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Abstract 

Background: Tobacco smoking has been recognized as a major risk factor for many 

adverse health outcomes. Although many DNA methylation sites have been reported 

to be associated with tobacco smoking, few studies have focused on establishing 

prediction models of smoking status from DNA methylation data. This study aims at 

smoking status prediction using machine learning algorithms with precision, 

generalizability and a small number of predictors. Methods: An epigenetic prediction 

analysis of smoking status was performed on 218 male Caucasian twins, using DNA 

methylation data and two machine learning methods, random forests and elastic net. 

Training and testing of the prediction models were performed in two non-overlapping 

subsets. Results: Accuracy of the prediction model is higher in differentiating current 

and non-current smokers, than that in differentiating past and never smokers. In 

predicting past and never smokers, elastic net has a higher accuracy for smaller 

predictor sets compared with random forests. After variable tuning and predictor 

selection, the performance of random forests in predicting past and never smokers 

increases for all predictor sets. Conclusion: This study suggested that machine 

learning approaches could be utilized in understanding smoking risks using DNA 

methylation data with a relatively small set of DNA methylation data. 

Keywords: DNA methylation, machine learning, random forests, elastic net, smoking 

status, predictor selection 

1. Background 

Tobacco smoking is one of the major preventable causes of premature death. It is 

associated with fatal diseases such as coronary heart diseases, stroke, lung cancer, 

chronic obstructive pulmonary disease, miscarriage and underdevelopment of foetus 
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(1). Despite the decreasing prevalence in recent years with the internationalization of 

tobacco control, it remains the top risk factor for many disease outcomes (2). 

DNA methylation (DNAm), a major form of epigenetic modifications, is strongly 

associated with tobacco smoking and smoking-related diseases. Since the first 

epigenome-wide association study of cigarette smoking (3), thousands of smoking-

related DNAm sites have been discovered using earlier Infinium Human Methylation 

Beadchip (27 and 450 K) assays, such as in Zeilinger et al (4) and recent Methylation 

EPIC  BeadChip (850K), such as in Barcelona et al (5). Although the strong 

association of tobacco smoking and DNAm has been well documented, few studies 

have quantified these observations to computational models that could predict 

smoking status. A recent study by Bollepalli et al. used lasso regression to build 

smoking status prediction models using DNAm profiles and applied the results to 

three independent whole-blood samples to demonstrate its robustness and global 

applicability (6). The authors developed an R package EpiSmokEr (6), and identified 

121 DNAm sites that contribute to the prediction model of smoking status. 

In this study, we aimed to improve the precision and generalizability of predicting 

smoking status and to reduce the number of DNAm sites in the prediction model 

using two established machine learning methods – random forests and elastic net 

regularization. Random forests method takes root from decision trees with robustness 

in dealing with the problem of input variable noise, overfitting and a vast 

improvement in prediction accuracy (7). Elastic net regularization combines the 

strengths of lasso regression and ridge regression to produce a prediction model with 

small sample size and a large number of predictors. Elastic net can deal with 

correlated predictors such as corrected DNAm sites in epigenetic prediction. 
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2. Methods 

2.1 Study population 

The DNA methylomic data and smoking status were obtained from samples of the 

Emory Twin Study (ETS). The ETS consists of 307 middle-aged male Caucasian 

monozygotic and dizygotic twin pairs from the Vietnam Era Twin Registry (8) born 

between 1946 and 1956 (9, 10). All participants were examined at the Emory 

University General Clinical Research Center between 2002 and 2010. A subset of 218 

ETS participants was epityped and used in subsequent prediction analysis. The 

analysis dataset consists of 108 twin pairs and 2 singletons, which were randomly 

split into two sets with each set containing only one individual from a twin pair. The 

two non-overlapping subsets were used as the training set and the testing set. 

Demographic information of the study population was summarized in Table 1.  

2.2 DNA methylation data 

Genomic DNA was extracted from peripheral blood leukocytes (PBL) samples, 

epityped using the Illumina HumanMethylation450 BeadChip (450 K). Genomic 

DNA was bisulfite converted, then whole-genome amplified, enzymatically 

fragmented and purified. DNA samples were randomly hybridized to the array, which 

were then fluorescently stained, scanned, and assessed for fluorescence intensities 

(11). DNAm sites were quantified with β-values, which represents the proportion of 

methylation level (12, 13). After excluding DNAm sites that overlap with SNP or are 

not uniquely mapped to the reference genome, 473,864 DNAm sites were available 

for analysis (11). 
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2.3 DNAm sites selection 

From previous publications, three sets of DNAm sites were selected as candidate 

smoking-related DNAm sites to build the prediction models. Those studies were 

selected as they covered different ethnicities, sexes, source tissue types of extracted 

DNA, smoking status classification, and the number of DNAm sites reported. 

Barcelona et al reported 26 DNAm sites that are significantly associated with 

current smoking status among African American women using saliva samples and 

replicated in African American men and women using blood cells (4). Among those 

DNAm sites, 18 were available for model fitting in our 450K data. Gao et al provided 

a systematic review of DNAm studies in blood DNA from 17 earlier studies with a 

total of 1,460 smoking-associated DNAm sites, among which 61 were reported more 

than 3 times (14). These DNAm sites could potentially help quantify a more precise 

long-term smoking exposure assessment (14). Bollepalli et al built a smoking status 

prediction model using lasso regression and included 121 DNAm sites that were 

considered significantly associated with smoking status including current, past and 

never smokers (6). 

This study constructed the prediction models based on the above three sets of 

DNAm sites that will be further referred to by the number of DNAm sites obtained 

from each of them (18, 61, and 121). 

2.4 Machine learning methods and data analysis 

Random forests and elastic net regularization are machine learning algorithms used 

in this study. In this study, we focused on two classifications: 1. current smoker vs. 

non-current smoker; 2. past smoker vs. never smoker, and evaluated the prediction 

accuracy and other performance measures of the prediction models using three 
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subsets of DNAm sites. Area Under Curve (AUC) of Receiver Operating 

Characteristic (ROC) curve was used to assess the predictive ability of each machine 

learning model. A prediction model was built based on DNAm and smoking status 

data of one subset of the study participants (training set). The model’s prediction 

performance was then assessed using the second subset (testing set). All statistical 

analyses were done in R Version 3.5.3 (https://www.r-project.org/). 

2.4.1 Random forests 

Random forests model consists of a large number of decision trees that are 

uncorrelated, where each decision tree is built by a random subset of predictors (i.e. 

DNAm data in this study) (15). Each decision tree makes its own class prediction and 

the class with the most votes becomes the prediction of the overall model. In R, a 

package 'randomForest' that provides functions that could make random forest 

predictions was used in this analysis (16). 

The predictive ability of predictors in random forests is measured by “importance”. 

In this analysis, we used the mean decrease in accuracy (MDA), referring to the mean 

accuracy decrease when the predictors are excluded across all trees in one random 

forest run, to assess whether a predictor should be included in the model. Negative 

values in MDA means that the performance of the model increases after excluding a 

certain preditor, indicating that this predictor does no better than a random guess in 

the classification of smoking status, thus it is recommended to be eliminated from the 

set of preditors for the model (17). 

Random forest method also implements out-of-bag (OOB) error rate that measures 

the prediction error. It is the average error for a training sample that does not contain 

the OOB sample in the bootstrap sample during model building (18). This measure 

https://www.r-project.org/
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helps determine the optimal number of trees to grow in a random forest run, where the 

error rate converges and stabilizes. 

We used the averaged MDA and error rate of 50 random forest runs to determine 

which predictors are of significance in each model and the optimal number of trees to 

grow for each model to achieve prediction accuracy and modeling optimization, with 

respect to maximum efficiency on time and space complexity. 

2.4.2 Elastic net regularization 

Elastic net regularization combines both ridge penalty and lasso penalty in a single 

model of regularized regression (19). In R, package 'glmnet' provides a function that 

could perform elastic net regularization (20). It’s formulated as: 

(∑ⅇ2) + λ [α(|V1|+|V2|+…+|Vn|) + (1-α) (V1
2+V2

2+…+Vn
2)] 

Where ⅇ is the residual, λ is the shrinkage parameter for ridge and lasso regression 

penalty, and α could be customized as any value from 0 to 1 when calling the 

regression model to adjust the weight of ridge and lasso regression penalty in the 

modeling process. V is the coefficient for each predictor (i.e. DNAm sites), and n 

equals the number of predictors used in the model. Optimal λ is determined using 10-

fold cross-validation, and optimal α will be determined using the one that produces 

the largest AUC.  

 

3. Results 

3.1 Sample characteristics 

As summarized in Table 1, demographic information of each set for training and 

testing is similar, if not identical, since study participants in each set came from one 
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individual of a twin pair except for the two singletons. Smoking behavior for the two 

sets is also comparable. 

3.2 Classification of current and non-current smoking 

In the classification of current and non-current smokers, random forests perform 

similarly as elastic net regularization (Figure 1). For random forests, AUC is 0.922 for 

the 18 predictor set, 0.904 for the 61 predictor set, and 0.892 for the 121 predictor set. 

For elastic net, AUC is 0.929 for the 18 predictor set, 0.938 for the 61 predictor set, 

and 0.922 for the 121 predictor set.  Reversing training and testing sets results in 

prediction with AUC ± <0.05. Specifically, for random forests, AUC is 0.912 for the 

18 predictor set, 0.917 for the 61 predictor set, and 0.939 for the 121 predictor set. For 

elastic net, AUC is 0.936 for the 18 predictor set, 0.933 for the 61 predictor set, and 

0.941 for the 121 predictor set. 

3.3 Classification of past and never smoking 

In the classification of past and never smokers, the performance of both models 

built from random forests and elastic net regularization decreased. For random forests, 

the model using 18 predictors has an AUC of 0.660, the model using 61 predictors has 

an AUC of 0.742, and the model using 121 predictors has an AUC of 0.774 (Figure 

2A). For elastic net regularization, the performance is better compared with the 

corresponding random forest model (Figure 2B). And when the model was built using 

the 121 predictor set, the performance is further improved, but still lower than that in 

the prediction of current and non-current smoking. Specifically, the AUCs are 0.757, 

0.808 and 0.887 for the 18, 61 and 121 predictor sets, respectively. Reversing training 

and testing sets results in prediction with AUC ± <0.05. For random forests, AUCs 

are 0.695, 0.788 and 0.813 for the 18, 61 and 121 predictor sets, respectively. For 
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elastic net, AUCs are 0.766, 0.811 and 0.903 for the 18, 61 and 121 predictor sets, 

respectively. 

3.4 Optimization of tuning parameters 

The OOB error rate of different models using the random forest approach was also 

calculated and plotted, which could help determine the optimal number of trees to 

grow and whether the model's performance is stabilized after the number of trees 

grown reached some point (Figure 3). It appears that using 18 predictors, performance 

of the models both in predicting current vs. non-current smokers and past vs. never 

smokers get slightly worse when number of trees keeps growing, from 0.15 to 0.16 

for current vs. non-current smokers and from 0.38 to 0.40 for past vs. never smokers, 

indicating by more sampling we are adding more noise to the model. When using 61 

predictors, there is also a slight increase in error rate when modeling past vs. never 

smokers form 0.33 to 0.34, but the performance stabilizes when modeling current vs. 

non-current smokers. When using 121 predictors, the error rate keeps decreasing as 

the number of trees grown increases up to 3000 in models that predict current vs. non-

current smokers; it stabilizes in models that predict past vs. never smokers when the 

number of trees grown exceeds 500 approximately. 

For elastic net, models reached maximum performance (defined as reaching 

maximum AUC in this analysis) when tuning parameter α is around 0.02 when 

differentiating past and never smokers, but optimal α varies for classification of 

current and non-current smokers. λ that generates the minimum mean cross-validated 

error differs across different runs, predictor sets, and classification types (current vs. 

non-current or past vs. never), with a range in [0.03, 0.40]. For current and non-

current smoker classification, number of coefficients (V) in the optimal model is 

around 7, 14 and 96 for the originally 18, 61 and 121 predictor set. For past and never 
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smoker classification, number of coefficients in the optimal model is around 16, 55 

and 97 for the originally 18, 61 and 121 predictor set. 

3.5 Predictor selection 

MDA for each predictor in the random forest approach was examined using 50 runs 

of random forest prediction. Predictors with MDA < 0 were excluded. In models 

predicting current vs non-current smokers, 14 out 18, 35 out of 61, and 42 out of 121 

predictors remained in the prediction model with positive MDA; in models predicting 

past vs. never smokers, 10 out of 18, 32 out of 61, 57 out of 121 predictors remained 

in the prediction model with positive MDA. DNAm sites that were calculated as 

significant were summarized in Table 2 and Table 3 with their values of mean 

importance and MDA in the respective models. After such exclusion, precision 

improvement for each predictor set was summarized in Table 4. AUC slightly 

increases to 0.6925, 0.7539 and 0.8289 for the originally 18, 61 and 121 predictors 

respectively.  

3.6 Summary 

In summary, sample characteristics are comparable for training and testing sets. 

Classification of current and non-current smokers achieves more accuracy than the 

classification of past and never smokers for both methods, but elastic net performs 

better in differentiating past and never smokers than random forests. Generally, OOB 

error rates in random forests fluctuate for smaller predictor sets and stabilize for larger 

predictor sets as the number of trees grows. After exclusion of insignificant 

predictors, random forests’ performance in classification of past and never smokers 

increases, but only to a small extent. 
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4. Discussion 

In this study, quantified prediction of tobacco smoking using DNAm data was 

conducted. Random forests and elastic net regularization models were built using 

selected DNAm sites from three previous studies of smoking-related DNAm using 

different tissue types, ethnicities of participants and number of predictors. Using non-

overlapping training and testing datasets from study samples, we were able to 

evaluate the predictive ability, predictor selection, and potential overfitting. 

Evaluation criteria for a "good" AUC could depend on the situation, but generally, 

an AUC of 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is considered good, and 

more than 0.9 is outstanding (21). Overall, models built from all predictor sets could 

predict current and non-current smokers accurately with AUCs around 0.9. The 

prediction models were less accurate in differentiating past and never smokers, 

compared with differentiating current and non-current smokers, especially when using 

the smallest set of predictors that were identified in an African American female 

cohort with saliva samples that focused on current smoking status. As a comparison, 

the DNAm data used in the present study was obtained from blood samples of a group 

of Caucasian males. The performance of both random forests and elastic net 

regularization models had consistent prediction accuracy in predicting current vs. 

non-current smokers. In predicting past and never smokers, random forest models 

were less accurate than elastic net models measured by AUC of ROC curves.  The 

prediction accuracy for both algorithms improves as the number of predictors 

increases in predicting past vs. never smokers, and the improvement is more 

substantial using the elastic net method. Performance of the elastic net model that 

predicts past vs. never smokers approached the performance of its current vs. non-

current counterpart when more predictors were included (121 predictors). 
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The less accurate prediction in differentiating past and never smokers could be 

possibly attributed to 1) markers used in the analysis are less predictive in past and 

never smokers compared with current and non-current smokers, especially for the 18 

predictor set where the original DNAm sites were identified based on current smoking 

status; 2) accurate prediction of past and never smokers may require more DNAm 

markers due to weaker predictive ability of individual markers.  

It is notable that when elastic net reaches its best performance for classification of 

past and never smokers, α value is close to 0, meaning that ridge regression weights 

more in producing an optimal model for smoking status than lasso regression in the 

elastic net formula. Ridge regression has the advantage of dealing with correlated 

variables in modeling. This could indicate a possible explanation to as why elastic net 

performs better when predicting past and never smokers when some correlated 

DNAm markers contribute to the prediction. Models predicting current and non-

current smokers could be generalized across different types of samples, gender and 

races; as for models predicting past and never smokers, different machine learning 

approaches and predictor sets generate different performances.   

In the variable selection process of past and never smoker differentiation, we 

noticed two major characteristics of the predictor sets. With larger predictor sets, the 

performance improves. On the other hand, the exclusion of insignificant variables 

improved the prediction accuracy. This might be attributed to different variables' 

different contribution and significance in constructing the models. Meanwhile, OOB 

error rates for smaller predictor sets fluctuated and stabilized for larger predictor sets. 

Thus, variable selection should be considered and evaluated to achieve optimal 

prediction accuracy for these machine learning methods. 
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This study demonstrated the potential application of machine learning prediction 

models of smoking status using DNAm data that could be generalized to different 

populations, types of samples, and smoking status categorization, with acceptable 

precision. Instead of examining hundreds of thousands of DNAm sites, only less than 

100 preditors are needed in building the model with relatively high accuracy. Random 

forests and elastic net are both capable of dealing with a large number of predictors, 

but time and space efficiency are always important considerations in evaluating how 

good a model is. By comparing the performance using different machine learning 

algorithms, the generalizability of the DNAm sites selected by the models could be 

examined. 

This study has several notable limitations. First, the dataset is restricted in 

Caucasian males only, whereas the results could possibly be different in other 

demographic populations. Secondly, the DNAm was measured in blood samples -  

while this is the most commonly used sample in DNAm retrieving, performance could 

be different for samples from other tissue types. Also, smoking status measured in the 

study population is based on self-reported status which is prone to reporting errors. 

Thus, the prediction accuracy of the smoking status could be underestimated in the 

present study. Using a gold standard of smoking status (e.g., blood-based cotinine 

levels), as well as examining other variables of smoking behaviors such as time from 

smoking cessation or smoking dosage (such as measured in pack-time) would 

potentially benefit the accuracy and evaluation of the results.   

Application of the study results could lead to a better prediction of smoking status 

with a relatively small number of predictors needed. The DNAm-predicted smoking 

status can minimize the missing data of smoking status, and be a more accurate 

measurement of smoking behavior than self-reported data in risk prediction of disease 
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outcomes. Studies have shown that the accuracy of self-reported smoking status could 

be less than 80%, and missing data in such statistics is partially due to unwillingness 

to report and partially due to passive smoking that was not considered in 

questionnaires (22, 23). Compared with the performance of models built in this study, 

the predicted smoking status with more completeness and objectiveness may replace 

self-reported smoking status in risk prediction of smoking-related diseases such as 

coronary artery diseases, coronary heart diseases, hypertension. 

  



   

   
 

14 

References 

1. West R. Tobacco smoking: Health impact, prevalence, correlates and interventions. 

Psychol Health. 32(8): 1018–1036 (2017). 

2. Reubi D, Berridge V. The Internationalisation of Tobacco Control, 1950–2010. 

Med Hist. 60(4): 453–472 (2016). 

3. Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H. Tobacco-smoking-related 

differential DNA methylation: 27 K discovery and replication. Am J Hum Genet. 

2011;88(4):450–7. doi:10.1016/j.ajhg.2011.03.003 

4. Zeilinger S, Kuhnel B, Klopp N et al. Tobacco smoking leads to extensive genome-

wide changes in DNA methylation. PLoS One. 8(5):e63812 (2013). 

5. Barcelona V, Huang Y, Brown K et al. Novel DNA methylation sites associated 

with cigarette smoking among African Americans. Epigenetics 14, 4 (2019). 

6. Bollepalli S, Korhonen T, Kaprio J. EpiSmokEr: a robust classifier to determine 

smoking status from DNA methylation data. Epigenomics11(13):1469-1486 

(2019). 

7. Sun YV. Multigenic modeling of complex disease by random forests. Adv Genet. 

72:73-99 (2010). 

8. Goldberg J, Curran B, Vitek ME, Henderson WG, Boyko EJ. The Vietnam Era 

Twin Registry. Twin Res. 5(5), 476–481 (2002) 

9. Vaccarino V, Brennan M-L, Miller AH et al. Association of major depressive 

disorder with serum myeloperoxidase and other markers of inflammation: a twin 

study. Biol. Psychiatry 64(6), 476–483 (2008). 

10. Vaccarino V, Lampert R, Bremner JD et al. Depressive symptoms and heart rate 

variability: evidence for a shared genetic substrate in a study of twins. Psychosom. 

Med. 70(6), 628–636 (2008). 



   

   
 

15 

11. Huang Y, Hui Q, Walker D et al. Untargeted metabolomics reveals multiple 

metabolites influencing smoking-related DNA methylation. Epigenomics. 

10(4):379-393 (2018). 

12. Klebaner D, Huang Y, Hui Q et al. X chromosome-wide analysis identifies DNA 

methylation sites influenced by cigarette smoking. Clin. Epigenetics 8, 20 (2016). 

13. Chen Y-A, Lemire M, Choufani S et al. Discovery of cross-reactive probes and 

polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. 

Epigenetics 8(2), 203–209 (2013). 

14. Gao X, Jia M, Zhang Y et al. DNA methylation changes of whole blood cells in 

response to active smoking exposure in adults: a systematic review of DNA 

methylation studies. Clinical Epigenetics (2015) 7:113. 

15. Breiman L. Random forests. Machine learning. 45:5 (2001).  

16. Liaw A, Wiener M. Breiman and Cutler's Random Forests for Classification and 

Regression. CRAN (2018). 

17. Robin Genuer, Jean-Michel Poggi, Christine Tuleau-Malot. Variable selection 

using Random Forests. Pattern Recognition Letters, Elsevier, 2010, 31 (14), 

pp.2225-2236. ffhal-00755489f. 

18. Hastie T, Tibshirani R, Friedman J. Elements of Statistical Learning Ed. 2. 

Springer. p592-593 (2009). 

19. Zou H, Hastie T. Regularization and variable selection via the elastic net.J. R. 

Statist. Soc. 67, Part 2, pp. 301–320 (2005) 

20. Friedman J, Hastie T, Tibshirani R et al. Lasso and Elastic-Net Regularized 

Generalized Linear Models. CRAN (2019) 

21. Tharwat A. Classification assessment methods. Applied Computing and 

Informatics (2018). 



   

   
 

16 

22. Spencer K, Cowans NJ. Accuracy of self-reported smoking status in first trimester 

aneuploidy screening. Prenat Diagn. 33(3):245-50 (2013). 

23. Hwang JH, Kim JY, Lee DH et al. Underestimation of Self-Reported Smoking 

Prevalence in Korean Adolescents: Evidence from Gold Standard by Combined 

Method. Int J Environ Res Public Health. 15(4). pii: E689 (2018). 

 

 

 

 

 

  



   

   
 

17 

Table 1. Demographic information for the study sample of 218 Caucasian male twins 
 

 Set 1 
(n=109) 

Set 2 
(n=109) 

Total 
(n=218) 

Age    

Mean (SD) 55.6 (3.30) 55.6 (3.29) 55.6 (3.29) 

Median [Min, Max] 56.0 [48.0, 63.0] 56.0 [48.0, 63.0] 56.0 [48.0, 63.0] 

Obesity    

No 63 (57.8%) 64 (58.7%) 127 (58.3%) 

Yes 46 (42.2%) 45 (41.3%) 91 (41.7%) 

Education Level    

Less than High School 6 (5.5%) 3 (2.8%) 9 (4.1%) 

High School 42 (38.5%) 34 (31.2%) 76 (34.9%) 

Some College 33 (30.3%) 39 (35.8%) 72 (33.0%) 

College Degree or above 28 (25.7%) 33 (30.3%) 61 (28.0%) 

Smoking Status    

Never 25 (22.9%) 27 (24.8%) 52 (23.9%) 

Past 52 (47.7%) 50 (45.9%) 102 (46.8%) 

Current 32 (29.4%) 32 (29.4%) 64 (29.4%) 

Twin Type    

Monozygotic 82 (75.2%) 82 (75.2%) 164 (75.2%) 

Dizygotic 27 (24.8%) 27 (24.8%) 54 (24.8%) 

 

 

 

Figure 1. ROC in predicting current and non-current smokers using model built from 

50 random forest runs averaged (A) and elastic net regularization (B) 
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Figure 2. ROC in predicting past and never smokers using model built from 50 

random forest runs averaged  (A) and elastic net regularization (B) 

 
   

 

 

Figure 3. Mean and 95% confidence interval of out-of-bag (OBB) error rate in 

predicting current and non-current smokers using 50 runs of random forests 
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Figure 4. Mean and 95% confidence interval of out-of-bag (OBB) error rate in 

predicting past and never smokers using 50 runs of random forests 
   

  

 
 

 

 

Table 2. Importance and mean decrease in accuracy (MDA) of DNAm sites that are 

significant in models predicting current and non-current smokers 

DNAm Sites 
121 

Importance 
121 MDA 

18 
Importance 

18 MDA 
61 

Importance 
61 MDA 

cg05575921 3.056E-01 1.136E-01 2.561E-01 1.104E-01 2.005E-01 6.800E-02 

cg16117605 1.500E-03 3.700E-03     

cg21566642 2.482E-03 2.236E-03 1.271E-02 1.190E-03 1.452E-03 1.422E-03 

cg07721625 3.843E-03 2.077E-03     

cg21733098 1.417E-05 1.467E-03     

cg10957001 -1.665E-03 1.419E-03     

cg13944838 -5.102E-04 9.512E-04     

cg26048448 -3.348E-04 9.210E-04     

cg18877361 -6.325E-04 6.198E-04     

cg26029902 9.065E-04 5.505E-04     

cg09173768 -3.127E-04 5.288E-04     

cg26103168 -6.308E-04 4.869E-04     

cg13771313 -2.191E-04 3.937E-04     

cg06715410 1.320E-03 3.077E-04     

cg23942311 -9.741E-04 2.942E-04     

cg21594961 -9.568E-05 2.340E-04     

cg26086649 1.725E-03 1.644E-04     

cg16113156 -6.891E-04 1.371E-04     
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cg20839206 3.206E-05 1.188E-04     

cg02243946 1.065E-03 9.463E-05     

cg00593900 -6.483E-04 7.616E-05     

cg06677021 5.977E-04 6.929E-05     

cg02725398 -5.815E-04 6.491E-05     

cg25242471 -8.366E-04 5.787E-05     

cg16775095 -3.259E-04 5.138E-05     

cg18268547 -2.762E-04 5.097E-05     

cg06644428 -8.914E-04 4.959E-05   -1.308E-03 3.226E-04 

cg01080924 5.023E-04 4.645E-05     

cg18369516 -8.162E-05 3.817E-05     

cg06120313 3.208E-04 2.997E-05     

cg06442199 -5.751E-04 2.777E-05     

cg17619755 -5.900E-04 2.454E-05     

cg22947000 -6.270E-04 2.152E-05     

cg17453416 -1.357E-03 1.885E-05     

cg20738735 -1.383E-04 1.622E-05     

cg18106898 1.222E-04 1.593E-05     

cg26169299 1.304E-05 1.502E-05     

cg03245590 -8.464E-04 1.367E-05     

cg17535283 -1.227E-04 4.586E-06     

cg18161956 2.282E-04 2.847E-06     

cg15064086 -1.602E-04 9.189E-07     

cg00075467 3.401E-04 2.973E-08     

cg00073090   1.327E-02 3.738E-04   

cg00748718   1.627E-03 1.005E-03   

cg01731783     -1.762E-04 3.522E-05 

cg01899089     9.755E-04 6.343E-04 

cg01901332     -3.649E-04 2.679E-04 

cg01940273   5.017E-02 4.321E-02 2.378E-02 3.029E-02 

cg02451831     1.115E-02 4.204E-03 

cg03547355     2.629E-05 1.311E-05 

cg03991871     -8.242E-04 5.205E-07 

cg04885881     -1.201E-03 1.490E-04 

cg05284742     2.429E-04 8.698E-04 

cg05644151   -8.517E-04 5.639E-04   

cg05951221     1.428E-02 3.210E-03 

cg06126421     -7.980E-04 1.693E-05 

cg07824483   -5.247E-05 1.205E-04   

cg11207515     5.122E-03 6.090E-04 

cg11314684     -1.760E-03 1.139E-04 

cg11660018     -7.706E-04 6.628E-04 

cg13976502     -1.232E-03 9.588E-05 

cg14389122   1.999E-02 6.909E-03   

cg14580211     8.291E-04 6.353E-05 

cg15342087     9.803E-04 1.079E-03 

cg16937168   1.444E-03 5.743E-05   

cg19859270     2.232E-03 1.562E-04 
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cg20295214     5.277E-03 3.372E-03 

cg21121843     1.016E-02 2.357E-03 

cg21161138     3.878E-03 3.306E-03 

cg21611682     2.205E-04 7.375E-05 

cg22132788     3.026E-03 7.335E-04 

cg23079012   -1.002E-02 6.299E-03   

cg23161492     9.557E-03 8.847E-04 

cg23771366     -3.467E-03 1.836E-03 

cg23916896     -1.075E-03 1.269E-04 

cg24859433     1.504E-03 1.111E-03 

cg24996979     7.377E-03 3.524E-03 

cg25189904   -6.536E-03 1.238E-02 -1.087E-03 2.408E-03 

cg26271591     1.702E-04 1.469E-04 

cg26703534   5.502E-02 7.604E-03 1.993E-02 5.267E-03 

cg27174698   -1.374E-03 3.581E-05   

cg27241845   4.839E-03 1.057E-02 1.397E-03 1.031E-02 

 

 

Table 3. Importance and mean decrease in accuracy (MDA) of DNAm sites that are 

significant in models predicting past and never smokers 

DNAm Sites 
121 

Importance 
121 MDA 

18 
Importance 

18 MDA 
61 

Importance 
61 MDA 

cg05951221 4.368E-02 6.838E-02   3.011E-02 3.328E-02 

cg06644428 9.963E-03 1.346E-02   1.321E-02 6.330E-03 

cg06126421 7.262E-03 1.258E-02   4.758E-03 5.324E-03 

cg27650870 7.566E-03 1.076E-02     

cg09173768 2.922E-03 3.605E-03     

cg22947000 4.406E-06 2.773E-03     

cg09068031 2.519E-03 2.415E-03     

cg24629356 7.260E-04 2.042E-03     

cg00066239 -7.259E-05 1.973E-03     

cg13626582 1.278E-03 1.939E-03     

cg13619177 4.674E-04 1.862E-03     

cg01080924 2.255E-03 1.515E-03     

cg16113156 -5.776E-05 1.404E-03     

cg13910813 4.707E-04 1.298E-03     

cg07499182 1.763E-03 1.015E-03     

cg18315060 -3.539E-04 9.415E-04     

cg10525394 2.587E-04 8.736E-04     

cg19572487 -3.103E-04 8.329E-04   -6.486E-04 1.930E-03 

cg15064086 -1.917E-04 7.737E-04     

cg05323345 -3.635E-04 7.722E-04     

cg19091257 4.831E-04 7.633E-04     

cg16702083 8.945E-06 7.093E-04     

cg23576855 1.827E-03 6.918E-04   3.372E-03 6.019E-04 

cg20618441 -7.835E-05 6.813E-04     

cg06597652 -1.060E-04 6.722E-04     
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cg13791092 1.665E-04 6.570E-04     

cg19643109 2.951E-04 6.442E-04     

cg23942311 -8.424E-05 5.893E-04     

cg00593900 1.746E-04 4.995E-04     

cg17619755 7.310E-04 4.859E-04     

cg26048448 -1.295E-04 4.266E-04     

cg21733098 -1.696E-04 2.706E-04     

cg26558023 -2.297E-04 2.674E-04     

cg23126342 1.380E-05 2.671E-04     

cg13771313 6.946E-05 2.655E-04     

cg18877361 5.090E-05 2.492E-04     

cg12438330 1.735E-04 2.481E-04     

cg03133799 -2.947E-04 2.217E-04     

cg25221984 -3.829E-04 1.946E-04     

cg12589188 6.139E-05 1.932E-04     

cg10957001 -2.056E-04 1.881E-04     

cg13944838 3.447E-04 1.569E-04     

cg21450627 1.552E-04 1.465E-04     

cg09298273 -3.657E-04 1.350E-04     

cg01273991 -1.971E-05 1.192E-04     

cg22587600 -1.305E-04 1.145E-04     

cg02431260 -2.644E-04 9.458E-05     

cg03847932 1.140E-04 8.222E-05     

cg06442199 2.359E-04 7.843E-05     

cg18161956 -1.686E-04 7.141E-05     

cg26169299 -6.639E-05 7.050E-05     

cg03936870 -1.318E-04 6.436E-05     

cg20738735 3.608E-04 5.878E-05     

cg05293490 -2.413E-04 4.246E-05     

cg10006428 -3.079E-05 2.027E-05     

cg22331349 4.890E-04 5.558E-06     

cg00846554 -9.710E-05 4.132E-06     

cg01899089     3.851E-03 1.803E-03 

cg01940273   2.027E-02 8.836E-03   

cg02451831     -4.765E-04 6.080E-03 

cg02657160     -7.016E-04 2.688E-04 

cg03991871     -6.995E-04 6.216E-04 

cg05575921   6.184E-03 1.021E-03   

cg07123182     -7.516E-04 1.209E-03 

cg11231349     4.572E-04 3.917E-04 

cg11660018     6.808E-03 1.141E-02 

cg12803068     2.368E-03 4.673E-03 

cg12806681     2.346E-04 7.760E-04 

cg13976502     -7.903E-04 9.301E-04 

cg14389122   -5.744E-03 2.004E-02   

cg14753356   -6.341E-04 8.107E-03 -4.460E-04 1.609E-03 

cg14817490     -3.297E-03 9.875E-03 

cg15342087     4.143E-03 7.132E-03 
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cg19695041   -2.971E-03 4.148E-03   

cg19859270     2.322E-03 6.751E-03 

cg20295214     -4.291E-05 6.507E-04 

cg21161138     -4.456E-03 1.666E-02 

cg21566642   3.070E-02 7.478E-03   

cg21913886     -7.760E-04 2.373E-03 

cg22132788     1.889E-03 2.988E-03 

cg23771366     5.994E-03 4.473E-03 

cg23916896     2.329E-03 3.378E-03 

cg24090911     -2.239E-03 4.531E-04 

cg24859433     1.552E-04 4.616E-03 

cg24996979     3.302E-04 7.791E-04 

cg25189904   1.246E-02 1.981E-02 1.330E-03 1.252E-03 

cg25648203   -6.856E-03 1.151E-02 -1.309E-03 1.851E-03 

cg26703534   -1.281E-04 2.911E-03 2.588E-04 1.041E-03 

cg26963277     -3.596E-04 6.627E-04 

cg27174698   1.368E-03 6.773E-03   

 

 

Table 4. Mean performance improvement with standard deviation for models 

predicting past vs. never smokers after exclusion of insignificant predictors from the 

three predictor sets using 50 runs of random forests 

Number of predictors: Full (Reduced) 18 (10) 61 (32) 121 (57) 

Full set AUC (SD) 0.6604 (0.0029) 0.7423 (0.0034) 0.7744 (0.0040) 

Reduced set AUC (SD) 0.6925 (0.0029) 0.7539 (0.0032) 0.8289 (0.0032) 

 


