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Abstract 

Implementation of Discriminative Stimuli in the Evolutionary Theory of Behavior 

Dynamics 

By Cyrus N. Chi, M.S., M.A. 

McDowell’s evolutionary theory of behavioral dynamics (ETBD) is a complexity theory that 

treats behaviors within an organism as ‘agents’ that interact with each other according to 

evolutionary principles. The theory has been used to animate artificial organisms (AOs) that 

produce behaviors that are considered the predictions of the theory. The theory’s predictions 

have been found to be congruent with a number of quantitative findings in environments with 

reinforcers and punishers. However, the theory as it currently exists does not have a paradigm for 

engaging with discriminative stimuli in the environment. In order to enhance the theory, 

elements of Estes’ stimulus sampling theory were adapted into a form compatible with the ETBD 

and added into the ETBD’s functional loop. AOs animated by the modified ETBD were tested in 

concurrent schedule, and multiple schedule environments. When AOs were found to not 

appropriately behave in the similar manner to live organisms, additional modifications based on 

behavioral principles (e.g. reinforcement based attention, background reinforcement) were added 

in order to improve AO functioning. The results show that the modified ETBD was able to 

replicate the previous finding on concurrent schedule behavior and predict learning based on 

discriminative stimuli, but not all features of live organism behavior was able to be reproduced 

with the modified ETBD described here. The principles that functioned well (e.g. entropy-based 

observation) and the additional principles deemed necessary (i.e. durability of learning, 

selectivity for stimuli) to model discriminative stimulus behavior are discussed. 

        Keywords: ETBD, Stimulus Sampling Theory, Stimulus Control, Complexity Theory 



DISCRIMINATIVE STIMULI IN THE ETBD  3 
 

  

Implementation of Discriminative Stimuli in the Evolutionary Theory of Behavior 
Dynamics 

 

By 

 

Cyrus N. Chi 
B.A., Rutgers, The State University of New Jersey, 2001 
M.S., Rutgers, The State University of New Jersey, 2005 

M.A., Emory University, 2019  
 
 

Advisor: Jack J McDowell, Ph. D 

 

 

 

 

 

 

 

 

A dissertation submitted to the Faculty of the  
James T. Laney School of Graduate Studies of Emory University  

in partial fulfillment of the requirements for the degree of  
Doctor of Philosophy in Psychology  

2024 
 

 



DISCRIMINATIVE STIMULI IN THE ETBD  4 
 

Acknowledgements 

 

I thank my family for all of their wisdom and encouragement. 

I thank my wife for being there with me through everything and for her unending patience. 

Most of all, I thank Dr. McDowell for his guidance, and for giving me the chance to grow in his 

natural garden.  

 

 

 

  



DISCRIMINATIVE STIMULI IN THE ETBD  5 
 

 

 

Contents 

I. Introduction ............................................................................................................................... 10 
Introduction to Multiple Schedules ........................................................................................... 11 

Clinical Relevance of Multiple Schedules ............................................................................ 12 
Introduction to Stimulus Generalization ................................................................................... 15 
Evolutionary Theory of Behavioral Dynamics ......................................................................... 23 

The Artificial Organisms ...................................................................................................... 24 
The Rules of the ETBD ......................................................................................................... 25 
The Environmental Components. ......................................................................................... 27 
Stimulus control in the ETBD ............................................................................................... 27 

Stimulus Sampling Theory ........................................................................................................ 29 
Principles of SST .................................................................................................................. 32 

II. Theoretical Design ................................................................................................................... 33 
Benefits of Incorporating Elements of SST into the ETBD ...................................................... 33 

Implementation ..................................................................................................................... 35 
The Modified Environment ................................................................................................... 35 
The Artificial Organism ........................................................................................................ 35 
Rules of the modified ETBD ................................................................................................ 35 

The Present Study ...................................................................................................................... 39 
III. General Methods ..................................................................................................................... 39 

Subjects, Apparatus, and Materials ........................................................................................... 39 
IV. Experiment Series One ........................................................................................................... 40 

Experiment Series One Methods ............................................................................................... 40 
Modification One .................................................................................................................. 41 
Modification Two. ................................................................................................................ 43 
Data Analysis for Experiment One ....................................................................................... 44 

Experiment Series One Results ................................................................................................. 44 
Phase One .............................................................................................................................. 44 
Phase Two ............................................................................................................................. 45 

Experiment Series One Discussion ........................................................................................... 48 
V. Experiment Series Two ............................................................................................................ 52 

Experiment Series Two Methods .............................................................................................. 52 
Modification Three ............................................................................................................... 53 
Concurrent Schedules Review .............................................................................................. 54 
Modification Four ................................................................................................................. 55 
Data Analysis for Experiment Two ...................................................................................... 56 

Experiment Series Two Results ................................................................................................ 57 
Modification Three ............................................................................................................... 57 
Concurrent Schedules Review .............................................................................................. 58 

Experiment Series Two Discussion ........................................................................................... 62 
VI. General Discussion ................................................................................................................. 66 

Limitations ................................................................................................................................ 70 



DISCRIMINATIVE STIMULI IN THE ETBD  6 
 

Conclusions ............................................................................................................................... 71 
VII. Future Directions ................................................................................................................... 71 

Durability of learning ............................................................................................................ 72 
Selectivity for a particular stimulus ...................................................................................... 74 

References ..................................................................................................................................... 76 
Table 1 .......................................................................................................................................... 84 

Details of Experimental Procedures, Experiment One ............................................................. 84 
Table 2 .......................................................................................................................................... 85 

Details of Experimental Procedures, Experiment Series Two .................................................. 85 
Table 3 (Part 1 of 3) ...................................................................................................................... 86 

Details of Experimental Procedures, Experiment Three........................................................... 86 
Table 3 (Part 2 of 3) ...................................................................................................................... 87 

Details of Experimental Procedures, Experiment Three........................................................... 87 
Table 3 (Part 3 of 3) ...................................................................................................................... 88 

Details of Experimental Procedures, Experiment Three........................................................... 88 
Table 4 .......................................................................................................................................... 89 

Experiment 1, Phase One data .................................................................................................. 89 
Table 5 .......................................................................................................................................... 90 

Random Five Observation Style (Experiment 1 Phase 2, Dev. 1) ............................................. 90 
Table 6 .......................................................................................................................................... 92 

Entropy 5% Observation Style (Experiment 1, Dev. 1) ............................................................. 92 
Table 7 .......................................................................................................................................... 94 

Entropy 2% Observation Style (Experiment 1, Dev. 1) ............................................................. 94 
Table 8 .......................................................................................................................................... 96 

Impact of population size on sensitivity data (Experiment 1, Dev. 2) ....................................... 96 
Table 9 .......................................................................................................................................... 97 

Experiment 1, Conditions: stimulus element 10, EN02, and Behavior Population 200 ........... 97 
Table 10 ........................................................................................................................................ 98 

Matching law parameters (Experiment Series Two, Modification Three) ................................ 98 
Table 11 ........................................................................................................................................ 99 

ANOVA Table - 80% Training Cut off (Set 1, Experiment 3, Modification Six) ....................... 99 
Table 12 ...................................................................................................................................... 100 

ANOVA Table - 80% Training Cut off (Set 2, Experiment 3, Modification Six) ..................... 100 
Table 13 ...................................................................................................................................... 101 

ANOVA Table – Primary Contrast (Set 3, Experiment 3, Modification Six) .......................... 101 
Table 14 ...................................................................................................................................... 102 

ANOVA Table – Primary Contrast (Set 4, Experiment 3, Modification Six) .......................... 102 
Figure 1 ....................................................................................................................................... 103 
Example of Stimulus Discrimination in a Multiple Schedule ..................................................... 103 
Figure 2 ....................................................................................................................................... 104 
Figures from Guttman and Kalish 1956 ..................................................................................... 104 
Figure 3 ....................................................................................................................................... 105 
Figure from Blough, P. M. 1972 ................................................................................................. 105 
Figure 4 ....................................................................................................................................... 106 
Figure from Thomas, D. R., & King, R. A., 1959 ....................................................................... 106 
Figure 5 ....................................................................................................................................... 107 



DISCRIMINATIVE STIMULI IN THE ETBD  7 
 

Evolutionary Theory of Behavioral Dynamics - Flowchart ....................................................... 107 
Figure 6 ....................................................................................................................................... 108 
SST Sampling Example ............................................................................................................... 108 
Figure 7 ....................................................................................................................................... 110 
The Modified ETBD Flow Chart................................................................................................. 110 
Figure 8 ....................................................................................................................................... 112 
Histogram Comparison ............................................................................................................... 112 
Figure 9 ....................................................................................................................................... 113 

Average Matching Log Plot - ETBD Replication .................................................................... 113 
Figure 11 ..................................................................................................................................... 115 

Impact of Behavior Population Size on Matching Sensitivity ................................................. 115 
Figure 12 ..................................................................................................................................... 116 

Average Matching Log Plot Experiment 1,  Conditions: stimulus element 10, EN02, and 
Behavior Population 200 ........................................................................................................ 116 

Figure 13 ..................................................................................................................................... 117 
Behavior of AOs on Multiple Schedules .................................................................................. 117 

Figure 14 ..................................................................................................................................... 118 
Impact of background reinforcement on reinforced and extinction schedules ....................... 118 

Figure 15 ..................................................................................................................................... 119 
Impact of background reinforcement rate on matching sensitivity ......................................... 119 

Figure 16 ..................................................................................................................................... 120 
Absence of constant stimulus element has no impact on average rates of behavior (Exp 2, Dev 
4) .............................................................................................................................................. 120 

Figure 17. .................................................................................................................................... 121 
Initial learning (Experiment Series 2, Modification 4) ........................................................... 121 

Figure 18 ..................................................................................................................................... 122 
Stimulus Element quantity impact on behavior during reinforced schedules (Exp II, Dev 4) 122 

Figure 19 ..................................................................................................................................... 123 
Stimulus Element quantity impact on behavior during extinction schedules (Exp II, Dev 4) . 123 

Figure 20. .................................................................................................................................... 124 
Impact of stimulus element Quantity on learning during first R+ Schedule (Exp 2, Dev 4) ... 124 

Figure 21 ..................................................................................................................................... 125 
Impact of stimulus element quantity on learning during first Extinction Schedule (Exp 2, Dev 
4) .............................................................................................................................................. 125 

Figure 22 ..................................................................................................................................... 126 
Behavior on the most optimal conditions ................................................................................ 126 

Figure 23 ..................................................................................................................................... 127 
Reinforcement Context Kernel ................................................................................................ 127 

Figure 24 ..................................................................................................................................... 128 
Window Size Adjustment ......................................................................................................... 128 

Figure 25 ..................................................................................................................................... 129 
Stimulus Generalization Gradient using a Reinforcement Context Kernel ............................ 129 

Figure 26 ..................................................................................................................................... 130 
Figure 27 ..................................................................................................................................... 131 

Entropy to Selection Percentage Function Forms .................................................................. 131 
Figure 28 ..................................................................................................................................... 132 



DISCRIMINATIVE STIMULI IN THE ETBD  8 
 

Stimulus generalization gradients (Experiment Three, Modification Five) ............................ 132 
Figure 29 ..................................................................................................................................... 133 

Stimulus generalization gradients behavior totals (Experiment Three, Modification Five) ... 133 
Figure 30 ..................................................................................................................................... 134 

AOs with under 10% behaviors on target during testing (Experiment Three, Modification Five)
 ................................................................................................................................................. 134 

Figure 31 ..................................................................................................................................... 135 
Impact of Additional Training Generations (Experiment Three, Modification Five) ............. 135 

Figure 32 ..................................................................................................................................... 136 
Stimulus generalization gradients, Condition: Yes Wall, Yes Background (Experiment Three, 
Modification Six) ..................................................................................................................... 136 

Figure 33 ..................................................................................................................................... 137 
Stimulus generalization gradients, Condition: Yes Wall, No Background (Experiment Three, 
Modification Six) ..................................................................................................................... 137 

Figure 34 ..................................................................................................................................... 138 
Stimulus generalization gradients, Condition: No Wall, Yes Background (Experiment Three, 
Modification Six) ..................................................................................................................... 138 

Figure 35 ..................................................................................................................................... 139 
Stimulus generalization gradients, Condition: No Wall, No Background (Experiment Three, 
Modification Six) ..................................................................................................................... 139 

Figure 36 ..................................................................................................................................... 140 
Adjusted Confidence Intervals (Experiment Three, Modification Six) ................................... 140 

Figure 37 ..................................................................................................................................... 141 
Gaussian and Exponential function fits .................................................................................. 141 

Figure 38 ..................................................................................................................................... 142 
Background Reinforcement Impact on Concurrent Schedule Sensitivity  (Experiment 3 
Behavior on Concurrent Schedules Review) ........................................................................... 142 

Figure 39 ..................................................................................................................................... 143 
Impact of Behavior Population Quantity on Concurrent Schedule Sensitivity  (Experiment 3 
Behavior on Concurrent Schedules Review) ........................................................................... 143 

Figure 40 ..................................................................................................................................... 144 
Impact of Selection Modifier Curvature on Concurrent Schedule Sensitivity  (Experiment 3 
Behavior on Concurrent Schedules Review) ........................................................................... 144 

Figure 41 ..................................................................................................................................... 145 
AOs with under 10% behaviors on target during testing  Wall and Background Condition 
(Experiment Three, Modification Six) ..................................................................................... 145 

Appendix A ................................................................................................................................. 146 
Implementation of Stimulus Generalization Environment ...................................................... 146 
Experiment Series Three Methods .......................................................................................... 147 

Phase One. ........................................................................................................................... 147 
Modification Five ................................................................................................................ 149 
Modification Six ................................................................................................................. 151 
Concurrent Schedule Review .............................................................................................. 153 
Data Analysis for Experiment 3 .......................................................................................... 154 

Experiment Series Three Results ............................................................................................ 154 
Phase One, Modification Five ............................................................................................. 154 



DISCRIMINATIVE STIMULI IN THE ETBD  9 
 

Modification Six ................................................................................................................. 155 
Concurrent Schedule Review .............................................................................................. 157 

Experiment Three Discussion ................................................................................................. 158 
 

  



DISCRIMINATIVE STIMULI IN THE ETBD  10 
 

I. Introduction 

This dissertation is focused on expanding McDowell’s computational Evolutionary 

Theory of Behavior Dynamics (ETBD; McDowell, 2004) to allow for the implementation of 

discriminative stimulus control. The ETBD, as it currently stands, accounts only for response-

consequence phenomena and cannot account for antecedent-response-consequence phenomena 

like what is seen in multiple schedules and many real-world situations. This gap was partially 

bridged by adapting the concepts in Estes’ mathematical Stimulus Sampling Theory (SST; Estes, 

1950) into forms that are compatible with complexity theory, and then incorporating these into 

the ETBD. The modified ETBD was tested using multiple schedule experiments and stimulus 

generalization experiments to determine if the theory could produce animal-like behavior in 

those paradigms.  

 The dissertation is divided into three components. The first component focused on 

adapting SST into a computational form and merging it with the ETBD. Experiment series one 

was completed to verify that the modified ETBD can generate artificial organisms that duplicate 

an iconic finding of the unmodified ETBD. The second component tested the behavior of 

artificial organisms that are animated by the modified ETBD in a multiple schedule. Experiment 

series two aimed to establish that artificial organisms can discriminate between stimuli similarly 

to live organisms within a multiple schedule. The third component tested if artificial organisms 

would be able to produce animal-like stimulus gradients. Experiment series three ran artificial 

organisms through an experimental procedure similar to the one used by Guttman and Kalish 

(1956). Each experiment was accompanied by two modifications each, for a total of six 

modifications. The modifications are further changes to the artificial organisms or the 

experimental environment made in response to phenomena observed in interim results. Although 



DISCRIMINATIVE STIMULI IN THE ETBD  11 
 

all modifications increased understanding of the underlying challenges, not all changes 

implemented in the modifications were efficacious enough to be included in further testing. After 

the second and third experiments were completed, due to the presence of modifications, versions 

of the first experiment were run in order to certify that the artificial organisms that were 

restructured as specified by the modifications were still able to perform in an expected manner 

on concurrent schedules.  

 This document consists of seven sections. The first section reviews multiple schedules, 

the phenomena of stimulus generalization, the ETBD, and SST along with their significant 

findings. The second section discusses integration of the ETBD and SST. The third section 

discusses general methods used in all studies. The fourth section covers experiment series one. It 

contains the experimental procedures, analysis methods, results, and discussion for this study. 

The fifth section covers experiment series two. It contains the experimental procedures, analysis 

methods, results, and discussions for this study.. The sixth section contains a general discussion 

of all three experimental series and their results in context of the field. Finally, section seven 

discusses critical components necessary for further work into stimulus control for the ETBD. For 

the sake of brevity, the methods, results, and discussion for the stimulus generalization 

experiments (experimental series three) were placed into Appendix A. 

Introduction to Multiple Schedules 

Multiple schedules are a behavioral experimental arrangement in which two or more 

schedules of reinforcement are arranged sequentially with discriminative stimuli presented 

concurrently with each schedule (Pierce & Cheney, 2013). During a multiple schedule, each 

component schedule is presented to the subject sequentially for a predetermined amount of time 

or number of reinforcers. After all of the component schedules are presented, the sequence 
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repeats until the end of the multiple schedule. For example, if the multiple schedule has two 

component schedules, schedule A and schedule B, then the organism will be presented with 

schedule A, then B, then A, and so on until the end of the experiment.  

Through exposure to a multiple schedule, an organism is expected to demonstrate a 

differential response to the discriminative stimuli (Skinner, 1938). In Figure 1, the hypothetical 

behavioral results from a multiple schedule is shown. The example shows the session-by-session 

development of an organism’s behavior during a multiple schedule with (i) a variable interval 

schedule that arranges reinforcement for the first response after, on average, 2 minutes (VI 2-

min) and (ii) an extinction schedule (EXT). In the figure, the discriminative stimulus for the VI 

2-min is shown as SD and the extinction stimulus for the EXT is shown as SΔ. As the number of 

sessions increases, the behavior between the two component schedules diverges markedly, 

showing that the organism is successfully differentiating between the two schedules by means of 

their discriminative stimuli.  

In addition to research into discriminative stimuli, multiple schedules have been used to 

study behavioral contrast (Reynolds, 1961), behavioral momentum (Nevin, 1992), response rate 

in the presence of drugs in animal models (Gonzalez, 2002), and stimulus generalization 

(Hanson, 1959). Stimulus generalization will be discussed further in a later section. 

Clinical Relevance of Multiple Schedules. One of the earliest demonstrations of 

multiple schedules used in training human behavior was by Bijou and Orlando (1961). They 

trained 46 institutionally housed children diagnosed with intellectual disabilities to have 

differential rates of lever-pressing based on the presence of a red or blue light. This experiment 

showed that multiple schedules had the potential to be an efficient teaching tool for complex 

behaviors that may require multiple steps. Since this experiment, multiple schedules have been 
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used regularly by behavior analysts to teach specific skills, assess preferences, and control rates 

of behavior.  

In school settings, multiple schedules have been used to manage disruptively high-rate 

requests for teacher attention by controlling the availability of attention from instructors. In one 

experiment, using multiple colored leis as discriminative stimuli, an instructor would respond to 

specific groups of students based on the discriminative stimulus present and ignore the other 

students (n = 20; Nava et al., 2016; n = 2; Niedfeld et al., 2020). In this experiment, question 

asking behavior would be put on extinction if the teacher was wearing a lei with a certain color, 

and reinforced with attention if the teacher was wearing a lei with a different color. Student 

behavior came under discriminative stimulus control, leading to reduced classroom disruption 

and increased instruction time. This training has been found to be effective with students in 

preschool (Vargo et al., 2014) up to sixth grade in both small and large group settings 

(Cammilleri et al., 2008).  

Multiple schedules have also been used with children with autism spectrum disorder 

(ASD) to promote adaptive behavior and assess for preferences in non-verbal or younger 

children. For example, toe walking is a behavior that is found in up to 20% of ASD cases (Ming 

et al., 2007) and can require invasive surgery to surgically counteract the shortening of the 

Achilles tendon, or serial casting to stretch the muscles around the heel. Multiple schedule 

conditioning has been found to substantially reduce toe walking behavior (n = 1; Hodges et al., 

2018), preventing the need for more extreme measures. In their study, Hodges and her 

collaborators used a wristband as a discriminative stimulus and used both rewards and 

punishments (e.g. rewarding praise like ‘nice walking’, and punishments like saying “no toe 

walking; the wristband is on”) while the child was wearing the wristband and gave neither 
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rewards nor punishments while the wristband was off. After the entire protocol, with the 

wristband on, the child was able to walk 1000 steps in a community setting with toe-walking 

occurring during only 0.03% of the steps. The authors noted that prior to the treatment, rewards 

and punishments were also used to try to control toe-walking, but were found to be ineffective. 

The presence of the discriminative stimulus, the wristband, was integral for establishing stimulus 

control over the toe-walking behavior. Treatment using multiple schedules has also been found 

to be effective in increasing the use of mands (i.e. verbal requests for reinforcement; Akers et al., 

2019) rather than other maladaptive behaviors, and reducing compulsive-like behavior in ASD 

patients (Chok & Harper, 2016).  

Multiple schedules have also been used extensively in Functional Communication 

Training (FCT; Carr & Durand, 1985) as a method for schedule thinning. In FCT, the function of 

a challenging behavior is identified and a functionally equivalent communication response is 

taught/established while the challenging behavior is placed on extinction. Once the training is 

complete, the amount of reinforcement given during the training is often unsustainable in an in 

vivo setting, like the home or in school. This can lead to a delay of reinforcement or, in the worst 

case, the absence of reinforcement after a mand. This in turn can lead to recovery of the 

disruptive behavior, resurgence (i.e. treatment relapse), or the appearance of other problematic 

behavior. A multiple schedule can be used to gradually reduce the amount of reinforcement 

needed while also keeping the disruptive behavior at a low level (n = 4; Fisher et al., 1998; 

Hanley et al., 2001). This has been shown to be effective when addressing (i) multiple target 

behaviors (e.g. aggression, disruptions, screaming, self-injurious behavior, etc.,), (ii) both 

positively and negatively reinforced behaviors, (iii) multiple levels of intellectual ability, and (iv) 

children of all ages (n = 20; Fisher et al., 2020; Greer et al., 2016; Shamlian et al., 2016).  
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Behavioral thinning in FTC has been further developed to create individualized 

behavioral thinning multiple schedules (n = 5; Call et al., 2018). In a typical behavioral thinning 

multiple schedule, there is no systematic method used for determining the rate of behavioral 

thinning. Call and colleagues altered the duration of the component schedules based on the 

participant’s response patterns during treatment. This could potentially reduce the time spent 

during behavioral thinning for compliant patients, and reduce the possibility of relapse in more 

difficult patients. 

The research into multiple schedules is one area of behavioral research that has been 

found to be useful outside of the laboratory. However, most clinical studies using multiple 

schedules have limited sample sizes (typically ranging from 1 to 20). Experiments that increase 

sample sizes, or streamline the design or testing of various protocols, could be of benefit to the 

field. Extension of the ETBD to allow modeling of behavior on multiple schedules would be able 

to meet this need. The number of AOs that can be run is only limited by computer power and 

time. In addition, since AOs that are animated by the ETBD can be placed into any schedule 

environment, clinical protocols can be easily tested and modified to increase effectiveness or to 

reduce treatment time.  

Introduction to Stimulus Generalization 

This introduction to stimulus generalization covers the basic areas of stimulus generation 

relevant to this dissertation. There is a large amount of stimulus generalization-related 

phenomena that are not relevant to the current series of experiments, although they may one day 

be excellent targets for future investigation using AOs animated by the ETBD. This section will 

focus on single discrimination stimulus generalization gradients, and discuss (i) basic definitions 

and methods, (ii) the inputs, (iii) outputs, and (iv) factors in stimulus generalization.  
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Stimulus generalization is a manifestation of stimulus control. Stimulus control is 

observed when an event (the controlling stimulus) alters the probability that a response will 

occur (Pierce & Cheney, 2013, p. 254) due to the differential correlation between the event and 

the consequences the response may engender. When the probability of the response increases, 

then the stimulus is called a discriminative stimulus. When the probability of the response 

decreases, then the stimulus is called an extinction stimulus. While this is a relatively straight-

forward dynamic, it is not the end of the story. When another novel stimulus that is similar to the 

controlling stimulus on some dimension appears (e.g. the color pink and the color red, or a 1000 

hertz tone and a 990 hertz tone), organisms will still have a change in response, but not as 

strongly as it would if the controlling stimulus was presented. Then, as the distance between the 

novel stimulus and discriminative stimulus increases, the organism’s response to the novel 

stimulus will (i) monotonically decrease, in the case of a discriminative stimulus, or (ii) 

monotonically increase, in the case of an extinction stimulus. At some point the distance will be 

great enough that there is no change in response to the novel stimulus. This pattern of behavior is 

what is referred to as stimulus generalization. Put simply, “Stimulus generalization is the 

tendency, after experience with a given stimulus, to react in the same way to other, similar 

stimuli” (Staddon & Reid, 1990). 

Stimulus generalization has long been investigated. Although some have traced stimulus 

generalization back to Aristotle’s principle of association by resemblance (Shepard, 1987), the 

most common starting point is generally considered to be Pavlov’s work with salivating dogs. 

When he trained dogs to salivate in response to a tone, he found that similar tones also acquired 

similar properties to the original tone, the conditioned stimulus. Those properties were also 

found to diminish as the new tone’s similarity to the original tone diminished (Pavlov, 1927, p. 



DISCRIMINATIVE STIMULI IN THE ETBD  17 
 

113). From that point onward, there were many experiments done to explore stimulus 

generalization, but there was a significant amount of controversy about the cause of stimulus 

generalization, and some questioned whether it existed at all in the form described (Razran, 

1949). It is likely that methodological challenges led to a portion of the controversy. It wasn’t 

until Guttman and Kalish’s study, which was based on a format recommended by Skinner (1950, 

p. 204), that a reliable method of empirically generating stimulus generalization gradients was 

established.  

In Guttman and Kalish’s paper (1956), they used 24 naive pigeons that were restricted to 

80% of their free-feeding body weight. Using a modified operant chamber, the birds were trained 

to eat from a magazine and, through differential reinforcement of successive approximations 

(i.e., shaping), were trained to peck at a lit key. The pigeons were split into 4 groups, and each 

groups was trained to peck at the lit key to receive reinforcement on one of four wavelengths: 

530, 550, 580, and 600Mµ. After a series of trainings, they were then run through a 

generalization test, which was carried out under extinction. During the generalization test, each 

bird was exposed to 12 series of 11 different wavelengths of light presented in random order. 

During each series, the key in the Skinner box was lit with one of the 11 different wavelengths of 

light for 30 seconds, followed by a 10 second black out period. Then the pattern would repeat 

until all 11 wavelengths were presented. After this, additional training to the initial four 

wavelengths was done, followed by a repeat of the generalization test. For most groups, the 11 

wavelengths were divided such that, along with the wavelength of the discriminative stimulus, 

and five wavelengths were taken from wavelengths below the conditioned stimuli and five 

wavelengths were taken from the wavelengths above the conditioned stimuli. The wavelengths 

chosen were all between 10-20 Mµ (i.e., millimicron or nanometer) apart from each other. 
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Figure 2 shows some of the results from their experiment. The mean generalization 

gradients for the first generalization test (Figure 2, left subplot) show a clear peak at the 

wavelength of the conditioned stimuli for each group with a decrementing number of responses 

as the distance from the conditioned stimulus increases. Individual generalization gradients for 

12 of the pigeons (Figure 2, right subplot) all show the same general shape, although there are 

individual differences in height, and slope. The solid line in the right subplot is the result from 

the first generalization test, while the dashed line is the result of the second generalization test. 

For the 12 pigeons shown here, there is a wider amount of variability in height during the second 

generalization test, as well as a marked decrease in number of responses in most cases, although 

not all. As Guttman and Kalish note, the overall decrease in behavior in the second 

generalization test is likely due to the fact that the generalization testing was done under 

extinction. While there are other findings from the study, the most critical part of their study that 

has likely led to most of its 985 citations on Google Scholar is the “orderliness and 

reproducibility of the generalization process” (Guttman & Kalish, 1956, p. 84). 

In their study, Guttman and Kalish used particular wavelengths of light as their 

discriminative stimulus. The wavelengths around the conditioned stimulus are considered to be 

along the ‘stimulus dimension.’  These stimulus dimensions are generally considered to be 

innate, based on sensory organs or neural processing (Ganz & Riesen, 1962; Honig & Urcuioli, 

1981) but they have also been found to be influenced by adopted generalization rules in humans 

(Zaman et al., 2022). There are generally two categories of stimulus dimension; the intensity 

dimension and the rearrangement dimension. There are also stimuli which do not neatly fall into 

the two categories. The stimuli along an intensity dimension, as the name suggests, vary based 

on the amount of sensory stimulation they provide the test subject. Experiments using a the 



DISCRIMINATIVE STIMULI IN THE ETBD  19 
 

volume of white noise (Zielinski & Jakubowska, 1977), the brightness of a fake egg (Baerends & 

Drent, 1982), or the chemical concentration of an odor (Bhagavan & Smith, 1997) are engaging 

subjects with intensity-based stimuli. Stimulus gradients in this category have a markedly 

different shape from the one described above. When stimuli at higher intensity than the 

conditioned stimulus are presented, the rate of behavior will tend to monotonically increase (in 

the case of a discriminative stimulus), rather than decrease. Stimuli along the rearrangement 

dimension in contrast to the intensity dimension, have a constant amount of sensory stimuli 

presented, but differ in terms of arrangement. For example, studies which use wavelengths light 

(Guttman, 1959; Zidar et al., 2019), sound frequencies (Galizio, 1985), or locations in space 

(Cheng et al., 1997), and line orientations (Bloomfield, 1967; Soto & Wasserman, 2010) all fall 

into this category. Other stimulus dimensions are harder to categorize, like complex shapes 

(Ferraro & Grisham, 1972), visual patterns (Pearce et al., 2008), or the calls of monkeys 

(Masataka, 1983). Although some stimulus dimensions have been suggested to be fit into one of 

the two categories based on the similarity of their stimulus generalization gradient shape 

(Ghirlanda, 2002), other stimulus dimensions do not fall neatly into either category. 

Stimulus gradients are typically generated using response rate or response probability as 

the dependent variable. This response data is then processed in order to determine the 

relationships between the independent variables and the dependent variables. The most common 

ways the data are statistically organized include: (i) the area under the gradient, (ii) the height or 

elevation of the condition with the greatest responding (i.e. the peak), (iii) the slope, (iv) form, 

and (v) symmetry. The data are also averaged across multiple organisms due to the amount of 

variation between organisms, or normalized to obtain relative generalization gradients. 

Sometimes these methods are used in tandem to describe a phenomena. For example, the 
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condition with the greatest responding during testing is typically the one that presents the 

discriminative stimulus. However, in some discrimination studies that have both an extinction 

stimulus and a discriminative stimulus present on the same dimension, the peak will occur on a 

novel stimulus and not when the conditioned stimulus is presented. In addition, the peak will be 

on the far side of the conditioned stimulus, away from the extinction stimulus. The phenomenon 

is called peak shift, or response bias (Tinbergen, 1951). The slope is often described in a 

qualitative manner, with it being considered “steep” or “shallow” (Lotfizadeh et al., 2012). 

Although this simplification can be somewhat sufficient for direct comparisons with straight 

slopes, other more rounded shapes (Figures 3 and 4; Blough, 1972; Thomas & King, 1959) can 

at times be found. The form of the stimulus generalization gradient has been found to be 

Gaussian in nature in the majority of studies (Ghirlanda & Enquist, 2003) although there are 

some theories that proposed an exponential form (Shepard, 1987) and others that suggested that 

both forms might be possible (Staddon & Reid, 1990). In terms of symmetry, the standard 

stimulus generalization gradient is thought to be symmetrical, but there are two areas where 

asymmetries have been found. The first possible asymmetry is the location of peak response, 

described earlier as peak shift. The second is where the slope on one side of the stimulus 

generalization gradient is steeper than the other, leading one side of the gradient to have a larger 

area. This is sometimes called area shift (Rilling, 1977). While these perspectives are generally 

considered and analyzed separately, there have been new techniques that allow more complex 

analysis like cluster analysis (Zaman et al., 2019) or Bayesian parameter estimation (Lee et al., 

2021). 

The exploration of the factors that underlie stimulus generalization is an ongoing process. 

Beside the strict, operational definitions described above, researchers have endeavored to relate 
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the physical phenomena to conceptual or cognitive roots. The psychophysical conceptual 

framework suggested that the rate of responding was a combination of the organism’s sensitivity 

to variation along the test dimension, and their sensitivity to the threshold for responding (Honig 

& Urcuioli, 1981; Lashley & Wade, 1946). This view was supported by work done with pigeons. 

It was found that there was a correspondence between features of the pigeon’s sensitivity for hue 

discrimination (Wright, 1974) and variations in stimulus generalization gradient features 

(Blough, 1972; Jitsumori, 1978).  However, these are not the only factors that impact stimulus 

generalization. Existing conditions before exposure to a stimulus, called establishing operations 

or motivating operations (e.g. food and or water deprivation of the organism, or pre-exposure to 

a stimulus that is later punished, etc.; Laraway et al., 2003; Vervliet et al., 2010), have also been 

found to lead to changes in generalization gradient height and slope angle (Lotfizadeh et al., 

2012). On the other end of the spectrum, consequences (e.g. reinforcers and punishers) have also 

been found to lead to shallower generalization gradients, with punishers leading to the shallowest 

gradients and the most generalization (Schechtman et al., 2010). In addition, the magnitude or 

intensity of punishment following a stimulus can also impact stimulus generalization. Volunteers 

who were exposed to higher magnitude aversive stimuli had greater generalization than 

individuals exposed to lower magnitude aversive stimuli (Dunsmoor et al., 2017). Training 

length has also been found to impact generalization gradients. Studies in both humans using 

time-compressed speech (Banai & Lavner, 2014) and with bees using visual patterns (Stach & 

Giurfa, 2005) have found increased responses to similar stimuli, as well as broadening of the 

range of generalization.  

There has also been work looking at individual differences. One study was able to find a 

weak relationship between behavioral type and red junglefowl chicks’ stimulus generalization 
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between novel stimuli (Zidar et al., 2019). A behavioral type, or coping style, is “a coherent set 

of behavioral and physiological stress responses which is consistent over time and which is 

characteristic to a certain group of individuals” (Koolhaas et al., 1999). The behavioral type can 

also be thought of as a categorization method for individual differences within a population for 

organisms. In humans, a significant amount of research has gone into exploring the impact of 

cognitive rules on stimulus generalization (Lee et al., 2018; Lovibond et al., 2020; Maes et al., 

2015; Wong et al., 2020; Wong & Lovibond, 2020; Zaman et al., 2022). In brief, two major rules 

were identified within human subjects; the ‘linear’ rule and the ‘similarity’ rule. Subjects who 

followed the ‘linear’ rule, engaged with the task in a comparative fashion (e.g. the more red the 

target is, the more likely a reward will be given), and were more likely to show a monotonically 

increasing generalization gradient, like those seen in intensity-based stimulus dimensions. 

Subjects who followed the ‘similarity’ rule engaged with the task in a matching fashion (e.g. the 

more similar the target is to this exact hue of red-yellow, the more likely it is that a reward will 

be given) and were more likely to show the more standard Gaussian shaped stimulus 

generalization gradient. This rule-based or inductive response was also found to be distinct from 

the ability of the subjects to differentiate between different conditions (Lovibond et al., 2020).  

Stimulus generalization is a fundamental phenomenon that is integral to many, if not 

most behavioral experiments. For example, any study that uses differential reinforcement of 

successive approximation to teach animals to interact with an operant apparatus is leveraging 

stimulus generalization to set up the experiment. For this reason, it is important that this form of 

stimulus control is considered when adapting the ETBD to be able to recognize discriminative 

stimuli. Due to the complex factors that influence the form, slope, and shape of stimulus 

generalization gradients, it is unlikely that the ETBD would be able to account for all possible 
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phenomena that influence them. However, since the ETBD is a complexity theory, there is 

always the possibility of emergent phenomena that cannot be easily derived from basic rules of 

the ETBD. The next section will discuss the ETBD itself and the rules that underlie its 

predictions. 

Evolutionary Theory of Behavioral Dynamics 

 The ETBD is a behavioral theory that utilizes artificial organisms (AOs) to generate its 

predictions. These AOs interact with a simulated environment by emitting behaviors that may 

elicit reinforcement from the environment. The presence or absence of reinforcement influences 

the behavioral repertoire of the AOs for the next generation. A genetic algorithm (McDowell, 

2004) is used to determine how the repertoire changes based on environmental feedback for each 

time tick, or generation. The genetic algorithm created by McDowell is based on selectionist 

principles (i.e., selection, reproduction, and mutation) and was designed to be an computational 

instantiation of selection by consequences (Skinner, 1981).  In the following paragraphs, the 

support for the theory’s predictions will be briefly discussed, followed by a description of the 

AOs, the underlying rules of the genetic algorithm, and a brief discussion of the environment in 

which the AO’s behavior is modeled. The support for the theory’s predictions are not meant to 

be a comprehensive overview. For a more complete review of the theory’s current state, see 

(McDowell, 2019). 

The pattern of behavior emitted by an AO cannot be predicted by mathematical 

manipulations of the underlying rules, which means that the ETBD is a complexity theory 

(McDowell & Popa, 2009). Instead, the patterns of behavior can be considered emergent 

phenomena that are generated by the repeated operation of the low-level rules (e.g. selection, 
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replication, etc.). The behavioral records of AOs during an experiment represent the predictions 

of the theory; these records have been compared with behavioral records of live organisms.  

The ETBD has been found to accurately predict the behavior of live organisms in many 

environments (McDowell, 2004; McDowell, 2013). A few examples of these confirmed 

predictions include the behavioral adaptations to rapidly changing reinforcement rate ratios in 

pigeons (Kulubekova & McDowell, 2013; McDowell & Klapes, 2020) and monkeys (Chi, 2019), 

behavioral  features during extinction in rats (McDowell, 2013), the distribution of time between 

responses under low response cost situations (Kulubekova & McDowell, 2008), continuous 

choice behavior on concurrent random-interval random-interval (RI RI) schedules (McDowell et 

al., 2008), concurrent RI RI schedules with covarying rates and magnitudes of reinforcement 

(McDowell et al., 2012), concurrent random-ratio random-ratio (RR RR) schedules (McDowell 

& Klapes, 2018), behavioral responses to punishment in concurrent RI RI schedules (McDowell 

& Klapes, 2019), behavioral responses to changes in reinforcement context (McDowell & 

Klapes, 2020), and changeover rate pattern in concurrent schedules as reinforcement ratios vary 

(McDowell, 2013). One particular paper on the ETBD merits a more detailed review due to its 

relevance. McDowell and colleagues (2006) reported on a possible theoretical method of 

generating stimulus control phenomena in chain schedules. This paper will be discussed in 

greater detail in a later section. 

The Artificial Organisms. In the simplest terms, an AO is a simulated creature that 

emits behavior. The pool of possible behaviors that the AO can emit is defined by a population 

of 100 behaviors that are contained within that AO. Behaviors in the ETBD are defined 

abstractly, instead of having concrete physical definition (e.g. a number value instead of ‘raising 

a paw’). Furthermore, each behavior can be represented in two ways. The first is by its genotype, 
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which is a string of 10 binary digits. The second is by its phenotype, which is the decimal integer 

value of the behavior’s genotype. For example, a behavior with the genotype “0000000100” 

would have the phenotype, “4.” There are 1024 possible behavioral phenotypes for the AOs 

based on the limitation of the 10 digit binary genotype. When an AO is first created, 100 

behaviors are chosen at random from the phenotype range, 0 to 1023.  

The Rules of the ETBD. Time in the theory is represented by ticks or generations. 

During one generation, an AO starts with an initial population of behaviors that is subjected to 

all the rules of the ETBD. This produces a new population of potential behaviors for the next 

generation, and the process repeats. The rule set is as follows: 

1. Emission: 

At the start of a generation, the AO emits a behavior at random from its current 

population and the experimental environment produces a reinforcer if the emitted 

behavior meets the criteria set by the schedule. 

2. Selection: 

If a reinforcer is … 

a. not obtained, then behaviors in the population are chosen at random to become 

‘parents’ until 100 pairs of behaviors are chosen.   

b. obtained, then behaviors in the population are probabilistically chosen based on 

their fitness, that is, their numerical closeness to the emitted behavior in 

phenotypic space. The probability that a particular behavior will be chosen to be a 

parent is based on a linear probability density function that is centered on the 

emitted behavior that led to reinforcement. The linear probability density function 

is  
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𝑝𝑝(𝑥𝑥) =  −
2

9𝜇𝜇2 𝑥𝑥 +
2

2𝜇𝜇  ,                                               (1) 

where p(x) is the probability that a particular behavior will be chosen, x is the 

absolute value of the difference between that behavior’s phenotype and the 

emitted behavior’s phenotype (i.e., the behavior’s fitness), and μ is the mean of 

the density function. Using a small μ leads to higher selectivity (i.e., parent 

behaviors are more likely to be close in phenotype to the emitted behavior), while 

a large μ leads to lower selectivity. Using this method, behaviors in the population 

are chosen until 100 pairs of ‘parents’ are obtained. 

3. Recombination/Replication: 

The 100 chosen pairs of behaviors are recombined using bitwise recombination at the 

genotypic level. Each bit in the genotype of a parent behavior is matched with the 

corresponding bit in the other parent behavior’s genotype. Each parent has a 50% chance 

to have their bit incorporated into the new behavior. The result is 100 new “child” 

behaviors.  

4. Mutation: 

Finally, a proportion of behaviors chosen at random from the new population is subjected 

to mutation using the bitflip-by-individual method. According to this method, one bit in 

the behavior’s genotype is changed to the opposite state. The proportion of behaviors 

subjected to mutation is referred to as the mutation rate. 

5. The new population then replaces the initial population, and the steps repeat until the 

program is terminated. 

A flow chart of the rules is shown in Figure 5. 
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The Environmental Components.  The environment that the AO interacts with in the 

standard model is an abstract representation of an operant chamber, with only operandi, 

reinforcement, and punishment.  Operandi are activated when a behavior is emitted within a 

target class. Typically, behaviors within a target class are continuous in the phenotype space. The 

continuous aspect of the target class is significant because behaviors that are phenotypically 

close to one another are considered similar to one another in terms of fitness. The behaviors that 

activate a particular target class can also be randomly chosen and non-sequential to represent 

background reinforcement (McDowell & Klapes, 2020). Reinforcement is given directly to the 

organism without need for additional behavior (e.g. eating a food pellet from a recently opened 

hopper) once the criteria for the reinforcement schedule are met.  

 One notable missing component in the environment for the purposes of this study is 

external stimuli. Although lab operandi and food pellets are often considered stimuli in an 

experiment with a live organism, an AO has no mechanism to ‘sense’ that these items are present 

in its environment, and changes its behavior only based on reinforcement. Adding the ability to 

detect external stimuli and having changes in behavior occur due to the discriminative stimuli in 

an AO’s environment would allow the exploration of many phenomena that the ETBD is 

currently incompatible with.  

 Stimulus control in the ETBD. In a 2006 paper on stimulus control, McDowell and 

colleagues examined one possible avenue for incorporating discriminative stimuli into the ETBD 

to allow the theory to predict behavior in chain schedules. Chain schedules are compound 

schedules of reinforcement in which a sequence of behaviors must be completed before a 

reinforcer can be delivered. Each part of the sequence also has a unique discriminative stimulus 

associated with it. Chain schedules have a couple of features that made them incompatible with 
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the original ETBD. First, the original ETBD did not have a way to define a discriminative 

stimulus. Second, the unreinforced parts of the sequence would never experience any form of 

reinforcement, so no learning could occur. To overcome the first point of incompatibility, 

McDowell et al. had each discriminative stimuli represented by a different behavioral population. 

The AO was able to move along the sequence by emitting behavior within a designated target 

class, which satisfied the conditions for changing discriminative stimuli. To overcome the second 

point of incompatibility, they used the principle that “discriminative stimuli associated with 

reinforcement themselves acquire reinforcing properties.” They instantiated this principle by (i) 

using the reinforcement magnitude of the reinforcer at the end of the sequence as a base, (ii) 

generating an associative strength value using the associative learning process described by the 

Rescorla-Wagner theory (a value between 0 and 1), (iii) assigning the discriminative stimuli a 

reinforcing value based on the reinforcement magnitude of the subsequent link divided by 

associative strength. For example, in the terminal link where the AO gets the reinforcer, the 

reinforcement magnitude would be unchanged. In the second-to-last link in the sequence, the 

reinforcement value would be the reinforcement magnitude in the last link divided by the 

associative strength. The reinforcement value in the third-to-last link in this chain would be 

based on reinforcement magnitude in the second-to-last link, divided by the associative strength, 

and so on.  

 This form of stimulus control in the ETBD was primarily focused on chain schedule 

phenomena and it would be difficult to use to explore other forms of stimulus control. In this 

system the AOs would, by definition, recognize all discriminative stimuli as unique. There was 

no way to look at AO responses to “similar” stimuli as required to explore stimulus 

generalization gradients, or to have confusion between one stimuli and another. AOs using this 
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system would also only recognize one stimulus at a time. This methodology effectively sidesteps 

the process of parsing and recognizing a stimulus as discriminative, excluding the exploration of 

phenomena like blocking, where one discriminative stimulus prevents the learning of another 

discriminative stimulus.  

 In summary, the form of stimulus control described in the 2006 paper linked 

discriminative stimuli effectively with reinforcement, but did not explore how discriminative 

stimuli are learned, and did not have a framework from which to show relationships between 

stimuli. Stimulus sampling theory is an alternative method of looking at the interaction between 

stimuli and behavior that could be a solution to the two problems described above, and will be 

discussed further below. 

 

Stimulus Sampling Theory 

 Stimulus Sampling Theory (Estes, 1950) is an early example of a mathematical learning 

theory (Howard, 2014). Through SST, Estes  sought to describe behavioral phenomena using the 

“statistical properties of environmental events” instead of using cognitive constructs within the 

organism (e.g. memory traces, internal clocks). SST was meant to address two concerns. The 

first is the difficulty of falsifying hypotheses based on cognitive constructs. Estes (1955) said the 

following about cognitive, or “hypothetical” constructs: 

 The difficulty with this type of construct is that it is always much easier to postulate than 

to unpostulate. Few hypothetical entities are so ill-favored that once having secured a 

foothold they cannot face out each new turn of empirical events with the aid of a few ad 

hoc assumptions. (p.145) 
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To avoid the pitfall described above, SST operationalizes each assumption using “experimentally 

manipulable variables” that operate within a discrete time framework. The consequences of the 

assumptions unfold using “strict mathematical reasoning” (Estes, 1950). Through the use of 

experimentally manipulable variables, like stimuli, a quantitative relationship between the 

independent variables and the dependent variables can be formed. The second concern that SST 

addresses is parsimony. Cognitive constructs, due to their flexibility, can be used to explain vast 

arrays of behavioral phenomena. However, some of the attributed results may be potentially 

explained by environmental stimulus variables that are already present in all behavioral 

situations (Estes, 1955). Estes sought to prove that many behavioral phenomena did not require 

cognitive constructs to be understood, and could be explained using an abstract environment 

composed of ‘stimulus elements’ and simple rules of interaction.  

 The SST model was primarily used to derive mathematical relationships between stimuli 

and behavioral responses in classical conditioning and instrumental learning experiments. In the 

initial paper, Estes (1950) sought to explain basic learning phenomena: learning to associate a 

buzzer and shock, reductions in latencies during travel in simple mazes, and lever-pressing 

behavior by rats (Bower, 1994). Various versions of SST were used to explain probability 

learning in humans (Estes & Johns, 1958; Estes & Lauer, 1957), forgetting and spontaneous 

recovery (Estes, 1955), positive reward in human learning (Estes, 1969b), and punishment 

(Estes, 1969a).  

SST is conceptually based on the notion that although any organism is at every moment 

exposed to multiple stimuli, only a subset of the stimuli present will impact the organism’s 

behavior. That subset is a randomly drawn sample from the entire population of possible stimuli. 

Once that moment passes, the stimuli that were present in that sample will be replaced with new 
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stimuli for the next observation period. SST also organizes an organism’s behavior into response 

classes. Response classes are groups of behaviors that are identical in terms of their 

environmental impact. For example, a rat may push a lever down in any number of ways, but all 

of those ways would be considered a part of one response class by SST. 

Stimulus elements are always associated with only one response class at a time.  During 

each experimental trial, one response is emitted. A behavior is chosen probabilistically based on 

the proportion of stimulus elements associated with it within the sampled stimuli. For example, 

consider a situation where five stimulus elements are sampled, each with an equal chance of 

occurring. Three of the five stimulus elements are associated with head scratching while the 

other two are not. In this situation, there is a sixty percent chance that the organism will scratch 

its head. During a learning or training trial, the response class is considered to be forced or 

induced on the subject by the experimental design. After a response is emitted, all stimulus 

elements present in the sample are considered conditioned to the specific response class that was 

just emitted, and unconditioned from any other response classes. 

The theory hypothesizes that the following sequence occurs during every experiment: 

1. Initially, there is a pool of stimulus elements (S) that is comprised of all possible 

elemental stimuli within a given environment. These elements are currently not 

associated with any of the conditioned responses under observation (although there may 

be other unrelated response classes already present).  

2. At each time tick within an experiment, a subset of S is sampled randomly.  

a. If this occurs during a learning trial or a training period, the behavioral response is 

forced to be within the correct response class. All of the sampled stimulus elements 

are changed to be associated with the response class that is currently being trained. 
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b. If this occurs during an experimental trial, the probability of the behavior coming 

from a particular response class is proportional to the number of stimuli in the sample 

that are associated with that response class. All of the sampled stimulus elements are 

changed to be associated with the response class that was emitted during this trial. 

3. Repeat step two until the end of the experiment. 

A visualization of the steps is presented in Figure 6. It is important to note that the steps 

described above are not used iteratively as they are in the ETBD. The reason why these steps are 

not used in an iterative fashion is unknown, but likely due to the fact that SST was created well 

before the advent of personal computing. The principles and steps described above are the 

principles from which mathematical interpretations are derived. The mathematical forms of the 

theory will not be described in this dissertation because the principles and steps described above 

are sufficient for the creation of an iterative computational version of SST.  

 Principles of SST. Estes breaks down the theory into the following four assumptions: 

a. Any environmental situation, as constituted at a given time, determines for a given 

organism a population of stimulus events from which a sample affects the organism’s 

behavior at any given instant. In statistical learning theories, the population is 

conceptualized as a set of stimulus elements from which a random sample is drawn on 

each trial. 

b. Conditioning and extinction occur only with respect to the elements sampled on a trial. 

c. The behaviors available to an organism in any given situation may be categorized into 

mutually exclusive and exhaustive response classes. 

d. At any time, each stimulus element in the population is conditioned to exactly one of 

these response classes. (p.146-147; Estes, 1955). 
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II. Theoretical Design 

 In the following sections, benefits of incorporating elements of SST into the ETBD in the 

present study are reviewed, the manner in which this incorporation was implemented is 

discussed, and the scope of the present study is described.  

Benefits of Incorporating Elements of SST into the ETBD 

The ETBD and SST have been used to explain numerous phenomena, but both require 

further development in order to explain the emergence of discriminated responding under 

multiple schedules and stimulus generalization gradients.  

Of the two models, SST is arguably the more limited. It is capable of handling stimulus 

variability, stimulus sampling, and stimulus-response associations (Bower, 1994). However, as a 

purely mathematical model designed before the age of desktop computing, SST is capable only 

of predicting the average behavior of an organism under simpler circumstances than may be 

modeled using the ETBD. The response portion of SST is particularly limited. Since all the 

stimuli present become associated with the reinforced response, it is expected that this would 

lead to exclusive preference for one response class, even if there are reinforcers for the 

alternative response class. SST also has multiple known weaknesses and has been found to not 

sufficiently model experiments involving blocking, stimulus compounding, and the “overlap 

problem” (i.e. the neutralization of shared elements after further discrimination has occured 

between two stimuli; Bower, 1994).  

The ETBD, in its standard form, is insensitive to discriminative stimuli and focused on 

operant contingencies. This makes it difficult to apply outside of situations with stable stimuli. 

As discussed earlier, the inability to account for antecedent, contextual factors severely limits the 

range of phenomena that can be modeled and accounted for by the ETBD. Most, if not all, 
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multicellular organisms have means of detecting stimuli in their environment and are able to 

respond to stimuli to receive reinforcement or to avoid punishment. The operant chamber 

environment in which the ETBD is typically thought to be enclosed within can also have 

discriminative stimuli which are currently not being utilized by AOs animated by the ETBD. 

This makes adding the ability to detect and react to discriminative stimuli a natural extension of 

the ETBD. 

 There are multiple ways in which the ETBD and SST may be synergistic if used together. 

Though SST was initially designed as a mathematical learning model, it has the elements 

required to become a complex system, namely multiple interacting agents (i.e. the stimuli) and 

simple rules for interaction that are capable of working iteratively, similar to the ETBD. Both 

theories function using a discrete time scale and have clear rules that generate a record of 

behavior. Finally, by increasing the complexity of the ETBD with the added stimulus elements of 

SST, there is the potential for emergent phenomena that cannot be predicted by observing the 

operation of the base rules alone. These may only be discovered after the model is created and 

run. It is predicted that the combined model will be able to do the following: 

1. Model antecedent-consequence contingencies  

2. Model response-reinforcement contingencies 

3. Permit AOs to respond differentially between the presence and absence of discriminative 

stimuli 

4. Preserve behavioral patterns while stimuli are absent 

5. Improve the model’s animal-like behavior (e.g. potential need for training, similar to live 

organisms).  
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Implementation  

 In this section, the method of incorporating elements of SST into the ETBD is 

documented along with the rationale. The goal of the implementation is to create a modified 

ETBD that will be able to meet the six capabilities listed above. The major components of the 

model (i.e. the environment and the organism) will be described first, followed by their 

interaction. 

 The Modified Environment.  The AO will be placed in an environment with multiple 

stimulus elements. The environment consists of the global environment, which contains all 

stimulus elements, and a local environment, which contains a subset of stimulus elements that 

can be potentially observed by the AO. If there is a light that changes from red to green within an 

experimental environment, that will be represented by removing the red light stimulus elements 

from the local environment and inserting green light stimulus elements into the local 

environment. If there are neutral stimulus elements within the environment, they will be retained. 

 The Artificial Organism. As the experiment is initialized, the AO will have no 

behavioral populations. AOs will have the ability to sample five stimulus elements at random 

from the local environment. When the AO first encounters a stimulus element it has not yet 

experienced, the AO will generate an unique behavioral population of 100 behaviors at random 

for each stimulus, following the recommendations of McDowell et al. (2006). Going forward, 

this unique behavioral population will be linked to the stimulus the AO was exposed to and used 

for future interactions. Each behavior will have a decimal phenotype and a 10-digit binary 

genotype, like the basic ETBD instantiated AO.  

 Rules of the modified ETBD. The rules of the system are the following: 
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1. Initialization. The stimulus elements within the global environment will be initialized. A 

subset of these stimulus elements will be additionally assigned to be part of the local 

environment. The number of stimulus elements, their initial starting locations (e.g. local 

or not local), and their labels (e.g. wall, red light, green light, etc) will be determined by 

the experiment. The name of a stimulus element does not confer any properties to it, but 

are used to represent how they will be used in the experiment.  

2. Emission. The AO will randomly sample five stimulus elements present within the local 

environment. The sampled stimulus elements will be checked for a linked behavioral 

population. If the stimulus is found to not have a linked behavioral population, one will 

be created, until all sampled stimulus elements have a linked behavioral population. The 

initial behaviors for the populations will be randomly chosen. From the group of linked 

behavior populations, one behavioral population will be chosen at random. From the 

chosen behavioral population, one behavior will be emitted at random. If the emitted 

behavior is in a target or background class, the reinforcement schedules for that class will 

be checked to determine if a reinforcer is available for the AO to obtain. 

3. Selection. Based on the presence or absence of reinforcement the following may occur to 

all behavioral populations linked to an observed stimulus element: 

a. If a reinforcer is not obtained, then behaviors are chosen at random within each 

population to become ‘parents’ until 100 pairs of behaviors are chosen. 

b. If a reinforcer is obtained, then behaviors within each population are 

probabilistically chosen based on their fitness. The probability that a particular 

behavior will be chosen to be a parent is based on a linear density function 
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(Equation 5) that is centered on the emitted behavior. Using this method, 

behaviors in the population are chosen until 100 pairs of ‘parents’ are chosen. 

4. Recombination. Within each population, the chosen pairs of behaviors are recombined 

using bitwise recombination on a genotypic level. Each bit in one parent behavior’s 

genotype is matched with the corresponding bit in the other parent behavior’s genotype. 

Each parent has a 50% chance to have their bit incorporated into the new behavior. This 

results in 100 new behaviors.  

5. Mutation. Finally, within each population, a portion of the behaviors are randomly 

chosen to undergo mutation using the bitflip-by-individual method. In the behaviors 

chosen to undergo mutation, one bit in the behavior’s genotype is changed to the opposite 

state.  

6. Each new population then replaces the previous population. 

7. Based on the experimental design, determine if any stimulus elements will be moved in 

or out of the local environment. This step is not used in this experiment, but could be 

used to move stimuli in or out of the AO’s “view,” since the AO can only sample from 

the local environment.   

8. Steps 2-7 are repeated until the end of the program. 

A flowchart illustrating these rules appears as Figure 7. The flow chart begins in the bottom left 

corner, with the initialization of the stimulus elements in the global and local environments. The 

global environment contains all stimulus elements in the model. In this case, there are five green 

stimulus elements, five red stimulus elements and five wall stimulus elements, representing a 

green light, a red light, and neutral environmental elements (e.g. walls, the ceiling, etc.). The 

local environment contains the stimulus elements that are currently observable by the AO. In this 
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case, only the elements representing a red light and stable stimulus elements are in the local 

environment. The AO randomly samples five stimulus elements from the local environment. The 

observed stimulus elements from the local environment (i.e., three red stimulus elements and two 

gray stimulus elements) are contained within the yellow circle at the bottom left. Each stimulus 

element is linked with a specific population of behaviors (only two linkages are shown in the 

figure). One population from the observed environment is chosen at random and one random 

behavior is emitted from that population. All five populations separately go through the steps in 

the standard ETBD (i.e., selection, recombination, and mutation) to generate a new population of 

behaviors. If the emitted behavior leads to reinforcement (Sr+), all of the behaviors in their 

respective populations will go through fitness-based selection, rather than random selection. 

After the next time tick, there is a check to determine whether the environment will change due 

to a change in the reinforcement schedule. In this case, a schedule change causes a change in the 

discriminative stimulus, requiring the red stimulus elements to be moved out of the local 

environment, and the green stimulus elements to be moved into the local environment. 

Afterward, the cycle repeats. 

 In the bigger picture, the modified ETBD attempts to preserve the functionality of both 

the ETBD and the SST as much as possible. For the ETBD, all the basic processes of the ETBD 

(i.e., emission, selection, recombination, and mutation) are preserved, but extra behavioral 

populations and their relationships to stimulus elements are added. For the SST, the random 

interaction with the local environment was maintained, but the behavioral population replaced 

the simpler response class. This is considered a modified ETBD and not a modified SST or a 

modified SST-ETBD due to the fact a majority of the ETBD and the driving function of its 
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predictions (the evolutionary principles), are still intact, while only a component of SST is 

maintained.  

The Present Study 

In the present study, I aimed to achieve the following objectives: 

Aim 1: Implement a version of the ETBD with the stimulus elements of SST.  

This form of stimulus sampling has never been combined with the ETBD previously. Using the 

implementation outlined above, a modified ETBD algorithm was developed. The functionality of 

the algorithm was tested using a set of concurrent schedules to verify that the algorithm 

maintains the same capabilities as the original ETBD (Experiment 1). 

Aim 2: Demonstrate that AOs animated by the modified ETBD can distinguish between different 

stimuli and modulate their behavior similar to living organisms. 

AOs were tested using a multiple RI EXT schedule, to determine if it was able to develop 

discriminative responding, similarly to live organisms (Experiment 2).  

Aim 3: Implement stimulus generalization through manipulation of environmental stimuli. 

AOs will be placed into environments that have been known to demonstrate stimulus 

generalization gradients. (Appendix A). 

 III. General Methods 

Subjects, Apparatus, and Materials 

 AOs animated by the modified ETBD were evaluated in a three-experiment series. Dr. J. 

J McDowell originally conceptualized and developed the source code for the ETBD and the 

experimental environment in VB.net. Other contributors to the ETBD codebase include Olivia 
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Calvin, Bryan Klapes, Saule Kulubekova, Andrei Popa, Ryan Higginbotham, and Steve Riley. 

The modified ETBD was implemented in Python 3.7.11 using the Spyder 5 IDE. Python libraries 

used include Scipy, Numpy, Numba, PANDAS, OS, Multiprocessing, Time, Glob, Pathlib, 

Argparse, Json, Sys, Statsmodels, and Collections. Simulations were run either on 1) Windows 

10 with an Intel Core i7-5600U CPU at 2.60Ghz with 16GB RAM for individual simulations or 

2) Amazon Web Services Linux Servers (Oregon-west, instance type c5a.8xlarge with 32 CPUs) 

for larger multiprocessing batch simulations. The modified ETBD is publicly available at 

https://github.com/CyrusChi/pyETBD-SST. All of the experiments ran thirty AOs through each 

testing condition, except for one part of Experiment Three, Concurrent Schedules Review. This 

part of experiment three was run using only 10 AOs for each condition in order to reduce 

computation time. See Tables 1, 2, and 3 for summaries of the experimental parameters. 

IV. Experiment Series One 

Experiment Series One Methods 

 Phase One. The first phase was designed to test the modified ETBD AOs using the exact 

procedure from McDowell et al., 2008. The simulated environment contained two targets; target 

one and target two. The two targets ranged from 471 to 511, and 512 to 552 in the phenotype 

space, respectively.  The AOs were tested on 11 concurrent schedules: RI 20 RI 120, RI 30 RI 

110, RI 40 RI 100, RI 50 RI 90, RI 60 RI 80, RI 70 RI 70, RI 80 RI 60, RI 90 RI 50, RI 100 RI 40, 

RI 110 RI 30, and RI 120 RI 20. The reinforcement magnitude for both targets was 40. The 

experiment followed the same procedure as phase one in the canonical ETBD concurrent 

schedules experiment (McDowell et al., 2008). There was only one stimulus element present in 

the local environment, with one linked behavioral population with 100 behaviors.  
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Phase Two. The second phase was designed to determine the impact of adding additional 

stimulus elements. AOs were tested with different numbers of stimulus elements present in the 

local environment. All stimulus element quantities between one stimulus element to 15 stimulus 

elements were tested. The organism sampled five random stimulus elements from the local 

environment per generation during the observation step. All other components of the testing 

environment remained the same as phase one. 

The first experiment in phase two highlighted a specific challenge; as the number of 

stimulus elements increased, the AO’s sensitivity to reinforcement decreased below the levels 

expected for live organisms. In order to identify the issue leading to the decreased reinforcement 

sensitivity, it was important to consider how increasing the number of stimulus elements affects 

the basic functional loop of the ETBD. First, the observed stimulus element and its linked 

behavioral population are chosen at random. Theoretically, the random observation method 

weakens the relationship between the last emitted behavior and the next emitted behavior since 

they can be drawn from completely independent behavioral populations. The more stimulus 

elements present in the local environment, the more likely an unrelated stimulus element will be 

chosen. Second, the increase in the number of stimulus elements multiplicatively increases the 

number of behaviors in the total pool and reduces the impact of any one reinforcement event. 

This could potentially increase the amount of variation in the behavior emitted. In order to 

compensate for these issues, two changes were implemented and are discussed further in the two 

sections labeled modification one and modification two.  

Modification One. While random selection of stimulus elements is a critical part of SST, 

it likely weakens the AO’s ability to respond to rapid changes in reinforcement. One way to 

strengthen this response is to create a bias in which stimulus elements are chosen based on which 
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linked behavioral population has been most impacted by reinforcement. This can be done using 

entropy. As first described by Shannon (1948), entropy is a measure of uncertainty within data. 

When data are evenly distributed across a range, then the entropy will be at its highest. 

Conversely, if the data are all clustered at exactly at the same point, then the entropy will be at its 

lowest. When used on a behavioral population, the level of entropy corresponds roughly to how 

clustered the behavioral population is around a certain set of phenotypes.  

For modification one, in order to calculate the entropy at a relevant resolution, the 

phenotype space was first broken into 25 bins with 40-41 phenotypes per bin. This was chosen in 

order for a target class to be contained within no more than two bins. First, for AOs with this 

modification implemented, five stimulus elements were chosen at random from the local 

environment as usual. Next, the linked behavioral populations were separated into 25 bins 

equally divided over the phenotype space. Finally, resulting histograms were normalized and the 

Shannon entropy for the linked behavioral populations was calculated using the entropy function 

from the scipy.stats python library. The equation for entropy is  

E = −�(𝑎𝑎𝑛𝑛 ∗ log (𝑎𝑎𝑛𝑛)),                                                       (2)
∞

𝑛𝑛=1

 

where an is the number of behaviors in each bin. The stimulus elements which have entropies 

that are within a certain percentage (2% and 5% for the current testing groups) of the lowest 

entropy were used as the observed pool of stimulus elements. This process will be called 

entropy-based observation X% for the rest of the document. All other elements of the modified 

ETBD were run as previously described. 
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There are conceptual and technical reasons to use entropy to produce bias in observation. 

It is already known that rewards associated with visual stimuli can increase attentional behavior 

towards those stimuli (Chelazzi et al., 2013; Cowie et al., 2020). In the modified ETBD, a 

frequently rewarded behavioral population will likely have behaviors clustered around the 

rewarded phenotypes and thus have lower entropy compared to non-rewarded stimulus elements. 

Due to this phenomenon, entropy can be used as a proxy for bias in attentional behavior. Using 

entropy also allows information within the model to be used formulaically to determine the 

chosen observation targets. This reduces the need for additional variables to be set by the 

experimenter.  

Entropy as a concept has not been used often in experimental psychology although it has 

been used more regularly in neuropsychology. Entropy has been used to create a theoretical 

explanation of consciousness (Mason, 2019), neuronal branching (Islas et al., 2020), neuron 

networks (Song et al., 2021; Viol et al., 2019), and as a component of fMRI image processing 

(Akdeniz, 2017; Gupta et al., 2017; Somwanshi et al., 2016). The difficulty with using entropy in 

experimental psychology is likely related to the following assumptions: First, data needs to be 

transmitted in many individual units rather than in a single unit. Second, the elements of the data 

need to be unstructured and functionally interchangeable (Luce, 2003). Fortunately, the 

behavioral populations within the ETBD meet these assumptions thus paving the way for the use 

of entropy.  

Modification Two. The second potential challenge caused by the increase in the number 

of stimulus elements is the increase in emitted behavior variation. One way to reduce the 

variation in emitted behavior is by increasing the number of behaviors in each population. This 

should theoretically lead to an increase in the regularity of the behavioral population in the same 
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fashion that increasing the sample size of an experiment can reduce the variability found in 

experimental results. Since AOs run with entropy-based observation 2% showed the most 

animal-like matching sensitivity levels in during modification one, that observation style was 

used in this experimental set, and in the experiments going forward. AOs were run with entropy-

based observation 2%, ten stimulus elements were contained in the local environment, and the 

behavioral population size was varied starting with a population of 50 behaviors and ending with 

a population of 500 behaviors, incrementing 50 behaviors at a time. All other elements of the 

modified ETBD were run as previously described and following the experimental procedure 

described in phase one.  

Data Analysis for Experiment One 

 The logarithmic transformation of the power function matching law, 

log �
𝐵𝐵1
𝐵𝐵2
� = 𝑎𝑎log �

𝑅𝑅1
𝑅𝑅2
� + log 𝑏𝑏 ,                                                  (3) 

was fitted to the response rate ratios (B1 / B2) and reinforcement rate ratios (R1 / R2) from each 

AO, and the percentage of variance accounted for was calculated. Equation 3 was found in 

previous studies to is known to describe concurrent schedule performance in human and animals 

well (McDowell et al., 2008). The residuals were examined for trends using the random cubic 

trend test (RCTT, McDowell et al., 2016).  

Experiment Series One Results 

 Phase One. This experiment was designed to test the ability of the modified ETBD code 

to reproduce basic ETBD functionality. The values obtained after Equation 3 was fitted to the 

response and reinforcement ratios: (i) exponents a, (ii) bias parameters b, (iii) the proportion of 

the variance accounted for, and (iv) the r squared values of the residuals for the RCTT are listed 
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in Table 4 for all 30 AOs. The average of the 30 least squared plots of Equation 3 is shown in 

Figure 9. The results in Table 4 show that the matching equation provided an excellent 

description for the steady-state behavior of the AOs, explaining between 96% and  99% of the 

variance, with an average of 98% of the variance accounted for. The residuals were fitted with a 

cubic polynomial. The r2 from the best fitting cubic polynomial was compared with the critical r2 

value for cubic polynomials (n = 11), 0.651 (Table 2 in McDowell et al., 2016). The residuals for 

all 30 AOs had substantially smaller r2  values than the critical r2 value, which indicates the 

absence of trends in their residuals. As shown in Table 4, the exponent, a, varied from 0.99 to 

0.80, with an average of 0.88 which demonstrates a mild degree of undermatching. The bias 

parameter, b, varied from 0.91 to 1.05, with an average of 0.99, indicating that there was little to 

no bias in the responding on the concurrent schedules. These results indicate that the AOs 

animated by the modified ETBD (i) generate behavior that is fitted well by the matching law 

equation (ii) with parameters that are comparable to those obtained from experiments with live 

organisms.  

 Phase Two. This experiment was designed to determine the impact of additional stimulus 

elements on AO behavior. The results of the baseline experiment and modification one are 

shown in Figure 10, and in Tables 5, 6, and 7. In Figure 10, the ‘base’ style (indicated by 

triangular markers) is when five stimulus elements were chosen at random from the local 

population. The ‘EN05’ style (indicated by square markers) is when five stimulus elements were 

chosen at random and the stimulus element with the lowest entropy and any stimulus elements 

with an entropy within 5% of the lowest entropy were chosen. The ‘EN02’ style (indicated by 

circular markers) is when five stimulus elements were chosen at random and the stimulus 

element with the lowest entropy and any stimulus elements with an entropy within 2% of the 
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lowest entropy were chosen. As seen in Figure 10, matching sensitivity of the ‘base’ style of 

observation quickly dropped to near indifference levels, and stabilized after four or more 

stimulus elements were used at around 0.5 sensitivity. The ‘EN05’ and the ‘EN02’ styles both 

showed a trend towards lower sensitivity levels as the number of stimulus element increased, but 

the reduction in sensitivity as the number of stimulus elements increased was substantially 

slower than in the ‘base’ style. At ten stimulus elements, the ‘EN05’ style had an average 

sensitivity of 0.68 and a SEM of 0.005, while ‘EN02’ had an average sensitivity of 0.75 and a 

SEM of 0.006. The bias parameter, b, fluctuated at or near 1 and the PVAF was over 95% for all 

observation styles and all quantities of stimulus elements tested. 

 Modification two explored the impact on behavior population size on the matching 

sensitivity. The relationship between behavior population size and matching sensitivity is shown 

in Figure 11, and Table 8. As shown in Figure 11, the sensitivity increases with population size 

until the population size reaches 200 behaviors, and then transitions to a slower upward trend in 

sensitivity for populations with 200 behaviors to populations with 500 behaviors. Since the 90% 

confidence intervals were found to be marginally overlapping, it is uncertain if the upward trend 

is significant. The bias parameter, b, fluctuated at or near 1 and the PVAF was over 96% for all 

behavior population sizes tested.  

In addition to the observation styles mentioned above and the behavior population size, 

other potential modifications were also tested, including: reinforcement magnitude, linear 

minimum (the lower limit for the number of behaviors that can be potentially chosen as parents 

in the case of reinforcement), and changing the number of stimulus elements initially chosen at 

random during observation. These alternative modifications were not found to have any impact 

on AO matching law sensitivity parameter levels.  
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The first experimental series found that, for environments containing ten stimulus 

elements, the ‘EN02’ observation style combined with a behavior population greater than 200 

were likely necessary for animal-like behavior from AOs animated by the modified ETBD. The 

same values obtained after Equation 3 was fitted to the response and reinforcement ratios are 

listed in Table 9 for all 30 AOs. The average of the 30 least squared plots for AOs using the 

conditions mentioned above are shown in Figure 12. The results shown in Table 9 reveal that the 

matching equation (a) was an excellent fit for the steady-state behavior of the AO, and (b) 

accounting for between 94% and 100% of the variance, with an average of 99% of the variance 

accounted for. Comparing the r2 from the best fitting cubic polynomial to the residuals, with the 

critical r2 for detecting a systematic trend (n = 11), 0.651, the experimental r-squareds are 

substantially smaller. Thus all 30 AOs passed the RCTT, indicating an absence of trends in their 

residuals. As shown in Table 9, the exponent, a, varied from 0.86 to 0.71, with an average of 

0.80 which demonstrates a moderate degree of undermatching. The bias parameter, b, varied 

from 0.95 to 1.07, with an average of 1.00, indicating that there was little to no bias in the 

responding on the concurrent schedules. These results indicate that AOs animated by the 

modified ETBD using the ‘EN02’ observation style, containing a 200-behavior population size, 

and in an environment with 10 stimulus elements are able to generate behavior that is fitted well 

by the matching law with parameters that are comparable to the parameters obtained from 

experiments with live organisms. 

Due to the increasing computational cost that comes with increasing the behavior 

population size, the smallest behavior population size (200) that showed animal-like matching 

sensitivity values was used for further testing.  
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Experiment Series One Discussion 

The phase one result shows that the modified ETBD is able to replicate the finding from 

McDowell et al. (2008) on concurrent schedules with only one stimulus element and one 

behavioral population. The sensitivity values obtained are slightly higher, but within the 

expected range. As a proof of concept, the modified ETBD with additional stimulus elements 

was able to show animal-like behavior after the changes implemented by modifications one and 

two. The ETBD as it was originally conceived was designed to have only one behavioral 

population which responded to reinforcement obtained from the environment. The continuity 

between recent reinforcement and the features of the behavioral population was likely broken by 

adding additional behavioral populations and using random sampling to choose between them. 

Adding entropy to the random sampling as a stimulus selection method was able to restore at 

least some of the continuity that was originally lost. It was also found that a very selective 

entropy function, one that selected between the top 2% of the behavioral populations present, 

was necessary to have an acceptable sensitivity level when ten stimulus elements were present in 

the local environment. Increasing the behavior population size to 200 was also used to increase 

the sensitivity level further. This series of modifications, while successful in obtaining animal-

like sensitivity levels, points to the need to better characterize the relationship between matching 

sensitivity, the entropy function, and the population size.  

As discussed earlier, Shannon entropy was designed to reflect the amount of information 

within a system. In communication theory, “information is a measure of one’s freedom of choice 

when one selects a message” (Weaver, 2017). For an AO, the choosing of a behavior to emit 

would be its message selection. For example, if the behavioral population within an AO 

consisted of 100 behaviors but all of the behaviors were of phenotype ‘500,’ then the Shannon 
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entropy for the population would be zero or nearly zero, since there is essentially only one choice 

for emitted behavior. As the number of possible options increases, the entropy for the behavioral 

population will also increase. When sorting through different stimulus elements and their linked 

behavioral populations, the ones with the lowest entropy would be the ones with the most biased 

behavioral populations. Within the ETBD, the most likely way to bias a population is through 

reinforcement. Therefore, the entropy of a population can be used as a measure of how 

reinforced that population was in the past.  

Entropy, as it has been implemented in this project, has both strengths and weaknesses as 

a measure of reinforcement. One of the major strengths is that entropy allows information 

already contained within the organism to determine which stimulus element will be chosen. This 

is in contrast to creating an external counter, or some other ‘reservoir system’ (Catania, 2005) to 

determine which stimulus element should be chosen next. For example, if we are looking to keep 

continuity between behaviors and reinforcement, we could conceivability create a standing tally 

of which stimulus elements have had an emitted behavior that led to reinforcement and increase 

the possibility of choosing stimulus elements with a higher tally value. However, this method 

would essentially be capitulating and saying that the neural instantiation of the ETBD in live 

organisms does not handle such functions and requires an external mechanism (e.g. a cluster of 

neurons that do nothing but count) in order to generate this kind of behavior. Based on the results 

of this study, this capitulation would be premature.  

The current implementation of entropy depends on target size and is indifferent to the 

location of targets. Part of the entropy function bins all of the behavior in phenotype space into 

bins with 40 phenotypes each. This is designed so that all behaviors within a target class fall 

within at most two bins, causing a minimum entropy level when all behaviors are within a target 
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class. This design specification (i.e. the 40 phenotype bin size) could potentially impact target 

classes that are smaller than half the size of the bin, since multiple target classes could 

potentially fall into a single bin. If this occurs, the entropy value will not change if behaviors are 

clustered around just one target class, or spread between two target classes within one bin. Target 

classes larger than the bin size would likely have a lesser effect on the entropy comparison 

because the proportion of behaviors can still be captured correctly. However, the baseline 

entropy will likely be higher because more than two bins can be filled by one target class.  That 

being said, target classes larger than 40 are unlikely to be optimal (Li et al., 2018) and have yet 

to be used with the ETBD, so the impact of this limitation is likely low. It is likely a good 

practice to have the entropy bin size be equal to the smallest target class size in order to prevent 

the over stacking scenario described above. 

Another feature of this implementation of entropy is that it does not take into account the 

adjacency of the bins. For example, if all behaviors were contained within two bins, the entropy 

value would be the same no matter where the bins were located in the phenotype space. For this 

particular study, this issue did not impact the ability to generate animal-like behavior. However, 

there may be an unwanted interaction to occur between entropy and various target locations. It 

has been found that the hamming distance between targets is computationally equivalent to a 

changeover delay (Popa & McDowell, 2010). Due to this, in a three target scenario, it is possible 

for two reinforced targets to have identical entropy values while having different theoretical 

changeover delays from the third target class. When designing future experiments using entropy 

and more than two targets, this interaction may need to be managed. 

As seen in Figure 10, there is gradual decrease in sensitivity as the number of stimulus 

elements increases for both entropy conditions. This could be due to the random sampling 
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function. During each generation of the emission step, the AO would randomly sample five 

stimulus elements from the local environment. When the local environment contains five or less 

stimulus elements, all stimulus elements are chosen. When the local environment contains six or 

more stimulus elements, the chances of the organism selecting the most relevant stimulus 

element begins to decrease, and continues to decrease as the number of stimulus elements 

increases. It is possible that this phenomenon would disappear if the number of stimulus 

elements sampled each generation were increased, but further study is required to confirm such a 

hypothesis.  

The increase in the number of behaviors in the behavioral populations was also found to 

increase the matching sensitivity of AOs. As shown in Figure 11, the rate of sensitivity grows 

quickly until a 200 behavior population size, and then seems to trend upward at a much slower 

rate for populations with between 200 and 500 behaviors. Interestingly, this is different from 

how the unmodified ETBD responds based on previous unpublished data as described by J. J 

McDowell (personal communication, October 18, 2022). In the unmodified ETBD, the matching 

sensitivity increases as the behavioral population increases and does not seem to reach an 

asymptote even at 600+ behaviors. In this way, the modified ETBD may be more robust than the 

original instantiation because matching sensitivity in the modified ETBD is not affected by 

changes in population size, as long as the population size is 200 or above. The decreased 

sensitivity in populations under 200 could be potentially due to statistical fluctuations due to 

small population sizes. Once the population size is great enough, the AO’s matching sensitivity 

becomes more stable.  While it is unknown how behavioral population size directly links to its 

neural instantiation within the brains of live organisms, having a range of possible behavioral 

population sizes improves the robustness of the theory. 



DISCRIMINATIVE STIMULI IN THE ETBD  52 
 

V. Experiment Series Two 

Experiment Series Two Methods 

 This experiment was designed to evaluate the impact of using unique stimulus elements 

in multiple (mult) schedules. After a training phase using a single RI 10 schedule, AOs were run 

on a mult RI 70 EXT schedule. The target class was 40 consecutive integers in the phenotype 

space, in the same position as target one in the first experiment. There was a pool of fifteen 

stimulus elements in the global environment. Five stimulus elements represented the presence of 

a green stimulus, another five stimulus elements represented the presence of a red stimulus, and 

another five stimulus elements represented neutral elements in the environment. At any one time, 

there were a total of 10 stimulus elements in the local environment. Depending on the schedule, 

the red and green stimulus elements were either present or not present, while five neutral 

stimulus elements were always present. As the experiment switched between schedules, the 

stimulus elements for the stimulus that was designated to be “on” were moved into the local 

environment, and the stimulus elements for the stimulus that was “off” were moved out of the 

local environment. Modifications one and two were implemented in experiment two, using an 

entropy-based observation 2% and a behavioral population of 200.  

 During the initial experiment-two runs, it was found that: 1) behaviors within the target 

range were higher than expected for the extinction component of the multiple schedule and 2) 

AOs exhibited extremely fast learning speeds incomparable to living organisms. At this stage, a 

number of theoretical causes for these phenomena were posited: One possible cause for high 

rates of behavior during extinction could be the presence of a high operant level, and one 

possible cause for the fast learning speeds could be the distribution and quantity of stimulus 
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elements. Both of these potential causes were further investigated in modifications three and 

four.  

Modification Three. Modification three was designed to investigate if the high amount 

of behavior during extinction schedules is due to a high operant level. In the absence of 

reinforcement, the behavioral population is expected to randomly distribute over the entire 

phenotype range due to random recombination and mutation. This includes random emission of 

behavior within the target class (i.e. the operant level), which is a behavior that is not expected of 

a live organism. This is because live organisms, when not being rewarded for behavior on 

experimental operandi, will engage in other rewarding behaviors unrelated to the experimental 

set up. In rodents, this might be grooming, or scratching behavior. In a laboratory setting, this 

alternate behavior is commonly expected to be a response to non-experimentally driven stimuli 

or background reinforcement. Recent work by McDowell and Klapes (2020) noted that the 

ETBD, as it stood at the time, did not account for the principle that “all behavior is choice” and 

might have difficulty in reproducing the behavior of live organisms during multiple schedules. In 

order to rectify this, the authors added this principle into the ETBD using a specific background 

reinforcement methodology.  

For this study, background reinforcement was added using a similar methodology. First, a 

preliminary list of possible background reinforcement target phenotypes was generated. The 

phenotypes for the two typical target classes were excluded to prevent overlap with experimental 

operandi. Second, the 60 closest phenotypes above and below the target classes were also 

excluded. This second step was implemented to reduce the chance that behaviors within the 

target class would be selected as parents if one of the background behaviors received 

reinforcement. Using the linear probability density function, we can calculate that the probability 
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for a parent to be chosen reaches approximately zero at approximately three times the 

reinforcement magnitude. Therefore, if the background reinforcement magnitude is 20, then it 

would be nearly impossible for a background reinforcement event to draw a behavior from the 

target class to be a parent. The other background reinforcement magnitudes used in this study are 

40 and 60. At those magnitudes, there is some possibility of drawing a parent from the target 

class during a background reinforcement event. However, this buffer range is still expected to 

reduce the probability of such behaviors being chosen as parents since the behaviors within the 

target class will be at least 60 phenotypes away from the reinforced behavior. Third, all potential 

background behaviors that were within one hamming distance of the two typical target classes 

were also removed. This was done to reduce the chance that one mutation event could move a 

behavior in the background class into the target class. Finally, 200 behaviors were chosen at 

random from the final list to be used as the background target. The background target list was 

chosen randomly for each AO.  

The amount of behavior within the target class in extinction only and background 

reinforcement only conditions were measured to be used as comparison points. Background 

reinforcement was delivered on random interval schedules using RIs of 1, 5, 10, 20, 40, 60, 80, 

100, 120, and no reinforcement. The reinforcement magnitude for background reinforcement was 

set at 40.  

Concurrent Schedules Review. In order to determine if the background reinforcement 

impacted the ability of the modified ETBD to demonstrate animal-like behavior on concurrent 

schedules, the experiment-one schedule set was run with the inclusion of background 

reinforcement. 10 stimulus elements were present in the local environment. Background 

reinforcement was set up in an identical fashion to the previous experiment. The random 
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intervals used for background reinforcement were 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 

60, 70, 80, 90, 100, 110, and 120. The reinforcement magnitudes used were 20, 40, and 60 for all 

reinforcement rates. 

Modification Four. Modification four was designed to explore the impact of stimulus 

element quantity on both (i) rates of behavior within the target class and (ii) the fast rate of 

learning.  

One possible cause for the high amount of behavior during extinction is the presence of 

the wall (i.e., neutral) stimuli during both the reinforcement and extinction schedules during the 

multiple schedules. If that is the case, removal of wall stimuli and use of only red and green 

stimuli should reduce the number of behaviors in the target class during extinction.  

Another challenge identified in the second experiment is the fast rate of learning. One 

possible solution is increasing the number of stimulus elements present. By increasing the 

number of stimulus elements, the chances that the next behavior emitted comes from a trained 

behavior population decreases.  

In order to explore both of these potential solutions, two experimental groups were 

designed. One experimental group used X red and X green stimulus elements (where X = 10, 20, 

30, 40, 50, 100, 1k, 5k, 10k, and 100k) without wall stimulus elements. In this group, X stimuli 

of one color were present in each schedule, alternating between red and green. Another 

experimental group used X wall, X red, and X green stimulus elements (where X = 500, 2,5k, 5k, 

25k, and 50k). In this group, each schedule had X wall and either X red stimulus elements or X 

green stimulus elements. For example, when X = 500, one schedule had 500 wall stimulus 

elements and 500 red stimulus elements, while the next schedule had 500 wall stimulus elements 
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and 500 green stimulus elements. This allowed the total number of stimulus elements during one 

schedule to be 1000, which was compared to the previous experimental group’s results.  

Data Analysis for Experiment Two 

 The plot of the data was examined for differentiation between the two components of the 

schedule using basic descriptive statistics. A repeated measures ANOVA and one contrast was 

conducted on the final results. Based on the Tukey Sidak Bonferroni method (Keppel & 

Wickens, 2004, p. 119), a family-wise alpha of 0.05 is appropriate for 19 degrees of freedom 

with two comparisons. Logarithmic equations were fitted to the data describing the impact of 

background reinforcement on behavior emitted in the target classes.  

 In order to characterize learning in AOs animated by the ETBD, a metric based on 

emitted behavior is required. The matching law states that, over the course of a schedule with a 

specific rate of reinforcement, an organism’s behavior is proportional to the reinforcement 

provided. This relationship between behavior and reinforcement is developed through exposure 

to the environment so it is to be expected that the relationship between behavior and 

reinforcement starts completely uncorrelated (unless the organism was previously exposed to the 

environment) and gradually strengthens with time. Assuming that the reinforcement rate does not 

change during the course of a schedule, the pattern of behavior should be random at the 

beginning but should gradually settle into a pattern that is proportional to the reinforcement 

provided. One method of looking at the behavioral pattern is by combining the data into a 

histogram. The emitted behavior across 30 AOs was collected in 50 generation chunks and a 

relative histogram of those behaviors was generated. This histogram was compared to the 

relative histogram of the overall behavior in the schedule using a Pearson’s correlation. See 
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Figure 8 for an example of a histogram of emitted behavior over 50 generations compared to the 

histogram of emitted behavior across an entire schedule.  

 

Experiment Series Two Results 

This series examined the impact of unique stimulus elements in multiple schedules. The 

number of behaviors per schedule is shown in Figure 13. The figure shows that behavior during 

reinforced schedules and extinction schedules remained relatively constant across schedules. 

During schedules that had the reinforcement schedule present, the average number of behaviors 

per schedule was 1871.8, 90%CI [1860.90, 1882.83]. During extinction schedules, the average 

number of behaviors was 796.5, 90% CI [792.72, 800.28]. A repeated measures ANOVA found 

a statistically significant difference between the behavior of at least two groups (F(19,551) = 

1293.15, p < 0.05). The effect size, calculated as omega squared (ω2), was 0.976, indicating a 

large effect. A planned contrast between behavior during all reinforced schedules and all 

extinction schedules was also performed and a statistically significant difference was found 

between these two groups (F(1,551) = 24389.87, p < 0.05). The effect size was 0.468, again 

indicating a large effect. The behavior within the target class during the extinction schedule was 

likely caused by random behavioral emissions (i.e., the operant level) that occur during the 

absence of reinforcement. 

Modification Three. This experiment was designed to reduce the operant level by 

adding in background reinforcement. An experiment was run with no reinforcement present and 

it had 797.43 average behaviors in one schedule, with 90% CI [784.97, 809.89]. The impact of 

adding background reinforcement of varying strengths is shown in Figure 14. The impact of 

background reinforcement rates on average rates of behavior during schedules with 
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reinforcement (circle), and average rates of behavior during extinction schedules (triangle) are 

shown. The baseline rates of behavior without background reinforcement for reinforced 

schedules and extinction schedules are represented by a dashed horizontal line and a solid 

horizontal line, respectively. Logarithmic trends for each group are marked by curved dotted 

lines. Relative to the no background reinforcement baseline, the decrease in average behavior for 

reinforced and extinction schedules is similar for both groups, with the reinforced schedule 

average behavior rates decreasing slightly faster than the extinction schedule behavior. The 

average behavior during the reinforced schedule had a high of 1668.4 behaviors 90% CI [1657.3, 

1679.6] when the background reinforcement was on a RI 120 schedule, and a low of 455.2 

behaviors 90% CI [449.1, 461.3] when the background was on a RI 1 schedule. The average 

behavior during the extinction schedule had a high of 745.3 behaviors 90% CI [741.1, 749.4] 

when the background reinforcement was on a RI 120 schedule, and a low of 187.1 behaviors 

90% CI [184.1, 190.0] when the background was on a RI 1 schedule. The data shows that the 

addition of background reinforcement reduces the average rate of behavior by approximately 

75% for both reinforced and extinction schedules.  

Concurrent Schedules Review. Since background reinforcement was not tested during 

the initial experiment series, the impact of background reinforcement on the matching sensitivity 

was examined. The relationship between background reinforcement rate and matching sensitivity 

is shown in Figure 15. The data shows reasonable matching sensitivity levels for a background 

RI of 20 or above. At reinforcement rates faster than RI 20, the three reinforcement magnitudes 

diverge. The highest reinforcement magnitude, 20, showed a trend towards increasing matching 

sensitivity, while the lowest reinforcement magnitude, 60, showed a trend towards decreasing 

sensitivity. At reinforcement rates slower than RI 20, the results of the three reinforcement 
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magnitudes have overlapping confidence intervals and the matching sensitivity is within the 

expected range. In addition, the average matching sensitivity, bias, and percentage of variance 

accounted for were nearly equivalent for all three reinforcement magnitudes, as shown in Table 

10. This data shows that the three reinforcement magnitudes used did not have a large impact on 

the results across the RI 20 to RI 120 background reinforcement range and that the values 

obtained are similar to the values obtained in the first experimental series. The values of the 

percentage of variance accounted for was also above 90% and within the acceptable range.  

Modification Four. This experimental change was designed to address the rapid speed of 

learning by either removing wall stimuli or by increasing the number of stimulus elements. The 

average number of behaviors per condition (reinforcement and extinction schedules) were found 

to be nearly equivalent for the 10 Red / 10 Green stimulus element condition (‘10/10 no wall’) 

and the 5 Red / 5 Green / 5 Wall condition (‘5/5/5 wall’), as shown in Figure 16. The 

reinforcement schedules had an average around 1177 behaviors per schedule, while the 

extinction schedules had an average around 568 behaviors per schedule. The rates of initial 

learning for the reinforcement schedules show rapid adaptation in both conditions, with the 

Pearson’s correlation coefficient reaching a plateau around or slightly above 1000 generations. 

During the extinction schedules, the ‘10/10 no wall’ and ‘5/5/5 wall’ condition diverge, with the 

‘10/10 no wall’ condition showing a similar rapid adaptation pattern similar to the reinforcement 

schedules, and the ‘5/5/5 wall’ condition showing a noisy but relatively high and stable 

relationship between the number of generations and the amount of correlation. This data is 

shown in Figure 17.  

As the number of stimulus elements increases in the local environment, in the ‘no wall’ 

conditions, the number of behaviors per schedule increases more slowly across the reinforcement 
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schedules and decreases more slowly across extinction schedules. At the highest two stimulus 

element quantities tested, ‘50k/50k no wall’ and ‘100k/100k no wall,’ the increase in behavior 

during the reinforcement schedules and the decrease in behavior during the extinction schedules 

was low enough that they did not reach the plateau reached in the other conditions. This data is 

shown in the top portions of Figure 18 and 19. The rates of learning for the ‘no wall’ condition 

(the top portions of Figure 20, and 21) showed a high degree of variability between data points. 

Linear extrapolations were used to show the general trends in the data. The trends show that the 

rate of learning decreases as the quantity of stimulus element in the local environment increases.  

As the number of stimulus element increases in the local environment, in the ‘wall’ 

conditions, the number of behaviors per schedule increases more slowly across the reinforcement 

schedules. The rate at which behavior increases is more gradual in the ‘wall’ conditions (shown 

in the bottom chart in Figure 18) compared to the rate at which behavior increases in the ‘no 

wall’ conditions (shown in the top chart in Figure 18). Since none of the stimulus element 

quantities tested converge by the tenth presentation, it is undetermined if they would converge if 

more schedules were run. During the extinction schedules, as presented in the bottom chart in 

Figure 19, increasing the quantity of stimulus elements led to an increase in amount of behavior 

relatively uniformly across all schedules. The three test groups with the largest number of 

stimulus elements present in the local environment cluster around 700 to 750 behaviors per 

schedule. The rates of learning for the ‘wall’ condition (the bottom portions of Figures 20 and 

21) showed a high degree of variability between data points, like the ‘no wall’ condition. Linear 

extrapolations were used to show the general trends in the data. The results show that during the 

first reinforcement schedule, the rate of learning decreases as the quantity of stimulus element in 

the local environment increases. During the first extinction schedule, the three test groups with 
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the lowest number of stimulus elements in the local environment had lower rates of learning as 

the quantity of stimulus elements increased. The two groups with the highest stimulus element 

quantities showed negative rates of learning, indicating that the behavioral histograms actually 

became slightly less similar to the overall distribution of behavior over the first 2000 

generations. 

Bringing experiment two together, the most optimal conditions of the ones studied 

combine a background reinforcement of RI 20 with the ‘5/5/5 wall’ condition. The ‘10/10 no 

wall’ condition showed no learning during the extinction schedule, which deviates from the 

expected behavior of live organisms. Increasing the number of stimulus elements in the local 

environment was successful in slowing down the rate at which behavior decreased across the 

experiment during extinction schedules, but also suppressed the rate at which behavior increased 

across the experiment during the reinforced schedules. In addition, increasing the quantity of 

stimulus elements also increased the amount of variation in learning, leading to much less 

consistent moment to moment behavior in reinforced and extinction schedules. The background 

reinforcement level of 20 was used since it was the highest rate of reinforcement (thus having the 

strongest suppressive effect) that still allowed animal-like behavior on concurrent schedules. The 

behavior per schedule data is shown in Figure 22. As shown in Figure 22, behavior during 

reinforced schedules and extinction schedules remained relatively constant across schedules. 

During schedules that had a reinforcement schedule present, the average behavior was 1178.56 

behaviors per schedule, 90%CI [1169.15, 1187.97]. During extinction schedules, the average 

behavior was 569.54 behaviors per schedule, 90% CI [565.42, 573.66]. A repeated measures 

ANOVA was performed and a statistically significant difference was found between the behavior 

of at least two groups (F(19,551) = 644.95, p < 0.05). The effect size, calculated as omega 
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squared (ω2), was 0.953, indicating a large effect. A planned contrast between behavior during 

all reinforced schedules and all extinction schedules was also performed and a statistically 

significant difference was found between these two groups (F(1,551) = 9596.92, p < 0.05). The 

effect size was 0.460, again indicating a large effect. 

Experiment Series Two Discussion 

 Comparing the data from the idealized result of discrimination on multiple schedules (as 

seen in Figure 1) and the result obtained by the modified ETBD with background reinforcement 

(as seen in Figure 22), the differences are clear. While the AO was able to learn to perform 

specific behaviors while the discriminative stimulus was present, the rate of learning and 

unlearning was also a challenge for the modeling of animal behavior by AOs animated by the 

modified ETBD. Like the ideal case, reinforced schedules had a high number of responses. 

However, this rate of response was constant and does not have the gradual increase in number of 

responses expected in the later schedules. The extinction schedules had a lower number of 

responses that stayed constant through the entire experiment and did not decay, unlike the ideal 

case.  

 The stable amount of behavior during the reinforced schedules was expected. AOs 

animated by the standard ETBD have been found in prior experiments to learn extremely 

quickly. While the modified AOs had the potential for more moderate speeds of learning, it was 

clear from the results that the AOs animated by the modified ETBD also learned quickly when 

only a low number of stimulus elements were present. Based on the initial learning results shown 

in Figure 17, when only 10 stimulus elements are present in the local environment, the AO is 

able to respond appropriately to the scheduled reinforcement by approximately the 1000th 
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generation. This speed of learning is not problematic, since live organisms also learn how to 

respond to schedules of reinforcement very quickly (Corrado et al., 2005).  

The increase in behavior in the ideal case during the later reinforced schedules is likely 

due to within-trial behavioral contrast (Clement et al., 2000), which the AO was not able to 

replicate. It is possible that (a) behavioral contrast might need its own unique implementation in 

the modified ETBD in order to function, and/or (b) the baseline requirements for this to appear 

as an emergent phenomenon of the ETBD have not yet been met. This study does not reveal 

which of these possibilities is the case.  

The rapid learning of the AOs during the extinction schedules was expected for the same 

reason as the rapid learning was expected during reinforced schedules. While the high operant 

level during extinction was suppressed somewhat by background reinforcement, this suppression 

did not allow the AOs to have levels of behavior similar to live organisms. This suggests that 

there is some missing mechanism here that differentiates AO behavior from live organism 

behavior. It is possible that this could be a within-trial behavioral contrast effect, or a learned 

avoidance, that is currently not incorporated into the modified ETBD. In the modified ETBD, in 

the absence of experimentally given reinforcement, AOs will behave randomly. This is simply 

not the case for live organisms (Goodman et al., 2022). It is also possible that some form of 

latent learning may be required to capture extinction behavior appropriately. 

Another aspect of live organism behavior is that the amount of behavior in early 

extinction schedules is similar to the amount of behavior during reinforced schedules. Since no 

behaviors during an extinction schedule are rewarded, the behavior must be reinforced by other 

means. It is possible that some feature of the environment is acting like a discriminative stimulus 

(e.g. the experimental operandi, or the experimental chamber itself), and the organism’s response 
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to that discriminative stimulus has yet to be extinguished. During the extinction schedules with 

five red, and five neutral wall stimuli present, it was clear that there is learning occurring while 

there is no learning occurring in the experiments with only 10 red stimuli. This shows that 

having neutral stimuli in the environment is likely very important for simulating live organism 

behavior.  

The speed of learning and unlearning, as well as the lack of durability of learning, also 

adds to the difficulty of modeling such behavior. Looking at Figure 19, the extinction schedule 

data collected from an environment without walls generally collapses together into a narrow 

zone, while the behavior from environments with walls generally do not collapse together and 

remain relatively parallel. The initial drop in the number of behaviors in the environment without 

walls was likely due to background reinforcement pulling behaviors away from the target class. 

In contrast, the amount of behaviors in the environments with walls show how the walls can 

increase the number of behaviors in a schedule, based on how many walls were present. The 

following paragraph is a detailed description of how this may have occurred. 

During the reinforced schedule, the behavioral populations linked to wall and green 

stimulus elements are being exposed to the fitness-based pathway in the ETBD (as shown in 

Figures 5 and 7) when a reinforcer is given. This leads the behavioral populations becoming 

biased towards the target class and also reduces the entropy rating for those populations. During 

the following extinction schedules, because the wall stimulus elements are carried over between 

schedules, they will have lower entropy than the naïve red stimulus elements, which makes them 

more likely to be selected as observation targets. Since this is an extinction schedule, the wall 

stimulus elements will quickly unlearn the bias towards the target class that developed earlier, 

but not before emitting some behavior in the target class. The rate of behavior in the target class 
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during the extinction schedule will decrease and eventually stabilize at the operant level. Then 

the reinforced schedule occurs again causing a bias in the wall stimulus elements. The cycle 

repeats, so the walls continue to have the same impact on behavior during the extinction 

schedules, schedule after schedule.  

The attempt to decrease the speed of learning by increasing the number of stimulus 

elements was partially successful but also created some issues. The speed of unlearning during 

extinction was decreased, as predicted, but the speed of learning during reinforced schedules was 

also significantly slowed. In addition, as the number of stimulus elements in the local 

environment increased, the variability in learning rate also increased. This is likely due to the 

increased chance of picking a set of stimulus elements that had not yet been exposed to any 

reinforcers. As the number of stimulus elements increased, the lack of continuity created by the 

random sampling method of SST became more pronounced. Some other mechanism of choosing 

which stimulus elements to observe may be necessary here, or a different conceptualization of 

stimulus elements. For example, extending entropy-based observation to cover the entire local 

environment instead of using random sampling might be helpful in reducing the discontinuity in 

learning. Another possible mechanism that might support learning is categorization. 

Categorization of different stimuli by organisms is a major area of study and has clear impacts on 

animal behavior (Seger, 2008). If AOs can sort stimuli by category, this could reduce the burden 

of learning tremendously, particularly in complex environments with many stimulus elements.  

Taken together, the modified ETBD was able to show learning of discriminative stimuli 

on multiple schedules, but lacked some of the key features of animal behavior. The critical 

element that was missing is likely to be learning durability. AOs were able to learn quickly, 

creating bias in the behavioral populations towards the target class. However, this bias was 
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quickly extinguished without reinforcement during the extinction schedule. During the course of 

a multiple schedule, it is expected that live organisms learn: (i) to associate the extinction 

stimulus with lack of reward and (ii) that the neutral stimuli in the environment are irrelevant 

because they do not predict either reinforcement or extinction. The current modified ETBD did 

not accomplish either of these goals. The durability of learning during reinforced schedules was 

not tested in this paradigm because there was always reinforcement present during those 

schedules, but it is unlikely that the learning about the discriminative stimulus (e.g. the green 

stimulus element) would last any longer than the learning about the extinction stimulus. If the 

discriminative stimulus was tested during extinction as is done during stimulus generalization 

experiments, this challenge would likely need to be overcome. 

VI. General Discussion 

 This study, and many studies like this one have one major underlying question. How 

many phenomena can be explained by the ETBD? The selection of behavior via evolutionary 

principles (Skinner, 1981) and how it is theorized to be instantiated in the brain via neuronal 

group selection (Edelman, 1978) are both conceptual precursors to the complexity theory-based 

genetic algorithm known as the ETBD. Unlike the preceding theories, the ETBD is able to make 

predictions and falsifiable claims about the behavior of organisms, and its development is 

ongoing. One of the greatest strengths of the ETBD as a model is its parsimony. Through the use 

of very simple rules, multiple unique behavioral phenomena have been given not only a 

descriptive presentation (e.g. the matching law) but also a potential causal explanation (e.g. 

behavioral adaptation based on evolutionary principles) for their existence. Another strength of 

the ETBD is its transparency. Theories often have a substantial number of vague, conceptual 

assumptions and principles that must be true for them to have explanatory power. The ETBD has 
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its own conceptual principles, however those principles are operationalized in a concrete and 

tangible function. These principles are then computed in a sequential, generative manner which 

lead to the predictions of the theory. It can be said that every phenomenon that can be explained 

by the ETBD no longer holds any mystery. This is one reason why expansion of the ETBD into 

new domains is so appealing. As the results of this study show, even the partial successes of the 

ETBD are revealing.  

This study aimed to address the area of stimulus control, using a modified version of the 

ETBD that draws on elements of Este’s SST. Each step of the way required additional 

modifications to be written for the modified ETBD to function appropriately, and the results 

were often only partially successful descriptions of live organism behavior. However, this study 

showed promise in terms of highlighting some important design principles when attempting to 

expand the ETBD, the robustness of the ETBD, and some areas of stimulus control that require 

extra attention that are often ignored when dealing with live organisms. 

Not all modifications attempted within this study were equal. The most successful 

modification in the study was the inclusion of entropy. The conceptual basis of the entropy 

function comes from the finding that organisms pay more attention to stimuli from which they 

have received reinforcement in the past. The robustness to different parameter manipulations in 

the modified ETBD with entropy and background reinforcement was unexpected. The ability to 

still obtain animal-like behavior in many population sizes and background reinforcement levels 

in both experiment series two and three strongly suggests that entropy has a place in the ETBD. 

It also made use of the information stored within behavioral populations to manage how the AO 

attended to its local environment. The modifications to the ETBD that seem to be the most 

effective often follow this mold (Klapes et al., 2018; Riley, 2022). Modifications to the ETBD 
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that operationalize principles of behavior, in a parsimonious and integrated fashion within the 

ETBD often seem to work better than complex systems that have entirely independent 

mechanisms. Another possible source for inspiration is studies on related neural processing, like 

research into instantiations of stimulus generalization in the brain (Fujita et al., 2020; Ramos, 

2014), reward prediction error (Kishida et al., 2016; Schultz et al., 1997), and categorization 

(Seger, 2008) to name a few. 

Two key areas of focus emerged over the course of the study. The most prominent area of 

focus was a need for the AOs to have a more durable response when in the presence of a 

discriminative stimulus or an extinction stimulus. In terms of durability, there are two challenges. 

The standard way of testing stimulus generalization is usually done in extinction, with no 

rewards being given for any behavior. To have AOs behave like live organisms, they must make 

this same mistake (i.e. responding without reward). Live organisms do eventually respond 

correctly, but at varying rates. This variability and speed of adaptation to the environment is also 

a possible target for modeling for the ETBD. 

This project also made clear that an extinction stimulus response is likely more than just 

background reinforcement, and may require a separate mechanism for its function (Dunsmoor et 

al., 2017; Schechtman et al., 2010). When placed within an extinction environment, the AOs will 

quickly reduce their behavior in the target class until it reaches the operant level. This level of 

behavior is essentially the same level of behavior the AO will have when it is placed in a neutral 

environment without any reinforcement or punishment. The learning about extinction is not 

preserved and the AO can be expected to behave in a naïve fashion when next exposed to a 

reinforcer or a punisher. It’s clear that, to allow AOs to respond appropriately to an extinction 

stimulus when re-exposed, this learning needs to be preserved.   
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A secondary, but also important area of focus, is the need for greater selectivity of 

stimuli. There are two phenomena in this study that point to this need. First, to respond 

appropriately to a multiple schedule like the one in this study, the AO needs to learn, 

erroneously, that it should respond during the extinction schedule. Over the course of multiple 

repetitions, the AO should additionally learn that it will get no reinforcers during the extinction 

schedule and slowly decrease the amount of behavior in the target class until nothing is left. 

Second, the AO needs to learn to stop associating the wall or neutral stimuli with the reinforcer 

and only associate the discriminative stimulus with the reinforcer. The second phenomenon is 

more subtle and less understood than the first. In this study, its absence was shown by AOs when 

they re-associated wall stimuli with behaving in the target class during the reinforced schedule, 

regardless of how many extinction schedules they went through. The second phenomenon is 

often taken for granted during studies of stimulus generalization. Any stimulus control subject 

likely goes through this kind of process, even without extinction being present. Pavlov, when he 

was first describing stimulus control wrote: 

When conditioned reflexes are being established in dogs for the first time, it is found that 

the whole experimental environment, beginning with the introduction of the dog to the 

experimental room, acquires at first conditioned properties.... Later on, when the special 

reflex to a single definite and constant stimulus has appeared, all the other elements of the 

environment gradually lose their special conditioned significance. However this 

inhibition is at first easily dis-inhibited by any extra stimulus. (Pavlov, 1927, p. 115) 

Unlike Pavlov’s work, most studies of stimulus control do not describe this loss of “special 

conditioned significance.” The only other reference to a similar sounding phenomenon was by 

Stach and Giurfa, who described bees eliminating redundant visual information unnecessary to 
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solve the task (Stach & Giurfa, 2005). This is also likely related to the “overlap problem” of SST 

described earlier. SST was unable to model the learning of new information once a system was 

fully trained, and had no mechanism to remove extraneous stimuli. There is a need for AOs to be 

able to differentiate and prioritize particular stimuli when in a reinforced environment without 

punishment. There is also additional need for flexibility when the environment changes or if 

there are multiple types of stimuli in the local environment. 

Limitations 

 There are multiple serious questions that this study does not attempt to answer, one of 

which is the following: What is the appropriate number of stimuli that should be present in the 

local environment? This study primarily utilized 10 stimulus elements to prove that stimulus 

control and stimulus generalization gradients were possible using the modified ETBD. In a 

physical sense, the limit to the number of stimulus elements could be considered nearly infinite. 

On the other hand, the number of stimulus elements in a functional sense is likely limited by 

things like the sensory limits of the organism (Wright, 1972), the computational power of an 

organism’s neural circuitry (Miller, 1956), or whether or not it had lunch earlier in the day 

(Edwards et al., 2019). Incorporating discriminative stimuli into the ETBD will likely require 

some form of stimulus element. The basic stimulus element designed by Estes in the SST is one 

of the more basic forms of this concept. Some of the environmental design challenges 

commented on in this paper (e.g. designating hierarchy among stimuli, dimensionalizing stimuli, 

etc.) can be potentially sidestepped by using cameras or microphones to act as sensory inputs, 

but this also still requires some form of translation into data that can be input into AOs creating 

again de facto stimulus elements. 
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 The list of already investigated factors that affect stimulus control and stimulus 

generalization is long. Thus this study does not take into account a majority of those factors and 

assumes an abstract environment where many of those factors do not apply. While these factors 

can be manipulated or controlled in live organisms, this cannot occur in AOs without a concrete 

operationalization of the underlying mechanisms which connect the physical world phenomena 

to how they modify stimulus control behavior. However, the ignorance of the model to these 

other factors does not make it meaningless. Dr. Box’s famous quote, “All models are wrong, but 

some are useful” (Box, 1979) applies here. All models are by definition, simplifications of the 

phenomena expressed in the physical world, and are thus wrong. However, their predictive 

power can be useful in many real-world applications.    

Conclusions 

 This project combined the ETBD with elements of SST in order to determine if the 

combination of the two theories would be able to predict live organism behavior in stimulus 

control experimental paradigms. The modified ETBD, with additional modifications, was able to 

predict learning discriminative stimuli in multiple schedules, and generate stimulus 

generalization gradients similar to those generated by live organisms using Guttman and Kalish’s 

experimental protocol (1956). The experiment also identified areas where the modified ETBD 

diverged from animal behavior in both paradigms and highlighted the major components that 

need to be addressed in order to have more a complete model of stimulus control.  

VII. Future Directions 

 This section will focus on different possible methods to handle the two challenges 

highlighted above, durability and selectivity of learning, which were not addressed by this study.   
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Durability of learning. The durability method used in this study (the reproduction 

selection modifier based on entropy combined with the population mutation modifier) was 

unable to reproduce animal-like behavior on concurrent schedules. In addition, the learning had 

the tendency to collapse quickly when a small number of behaviors began to spread out over the 

phenotype space from the convergence point. A second durability issue was present for 

extinction stimuli. During extinction, the number of behaviors would drop to the operant level, 

rather than to zero, leading to a non-animal-like rate of behavior on the target class.  

One possible mechanism to improve durability of learning without stopping the 

reproductive and recombinatory aspects of the ETBD, is to store this information in a location 

outside of the behavioral population. One potential way of doing this is to store the information 

in the circular reinforcement probability landscape. If a behavioral population is rewarded for 

emitting a particular behavior, the probability for that behavior to become a parent in future 

generations can be increased slightly. This can adjust the probability of a single behavior, or 

affect a range of phenotypes around it based on a linear probability density function. This set of 

weights can also be used as a proxy for past behavior. It is potentially possible to adjust the 

probability more or less based on the how probable that behavior was to be emitted, similar to 

prediction error (Schultz et al., 1997). To apply this paradigm to extinction, reward prediction 

error can be used to reduce the probability of becoming a parent based on loss of reinforcement. 

This can potentially also be used to differentiate between novel stimuli and older stimuli, giving 

an exposure effect, or a latent learning effect. In order for this to function properly, an internal 

reward/punishment paradigm needs to be implemented, along lines similar to what was done in 

previous studies (Riley, 2022).  
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Another possible durability method is to link a stability-based selection modifier to each 

stimulus element. One of the challenges of the selection modifier function used in this study was 

the loss of ability to respond to changes in the reinforcement environment once learning had 

occurred, until the population mutation rate spread out the behavioral population enough  to 

allow selection, reproduction and recombination to function again. To deal with this challenge, a 

dynamic window capturing reinforcement history (e.g. a reinforcement context kernel) can be 

used to detect changes in the reinforcement environment and the ability of the organism to obtain 

a regular rate of reward. The following paragraphs describe an example reinforcement context 

kernel.  

The inputs for this system are the stability of the rate of reward (S), and the rate of the 

reward (R) itself and the outputs are the size of the reinforcement history capturing window, and 

the percentage of the behavioral population that will be selected to become parents. Stability is 

captured by comparing two time periods of recent behavior. For example, one comparison point 

could be the last three generations, and the other would be the three generations before that. The 

proportion of reward for each set will be calculated and the difference between the two will be 

the measure of stability. If the difference is small, then the stability is considered high, and vice 

versa. See Figure 23 (top) for an example of this calculation and (bottom) an example of how 

data is collected for one generation.   

The size of the window is a measure of the sensitivity of the kernel. The smaller the 

window, the more impacted it is by reinforcement, or lack of reinforcement. A larger window 

will have the opposite effect. When S is high, then it is assumed that the behavioral population is 

responding to the environment appropriately and will reduce the selection percentage in order to 

reduce the amount of change the behavioral population will have between generations. The 
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window size will also decrease in order to increase sensitivity to new changes in reinforcement. 

When S is low, then it is assumed that the behavioral population is not responding to the 

environment correctly and thus the selection percentage is increased to allow for faster 

adaptation to the environment. The window size will also increase in order to compare the 

reinforcement context over a longer period of time and to reduce the sensitivity of the kernel to 

new reinforcement or non-reinforcement. The steps required to change the window size are 

shown in Figure 24. 

The challenge for this particular system is the large number of parameters that need to be 

set by the designer. There is a need for initial parameters (e.g. starting window length, starting 

selection modifier) and dynamic parameters (e.g. step speed for the selection percentage, and 

speed of change for the window size, the thresholds for when to change the window size or leave 

it the same, and the selection boundary). The dynamic parameters may also be asymmetric, (e.g. 

requiring more activations to decrease the window size than to increase it). An example of a 

stimulus generalization gradient generated from using a reinforcement context kernel is shown in 

Figure 25. 

Selectivity for a particular stimulus. Since there are no prior designs for selectivity of a 

particular stimulus for the ETBD or the SST, the following section will be a discussion of the 

principles that are likely involved in such a process. There are multiple possible ways to bring 

selectivity into the modified ETBD, but they all require differential treatment of stimulus 

elements without explicitly provided punishment. In a stimulus discrimination task, the 

following sequence occurs. First, many, if not all, of the stimulus elements must be able to 

become conditioned stimuli that lead to the conditioned response. Then there needs to be a 

selective inhibition of behavior on all stimulus elements that are not the discriminative stimulus, 
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which grows stronger with time. The inhibition of behavior on all other stimulus elements will 

need to grow until the discriminative stimulus is left as the sole arbiter of the conditioned 

response. This could potentially utilize punishment (Klapes, 2020), within-trial behavioral 

contrast mechanisms (Zentall & Singer, 2007), or changes to the probabilities on the circular 

selection landscape as described earlier in order to accomplish the inhibition of behavior.  

A secondary issue that is not typically discussed in discriminative stimuli experiments is 

the attention of the test subject. Once the discriminative stimulus is the sole arbiter of the 

conditioned response, the AO will need to observe the discriminative stimulus first, in order to 

have the conditioned response. If the environment is complex enough, random chance may not 

be sufficient to direct the attention of the AO to the discriminative stimulus, so a biasing method 

is necessary. This could be a change to the stimulus element environment to increase the 

probability that the discriminative stimulus is visible, a change to how the AO scans and chooses 

what to observe, or the act of observing itself could be added to the behavioral pool as an action. 

The last method is undeniably the most complex and might require additional principles to 

function appropriately. However, this may also be an important component of animating a robot 

with the ETBD.  
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Table 1 

Details of Experimental Procedures, Experiment One 

Experiment Source Schedules 
Stimulus 
Elements AO Modification 

AO 
Quantity 

Exp One, Phase One 
Direct ETBD 
Replication 

(McDowell et 
al., 2008) 

(Experiment One Schedule) 
Schedule 1-11: Concurrent schedules 
(20k gen) 
TC1/TC2 RIs: 20/120, 30/110, 40/100, 
50/90, 60/80, 70/70, 80/60, 90/50, 
100/40, 110/30, 120/20  
TC1/TC2 RMs: 40/40 

One Wall None 30 

Exp One, Phase Two 
Replication With 
stimulus elements 

One, Two, 
… 15  

None 30 

Exp One, Phase Two 
Modification One - 
Observation 

Entropy Observation 5% 30 

Entropy Observation 2% 30 

Exp One, Phase Two 
Modification Two - 
Bx Population 

Entropy  Observation 2% 
Bx Pop (50, 100 … 500) 

300  
(30 per 

condition) 
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Table 2 

Details of Experimental Procedures, Experiment Series Two 

Experiment Source Schedules 
Stimulus 
Elements AO/Procedure Modifications 

AO 
Quantity 

Exp Two 
ETBD w/ Distinct 
stimulus element 

(Based on 
example in 

p.262 Pierce 
& Cheney 

2013) 

(Experiment Two Schedule) 
Schedule 1: Wall stimulus 
element only 
Schedules 2-20 (even): Wall 
& Red stimulus element 
Target RI = 70 
Schedules 3-21 (odd): Wall 
& Green stimulus element 
Target RI = 0 (extinction) 

5 Wall,  
5 Green,  

5 Red  

Bx Pop 200 
Entropy Observation 2% 30 

Exp Two 
Parameter 
Baselines 

Extinction Only 
Bx Pop 200 

Entropy Observation 2% 
30 

Bx Pop 200 
Entropy Observation 2% 

BKGD 200 Targets  (RI 20, RM 40) 
30 

Exp Two 
Modification Three 
- Background R+ 

Bx Pop 200 
Entropy Observation 2% 

BKGD 200 Targets,  (RI = various, 
RM 40) 

300  
(30 per 

condition) 

Exp Two 
Modification Four -  
stimulus element 
Quantity 

Same schedules as 
Experiment Two  

 X Green,  
X Red, 

(X = Various) 

Bx Pop 200 
Entropy Observation 2% 

BKGD 200 Targets  (RI 20, RM 40) 

330  
(30 per 

condition) 

 X Wall,  
X Green,  

X Red, 
(X = Various) 

Bx Pop 200 
Entropy Observation 2% 

BKGD 200 Targets  (RI 20, RM 40) 

150  
(30 per 

condition) 

Exp Two,  
Concurrent 
Schedules Review 

(McDowell et 
al., 2008) 

Same schedules as 
Experiment One  10  Wall 

Bx Pop 200 
Entropy Observation 2% 

BKGD 200 Targets   
(RI =  Various, RM = Various) 

1980 
(30 per 

condition) 
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Table 3 (Part 1 of 3) 

Details of Experimental Procedures, Experiment Three 

Experiment Source Schedules/Targets 
Stimulus 
Elements AO Modification 

AO 
Quantity 

Exp 3, Phase 1 
Modification 
Five - Selection 
Modifier 

Based on 
Guttman & 

Kalish, 1956) 

Experiment Three Schedules 
Schedule 1: Wall only (20k gen) 
Schedule 2: R+ Training (20k gen) 
Schedule 3-12: Testing (200 gen) 
 
Target Class (RI 10, RM 05) 
BKGD 200 Targets  (RI 10, RM 40) 

5 Wall stimulus 
element, 5 

Training Wall 
stimulus 
element,  

5 Red stimulus 
element, 10 Red 

adjacent stimulus 
element 

Bx Pop 200 
Entropy  Observation 2% 

Selection Modifier (Concave) 
Minimum Mutation Every X Gen  

(x =  Various) 

480  
(30 per 

condition) 

Exp 3, Phase 1 
Training Time 

Based on 
Guttman & 

Kalish, 1956) 

Schedule 1: Wall only (20k gen) 
Schedule 2: R+ Training (Various 
gen) 
Schedule 3-12: Testing  (200 gen) 
 
Target Class 
(RI = Various, RM = Various) 
BKGD 200 Targets  (RI 10, RM 40) 

5 wall  
5 training wall 

5 target stimulus 
element 

5 stimulus 
element below   

5 stimulus 
element above  

Bx Pop 200 
Entropy Observation 2% 

Selection Modifier (Concave) 
Min Mutation Every X Gen  

(X =  100) 

150  
(30 per 

condition) 
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Table 3 (Part 2 of 3) 

Details of Experimental Procedures, Experiment Three 

Experiment Source Schedules/Targets 
Stimulus 
Elements AO Modification 

AO 
Quantity 

Exp Three, Phase 2 
Modification Six - 
Variation Reduction 

Based on Guttman 
& Kalish, 1956) 

Same Schedules as 
Experiment Three 
Target Class (RI 10, RM 05) 
BKGD 200 Targets  (RI 10, 
RM 40) 

5 wall  
5 training wall  

5 target stimulus 
element 

5 stimulus 
element below   

5 stimulus 
element above  

Bx Pop 200 
Entropy 

Observation 2% 
Selection Modifier 

(Concave) 
Min Mutation 
Every X Gen  

(X =  Various) 
80% Training cut 

off/  
No Training cut 

off 

660 
(30 per 

condition) 

Same Schedules as 
Experiment Three 
Target Class (RI 10, RM 05) 
BKGD 200 Targets  (No R+) 

660 
(30 per 

condition) 

Same Schedules as 
Experiment Three 
Target Class (RI 10, RM 05) 
BKGD 200 Targets  (RI 10, 
RM 40) 

10 target stimulus 
element 

10 stimulus 
element below   

10 stimulus 
element above  

660 
(30 per 

condition) 

Same Schedules as 
Experiment Three 
Target Class (RI 10, RM 05) 
BKGD 200 Targets  (No R+) 

660 
(30 per 

condition) 
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Table 3 (Part 3 of 3) 

Details of Experimental Procedures, Experiment Three 

Experiment Source Schedules/Targets 
Stimulus 
Elements AO Modification 

AO 
Quantity 

Exp 3, Concurrent 
Schedules Review 
(Selection and 
Mutation Modifer) 

(McDowell et 
al., 2008) 

Same Schedules as Experiment One 
 
BKGD 200 Targets   
(RI = Various, RM = Various) 

10 
us element 

Bx Pop 200 
Entropy Observation 2% 

Selection Modifier (Concave) 
Minimum Mutation Every X 

Gen  
(x =  None) 

300  
(10 per 

condition) 

Same Schedules as Experiment One 
 
BKGD 200 Targets (RI 10, RM 40) 

Bx Pop 200 
Entropy Observation 2% 

Selection Modifier (Concave) 
Minimum Mutation Every X 

Gen  
(x =  Various) 

180  
(30 per 

condition) 

Exp 3, Concurrent 
Schedules Review 
(Behavior Population 
Siz) 

Same Schedules as Experiment One 
 
BKGD 200 Targets (RI 10, RM 40) 

Bx Pop  (Various) 
Entropy Observation 2% 

Selection Modifier (Concave) 
Min Mutation Every X Gen  

(x =  Various) 

210   
(30 per 

condition) 

Exp 3, Concurrent 
Schedules Review 
(Selection Modifer 
Curve) 

Same Schedules as Experiment One 
 
BKGD 200 Targets (RI 10, RM 40) 

10 
stimulus 
element 

Bx Pop 200 
Entropy Observation 2% 

Selection Modifier  
(Concave, Linear, Convex) 
Min Mutation Every X Gen  

(x =  Various) 

1890 
(30 per 

condition) 
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Table 4 

Experiment 1, Phase One data 

No. a b PVAF RCTT 
r2 

1 0.89 0.94 0.99 0.01 
2 0.85 1.04 0.97 0.02 
3 0.87 1.04 0.98 0.02 
4 0.90 0.99 0.98 0.00 
5 0.89 1.02 0.96 0.02 
6 0.95 0.96 0.99 0.00 
7 0.80 0.95 0.99 0.01 
8 0.95 0.95 0.99 0.02 
9 0.88 0.96 0.98 0.01 

10 0.93 0.97 0.99 0.00 
11 0.95 0.98 0.99 0.00 
12 0.84 1.02 0.98 0.01 
13 0.83 0.96 0.98 0.01 
14 0.82 0.95 0.99 0.01 
15 0.92 1.04 0.98 0.01 
16 0.89 1.00 0.98 0.00 
17 0.87 0.98 0.98 0.01 
18 0.81 1.03 0.99 0.00 
19 0.89 0.99 0.97 0.00 
20 0.87 1.00 0.98 0.01 
21 0.99 1.00 0.99 0.01 
22 0.92 0.95 0.99 0.02 
23 0.84 0.96 0.98 0.01 
24 0.85 1.03 0.96 0.03 
25 0.86 1.05 0.98 0.00 
26 0.90 0.91 0.99 0.01 
27 0.88 1.05 0.98 0.01 
28 0.84 1.01 0.99 0.00 
29 0.91 1.02 0.99 0.01 
30 0.85 1.05 0.98 0.02 

Mean 0.88 0.99 0.98 0.01 
 

Note for Table 4. The RCTT r2 in the table is the proportion of the variance in the residuals 

explained by the best fitting cubic polynomial. 
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Table 5 

Random Five Observation Style (Experiment 1 Phase 2, Dev. 1) 

stimulus 
element 
Quantity 

Measure Mean SEM CI +90% CI -90% Standard 
Modification Max Min 

1 
a 0.881 0.008 0.895 0.866 0.046 0.985 0.799 
b 0.994 0.007 1.006 0.982 0.039 1.053 0.909 

PVAF 0.982 0.002 0.985 0.98 0.008 0.994 0.956 

2 
a 0.578 0.008 0.593 0.564 0.046 0.656 0.494 
b 0.995 0.007 1.007 0.983 0.039 1.047 0.915 

PVAF 0.964 0.003 0.969 0.959 0.016 0.988 0.913 

3 
a 0.539 0.007 0.551 0.527 0.038 0.608 0.464 
b 1.006 0.006 1.017 0.996 0.033 1.051 0.938 

PVAF 0.956 0.004 0.963 0.95 0.021 0.988 0.904 

4 
a 0.499 0.007 0.511 0.487 0.039 0.555 0.413 
b 0.988 0.008 1.001 0.975 0.042 1.091 0.922 

PVAF 0.958 0.003 0.963 0.954 0.015 0.985 0.933 

5 
a 0.51 0.008 0.524 0.497 0.043 0.595 0.419 
b 1.011 0.005 1.02 1.002 0.028 1.061 0.945 

PVAF 0.961 0.003 0.967 0.956 0.017 0.991 0.927 

6 
a 0.502 0.007 0.514 0.491 0.037 0.57 0.421 
b 0.999 0.006 1.009 0.99 0.031 1.05 0.923 

PVAF 0.963 0.003 0.968 0.959 0.014 0.987 0.932 

7 
a 0.51 0.006 0.52 0.5 0.032 0.592 0.44 
b 0.988 0.006 0.998 0.979 0.032 1.063 0.929 

PVAF 0.967 0.003 0.972 0.963 0.014 0.994 0.928 

8 
a 0.514 0.006 0.525 0.503 0.035 0.602 0.454 
b 1 0.006 1.009 0.99 0.03 1.08 0.946 

PVAF 0.964 0.003 0.969 0.958 0.018 0.995 0.901 

9 
a 0.511 0.006 0.521 0.501 0.031 0.579 0.447 
b 0.994 0.006 1.004 0.985 0.031 1.069 0.942 

PVAF 0.961 0.003 0.965 0.957 0.014 0.988 0.93 

10 
a 0.519 0.007 0.53 0.508 0.036 0.578 0.452 
b 0.993 0.007 1.004 0.982 0.036 1.083 0.923 

PVAF 0.962 0.002 0.966 0.958 0.012 0.98 0.932 

11 
a 0.523 0.006 0.532 0.513 0.031 0.566 0.433 
b 1 0.005 1.008 0.991 0.029 1.061 0.955 

PVAF 0.962 0.003 0.968 0.957 0.019 0.989 0.904 

12 
a 0.508 0.006 0.518 0.497 0.033 0.563 0.437 
b 1.001 0.006 1.011 0.99 0.033 1.059 0.928 
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PVAF 0.968 0.002 0.972 0.963 0.013 0.99 0.929 

13 
a 0.499 0.007 0.51 0.487 0.037 0.59 0.407 
b 1.001 0.006 1.011 0.991 0.033 1.063 0.938 

PVAF 0.967 0.002 0.97 0.963 0.012 0.994 0.938 

14 
a 0.516 0.007 0.529 0.504 0.041 0.596 0.436 
b 0.988 0.005 0.997 0.979 0.029 1.033 0.911 

PVAF 0.963 0.002 0.967 0.958 0.013 0.98 0.93 

15 
a 0.505 0.005 0.514 0.497 0.027 0.567 0.441 
b 1.002 0.007 1.014 0.99 0.039 1.1 0.91 

PVAF 0.962 0.004 0.969 0.956 0.02 0.989 0.911 
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Table 6 

Entropy 5% Observation Style (Experiment 1, Dev. 1) 

stimulus 
element 
Quantity 

Measure Mean SEM CI +90% CI -90% Standard 
Modification Max Min 

1 
a 0.881 0.009 0.896 0.866 0.049 1.019 0.81 
b 0.997 0.008 1.01 0.984 0.042 1.081 0.911 

PVAF 0.983 0.002 0.986 0.98 0.011 0.995 0.949 

2 
a 0.812 0.006 0.822 0.802 0.034 0.896 0.766 
b 0.998 0.006 1.009 0.987 0.035 1.056 0.938 

PVAF 0.983 0.001 0.985 0.981 0.007 0.995 0.969 

3 
a 0.775 0.007 0.787 0.763 0.04 0.856 0.697 
b 1.005 0.006 1.016 0.995 0.035 1.073 0.924 

PVAF 0.982 0.002 0.984 0.979 0.009 0.997 0.959 

4 
a 0.756 0.006 0.766 0.746 0.033 0.823 0.675 
b 1.001 0.008 1.014 0.987 0.044 1.099 0.916 

PVAF 0.981 0.002 0.984 0.978 0.009 0.993 0.962 

5 
a 0.764 0.006 0.774 0.754 0.032 0.809 0.694 
b 1.007 0.007 1.019 0.995 0.039 1.086 0.923 

PVAF 0.979 0.002 0.982 0.977 0.009 0.992 0.958 

6 
a 0.731 0.008 0.744 0.718 0.041 0.832 0.614 
b 0.998 0.006 1.008 0.987 0.033 1.084 0.945 

PVAF 0.981 0.002 0.984 0.979 0.008 0.993 0.965 

7 
a 0.721 0.006 0.732 0.711 0.033 0.782 0.65 
b 0.999 0.005 1.006 0.991 0.025 1.056 0.956 

PVAF 0.982 0.002 0.985 0.979 0.01 0.994 0.949 

8 
a 0.703 0.006 0.713 0.693 0.033 0.762 0.633 
b 1.007 0.005 1.016 0.997 0.03 1.076 0.957 

PVAF 0.979 0.002 0.983 0.976 0.01 0.996 0.95 

9 
a 0.695 0.006 0.705 0.686 0.032 0.768 0.642 
b 0.998 0.007 1.009 0.987 0.036 1.057 0.901 

PVAF 0.981 0.002 0.984 0.979 0.009 0.994 0.962 

10 
a 0.688 0.005 0.696 0.68 0.025 0.737 0.635 
b 0.997 0.005 1.005 0.988 0.028 1.07 0.944 

PVAF 0.983 0.001 0.985 0.981 0.007 0.993 0.969 

11 
a 0.691 0.005 0.7 0.681 0.03 0.754 0.635 
b 1 0.007 1.011 0.989 0.036 1.065 0.942 

PVAF 0.987 0.001 0.989 0.984 0.007 0.997 0.969 

12 
a 0.695 0.005 0.704 0.687 0.027 0.762 0.636 
b 0.993 0.005 1.001 0.985 0.026 1.04 0.933 
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PVAF 0.984 0.001 0.987 0.982 0.007 0.991 0.958 

13 
a 0.671 0.004 0.678 0.663 0.023 0.736 0.628 
b 1.002 0.006 1.012 0.992 0.032 1.071 0.938 

PVAF 0.984 0.001 0.986 0.981 0.008 0.996 0.967 

14 
a 0.665 0.006 0.674 0.655 0.031 0.717 0.611 
b 0.996 0.006 1.005 0.986 0.03 1.068 0.941 

PVAF 0.982 0.002 0.985 0.979 0.01 0.998 0.949 

15 
a 0.666 0.005 0.674 0.658 0.026 0.718 0.598 
b 0.993 0.006 1.003 0.984 0.03 1.047 0.932 

PVAF 0.983 0.001 0.986 0.981 0.008 0.994 0.968 
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Table 7 

Entropy 2% Observation Style (Experiment 1, Dev. 1) 

stimulus 
element 
Quantity 

Measure Mean SEM CI +90% CI -90% Standard 
Modification Max Min 

1 
a 0.868 0.008 0.881 0.855 0.041 0.942 0.762 
b 1.003 0.008 1.017 0.989 0.045 1.102 0.919 

PVAF 0.982 0.001 0.985 0.98 0.008 0.993 0.964 

2 
a 0.858 0.007 0.871 0.846 0.04 0.923 0.771 
b 1.013 0.006 1.023 1.003 0.032 1.106 0.962 

PVAF 0.981 0.002 0.984 0.978 0.01 0.993 0.946 

3 
a 0.866 0.008 0.88 0.852 0.045 0.927 0.746 
b 1.012 0.009 1.028 0.996 0.052 1.137 0.909 

PVAF 0.984 0.001 0.987 0.982 0.007 0.994 0.965 

4 
a 0.854 0.007 0.866 0.842 0.038 0.91 0.761 
b 0.999 0.005 1.008 0.989 0.03 1.069 0.929 

PVAF 0.984 0.001 0.986 0.982 0.007 0.995 0.964 

5 
a 0.845 0.007 0.856 0.834 0.036 0.931 0.775 
b 1.004 0.009 1.019 0.989 0.049 1.092 0.89 

PVAF 0.984 0.001 0.986 0.982 0.008 0.995 0.964 

6 
a 0.817 0.007 0.828 0.805 0.037 0.92 0.728 
b 0.991 0.008 1.003 0.978 0.041 1.064 0.906 

PVAF 0.987 0.001 0.989 0.985 0.006 0.997 0.969 

7 
a 0.781 0.007 0.792 0.77 0.036 0.864 0.713 
b 1.008 0.006 1.018 0.998 0.032 1.075 0.94 

PVAF 0.985 0.001 0.987 0.983 0.007 0.996 0.972 

8 
a 0.784 0.005 0.792 0.775 0.028 0.836 0.727 
b 1 0.005 1.008 0.992 0.027 1.044 0.943 

PVAF 0.986 0.001 0.987 0.984 0.006 0.994 0.971 

9 
a 0.766 0.006 0.776 0.756 0.032 0.826 0.699 
b 1.007 0.006 1.018 0.997 0.033 1.102 0.945 

PVAF 0.989 0.001 0.991 0.987 0.005 0.997 0.976 

10 
a 0.754 0.006 0.764 0.744 0.033 0.835 0.688 
b 0.999 0.006 1.009 0.99 0.03 1.055 0.911 

PVAF 0.987 0.001 0.989 0.985 0.006 0.996 0.972 

11 
a 0.742 0.005 0.75 0.733 0.028 0.791 0.696 
b 0.997 0.006 1.006 0.987 0.031 1.068 0.938 

PVAF 0.986 0.001 0.988 0.984 0.007 0.994 0.97 

12 
a 0.728 0.006 0.737 0.718 0.031 0.785 0.655 
b 0.998 0.006 1.008 0.989 0.031 1.081 0.951 
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PVAF 0.985 0.001 0.987 0.982 0.008 0.993 0.961 

13 
a 0.724 0.006 0.735 0.713 0.035 0.803 0.675 
b 1.007 0.006 1.017 0.997 0.033 1.069 0.945 

PVAF 0.986 0.001 0.988 0.983 0.008 0.996 0.965 

14 
a 0.725 0.005 0.733 0.717 0.026 0.782 0.667 
b 1.003 0.006 1.014 0.993 0.034 1.08 0.946 

PVAF 0.989 0.001 0.991 0.987 0.006 0.995 0.972 

15 
a 0.713 0.004 0.721 0.705 0.025 0.766 0.665 
b 0.994 0.006 1.004 0.983 0.033 1.048 0.929 

PVAF 0.987 0.001 0.989 0.984 0.008 0.998 0.958 
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Table 8 

Impact of population size on sensitivity data (Experiment 1, Dev. 2) 

Populatio
n Size 

Measur
e Mean SEM CI +90% CI -90% 

Standard 
Modificatio

n 
Max Min 

50 
a 0.703 0.006 0.712 0.694 0.03 0.753 0.63 
b 1.01 0.005 1.019 1.002 0.027 1.068 0.962 

PVAF 0.985 0.001 0.987 0.982 0.007 0.996 0.969 

100 
a 0.754 0.006 0.764 0.744 0.033 0.835 0.688 
b 0.999 0.006 1.009 0.99 0.03 1.055 0.911 

PVAF 0.987 0.001 0.989 0.985 0.006 0.996 0.972 

150 
a 0.774 0.005 0.783 0.766 0.027 0.835 0.714 
b 1.003 0.005 1.012 0.994 0.03 1.056 0.934 

PVAF 0.987 0.001 0.989 0.985 0.006 0.994 0.969 

200 
a 0.796 0.006 0.807 0.785 0.035 0.864 0.715 
b 1.003 0.006 1.013 0.993 0.032 1.071 0.946 

PVAF 0.986 0.002 0.989 0.983 0.01 0.997 0.945 

250 
a 0.8 0.005 0.81 0.791 0.029 0.872 0.745 
b 1.001 0.005 1.01 0.993 0.027 1.052 0.934 

PVAF 0.987 0.001 0.989 0.985 0.006 0.994 0.97 

300 
a 0.8 0.005 0.809 0.792 0.028 0.849 0.734 
b 1.004 0.006 1.014 0.994 0.033 1.064 0.937 

PVAF 0.989 0.001 0.991 0.988 0.005 0.997 0.978 

350 
a 0.819 0.006 0.829 0.809 0.031 0.867 0.771 
b 1.006 0.006 1.016 0.996 0.032 1.087 0.947 

PVAF 0.988 0.001 0.99 0.986 0.007 0.997 0.973 

400 
a 0.817 0.006 0.827 0.807 0.033 0.906 0.736 
b 1.003 0.007 1.015 0.991 0.038 1.118 0.95 

PVAF 0.986 0.001 0.988 0.985 0.006 0.995 0.974 

450 
a 0.82 0.006 0.831 0.81 0.035 0.88 0.735 
b 1 0.007 1.012 0.989 0.038 1.077 0.926 

PVAF 0.988 0.001 0.99 0.985 0.007 0.997 0.966 

500 
a 0.818 0.007 0.829 0.807 0.036 0.89 0.761 
b 1.001 0.007 1.012 0.99 0.036 1.099 0.951 

PVAF 0.987 0.001 0.989 0.984 0.007 0.998 0.97 
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Table 9 

Experiment 1, Conditions: stimulus element 10, EN02, and Behavior Population 200 

No. a b PVAF RCTT 
r2 

1 0.79 1.00 0.99 0.00 
2 0.84 0.96 0.99 0.01 
3 0.81 1.04 0.99 0.01 
4 0.78 0.97 0.99 0.01 
5 0.78 1.00 0.99 0.01 
6 0.86 1.00 0.99 0.00 
7 0.82 1.02 0.99 0.00 
8 0.79 0.95 0.94 0.01 
9 0.80 0.99 1.00 0.00 

10 0.83 1.00 0.99 0.00 
11 0.76 1.00 0.98 0.00 
12 0.71 1.02 0.97 0.01 
13 0.76 0.97 0.98 0.01 
14 0.83 1.05 0.98 0.00 
15 0.78 1.06 0.98 0.01 
16 0.80 0.99 0.99 0.00 
17 0.79 0.95 0.99 0.00 
18 0.75 0.99 0.98 0.01 
19 0.80 0.98 0.99 0.01 
20 0.75 0.99 0.99 0.00 
21 0.79 1.05 0.98 0.01 
22 0.80 1.00 0.99 0.00 
23 0.78 1.05 0.98 0.00 
24 0.81 1.03 0.99 0.00 
25 0.84 1.02 1.00 0.00 
26 0.86 1.00 0.99 0.01 
27 0.76 1.00 0.99 0.00 
28 0.82 0.97 0.99 0.00 
29 0.76 0.99 0.98 0.00 
30 0.83 1.07 0.99 0.01 

Mean 0.80 1.00 0.99 0.01 
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Table 10 

Matching law parameters (Experiment Series Two, Modification Three) 

Reinforcement 
Magnitude a b PVAF 

20 0.76 [0.74, 0.79] 1 [0.98, 1.02] 0.95 [0.95, 0.96] 
40 0.75 [0.73, 0.77] 1 [0.98, 1.01] 0.96 [0.95, 0.96] 
60 0.76 [0.73, 0.78] 1 [0.98, 1.02] 0.96 [0.95, 0.96] 

 

Table 10 Note. Parameters presented here are averages of data across 11 background 

reinforcement levels, ranging from RI 20 to RI 120. Data in brackets represent 90% confidence 

intervals. 
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Table 11  

ANOVA Table - 80% Training Cut off (Set 1, Experiment 3, Modification Six) 

PMR df F ω2 p 

Wall stimulus element and Background R+ 
10 10 14.235 0.284 0.000 
15 10 20.286 0.367 0.000 
20 10 14.873 0.294 0.000 
30 10 17.803 0.335 0.000 
40 10 19.446 0.356 0.000 
50 10 22.381 0.391 0.000 
75 10 13.603 0.274 0.000 

100 10 21.771 0.384 0.000 
500 10 22.137 0.388 0.000 

1000 10 25.748 0.426 0.000 
2000 10 25.988 0.428 0.000 
5000 10 36.310 0.514 0.000 

10000 10 47.519 0.583 0.000 
Null 10 40.928 0.545 0.000 

No Wall stimulus element and Background R+ 
10 10 28.672 0.454 0.000 
15 10 51.135 0.601 0.000 
20 10 62.895 0.650 0.000 
30 10 50.391 0.597 0.000 
40 10 74.241 0.687 0.000 
50 10 88.601 0.724 0.000 
75 10 66.233 0.662 0.000 

100 10 71.584 0.679 0.000 
500 10 65.668 0.660 0.000 

1000 10 93.063 0.734 0.000 
2000 10 112.235 0.769 0.000 
5000 10 121.524 0.783 0.000 

10000 10 103.234 0.754 0.000 
Null 10 108.914 0.764 0.000 
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Table 12  

ANOVA Table - 80% Training Cut off (Set 2, Experiment 3, Modification Six) 

PMR df F ω2 p 
Wall stimulus element and No Background R+ 
10 10 19.636 0.359 0.000 
15 10 23.479 0.403 0.000 
20 10 34.116 0.498 0.000 
30 10 32.094 0.483 0.000 
40 10 31.135 0.475 0.000 
50 10 21.003 0.375 0.000 
75 10 25.099 0.420 0.000 

100 10 23.511 0.403 0.000 
500 10 35.068 0.505 0.000 

1000 10 44.059 0.564 0.000 
2000 10 50.475 0.597 0.000 
5000 10 54.700 0.617 0.000 

10000 10 49.245 0.591 0.000 
Null 10 36.695 0.517 0.000 

No Wall stimulus element and No Background R+ 
10 10 36.943 0.519 0.000 
15 10 64.877 0.657 0.000 
20 10 56.104 0.623 0.000 
30 10 87.314 0.721 0.000 
40 10 61.064 0.643 0.000 
50 10 95.341 0.739 0.000 
75 10 82.263 0.709 0.000 

100 10 63.148 0.651 0.000 
500 10 106.307 0.760 0.000 

1000 10 140.514 0.807 0.000 
2000 10 133.665 0.799 0.000 
5000 10 135.955 0.802 0.000 

10000 10 103.775 0.755 0.000 
Null 10 83.999 0.713 0.000 
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Table 13  

ANOVA Table – Primary Contrast (Set 3, Experiment 3, Modification Six) 

PMR df F ω2 p 

Wall stimulus element and Background R+ 
10 1 4.935 0.009 0.034 
15 1 5.529 0.010 0.025 
20 1 6.290 0.012 0.018 
30 1 5.531 0.010 0.025 
40 1 6.093 0.011 0.019 
50 1 6.214 0.011 0.018 
75 1 7.180 0.015 0.012 

100 1 5.591 0.010 0.025 
500 1 5.862 0.011 0.022 

1000 1 6.214 0.011 0.018 
2000 1 6.130 0.011 0.019 
5000 1 5.453 0.008 0.026 

10000 1 5.049 0.006 0.032 
Null 1 5.068 0.007 0.032 
No Wall stimulus element and Background R+ 
10 1 5.995 0.009 0.020 
15 1 5.563 0.007 0.025 
20 1 4.921 0.005 0.034 
30 1 5.671 0.006 0.024 
40 1 4.805 0.004 0.036 
50 1 4.853 0.004 0.035 
75 1 5.239 0.005 0.029 

100 1 5.748 0.005 0.023 
500 1 5.513 0.005 0.026 

1000 1 5.430 0.004 0.027 
2000 1 5.089 0.003 0.032 
5000 1 4.868 0.003 0.035 

10000 1 5.068 0.003 0.032 
Null 1 5.005 0.003 0.033 
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Table 14 

ANOVA Table – Primary Contrast (Set 4, Experiment 3, Modification Six) 

PMR df F ω2 p 
Wall stimulus element and No Background R+ 
10 1 5.822 0.010 0.022 
15 1 5.373 0.009 0.027 
20 1 4.707 0.007 0.038 
30 1 4.804 0.007 0.036 
40 1 5.205 0.008 0.030 
50 1 5.958 0.011 0.021 
75 1 5.992 0.010 0.020 

100 1 5.643 0.010 0.024 
500 1 5.728 0.008 0.023 

1000 1 5.217 0.007 0.030 
2000 1 5.232 0.006 0.029 
5000 1 5.115 0.007 0.031 

10000 1 5.143 0.007 0.031 
Null 1 5.597 0.008 0.025 

No Wall stimulus element and No Background R+ 
10 1 6.006 0.008 0.020 
15 1 4.958 0.005 0.034 
20 1 5.707 0.006 0.023 
30 1 5.116 0.004 0.031 
40 1 5.151 0.005 0.031 
50 1 5.243 0.004 0.029 
75 1 5.142 0.004 0.031 

100 1 5.341 0.005 0.028 
500 1 5.073 0.003 0.032 

1000 1 4.721 0.002 0.038 
2000 1 4.916 0.003 0.034 
5000 1 4.959 0.003 0.034 

10000 1 5.079 0.003 0.032 
Null 1 10.188 0.008 0.003 
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Figure 1 

Example of Stimulus Discrimination in a Multiple Schedule 

 

Figure 1 Note. Idealized experimental results are shown for a multiple schedule with VI 2-min 

EXT schedule of reinforcement. Relative to the VI 2-min (SD), responses decline over sessions to 

almost zero responses per minute in the extinction (SΔ) component. Reprinted from Behavior 

analysis and learning  (6th ed.). p.262. by Pierce, W. D., & Cheney, C. D., 2013. Psychology 

Press. Copyright 2017 by Taylor & Francis 
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Figure 2 

Figures from Guttman and Kalish 1956 

 

 

  

 

Figure 2 Note. From “Discriminability and Stimulus Gneralization,” Norman Guttman and Harry 

I. Kalish, 1956. Journal of Experimental Psychology, 50(1), p. 81, 83.  
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Figure 3  

Figure from Blough, P. M. 1972 

 

Figure 3 Note. From “Wavelength Generalization and Discrimination in Pigeon,” Blough, P. M., 

1972. Perception and Psychophysics, 12(4), p. 346  
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Figure 4 

Figure from Thomas, D. R., & King, R. A., 1959 

 

Figure 4 Note. From “Stimulus-Generalization as a Functions of Level of Motivation,” Thomas, 

D. R., & King, R. A., 1959. Journal of Experimental Psychology, 57(5), p. 324  
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Figure 5Evolutionary Theory of Behavioral Dynamics - Flowchart 

 

Figure 5 Note. The flowchart demonstrates one iteration of the ETBD. 
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Figure 6  

SST Sampling Example 

 

Figure 6 Note. Estes’ model of how stimulus elements are sampled from the population of 

elements (Left circle). The figure shows three learning trials. The clear circles represent stimulus 

elements associated with response A2, and the filled circles are stimulus elements associated with 

A1. Initially, all of the stimulus elements are associated with the A2 response class. In trial 1, five 
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stimulus elements are sampled from the environment (θ). They are then induced by the 

experimental set up (not shown) to be conditioned to response A1 breaking their link to response 

A2. This modifies the pool of available stimulus elements available during the next trial. During 

trial 2, five more stimulus elements are sampled at random from the pool. Of these stimulus 

elements, four of the five are associated with A2, while one is associated with A1 (due to the first 

learning trial). In this trial, four of the stimulus elements are conditioned to A1. The third trial 

repeats the process. From An Introduction to Theories of Learning (4th ed., p. 230) by B. R. 

Hergenhahn and M. H. Olson, 1993, Englewood Cliffs, NJ: Prentice Hall.  
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Figure 7 

The Modified ETBD Flow Chart 

 



MULTIPLE SCHEDULES AND BEHAVIORAL CONSTRAST IN ETBD 111 
 

 

Figure 7 Note. The flow chart begins in the bottom left corner. The AO samples stimulus 

elements from the local environment and then one stimulus element from the sample. One 

behavior is emitted from the population of behaviors linked to that stimulus element. If the 

behavior allows the AO to obtain reinforcement (Sr+) then all populations of behaviors linked to 

the observed stimulus elements will undergo fitness-based selection. Otherwise, they will 

undergo random selection. Each observed population will individually undergo recombination 

and mutation, resulting in new populations. After the next time tick, the program will check 

whether the environment needs to be modified based on the reinforcement schedule being used. 

Afterward, the cycle repeats.  
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Figure 8  

Histogram Comparison  

  

 

Figure 8 Note. The left figure is a histogram of 50 generations of behavior at the beginning of a 

schedule. The right figure is a histogram of all behavior within a schedule.  
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Figure 9 

Average Matching Log Plot - ETBD Replication 
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Figure 10 

Matching sensitivity based on observation style and number of stimulus elements 

 

Figure 10 Note. Each unique marker indicates a specific observation style. Each point on the 

graph shows the average sensitivity of 30 AOs. 90% confidence intervals are marked on the 

graph, with the majority of the intervals being smaller than the marker itself. 
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Figure 11 

Impact of Behavior Population Size on Matching Sensitivity 

 

Figure 11 Note. Error bars represent 90% confidence intervals.  
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Figure 12 

Average Matching Log Plot Experiment 1,  

Conditions: stimulus element 10, EN02, and Behavior Population 200 
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Figure 13 

Behavior of AOs on Multiple Schedules 

 

Figure 13 Note. Odd numbered schedules were reinforced with a RI 70 schedule, while even 

numbered schedules were on extinction. Error bars denote 90% confidence intervals. The 

average stimulus element+ shows the average amount of behavior across all schedules with 

reinforcement. The average stimulus element- shows the average amount of behavior across all 

extinction schedules. 
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Figure 14 

Impact of background reinforcement on reinforced and extinction schedules 

 

Figure 14 Note. Impact of background reinforcement rates on average rates of behavior during 

schedules with reinforcement (circle), and average rates of behavior during extinction schedules 

(triangle) is shown. The baseline rates of behavior for reinforced schedules (dashed line) and 

extinction schedules (solid horizontal line) are shown. Logarithmic trends for each group are 

shown by dotted lines.  
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Figure 15 

Impact of background reinforcement rate on matching sensitivity 
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Figure 16 

Absence of constant stimulus element has no impact on average rates of behavior (Exp 2, Dev 4) 

 

Figure 16 Note. The average number of behaviors across schedule types is show for two stimulus 

element presentation styles. While both styles have 10 stimulus elements present in the local 

environment at any one time, the ‘10/10’ switches completely between red stimuli and green 

stimuli, while the ‘5/5/5’ style has five green and five wall stimuli during the reinforced 

schedules, and five red stimuli and the same five wall stimuli present during extinction 

schedules. 
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Figure 17. 

Initial learning (Experiment Series 2, Modification 4) 
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Figure 18 

Stimulus Element quantity impact on behavior during reinforced schedules (Exp II, Dev 4) 

 

 

Figure 18 Note. Each point represents the average number of behaviors during one schedule. 

Only the schedules with reinforcement are shown here. The ratios in the legend represent the 

number of stimulus elements of each type. The ratios with two items are red and green stimulus 

elements and the ratios with three items represent red, green, and wall stimulus elements. 
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Figure 19 

Stimulus Element quantity impact on behavior during extinction schedules (Exp II, Dev 4) 

 

 

Figure 19 Note. Each point represents the average number of behaviors during one schedule. 

Only the schedules without reinforcement are shown here. The ratios in the legend represent the 

number of stimulus elements of each type. The ratios with two items are red and green stimulus 

elements and the ratios with three items represent red, green, and wall stimulus elements. 
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Figure 20. 

Impact of stimulus element Quantity on learning during first R+ Schedule (Exp 2, Dev 4) 
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Figure 21 

Impact of stimulus element quantity on learning during first Extinction Schedule (Exp 2, Dev 4) 
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Figure 22 

Behavior on the most optimal conditions 

 

Figure 22 Note. Odd numbered schedules were reinforced with a RI 70 schedule, while even 

numbered schedules were on extinction. Error bars denote 90% confidence intervals. The 

average R+ shows the average amount of behavior across all schedules with reinforcement. The 

average Ext shows the average amount of behavior across all extinction schedules. 
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Figure 23 

Reinforcement Context Kernel 

 

 

Figure 23 Note. The calculation for stability (top) and the adding of new information each 
generation (bottom) 
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Figure 24 

Window Size Adjustment  

 

 

Figure 24 Note. The two steps needed for increasing the window size (top) and the single steps 

required to decrease the window size. 
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Figure 25 

Stimulus Generalization Gradient using a Reinforcement Context Kernel 

 

Figure 25 Note. Error bars represent 90% confidence intervals. 
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Figure 26 

Discriminative Stimuli Conditions 

 

Figure 26 note. A visual representation of the mix of trained (pink shaded) and untrained stimuli 

per environmental condition. Each column represents a different environmental condition, with 

R+ signifying the reinforced condition. Each row represents a specific stimulus element. 
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Figure 27  

Entropy to Selection Percentage Function Forms 

 

Figure 27 Note. All functions were generated by using the equation, 𝑆𝑆 = 𝑎𝑎𝑥𝑥𝑏𝑏. For the concave 

function (triangle), a = 0.0625 and b = 2. For the linear function (circle), a = 0.25 and b = 1. For 

the convex function (square), a = 0.5 and b = 0.5. 
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Figure 28 

Stimulus generalization gradients (Experiment Three, Modification Five) 

 

Figure 28 Note. The quantity in the legend denotes the frequency of mutation, if no child 

behaviors are created. In the condition, ‘1,’ every generation that no child behaviors are created 

there is also a single mutation event on the active behavior population In the “Null” condition, no 

general population mutations occur. 
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Figure 29 

Stimulus generalization gradients behavior totals (Experiment Three, Modification Five) 

 

Figure 29 Note. The x-axis denotes the frequency of mutation, if no child behaviors are created. 

In the first column, ‘1,’ every generation that no child behaviors are created there is also a single 

mutation event on the active behavior population. In the “Null” column, no general population 

mutations occur. Error bars are the sum of the 90% confidence intervals for each condition, as 

seen in Figure 28.   
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Figure 30 

AOs with under 10% behaviors on target during testing (Experiment Three, Modification Five) 

 

Figure 30 Note.  

  

0

5

10

15

20

25

30

1 5 10 50 100 500 2000 10k Null

N
o.

 o
f A

O
 w

ith
 B

x 
un

de
r 1

0%

Mutate Every X



MULTIPLE SCHEDULES AND BEHAVIORAL CONSTRAST IN ETBD 135 
 

Figure 31 

Impact of Additional Training Generations (Experiment Three, Modification Five) 

 

Figure 31 Note. Error bars are the sum of the 90% confidence intervals for each condition within 

the training set.  The area under the surface is calculated by summing together the peak behavior 

of each condition within the training set.  
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Figure 32 

Stimulus generalization gradients, Condition: Yes Wall, Yes Background 

(Experiment Three, Modification Six) 
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Figure 33 

Stimulus generalization gradients, Condition: Yes Wall, No Background 

(Experiment Three, Modification Six) 
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Figure 34 

Stimulus generalization gradients, Condition: No Wall, Yes Background 

(Experiment Three, Modification Six) 
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Figure 35 

Stimulus generalization gradients, Condition: No Wall, No Background 

(Experiment Three, Modification Six) 
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Figure 36 

Adjusted Confidence Intervals (Experiment Three, Modification Six) 

 

 
 

 

 

 

 

Figure 36 Note. The four groups represented here are the wall and background group (blue 

circle), the wall only group (orange circle), the background only group (grey diamond), and the 

no wall and no background group (yellow diamond).  
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Figure 37 

Gaussian and Exponential function fits 

 

  

  
 

Figure 37 Note. An exponential function (green dashed line) and a Gaussian function (red dashed 
line) were both fitted to the data (blue)
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Figure 38 

Background Reinforcement Impact on Concurrent Schedule Sensitivity  

(Experiment 3 Behavior on Concurrent Schedules Review) 
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Figure 39 

Impact of Behavior Population Quantity on Concurrent Schedule Sensitivity  

(Experiment 3 Behavior on Concurrent Schedules Review) 
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Figure 40 

Impact of Selection Modifier Curvature on Concurrent Schedule Sensitivity  

(Experiment 3 Behavior on Concurrent Schedules Review) 
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Figure 41 

AOs with under 10% behaviors on target during testing  

Wall and Background Condition (Experiment Three, Modification Six) 

 

Figure 41 Note. Population mutation rates 1 and 5 were excluded due to not reaching 30 AOs 

that passed criteria after 90 AOs were run. 
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Appendix A 

 

Implementation of Stimulus Generalization Environment 

The stimulus generalization experiment was, at first, designed to determine if the 

modified ETBD combined with SST could create animal-like stimulus generalization gradients 

without any additional modification. Unfortunately this was not found to be the case and the 

additional modifications to the modified ETBD in order to enable stimulus generalization are 

recorded in modifications five and six. This section will focus on the development of the 

stimulus environment.  

 In rearrangement style (e.g. wavelengths of light, sound frequency) stimulus 

generalization experiments with live organisms, creating similar stimuli to the conditioned 

stimulus is nearly self-evident and generally intuitive. For example, in terms of visual 

wavelengths, wavelengths that are only incrementally different from the conditioned stimulus are 

easily obtained through the use of a prism. Through rotation of the prism, different wavelengths 

can be obtained, and the stimuli similarity/difference from the conditioned stimulus is easily 

calculated by obtaining the difference in wavelength.  

 In order to convert this physical measure into the abstract stimulus space the AO will 

inhabit, we must first consider how these signals are converted into neural impulses in live 

organisms. For example, once light enters the eye, different cone cell subtypes will activate, 

depending on which wavelengths of light are present. Each of the cone cell subtypes have a 

range of wavelengths that they respond to, and these wavelengths overlap. This overlap is not 

just present at the sensory level, but also at the processing level (Ito & Komatsu, 2004). There 

have been studies that have found neuronal activity that correspond to stimulus similarity for 
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faces (Onat & Büchel, 2015) in the inferotemporal cortex and the width of generalization (Kahnt 

et al., 2012) in the striatum.  

The idea of overlapped sensory and processing neuron activation can be extrapolated to 

the stimulus element space. Any singular physical stimulus, like a blue light, is assumed to be 

processed into multiple stimulus elements. The difference between two similar physical stimuli 

can be symbolically represented by changing the number of overlapping stimulus elements. For 

the majority of the current study, five stimulus elements were assumed to be linked to one 

stimulus type, although different numbers of linked stimulus elements were tested in 

modification four. 

Experiment Series Three Methods 

 Phase One. This experiment was designed to examine the ability of AOs animated by the 

modified ETBD to exhibit stimulus generalization gradients when exposed to overlapping 

stimulus combinations. The experimental protocol was based on the procedure in Guttman and 

Kalish (1956). AOs were run on two training schedules and 11 testing schedules. The training 

schedules were 20k generations each, while the testing schedules were 200 generations each.  

During the first training schedule, the AO was exposed to five wall stimulus elements and 

five training-wall stimulus elements. There was no reinforcement on the target class, but there 

was background reinforcement with a RI 10 and a reinforcement magnitude of 40 on 200 

background reinforcement targets.  

During the second training schedule, AOs were exposed to the five training-wall stimulus 

elements, and five other stimulus elements representing the discriminative stimulus (Trained 

Stimuli). For the target class, the reinforcement rate was RI 10 with a reinforcement magnitude 
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of 5. There was no background reinforcement present during this schedule. During testing, the 

AOs were exposed to 11 different conditions, defined by the specific combination of Trained 

Stimuli and untrained stimuli. These conditions were presented in a random order. The non-wall 

stimuli in this experiment can be thought of as discrete steps along a spectrum like wavelengths 

of light, or a number line. If the stimulus elements were numbers on a number line from 1 to 15, 

the Trained Stimuli would be in the middle, numbers 6 through 10. To represent slightly 

different stimulus environments, the AOs were presented with different combinations of Trained 

Stimuli and untrained stimuli. For example, one of the conditions contains four Trained Stimuli, 

and one untrained stimuli. Using the number line analogy, this would be stimulus elements 

numbered 5 through 9, or stimulus elements numbered 7 through 11. With only one stimulus 

element that is untrained, this is considered the “+1” or “-1” condition. This system continues to 

the “+5” condition in the positive direction or the “-5” condition in the negative direction, which 

contains none of the Trained Stimuli and five untrained stimulus elements. All testing conditions 

have five wall stimulus elements alongside the Trained Stimuli or untrained stimuli, for a total of 

10 stimulus element in the local environment. See Figure 26 for a visual representation of the 

non-wall stimuli per condition. Modifications one, two, and three were implemented in 

experiment three, using an entropy-based observation 2%, a behavioral population of 200, and a 

200 phenotype background target class with RI 10 and a RM 40. 

 Preliminary testing showed that none of the testing conditions show greater amounts of 

behavior than the baseline operant-level rates. This finding, while unexpected, does not deviate 

from our understanding of organisms that are animated by the modified ETBD. AOs have been 

shown in past experiments, as well as the second experiment in this series, to adapt extremely 

quickly to changing environmental conditions. The testing conditions do not have reinforcement 
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based on target class behavior. Combined with the presence of background reinforcement, the 

AOs can be expected to quickly shift their behavior away from the target classes. In order to deal 

with this challenge, behavioral populations need to be modified to be more perseverative. 

However, behavioral populations must still be able to maintain the ability to adapt or else the AO 

would no longer be able to respond to changes in its environment after having learned a 

particular response. 

 Modification Five. One simple method of making AOs more perseverative is by 

reducing the amount of parents generated during the selection step when entropy is low and 

keeping behaviors from the original population instead. Reducing the number of parents 

generated also reduces the rate of mutation, since mutation is only completed on new child 

behaviors. Linking the number of parents to the level of entropy allows the organism to respond 

quickly when the behavioral population is relatively evenly distributed over the phenotype range 

(when entropy is high) but slows down the rate of recombination and mutation as the behavioral 

population is biased by reinforcement. Initial testing of the concept used the following concave 

power function to convert entropy to selection rate,  

𝑆𝑆 = 𝑎𝑎𝑥𝑥𝑏𝑏,      (8) 

Where S is the percentage of parents selected (a value between 0 and 1), x is the entropy of the 

behavioral population, with a and b as constants (a = 0.0625, b = 2). When axb > 1, S was set to 

1. This equation and the corresponding constants were chosen due to multiple factors. First, it 

was important to have an equation that covered the appropriate entropy range. The average 

starting entropy was found to be 4.555 with a maximum of 4.630 for 100k randomly generated 

populations with 200 behaviors each. S in equation 8 is equal to one when the entropy is four, 



MULTIPLE SCHEDULES AND BEHAVIORAL CONSTRAST IN ETBD 150 
 

giving approximately 12% of the total range where the rate of selection is at its maximum. 

Second, this equation would allow the AO to retain the ability to adapt quickly when there is 

little to no prior reinforcement influence on the behavioral population. Finally, the equation and 

constants were chosen to generate a concave function. The function form (Shown in Figure 27) 

causes the selection percentage to drop quickly at high entropies and to hover close to zero at 

low entropies. This theoretically slows down rate of behavior dispersion in behavior populations 

that are heavily influenced by reinforcement, giving more time for another reinforcer to appear 

and reinforce the bias. 

  Another important aspect that needs to be considered is how to allow AOs to be 

responsive to changes in the reinforcement environment even after the behavioral population has 

been shaped by a prior reinforcement paradigm. One of the key aspects of the ETBD that allows 

an AO to adapt quickly to changes in reinforcement patterns in the environment is mutation. 

However, at low entropies, mutation does not happen due to the low number of child behaviors. 

In order to compensate for this issue, a minimum population mutation rate was created. When 

the number of children is below the threshold needed for mutation to occur, a counter will note 

the number of generations that have passed without mutation occurring. When the number of 

generations met a chosen threshold, a single behavior from the population is chosen and mutated 

using the bit-flip-by-individual method. Then the counter restarts from zero. The minimum 

population mutation method was designed to allow for fine tuning of the rate of mutation. If the 

minimum rate of population mutation is too high, then the AO might not be able to “remember” 

the reinforcement on the target class. However, if the minimum population mutation rate is too 

low, then the AO might not be able to adapt to changes in reinforcement within a reasonable time 

period.  
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 In order to test the concave, entropy-based selection modifier and the minimum 

population mutation rate, the procedure described in phase one was run with the two additional 

modifications. The minimum mutation rate was set to trigger after the following numbers of 

generations: 1, 5, 10, 15, 20, 30, 40, 50, 75, 100, 500, 1k, 2k, 5k, and 10k. An additional 

condition (null) tested the concave, entropy-based selection modifier without the minimum 

population mutation rate. 

The next experiment set in phase one was designed to test the impact of additional 

training on stimulus generalization. AOs were run on the same schedules as the rest of 

experiment three. The target class was reinforced using the following random interval rates: 20, 

40, 60, 80, 100, and 120. The AOs were run with the following reinforcement magnitudes: 10, 

20, 30, 40, and 50. The stimulus environment contained a total of 10 stimulus elements in each 

schedule, with five wall stimulus elements and five target stimulus elements, which vary based 

on the schedule as shown in Table 3.  During training, five ‘training-wall’ stimulus elements 

were used, which were different from the five ‘wall’ stimulus elements used in testing. The 

following training lengths (in generations) were tested: 10k, 20k, 40k, and 80k. Modifications 

one, two, three, and five were implemented using an entropy-based observation 2%, a behavioral 

population of 200, a 200 phenotype background target class with RI 10 and a RM 40, and a 

concave selection modifier function with a minimum population mutation rate of 100.  

 Modification Six. Experiments during modification five showed high levels of variation 

between individual organisms during the testing schedules. Under the same conditions, some 

AOs showed high amounts of behavior during testing, others showed some responding during 

some test conditions and not others, while other AOs showed baseline levels of behavior across 

all testing conditions. While variation is to be expected even in live organisms (See Figure 2, 
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right plot), it is rare for a live organism to have baseline levels of responding, at least during the 

first round of testing. In order to better characterize the source of the variation in AOs, three 

potential causes were examined. First, most live organism stimulus generalizing trainings include 

a stringent training performance acceptance criterion. In order to create comparable criteria for 

the AOs, the last 200 generations of the training period were examined. If 80% of all of an AO’s 

behaviors were within the target class, it was considered to have passed the criteria. Second, the 

presence of wall stimulus elements might also be a source of variability. In order to maintain the 

same number of stimulus elements while removing wall stimulus elements, all non-wall stimulus 

elements were doubled. Finally, background reinforcement might have also been interfering with 

learning stimulus generalization gradients.  

In this experiment, AOs were tested with an 80% training cut off and with combinations 

of the previously mentioned conditions (wall stimulus element / no wall stimulus element, and 

background reinforcement / no background reinforcement). During training, five unique training-

wall stimulus elements were used instead of the five wall stimulus elements used in testing. 

Modifications one, two, and three were implemented using an entropy-based observation 2%, a 

behavioral population of 200, and a 200 phenotype background target class with RI 10 and a RM 

40 (if applicable). Modification five was also implemented using the concave power function 

described earlier and the following minimum population mutation rates: 10, 15, 20, 30, 40, 50, 

75, and 100. AOs were run in sets of 30, until enough AOs were generated that met the training 

condition to meet a sample size of 30. If there were more than 30 AOs that qualified, only the 

first 30 AOs were used in the final analysis. AOs were run with minimum population mutation 

rates lower than 10, but there were not enough AOs that met the training criteria after 90 AOs so 
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testing was discontinued due to monetary and time limitations. The data from the under-sampled 

groups were excluded from the group analysis in order to allow for fairer comparison.     

Concurrent Schedule Review. Multiple experiments were completed to determine if the 

entropy-based selection modifier and the minimum population mutation rate impacted the ability 

of the modified ETBD to demonstrate animal-like behavior on concurrent schedules. First, the 

selection modifier without the population mutation minimum was tested with different strengths 

of background reinforcement. A 200 phenotype background was used, with the following ratio 

intervals: 1, 2, 3, 4, 5, 10, 20, 40, 80, and 120; Three reinforcement magnitudes were used for 

each RI: 20, 40, and 60. Modifications one and two were implemented using entropy-based 

observation 2% and a behavioral population of 200. Second, the section modifier was tested with 

multiple minimum population mutation rates. The following minimum mutation rates were used: 

none, 1, 10, 50, 100, 150, and 500. Modifications one, two, and three were implemented using an 

entropy-based observation 2%, a behavioral population of 200, and a 200 phenotype background 

target class with RI 10 and a RM 40. Third, the section modifier was tested with multiple 

minimum mutation rates across different populations. The following minimum mutation rates 

were used: none, 1, 10, 50, 100, 150, and 500. The following behavioral populations were tested: 

100, 200, 300, and 400. Modifications one and three were implemented using an entropy-based 

observation 2% and a 200 phenotype background target class with RI 10 and a RM 40. Finally, 

the curvature of the selection modifier was varied between concave, linear, and convex by 

adjusting the constants in Equation 8. For the concave function, a = 0.0625 and b = 2. For the 

linear function, a = 0.25 and b = 1. For the convex function, a = 0.5 and b = 0.5. The following 

minimum population mutation rates were used: none, 1, 10, 50, 100, 150, and 500. Modifications 
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one, two, and three were implemented using an entropy-based observation 2%, a behavioral 

population of 200, and a 200 phenotype background target class with RI 10 and a RM 40. 

Data Analysis for Experiment 3 

  The absolute rates of behavior in all conditions were examined. A repeated measures 

ANOVA and two contrasts were conducted on the final results. Based on the Tukey Bonferroni 

Sidak method (Keppel & Wickens, 2004, p. 119), a family wise alpha of 0.05 is appropriate for 

10 degrees of freedom with three comparisons. Both Gaussian and exponential functions were 

fitted to modification six results, for the stimulus generation forms generated with a population 

mutation rate of 100. Both function types were fitted using the Excel solver add-on. The 

exponential function, due to its form, were solved for each half of the stimulus generalization 

gradient separately. The fitted parameters for each half were reflected across the midline of the 

stimulus generalization gradient to generate two different exponential fits. The r-squared was 

calculated for each of the two potential exponential function fits and function with the highest r-

squared was used as the best exponential fit.  

Experiment Series Three Results 

 Phase One, Modification Five. The results of first test of the selection and mutation 

modifiers can be seen in Figure 28. Each condition shown is average behavior of 30 AOs across 

the different stimulus element combinations, with ‘0’ denoting the training set. Each positive or 

negative step away from zero point removes one more of the training set stimulus elements and 

includes an additional non-training set stimulus element. As seen in the figure, when all training 

stimulus element are present the AO has the highest behavioral response during testing and this 

decreases as the number of training stimulus elements decreases. The total behavior generated 

during the testing phase shows that high mutation rates tend to have lower amount of total 
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behavior, as seen in Figure 29. However, once the mutation falls below one mutation every 50 

generations, it is difficult to determine if the amount of behavior continues to increase, due to the 

overlapped confidence intervals. The high degree of overlap in the confidence intervals is likely 

indicative of a high degree of variation between AOs. Analysis of individual AO behavior found 

that, even when general population mutation rate is extremely low, five to ten AOs in each group 

have less than 10% of their behavior contained within the target class, as shown in Figure 30. 

Different amounts of training were examined as well, and as shown in Figure 31. In this figure, 

the ‘area under the surface’ was calculated by summing together the peak behavior of each 

stimulus generalization gradient in the matrix of reinforcement rates and reinforcement 

magnitudes that had the same number of training generations. It was found that there is a 

transition between 20k training generations and 40k and above training generations. This 

difference is likely to be significant since the confidence intervals have only a small overlap. For 

this experiment, the 90% confidence intervals were also quite large in comparison to the data 

collected, with the confidence interval being between approximately 75%-85% of the size of the 

data collected. 

 Modification Six. This study was completed to examine the variation within the data 

collected previously. The stimulus generalization gradient figures for the four conditions –Figure 

32: Wall and Background, Figure 33: Wall and No Background, Figure 34: No Wall and 

Background, and Figure 35: No Wall and No Background– all show that AOs have the highest 

behavioral response during testing and this decreases as the number of training stimulus elements 

decreases like the previous experiment. The maximum behaviors for all population mutation 

rates in the ‘wall and background’ condition are higher than the results from modification five, 

indicating that 80% training cut off increases rates of behavior. In the two ‘no wall’ conditions, 
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when there is less population mutation, have a more ‘rounded’ and less triangular appearance. 

This appearance was less prominent in AOs with more rapid population mutation rates. 

The variation was examined by looking at the standardized confidence interval. The 

standardized CI is the sum of the confidence intervals divided by the number of conditions. In 

Figure 36, the top plot shows the standardized confidence intervals for PMR 5, 10, 15, and 20. 

The middle plot shows the standardized confidence intervals for PMR 30, 40, 50, 75, and 100. 

The bottom plot shows the standardized confidence intervals for PMR 500, 1k, 2k, 5k, 10k and 

Null. The standardized CIs for the four conditions: 1) both wall and background (blue circle), 2) 

wall and no background (orange circle), 3) background with no wall (grey diamond), and 4) no 

wall and no background (yellow diamond) are plotted separately. Results from PMR 1 were 

excluded from the plots due to having substantially higher CIs in most conditions which would 

likely bias the data, and not increase its explanatory power. Based on the results, removing 

background reinforcement had a minimal impact on the standardized confidence intervals in all 

conditions. The absence of walls led to substantially lower CIs when the population mutation 

rate was slow, but only for conditions with three or more trained stimulus elements present. As 

the population mutation rate increases, the CIs in the more trained conditions increases as well. 

At the highest population mutation rates, there is minimal to no difference between the 

standardized CIs for the wall groups and the non-wall groups. When only one trained stimulus 

element were present, the walled conditions seemed to have marginally lower standardized CIs 

than the non-wall groups. In all other conditions, the non-walled groups had either equal or lower 

CIs. 

A repeated measures ANOVA was performed on all combinations of groups and 

population mutation rates and a statistically significant difference (p <0.05) was found between 
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the behavior of at least two groups (See Tables 11 and 12) for all combinations. The effect size, 

calculated as omega squared (ω2), showed a large effect size for all combinations. A planned 

contrast between behavior when all five trained stimulus elements were present and the two 

conditions where no trained stimulus elements were present was also performed and a 

statistically significant difference was found between these groups (See Tables 13 and 14, p < 

0.05). The effect size for all groups was below 0.2, indicating a small effect. 

In each of the four groups, the Gaussian function was found to fit the data better than the 

Exponential function. In the group with both wall stimulus elements and background 

reinforcement, the Gaussian function was found to have an r squared of 0.95 compared to the 

Exponential function’s r squared of 0.80. In the group with wall stimulus elements and no 

background reinforcement, the Gaussian function was found to have an r squared of 0.97 

compared to the Exponential function’s r squared of 0.88. In the group with background 

reinforcement present and no wall stimulus elements, the Gaussian function was found to have 

an r squared of 0.93 compared to the Exponential function’s r squared of 0.80.  Finally, in the 

group with no wall stimulus elements and no background reinforcement, the Gaussian function 

was found to have an r squared of 0.96 compared to the Exponential function’s r squared of 0.84. 

See Figure 37 for a visual representation of the function fits. 

  Concurrent Schedule Review. Three sets of experiments were completed to determine 

if AOs with the modified selection function and the modified population mutation rate still 

perform as expected on concurrent schedules. The impact of background reinforcement on 

matching sensitivity was investigated and the results are shown in Figure 38. Similar to the 

results shown in Figure 15, after the background RI is slower than an RI 20, the matching 

sensitivity is relatively stable, hovering between 0.8 and 0.85, for the reinforcement magnitudes 
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investigated. Reinforcement rates faster than RI 20, show higher than expected matching 

sensitivities, and even overmatching at the highest reinforcement rates. The behavior population 

size was also found to have an impact on matching sensitivity. As shown in Figure 39, the 

matching sensitivity is relatively clustered at the fastest population mutation rates, with 200, 300, 

and 400 behavior populations clustering around approximately 0.85 sensitivity, while the 100 

behavior population has a matching sensitivity of 0.93. As the population mutation rate slows 

down, the differences between the populations becomes more pronounced, with the 100 and 200 

behavior populations showing high amount of overmatching and the 300 behavior population 

showing slightly elevated matching sensitivity stabilizing around 0.89 and the 400 behavior 

population showing relatively flat matching sensitivity, starting at 0.83 for high levels of 

population mutation and ending at 0.84 for no population mutation. Finally, the curvature of the 

selection modification function was investigated and the results are shown in Figure 40. The 

concave function used in this study shows increasing matching sensitivity, starting at 0.87 for 

high population mutation levels and ending at 1.09 for no population mutation. The linear and 

convex conditions showed stable mostly flat matching sensitivity, hovering around 0.76 and 0.78 

for convex and linear respectively. 

Experiment Three Discussion 

 AOs animated by the modified ETBD with the concave selection function and the 

population mutation modifier are able to generate monotonically decreasing stimulus 

generalization curves, with the peak of the behavior at the discriminative stimulus. The slope 

varied based on the height of the peak. Importantly, the form of the stimulus generalization 

gradients were found to be Gaussian nature, like those of live organisms (Ghirlanda & Enquist, 

2003). However, the AOs, when run on concurrent schedules had consistent overmatching 
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matching sensitivity rates, unlike live organisms. Taken together, these results point to the 

modified ETBD to likely to have the capacity to show animal-like stimulus generalization 

gradients but a different solution for durability of learning needs to be found.  

 The parameters for durability and flexibility of learning (i.e. the parameters for the 

selection modifier and the population mutation rate) had specific functional ranges. The selection 

modifier function form was only able to generate stimulus generalization gradients using a 

concave form of the three forms tested. Further exploration of the raw data revealed that the 

concave function form was the only form to collapse the behavioral populations into one 

behavioral phenotype. In the modified ETBD, this would prevent recombination from having any 

impact since both parents would have the same genotype. The normal mutation rate would be 

likely be zero as well since the concave function form also minimizes the number of child 

behaviors at low levels of entropy. While could potentially be considered “switching off” the 

ETBD portion of the function, this is not necessarily a bad result. Living organisms, when 

presented with a laboratory operandi, do not typically interact with it in multiple ways. They 

often will just interact it in one way, at least until they are put on an extinction schedule causing 

an extinction burst (Pierce & Cheney, 2013, p. 122). This is also the end result of a SST trial. 

During SST trials, the stimulus elements are trained to just one behavioral response, unlike the 

distribution of behaviors found with the ETBD. Once the number of generations reaches the 

population mutation limit multiple times, the population will slowly diverge from the single 

phenotype and learning can again occur. While this was able to replicate the stimulus 

generalization gradients seen in live organisms, the concave function led to overmatching on 

concurrent schedules. Both the linear and the convex forms of the function performed well on 

concurrent schedules leading to animal-like behavior. However, they did not cause a 
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convergence of behaviors within the behavioral population and were thus unlikely to be able to 

have durable stimulus generalization gradients. 

 A similar phenomena was found when examining the impact of behavior population size. 

Populations with 100 and 200 behaviors, when used in conjunction with a concave selection 

modifier function, would lead to overmatching, but populations with 300 or 400 behaviors would 

not. This is likely due to the fact that larger behavioral populations are less likely to converge 

entirely on behavior, and thus require less mutation to move back into a more dispersed behavior 

pattern.  Taken together, the results of the experiments on the selection modifier function form, 

the population size, and the background reinforcement rates all suggest an underlying robustness 

in the modified ETBD. While only a specific combination of selection modifier function form 

and small population size can generate the stimulus generalization gradients, all other forms and 

population sizes still lead to animal-like behavior on concurrent schedules.  

 The variability between AOs was a potential concern that was explored in modification 

six. The variability in the data was found to hamper analysis. For example, the training time data 

(Figure 31) showed a trend towards greater generalization with more training time, but the large 

confidence intervals prevented a more precise analysis. One possible cause of this variability was 

AOs having difficulty learning the discriminative stimulus. As seen in Figure 30, the rate of poor 

learners (i.e. AOs that only responded less than 10% of the time within the target class during 

testing) was 20% or higher, even at the slowest population mutation rates. After adding a 

learning criteria, ‘80% of behavior must be within the target class for the last 200 generations of 

training,’ the rate of poor learners was substantially reduced, as seen in Figure 41. After the 

criteria was implemented, all groups with population mutation rate of 50 or higher had less than 

five poor learners each. The peak height increased by approximately 20% after the change. The 



MULTIPLE SCHEDULES AND BEHAVIORAL CONSTRAST IN ETBD 161 
 

higher criteria and the lower number of poor learners is more in line with what is typically seen 

in animal studies of stimulus generalization (Hanson, 1959). However, still having up to five 

poor learners despite having a training performance criteria was an unexpected result. This 

suggests that the rate of unlearning was extremely rapid, and potentially occurred in the last 40 

generations. This may be a weakness of this instantiation of learning durability.   

 Despite the general concern over variability, the presence of variability is not necessarily 

a problem in and of itself. In most studies of generalization, there is generally a high degree of 

variability even within the first round of generalization testing. The degree of variability is even 

higher in the later rounds of testing (as seen in Figure 2).  Data in stimulus generalization studies 

is often averaged across participants prior to analysis, or at least organized into subgroups 

(Zaman et al., 2022). In the present experimental series, the learning criterion lead to stable 

confidence intervals (as seen in Figure 36) when walls were present, and still maintained the 

monotonically decreasing Gaussian form expected of stimulus generalization gradients. When 

walls were not present, the confidence intervals for the conditions near the discriminative 

stimulus decreased as the speed of population mutation decreased. The stimulus generalization 

gradients, while still Gaussian in form, seemed to have more rounded peaks. Similarly rounded 

peaks can be found in conditions where discrimination is poorer (as seen in Figure 3) or 

potentially when motivating operators, like starvation, are in effect (as seen in Figure 4). This 

suggests a link between these conditions and either reduced variability on a neurological level, or 

a predisposition to ignore neutral stimuli like walls under certain conditions.  
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