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ABSTRACT
Exploring Bacterial Infections Theoretical and Experimental:

Studies of the Bacterial Population Dynamics and
Antibiotic Treatment

Xinxian Shao

Bacterial infections are very common in human society. Thus extensive re-

search has been conducted to reveal the molecular mechanisms of the pathogenesis and

to evaluate the antibiotics’ efficacy against bacteria. Little is known, however, about

the population dynamics of bacterial populations and their interactions with the

host’s immune system. In this dissertation, a stochatic model is developed featuring

stochastic phenotypic switching of bacterial individuals to explain the single−variant

bottleneck discovered in multi strain bacterial infections. I explored early events in a

bacterial infection establishment using classical experiments of Moxon and Murphy

on neonatal rats. I showed that the minimal model and its simple variants do not

work. I proposed modifications to the model that could explain the data quantita-

tively. The bacterial infections are also commonly established in physical structures,

as biofilms or 3-d colonies. In contrast, most research on antibiotic treatment of

bacterial infections has been conducted in well-mixed liquid cultures. I explored the

efficacy of antibiotics to treat such bacterial colonies, a broadly applicable method is

designed and evaluated where discrete bacterial colonies on 2-d surfaces were exposed

to antibiotics. I discuss possible explanations and hypotheses for the experimental

results. To verify these hypotheses, we investigated the dynamics of bacterial popu-

lation as 3-d colonies. We showed that a minimal mathematical model of bacterial

colony growth in 3-d was able to account for the experimentally observed presence

of a diffusion-limited regime. The model further revealed highly loose packing of the

cells in 3-d colonies and smaller cell sizes in colonies than plancktonic cells in cor-

responding liquid culture. Further experimental tests of the model predictions have

revealed that the ratio of the cell size in liquid culture to that in colony cultures
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was consistent with the model prediction, that the dead cells emerged randomly in

a colony, and that the cells packed heterogeneously in the outer part of a colony,

possibly explaining the loose packing.
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CHAPTER I

INTRODUCTION

Infectious diseases have affected human populations throughout the entire history

of our species. Before advances in the underlying science of health and medicine,

infectious diseases were often epidemic and developed into plagues with high mortality

rates. Yersinia pestis, the causative agent of the Black Death, struck the European

population in the 14th century, and killed nearly 24 million of the European population

[1, 2].

People has been searching for cures for these illnesses and the means of stopping

the spread of the infections since the dawn of time. Theories were developed, from

miasma to germ theory, but none of those could be verified until the invention of

microscopes by Leeuwenhoek. His discovery of microbes [2] significantly pushed for-

ward the scientific understanding of infectious diseases [3, 4]. Regarded as one of main

founders of bacteriology, Louis Pasteur (1822–1895) proposed the principles of micro-

bial fermentation in 1857 [5], invented pasteurization and experimentally confirmed

the germ theory of infectious diseases. In the subsequent decades, numerous scientists

studying infectious diseases conducted extensive experimental research, leading to the

identification of many causative microorganisms of specific infectious diseases, as well

as proposing better treatments for some of the diseases. From the concept of “magic

bullet” by Paul Ehrlich (1854–1915), to the vaccine against anthrax by Toussaint

(1847–1890), and the discovery of penicillin by Alexander Fleming (1881–1955), the

mortality of infectious diseases has decreased dramatically, and the human life span

around the world has lengthened because of the development in microbiology and the

disciplines derived from it, such as immunology, virology and epidemiology [4, 6] .
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The concept of immunity, playing an important role in the development of vac-

cines, dates back at least to Greece from the 5th century BC when Thucydides dis-

cribed that the individuals who had recovered from a disease became “immune” to

this disease [7]. In 1882, Elie Metchnikoff discovered phagocytes, a major contribu-

tion to the establishment of the mechanism of innate immunity [8]. By that time,

we knew that the immune system in our body protects us from infections even if we

are exposed to pathogenic microorganisms all the time. Little was known, however,

about the dynamics of how bacterial populations survive from the immune response,

colonize the host, invade tissues and cells, and thereby cause diseases.

To understand the within-host dynamics of bacterial infections, a hypothesis of

independent action was proposed by Druett in 1952 [9], assuming that each individual

bacterial cell has an independent probability to colonize the host. Meynell and Stocker

verified the hypothesis of independent action experimentally [10] against the hypoth-

esis of synergistic action or cooperative action. Furthermore, Meynell applied the hy-

pothesis to Salmonella typhimurium infections in mice, discovering the single−variant

bottleneck, a phenomenon that only one variant of Salmonella typhimurium appeared

in fatally infected mice when they were inoculated with a mixture of multiple equally

virulent variants of this bacteria. He proposed that the infections were possibly ini-

tiated by only a single organism. Similar observations were reported in experimental

studies of host-virus interactions [11, 12, 13, 14, 15]. Two decades later, in a series

of experimental studies of Haemophilus influenzae pathogenesis, Moxon and Murphy

again observed the single−variant bottleneck [16, 17]. In their experiments, when

inoculated intranasally with a mixture of equally virulent strains of Haemophilus in-

fluenzae type b(Hib), neonatal rats developed a bacteremic infection that often was

dominated by only one random strain of two equally pathogenic competing strains.

While Moxon and Murphy discussed the applicability of the hypothesis of indepen-

dent action to their experiments, several hypotheses and experiments were reported
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trying to explain this phenomenon mechanistically. These included host susceptibil-

ity, the emergence of bacterial mutants (known as within-host evolution) [18, 19, 20].

Unfortunately, none of these were able to quantitatively explain the experimental

data of the single−variant bottleneck. In Chapter 2 of this dissertation, I present a

mathematical model for a common hypothesis that explains the single−variant bottle-

neck as stochastic phenotypic switching in individual bacterial cells. This hypothesis

predicts that the first successful switching cell in one strain interacts with the host

immune response to “shut the door” in front of the other strain. To mimic the ex-

periments described in [16], I implemented this model as a set of mixed stochastic

and deterministic differential equations. I conclude that this model, as well as its

simple variants, cannot explain the experimental data reported in [16], and namely

the observed weak dependence of the rate of infections on the inoculum size. I pro-

pose modifications to the model that could explain the data, and discuss possible

biological and cellular mechanisms that could lead to such modifications.

Even though people have made spectacular progress in the fields of microbiol-

ogy, virology, immunology, as well as epidemiology and public health, the threats

of infectious diseases have not been eliminated. On the one hand, resistant strains

of bacteria emerged not long after the antibiotics became widely available. These

resistant strains are often more virulent than the wild type strains [21, 22, 23]. On

the other hand, some conditions have turned out to be very hard to treat, such

as bacterial infections that develop as spatial structures, including biofilms and 3-d

colonies [24, 25, 26]. Even though we have been exploring the micriobial world under

microscopes for centuries, it was not until the 1970s that bacteria in biofilms and

colonies were considered as an important component of the research of microbiology

[27]. They are now increasingly appreciated in the studies of chronic diseases [28].

According to CDC (the Centers for Disease Control and Prevention), over two thirds
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of bacterial infections clinically treated in developed countries involve bacterial colo-

nizations in the form of colonies, microcolonies or biofilms [24, 25, 29]. Staphylococcus

aureus is one of the most common species that can be seen in these infections [26].

One way to fight against bacterial colonies and biofilms is to prevent the growth of

these populations in the first place. Antimicrobial agents or nanomaterial coatings,

such as vancomycin-modified titanium alloys, antiseptics chlorhexidin and silver sul-

fadiazine, can be applied to the surface of biomaterials and devices to impair the

aggregation and proliferation of bacteria [30, 31, 32]. Otherwise, the most effective

treatment of bacterial infections involving colonies or biofilms are considered to be

their mechanical destruction, which, however, cannot be performed in most cases [33].

When mechanical destruction is impossible, antibiotics remain the standard option

against bacterial infections. Unfortunately, it is well known that bacterial colonies

and biofilms are highly refractory to a broad selection of antibiotics [25, 33, 34]. In

Chapter 3, I present a novel method to quantitatively evaluate (1) the in vitro efficacy

of antibiotics to treat bacteria growing as discrete colonies on surfaces and (2) the

contribution of the colony structure to the antibiotic susceptibility of bacteria. Using

this method, I explored the relative efficacy of six bactericidal and three bacteriostatic

antibiotics to inhibit the growth and kill Staphylococcus aureus colonies of different

sizes, densities, and ages. I discuss possible reasons to the observed failure of treat-

ments based on experimental results from previous studies. The wide variation of

the efficacies of these antibiotics raises many new questions regarding the population

dynamics and the physical structure of bacterial colonies. These questions, for now,

remain unanswered.

As a step towards answering these questions, it is crucial to build a theoretical

model that can provide quantitative predictions and can be falsified experimentally.

There have been many mathematical models developed for bacterial population on
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surfaces. In 1998, Kreft et al. designed a simulator, named BacSim, for two dimen-

sional bacterial growth as a biofilm [35]. This was the first simulator that was im-

plemented based on modeling growth of individual bacterial cells instead of cellular

automata models [36, 37, 38, 39]. In the following decades, more mathematical mod-

els have been developed for bacterial growth on 2-d surfaces forming complex two or

three dimensional morphologies [40, 41, 42, 43, 44, 45, 46, 47, 48]. These new models,

mostly inspired by the observations from advanced experimental systems, all feature

large numbers of parameters to describe highly complex reactions and mechanisms

and produce highly detailed predictions of the geometry and physiology of the consid-

ered bacterial population. However, few of these predictions have be quantitatively

verified by or compared to experimental data. In Chapter 4, I present a minimal model

for bacterial populations growing as colonies in three dimensions (3-d) and designed

an experimental system of quantitatively-controlled 3-d colony growth of Escherichia

coli. By extending the classic Monod model of resource-limited population growth

to allow for spatial heterogeneity in the bacterial access to nutrients, our 3-d model

of colonies describes the dynamics of bacteria consuming diffusing nutrients in their

vicinity. By following the changes in density of E. coli in liquid and as colonies embed-

ded in glucose-limited soft agar, I evaluate the fit of this model to experimental data.

The growth dynamics and the physical structure of 3-d colonies that are revealed

in this combined theoretical-experimental study have different characters from that

of bacterial populations developed on 2-d surfaces. Our model provides a baseline

description of bacterial growth in 3-d, deviations from which can be used to identify

phenotypic heterogeneities and inter-cellular interactions that further contribute to

the structure of bacterial communities.

Some predictions of the model are surprising, opening venues for additional re-

search. It has been reported in several experimental studies that bacterial cells reg-

ulate the cell size according to their growth rates [49, 50, 51, 52, 53]. However, no
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corresponding data have been reported for bacterial colonies. Our experiment of

E. coli growth revealed that the yield of bacteria from the same amount of nutrients

was higher in colonies than in liquid cultures, paralleling the observations in Simon-

sen’s experiment [54]. Our model also predicts heterogeneous growth rates in a 3-d

colony. Based on these results of previous studies and my research, I hypothesize that

the cell size in colonies is smaller than that in liquid cultures. Secondly, according

to the nutrient distribution described by the model, the starvation of bacterial cells

would start from the center of a colony, thereby the cells in the center should be

the first ones that die. This seemingly reasonable prediction also needs experimental

verification. Thirdly and surprisingly, the packing density of bacterial cells in a 3-d

colony is revealed to be relatively loose by two independent methods in Chapter 4,

comparing to that of 2-d colonies or biofilms reported in previous studies [55, 56]. In

order to verify the predictions of our model and answer these questions raised from it,

I present single-cell experiments also in Chapter 4, involving confocal microscopy and

fluorescence tagging on bacterial components. The experimental results confirmed

the hypothesis of cell size in 3-d colonies, demonstrated the spatial distribution of

dead cells, and illustrated loose cell packing in 3-d colonies. This study of 3-d colony

growth of Escherichia coli reveals valuable features of the bacterial population dy-

namics as colonies, provides more possible insights into treatments against bacterial

infections in physically structured morphologies.

Overall, in this Dissertation, I present a comprehensive study of the bacterial infec-

tions and population dynamics that involves both experimental work and theoretical

work. In Chapter 5, I briefly summarize the general conclusions of the investigations

presented in this dissertation and discuss their contribution to science and research.

Based on the results and discoveries of these investigations, I propose additional ques-

tions and potential future directions.
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CHAPTER II

SINGLE VARIANT BOTTLENECK IN THE EARLY

DYNAMICS OF H. INFLUENZAE BACTEREMIA IN

NEONATAL RATS QUESTIONS THE THEORY OF

INDEPENDENT ACTION

(This chapter is based on “Shao, X., Levin, B., & Nemenman, I. (2016). Single

variant bottleneck in the early dynamics of H. influenzae bacteremia in neonatal rats

questions the theory of independent action arXiv preprint arXiv:”.)

2.1 Introduction

Before the Hib (Haemophilus influenzae type b) conjugate vaccine was developed and

taken into routine use in U.S., H. influenzae was the leading cause of bacterial menin-

gitis in children under age 5 [57]. At the same time, bacterial meningitis had high

mortality and serious residua, including deafness, blindness and mental retardation.

Even today, the lack of vaccines in the developing countries and the genetic diversity

among bacterial strains still result in the mortality rate from H. influenzae infections

in the developing world reaching 14.3% [57].

The high impact of the disease has led Moxon and Murphy to develop its neona-

tal rat experimental model in 1974 to study the pathogenesis of meningitis caused by

Hib [16, 17]. It was revealed that the infection involved three main stages: nasopha-

ryngeal colonization, bacteremia, and central nervous system (CNS) invasion. By

intranasally inoculating the neonatal rats with two equally virulent variants of H. in-

fluenzae and tracking development of bacteremia and meningitis, they found that,

while five minutes after inoculation both variants were found in the blood, nearly
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70% of rats ended up with a single bacterial variant in the blood (Fig. 2.1) and

cerebrospinal fluid cultures taken at least 24 hrs after inoculation, and both variants

occurred in different subjects with nearly equal frequency [16]. The phenomenon that

the primary infections (nasal colonization and early blood flora for Hib) are diverse,

while mature infections (blood after > 10 hrs for Hib) seem to contain just one strain

is known as the single-variant bottleneck. The bottleneck is not unique to Hib. In

fact, it was discovered first by Meynell in Salmonella typhimurium infections in mice

[10]. And similar observations have been reported in experimental studies of other

host-bacterium [58, 59, 60] and host-virus [11, 12, 13, 14, 15, 61, 62] interactions.

Conceptual model of the early infection must be able to explain the single-variant

bottleneck, and also the fact that, in the wild, only minority of hosts (e. g., chil-

dren under 5 [16, 57]) end up with infections even for the most virulent strains of

this bacteria. For this, three classes of possible explanations have been proposed:

stochasticity resulting from independent action of bacteria [10, 63, 64, 65, 66], host

susceptibility, and the emergence of bacterial mutants (known as within-host evolu-

tion) [18, 19, 20]. The original hypothesis of independent action was proposed by

Druett in 1952 [9]. It assumed that each individual bacterial cell has an independent

probability to colonize the host, and that an infection can start from a single ran-

dom bacterium, hence explaining the bottleneck. Meynell and Stocker later verified

the hypothesis of independent action experimentally [10] against the hypothesis of

synergistic or cooperative action. However, in its simple form, independent action

could not explain why a variant present in the blood five minutes post-inoculation

would disappear hours later. Host susceptibility could only explain the high infection

rate in young children over adults, but also not the observation of the presence of

both variants in the bloodstream at the very early post-inoculation stage [16]. Fi-

nally, to test the within-host evolution hypothesis, Margolis and Levin performed
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Figure 2.1: Moxon and Murphy’s experimental data. Replotted from [16]. 120
neonatal rats were infected at each inoculum size, which ranged from 104 to 108 bac-
teria, equally mixed from streptomycine susceptible strain, SmS, and streptomycine
resistant strain, SmR. Blood of the rats was then harvested and cultured. All cultures
that produced both StrS and StrR colonies were called mixed infections. All cultures
that produced 8 or more colonies of one strain and none of the other were called
pure infections (there was no statistically significant difference in the abundance of
pure SmS or pure SmR cultures). Cultures that produced no colonies, or produced
colonies of one strain only, but fewer than 8 of those, were called indeterminate. Most
infections ended up as pure (single-variant) infections 54 hours post-inoculum. Sam-
ples taken within 5 and 30 minutes post-inoculum were mixed (data not show on
the plot) shown on the plot, see Ref. [16]). Error bars denote the usual square-root
counting errors. Over four orders of magnitude in the inoculum size, preponderance
of indeterminate infections declined somewhat, from ∼80% to ∼40%. Over the same
range of the inoculum, mixed infections increased from <1% to ∼20%.
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additional H. influenzae experiments with neonatal rats. They compared the inva-

siveness and the re-colonization potential of the variant surviving in the bloodstream

and the remaining variant staying in nasopharynx [20]. In most trials, they observed

no advantage of the isolates from infected hosts over the other wild type variant. This

ruled out the hypothesis of within-host evolution as a dominant explanation for the

single-variant bottleneck.

However, the last decades have shown that bacteria can switch epigenetically

among multiple phenotypic states [63, 65, 67, 68, 69, 70, 71]. Such random switching

into a faster growing or more virulent state by a single bacterium of one strain can

lead to a faster growth of the strain in the blood. And yet the strain will not be

genetically favored to win a re-competition with the other. At the same time, the

host immune system, activated by the infection, will fight both strains, clearing off

the slower growing, non-switched strain from the blood. In other words, the first

successfully switching cell in one strain will interact with the host immune response

to ‘shut the door’ in front of the other strain. This would explain the single-variant

bottleneck.

This stochastic switching mechanism together with the immune response has been

mentioned frequently as a possible explanation for the bottleneck phenomenon in

various presentations and discussions, though, surprisingly, we have been unable to

find its detailed analysis in the literature. We call this hypothesis the colloquial

hypothesis in the rest of this work. Our goal here is to analyze the colloquial hypothesis

quantitatively and to verify if it can rescue the theory of independent action as the

explanation of the single-variant bottleneck in early bacteremia.

In this chapter, we will develop a mathematical model of the colloquial hypothesis

applied to the early stages of Hib bacteremia inoculated with two variants of equally

virulent bacteria. We will show that the model, as well as its simple extensions, cannot

quantitatively explain the experimental data [16, 19, 20, 72], and namely the observed
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weak dependence of the rate of infections on the inoculum size. We will argue that,

to provide even a semi-quantitative fit to the data, we must assume that various

rate parameters describing infection scale sublinearly with the inoculum size, so that

the probability per bacterium to start an infection decreases when other bacteria

are present. This means further evidence for abandoning the theory of independent

action.

2.2 Hypothesis and Model

Inspired by demonstration of ubiquitous phenotypic switching in bacteria [65, 68, 69,

70, 71, 73, 74, 75], we propose that each individual bacterial cell has two phenotypes

relevant for the early infection. The first is the “crossing” phenotype (C), which

allows bacteria to cross the physical barrier between the nasopharynx and blood, but

does not exhibit strong growth in the bloodstream [76, 77, 78]. The second is the

“growing” phenotype (G), with cells that grow fast in the bloodstream, but cannot

cross into the bloodstream. After a bacterium crosses into the blood stream, it can

switch to the G state, but the switching C→G is stochastic and rare. In this work, we

are not concerned with the mechanisms underlying the existence of these two states,

and of switching between them, but only focus on consequences of the switching.

Once bacterial cells enter the bloodstream, immune response is activated. To

model the immune response in the early stages of bacteremia, we assume that neonatal

rats only have innate immunity, which is non-specific and responds as soon as the

bacterial cells emerge in the blood [57, 16, 18, 79]. In other words, there is no clonal

expansion, and instead there is a finite reservoir of immune cells that can be recruited

to the infection site linearly until the reservoir is depleted [79].

These assumptions are represented in the following ordinary differential equations

(ODEs) describing the growth of bacterial cells of variant A and the immune cell
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recruitment:

dAC
dt

= gCAC

(
1− Ntotal

N0

)
− γCIAC − dAC + j, (2.1)

dAG
dt

= gGAG

(
1− Ntotal

N0

)
− γGIAG − dAG, (2.2)

dI

dt
= rC(I0 − I)(AC +BC) + rG(I0 − I)(AG +BG)− dII. (2.3)

The growth of the bacterial strain B is described by equations similar to Eqs. (2.1,

2.2), with indices A replaced by B.

In the equations describing bacterial population dynamics, Eqs. (2.1, 2.2), gC and

gG are the growth rates of the crossing and the growing phenotypes, respectively

(same for variants A and B since both variants are equally virulent [16, 20]). For

simplicity, in what follows we set gC = 0. Ntotal is the total number of bacteria in the

blood, Ntotal ≡ AC + AG + BC + BG. N0 is the carrying capacity, the maximum of

the bacterial population in the bloodstream, so that N0 ≥ Ntotal. γC and γG are the

bacterial death rates due to the elimination by the immune cells, and d is the natural

cell death. Finally, j is the flux of the crossing phenotype cells from the nasopharynx

to the bloodstream per unit time. To satisfy the hypothesis of independent action, it

is assumed to be linearly proportional to the inoculum size S, so that j = αjS, where

αj is some constant.

Equation (2.3) describes the immune cells recruitment. Here rC and rG are the

recruitment rates due to effects of the bacterial phenotypes [79]. I0 is the total number

of available innate immune cells in the host. dI is the death rate, or deactivation rate

of immune cells. Parameters in Eq. (2.3) are determined up to a scale. Thus we set

I0 = 1, which redefines the scale of I and also renormalizes γC and γG in Eqs. (2.1,

2.2). To simplify the model, we set γC = γG = γ, and rC = rG = r.

To finish specifying the model, we assume for now that the switching from C to G

is a single step stochastic transition at a low per-bacterium rate ρ. Since the switching

is single-step, the waiting time to the switch is exponentially distributed for each cell.
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Further, if the independent action hypothesis is valid, then for AC bacteria in the

crossing phenotype, the probability of having k individuals of type A switching to the

growing state per time ∆t is given by the Poisson distribution:

P (k|AC) =
(ρAC∆t)ke−ρAC∆t

k!
. (2.4)

A similar distribution determines the switching probability for the B strain. We do

not consider switching back from the G to the C state.

We simulate the model using the Euler method to solve its ODEs, Eqs. (2.1, 2.2,

2.3) and their equivalents for the B strain. Further, at every time step, we generate a

random number of switching individuals using Eq. (2.4) for the A and the B strain.

If the number of cells in any strain / phenotypic state combination falls below one,

we set it to zero to account for the discreteness of the bacteria. While this combined

stochastic-deterministic simulation scheme is certainly not the most accurate, we

feel that it offers the precision necessary for our analysis. It certainly is capable of

discovering the salient qualitative features of the models that we investigate.

2.3 Results

2.3.1 The colloquial model

We illustrate a possible dynamics of the colloquial model in Fig. 2.2 for the first 60

hours post-inoculum in an individual rat with a certain set of model parameters. In

this case, a cell of strain B switched to the growing phenotype first at t ≈ 11 hrs. Then

the rapid growth of BG accelerated the recruitment of immune cells. In their turn,

the immune cells wiped the population of the non-switched strain A, transforming

the infection into the pure B infection about 30 h post-inoculation. Therefore, even

though cells act independently, they interact through the immune response, and the

first variant to have a switcher wins the competition. This example illustrates that

the colloquial hypothesis may have a potential to explain the single-variant bottleneck

in the early stages of bacteremia.
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Figure 2.2: Simulation of early bacteremia resulting in a pure infection in an
individual rat. Simulations were done with the following parameters: inoculum size
S = 105; organisms; switching rate : ρ = 4.5 · 10−5 h−1; growth rates gC = 0, gG = 1
h−1; immune recruitment rates rC = rG = 6.1 · 10−6 h−1; rate at which immune cells
kill bacteria γC = γG = 0.75 h−1; carrying capacity of the blood N0 = 108 cells; flux
from the nasopharynx to blood αj = 4.3 · 10−4 cells/h; natural death rate of bacteria
and immune cells d = 0.01 h−1 and dI = 0.02 h−1. In this realization, variant strain
B has the first switching from C to G at about 11 hours and establishes bacteremia.
The panels show the population size of the crossing and the growing phenotypes of A
and B strains, the fraction of the immune response activated, and the total infection
size. Notice that the vertical axes in different panels have different scalings.



15

To test the suitability of the colloquial model quantitatively, we calculate and

maximize its likelihood given the observed experimental data. As in the Moxon and

Murphy experiment, we assume the multinomial structure of the data with three

possible outcomes: pure infection, mixed infection, and indeterminate infection. Re-

call that Moxon and Murphy plated blood samples from their rats and counted the

number of colonies of each strain that grew as a result. They defined any culture

with colonies of both strains (even if one of the strains had as few as one colony) as a

mixed infection. A pure infection was defined more stringently, so that there had to

be at least eight colonies of one strain and none of the other to qualify. All other cases

were deemed indeterminate. In our simulations, accounting for dilution at plating,

we estimate that a mixed infection would require both bacterial strains present at a

level of 100 cells/ml of bacteria or more, and a pure infection would require at least

800 cells/ml of bacteria of one type and less than 100 cells/ml of the other. To calcu-

late the likelihood of the data given a set of parameters, we simulate infections using

our mixed stochastic-deterministic simulations. We repeat this 200 times to estimate

the multinomial probabilities. We then write down the multinomial likelihood of the

experimental data given the frequencies defined by the numerical simulations. Fi-

nally, we optimize the model over the parameters using patternsearch from Matlab

with GPS Positive basis Np1 as the poll method. This routine allows optimization

of stochastic functions. The optimization is performed at least three times from dif-

ferent initial conditions, and we report the best fit model as the one maximizing the

likelihood over all such optimization runs.

The experimental data that we fit contains five different inoculum sizes, and three

possible outcomes at 54 hrs post inoculation (for a total of 10 independent data points

since the frequencies at each inoculum sum to one). In addition, the experimental

data contains measurements a few minutes after inoculation for each inoculum size

(10 more independent data points), at which point every infection was mixed. Note
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that these data are not time series—every rat could be analyzed only once—so that

the data at different time points are independently multinomially distributed.

These 20 data points must be explained by 8 independent parameters: αj, gG , d,

N0, r, γ, dI , and ρ. This may sound like an easy fitting problem. However, it turns

out that the requirement of having all mixed infections soon after inoculation, and a

lot of pure infections later on is not easy to satisfy. Thus we do not perform formal

analysis of the quality of fit / overfitting in this and the other models we try: the

difficulty to fit the data makes most models obviously poor, and differences among

the quality of fits of various models are clear without formal analyses.

The optimization is further constrained since biologically realistic limits exist on

the model parameters. First, all of the parameters are positive. Further, an upper

limit on N0 is about ∼ 2 × 109 cells/ml [80], while its lower limit is determined by

the fact that Moxon and Murphy observed as many as ∼ 1 × 104 cells/ml in the

bloodstream of neonatal rats with severe infections [16]. The growth rate of Hib in

synthetic blood culture was studied in [80], which provides the initial guess and upper

limit of gG between 0.4 to 1.2 per hour. We could not find any data in the literature

regarding about the parameters of the innate immune response to Hib. However,

some data is available for Listeria infection [81, 82], which allowed us to choose initial

conditions of the immune response for the optimization: r ∼ 1 × 10−6 h−1 cells−1,

γ ∼ 0.1 h−1, dI ∼ 0.02 h−1.

Two of the best quantitative fits of the colloquial model are shown in Fig. 2.3.

Some of the parameters of these fits are physiologically unrealistic, but even this does

not help: none of the fits are good. The main difficulty seems to be that keeping

the fraction of pure / indeterminate infections nearly constant over four orders of

magnitude of the inoculum size, S, especially following a mixed infection soon after

inoculation, is impossible within this independent action model. Indeed, the fit in

the left panel keeps pure infections at nearly zero frequency in order to have few
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mixed infections. Similarly, in the right panel, which does a better job in fitting the

frequency of pure infections, the mixed infections rate spikes to 100% at high S. Note

parenthetically that the non-monotonicity of the mixed infection line in this figure is

because of the linearly increasing flux j. When S = 104 and 105, j is smaller than

1 bacteria per step. Therefore the number of bacteria is always zero and no immune

cell is activated. When S = 106 and 107, both of strain A and B will have more than

100 bacteria due to the flux j in the end if no cell switches to growing phenotype and

this is more often when S = 106. Even if any bacteria of AC or BG switches to the

growing phenotype, the immune cells will clear the whole bacterial population is the

swithcing happens too early and this is more often when S = 107. Therefore, when

S increases from 106 to 107, the frequency of the mixed infections decreases but both

of the frequency of the pure infections and indeterminates increase. When S = 108,

however, all the infections are mixed because the flux j is so large that the immune

response is not able to reduce the bacteria population below 100 at 54 hours post

inoculation no matter there is switching or not.

2.3.2 Modifications to the colloquial model

One can slightly modify the model to make it fit better. Since rats have mucosal

immunity [83, 84, 85, 86, 87], one can hope that bacteria in the nasopharynx will

be eventually cleared as well. The simplest way of modeling this is to say that the

flux from the nasopharynx into the bloodstream has a finite duration tj, which itself

is an unknown variable that needs to be fitted. Further, we notice that the natural

(not caused by the immune system) death rate of bacterial cells and the death rate of

immune cells in the fits in Fig. 2.3 are very small. Hence, to not overfit the data with

the introduction of the new time parameter, we set both of these parameters to zero

(we verified that the fits do not improve dramatically when this condition is relaxed).

The optimized fit for this model is shown in Fig. 2.4. The fit is clearly better than in
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Figure 2.3: Maximum likelihood fits of the colloquial model. We show two
different local maxima in the parameter space with nearly equivalent likelihoods.
Neither provide quantitatively good fits. In this and subsequent figures, error bars on
model predictions are given by standard deviations of results from 200 simulations.
For the parameter values in the left panel ( ρ ≈ 1.7 · 10−5h−1, gG = 1.0 h−1, r ≈
6.1·10−6 h−1 cells−1, γ ≈ 240 h−1, N0 ≈ 1.8·109 cells, αj ≈ 4.5·10−5 h−1, d ≈ 7.2·10−4

h−1, dI ≈ 1.7 · 10−6 h−1), infections do not establish until very large inoculums. For
the right panel (ρ ≈ 1.7 · 10−5 h−1, gG = 1.0 h−1, r ≈ 4.1 · 10−8 h−1 cells−1, γ ≈ 30.5
h−1, N0 ≈ 1.2 · 108 cells, αj ≈ 1.2 · 10−5 h−1, d = 0.01 h−1, dI = 0.018 h−1), the need
to establish pure infections over the four orders of magnitude in the inoculum size
leads to a large number of mixed infections as well.

Fig. 2.3, but it is still poor: to have pure infections at medium/high inoculums, the

independent action hypothesis still requires no (or indeterminate) infections at small

inoculums. All the infections are “Indeterminate” when the inoculum size is below

106. The flux is smaller than 10 cells per hour for S = 104 and 105, not enough to

have one bacterial cell switching before the immune system kills all, or for a positive

infection if no cell switches. When the S = 106, there is 14% probability to have a

switching cell from one strain and establishing a pure infection, but not enough cells

from the flux for a positive infection if no cell switches. When S = 107, the flux is

large enough to be identified as a positive infection, as well as much larger chance to

have bacterial cells from both strains switching to the growing phenotype. As soon as

one cell from either strain switches, the immune response will rise exponentially and

kill all cells from the other strain. However, the positive infections decrease when the

inoculum size reaches 108. Given ten times more cells from the flux than S = 107, the
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cells switch much earlier and activate the immune response much earlier. Note that

the killing rate of immune cells is higher than the growth rate of the bacterial cells,

43.5% of the simulations end up with “Indeterminate” because there are not enough

bacterial cells survived. The changes in the timing of switching events result in the

inoculum size non-monotonically affecting the proportion of infections.
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Figure 2.4: Maximum likelihood fits of the colloquial model with the lim-
ited time duration of the bacterial flux from the nasal cavity to the blood-
stream. Natural bacterial cell death rate and immune cell death rate are set to zero.
The duration of the flux is a fixed value for all inoculum sizes, tj ≈ 4.1 h. Other op-
timized parameters are: ρ ≈ 3.5 · 10−5 h−1, gG ≈ 0.96 h−1, γ ≈ 2.0 h−1, r ≈ 2.1 · 10−7

h−1 cells−1, N0 ≈ 1.0 · 106 cells, αj ≈ 1.4× 10−5 h−1.

The key problem of the colloquial model is the experimentally observed weak

dependence of the fractions of various infection types on the inoculum size. In other

words, in simplest models, independent action means that the number of cells that

attempt C→G switching in the blood scales with S. Thus the time to the first such
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switch would scale as 1/S. If the switch happens in the bulk of the 54 h experiment

duration, an infection is established. Thus it is very hard to devise an independent

action model that would have a non-negligible number of switches over 54 hrs at

small inoculums ,S = 104, and yet would not have switches happening 100% of

the time at large inoculums, S = 108. The model must be modified so that the

mean time to the first switch decreases slower than 1/S. Interestingly, there is a

straightforward biologically realistic modification of the model that achieves this. In

many cases, the process of bacterial phenotypic switching is not determined by a one-

step chemical reaction, but proceeds through a series of roughly equally slow steps.

For example, the switching of E. coli to express PAP genes and become virulent

[88, 89] can be modeled as a four-step reaction [77]. Such n-step activation ensures

that the probability distribution of time to the complete switch in an individual

bacterium goes as ∝ tn−1 for small t [90, 91]. Then for ∝ S bacteria, the expected

time till the first of them switches is governed by the Weibull distribution, resulting

in Stn−1 ∝ 1, and t ∝ 1/S1/(n−1) [91]. In other words, the time to the first bacterium

in a large population switching scales sublinearly with the inverse population size,

offering a potential opportunity to explain the weak dependence on the inoculum

size.

We implement and optimized this model in numerical simulations by introducing

a series of phenotypic transitions C→G1 → · · · →Gn, where only the last state, Gn,

grows fast, and the rest of the states share the growth/death rates with C. Random

switching between the subsequent states was again governed by the Poisson dynamics,

as in Eq. (2.4). We explored n = 2, 3, 4. Fig. 2.5 shows results of the optimization,

where n = 3, and all transition rates in the chain C→G1 →G2 →G3 were the same

(which results in the most sublinear dependence of the switch time on S). Further,

since in this model switching takes extended time, the first bacteria to cross over to

blood from the nasopharynx will be the ones switching, and hence it makes little
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difference for the switching statistics if the flux has a limited duration. At the same

time, stopping of the flux into the blood results in a lower concentration of the non-

switched strain, making it easier to develop pure infections at 54 hrs. Therefore,

we inherit the value tj ≈ 4.1 hrs from the 1-step model. Clearly, the quality of fit

improves dramatically compared to the 1-step model, and yet the fits are still far from

perfect: mixed and pure infections go hand-in-hand, and to have no mixed infections

at S = 104 requires having no infections at all at this inoculum. This illustrates a

fundamental problem of the multi-step switching mechanism: while the time to a

switch, indeed, scales sublinearly with 1/S, the standard deviation of this time falls

off very quickly, making the switching nearly deterministic [91]. Thus both strains

switch at about the same time, and typically either both develop into an infection

(mixed outcome) or none does (indeterminate outcome).

In summary, the independent action model, even augmented by multi-step switch-

ing and finite bacterial flux duration, seems to be incapable of explaining the observed

experimental data.

2.3.3 Beyond the independent action model

The independent action hypothesis is implemented in our model by an assumption

that the bacterial flux from the nasopharynx to blood is proportional to the inoculum

size, S. We consider multiple extensions of the colloquial model that break this

assumption.

First, we tried the model where the flux is independent of S, j = αj, which must

be optimized. However, the flux duration scales nonlinearly with S, tj = αtS
bt . The

logic behind this model is that there might be purely physical constraints on how

many bacteria can cross the tissues between the two body compartment per unit

time, and this bandwidth can be saturated even at moderate inoculums. At the same

time, it could take the mucosal immunity a longer time to clear a larger inoculum. We
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Figure 2.5: Maximum likelihood fits for the colloquial model with the lim-
ited bacterial flux duration and three-step switching. Natural bacterial cell
death rate and immune cell death rate are set to zero. The duration of the flux
is a fixed value for all inoculum sizes, tj ≈ 4.0 h. Optimized parameter values are
ρ ≈ 0.0014 h−1, gG ≈ 1.1 h−1, γ ≈ 9.7 h−1, r ≈ 1.1 · 10−7 h−1 cells−1, N0 ≈ 1.0 · 109

cells, αj ≈ 3.4 · 10−4 h−1.

retain the 1-step switching model, because the higher variability of the switching time

within this model allows for easier establishment of pure infections. The maximum

likelihood results are shown in Fig. 2.6. While imperfect, the fits are surprisingly

good, able to sustain pure, mixed, and indeterminate infections over the entire range

of S. However, bt ≈ 0.1 is very small so that the duration of the bacterial flux is

maximally ∼ 3 hours, which makes it hard to imagine physiological mechanisms that

would create it.

Another model that provides for non-independence is the model where the dura-

tion of the bacterial flux tj is fixed and independent of S, but j = αjS
bj . Optimized
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Figure 2.6: Maximum likelihood fits for the non-independent action model
with the S-dependent flux duration.The fitted model has j = αj = const,
and tj = αtS

bt . This model provides much better fits than all of the variants of the
independent action model we have tested. The optimized parameters are ρ ≈ 6.1·10−6

h−1, gG ≈ 0.55 h−1, N0 ≈ 1.0·107 cells, γ ≈ 2.0 h−1, r ≈ 2.3·10−6 h−1 cells−1, αt ≈ 0.5
h−1, bt ≈ 0.1, αj ≈ 3.3 · 103 h−1.

dynamics for this model is shown in Fig. 2.7, providing clearly the best fit to the

experimental data. Interestingly, the fitted values of the parameters in this model are

biologically realistic, resulting, for example, in bacterial fluxes of 102 ∼ 103 cells/h,

and tj ≈ 34 hrs, longer than 1 day.

2.4 Discussion

In this work, we built mathematical models of early Hib infections started by a culture

with two equally virulent bacterial strains. The models needed to account for the

following broad observations: (1) both strains were present in the blood soon after

the nasal inoculum; (2) most infections at different inoculum sizes either cleared from
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Figure 2.7: Maximum likelihood fits for the non-independent action model
with the sublinear dependence of the magnitude of the bacterial flux on
S.We assume j = αjS

bj with a fixed tj. The optimized parameters are: ρ ≈ 5.7 ·10−6

h−1, gG ≈ 1.0 h−1, γ ≈ 3.2 h−1, r ≈ 3.1 · 10−6 h−1 cells−1, N0 ≈ 1.0 · 106 cells, αj ≈ 7
h−1, bj ≈ 0.37, and finally tj ≈ 34.0h, which is essentially equivalent to saying that
the bacterial flux is temporally unconstrained.

the blood by 54 hrs post inoculation, or were pure—dominated by just one of the two

strains; and (3) the dependence of the frequency of infection types (pure or mixed) on

the inoculum size was very mild, changing at most a few-fold for a 104-fold change in

the inoculum. The traditional colloquial explanation of these effects in the community

has revolved around independent action of bacteria in establishing infections, with

additional ingredients of stochasticity of phenotypic transitions, and the interactions

with the immune system. Put simply, it is believed that both bacterial strains cross

into the bloodstream, at which point one individual randomly switches into a faster

growing phenotype and activates the immune system. In its turn, the immune system
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clears out the non-switched strain, resulting in largely pure infections.

We analyzed this colloquial hypothesis quantitatively, starting with its simplest

realization. Further, we considered additional variants that involved more complex

(and hence statistically different) switching between the crossing and the growing phe-

notypes, or effects of mucosal immunity, which can clear the nasopharyngeal infection

and stop bacterial flux into the bloodstream a few hours into the experiment. Sur-

prisingly, none of these modifications was able to explain the experimental data, and

specifically the weak dependence of the prevalence of infection types on the inoculum

size. In contrast, when we forwent the independent action assumption and allowed

the flux of bacteria into the bloodstream to depend sublinearly on the inoculum size,

the fits to the data became very good. Thus our analysis suggests that the hypothesis

of independent action may be violated in the case of early establishment of bacterial

infections. Note that classic investigations of independent action [10] tested the hy-

pothesis against synergistic effects. Here we argue that the non-independent action

effects are redundant—the probability of a single bacterium to establish an infection

decreases with the inoculum size. This is surprising, and certainly goes against ideas

in the quorum sensing literature [92], where an infection is established synergistically

when the number of bacteria crosses a certain quorum threshold.

Our best model suggests that the flux of bacteria from the nasopharyngeal in-

oculation to the bloodstream scales as the inoculum size to the ∼ 0.37 power. The

amount of data we have does not allow us to propose verifiable explanations for the

mechanism of this scaling: the physical structure of the animal tissues, the fluid dy-

namics of the bacterial culture in the nasopharyngeal cavity, interactions of bacteria

with the immune system, or interactions of bacteria among themselves could all play

a role. The closeness of the exponent to 1/3 is also interesting, suggesting that maybe

a certain modification of the 3-step stochastic switching model, similar to that studied

in Fig. 2.5, could play a role as well.
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It is hard to establish negative results in scientific studies. This is partly because

of social pressures [93], but also because of an objective difficulty: one can never be

sure that the negative result is meaningful, rather than due to not trying hard enough

to find a possible explanation to the data. Similarly, in our study, we cannot be sure

that we have explored the parameter space well enough, and that we have tried all

simple, reasonable modifications to the original colloquial model to argue that the

independent action theory cannot explain the data. We can only say with certainty

that we could not reconcile the independent action theory with the data, which is

a much weaker statement. It will take many additional investigations, experimental

and theoretical, to understand if and under which conditions the independent action

hypothesis is, indeed, violated in early infections. We hope that our study will spur

such future investigations.
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CHAPTER III

ANTIBIOTIC SUSCEPTIBILITY OF BACTERIAL

COLONIES: AN ASSAY AND EXPERIMENTS WITH

STAPHYLOCOCCUS AUREUS

(This chapter is based on “Shao, X., Kim, J., Jeong, H. J., & Levin, B. (2016). Antibi-

otic susceptibility of bacterial colonies: An assay and experiments with Staphylococcus

aureus. submitted.” )

3.1 Introduction

The rational (as opposed to purely empirical) approach to determining antibiotics and

dosing regimens is based on estimates of the changes in the serum concentration of

the drugs following their administration, pharmacokinetics (PK) and the relationship

between the concentration of the drug and the rates of growth and death of the target

bacteria, pharmacodynamics (PD) [94, 95, 96, 97, 98]. Almost all we know about the

PDs of antibiotics and bacteria is from in vitro studies of planktonic cells maintained

in well-agitated liquid cultures and the theoretical analog of these culture conditions.

Mathematical and computer simulation models of PDs also assume an effectively

dimensionless habitat and mass action processes [99, 100, 101, 102, 103, 104, 105,

106, 107]. Under these conditions all the bacteria in a population have equal access

to each other as well as resources, wastes, and allopathic agents like antibiotics.

In the real world of infections, however, bacteria are more likely to live in phys-

ically structured habitats, embedded in polysaccharide matrices known as biofilms

adhered to surfaces or as colonies on top of tissue surfaces or within semi-solids
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[24, 26, 108]. Contrary to laboratory conditions, the bacteria within these physi-

cally structured habitats vary in access to resources as well as the concentrations

of antibiotics that confront them. How does this inconvenient reality of physically

structured habitats affect the pharmacodynamics of antibiotics? And if there is an

effect on pharmacodynamics, are our current standards for designing and evaluating

antibiotics unrepresentative of in vivo conditions?

Methods have been developed for the in vitro study of elements of the pharmaco-

dynamics of antibiotics and bacteria in biofilms [25, 32, 34, 108, 109, 110, 111, 112,

113, 114]. Nevertheless, S. aureus has always been among the most concerning of

pathogens for skin infections, in addition to nasal colonization and lung infections

[24, 25, 26]. The population dynamics of these circumstances are quite different from

those studied in biofilms which are formed under continuously flowing fluid. To our

knowledge, there are few published methods to study pharmacodynamics of antibi-

otics for S. aureus as discrete colonies.

In this report, we present a method to quantitatively evaluate the antibiotic sus-

ceptibility of bacteria growing as colonies on surfaces and compare their susceptibil-

ity to planktonic bacteria of the same densities and physiological state. Using this

method we explore the susceptibility of Staphylococcus aureus Newman growing as

colonies to antibiotics of different classes, including six bactericidal antibiotics which

are ciprofloxacin, gentamicin, vancomycin, oxacillin, ampicillin and daptomycin, and

three bacteriostatic antibiotics which are tetracycline, erythromycin and linezolid.

We investigated the effect of physiological state of cells and the physical structure

of colonies on the efficacy of antibiotics. The results of our study indicate substan-

tial variation in the efficacy of the tested antibiotics to treat S. aureus maintained

as colonies. Antibiotics that are effective in killing S. aureus in liquid culture are

virtually ineffective when these bacteria are growing as colonies.
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3.2 Materials and Methods

3.2.1 Bacteria

Staphylococcus aureus Newman was used in this investigation, which was a generous

gift from William Shafer. This strain has a clinical origin, remains virulent and has

been extensively used in studies of staphylococcal pathogenicity (20).

3.2.2 Media

The grow medium for S. aureus Newman was made with Cation Adjusted Mueller-

Hinton II Becton Dickinson (Franklin Lakes, NJ, USA). Cell densities were estimated

by plating on LB agar plates. Lysogeny Broth (LB) Becton Dickinson, (Franklin

Lakes, NJ, USA) was used to prepare these LB agar plates.

3.2.3 MIC determination

Minimum Inhibitory Concentrations (MICs) were estimated using a serial-dilution

protocol modified from that discribed by CLSI in [115]. Initial cell numbers of 5×107

cells/ml and the standard 5 × 105 cells/ml were inoculated into MHII liquid broth

with antibiotics. In order to ascertain more precise estimates of the MICs, we used

different starting concentrations of the antibiotics in our serial-dilution protocol. The

determined values for MICs are listed in Table. 1.

3.2.4 Procedure for the colony assay of antibiotic efficacy and liquid cul-
ture controls.

In Fig. 3.1, a step-by-step diagram illustrates how to prepare the bacterial colonies

grown on surfaces, expose the these cells to antibiotics and evaluate the viable cell

densities.

3.2.4.1 Establishing the liquid cultures and colonies

Inoculation cells of S. aureus Newman were obtained from overnight cultures with

MHII broth. To prepare bacterial colonies, 3 ml of 1.6% agar with 0.1X MHII were
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Table 1: Antibiotics’ sources and MICs in MHII liquid broth with different
inoculum densities. The MICs of nine antibiotics in MHII broth of different con-
centrations and cultures initiated with different numbers of viable cells, unit of the
concentrations is in µg/ml.

Antibiotics Source 5× 105 cells/ml 5× 107 cells/ml
V ancomycin hydrochloride, Sigma 1.3 3.5
Gentamicin AppliChem 0.9 1.1
Ciprofloxacin AppliChem 0.3 0.3
Daptomycin TCI 1.3 4.0
Ampicillin Sigma 0.9 1.3
Oxacillin Sigma 0.2 0.5

Tetracycline* Sigma 0.5

Erythromycin* MP Biomedicals 0.5

Linezolid* Chem-IMPEX 1.1
* We have not included the effects of inoculation densities on the MICs of the bacteriostatic

antibiotics because the results of our experiments in Tbl. 2 and Tbl. 3 suggested that the

density of the exposed bacterial population does not contribute to the susceptibility of colonies

to the action of these drugs.

aliquoted into the wells of Costar Macrotiter 6-well plates. After the agar hardened,

Tuffryn TM filters were put onto the agar in each well. Certain amount of cells were

inoculated onto the filters and spread using a glass rod spreader. The 6-well plates

were then incubated at 37◦C for 24 or 48 hours (Fig. 3.2). Same amount of cells from

the overnight culture were inoculated into 0.1X MHII liquid broth in parallel but with

continuous shaking.

3.2.4.2 Exposing the bacteria to antibiotics

To ascertain the efficacy of antibiotics on intact colonies, 3 ml of 1.6% agar with

standard concentration of MHII were aliquoted into the wells of Costar Macrotiter 6-

well plates. These agar media either contain 10X MIC of antibiotics or no antibiotics

as controls. Filters incubated for 24 or 48 hours were transferred onto these agar

and incubated at 37◦C for additional 5 or 24 hours before sampling. In parallel, the

cells from the 24-hour or 48-hour old liquid cultures were inoculated into liquid MHII

broth with 10X MIC antibiotics or antibiotic-free controls. The dispersed cultures
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Figure 3.1: The experiment setup and protocol to grow and treat S. aureus
Newman grown as colonies on filters. The growth of bacterial colonies is the
same for the colony cultures and the dispersed cultures. After 24 or 48 hours of
growth, the filters with bacterial colonies are transferred and washed into fresh liq-
uid MHII broth containing antibiotics for the dispersed cultures. Or the filters are
maintained intact and tranfer onto fresh agar containing MHII media and antibiotics.

were prepared as the following procedure: the filters with 24-hour or 48-hour old

colonies were transferred into 3 ml of 3X MHII broth with or without antibiotics in

the wells of Macrotiter plates. The cells on the filters were washed and mixed into

the broth using a transferring pipette. The filters were in the broth and the plates

were then incubate at 37◦C with continuous shaking for 5 or 24 hours. An example

of dispersed cultures is shown in Fig. 3.2.

3.2.4.3 Sampling and evaluating the viable cell densities

The sampling of liquid cultures and dispersed cultures were followed by serial dilution

and plated on LB agar plates and count the colony forming units (CFUs). The filters

with colonies were sampled as shown in Fig. 3.1. Each filter was transferred into

10ml of 0.85% saline. The colonies on filters were washed and dispersed into saline
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Figure 3.2: S. aureus Newman grew as colonies on filters. Approximately 50
colonies were inocultated on each filter. (A) a COL-0 sample. The colonies were
incubated for 48hours on 3 ml of 0.1x MHII agar (48h-old colonies). The diameter of
the colonies were about 0.6∼0.8mm (B) a COL-CON sample, 48h-old colonies were
transferred onto 3 ml of 3x MHII agar and incubated for an additional 24hours. The
colonies were large and yellow, diameter 1.6∼2.5mm. (C): COL-OXY48+24, 48h-old
colonies were transferred onto 3 ml of 3X MHII agar with 10X MIC oxacillin and
incubated for an additional 24hours, not significant larger but more colored than (A),
diameter 0.7∼1.0mm. (D) COL-CIP48+24, 48h-old colonies were transferred onto 3
ml of 3x MHII agar with 10X MIC ciprofloxacin and incubated for another 24hours,
larger and more colored, diameter 0.8∼1.1mm. (E) Dispersed cultures transferred
from 48h-old colonies and exposed to fresh media for 24hours. From top row to
bottom row are DIS-CIP, DIS-OXA, DIS-CON, turbidity increasing.
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using a transferring pipette, until no visible colonies could be seen. To fully break

up clumps and take off cells from the filters, the saline suspensions were sonicated

for 5 minutes and vortexed for 10 seconds, followed with serial diluion and plating

on LB agar plate. The sonicator was from Bronson, 2510R-DTH, output 100W, 42

kHz±6%.

3.3 Results

3.3.1 Resource saturation of S. aureus Newman in liquid cultures and as
colonies.

The efficacy of antibiotics depends largely on the physiological states of the bacterial

cells [116], which is reflected in the growth rates of cells and the cell density of the

population. To explore these effects of the bacterial population before exposure to

antibiotics, we evaluated the cell densities of bacteria as colonies and in liquid culture.

We compared the bacterial growth with different inoculum sizes at 24 hours (Fig. 3.3

blue bars) and 48 hours(Fig. 3.3 orange bars) in 0.1X MHII medium or 3X MHII

medium.

Among the liquid cultures with 0.1X MHII, there is no significant effect of the

inoculum size on the cell density of S. aureus Newman at 24 or 48 hours (p∼ 0.9)

(Fig. 3.3 A). All these cultures saturated before 24 hours. We would expect that

the cells in these cultures would have already reached stationary phase when exposed

to antibiotics in our later experiments. The liquid cultures with 3X MHII, however,

were still growing at 24 hours and presumingly saturated at 48 hours since they

all reached at the same level of cell densities(p�0.05) (Fig. 3.3C). When S. aureus

Newman grown as colonies, all the cultures were still growing at 24 hours at 24

hours on both 0.1X MHII and 3X MHII agar (Fig. 3.3 B and D) and thereby larger

colonies is still growing, whilst those inoculated with 103 and 104 cells appear to be at

stationary phase. At 48 hours the population inoculated with 50 cells per filter were

still smaller than that with 103 and 104 cells per filter and thereby larger colonies is
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still growing, whilst those inoculated with 103 and 104 cells appear to be at stationary

phase (p�0.05).

We interpret these results to mean that when liquid cultures in 0.1X MHII are

exposed to antibiotics, they are already at stationary phase at 24 hours, but in 3X

MHII they are still growing. At 48 hours with inoculates of 103 and 104 cells, these

colonies are no longer growing and presumably the cells are at stationary phase, which

is not the case for cultures initiated with 50 colonies. It should be noted that, at 48

hours, the cell densities of the colony cultuers on 0.1X MHII inoculated with 103 and

104 cells per filter was about 2 fold of the cell densities of the corresponding liquid

culture. Similar observations were reported in [54, 117], especially when the resource

is limited in the habitat. This is not the case for the richer media, 3X MHII, where

there is no significant difference in the 48 hour estimated densities when the bacteria

are growing in liquid or as colonies (p�0.05).

3.3.2 The effect of physiological states of cells grown as colonies on the
susceptibility of these cells to antibiotics

Given the analysis of physiological states of S. aureus Newman with different initial

cell densities and at different times, we conducted the experiments to explore the

effect of these features on the PD of antibiotics on bacterial cells as colonies and

compare with liquid controls. Of particular interest are the questions including: (i)

How does the size (number of cells within and the physical dimensions) of colonies

affect their susceptibility to killing by antibiotics? (ii) How does the distance between

colonies, the density on the agar affect their susceptibility to killing by antibiotics?

(iii) Most importantly, how effective are different antibiotics in inhibiting the growth

and killing of S. aureus in liquid and within colonies? To address these questions, we

compared the colonies culture inoculated with 50 and 104 cells per filter, respectively

the large, distanced colonies and the small , crowed colonies (Fig. 3.4). The filters

with colonies were incubated for 24 hours or 48 hours before transferring onto 1X
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Figure 3.3: Assessment of physiological states of S. aureus Newman cells as
colonies and in liquid culture at 24 and 48 hours. Cultures were inoculated
with 50, 103 and 104 cells per filter or per 3 ml of liquid culture respectively. Viable
cell density of S. aureus Newman at 24 (blue bars) and 48 (orange bars) hours grown
as (A) planktonic cells in liquid culture with 0.1X MHII, (B) colonies on filters on
agar with 0.1X MHII, (C) planktonic cells in 3X MHII broth, and (D) colony on
filters on 3X MHII agar. Error bars are SEMs.
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Figure 3.4: S. aureus Newman grew as small and crowded colonies. Initial
cell density was 104 cells per filter. Filter with cells were incubated on 0.1X MHII
agar for 48 hours.

MHII agar containing 10X MIC of one of the nine antibiotics introduced in Section.

Methods and Material.

The experimental results are shown in Table 2 and Table 3. In the absence of

antibiotics, both of cells grown in liquid cultures and as colonies were able to replicate

after being transferred to new broth or on to new agar, despite the age or the inoculum

size of the cultures. Among the six bactericidal antibiotics, ciprofloxacin was the

most effective in killing both planktonic S. aureus cells in liquid cultures and those

as colonies. In Table 2, bacterial cells within the younger, 24-hour old colonies were

even more susceptible to this fluoroquinolone than the corresponding liquid culture,

but became much more refractory when the colonies get older, i.e. at 48 hours. This

was also the case for gentamicin, where young and old colonies showed dramatically

difference in the susceptibility to this antibiotic, comparing to liquid cultures. The

two beta-lactam antibiotics were less effective in killing S. aureus in colonies than they

were dealing with plancktonic cells in liquid. Vancomycin was moderately bactericidal

in liquid but totally ineffective when bacteria were in colonies. At these densities,
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daptomycin was effectively bacteriostatic in both liquid and younger colonies and

even allowed for the growth of the 48hour colonies. And the three bacteriostatic

antibiotics managed to inhibit the cell growth in all cultures. It has been shown that

the efficacy of daptomycin and vancomycin on S. aureus strongly depends on the cell

density [118, 119]. Thus the failure of these two antibiotics may be closely related to

the relatively high cell density of the culture when exposed to the antibiotics and the

degradation of these drugs at this great cell densities.

In treating the cultures initiated with 104 cells per filter or per 3 ml of liquid broth,

ciprofloxacin was again the most effective among these nine antibiotics, followed by

gentamicin. These two drugs showed slightly higher efficacy in killing the 24-hour old

colonies, comparing to the young colonies initiated with 50 cells. Ampicillin was still

weakly effective in inhibiting colonies growth, while oxacillin failed to do so to the 48-

hour old colonies. Vancomycin and daptomycin simply failed to treat the colonies and

allow for their growth. Surprisingly, all the three bacteriostatic antibiotics remained

effective in all colonies cultures but failed to inhibit the growth of bacteria in all liquid

cultures.

3.3.3 The effect of the physical structure of bacterial colonies on the
susceptibility of these cells to antibiotics

The previous section shows that the bacterial cells within colonies are generally

more refractory than those in liquid cultures. Besides the contribution of physio-

logical state, we also considered the effect from the physical structure of the colonies.

Whether does the diffusion of the antibiotics hindered by the polysacchride matrix

of colonies? Are the cells more refractory in colonies due to some protection from

the colonies structure? To evaluate the contribution of the physical structure of the

colonies to these antibiotics, we evaluated the efficacy of ciprofloxacin and oxacillin in

treating S. aureus grown as colonies, and compared with colonies with that of plank-

tonic cells released from colonies (dispersed, DIS) and liquid cultures (LIQ) of the
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Table 2: The results of experiment with S. aureus Newman cultures initiated with an
average of 50 colonies per 3 ml of MHII broth/agar containing 10X MIC of the drugs
listed. Cultures grew for 24 or 48 hours in 3 ml of 0.1X MHII broth/agar before
exposure to the antibiotics in 1X MHII. The viable cell densities (CFUs/ml) were
estimated 24 hours after exposure to the antibiotics.

24-hour growth 48-hour growth
50C

Liquid Colony Liquid Colony
Initial 2.2± 0.1× 107 2.7± 0.2× 107 1.9± 0.1× 107 2.7± 0.2× 108

Control 4.4± 1.0× 109 5.3± 0.6× 109 4.6± 0.9× 109 5.3± 0.7× 109

Ciprofloxacin 9.7± 1.0× 103 7.4± 1.1× 102 5.0± 5.0× 102 5.5± 0.6× 106

Gentamicin 9.1± 0.4× 104 1.2± 0.1× 104 1.6± 0.3× 104 1.7± 0.3× 108

Ampicillin 7.0± 3.0× 103 1.3± 0.1× 105 1.0± 1.0× 103 1.1± 0.2× 108

Oxacillin 1.8± 0.1× 105 4.9± 1.0× 106 7.4± 2.3× 104 2.1± 0.2× 108

Vancomycin 3.1± 1.4× 104 1.6± 0.6× 108 6.1± 1.1× 105 4.0± 0.4× 109

Daptomycin 4.1± 0.3× 106 1.5± 0.4× 107 1.6± 0.8× 107 3.9± 0.7× 108

Tetracycline 1.2± 0.3× 106 8.0± 1.0× 106 4.1± 0.9× 106 2.5± 0.3× 108

Erythromycin 4.6± 0.5× 106 6.0± 0.3× 106 2.3± 0.6× 107 2.4± 0.3× 108

Linezolid 1.6± 0.3× 106 7.7± 0.4× 106 1.4± 0.1× 107 2.2± 0.2× 108

Color map instructions
Stasis or growth
Viable cell density decrease less than an order of magnitude
Viable cell density decrease between 1 and 4 orders of magnitude
Viable cell density decrease >4 orders of magnitude
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Table 3: The results of experiment with S. aureus Newman cultures initiated with
an average of 104 colonies per 3 ml of MHII broth/agar containing 10X MIC of the
drugs listed. Cultures grew for 24 or 48 hours in 3 ml of 0.1X MHII broth/agar
before exposure to the antibiotics in 1X MHII. The viable cell densities (CFUs/ml)
were estimated 24 hours after exposure to the antibiotics.

24-hour growth 48-hour growth
104C

Liquid Colony Liquid Colony
Initial 1.4± 0.6× 107 3.2± 0.2× 108 1.4± 0.3× 107 8.9± 0.3× 108

Control 3.4± 0.4× 109 8.2± 2.2× 109 2.5± 0.2× 109 1.2± 0.1× 1010

Ciprofloxacin 6.5± 6.5× 10 1.0± 0.2× 103 2.8± 0.1× 107 9.3± 1.3× 105

Gentamicin 1.2± 1.2× 102 1.9± 0.6× 105 3.0± 2.5× 106 3.5± 0.9× 107

Ampicillin 9.8± 1.8× 104 5.2± 0.8× 107 1.35± 0.8× 108 2.7± 0.6× 108

Oxacillin 4.8± 4.6× 105 5.8± 0.9× 107 2.7± 1.9× 108 2.7± 0.2× 109

Vancomycin 3.4± 0.9× 107 5.6± 0.2× 109 2.5± 0.5× 108 7.7± 0.9× 109

Daptomycin 3.6± 0.4× 105 2.3± 0.5× 109 6.3± 2.1× 106 1.7± 0.1× 109

Tetracycline 3.3± 0.6× 108 8.8± 0.5× 107 1.2± 0.6× 109 6.1± 0.5× 108

Erythromycin 3.0± 0.5× 108 7.3± 0.6× 107 1.1± 0.2× 109 2.2± 0.3× 108

Linezolid 4.0± 0.5× 108 1.2± 0.2× 108 9.0± 1.9× 108 5.5± 0.3× 108

Color map instructions
Stasis or growth
Viable cell density decrease less than an order of magnitude
Viable cell density decrease between 1 and 4 orders of magnitude
Viable cell density decrease >4 orders of magnitude
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same age as the colonies . All cultures were treated with 3X MHII broth or agar

containing 10X MIC of these drugs and the viable cell densities were estimated after

5 and 24 hours of exposure to the antibiotics. In Fig. 3.2, we illustrate the experi-

mental setup and the effects of exposure on the size of 48-hour colonies in the absence

of antibiotics and following exposure to oxacillin and ciprofloxacin.

Both the 24-hour and 48-hour old cultures resumed to replicate in the absence

of antibiotics(CON in Fig. 3.5 ), and the size of colonies and the pigmentation dra-

matically increased (Fig. 3.2). In younger cultures, those grown for 24 hours, a

substantial fraction of the population exposed to 10XMIC ciprofloxacin was killed

by 5 hours, with the greatest killing in LIQ-CIP and lowest in COL-CIP. After 24

hours of exposure, the bacteria within colonies or dispersed from colonies appeared

more sensitive to killing by this fluoroquinolone than those in liquid culture (p�0.05)

(Fig. 3.5A). After 48 hours of growth, the bacteria within colonies are more refractory

to ciprofloxacin than they are as planktonic cells. For both the 24 and 48-hour cul-

tures, relative to the antibiotic-free controls, ciprofloxacin was effective in preventing

the growth and killing S. aureus with colonies.

Oxacillin was clearly less effective than ciprofloxacin in killing S. aureus in plank-

tonic cells as well as within colonies. After 24 hours of exposure, there is about 10 to

100 fold reduction in the viable cell density with the greatest reduction in DIS-OXY.

Moreover, there appeared to be little difference in the efficacy of this beta-lactam

antibiotic in killing S. aureus in colonies relative to that of planktonic cells in liquid.

This experiment was repeated three times and similar results obtained (data available

upon request).
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Figure 3.5: Relative survival of S. aureus exposed to 10XMIC ciprofloxacin (CIP) or
oxacillin (OXA), in liquid cultures(LIQ), as planktonic cells dispersed from colonies
(DIS), and as intact colonies (COL). An average of 50 colonies was inoculated on
each filter. The CON cultures are antibiotic-free control. Means and standard errors
for three replicates. A- Cultures grown for 24 hour before exposure to the antibiotic,
B- Cultures grown for 48 hours before exposure to the antibiotic. Viable cell density
was measured at 5 hours after exposure (blue bars) and at 24 hours after exposure
(red bars). Dashed lines represent the cell densities before transferring as a guideline.
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3.4 Discussion

Our method of developing bacterial population as colonies on filter membranes is

designed to be facile, and can be broadly applied to more complex experimental set-

ups. We evaluated this method by applying it to investigate the population growth of

Staphylococcous aureus Newman and the pharmacodynamics of nine different antibi-

otics on this strain of bacteria. We explored the contribution of physiological states

of the cells and the physical structure of the colonies to the efficacy of antibiotics.

While there have been a number of studies of the efficacy of antibiotics for treating

bacteria in biofilms [32, 34, 109, 110, 111, 114, 120, 121, 122, 123], to our knowledge

this is the first investigation to explore antibiotic-mediated inhibition of replication

and killing of bacteria growing as discrete colonies on surfaces.

The procedure developed here can be applied to virtually any bacteria that when

grown in vitro forms colonies. This same procedure could be employed to evaluate

the susceptibility of single and multi-species biofilms to antibiotics. For this, instead

of seeding the filters with relatively few bacteria to form discrete colonies, the filters

could be seeded with large numbers of bacteria of the same or multiple species. The

sampling methods would be identical to those described in here. By comparing liquid

cultures and bacteria released from colonies (or biofilms) of the same density and

stage of growth (age) this method provides a way to evaluate the contribution of the

physical structure of the population to its susceptibility to antibiotics.

The results of this study indicate that there is substantial variation among bac-

tericidal antibiotics in their efficacy for killing bacteria within colonies. Of the six

bactericidal antibiotics considered here, ciprofloxacin was most effective, followed by

gentamicin. After 24 hours of exposure, these two antibiotics were able the clear the

bacterial population by more than 3 orders of magnitude. The physical structure

of colonies only provided temporary protection on the cells within colonies, serves a
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delay of the killing effects from the antibiotics. Of the beta-lactam antibiotics, ampi-

cillin was more effective in killing S. aureus in colonies than oxacillin, which even

failed to inhibit the growth of the older colonies initiated with 104 cells per filter.

In our experiments, daptomycin, which is considered bactericidal [98, 124, 125, 126],

was no more capable of killing S. aureus in colonies than the antibiotics that are

deemed bacteriostatic, tetracycline, erythromycin and linezolid. Indeed, this cyclic

peptide was less effective in preventing the proliferation of S. aureus in more mature

(48 hour) colonies than these bacteriostatic drugs. Vancomycin, which is commonly

employed for treating methicillin resistant S. aureus [100, 102, 123, 125, 127], was vir-

tually ineffective for either preventing the replication of or killing S. aureus Newman

in colonies.

The preceding conclusions about the relative efficacy of the different antibiotics

for treating S. aureus as colonies is based on a common dose of 10X MIC of these

drugs with 24 and 48-hour inoculum densities respectively of ∼ 2×107 and ∼ 2×108

cells per ml for the experiments with 50 colonies and ∼ 3 × 108 and ∼ 9 × 108 the

experiments initiated with 104 colonies per filter. These densities are substantially

greater than the recommended 5 × 105 cells per ml for estimating MICs [115] by

serial dilution. To some extent the differences in relative efficacy of the bactericidal

antibiotics to kill S. aureus in colonies may be attributed to a density (inoculum)

effect [118]. On the other hand, we dont see the utility of reducing the density of

cells treated to make these drugs more effective in this experimental system. From a

clinical perspective, concern is to treat established infections the densities of which

are likely greater than the 5× 105 [128, 129].

What about increasing the dose of the antibiotics that were ineffective for treating

colonies in these experiments? We have explored this possibility with 40XMIC of

oxacillin and vancomycin. The results of these experiments suggest that even at these

high concentrations, these antibiotics are ineffective for treating S. aureus Newman
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in colonies (Fig. A.1).

On first consideration it may seem that the relative inefficacy of vancomycin,

oxacillin and daptomycin to kill or prevent the replication of S. aureus in colonies

may reflect the inability of these drugs to diffuse through the membrane on which

the colonies are growing and then through the colonies. We do not believe this is the

case for oxacillin or vancomycin, although it is known that to some extent biofilms

reduce the rate of diffusion of antibiotics[112, 121, 122, 130, 131]. In our experiments,

however, the time of exposure to these drugs was relatively long, 24 hours. We expect

that the diffusion effect would be small. Based on what is known about the diffusion

rates of these drugs in Staphylococcus in biofilms it seems reasonable to assume the

bacteria within these colonies would have been exposed to substantial concentrations

of these drugs [121, 122, 131]. Moreover, the cells dispersed from colonies before

treatment with these drugs were no more susceptible than those in intact colonies,

even though the bacteria were in liquid and confronted with the same concentration of

these antibiotics (Fig. A.1). We suggest the primary reason for the relative inability

of these antibiotics to kill S. aureus in colonies can be attributed to the density and

physiological state of the bacteria, rather than the structure of the colonies. In

colonies grown on surfaces, it was reported that only the cells on the bottom and the

edge of a colony are growing [132, 133], and therefore only these cells will be targeted

by the bactericidal antibiotics. On the other hand, the bacteriostatic antibiotics

themselves often decelerate the bacterial metabolism rate [134], their efficacy should

depend weaker on the physiological states of the cells than bactericidal ones. However,

it is still intriguing that the three bacteriostatic antibiotics studied here, tetracycline,

erythromycin and linezolid, managed to inhibit the colony growth in all colonies

cultures. This effect is very important to support immune system to fight with the

bacterial infections in vivo.

One possible explanation for why daptomycin is not effective in colonies but is in
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liquid is that its mode of action is thwarted by the structure of the colonies. It has

been proposed that daptomycin operates by depolarizing the cell membrane which

results in leakage of ions [101, 100, 102, 121]. If, however, the cells are within colonies

the ions lost by individual cells would remain in the collective and thereby shared by

all in this community.
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CHAPTER IV

EXPERIMENTAL STUDY AND MODELING OF THE

POPULATION DYNAMICS OF NUTRIENT-LIMITED

THREE-DIMENSIONAL BACTERIAL COLONY

GROWTH

(This chapter is based on “Shao, X., Mugler, A., Kim, J., Jeong, H. J., Levin,

B., & Nemenman, I. (2016). Growth of bacteria in 3-d colonies. arXiv preprint

arXiv:1605.01098 ”.)

4.1 Introduction

From the previous study in Chapter 3, the pharmacodynamics of bacterial colonies

on surfaces is affected majorly by two aspects: the cell density in total and the

physiological states of the cells. How many cells in the population were deviding

and how many were not? How do antibiotic molecule diffuse in the system? These

questions related to the population dynamics of bacterial cells have been extensively

studied as planktonic cells in well-agitated liquid culture where cells have equal access

to nutrients, signaling molecules, and toxins and to each other. This continuous mass

culture is convenient for both experimentalists and theoreticians. In 1949, Jacques

Monod developed a model for bacterial growth in liquid culture [99], where cells and

nutrient molecules are homogeneously distributed.

To grow and divide, cells consume nutrients and convert them to new cell mass.

In Monod’s model, when nutrients are abundant, a given cell divides at a constant

rate, leading to exponential growth of the total cell population. As nutrients become



47

depleted, this growth slows. When all nutrients are consumed, the population sat-

urates. This process has been well studied in well-mixed liquid media, where cell

densities and nutrient concentrations are uniform in space.

However, bacterial cells in the real world do not live in well-mixed liquid environ-

ments. Often cells are relatively fixed in place, such that growth and division gives

rise to a dense, expanding colony. Population growth in a colony differs physically

from population growth in liquid in two important ways: (i) nutrient consumption

is limited by diffusion of nutrient molecules to the colony, and (ii) cells at different

colony depths may have unequal access to nutrients. Here we focus on the first fea-

ture only. Thus we ask: how is growth in a colony altered by nutrient diffusion, as

compared to growth in liquid?

There have been abundant number of diffusion models for bacterial growth on sur-

faces, such as 2-d colonies and biofilms[35, 56, 135, 46, 44]. Complex heterogeneity

was considered in these mathematical models such as different diffusion coefficients

for every chemical, asymmetric liquid flow. These models carefully depict the het-

erogeneous distribution of the cellular physiological states in colonies and biofilms,

as well as a landscape of nutrient consumption. However, diffusion in one or two

dimensions is different from three, making it easier to form diffusion-limited fingers

[136, 137, 138].

In 3-d, work has been done to understand nutrient shielding of the interior of

a colony by the microbes on the surface, treating them as individual agents [139].

However, we are not aware of 3-d models of colony growth that account for the

spatially varying density of nutrients and bacteria, explain the observed experimental

phenomenology of bacterial growth in such colonies, and do so in a coarse-grained

(PDE) Monod-style fashion, without modeling individual bacteria.

In this chapter, we developed such a minimal model for the growth of E. coli

colonies embedded in 3-d soft agar and validate it experimentally. The growth rate
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heterogeneity only comes from the non-uniform nutrient distribution produced self-

consistently by interactions between the bacteria and the nutrient, but we do not

assume any heterogeneities beyond this. We neglect cell motility and all mechanical

stresses, and we assume that the colony is essentially unconstrained by the soft agar

and is free to expand. Our joint theoretical-experimental approach reveals several

surprising features of 3-d colony growth, including that bacterial colonies in soft

agar are extremely loosely packed with viable cells, and that bacteria grow to larger

numbers in colonies than in liquid given the same amount of nutrient. Future studies

can use our model as a baseline description of 3-d colony growth, deviations from

which can identify emergence of additional phenotypic heterogeneities in the colony.

4.2 Materials and Methods

4.2.1 Bacteria

Escherichia coli Lenski 1976 was used in our study. It is derived from B6 strain

described in [140].

4.2.2 Medium

Overnight cultures of Escherichia coli Lenski 1976 grew in LB broth (Lysogeny Broth

(LB), Becton Diskinson (Franklin Lakes, NJ, USA), well-agitated at 37◦C.

Liquid culture was supplemented with Davis Minimal (DM) salts and 0.2mg/ml

glucose as the only carbon source. Cells from overnight culture were diluted in saline

water and inoculated in DM liquid culture. Sampling was done by series dilution and

plating on LB agar Petri dishes.

Colony culture. A schematic protocol is shown in Fig. 4.1a. Colonies were em-

beded in 0.35% of bacto agar with DM and 0.2mg/ml glucose as the only carbon

source. The soft agar were melted in microwave and cooled down before inoculation.

After inoculating with cells and before hardening, the melted soft agar culture were

aliquoted in to Costar Macrotiter 6-well plates, 3ml in each well (Fig. 4.1b) . Plates
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were covered and set in a tray with distilled water to preventing the agar culture from

drying. To sample soft agar culture, 3-6 wells of culture were sacrificed at each time

point. Soft agar in each well was disrupted and transferred into saline water using

long transfer pipette. Vortexing and short sonication was used to further disperse the

cells in saline. At last the saline water with cells was sampled by serial dilution and

plating on LB agar Petri dishes.

Inoculum: both liquid culture and colony culture were inoculated with 50 cells/ml,

unless otherwise noted. Saturation calibration was done(Fig. 4.6) to confirm that 50

colonies/ml is enough for colony cultures to deplete all nutrient while the distance

between colonies was large enough to be considered as single colonies within our

model.

4.2.3 Imaging

Fluorescent dyes. The dead cells are tagged with Propidium Iodide (PI). Cell mem-

brane was tagged with WGA350 (Wheat Germ Agglutinin, Alexa Fluor 350 Con-

jugate), including live and dead cells [141, 142]. Both dyes are generous gift from

Dr Minsu Kim’s lab, originally purchased from Thermo Fisher Science. The work-

ing concentration of PI was 4 µM/ml. The working concetraion of WGA350 was 10

µg/ml.

Cell size measurement.To measure the cell sizes in liquid cultures at a certain time

point, 5 ml of the experiment culture was centrifuged at 4k rpm for 4 min. Certain

amount of the supernant was disposed so that the cell density of the resuspension of

the rest culture can reach at least 107 cells/ml. For colony cultures, centrifuge would

not separate the agar and cell. Disperse the colony culture and directly sample from

the mixture. In order to have enough cells per slide to image, the 6-hour old cultures

were inoculated with 106 cells/ml. The 14-hour old cultures were inoculated with

1000 cells/ml. The older cultures were all inoculated with 50 cells/ml.
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(a)

(b)

Figure 4.1: Experimental setup of the growth and harvest of colony cultures
in soft agar. (a) Illustration of the step protocol of initiating and sampling the colony
cultures in soft agar. (b) An expample of colony culture with visible colonies in soft
agar in one well of a 6-well macrotiter plate. This colony culture was incubated for 64
hours when pictured. Colonies distributed randomly through out the soft agar and
distanced from each other. The shape of the colonies is approximately spherical.

Preparation of chambered coverglasses. In order to observe 3-d colonies using

inverted confocal microscope, colony cultures were incubated in NuncTM Lab-TeKTM

II Chambered Coverglass. 230 µl of soft agar containing cells and dyes were aliquoted

into each well of 8-well chambered coverglasses. 560 µl if using 4-well. The inoculum

size was 5000 cells/ml. The initial glucose concentration was 0.2mg/ml. To prevent

the agar from drying after long term incubation, the chambers were wrapped with
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parafilms.

Microscopy Confocal imaging. Bacterial colonies in chambered coverglasses were

imaged at Integrated Cellular Imaging Core, Emory University, using Leica (Wetzlar,

Germany) TCS SP8 inverted confocal microscope with live-cell chamber at 60x (HC

PL APO 63x/1.40 oil CS2 WD 0.14 mm),

4.2.4 Image analysis

The images obtained from the confocal microscope were processed using ImageJ (Na-

tional Institutes of Health, Bethesda, MD). The measurements of dead cells were

output by the 3D Objects Counter [143]. These measurements were further analyzed

using MatLab.

4.2.5 Numerical solution of the model

The well-mixed Monod model, Eqs. (4.1), (4.2), was solve using ode15s MatLab

routine. To solve the growth equations Eqs. (4.3)-(4.5) numerically, we rewrote the

equations in spherically symmetric coordinates, and then discretize the space into

concentric shells so that the partial differential equations become sets of coupled

ordinary differential equations describing dynamics within each shell. These were

then solved again using Matlab’s ode15s, with an additional constraint that the

radius expands at every time step in such a manner to enforce a constant cell packing

density through the colony, as in Eq. (4.5), at every time step. But we did not shrink

the inner shells when the cells in them started dying. The total number of cells,

including live and dead, is used to calculate the radius of the colony at each time

step. Since the soft agar should be so soft that the cells encounter no mechanical

confinement and can push out the space freely, it is reasonable to assume a constant

cell packing density and that the colony radius expand continuously when cells divide.
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4.2.6 Model fitting and confidence intervals estimation

We first fitted the five parameters of the Monod model for the growth in the liq-

uid culture, Eqs. (4.1), (4.2). For this we defined the loss function L =
∑

i(Ni −

N(ti; gmax,m,K, τlag, al))
2, where Ni was the population size (in CFUs/ml) in the

i’th measurement, and N(ti; gmax,m,K, τlag, al) was the model prediction for the same

time and for given parameter values. Note that we did not average measurements

at the same t, but incorporated all individual observations into the loss function,

cf. Fig. 4.5. We optimized L over the five parameters using MatLab’s fmincon. For

K and m, which are small and have large uncertainties, we optimized w. r. t. their

logarithms, thus enforcing their positivity (the other parameters were sufficiently

constrained by data away from zero even without this reparameterization). The

optimization was performed with ten different random initial conditions for the pa-

rameters, and the best values from among all the runs were chosen, resulting in the

best-fit parameters ḡmax, m̄, K̄, τ̄l, āl, which we report in Tbl. 4.

To estimate the confidence intervals for these inferences, we bootstrapped the data

1000 times [144]. When re-sampling with replacements for bootstrapping, we resam-

pled separately from the exponential growth region (t ≤ 22 hrs) and the saturated

region (t > 22 hrs), so that the number of data points in each of the regions was

fixed in all resampled datasets. We refitted the five growth parameters for each of the

resampled data sets. The middle 80% of the best-fit parameter realizations are re-

ported in Tbl. 4 as confidence intervals, and the covariances among the bootstrapped

best-fit values are reported in Tbl. 6. Since the sensitivities to the parameters vary

widely, and L near its minimum is badly approximated by a quadratic form, we addi-

tionally report confidence intervals directly on the model predictions, rather than just

the parameters. For this, for each of the 1000 resampled datasets, we calculated the

population growth with the best-fit parameters, and the middle 80% of these growth

curves are shown as the colored band in Fig. 4.5 (top).
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For fitting the 3-d growth model, Eqs. (4.3)-(4.5), we write the loss function

L =
∑

i(Ni−N(ti; ḡmax, m̄, K̄, τ̄l, ac, D, µ))2. This is minimized as above over ac, D, µ,

with the first four parameters inherited from the optimizations for liquid data. Re-

sults of the optimization are shown in Fig. 4.5 (bottom). To establish confidence

intervals, we bootstrap the entire analysis pipeline 30 times (the number is limited

since parameter optimizations for PDEs describing the nutrient dynamics are com-

putationally costly), resampling both the liquid and the 3-d colony data. While

resampling the colony data, we keep the number of data points in each of the three

regions constant (exponential, t < 24, diffusion-limited, 24 ≤ t < 48, and saturated,

t ≥ 48). Confidence intervals on parameters and model predictions in Fig. 4.5 (bot-

tom) and Fig. 4.6 are then done as explained above. We use the same bootstrapped

data sets to estimate the covariances and correlations of the parameters (Table. 6).

These are evaluated as empirical covariances and correlation coefficients of the best-fit

values for the bootstrapped data sets.

4.3 Results

4.3.1 The experimental results of bacterial growth in liquid cultures and
as 3-d colonies

To quantitatively control the growth of bacterial population, we used Escherichia

coli cells growing in DM liquid broth or embedded in DM soft agar. The only car-

bon source was glucose, of which the initial concentration was 0.2 mg/ml. Unless

mentioned otherwise, 3-d colonies are grown in 3 ml of soft agar, inoculated with ap-

proximately 50 colonies/ml, so that each colony has an access to a nutrient subvolume

of v ∼ 1/50 ml, or an effective sphere of nutrient with radius R = (3v/4π)1/3 ≈ 1.7

mm (Fig. 4.1b). The growth curves, N(t), for liquid cultures and colony cultures

were measured at various time points by harvesting, diluting, and plating cells, and

then counting the number of resulting colonies that form on a plate (see Methods for

details). By this mean, N(t) represents time-dependent measurements of the colony
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forming units(CFUs) per ml. Measurements of N(t) in the experiments are shown in

Fig. 4.2 (experiment data points). After the lag phase, the population in the liquid

culture rises exponentially, and then abruptly saturates and starts decaying at a very

slow rate as the cells are dying. On colony growth curve, the labg phase and the

exponential phase before 22 hours are overlapping with that of liquid culture. In

contrast of an abrupt stop in growth of liquid culture, in 3-d colonies, the exponen-

tial growth and the saturation are separated by a gradual, sub-exponential growth

regime. We hypothesize that this is because the growth here is limited by the speed

with which diffusion brings nutrients from the edges of the nutrient subvolume to

its center, where the bacteria metabolize them. Another surprising result is that the

maximum population size for the colonies is larger than that for the liquid, which

indicates the same amount of nutrients yields more bacteria in the physically struc-

tured environment. To understand these findings quantitatively, we now develop the

minimal mathematical model capable of explaining them.

4.3.2 Minimal model of resource-limited bacterial growth

The growth model for bacterial population in liquid cultures has been maturely de-

veloped. Here we inherited the linear growth model built by Monod in 1949 [99],

where all cells grow at the same rate and the rate depends on the current density as

g(ρ) = gmaxρ/(ρ+K). Here gmax is the maximum growth rate that a cell can reach,

and K is the half-saturation constant, so that the growth rate is half of the maximum

when the nutrient concentration is ρ = K. Thus we have the cell density n = N/v

that obeys

dn

dt
= nΘ(t− τlag)

gmax ρ

ρ+K
− nm, (4.1)

dρ

dt
= − 1

al

nΘ(t− τlag)
gmax ρ

ρ+K
. (4.2)

Here v is the volume of the liquid where the culture grows, and al is the liquid

yield, which measures the number of bacteria produced by per microgram of glucose.
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Further, Θ(t − τlag) is the Heaviside Θ-function, which is equal to zero for t < τlag,

and to unity otherwise. It represents the lag phase before the growth starts after a

transfer to a new environment. Note that Eqs. (4.1) and (4.2) differ slightly from

the standard Monod model. Specifically, we added a small constant death rate m to

account for the decrease of the population in the liquid culture after the saturation

(Fig. 4.2). Thus the population has a zero net growth at a critical nutrient density of

ρm = mK/(gmax −m), which represents the minimum nutrient concentration needed

to sustain life without growth [145, 146].

In our minimal model of 3-d colony growth, we assume that the bacterial cells

within a colony are genetically identical, but depending on their position, vary in their

access to the diffusing carbon source. Therefore the growth rate of every individual

cell still obeys the Monod equation. The difference is that ρ is no longer averaged

over the whole system, but varies locally, denoted as ρ(x, y, z).

The turgor pressure in Escherichia coli was estimated at about 1 to 3 atm [141,

147, 148]. In addition, there is no limitation on the migration or the swarming of

Escherichia coli cells on soft agar plates if the concentration of agar is below 0.4%

[149, 150]. Therefore it is reasonable to assume that the cells expands freely in the

0.35% soft agar, with no feeling of physical obstruct. As the cells divide, the colony

expands symmetrically as a sphere. New daughter cells push their way out freely,

keeping a constant cell density per volume of the space occupied by the colony. This

leads to the following equations for the spherically-symmetric local number density

of cells n(r, t) and nutrient concentration ρ(r, t):

∂n(r, t)

∂t
= n(r, t)

[
Θ(t− τlag)

gmax ρ(r, t)

ρ(r, t) +K
−m

]
, (4.3)

∂ρ(r, t)

∂t
= D∇2ρ− 1

ac

n(r, t) Θ(t− τlag)
gmax ρ(r, t)

ρ(r, t) +K
, (4.4)

with the initial uniform spatial concentration of the nutrient ρ(r, 0) = ρ0 at time

t = 0, and a single bacterium starting at r = 0. In these equations, D is the nutrient
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(glucose) diffusion coefficient. Further, we allow for the yield in the colony ac to

be different from the liquid yield al to account for the different saturation values in

Fig. 4.2, as further discussed below. Importantly, since the agar is more than 99%

liquid, the four other growth parameters gmax, K, τlag, and m are taken to be the

same in both media.

To keep the cellular packing density µ as a constant inside a colony, the radius

of the colony must increase when cells devide. We require that the overall increase

in cell number leads to the proportionate growth of the colony radius rc, so that

N ≡ 4π
∫
dr r2n(r, t) = (4/3)πr3

cµ. Thus at each point in time, we impose the

condition that

n(r, t) =

 µ, 0 < r ≤ rc = (3N/4πµ)1/3,

0, rc < r ≤ R,
(4.5)

Accoding to experimental results, there should be four regimes on the growth curve

of a 3-d bacterial colony: lag regime, exponential regime, diffusion-limited regime and

the slow death regime. To illustrate the behavior of this 3-d model of bacterial growth

as colonies, we plot numerical solutions of Eqs. (4.3)-(4.5) for different values of the

nutrient diffusion coefficient in Fig. 4.4 (A). Especially at small D, two different

growth regimes are clearly visible after the lag but before the ultimate saturation

and the slow cell death. The first is the fast exponential growth based on local,

immediately accessible resources. This regime is indistinguishable from the growth

in liquid. When the local nutrients are depleted at a certain time τ1 following the

start of the growth at τlag, new nutrients must be brought from afar by diffusion.

This is slow, resulting in a slower diffusion-limited growth regime. Here the overall

colony growth rate is an average over cells growing at different rates due to different

concentrations of the locally accessible nutrient. Our simulations suggest that, in this

regime, the nutrient concentration at the colony edge decays exponentially fast, in

agreement with Ref. [139], cf. Fig. 4.4 (B). The nutrient penetration depth is only



57

a few µm, or a few cell layers. Therefore, in the diffusion-limited regime, there are,

essentially, no nutrients deep inside a colony, and only cells at the periphery can

grow. In the absence of resource storage [151], nutrient sharing from the outer cells,

or cannibalism (we model none of these), interior cells would not grow at all and will

eventually die. The diffusion-limited growth regime finally ends with saturation and

slow death when most of the nutrients in the accessible subvolume are depleted at

time τ2 after τlag. The onset of the saturation takes longer than in liquid since small

(but larger than ρm) amounts of the nutrient linger at the far edges of the nutrient

subvolume for a long time.

Analytical expressions for the time when the exponential regime transit to diffusion-

limited regime τ1, the time when diffusion-limited regime transit to the last regime

τ2, and the growth dynamics can be obtained from the following arguments. First,

during the exponential growth regime, the population grows as N ∼ egmaxt. This

requires the nutrient mass in the amount of egmaxt/ac, which must come from the

volume immediately accessible by diffusion, equal to ∼ ρ0(
√
Dt)3. Equating the two

expressions gives, to the leading order, τ1 ∼ g−1
max log[ρ0ac(D/gmax)3/2]. When local

resources are exhausted, growth is limited by nutrients diffusing in from the volume

∼ (
√
Dt)3. However, because the encounter probability for a 3-d random walk is less

than one [152], most of the nutrient molecules coming from afar will not be imme-

diately absorbed. In fact, since the box-counting dimension of a diffusive process is

two, only ∼ ρ0(
√
Dt)2rc amount of nutrient molecules will be captured in time t,

resulting in N ∼ ρ0Dtrcac. On the other hand, the radius of the colony grows as

rc = (3/4π)1/3(N/µ)1/3. Combining these expressions gives N ∼ [(acρ0D)3/µ]1/2t3/2

in the diffusion-limited regime. Finally, the total amount of nutrients available to the

colony is ∼ ρ0R
3, and so the diffusion-limited growth will saturate, and the popu-

lation will start decreasing at the rate of m when the colony grows to N ∼ acρ0R
3,
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which occurs at τ2 ∼ (µ/acρ0)1/3R2/D. Altogether, we find

N ∼



const, t < τlag,

egmaxt, t− τlag � τ1 ∼
log

[
ρ0ac( D

gmax
)
3/2

]
gmax

,[
(acρ0D)3

µ

] 1
2
t3/2, τ1 � t− τlag � τ2 ∼

(
µ

acρ0

) 1
3 R2

D
,

acρ0R
3e−mt, τ2 � t− τlag,

(4.6)

These analytical estimates are supported by the numerical solutions in Fig. 4.4(A).

The transition time τlag, τ1 and τ2 are calculated according to the parameters of the

purple curve. We specifically plotted the green growth curve with an unrealistically

low value of diffusion coefficient in order to present a wide and clear range of diffusion

limited regime. The dash line of t3/2 goes parallel along the green curve.

We note that in one or two dimensions, the diffusion limited growth would scale

as N ∝ td/2 for dimension d, independently of the (small) colony radius, or even for

a point colony, since the random walk encounter probability there is one [152]. In

contrast, our three-dimensional result depends critically on knowing how the radius of

the colony scales with the number of growing bacteria. In particular, here we cannot

model the colony as a point-like object. Thus the exponent of the power law scaling

is not universal in 3-d, and it may change for heterogeneous colonies with varying cell

size and cell density.

4.3.3 Parameter optimization of the minimal model of bacterial growth

To determine the extent to which our minimal model accounts for the dynamics of

growth of bacteria in colonies, we fit the model to data using nonlinear least squares

fitting, similar to the liquid case. We keep the parameters al, K, gmax, m, and

τlag equal to the values inferred for liquid, and only optimize D, µ, and ac for the

3-d culture data. See Materials and Methods for the details of the fits, including

estimation of the prediction uncertainty using bootstrapping. Table 4 shows fitted

parameter values with the corresponding nominal values from the literature. The
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fitted parameters are consistent with the nominal values where the latter are known.

Further, the best fit curve shows an excellent agreement with data (cf. Fig. 4.2, red),

and the prediction confidence bands are very narrow (cf. Fig. 4.5). This suggests that

nutrient diffusion and the ensuing geometric heterogeneity of growth are sufficient to

explain the population dynamics of these E. coli colonies in 3-d at our experimental

precision, and consideration of additional phenotypic inhomogeneities is not needed.

Our analysis also provides estimates of two previously unknown parameters, µ

(packing density) and ac (yield in 3-d colonies). The inferred packing density is µ =

3.0 · 10−2 CFUs/µm3, with the 80% confidence interval of [1.7, 4.2] · 10−2 CFUs/µm3

. Since an E. coli cell has a volume of between 0.5 and 2 µm3 [52, 53], this suggests

that only about ∼ 3% of all space in a colony is occupied by viable cells. This is a

surprising finding, and it requires an independent corroboration. Towards this end,

we measure radii of large colonies and calculate their packing densities by diving

colony volumes by the average CFUs per colony. This gives µ = 1.5 ± 0.08 × 10−2

CFUs/µm3, consistent with our estimation of µ from the fitted growth model. In

other words, in our experiments, viable E. coli cells like to keep their distance from

each other.

The second inferred parameter is ac. We find that the yield as measured by the

ratio of the CFUs estimated stationary phase density and the quantity of glucose in

3-d is 2 to 3 times higher than that in liquid culture, ac > al (cf. Table 4). This

implies that, at saturation, colonies produce more CFUs than liquid cultures, which

is directly apparent from Fig. 4.2. This is a surprising result, since in the colony the

bacteria grow more slowly and there is more time for cell death. Nonetheless, similar

results have been reported for colonies growing on surfaces [54]. Here this effect

is likely a direct consequence of the growth dynamics during the diffusion-limited

regime. Indeed, E. coli cells growing at a rate of > 1 hr−1 grow to be 2 to 3 times

larger than cells growing at a rate of < 0.1 hr−1 [49]. While the diffusion limited
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regime lasts only for a few hours (cf. Fig. 4.2), more than 90% of all cells emerge

at that time, so that the majority of cells in the colony are smaller than in liquid,

yielding more cells from the same nutrient amount.
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Figure 4.2: E. coli population dynamics. Experimental data (symbols, error bars
are s. e. m.) are compared with the fits of the mathematical model we developed (solid
lines). For clarity, uncertainty of the numerical predictions is omitted and is shown
instead in Fig. 4.5. Liquid cultures switch abruptly from the exponential growth to
the saturation, and then decay slowly. In contrast, 3-d colonies gradually slow down
before saturating (see Inset) at a population size larger than in the liquid, and then
decay.
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Figure 4.3: Growing 3-d colony. (A) Photograph of a representative E. coli colony
inside 3-d agar at 22 hrs post inoculation. (B) A growing colony at 22 hrs as simulated
using our mathematical model. Heatmap shows the spherically symmetric nutrient
concentration, and the meshgrid sphere represents the colony. At this time, the
nutrient at the center of the colony is fully consumed. Since the growth rate depends
on local nutrient concentration, the cells inside of the colony are not growing anymore.



63

i
i

“fig3˙multiD” — 2016/2/26 — 21:03 — page 1 — #1 i
i

i
i

i
i

101 102t, hr

105

N
,
C
F
U
/
m
l

Liquid

Colony, D = 5:5 # 1067m2=h

Colony, D = 5:5 # 1057m2=h

Colony, D = 1:4 # 1057m2=h

Colony, D = 5:5 # 1037m2=h

/ t3=2

Exponential
regime Di,usion limited

regime

=lag =1 =2A

200 400 600 800 1000 1200 1400 1600

r, 7m

0.05

0.1

0.15

0.2

0.25

;
,
m

g/
m

l

t= 15 hrs
t= 22 hrs
t= 35 hrs

330 335 340
10!6

10!4

10!2

B

rc = 3377m

Footline Author PNAS Issue Date Volume Issue Number 1

Figure 4.4: Mathematical model predictions. (A) Population growth in liquid
culture and in 3-d colonies. The growth parameters are chosen as best fit values for our
experimental data (see Table. 4), except for D, which we vary to illustrate different
growth regimes. The diffusion-limited regime in the limit of small D is consistent
with the prediction N ∝ t3/2. The time scales τi are illustrated for D = 1.4 × 105

µm2/hr. (B) Profile of the nutrient concentration in space at different times using the
same parameters as above and D = 5.5× 105 µm2/h, as in Table. 4. The edge of the
colony is illustrated by stars on each curve. The inset shows that the concentration
decreases exponentially at the colony edge in the diffusion-limited growth regime.
The penetration depth is about 3 µm.
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Figure 4.5: Fitting models to data. A: Liquid growth model (solid blue line) fitted
to all of the experimental data we have collected (blue diamonds). 80% confidence
intervals around the best-fit predictions are shown by light blue shaded bands (estab-
lished by bootstrapping, with 1000 resamplings). B: same, but for 3-d colony growth.
Red circles, solid red line, and light red band correspond to the data, the best fit, and
the 80% confidence intervals (from 30 resamplings).
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Table 4: Fitted parameters of the growth models for liquid culture and 3-d colony.

Name Description Literature References Fitted value 80% confidence
values interval

gmax maximum growth rate, hr−1 [0.52, 0.83] [52, 153, 154] 0.73 [0.56, 0.89]
K half-saturation constant, µg/L 35 [154] 122 [19.5, 783]
al yield in liquid, 106 CFUs/µg glucose [0.5, 1.2] [140, 155] 0.61 [0.54, 0.67]
τlag lag phase duration, hr [2, 5] [156] 4.5 [4.3, 4.7]
m death rate, hr−1 [0.0049, 0.018] [146, 154] 0.0029 [7.7× 10−4, 0.011]
ac yield in 3-d colony, 106 CFUs/µg glucose N/A 1.50 [1.36, 1.63]
D glucose diffusion in 0.35% agar, µm2/hr 1.8× 106 [157] 0.55× 106 [0.21, 0.89]× 106

µ packing density, CFUs/µm3 N/A 2.98× 10−2 [1.74, 4.22]× 10−2
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4.3.4 Experimental tests of the model’s predictions and observations be-
yond the model

As an independent test of the developed 3-d growth model, we use it to predict results

of experiments distinct from those used for fitting the model. Specifically, we investi-

gate how the population size depends on the density of bacteria used to inoculate the

soft agar. At a long measurement time (72 hrs), our model predicts a non-monotonic

dependence of the population size on the inoculation density (cf. Fig. 4.6, dashed

line). This is because, at very low densities, each colony has access to a large nutrient

subvolume, and the colony cannot clear this subvolume by diffusion in just 72 hrs. As

a result, at the end of the experiment, there are still nutrients in the media, and the

colony does not reach its maximum size. In contrast, at very high inoculating densi-

ties, colonies rapidly exhaust their small available nutrient subvolumes, the cell death

becomes important throughout much of the experiment duration, and the population

is smaller again. Thus the population reaches its maximum at intermediate densities,

where these two effects balance. We test this prediction by experimentally measuring

population sizes at 72 hrs for E. coli growing in soft agar at inoculums varying from

101 to 105 cells/ml As seen in Fig. 4.6, the experimental data agree with the pre-

diction within errors and, in particular, exhibit the expected non-monotonicity. We

emphasize that no additional fitting was done for this figure, and yet the agreement

between the experiment and the theory is very good.

Accoding to the experimental data, the yield of glucose in 3-d colonies is 2 to 3

times higher than that in liquid culture and wehave suggested that this is because the

cells in liquid cultures are larger than those in 3-d colonies. To verify this hypothesis,

we measured the cells sizes of both liquid culture and in 3-d colonies at different time

after inoculation. The cell size distribution in liquid culture is shown in Fig. 4.7.

The mean cell length at 6 hours post-inoculation was 1.9±0.7 µm. As the cultures

grew older, the average cell length increased quickly (Fig. 4.10b). More and longer
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Figure 4.6: Dependence of the population size on the inoculation density.
Colony cultures inoculated with different cell densities grow to different population
sizes. The inoculates are 10, 20, 50, 100, 500, 1×103, 5×103, and 1×105 cells/ml.
Circles are experiment data measured at 74 hr post inoculation, and error bars are
s. e. m. The best-fit 3-d bacterial growth model reproduces these data within exper-
imental error bars and computational confidence interval, without additional fitting.

filamented cells emerged in the culture. The median cell size, however, fluctuated

around 2 µm. The maximum of cell length measured in liquid cultures was nearly

150 µm. If we cut off the filaments with length over 5 µm, the cell size distrubution is

much narrower, with a long tail on the right (Fig. 4.8), resulting in a similar shape to

those previously described in [50, 51]. Comparing the proportion of cells shorter than

3 µm, the liquid cultures and the colony cultures trend in the opposite directions. As

the cultures grew older, the proportion of cells shorter than 3 µm in colonies increased

rapidly and saturated near 1. On the other hand, the proportion in liquid cultures

decreased and fluctuated near 60% (Fig. 4.10a).

As expected, the cell size in colony cultures was much short than that in liquid

culture. Only less than 1% of the sampled cells were longer than 5 µm (Fig. 4.9).
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The mean of cell length mildly decreased over time (Fig. 4.10b). The ratio of the

mean cell length in the two cultures at different times (Fig. 4.10c) is around 1 before

20 hours and starts to increase after. At 72 hours, the ratio is 3.32 and shows no sign

of a plateau. This is consistent with our model that the ratio of cell size in liquid

culture to that in 3-d colonies should be 1 during the exponential growth regime, but

should increase after the growth in colonies transit to the diffusion limited regime.
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Figure 4.7: Cell size distribution for liquid cultures. Cell sizes were measured
at 6 hours, 14 hours, 24 hours, 30 hours, 48 hours and 72 hours.

We also look into how the dead cells distributed inside a 3-d colony. Intuitively, the

cells that starve the first should die the first. And our model shows that the nutrients

are depleted starting from the center of a 3-d colony. Therefore, we expected to

see random death throughout the colony when the growth is within the exponential
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Figure 4.8: Cell size distribution of short cells (shorter than 5 µm) in liquid
cultures. Cell sizes were measured at 6 hours, 14 hours, 24 hours, 30 hours, 48 hours
and 72 hours. All the histograms plot the counts of cells shorter than 5 µm. Longer
cells are not included in these plots.

regime, and higher density of dead cells at the center of a colony when the colony is in

the late diffusion-limited regime or saturation regime. To verify these predictions, we

imaged 3-d colonies at 24 hours, 48 hours and 120 hours of growth with Propidium

Iodide (PI), a fluorescent dye that stains only the dead cells, in the agar. We analyze

the coordinates of the dead cells tagged with PI and show the densities of dead cells

from the periphery towards the center of colonies in Fig. 4.11. At 24 hours, there

is no significant trend of decreasing or increasing of the dead cell density, indicating

random emergence of the cell death throughout the colonies. At 48 hours and 120

hours, the density of dead cells clearly decreases towards the center of colonies, which
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Figure 4.9: Cell size distribution of colony cultures. Cells grown in colonies
were dispersed into liquid buffer and prepared on glass coverslides in the same way
as the cells from liquid culture. Cell sizes at 6 hours, 14 hours, 24 hours, 30 hours,
48 hours and 72 hours.

is opposite of the model prediction.

4.4 Discussion

To our knowledge, the model developed here is the first course-grained, rather than

individual-based, model to explicitly study bacterial growth as colonies. We consider

this the minimal model because it assumes that the availability of nutrients (a carbon

source) is the sole factor determining the rate of cell division within colonies. In re-

ality, the cellular growth, division, and death rates would also depend on cell-to-cell

interactions of various sorts, on the enrichment and deterioration of the environment
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Figure 4.10: The comparison of cell sizes in the liquid cultures and colony
cultures. (a) The proportion of cells that were shorter than 5 µm in the bacterial
population in liquid cultures and colony cultures. Blue represents liquid cultures.
Red represents colony cultures. Error bars are the ratio of the square root of the
short cell counts to the total counts. (b) The mean and median cell size in liquid and
colony cultures. The blue lines represent liquid cultures. The orange represent colony
cultures. Error bars of the means are s. e. m. Error bars of the medians are the 95%
confidence intervals of the means. (c) The ratio of cell sizes in liquid cultures to that
in colony cultures. The solid line with circles shows the ratio of average cell sizes in
liquid cultures to that in colony cultures. The dashed line with diamonds shows the
ratio of the median cells sizes in these cultures. Error bars are propagated from the
error bars of means and medians.
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(a) 24-hour-old colony.
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(b) 48-hour-old colony.
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Figure 4.11: Dead cell density in 3-d colonies grown for 24, 48, and 120
hours. Blue circles show the density of dead cells in slices of a colony with depth
of 5 µm. The direction of z−axis is from the surface towards the center of a colony.
Error bars are the square root of the counts in each slice divided by the volume of
the slice. Orange lines are regression with weighted least squares.

due to the buildup of secondary metabolites and waste, on cell-environment mechan-

ical interactions, and on diverse cellular phenotypic commitments. The model we de-

veloped and experimentally tested here only accounts for the spatial heterogeneity in

access to the diffusing nutrient and assumes no such additional effects [158, 159, 151].
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Nevertheless, despite these limitations, with only five parameters describing the

growth in liquid, and only three additional parameters specific to the 3-d colony

growth, this model provides an impressively accurate description of growth of popu-

lations of E. coli as colonies in soft agar as well as planktonic cells in liquid. Unlike the

anticipated and observed nearly precipitous termination of growth in liquid culture as

nutrients become depleted, our 3-d model accounts for the experimentally observed

gradual reduction in net rate of replication as diffusion of the resource increasingly

limits colony growth with time. With no additional fitting, the model also correctly

predicted the non-monotonic, upside-down U shaped dependence of the population

size on the inoculating bacterial density. Moreover, all of the best-fit parameters

inferred from the data agreed with prior estimates in the literature, where these are

available (see Table 4 and references therein), indicating high-quality fits without

overfitting.

Our study has revealed and/or confirmed several intriguing observations about

bacteria growing in colonies. First, the growth in colonies yielded substantially greater

viable cell densities than obtained in liquid culture with the same concentrations of

limiting carbon source. We propose that this is a direct consequence of the diffusion-

limited growth, which happens at a slower division rate. In turn, slow division is

correlated with smaller size of bacterial cells [49, 50, 51, 52, 53], resulting in more

bacteria for the same nutrient amount. This slowing down is very important pheno-

typically — according to our model, over 90% of all bacteria in the colony are formed

at such decreased growth rate, and the yield ac is an average over yields at different

stages of the slowing. We extended our experiments to measure the size of individual

cells in liquid culture and in 3-d colonies. The ratio of the mean of the cell length in

liquid culture to that in 3-d colonies is consistent with our model.

Our second intriguing observation, which is supported by two independent sets

of measurements, is that the packing density inside colonies is very low, µ ∼ 0.03
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CFUs/µm3, so that the vast majority of a volume of a colony is not occupied by

viable cells. One possibility is that the colonies are largely void of viable cells, with

extracellular fluids and matrix fibers filling in the gaps. Another possibility is that

cells deep inside the colony are dead or dormant due to the absence of nutrients,

or due to other effects, such as mechanical stresses, so that the viable cells that we

measure are a minority of all the bacterial cells that existed. Our experiment shows

that the effect of the dead cells in a colony is negligible on the low packing density.

Furthermore, we discovered some disagreements between the experimental data

and the prediction of the model. In the colonies grown for 24 hours, dead cells

distribute randomly in the experiment, consistent with the prediction of the model.

However, in the colonies that have passed exponential regime, we found more dead

cells on the outer layers of colonies, while the model suggests the opposite. This

prediction, however, is derived based on the assumption of identical physiological

state of all cells, such as dead rate, cell size at birth, respiration rate. Only the growth

rate of each cell is different since it depends on the concentration of local nutrients.

While the size of E. coli newborn cells decreases as the growth rate decrease [49, 53],

the cell size at death is about constant and independent of the cell size at birth [160].

We hypothesize that the cells at the center of a colony are larger at birth and spend

much longer time to shrink until their size at death, and, therefore, fewer of these

cells are dead towards the center of a colony.

One interpretation of the close fit between the predictions of this minimal model

and the results of our soft-agar experiments is that heterogeneities beyond nutrient

access contribute little to the growth dynamics of bacteria in colonies. It remains

to be tested how general this result is. Is the E. coli in glucose-limited minimal

medium used in this experiment exceptional? Will the results hold for other bacterial

species and for complex media, like broth? We propose that the minimal model

developed here be used as a baseline to address such question of generality with other
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bacteria and media. Models are most useful when they do not fit data and thus

point to other factors contributing to the studied dynamics. For growth of bacteria

in colonies, such factors can be mechanical or other stresses, cell-cell interactions,

and others. From an evolutionary perspective particularly intriguing in this regard

would be studies of growth of bacteria in colonies initiated with multiple cells of

different genotypes (or even species), where deviations from the model could signal

such important phenomena as clonal competition or cooperation within a clone.
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CHAPTER V

SUMMARY AND OUTLOOK

In this dissertation, three projects exploring bacterial population dynamics during

infections are presented, involving both theoretical and experimental investigations.

I develop a stochastic model to verify the capability of the hypothesis of independent

action with phenotypic switching to explain the single−variant bottleneck in bacterial

infections and interactions with the innate immune system. The minimal model

employs interactions between bacteria and the immune system as well as inter-strain

interactions. The failure of the optimization of the minimal model suggests that the

minimal model is incapable of qualitatively explaining the single−variant bottleneck.

I propose several modifications to the minimal model to fit the data well and discuss

potential mechanisms of these modifications for bacterial infections in the host. These

proposed modifications provide multiple directions for further investigation of this

phenomenon.

To further explore the pathogenesis of bacterial infections, I designed an experi-

mental assay with novel set-up that can be broadly applied to experimental studies of

microbial population dynamics and pharmacodynamics. I applied this assay to study

the efficacy of antibiotics on bacterial populations grown as colonies. This study ex-

plored the effect on the efficacy of antibiotics by various colony features, including

the physical structure of bacterial colonies and the physiological states of the cells in

a colony. The results of these experiments showed that the efficacy of antiobitics not

only depends on the physiological states of cells in a colony, but also on the structure

of the colony. As discussed in Chapter 3, the structure of a bacterial colony, instead

of blocking the chemicals out of the community, affects the efficacies of antibiotics
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by the intercellular interactions and the interactions between cells and the chemicals.

This study provides further understanding of antibiotics treatment against bacterial

infections in physically structured habitats. Hopefully, it will provoke more research

on protocols of antibiotics treatment in such situations.

Last, to address the questions raised by the second project and to better under-

stand the population dynamics of bacterial colonies, I investigate the resource-limited

growth of bacterial colonies compared to plancktonic cells. In this project, I developed

a coarse-grained model to describe the population dynamics with minimum hetero-

geneity and verify the model by conducting both population growth experiment and

single-cell microscopic experiments. This study reveals similarities and differences

between the populations of bacterial plancktonic cells that grow from conventional

liquid cultures and of the bacterial cells in a colony. The minimal growth model

developed here is capable of accounting for all observations from population dynam-

ics experiments, provides verifiable predictions of bacterial population dynamics as

colonies, while raising more questions and hypotheses of the colony structure. To

verify these hypotheses, I performed single-cell experiments to image 3-d colonies in-

corporated with fluorescent markers using confocal microscopes. The results from this

investigation agree with the predictions of the coarse-grained growth model, demon-

strate quantitative features of the development of bacterial population in physically

structured habitats. They should be extended to and compared to the colony studies

of other bacterial species.

Bacterial populations are complex, so can be their models. However, complexity is

not always better in modeling biological systems. Models are indeed very important

to biological researchers. We build mathematical models based on experimental data,

develop computer simulations of these models to generate predictions, and go back

to experiments to verify these predictions. We can always add more complexities in a

theoretical model, deriving more predictions. However, the potential of experiments
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to verify these details is limited. Thus all the models developed in this dissertation

were started from the minimal models and then refined to fit the available data. If a

minimal model successfully explains the experimental data, as shown in Chapter 4,

it indicates that adding more complexity is not necessary for the questions concerned

in the current experiments. It also provides a baseline for further studies when the

observations go beyond the model. On the other hand, we can still learn from a

minimal model even when it fails, as shown in Chapter 2. We compare the simulated

results from models to the experimental data and search for alternative solutions

to fit the data better. This will require new experiments to verify those proposed

assumptions. Therefore the failure of a minimal model can direct further experimental

studies as well.

To summarize, in this dissertation, I present a combination of theoretical and

experimental studies on bacteria infections: the within-host interactions of bacterial

population and the innate immune system, the antibiotic treatment against bacte-

rial population on physically structured habitats, and the population dynamics in

3-d colonies. I hope that these studies inspire new thoughts and stimulate further

investigations towards the understanding of bacterial infections.
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APPENDIX A

ANTIBIOTICS IN RICHER MEDIUM

A.1 40X MIC antibiotic exposure in 3X MHII

Figure A.1: The antibiotic-mediated killing of S. aureus Newman cultures exposed
to 40X MIC of ciprofloxacin (CIP), gentamicin(GEN), vancomycin(VAN) or oxacillin
(OXA) in liquid cultures(LIQ), as planktonic cells dispersed from colonies (DIS),
and as intact colonies (COL). An average of 50 colonies was inoculated on each
filter. The CON cultures are antibiotic-free control. Means and standard errors for
three replicates. A- Cultures grown for 24 hour before exposure to the antibiotic, B-
Cultures grown for 48 hours before exposure to the antibiotic. Viable cell density was
measured at 5 hours after exposure (blue bars) and at 24 hours after exposure (red
bars). Dashed lines represent the cell densities before transferring as a guideline.

A.2 MICs of bactericidal antibiotics in 3X MHII

In Fig. A.1, the cultures were transferred into 3X MHII liquid broth or onto 3X MHII

agar with or without antibiotics. The concentrations of the bactericidal antibiotics
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applied in these cultures were based on the MICs estimated in the same rich medium

– 3X MHII broth. Gentamicin in 3X MHII has a 7 fold higher MIC than in standard

MHII broth. The difference for the other antibiotics was not dramatic, and we used

the standard MIC for those (Table.1). For the bacteria being exposed to antibiotics

in 3X MHII, the concentration of gentamicin we used in this enriched-media was

eventually 68 µg/ml.

Table 5: Antibiotics’ sources and MICs in 3X MHII liquid broth with differ-
ent inoculum densities. The MICs of six bactericidal antibiotics in 3X MHII broth
of different concentrations and cultures initiated with different numbers of viable cells,
unit of the concentrations is in µg/ml.

Antibiotics 5× 105 cells/ml 5× 107 cells/ml
V ancomycin 2.5 5
Gentamicin 6.9 50
Ciprofloxacin 0.6 0.6
Daptomycin 1.3 4.4
Ampicillin 1.4 2.5
Oxacillin 0.3 0.6
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APPENDIX B

SUPPLEMENTAL INFORMATION ON PARAMETER

FITTING OF 3-D COLONY MODEL
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Table 6: Covariances and correlations of the fitted parameters.

gmax, hr−1 K, µg/L al, 106 CFUs/µg glucose lag, hr m, hr−1 ac, hr D, 106µm2/hr µ, CFUs/µm3

0.029 0.19 0.0018 0.0041 0.0047 6.0×104 0.018 5.1×104

0.99 3.4 0.022 0.047 0.23 0.11 -0.018 0.0056
0.022 0.015 0.0049 -0.0021 0.061 0.0023 -0.0012 1.0×104

0.26 0.19 0.046 0.041 -0.018 0.0035 -0.021 -2.8×104

0.12 0.082 0.81 0.50 1.8 0.070 -0.089 9.1×104

0.021 0.014 0.23 0.14 0.28 0.018 -0.012 4.5×104

0.25 0.26 -0.046 -0.33 0.041 -0.27 0.12 0.0033
0.19 0.18 0.11 -0.12 0.24 0.27 0.77 1.5×104

The upper right quadrant shows in Roman font the covariance of the fitted parameters established by bootstrapping (see
Materials and Methods). The diagonal are the parameter variances. The lower left quadrant shows the correlation coefficients
in Italic. Units for the parameters are the same as in Table 4. While we report these values, we emphasize that these values
must be interpreted with care since posterior distributions of the parameters are sloppy [161] and do not look like multivariate
normal distributions. Instead they show long nonlinear ridges of parameters with nearly-equivalent likelihoods.
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