer number of patients reported in general.

1c—Tokens 1c—Sentences 1c—Nouns 1c—Verbs 1c—Conjuncts 1c—Complex 1cDiscourse

Control 124.0 (±59.7) 12.6 (±5.1) 23.7 (±11.8) 27.1 (±11.9) 2.8 (±2.8) 1.6 (±1.6) 1.5 (±1.6)
Dementia 114.3 (±61.3) 12.1 (±6.4) 18.7 (±10.4) 23.9 (±12.9) 2.4 (±2.4) 1.4 (±1.4) 2.8 (±2.9)

p 0.0625 0.3204 < 0.0001 0.0029 0.0715 0.1184 < 0.0001

Table 3.5: Average counts and standard deviations of linguistic features per
transcript in DementiaBank.

Table 3.5 shows the statistics of linguistic features in comparison to Table 3.3.

The same tool, ELIT (Section 3.2) is used to measure these statistics. Unlike

B-SHARP, the control group in DementiaBank does not reveal a significantly

greater number of tokens than the dementia group. The document size in

DementiaBank is 4.9 times smaller than B-SHARP on average. In both

datasets, the noun and discourse counts are significantly different between

the control and the other groups. It is interesting that a significant difference

is found in verbs whereas it is not the case for complex structures in Demen-

tiaBank, which is opposite in B-SHARP. This may indicate that the verb

usage deteriorates as it progresses from MCI to dementia, but more thorough

research is needed for further verification.
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Chapter 4

Approaches

4.1 Baselines Approaches

4.1.1 Convolutional Neural Network(CNN)

The CNN for document classification we experiment comes from the paper

Convolutional Neural Networks for Sentence Classification[6]. In addition

to the original design, we add filters of larger sizes. In this approach, we

use FastText Embeddding and keep the word embedding constant over the

training process. Figure 4.1 from Kim’s paper provide a good visualization of

the architecture of the model.

4.1.2 CNN-LSTM

CNN-LSTM hybrid model is initially proposed by [5] on the DementiaBank

dataset and achieves state-of-art performance on DementiaBank. The input

text is embedded before going to the network, then goes into convolutional
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Figure 4.1: CNN for sequence classification

layers to extract local features. After the convolutional layers, the input is

sent to a Long-Short-Term Memory(LSTM) network to capture relationship

of longer terms.

4.2 Hierarchical Transformer

Although transformers have established the state-of-the-art results on most

document classification tasks (Section 2.2), they have a limitation on the

input size as a result of their huge memory requirement. As shown in

Table 3.1, the average number of tokens in our input documents well-exceeds

512 when combining transcripts from the three tasks (Section 3.2), which is the

maximum number of tokens that the pre-trained models of these transformers

generally recommended.1This makes it difficult to simply join all transcripts

1As a matter of fact, their internal tokenizers such as WordPiece [12] or SentencePiece
[7] make further segmentation; thus, the maximum number of input tokens is actually
smaller than 512.
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together and feed into a transformer. Thus, this section presents two types of

hierarchical transformers to handle this long-document issue.

[Pipeline-based hierarchical transformer.]

Transformer1 (T1)

w11 w12 ⋯ w1n[CLS1] w21 w22 ⋯ w2n[CLS2] w31 w32 ⋯ w3n[CLS3]

c1 e11 e12 ⋯ e1n c2 e21 e22 ⋯ e2n c3 e31 e32 ⋯ e3n

c1 c2 c3

MLP1 MLP2 MLP3

⊕ ⊕

o2o1 o3

MLPe oe

Transformer2 (T2) Transformer3 (T3)

[Joint learning-based hierarchical transformer.]

w11 w12 ⋯ w1n[CLS1] w21 w22 ⋯ w2n[CLS2] w31 w32 ⋯ w3n[CLS3]

c1 e11 e12 ⋯ e1n c2 e21 e22 ⋯ e2n c3 e31 e32 ⋯ e3n

c1 c2 c3⊕ ⊕

MLPf of

Transformer1 (T1) Transformer2 (T2) Transformer3 (T3)

Figure 4.2: Hierarchical transformers to combine the three types of transcripts
in ensemble.

Figure 4.2 describes the pipeline-based hierarchical transformer, that is useful

when no computational resource is available to fit three transformer models.

Let Wi = {wi1, . . . , win} be the input document where wij represents the j’th
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token in the transcript from the i’th task Qi (in our case, i = {1, 2, 3}). Wi is

prepended by the special token [CLSi] that is used to learn the document

embedding, and fed into the transformer Ti. The transformer then generates

Ei = {ci, ei1, . . . , ein}, where ci and eij are the contextualized embeddings for

[CLSi] and wij, respectively. Finally, ci ∈ Rd is used to make two types of

predictions, where d is the dimension of embeddings generated by Ti. First,

ci is directly fed into a multilayer perceptron layer, MLPi, that generates the

output vector oi ∈ R2 to predict whether or not the subject has MCI based on

the transcript from Qi alone. Second, ci is concatenated with the document

embeddings generated by the transformers trained for the other tasks such

that ce = c1⊕ c2⊕ c3 ∈ R3d, which gets fed into another MLPe to generate the

output vector oe ∈ R2 and makes the binary decision based on the transcripts

from all three tasks, Q1, Q2 and Q3.

Note that the input to MLPe is the document embeddings generated by T1,2,3

that are already trained so that what is learned from this ensemble does not

get passed all the way to the transformer level. Figure 4.2 describes the joint

learning-based hierarchical transformer that optimizes all three transformer

models together with the predictions made by the ensemble. Transcripts from

the three tasks W1,2,3 are fed into the transformers to generate the document
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embeddings c1,2,3, which get concatenated and fed into MLPf to generate

of ∈ R2 for the binary decision. Our hypothesis is that the joint learning

approach tends to give more robust results than the pipeline approach since

the transformers are optimized by the features from other documents as well

as their owns; however, it requires more powerful computational resource that

may be too costly.
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Chapter 5

Experiments

5.1 Data Split

There is a total of 650 audio recordings in our dataset (Table 3.1), which is

rather small to divide into training, development, and test sets. Thus, 5-fold

cross-validation is used to evaluate the performance of our models. Table 5.1

shows the distributions of the 5 cross-validation sets used in our experiments,

where the transcript of each recording is treated as an independent input

document.

Recordings Subjects
CV0 CV1 CV2 CV3 CV4 ALL CV0 CV1 CV22 CV3 CV4 ALL

Control 77 77 77 77 77 385 37 37 37 37 37 185
MCI 53 53 53 53 53 265 27 28 28 29 29 141

Table 5.1: Distributions of the cross-validation sets for our experiments. CVi:
the i’th set. ALL:

∑4
i=0 CVi.

It is worth mentioning that recordings from the same subject are never

distributed across different cross-validation sets. In other words, all recordings
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from the same subject are assigned to the same set in our approach so that

there is no overlap in terms of subjects between these cross-validation sets.

This prevents potential inflation in accuracy due to the unique language

patterns used by individual subjects.

5.2 Transformers

Three types of transformers are used to encode the input documents, BERT

[2], RoBERTa [9], and ALBERT [8], which have shown the state-of-the-

art performance in many natural language understanding tasks recently

(Section 2.2). Table 5.2 shows the configurations of these transformers used

in our experiments.

Transformer Type Layers Attention Heads Input Cells Hidden Cells Parameters

BERT Base 12 12 768 768 108M
RoBERTa Base 12 12 768 768 125M
ALBERT Base 12 12 768 128 12M

Table 5.2: Configurations of BERT, RoBERTa, and ALBERT for our experi-
ments.

BERT and RoBERTa are very similar in nature although RoBERTa uses

a larger number of parameters. ]These transformers are used to develop

models for individual tasks (Section 5.3) as well as the ensemble approaches

(Section 5.4). All three models are initially loaded with pre-trained parameters

that are available publicly. The pre-trained parameters and implemented
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transformer are provided by huggingface1. Every model is trained three times

and its average performance with the standard deviation is reported for robust

evaluation.

5.3 Performance on Individual Tasks

Table 5.3 shows the model performance in terms of accuracy, sensitivity, and

specificity from the three transformer models on the individual tasks. The

performance on 2 shows the highest accuracy for all three models, achieving

69.9% with RoBERTa, implying that the environment descriptions involving

many spatial relations in 2 are more effective in distinguishing the MCI group

than the other two tasks. The highest sensitivity of 57.1% is achieved by

BERT on 2 whereas the highest specificity of 86.8% is achieved by ALBERT

on 3. Such a low sensitivity and a high specificity indicate that it is relatively

easy to recognize the normal controls but not the MCI patients from short

speeches. We will explore how to make this task conversational. Besides the

pre-trained model, we also fine-tune the BERT model on the language model

build on B-SHARP dataset, and train the fine-tuned BERT model. However,

language model fine-tuning does not give us any significant improvement

1huggingface transformers: https://github.com/huggingface/transformers
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on the performance of model. Language model fine-tuning usually allows

transformer models to pick up new vocabularies from given datasets, and the

fact that language model fine-tuning does not improve the model performance

indicate that the vocabularies used in B-SHARP datasets are mostly common

words.

——BERT ——RoBERTa ALBERT
1c—1 2 3 1 2 1c—3 1 2 3

ACC 67.6 (±0.4) 69.0 (±1.2) 67.7 (±0.7) 69.0 (±1.5) 69.9 (±0.2) 65.2 (±0.3) 67.6 (±1.5) 69.5 (±0.3) 66.6 (±1.3)
SEN 48.9 (±1.8) 57.1 (±2.5) 41.5 (±3.6) 44.3 (±4.5) 55.3 (±1.2) 37.1 (±3.7) 45.9 (±1.9) 52.2 (±0.6) 37.4 (±3.3)
SPE 80.4 (±1.2) 77.3 (±2.8) 85.2 (±3.0) 85.8 (±2.1) 79.7 (±0.7) 84.5 (±3.0) 82.6 (±3.7) 81.4 (±0.3) 86.8 (±3.3)

Table 5.3: Model performance on the individual tasks. ACC: accuracy, SEN:
sensitivity, SPE: specificity.

5.4 Performance with Ensemble Approaches

Table 5.4 shows the model performance of the ensemble models. We see

that B+R+A ensemble model achieves the best performance overall, with

highest accuracy of 74.07% and highest sensitivity of 60.88%. B+R ensemble

achieves accuracy over 72%. We also perform experiment of different R+A

ensemble, which achieves accuracy of 71.49%, which is not as good as B+R

ensemble. We also notice that the joint learning approach does not bring

better performance as we expected. The accuracy of ALBERT joint learning

is only 68.34%, which is lower than Pipeline style ALBERT ensemble. This

may be the result of the size of our datast is small compared to size of model
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parameters, and thus it’s harder for the model to fit on the dataset nicely.

CNN BERTe RoBERTae ALBERTe ALBERTf Be + Re Be + Re + Ae

ACC 69.49(±0.24) 69.90(±1.13) 71.60(±1.46) 69.75(±2.88) 68.34(±1.59) 72.21(±0.71) 74.07(±0.32)
SEN 49.18(±0.79) 57.61(±3.42) 48.55(±6.13) 46.16(±8.31) 44.28(±1.86) 56.48(±2.46) 60.88(±5.23)
SPE 83.46(±0.91) 77.36(±4.80) 87.48(±1.82) 85.39(±0.47) 86.11(±2.63) 83.09 (±0.93) 84.01(±2.43)

Table 5.4: Performance of ensemble models.

Given the limited GPU resource we have, only ALBERT is experimented

with the joint-learning approach; meanwhile, all transformers are experimented

with the pipleline-based hierarchical transformer The result for LSTM and

CNN-LSTM is not included in the table, because the models do not fit on to

the dataset very well, and thus their performances are not comparable to the

models shown above.
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Chapter 6

Analysis

6.1 Attention Analysis

In this section, we investigate how the transformer models (BERT, RoBERTa,

ALBERT)are tuned to our MCI classification tasks. We modify the code

from bertviz1 project take the attention scores that corresponds to the [CLS]

token. We use the following method to extract the more attend tokens:

6.1.1 Methods and Measures

First, for transcript T , we first tokenize the transcript into a list of tokens

[t0, t1...t|T |] where t0 is the [CLS] token added by the transformers tokenizer

for classification tasks. Then we feed the encoded tokens into the pre-trained

model and get Attention Matrix Attp, notice the pre-trained model is not

fine-tuned to our MCI classification task as we mention in 5.2. We also feed

1bertviz: https://github.com/jessevig/bertviz
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the encoded tokens into out fine-tuned transformer model and get Attention

Matrix Attf . Notice the transformers have been trained and perform well

on MCI classification task. For both attention matrix, we only take the last

layer Attp[12] and Attf [12]. The attention matrices have 4 dimensions. The

first dimension represents the layer of attention, second dimension represents

attention head in the model. The third and fourth layer are the attention

vectors for each token. Each row represents the softmax normalized attention

distribution of a token. For the attention matrix, we are only interested in the

attention of [CLS] token, which is directly fed into MLP layer for classification.

We define the following two attention score for one token ti:

1. pre-trained attention score(PAS):

attpre−trainedti =

∑
h∈H Attp[12][h][0][ti]

|H|
(6.1)

1. MCI-classification fine-tuned attention score (FAS):

attfine−tunedti =

∑
h∈H Attf [12][h][0][ti]

|H|
(6.2)

where H is the set of attention heads. In our case, RoBERTa model and

BERT model both have 12 attention heads.
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With the definition of the two type of attention score, we propose Attention

Change Ratio(ACR) and use ACR scores to measure how much our fine-

tune process change the attention to a token. The ACR score for token ti is

calculated the following way:

ACRti =
attfine−tunedti − attpre−trainedti

attpre−trainti

(6.3)

The reason we use ACR in this analysis instead of directly using FAS scores

is that both FAS and PAS scores contain the information of the pre-trained

transformer model, which is trained on language models. Therefore, the token

with highest FAS or PAS may have higher attention scores just because the

token is more important in the language model. While for ACR scores, we

only measure how much the attention scores change after the fine-tuning

process, and we can be certain that the tokens with higher ACR scores are

directly related to how the transformer models classify the MCI/Normal

subjects.

6.1.2 RoBERTa Analysis

In this part, we randomly choose one control transcript and one MCI transcript

from each cross validation set. We only choose samples that all three individual
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CV set 0 1 2 3 4
MCI transcript V00205 YR1 V00058 YR3 V00189 YR1 V00427 BL V00369 BL

Normal transcript V00278 BL V00114 YR1 V00196 BL V00003 YR3 V00282 YR1

Table 6.1: RoBERTa attention analysis samples

RoBERTa models correctly classified. The sampled transcripts for RoBETRa

analysis are shown in table 6.1.

Question 1 Model Analysis

In this part, we analyze the Individual RoBERTa model that is trained only on

Q1 part of transcripts. We first calculate the ACR scores and rank the tokens

their ACRs from highest to lowest. By simply looking at the tokens with

highest ACR scores, we cannot recognize any very obvious pattern. However,

we can still notice some words that appear to be important in several samples.

The words include room, question,cake,lady. To explore the pattern that

are not very obvious, we use V00003 YR3 question 1 to perform a more

detailed analysis. To make three individual models directly comparable, we

will continue to use V00003 YR3 to make heat chart for question 2 RoBERTa

model and question 3 RoBERTa model. We take 10 tokens with highest ACR

scores for each of 4 POS categories: Nouns, Verb, Adjective and Adverb if a

category has less than 10 tokens selected, we will append with lowest scores.
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Then we plot the tokens into a heat chart. In figure 6.1, we see the most

attended POS category is nouns. We also notice Adverb category is also

attended. In addition, we also perform visualization on MCI sample. We use

V00427 BL as sample, and to be consistent, we also use this sample for Q2

and Q3. In figure 6.2, we can see the pattern is approximately same as the

pattern in figure 6.1, excerpt that there are slightly fewer attended tokens for

each category.

Figure 6.1: RoBERTa Q1 Model top 10 ACR tokens by POS tag
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Figure 6.2: RoBERTa Q1 Model top 10 ACR tokens by POS tag
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Question 2 Model Analysis

We notice that in question 2 Models, in both MCI transcripts and normal

transcripts, the words with highest ACR scores are mostly objects in the

examination room and words that describe these objects. Some important

tokens includes ”sink”, ”cabinets”,”floor” , ”door”, ”lighting”, ”com-

puter”, ”monitor”,”picture”. We use transcript V00003 YR3 to illustrate

with details. We mark the tokens related to the objects in the room if the

tokens are among the top 20 tokens with highest ACR scores. In the brackets

after the token, the first item is the rank of ACR scores and the second item

is the ACR score of the tokens. We see 15 out of 20 top tokens are either

describing an objects in the room or the nouns of the objects.

V00003 YR3 Question 2:The room we’re sitting in is not exciting and

it’s rather neutral. And there’s a cabinet(10 — 180.24%) with, um, a

darker wood finish(16 — 139.97%). And then there’s, uh, that’s above

an aluminum or steel sink(5 — 300.02%). And on the counter(6 —

256.21%) tops. I think that’s for Micah. And then there’s the darker wood

storage(13 — 161.47%) area(7 — 244.19%) underneath. And to the

right of the cabinet is a paper towel holder(1 — 546.90%). To the right
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of that is the 10 ways to love your brain chart(8 — 237.63%), which is

neat. Then there is a four mica desk that bumps up to the cabinet(10 —

180.24%) and Tiffany’s sits in that black chair(11 — 175.25%) across

it or on the stool(4 — 301.36%), uh, at the end of it. And I sit in a black

chair opposite her and there’s, um, a big computer screen(3 — 342.11%)

that’s not being used right now and there’s some lap computer and a blood(14

— 159.40%) pressure(17 — 139.82%) machine(20 — 129.26%).

To show how important noun tokens are, we also visualize the top attended

words by POS tag. In figure 6.3, we plot the same heatmap as we did for

question 1. As we can see, the noun category, which includes mostly objects

in the examining room, is the most dominant and maybe the only crucial

category. Similarly, we also visualize the top attended words for MCI sample.

In figure 6.4, we can see for both MCI sample and Control sample, noun is

the dominant category, but we can also see for MCI sample, the ACR scores

are smaller. This may indicate that this MCI subject is listing less important

objects in the examination room.

Question 3 Model Analysis

We observe similar pattern in question3 as the pattern in question2. Sev-

eral tokens have high ACR scores across the transcripts. Some important



34

Figure 6.3: RoBERTa Q2 Model top 10 ACR tokens by POS tag
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Figure 6.4: RoBERTa Q2 Model top 10 ACR tokens by POS tag
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tokens include ”glasses”,”tri-cycle”,”cane”,”tie”,”grey” , ”vest”. The

attended words are mostly nouns that appear in the picture, with some verbs

that describe the movement or action of the characters in the picture and

some adjectives describing the details on the dressing of the characters and

the drawing style of the picture. We also plot the heatmap for top tokens by

POS category for question3. In figure 6.5, we can see noun is still the most

attended category. Compared to adjectives, there are more attended verbs,

but there are some adjectives with higher ACR socres. Therefore we think

for Q3 model, verbs and adjectives should be approximately at the same

importance level. In addition, we plot the heatmap for MCI sample. in figure

6.6, we observe that noun is still dominating, which is consistent with our

observation in normal sample. However, in this MCI sample, we notice that

verb is more important than adjectives, while in the normal samples, we see

some adjective token with higher ACR scores. The potential reason is that

MCI subjects may tend to use less adjective to describe details in the picture.

6.1.3 BERT Analysis and Comparison to RoBERTa

The analysis on BERT model is similar to our analysis for RoBERTa model.

Table 6.1.3 shows list of the chosen samples transcripts. In General we observe
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Figure 6.5: RoBERTa Q3 Model top 10 ACR tokens by POS tag
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Figure 6.6: RoBERTa Q3 Model top 10 ACR tokens by POS tag
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the similar pattern for three models, but in Q3 model, the pattern is slightly

less noisy than the pattern in RoBERTa. We show this with a specific example.

We choose transcript V00074 YR2, which both RoBERTa and BERT model

correctly classified. We take the top 20 tokens for both model and mark the

”noisy tokens”(transcription error or toknization error) in bold. We can see in

RoBERTa top tokens, there are 7 ”noisy tokens” while BERT only has two.

RoBERTa:V00074 YR2: boots 199.42%, poles 144.38%, tr(im) 137.38%,

(c)oller 129.71%, velvet 126.99%, (Pol)ka 122.35%, waist 120.58%, dot

117.98%, belt 115.81%, emblem 115.47%, star 112.38%, shelf 111.27%, (pro)cession

108.80%, conf(ederate) 104.66%, lips 101.31%, fancy 98.38%, (conf)eder(ate)

94.98%, white 91.38%, (cor)nered 85.94%, feathers 81.54%

BERT:V00074 YR2: three 147.36%,elephant 90.74%, (tri)##cycle

69.78%,um 58.93%,coat 57.09%,pants 56.58%,soldiers 52.76%,an 51.06%,

tri(cycle) 50.95%, boots 47.64%, confederate 47.42%, holding 47.27%,have

43.52%,one 42.11%, hat 38.95%, he 38.02%, their 37.90%, possession 37.19%,rid-

ing 34.59%,behind 30.70%
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CV set 0 1 2 3 4
MCI transcript V00269 YR1 V00325 YR1 V00067 YR2 V00413 BL V00099 YR2

Normal transcript V00023 YR2 V00141 YR1 V00029 YR1 V00074 YR2 V00019 YR3

Table 6.2: BERT attention analysis samples

6.1.4 Finding validation

To Validate our finding on the samples, we perform the ACR token ranking

on all transcripts using our fine-tuned RoBERTa models. However, we do not

average the ACR score for one token appears in more than one transcripts;

instead, we sum up its ACR score, because we believe tokens appearing in

many documents should be more important and should rank higher. We

choose the top 20 words and make chart 6.3 after taking out some very obvious

stop words, and in the bracket is the ranking of the tokens.

As a matter of fact, with the ranking of words from all the transcripts, we

now can see a clearer pattern in the change of attention of the transformer

models through fine-tuning process. In question 1 model, we can see the

event-related nouns is still where most of the attentions go, and verb is also

attended a few times. In question 2 model, the attended words are mostly

nouns, and mostly the objects that are in the room. In question 3 model,
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Q1 Q2 Q3
room(1) sink(5) tri(4)

pressure(3) table(6) pants(5)
um(5) cabinet(8) cycle(8)

tests(7) Wall(9) red(9)
met(10) door(14) cane(12)

blood(12) room(15) jacket(13)
test(13) computer(16) clown(16)
MRI(15) gloves(17) tie(17)

computer(16) cabinets(20) vest(20)
testing(17) chair(21) like(21)

Um(18) trash (22) wearing(22)
Uh(19) pressure(23) looks(24)
arm(20) desk(24) carrying(26)

lobby(21) counter(26) dressed(27)
floor(22) blood(28) yellow(28)

ultrasound(23) see(30) riding(30)
questions(25) monitor(31) striped(31)
morning(26) can(32) fan(32)

study(27) dispenser(33) holding(35)

Table 6.3: RoBERTa token ranking for all transcripts
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verbs and descriptive adjective are also attended.

We also visualize the attended tokens by POS categories for three Individual

Models. In this visualization, since we are ranking the sum of ACR scores for

tokens, we filter out some stop words to make clearer maps. We see in figure

6.7, 6.8 and,6.9 our observation on the vitality of nouns is correct for all three

models. For question 3 model, we see verb is the second most attended token

category, and adjective is the third most attended token category.

Figure 6.7: RoBERTa Q1 top 10 ACR tokens by POS tag for all transcripts
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Figure 6.8: RoBERTa Q2 top 10 ACR tokens by POS tag for all transcripts
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Figure 6.9: RoBERTa Q3 top 10 ACR tokens by POS tag for all transcripts
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6.2 Ensemble Analysis

In this section we analyze our ensemble models with our main focus on the

final MLP classification layers of the ensemble models. we would like to

find out which question in the speech protocol is playing a more effective

role in revealing subjects’ brain health condition. To get the most meaning-

ful samples for analysis, we choose the best performing model from three

runs. For RoBERTa Ensemble model, we use the first run model , which has

the following statistics: Accuracy 72.72% Sensitivity 53.96%, Specificity:

85.67%.

For B+R+A Ensemble Model, we use the model saved from the third run,

which has the following performance: Accuracy 74.43%, Sensitivity 65.28%,

and Specificity 83.27%.

6.2.1 RoBERTa Ensemble Analysis

We analyze how the final decision of the Ensemble Model is made by slicing

the weight of the final MLP layer and calculate the corresponding ”vote” from

each question. The last layer MLP works the following way. On input q1,q2,

and q3, we first concatenate three input to a long vector qall = q1 ⊕q2 ⊕q3. qall
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has size [768*3]. The final vector containing two scores for MCI and normal

sall is calculated the following way: sall = qall ∗Wall + b, where Wall is the

weight matrix of size [768*3,2], and b is the bias term of size [1,2]. The final

decision dall is obtained by taking argmax of sall. If dall = 1, the transcript is

classified as MCI, else the transcript is classified as normal. To investigate

how the MLP layer handle the input from three transformer models. We first

slice the weight of final MLP layer to three smaller matrix Wq1, Wq2, and

Wq3, each of size [768,2], then we calculate the MCI/Normal scores of each

input from transformer the following way: si = qi ∗Wi + 1
3
∗ b, for i ∈ {1, 2, 3}.

Then the final votes of each individual model vi = argmax(si). Notice we

should have sall =
∑

i∈{1,2,3} si. Therefore our voting analysis can properly

reflect the how the final MLP layers handle text encoding of each transformer

model.

Figure 6.10 shows the proportions of different voting combinations among the

466 transcripts that the RoBERTa Ensemble Model correctly classifies. The

label for each slice represents the voting distribution. For example, Q1-Q2

means that vote for Q1 model and Q2 model is correct while a vote for Q3

model is incorrect, and the proportion of Q1-Q2 is 19.5%, meaning that

among 466 transcripts, there are 19.5% cases where the votes for Q1 and
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Figure 6.10: RoBERTa Ensmeble Model Votes Distribution



48

Q2 are correct. Looking at the graph, we noticed that the most common

situation is that votes for Q1 and Q3 are correct, followed by situation where

the votes for all three questions are correct. We also notice that the majority

vote cases (two or more votes get correct) are the most common cases, that

constitutes 85.1% of all correctly classified samples. However, we still notice

that there is 14.9% of the correctly classified samples come from the situation

where only the vote for one question is correct. We call the situation where

the vi is the only correct vote the dominant case of question i, and we call

the ratio of such cases among all cases that the ensemble model correctly

classifies % of dominant cases of quesion i

To show the importance of each individual input, we introduce the following

two measures:

1.Correct Vote Ratio(CV) :

cvi =
|Ci ∩ Call|
|Call|

(6.4)

where Ci is the set of transcripts where vote vi is correct, Call is the set of

transcripts that the ensemble model correctly classifies. For cvi, we essentially

increment one when both the ensemble model and vote vi are correct.
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2. Normalized Correct Vote Ratio (NCV):

ncvi =

∑
ct∈(Ci∩C)

1
|Vt|

|Call|
(6.5)

where the Vt is the set of votes that are correct for transcript t. In RoBERTa

ensemble model, |Vt| ∈ {1, 2, 3}. For NCVi, essentially we add 1 to the

numerator of NCVi for the dominant cases of question i, add 0.5 to the

numerator of NCVi if there are two correct votes and add 1
3

to the numerator

of NCVi if all three votes are correct. Notice that the sum of all NCV scores

should equal to 1. We apply this normalization, since we believe that if one

vote is correct when fewer votes are right, then the vote should be considered

more important.

We compute CV, NCV % of dominant cases in table 6.2.1. We also add the

fourth row, which records the Individual transformer Model Accuracy(IMA).

we use this score to make comparison between three models in ensemble and

three models as individuals.

In table 6.2.1, the NCV scores indicate that it’s unlikely that the model is

dominated by the model of any single question. However, we can still see that

Q1 is the most important question in the ensemble model, it has the highest
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Q1 Q2 Q3
Correct Votes 81.97% 61.37% 69.09%

Normalized Correct Votes 39.45% 29.47% 31.08%
% Dominant Cases 5.79% 6.43% 2.79%
Individual Accuracy 68.25% 70.11% 64.87%

Table 6.4: Importance comparison of 3 inputs in RoBERTa Ensemble

scores for Correct Votes and Normalized Correct Votes, the high importance

may be the result of the fact that Q1 is a memory test and can more directly

reflect the subjects’ brain health condition. We notice Q2, although it achieves

the best individual model accuracy, is actually not the most important in the

ensemble model. Q3, although it does not do well as an individual model,

does better than Q2 in the ensemble model. This observation indicates that

our ensemble model is not simply piling up the individual models; instead,

the ensemble model focuses on the text representation and comes up with its

own logic for classification. In addition, we notice that the ensemble model

still reflects the performance of three models as individuals to a certain degree.

The % of Dominant Cases matches the Individual Accuracy pretty well.
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BERT-RoBERTa-ALBERT Ensemble (B-R-A Ensemble)

Similar to the analysis we perform on RoBERTa ensemble and B-R Ensemble,

we slice the weight of the final MLP layer into 9 equal-size matrices corre-

sponding to each of 9 inputs, perform matrix multiplication and add 1
9

of

the bias vectors from MLP weight to get 9 deciding votes corresponding to

9 inputs. Then for each transcript, we record the 9 deciding votes, the final

ensemble prediction and the label, and then count the distribution of votes

and influencing power of each input.

Due to the fact that B+R+A Ensemble create 29 combinations of votes,

we obviously cannot list the percentage for every single case; therefore, we

only record the number of correct votes every time the ensemble model is

making a correct prediction. Among 484 transcripts that the model correctly

classified, 86.16% are derived from a majority vote, meaning that at least 5

out of 9 votes match with the label. vote of 6 and 5 are the biggest groups,

with proportion of 34.50% and28.51%. We also notice that cases of under

3 correct votes do not exist, indicating that there is not likely to be any single

input or small input group that dominates the final prediction. Moreover, we

also notice that only on very few samples (0.21%), all 9 votes agree together.

To show which input takes a more important role in the model, we calculate
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B-Q1 B-Q2 B-Q3 R-Q1 R-Q2 R-Q3 A-Q1 A-Q2 A-Q3
CV 62.19% 74.38% 74.38% 80.99% 55.58% 65.91% 41.53% 60.12% 55.17%

NCV 10.87% 13.32% 12.81% 13.98% 9.43% 11.31% 7.90% 10.84% 9.53%
IMA 67.80% 68.41% 66.87% 70.72% 69.80% 65.18% 69.18% 69.19% 66.87%

Table 6.5: Importance comparison of 9 transformer models in Ensemble Model

the CV, NCV scores for each input and include its IMA score for reference.

First, the NCV result in the table 6.2.1 validates our previous observation

that there is not a single very dominant transformer model. We notice that

the three most important transformer models of the Ensemble Model are

RoBERTa-Q1, BERT-Q2, and BERT-Q3, which form the components of a

complete transcript; therefore a possible reason is that the ensemble model

picks the best representation of the questions in a transcript and performs

classification based on the chosen representations. Moreover, we notice

that the importance of input does not necessarily correspond to individual

model performance, which is also seen in the RoBERTa Ensemble model. This

observation further signals that our ensemble model is not a simple summation

of the Individual models, instead, it focuses more on the representations

produced by the individual transformers models.
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Chapter 7

Conclusion

In this work, we mainly do three things.

1. We process and introduce the B-SHARP dataset, which is currently the

largest dataset for MCI classification task.

2. We experiment current existing approaches on MCI classification task

using B-SHARP dataset, and propose a hierarchical transformer model

and use the hierachical transformer model to achieve 74% accuracy on

MCI classification task.

3. We perform analysis on individual transformer models, find out that

different categories of words are attended for different questions in the

speech protocol. Also, we perform ensemble model analysis and explain

how the final MLP classification layer handles encoding from individual

models.
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