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Abstract

Generating Graphs with Deep Learning and Graph Theory
By Yuliang Ji

Deep generative models attract lots of attention in recent years. With deep neu-
ral networks and specific designs, deep generative models can generate high-quality
realistic data. In this thesis, I focus on combining the deep generative models with
the traditional graph theory algorithms to reduce the dependence on the volume of
the training data and also improve the quality of the generated graphs. In particular,
I first propose a deep learning method to improve the Havel-Hakimi graph realization
algorithm in order to generate doppelganger graphs from a single graph. Second, I
present a few new architectures of normalizing flow models with improved perfor-
mance and theoretical guarantees. Finally, I develop a permutation invariant method
via leveraging graph theory and denoising diffusion models for generating molecular
graphs.
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Chapter 1

Introduction

1.1 History of Deep Neural Networks

In 1943, Warren McCulloch and Walter Pitts [79] described how neurons might work,

and they modeled a simple neural network. In 1975, Werbo [110] proposed the back

propagation algorithm, which made the training multi-layer neural networks possible.

However, due to the lack of computation resources and data, these methods were not

popular before 2000.

In 2009, Stanford published ImageNet [17] dataset, which is a dataset that contains

more than 14 million labeled images. Also, as the speed of GPUs increases signifi-

cantly during these years, it became computational feasible to train large multi-layer

neural networks by the back propagation algorithm to achieve good results. For exam-

ple, AlexNet [68], won several international image classification competitions during

2011 and 2012. After that, multi-layer neural networks, which are also called deep

neural networks, attract people from all over the world.
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1.2 Basic Structure of Deep Neural Networks

The basic component in the deep neural networks is the fully connected layer.

Assume the input data of the fully connected layer is x ∈ Rdin , the output is

z ∈ Rdout . Under this assumption, the fully connected layer contains a matrix W ∈

Rdin×dout , a vector b ∈ Rdout and a non-linear function σ : R → R. The relationship

between z and x is given by the following formula:

z = σ(W Tx+ b) (1.1)

where the non-linear function σ is applied element-wise.

Equation (1.1) describes the operations of neural network performed at one single

layer. Suppose the neural network has n fully connected layers, the output of the

ith layer is vector h(i) for i = 1, 2, . . . , n − 1, and W (i), b(i), σ(i) are the components

in the ith layer for i = 1, 2, . . . , n. Then the output z of the neural network can be

calculated by (1.2) from the given input x:

h(1) = σ(1)(W (1)Tx+ b(1))

h(i+1) = σ(i+1)(W (i+1)Th(i) + b(i+1))

z = σ(n)(W (n)Th(n−1) + b(n))

(1.2)

where i = 1, 2, . . . , n− 2. Here, vector h(i) are called “hidden units”.

There are two other popular layers: convolution neural network layer [29] and

recurrent neural network layer [96]. Usually, convolution neural network layer is used

for image tasks [71], and recurrent neural network layer is used for sequential data,

for example, text and audio.

Consider the simple convolution neural network layer defined with a matrix K ∈

RM×N and a number b. When the input x is a matrix of size d1 × d2, the output z
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of the layer will be a matrix whose (i, j)th element is computed by the convolution

operation defined in (1.3) [34]:

z(i, j) =
M∑

m=1

N∑
n=1

x(i+m, j + n)K(m,n) + b. (1.3)

There are lots of work focusing on modifying the basic convolution neural net-

work layer to improve the performance on image tasks during these years. For exam-

ple, AlexNet [68] uses multi-channel convolution layer, ResNet [44] tries the residual

blocks, and CoAtNet [14] combines convolution layers with some newest neural net-

work layers to further improve the prediction accuracy.

The basic recurrent neural network layer contains a function f . Suppose the

input data is x = {x(1), . . . , x(T )}, then the output h(T ) will be computed recursively

by Equation (1.4) [34]:

h(t) = f(h(t−1), x(t)) (1.4)

with h(0) = 0 and t = 1, . . . , T .

Since 1990, researchers who focus on sequential data have designed different recur-

rent layers to improve the performance in certain speech applications. Hochreiter and

Schmidhuber designed LSTM [46] in 1997, and a model [28] constructed by LSTM

layer outperformed traditional models in specific speech tasks in 2007. Kyunghyun

Cho et al. [13] introduced Gated Recurrent Units (GRU) layer in 2014, which has

much fewer parameters than traditional LSTM.
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1.3 Training Process of Deep Neural Networks

When researchers have already designed a deep neural network architecture, they need

to use computers to calculate the value of parameters (e.g. each entry of the matrixW

in fully connected layer) to make their models achieve desirable performance. Usually,

this process is called the training process.

To evaluate the performance of the designed neural network model, researchers

need to define specific functions of their model, which are called loss functions.

Mathematically, in supervised learning, if the given data is x and the given target

is y(x), assume the neural network model is a function fθ, where θ are the parameters.

Researchers need to define a loss function L(x, y(x), fθ) to evaluate the model fθ.

The common loss function is Mean Squared Error:

L(x, y(x), fθ) =
∑
x

||fθ(x)− y(x)||2 (1.5)

If the loss function has already been designed, researchers could calculate the

value of each parameter in their models by optimization techniques. A traditional

optimization technique is called Gradient Descent, which has the formula:

θi = θi − α
∂L(x, y(x), fθ)

∂θi
(1.6)

where α is a number called learning rate.

More formally, Algorithm 1 shows the process of training deep neural networks.
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Algorithm 1: Training process of Deep Neural Networks

Input : training data x

Output: Model f with parameters θ

1 Design a neural network f .

2 Initialize the parameters θ.

3 Define the loss function L(x, fθ).

4 repeat

5 Compute f(x).

6 Compute loss function L(x, fθ).

7 Use optimization techniques and backpropagation to update θ.

8 until loss is small enough or iteration number reaches max iteration;

In recent years, researchers have developed many stochastic optimization algo-

rithms for the training process of neural networks, such as Stochastic Gradient De-

scent (SGD) [94], Adam [58], Adagrad [23]. They all estimate the gradient based on

a batch of data instead of the whole dataset. These optimization techniques make

the training process faster and more stable.
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1.4 Deep Generative Model

In artificial intelligence, one of the most important fields is to find specific techniques

to make computers have the ability to generate data based on the given data. Math-

ematically, researchers assume that the given data follow a particular distribution,

and they wish to design models which could represent that distribution and generate

new samples from the represented distribution. In recent years, researchers find that

some deep neural network models perform well in this task, and people named those

models as Deep Generative Model [85] [97].

There are several popular types of Deep Generative Model: Variational AutoEn-

coder [59], Generative Adversarial Network [33], Normalizing Flow [92] [20], and

Denoising Diffusion Model [55] [102].

1.4.1 Variational AutoEncoder

Diederik P.Kingma and Max Welling introduced Variational AntoEncode (VAE) [59]

in 2014. VAE can learn smooth latent state representations of the input data, and

usually the dimension of the latent state is much smaller than the dimension of the

input data.

VAE contains two parts: Encoder and Decoder. To get the output of the VAE

model from input x, first, the Encoder maps the input x to two vectors µx, σx, which

represent the mean and the variance, respectively. Then, a vector z = µx + σx ⊙ ϵ is

constructed, where ⊙ denotes the element-wise product and ϵ samples from N (0, I).

This step is called “reparameterization trick” [59]. Finally, the model passes z to the

Decoder and gets the output x̂. This process is illustrated in Figure 1.1.

The loss function of the VAE model is often defined based on Equation (1.7):

Recon(x, x̂) +KL(N (µx, σx),N (0, I)) (1.7)
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Figure 1.1: The architecture of VAE model where x̂ is the output and x is the input.

where Recon is the loss of the reconstruction error, which is usually chosen as Mean

Square Error or Cross-Entropy, andKL denotes the Kullback–Leibler divergence [69].

Many efforts have been made to develop variations of VAE to generate different

types of data. For example, VQ-VAE-2 [91] tries to generate high-fidelity images and

GraphVAE [100] uses VAE to generate graphs.

1.4.2 Generative Adversarial Network

Generative Adversarial Network was introduced by Goodfellow et al. [33] in 2014.

In the Generative Adversarial Network model, there is a rivalry between two neural

networks: Discriminator and Generator. The Generator network tries to generate

data which comes from a similar distribution as the distribution of the input data,

while the Discriminator network tries to distinguish the input data and the generated

data.

Suppose the input data has a distribution pdata(x), and G represents the generator

neural network, D represents the discriminator neural network. Mathematically, the

generator maps z, which comes from a simple distribution pZ(z), to G(z), which has
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Figure 1.2: A demonstration of Generative Adversarial Network.

a similar distribution as pdata(x), and the discriminator tries to assign D(x) with the

real data label and D(G(z)) with the generated (or called ‘fake’) data label. See

Figure 1.2 for a pictorial demonstration.

The generator network G and the discriminator network D are trained simulta-

neously using the following minimax loss function (1.8) [33]:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pZ(z)[log(1−D(G(z))] (1.8)

Ideally, after the training process, the discriminator can no longer distinguish real

data from the data generated by the generator.

Generative Adversarial Networks have been applied in many different applications.

For example, DCGAN [90] and CycleGAN [116] use Generative Adversarial Network

to generate images, MuseGAN [22] can generate music, and NetGAN [8] can generate

similar graphs via Generative Adversarial Network.

Although Generative Adversarial Network can generate high-quality data, the
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Figure 1.3: The idea of normalizing flow [65].

generated samples from Generative Adversarial Network sometimes can be very sim-

ilar or even identical. This issue is called mode collapse. Recent work [4] [80] try to

alleviate this issue but haven’t completely resolved it.

1.4.3 Normalizing Flow

Normalizing Flow was first introduced by Rezende and Mohamed [92] and Dinh et

al. [20]. Normalizing flow constructs a transformation between the target distribution

and a simple probability distribution, which is usually called a base distribution, by

a sequence of invertible and differentiable mappings. One can generate a sample z

from the base distribution, and then apply the inverse of the normalizing flow model

on z to get a generated data. This process is illustrated in Figure 1.3.

The loss function of normalizing flow models is the negative log-likelihood loss

function − log(pY (y)), where Y is the target distribution. Equation (1.9) shows how

to calculate the negative log-likelihood loss function, which is obtained by using the

change of variables formula from statistics:

log(pY (y)) = log(pZ(z)) + log(| det(∂z
∂y

)|) (1.9)

The det(∂z
∂y
) in Equation (1.9) denotes the determinant of the Jacobian matrix J ,
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where J is defined as Jij =
∂zi
∂yj

for i, j ∈ {1, 2, 3, ..., n} if z, y ∈ Rn.

If the mapping f : Y → Z has the form f = f1 ◦ f2 ◦ · · · ◦ fN , the determinant of

the Jacobian could be written as

| det(∂f(y)
∂y

)| =
N∏
i=1

| det(∂fi(zi)
∂zi

)| (1.10)

where zi = fi+1 ◦ fi+2 ◦ · · · ◦ fN(y) and zN = y.

Hence, Equation (1.9) could be written as

log(pY (y)) = log(pZ(z)) +
N∑
i=1

log(| det(∂fi(zi)
∂zi

)|) (1.11)

for zi = fi+1 ◦ fi+2 ◦ · · · ◦ fN(y) and zN = y.

One can see from Equation (1.11) that, an efficient and practical normalizing flow

model should satisfy the following three principles [65]:

• invertible

• sufficiently expressive to map the target distribution to base distribution

• computationally efficient for computing f, f−1 and determinant of Jacobian

In recent years, researchers have developed several different types of normalizing

flow layers following these principles. The three most representative ones are coupling

layer [20], autoregressive layer [61] and continuous normalizing flow layer [11].

Coupling Layer

Dinh et al. [20] introduced a method called coupling layer. Suppose the input of

the layer is y ∈ RD and a disjoint partition of y into (y1, y2) ∈ Rd × RD−d, define

an invertible function g(·; θ) : Rd → Rd, parameterized by θ. Then, the output

z = (z1, z2) ∈ Rd × RD−d of the layer can be calculated as:
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z1 = y1

z2 = g(y2, θ(y1))

(1.12)

In 2017, Ding et al. [21] proposed a specific function g shown in Equation (1.12) which

is widely used nowadays:

z1 = y1

z2 = y2 ⊙ exp(s(y1)) + t(y1)

(1.13)

where ⊙ denotes the element-wise product, s(·), t(·) are functions from Rd to RD−d,

usually parameterized by neural networks.

The inverse of Equation (1.13) is given by

y1 = z1

y2 = (z2 − t(z1))⊙ exp(−s(z1))

(1.14)

The determinant of the Jacobian matrix of Equation (1.13) is simply
∏

j exp(s(y1)j).

Many recent popular Normalizing flow models are based on the coupling layers,

such as Glow [60], Flow++ [45].

Autoregressive Layer

Kingma et al. [61] introduced the autoregressive normalizing flow layer. Suppose the

input of the layer is y ∈ RD, the output z ∈ RD of this layer can be calculated as:

zt = h(yt; θt(y1:t−1)) (1.15)

where h(·; θ) : R → R is an invertible function parameterized by θ, y1:t−1 = (y1, y2, ..., yt−1)

for t = 1, 2, ..., D.
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The inverse of the autoregressive layer can be calculated as:

yt = h−1(zt; θt(y1:t−1)) (1.16)

for t = 2, 3, ..., D and y1 = h−1(z1).

The Jacobian matrix of the autoregressive layer is triangular. This is because zt

only depends on y1, y2, ..., yt. As a result, the determinant of the Jacobian matrix is∏D
t=1

∂zt
∂yt

.

Some recent work try to improve the performance of the standard autoregressive

layer. For example, MAF [86] adopts the mask techniques and BNAF [16] uses the

block matrix structure to make the determinant computation more efficient.

Continuous Normalizing Flow Layer

Chen et al. [11] proposed the continuous normalizing flow layer

dz

dt
= f(z(t), t),

which is an ordinary differential equation describing a continuous transformation of

z(t). The input of continuous normalizing flow layers is z(0) = y, which is the value

of z(t) at the time t = 0 and the output of this layer is z(1).

One needs to apply an ordinary differential equation solver to calculate z(1) based

on z(0), and also z(1) based on z(0).

The change in log probability formula, which is a revised vision of Equation (1.11),

is:

∂ log(p(z(t)))

∂t
= −tr(

df

dz(t)
) (1.17)

Recent studies focus on generalizing the form of continuous normalizing flow, such

as FFJORD [35], or trying to improve the performance of continuous normalizing flow,
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Figure 1.4: The directed graphical model considered in DDPM [55].

such as OT-Flow [83].

1.4.4 Denoising Diffusion Model

Diffusion-based generative models are the latest deep generative models, which was

first proposed by J. Sohl-Dickstein et. al. [101] in 2015 based on statistical thermo-

dynamics.

The denoising diffusion model has two processes. One process is called “forward

(diffusion) process”, which aims to transform the target distribution to normal dis-

tribution. In the forward process, the diffusion model sequentially adds noise to the

given data. Another process is called “reverse (denoising) process”, a model is trained

in this process to reverse the diffusion process. Figure 1.4 shows the graphical model

of denoising diffusion probabilistic models (DDPM) [55].

In Figure 1.4, from right to left, DDPM adds noise to the given data x0 by function

q, which is the “forward process”. From left to right, DDPM tries to find pθ to reverse

the forward process to get the image from xT , which is the “reverse process”.

Mathematically, given a data point x0 ∼ q(x0), DDPM defines the forward diffu-

sion process as a Markov chain, which gradually adds Gaussian noise to the data over

T steps, producing a sequence of data x1, x2, ..., xT . The formula of getting xt is:
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q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI)

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1)
(1.18)

The reverse process in DDPM is also defined as a Markov chain with the assump-

tion p(xT ) = N (xt; 0, I). To get x0 from xT , DDPM trains two functions µθ(xt, t)

and Σθ(xt, t). Define the joint distribution pθ(x0:T ) as:

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

(1.19)

The loss function in the training process of DDPM is the variational bound on

negative log likelihood:

E[− log pθ(x0)] ≤ Eq[− log
pθ(x0:T )

q(x1:T |x0)
]

= Eq[− log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)
]

(1.20)

Denoising diffusion probabilistic models (DDPM) [55] achieved the state-of-the-

art performance on image sampling task in 2021, which was introduced by Prafulla

Dhariwal and Alex Nichol [18]. After that, DDPM attracts reserachers from all over

the world. There are many other diffusion models, such as sore-based model [103]

which uses the gradients of log p(x) in the forward process.

Moreover, diffusion models can be used to generate different types of data. For

example, DiffWave [66] generates wave by using diffusion models, Austin et al. [5]

work on designing diffusion models for discrete data.
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Figure 1.5: 2000 sampled data in moon dataset with 0.05 noise.

1.4.5 Comparison of Generative Models on a Simple 2D Dataset

In this section, I compare the following four generative models discussed in the pre-

vious section on a simple 2D dataset: two moon dataset.

• Variational AutoEncoder [59]

• Generative Adversarial Network [33]

• Normalizing Flow: RealNVP [21]

• Denoising Diffusion Model: DDPM [55]

Dataset configuration

The two moon dataset is got from “sklearn” Python package by using command

“sklearn.datasets.make moons”

Figure 1.5 shows the data in moon dataset.

Model configuration

I try to control the number of parameters roughly the same in all four generative

models. However, Variational AutoEncoder requires more parameters in order to get
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a reasonable result in this task. In each epoch in all models, I sample 2,000 data

points. The batch size is set as 128 and the optimizer used in this experiment is

Adam [58].

For Variational AutoEncoder, I set the dimension of latent space as 128. In

Encoder model, I set one hidden layer with dimension 128, and in Decoder model, I

also set one hidden layer with dimension 128. Learning rate is 1e-4. The number of

parameters in this model is 83,202.

For Generative Adversarial Network, the dimension of the noise in Generator is

set as 32. Both the Generator and the Discriminator have only one hidden layer with

dimension 128. Learning rate is 1e-4. The number of parameters in this model is

4,482 (Generator) + 513 (Discriminator).

For Normalizing Flow: I choose 8 coupling layers in RealNVP [21] and use a deep

neural network with only one hidden layer with dimension 128 to parameterize both

s and t at each layer. Learning rate is set as 1e-4. The number of parameters in this

model is 10,272.

For Denoising Diffusion Model: I choose DDPM model with a Conditional Linear

Model of two hidden layers with dimension 128. Learning rate is 1e-3. The number

of parameters in this model is 11,874.

Results

Figure 1.6 shows the samples generated by VAE after 200, 400, 600, 800, 1,000 epochs.

The total time used for training 1000 epochs is 306.89 seconds.

Figure 1.7 shows the samples generated by GAN after 2,000, 4,000, 6,000, 8,000,

10,000 epochs. The total time used for training 10000 epochs is 467.50 seconds.

Figure 1.8 shows the samples generated by Normalizing Flow after 200, 400, 600,

800, 1,000 epochs. The total time used for the training 1000 epochs is 87.10 seconds.

Finally, Figure 1.9 shows the samples generated by DDPM after 200, 400, 600,
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Figure 1.6: Samples generated by VAE after different training epochs.
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Figure 1.7: Samples generated by GAN after different training epochs.
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Figure 1.8: Samples generated by Normalizing Flow after different training epochs.
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Figure 1.9: Samples generated by DDPM after different training epochs.

800, 1000 epochs. The total time used for training 1000 epochs is 151.85 seconds.

I initially fixed the number of training epochs as 1000 in all four models. However,

for GAN model, 1000 epochs are not enough for getting a reasonable result. Thus, I

increased the number of training epochs to 10,000.

We can see that, to get reasonable results in this task, Normalizing Flow is the

fastest among the four models, and GAN is the lowest. Besides, the performance of

VAE is the worst.

However, in different tasks, the results of the four generative models are different.

For example, in image tasks, DDPM models have the lowest speed among these mod-

els, both for training and sampling but usually outperform other generative models

in term of the quality of the generated samples.
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1.5 Graph and Graph Neural Network

Since this thesis focuses on combining graph theory with deep generative models to

improve the generation quality and efficiency, I will review some classical definitions

from graph theory as well as the related graph neural networks in this section.

1.5.1 Graph

The word “graph” was first used by J. J. Sylvester in 1878 [111]. A graph (or called

“simple graph”) G contains a set V (G), which is the set of elements called vertices

(or nodes), and a set E(G), which is the set of distinct unordered pairs of distinct

elements of V (G) [9]. The elements in set E(G) are called edges, and two vertices (or

nodes) are called connected or adjacent if there is an edge (i, j) in set E(G). Graph

G can be written as G(V,E).

The adjacency matrix is a matrix used to represent a simple graph. Suppose the

matrix is A. If the element Aij is equal to 1, it indicates that the ith node and the

jth node are adjacent. On the other hand, if the element Aij is equal to 0, it indicates

that the ith node and the jth node are not adjacent.

1.5.2 Graph Neural Network

There are three general types of tasks on graphs: node-level tasks, edge-level tasks,

and graph-level tasks [115]. Node-level tasks include node classification, node regres-

sion, node clustering, etc. Edge-level tasks include edge classification, link prediction,

edge generation, and Graph-level tasks include graph classification, graph regression,

graph matching, etc. [115]

In order to get high performance on these tasks, Graph Neural Network (GNN) has

been introduced. Graph Neural Network is the family of Neural Networks designed

for operating on the graph structure.
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Kipf and Welling proposed Graph Convolutional Network (GCN) [64] in 2017,

which is a widely used Graph Neural Network layer. Graph Convolutional Network

defines the layers based on Equation (1.21):

Y = σ(D̃− 1
2 ÃD̃− 1

2XW ) (1.21)

where Ã = A + IN×N . Here, A is the adjacency matrix of the graph G, N is the

number of nodes in the graph G, IN×N is the identity matrix, D̃ii =
∑

j Ãij, X is the

input, and W is a trainable weight matrix. Here σ(·) denotes a non-linear function.

Another widely used Graph Neural Network layer is called GraphSAGE [41]. For

each node in the graph, GraphSAGE aggregates the node information from its neigh-

bors in each GraphSAGE layer. More formally, GraphSAGE defines each layer based

on Equation (1.22):

yN(v) = AGGREGATE({xu,∀u ∈ N(v)})

yv = σ(W · concat(xv, yN(v)))

(1.22)

where xv is the input feature and yv is the output feature, W is a trainable weight

matrix, σ is a non-linear function. AGGREGATE denotes a differentiable aggregator

function, and N(v) represents the neighbors of node v.

Also, recent studies provide improvements on different types of Graph Neural

Networks, such as FastGCN [10], Graph Attention Network [105], Graph LSTM [87].
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1.6 Summary of Contributions

My research mainly focuses on combining graph theory and deep generative model

to improve the training efficiency as well as the quality of the generated samples.

Most of the AI breakthroughs during the last several years relied on enormous

data in the datasets, such as CIFAR10 datasets with 60000 images. However, in

some cases, people only have a small dataset. Without using domain knowledge, it

is hard to achieve desirable performance if one blindly applies existing deep neural

network models.

In Chapter 2, I propose a machine learning algorithm to generate doppelganger

graphs of a given graph. The method is able to produce a different graph surrogate

through sampling a node set each time, which is the first work on this topic. The

method is an innovative combination of graph representation learning, generative

adversarial networks and graph realization algorithms in combinatorics. The graphs

generated by the proposed method preserve global and local properties. Such an

outcome is because the graph realization algorithm guarantees that the generated

graphs preserve the degree sequence, while the generative adversarial network limits

the number and the sizes of the cliques. To demonstrate the application of the

doppelgangers, I perform a downstream task: node classification, on these generated

graphs and show that they achieve a similar classification performance to the original

one.

In Chapter 3, I propose AUTM flow, which provides a new set of normalizing

flow layers. In this work, a new integral-based monotone triangular flow with proven

universal approximation property for monotonic flows is developed. The proposed

integral-based transformation is strictly increasing with small constraint, and the

inverse formula is explicitly given and compatible with fast root-finding methods for

numerical inversion. Also, the proposed model is universal in the sense that any

monotonic normalizing flow is a limit of the proposed flows.
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In Chapter 4, I propose a deep learning method to learn the distribution of a given

set of small graphs and generate similar ones based on diffusion models. This method

combines Graph Auto-Encoder and the Denoising Diffusion Models to generate graphs

with guaranteed permutation invariant property. Besides, to our knowledge, it is the

first method that combines the Denoising Diffusion Models and the node generation.

In Chapter 5, I summarize my work and also discuss some research topics that

can be studied based on the methods proposed in this thesis.
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Chapter 2

Generating a doppelganger graph

from a single graph

2.1 Background

The majority of deep generative models for graphs [53, 76, 99, 38, 113, 72, 73, 12]

follows the paradigm of “learning from a distribution of graphs and generating new

ones”. Another problem, which is equal significance in practice, is to learn from a sin-

gle graph and generate new ones. This problem is largely under explored. The prob-

lem meets graphs that are generally large and unique, which contains rich structural

information but rarely admits replicas. Examples of such graphs are financial net-

works, power networks, and domain-specific knowledge graphs. Often, these graphs

come from proprietary domains are hardly released to the public for open science.

One live example that necessitates the creation of surrogate graphs is in the fi-

nancial industry. A financial entity (e.g., banks) maintains a sea of transaction data,

from which traces of fraud are identified. Graph neural network techniques have

been gaining momentum for such investigations [107, 108], where a crucial challenge

is the lack of realistic transaction graphs that no existing graphs resemble and that
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synthetic generators fail to replicate. On the other hand, many barriers exist for the

financial entities to distribute their data, even to its own departments or business

partners, because of levels of security and privacy concerns.

2.2 Problem

In this project, we consider the problem of generating a new (simple) graph G based

on one given (simple) graph G0. The generated graph G and the original graph G0

should have low edge overlap under permutation of nodes but share similar metrics

(e.g. number of triangles).

2.3 Related Work

There are two different approaches to solve this problem: Graph Theory approach

and Deep Generative Model approach.

Early generative models for graphs focus on characterizing certain properties of

interest, which are based on graph theory. The Erdös-Rényi model [26, 31], dating

back to the 1950s, is one of the most extensively studied random models. The Watts-

Strogatz model [106] intends to capture the small-world phenomenon seen in social

networks; the Barabási-Albert model [6] mimics the scale-free (powerlaw) property;

and the stochastic block model [32, 57] models community structures. These models,

though entail rich theoretical results, are insufficient to capture all aspects of real-life

graphs.

The complex landscape of graphs in applications urges the use of higher-capacity

models, predominantly neural networks, to capture all properties beyond what ran-

dom graph models cover. Hence, researchers try to use Deep Generative Models in

these years. Three most widely used frameworks are VAEs [59], GANs [33], and

normalizing flows [92].
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The VAE framework encodes a graph into a latent representation and decodes it

for maximal reconstruction. Approaches such as GraphVAE [99] and Graphite [38]

reconstruct the graph adjacency matrix (and labels if any). The Junction Tree VAE

approach [53] leverages knowledge of molecular substructures and uses the tree skele-

ton rather than the original graph for encoding and decoding.

The GAN framework uses a generator to produce graphs (typically in the form

of adjacency matrices) and a discriminator to tell produced results from training

examples. The MolGAN approach [15] incorporates a reinforcement learning term

into the discriminator loss to promote molecule validity. The LGGAN approach [27]

additionally generates graph-level labels. Besides decoding a graph adjacency matrix,

one may treat the graph generation process as sequential decision making, producing

nodes and edges one by one. Representative examples of RNN-type of graph decoders

are DeepGMG [114], GraphRNN [113], and GRAN [72].

The normalizing flow framework uses an invertible transformation to map between

the training data distribution and a “simple distribution”, such as standard normal.

Methods of this framework generally adapt different flow architectures to graphs. For

example, GNF [73] is based on coupling flows, GraphAF [12] is based on autoregressive

flows, and MolGrow [70] is based on hierarchical flows.

All the above methods learn from a collection of graphs. More relevant to this

chapter is the problem that the training set consists of one single graph. NetGAN [7]

is one of the rare studies under this problem. This approach reformulates the problem

as learning from a collection of random walks, so that the graph is recovered through

assembling sampled random walks. VGAE [62] also learns from a single graph; but

its aim is to reconstruct the graph rather than producing new ones.
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2.4 Generating a Doppelganger Graph: Resem-

bling but Distinct

We propose a new approach to learn the structure of a given graph and construct

new ones that carry similar properties. This approach samples another set of nodes

with novel embeddings and improves the Havel-Hakimi graph realization algorithm

to determine a new connectivity structure, based on the embeddings. We call the

generated graphs doppelgangers, which (i) match the input graph in global and local

characteristics and (ii) are not limited to a single surrogate.

It is worthwhile to distinguish our setting from that of NetGAN [7], a related and

representative approach to learning from a single graph. NetGAN solves the problem

by learning the distribution of random walks on the given graph; then, it assembles

a graph from new random walks sampled from the learned model. With more and

more training examples, the generated graph is closer and closer to the original one,

which goes in the opposite direction of aim (ii) above. In essence, NetGAN learns a

model that memorizes the transition structure of the input graph and does not aim

to produce a graph with an entirely different structure. This approach capitalizes on

a fixed set of nodes and determines only edges among them, as most of the prior work

under the same setting does. We intend to generate new nodes and new topologies

on the contrary.

In the following subsections, I will discuss about the details of our work “Gener-

ating a Doppelganger Graph: Resembling but Distinct” [52].

2.4.1 Graph Realization Algorithm: Havel–Hakimi

A sequence S of integers (d1, d2, . . . , dn) is called graphic if the di’s are nonnegative and

they are the degrees of a graph with n nodes. Havel-Hakimi [43, 40] is an algorithm

that determines whether a given sequence is graphic. The algorithm is constructive
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in that it will construct a graph whose degrees coincide with S, if graphic.

At the heart of HH is the following theorem: Let S be nonincreasing. Then, S

is graphic if and only if S ′ = (d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn) is graphic.

Note that S ′ is not necessarily sorted.

This theorem gives a procedure to attempt to construct a graph whose degree

sequence coincides with S, as follows. Label each node with the desired degree. Be-

ginning with the node v of highest degree d1, connect it with d1 nodes of the next

highest degrees. Set the remaining degree of v to be zero and reduce those of the

v’s neighbors identified in this round by one. Then, repeat: select the node with the

highest remaining degree and connect it to new neighbors of the next highest remain-

ing degrees. The procedure terminates when (i) one of the nodes to be connected

to has a remaining degree zero or (ii) the remaining degrees of all nodes are zero. If

(i) happens, then S is not graphic. If (ii) happens, then S is graphic and the degree

sequence of the constructed graph is S. The pseudocode is given in Algorithm 2.

Figure 2.1 illustrates an example.

Figure 2.1: Examples of generating a graph by using the original HH algorithm
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Algorithm 2: Havel–Hakimi Algorithm

Input : Graphic sequence {di}

Output: Adjancency list adj list(i) for each node i

1 Initialize adj list(i) = {} for all nodes i

2 repeat

3 Initialize rdi = di − len(adj list(i)) for all i

4 Set done = true

5 Select node k = argmaxi(rdi)

6 repeat

7 Select node t = argmaxi ̸=k, i/∈adj list(k)(rdi)

8 if rdt > 0 then

9 Add t to adj list(k) and add k to adj list(t)

10 Set done = false

11 end

12 until rdt = 0 or dk = len(adj list(k));

13 until done is true or len(adj list(i)) = di for all i;

The most attractive feature of HH is that the constructed graph reproduces the

degree sequence of the original graph, thus sharing the same degree-based properties,

as the following Theorem 2.4.1 formalizes.

Theorem 2.4.1. Let P ({d1, . . . , dn}) be a graph property that depends on only the

node degrees d1, . . . , dn. A graph G realized by using the Havel-Hakimi algorithm

based on the degree sequence of G0 has the same value of P as does G0. Examples of

P include wedge count, powerlaw exponent, entropy of the degree distribution, and

the Gini coefficient.

Proof. Since the degree sequence of the original graph is graphic, the Havel–Hakimi

algorithm is guaranteed to generate a new graph. By construction, the new graph

has the same degree sequence.
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Let V be the node set and d(v) be the degree of a node v. The wedge count is de-

fined as
∑

v∈V
(
d(v)
2

)
. The powerlaw exponent is 1+n(

∑
v∈V log d(v)

dmin
)−1, where dmin de-

notes the smallest degree. The entropy of the degree distribution is 1
|V |
∑

v∈V −d(v)
|E| log

d(v)
|E| ,

where E denotes the edge set. The Gini coefficient is
2
∑|V |id̂i

i=1

|V |
∑|V |

i=1 d̂i
− |V |+1

|V | , where d̂ is

the list of sorted degrees. All these quantities are dependent solely on the degree

sequence.

On the other hand, a notable consequence of HH is that the constructed graph

tends to generate large cliques.

Theorem 2.4.2. Suppose the degree sequence of a given graph is d1 ≥ d2 ≥ ... ≥ dn.

If there exists an integer k such that dk − dk+1 ≥ k − 1, then the graph realized by

the Havel–Hakimi algorithm has a clique with at least k nodes.

Proof. Consider the k such that d1 ≥ dk ≥ dk+1+k−1. Because dk+1+k−1 ≥ k−1,

the first node must have a degree ≥ k − 1. Hence, the Havel–Hakimi algorithm

will connect this node to the 2nd, 3rd, . . ., kth nodes. Then, the remaining degrees

become d2 − 1, d3 − 1, ...., dk − 1, d′k+1, . . . , d
′
n), where d′i = di or di − 1.

For the second node with d2−1 remaining degrees, because d2−1 ≥ k−2, it must

be connected to the 3rd, 4th, . . ., kth nodes. Then, the remaining degrees become

(d3 − 2, ...., dk − 2, d′′k+1, ....., d
′′
n), where d′′i = d′i or d

′
i − 1.

After this process repeats k − 1 times, we can see that the first k nodes have

been connected to each other. As a result, the graph generated by the Havel–Hakimi

algorithm must form a clique with at least k nodes.

Theorem 2.4.2 indicates a potential drawback of HH. When connecting with neigh-

bors, HH always prefers high-degree nodes. Thus, iteratively, these nodes form a large

clique (complete subgraph), which many real-life graphs lack. Furthermore, since any

induced subgraph (say, with m nodes) of a k-clique is also a clique, the number of
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m-cliques grows exponentially with k. Then, the number of small motifs (e.g., trian-

gles and squares) easily explodes, departing substantially from the characteristics of

a real-life graph. In other words, graphs generated by HH possibly fail to preserve

certain local structures of the original graph.

2.4.2 Improved Havel–Hakimi

Since the original HH algorithm tends to produce graphs with large cliques, several

properties of the original graph can hardly be preserved. To mitigate this drawback,

a good link prediction model can redefine what nodes are linked in order, eliminating

the tendency of linking nodes always ordered by their degrees. In this section, we

propose two improvements over HH to achieve this goal. First, rather than selecting

neighbors in each round by following a nonincreasing order of the remaining degrees,

we select neighbors according to link probabilities. Second, such probabilities are

computed by using a link prediction model together with new nodes sampled from

the node distribution of the original graph G0. This way, the new graph G carries the

node distribution and the degree sequence information of G0 but has a completely

different node set.

Specifically, in each iteration, a node k with maximal remaining degree is first

selected. This node is then connected to a node t with the highest link probability pkt

among all nodes t not being connected but with a nonzero remaining degree. Connect

as many such t as possible to fill the degree requirement of k. If k cannot find enough

neighbors (no more t exists with nonzero remaining degree), the algorithm will skip

node k. This process is repeated until no more nodes can add new neighbors. The

pseudocode is given in Algorithm 3. Figure 2.2 illustrates an example.
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Algorithm 3: Improved Havel-Hakimi (our method)

Input : Graphic sequence {di}, link predictor(·, ·)

Output: Adjancency list adj list(i) for each node i

1 Initialize adj list(i) = {} for all nodes i

2 repeat

3 Initialize rdi = di − len(adj list(i)) for all i

4 Set done = true

5 Select node k = argmaxi(rdi)

6 repeat

7 Select node t = argmaxi/∈adj list(k), rdi>0(pki), where

pki = link predictor(k, i)

8 if no such t exists then

9 Exit Repeat

10 end

11 Add t to adj list(k) and add k to adj list(t)

12 Set done = false

13 until len(adj list(k)) = dk;

14 until done is true or len(adj list(i)) = di for all i;

Figure 2.2: Examples of generating a graph by using the improved HH algorithm
(ours)
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2.4.3 Link Predictor for Improved HH

In this subsection, we elaborate how the probabilities for neighbor selection in Algo-

rithm 3 are computed.

Link prediction model

Probabilities naturally come from a link prediction model, which dictates how likely

an edge is formed. We opt to use a graph neural network (GNN) trained with a link

prediction objective to obtain the link predictor. The GNN produces, as a byproduct,

node embeddings that will be used subsequently for sampling new nodes. There exist

many non-neural network approaches [88, 104, 37] for producing node embeddings,

but they are not trained with a link predictor simultaneously.

We use GraphSAGE [42], which offers satisfactory link prediction performance,

but enhance the standard link prediction model p = sigmoid(zTv zu) for two nodes v

and u by a more complex one:

p = sigmoid(W2 · LeakyReLU(W1(zv ◦ zu) + b1) + b2) (2.1)

where W1, b1,W2, b2 are parameters trained together with GraphSAGE. This link

prediction model is slightly parameterized and we find that it works better in practice.

Sampling new nodes

After GraphSAGE is trained, we obtain as byproduct node embeddings of the input

graph. These embeddings form a distribution, from which one may sample new

embeddings. They form the node set of the doppelganger graph. Sampling may be

straightforwardly achieved by using a deep generative model; we choose Wasserstein

GAN [3]. We train WGAN by using the gradient penalty approach proposed by [39].

We also generate node input features alongside embeddings, if they are needed by
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Figure 2.3: Pipeline to generate a doppelganger graph.

a downstream task, by concatenating the vector of input features and the vector of

embeddings when forming the training set of WGAN.

Node labeling with degree sequence

A remaining detail is the labeling of the new nodes with the desired degree. We apply

the link predictor on the new nodes to form an initial graph. With this graph, nodes

are ordered by their degrees. We then relabel the ordered nodes by using the degree

sequence of the input graph. This way, the improved HH algorithm will run with the

correct degree sequence.

2.4.4 Summary

Given an input graph G0, our method first trains a GraphSAGE model on G0 with

a link prediction objective, yielding node embeddings and a link predictor. We then

train a Wasserstein GAN on the node embeddings of G0 and sample new embeddings

from it. Additionally, input node features can be generated similarly if they are needed

in a downstream task. Afterward, we run the improved HH algorithm, wherein needed

link probabilities are calculated by using the link predictor on the new embeddings

generated by the GAN model. The resulting graph is a doppelganger of G0. Figure 2.3

shows the framework of our method.
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To generate k doppelgangers, we sample nk node embeddings from the GAN

model, where n is the number of nodes in the original graph. Then, we run the

improved HH algorithm on every n embeddings to obtain k different graphs.

2.4.5 Theoretical Analysis

In this subsection, we analyze the improved Havel–Hakimi algorithm in support of

the superior quality of the graphs it generates, with respect to the preservation of

graph properties. We first state in Lemma 2.4.3 that a property can be written as

the value of a function of node embeddings under mild assumptions.

Lemma 2.4.3. Assume each node i of a graph has an embedding embi and there

exists an exact link prediction model LP which satisfies that LP (embi, embj) = 1 if

there is an edge between vi and vj and LP (embi, embj) = 0 otherwise. Under these

assumptions, any graph property (e.g., triangle count and Gini coefficient) can be

written as a function FLP (emb1, emb2, ...., embn), where n is the number of nodes in

the graph. Furthermore, the property is in the form FLP (emb1, emb2, ...., embn) =∑KF

k=1 fLP (embk1 , ..., embkt) for KF sub-functions fLP , where each ki ∈ {1, 2, 3, ..., n}.

Proof. By the assumption, LP (embi, embj) denotes whether there is an edge between

nodes i and j. Hence, the edge set is simply E = {(i, j)|LP (embi, embj) = 1}. As a

result, the value of a graph property can be written as

F (emb1, emb2, ...embn, {(i, j)|LP (embi, embj) = 1}) = FLP (emb1, emb2, ..., embn).

For the second part of the lemma, if the property is global, then KF = 1 and fLP =

FLP . On the other hand, for local properties, the function FLP is the sum of sub-

functions for local structures. Therefore, KF is the number of local structures and

each sub-function fLP is defined for one local structure.

We will give several examples of the form of function FLP of the graph properties.
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Consider the number of triangles in a graph. This property can be written as∑
1≤i<j<k≤n LP (embi, embj)LP (embi, embk)LP (embj, embk). In this case, we have

FLP (emb1, emb2, ..., embn) =
∑

1≤a<b<c≤n

LP (emba, embb)LP (emba, embc)LP (embb, embc)

=
∑

1≤a<b<c≤n

fLP (emba, embb, embc)

=

KF∑
k=1

fLP (embk1 , embk2 , embk3)

where fLP (emba, embb, embc) = LP (emba, embb)LP (emba, embc)LP (embb, embc). Here,

KF is the number of distinct tuples (a, b, c) and (k1, k2, k3) takes values from all

(a, b, c).

Consider the number of wedges in a graph. This property can be written as∑
1≤i<k≤n,1≤j≤n LP (embi, embj)LP (embj, embk). In this case, we have

FLP (emb1, emb2, ..., embn) =
∑

1≤a<c≤n,1≤b≤n

LP (emba, embb)LP (embb, embc)

=
∑

1≤a<c≤n,1≤b≤n

fLP (emba, embb, embc)

=

KF∑
k=1

fLP (embk1 , embk2 , embk3)

where fLP (emba, embb, embc) = LP (emba, embb)LP (embb, embc). Here, KF is the

number of distinct tuples (a, b, c) satisfy 1 ≤ a < c ≤ n, 1 ≤ b ≤ n and (k1, k2, k3)

takes values from all (a, b, c).

Consider the number of global clustering coefficient in a graph. This property can

be written as [
∑

1≤i,j,k≤n LP (embi, embj)LP (embi, embk)LP (embj, embk)]/[
∑

1≤i≤n ki(ki−

1)], where ki =
∑

j LP (embi, embj). In this case, we have

FLP (emb1, emb2, ..., embn) =

∑
1≤i,j,k≤n LP (embi, embj)LP (embi, embk)LP (embj, embk)∑

1≤i≤n

∑
j LP (embi, embj)(

∑
j LP (embi, embj)− 1)
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Here, KF is just 1 and fLP has the same form as FLP .

Based on Lemma 2.4.3, we can show that the expectation of the property of the

graphs generated through sampling node embeddings is equal to the property of the

original graph.

Theorem 2.4.4. Assume for a graph G0 there exist an embedding embi for each

node i, an exact link prediction model LP , and a property function FLP in the

form FLP (emb1, emb2, ...., embn) =
∑KF

k=1 fLP (embk1 , ..., embkt). Denote the property

value for G0 as C. When the embedding distribution learned by a trained generative

model satisfies E[fLP (x1, ..., xt)] =
C
KF

, where each xi is an i.i.d. sample from the

distribution, the expectation of FLP (emb1, emb2, ...., embn) is equal to C.

Proof. By linearity of expectation,

E[FLP (x1, x2, ..., xn)] = E

[
KF∑
k=1

fLP (xk1 , ..., xkt)

]

=

KF∑
k=1

E[fLP (xk1 , ..., xkt)]

=

KF∑
k=1

C

KF

= C

(2.2)

Theorem 2.4.4 only implies that if we construct graphs based on node embeddings

generated by GANs, in expectation the property of these graphs is equal to that of

the original graph. When we generate a single graph, the property value for this

graph can have a large variance. In the next theorem, we show that a proper post

processing technique applied on the link prediction model can bound the difference of

property values of two graphs with high probability. For example, since the improved
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Havel–Hakimi algorithm preserves the node degrees of the original graph, it can be

considered as one post processing technique. For a post processing technique T , let

us denote the property function resulting from applying T on a link prediction model

LP as FT (LP ), and similarly for the sub-functions fT (LP ). We obtain have the theorem

2.4.5.

Theorem 2.4.5. Assume for a graph G0 there exist an embedding embi for each

node i, an exact link prediction model LP , and a property function FLP in the form

FLP (emb1, emb2, ...., embn) =
∑KF

k=1 fLP (embk1 , ..., embkt). Denote the property value

for G0 as C and the embedding distribution learned by the generative model as pg.

Suppose the post processing T applied on LP satisfies Pr(|fT (LP )(x1, ..., xt)− C
KF

| ≥
ϵ

KF
) < δ

KF
for any i.i.d. samples x1, ..., xt from pg. Then, we have Pr(|FT (LP )(x1, x2, ..., xn)−

C| < ϵ) > 1− δ.

Proof. From the equation FT (LP )(x1, ...., xn) =
∑KF

k=1 fT (LP )(xk1 , ..., xkt), we see that

any (x1, x2, .., xn) in the set ∩KF
k=1{|fT (LP )(xk1 , ..., xkt) − C

KF
| < ϵ

KF
} is also in the set

{|FT (LP )(x1, x2, ..., xn)− C| < ϵ}. As a result, we have

Pr(|FT (LP )(x1, x2, ..., xn)−C| < ϵ) ≥ Pr

(
KF⋂
k=1

{∣∣∣∣fT (LP )(xk1 , ..., xkt)−
C

KF

∣∣∣∣ < ϵ

KF

})
.

(2.3)

Then, the union bound gives

Pr

(
KF⋂
k=1

{∣∣∣∣fT (LP )(xk1 , ..., xkt)−
C

KF

∣∣∣∣ < ϵ

KF

})

= 1− Pr

(
KF⋃
k=1

{∣∣∣∣fT (LP )(xk1 , ..., xkt)−
C

KF

∣∣∣∣ ≥ ϵ

KF

})

≥ 1−
KF∑
k=1

Pr

(∣∣∣∣fT (LP )(xk1 , ..., xkt)−
C

KF

∣∣∣∣ ≥ ϵ

KF

)
.

(2.4)

Therefore, combining Equation (2.3) and Equation (2.4) and the condition Pr(|fT (LP )(x1, ..., xt)−
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C
KF

| ≥ ϵ
KF

) < δ
KF

for all i.i.d. samples, we have

Pr(|FT (LP )(x1, x2, ..., xn)− C| < ϵ) ≥ 1−
KF∑
k=1

Pr

(∣∣∣∣fT (LP )(xk1 , ..., xkt)−
C

KF

∣∣∣∣ ≥ ϵ

KF

)
> 1−KF

δ

KF

= 1− δ

(2.5)
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2.5 Numerical Experiments

In this section, we perform comprehensive experiments to show that the proposed

method generates graphs closely matching an input one in a wide range of properties.

We also perform a downstream task: node classification, on the generated graphs

and demonstrate that they can be used as surrogates of the input graph with similar

classification performance.

We experiment with three commonly used data sets for graph-based learning:

Cora-ML [78]1, CiteSeer [98]2, and Gene [95]3. As is the usual practice, we

experiment with the largest connected component of each graph. Their information

is summarized in Table 2.1.

Table 2.1: Data sets (largest connected component).

Name # Nodes # Edges # Classes # Features

Cora-ML 2810 6783 7 1433
CiteSeer 2120 3679 6 3703
Gene 814 1436 2 N/A

2.5.1 Experiment Setting

Baseline models

We compare with a number of graph generative models, either deep learning or

non-deep learning based. For non-deep learning based models, we consider the

configuration model (CONF) [81], the Chung-Lu model [2], the degree-correlated

stochastic block model (DC-SBM) [57], and the exponential random graph model

(ERGM) [47]. For deep learning based models, we consider the variational graph au-

toencoder (VGAE) [62] and NetGAN [7]. We use either off-the-shelf software packages

1https://github.com/danielzuegner/netgan
2https://linqs.soe.ucsc.edu/data
3http://networkrepository.com/gene.php

https://github.com/danielzuegner/netgan
https://linqs.soe.ucsc.edu/data
http://networkrepository.com/gene.php
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or the codes provided by the authors to run these models.

It is important to note that the deep learning models VGAE and NetGAN desire

a high edge overlap by the nature of their training algorithms; and the input features

are either recovered or fixed, in straight contrast to our method. Additionally, for

CONF, the way it works is that one specifies a desired edge overlap, retains a portion

of edges to satisfy the overlap, and randomly rewires the rest while preserving the

node degrees. The random rewiring succeeds with a certain probability that increases

as overlap increases. Hence, to ensure that CONF successfully returns a graph in a

reasonable time limit, the overlap cannot be too small, also at odds with our purpose.

Graph properties

We use a number of graph properties to evaluate the closeness of the generated graph

to the original graph. Nine of them are global properties: clustering coefficient,

characteristic path length, triangle count, square count, size of the largest connected

component, powerlaw exponent, wedge count, relative edge distribution entropy, and

Gini coefficient. These properties are also used by Bojchevski et al. [7] for evaluation.

Additionally, we measure three local properties: local clustering coefficients, de-

gree distribution, and local square clustering coefficients. They are all distributions

over nodes and hence we compare the maximum mean discrepancy (MMD) of the

distributions between the generated graph and the original graph.

Table 2.2 shows the detail of each graph property that we use to evaluate gener-

ative models.

To evaluate the difference in topology between the generated graphs and the orig-

inal graph, for the baseline models, we calculate the overlap of 1s between the re-

spective adjacency matrices. The reason is that baseline models do not modify the

node set. On the other hand, for our model, we sample new nodes, which do not

correspond to the original node set. Hence, to evaluate the overlap of 1s between the
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Table 2.2: Graph properties.

Property Description

Clustering coefficient Number of closed triplets divided by number of all
triplets.

Characteristic path length The median of the means of the shortest path lengths
connecting each node to all other nodes.

Triangle count Number of triangles in the graph.

Square count Number of squares in the graph.

LCC Size of the largest connected component.

Power law exponent Exponent of the power law distribution.

Wedge count Number of wedges (i.e., 2-stars; two-hop paths).

Relative edge distribution
entropy

Entropy of degree distribution.

Gini coefficient Common measure for inequality in a distribution.

Local clustering coefficients The coefficients form a distribution. We compute the
MMD between the distribution of the original graph and
that of the generated graph.

Degree distribution The degrees form a distribution. We compute the MMD
between the distribution of the original graph and that
of the generated graph.

Local square clustering coef-
ficients

The coefficients form a distribution. We compute the
MMD between the distribution of the original graph and
that of the generated graph.

respective adjacency matrices, a naive approach is to enumerate all n! possible node

permutations and find the largest overlap, which is prohibitively expensive. Hence,

instead, we use GOT [89], an optimal transport framework for graph matching, to

estimate a reasonable overlap.

Model configuration

A high quality link predictor is key for the improved HH algorithm to select the right

neighbors. A typical problem for link prediction is that negative links (unconnected

node pairs) dominate and they scale quadratically with the number of nodes. A
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common remedy is to perform negative sampling during training, so that the training

examples do not explode in size and remain relatively balanced. However, model

evaluation is generally not properly conducted, because not every negative link is

tested. As more negative links are evaluated, false positive rate tends to increase.

Thus, with the slight modify of the GraphSAGE equation (See Equation (2.1)), we

also enhance GraphSAGE training with a cycling approach (C cycles of T rounds).

In each cycle, we start the first round by using the same number of positive and

negative links. All negative links (hereby and subsequent) are randomly sampled.

We run E0 epochs for the first round. Afterward, we insert K unused negative links

into the training set and continue training with E1 epochs, as the second round.

In all subsequent rounds we similarly insert further K unused negative links into

the training set and train for E1 epochs. With T rounds we complete one cycle.

Afterward, we warm start the next cycle with the trained model but a new training

set, which contains the same number of positive and random negative links. Such a

warm-start cycling avoids exploding the number of negative links used for training.

Details of the choice of C, T , E0, E1, and K are given in Table 2.3. In this

table, we also summarize the architectures and hyperparameters for the WGAN for

all graphs using in our experiments.
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Table 2.3: Architectures and hyperparameters.

Dataset Architecture

Cora-ML

GraphSAGE training: C = 1, T = 20, E0 = 5000, E1 = 5000, K = 2000.

GAN generator: FC(16, 32) → FC(32, 64) → FC(64, 100) → FC(100, 128).

GAN discriminator: FC(128, 100) → FC(100, 64) → FC(64, 32) → FC(32, 1).

CiteSeer

GraphSAGE training: C = 2, T = 20, E0 = 2500, E1 = 4000, K = 1000.

GAN generator: FC(16, 32) → FC(32, 64) → FC(64, 100) → FC(100, 128).

GAN discriminator: FC(128, 100) → FC(100, 64) → FC(64, 32) → FC(32, 1).

Gene

GraphSAGE training: C = 1, T = 20, E0 = 2500, E1 = 4000, K = 1000.

GAN generator: FC(16, 32) → FC(32, 64) → FC(64, 100) → FC(100, 128 + 2).

GAN discriminator: FC(128 + 2, 100) → FC(100, 64) → FC(64, 32) → FC(32, 1).

2.5.2 Comparison of Baseline Models and the Proposed Method

In this section, we compare the graphs generated by our improved HH algorithm with

those by other generative models introduced in the preceding subsection. Table 2.4

summarizes the results on Cora-ML in numeric format. Results of CiteSeer and

Gene, can be found in Tables 2.5 and 2.6.

First, for most of the global properties considered, our model produces graphs clos-

est to the original graph, with a few properties exactly matched. The exact matching

(powerlaw exponent, wedege count, relative edge distribution entropy, and Gini co-

efficient) is not surprising in light of Theorem 2.4.1, because these properties are

degree-based. Furthermore, for other non-degree based properties (clustering coeffi-

cients, characteristic path length, triangle count, square count, and largest connected

component), a close match indicates that our model learns other aspects of the graph

characteristics reasonably well. Note that CONF also matches the degree-based prop-

erties, by design. However, CONF results are difficult to obtain, because the random

wiring hardly successfully produces a graph matching the degree sequence when the
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Table 2.4: Properties of Cora-ML and the graphs generated by different models
(averaged over five random repetitions). The numbers in the bracket are standard
deviations. Boldfaced numbers are closest to those for the original graph.

Cluster. coeff. Charcs. path length Triangle count Square count LCC Powerlaw exponent Edge Overlap
×10−3 ×10+0 ×10+3 ×10+2 ×10+3 ×10+0

Cora-ML 2.73 5.61 2.81 5.17 2.81 1.86

CONF 0.475(0.023) 4.47(0.02) 0.490(0.024) 0.094(0.049) 2.79(0.00) 1.86(0.00) 42.4%
DC-SBM 2.26(0.13) 4.59(0.02) 1.35(0.05) 0.923(0.015) 2.48(0.03) 5.35(0.06) 4.88%
Chung-Lu 0.548(0.0583) 4.08(0.01) 0.550(0.032) 0.324(0.106) 2.47(0.01) 1.79(0.01) 1.29%
ERGM 1.53(0.08) 4.86(0.01) 0.0586(0.01) 0.00(0.00) 2.79(0.00) 1.65(0.00) 4.43%
VGAE 6.30(0.24) 5.16(0.09) 13.4(0.3) 2320(120) 1.98(0.04) 1.82(0.00) 53.1%
NetGAN 3.75(0.94) 4.30(0.30) 12.5(0.5) 184(19) 1.96(0.07) 1.77(0.01) 49.9%

HH 5.25(0.08) 5.50(0.07) 5.42(0.09) 169(2) 2.58(0.01) 1.86(0.00) 2.64%

Improved HH 2.97(0.20) 5.67(0.11) 3.06(0.20) 22.2(5.6) 2.52(0.02) 1.86(0.00) 2.33%

Wedge count Rel. edge distr. entr. Gini coefficient Local cluster. Degree distr. Local sq. cluster.
×10+5 ×10−1 ×10−1 ×10−2 ×10−2 ×10−3

Cora-ML 1.02 9.41 4.82 0 0 0

CONF 1.02(0.00) 9.41(0.00) 4.82(0.00) 4.76(0.04) 0 3.08(0.07)
DC-SBM 0.923(0.015) 9.30(0.02) 5.35(0.06) 4.40(0.09) 1.55(0.08) 2.89(0.11)
Chung-Lu 1.08(0.03) 9.26(0.01) 5.46(0.02) 5.53(0.07) 1.66(0.18) 3.29(0.03)
ERGM 0.426(0.007) 9.84(0.00) 2.67(0.02) 6.09(0.03) 9.67(0.08) 3.38(0.00)
VGAE 1.79(0.02) 8.73(0.00) 7.03(0.01) 4.44(0.27) 10.25(0.28) 9.65(0.69)
NetGAN 2.08(0.18) 8.70(0.06) 7.04(0.15) 4.01(0.63) 13.13(1.77) 5.52(3.18)

HH 1.02(0.00) 9.41(0.00) 4.82(0.00) 5.35(0.04) 0 3.15(0.02)

Improved HH 1.02(0.00) 9.41(0.00) 4.82(0.00) 3.91(0.10) 0 2.08(0.07)

prescribed overlap is small.

Second, for local properties (local clustering coefficients, degree distribution, and

local square clustering coefficients), graphs from our model generally are closest to

the original graphs, than are those from other models. For our model, the MMD of

the degree distributions is zero according to Theorem 2.4.1. On the other hand, that

the MMD of the distributions of the clustering coefficients is the smallest manifests

that local characteristics of the input graph are well learned.

As elucidated earlier (see Theorem 2.4.2), a potential drawback of HH is that it

tends to generate large cliques, which lead to an exploding number of small motifs

that mismatch what real-life graphs entail. The improved HH, on the other hand,

uses link probabilities to mitigate the tendency of forming large cliques. Table 2.4

verifies that improved HH indeed produces triangle (3-clique) counts and square (4-

clique) counts much closer to those of the original graph. One also observes the

exploding square count on CiteSeer and Gene by using the original HH algorithm

(see Tables 2.5 and 2.6), corroborating the tendency of large cliques in large graphs,
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which will lead to poor node classification results as shown next.

Table 2.5: Properties of CiteSeer and the graphs generated by different models
(averaged over five random repetitions). EO means edge overlap and numbers in
the bracket are standard deviations. Boldfaced numbers are closest to those for the
original graph.

Cluster. coeff. Charcs. path length Triangle count Square count LCC Powerlaw exponent Edge Overlap
×10−2 ×10+0 ×10+3 ×10+2 ×10+3 ×10+0

CiteSeer 1.30 9.33 1.08 2.49 2.12 2.07

CONF 0.160(0.019) 5.39(0.01) 0.133(0.016) 0.02(0.02) 2.09(0.01) 2.07(0.00) 42.4%
DC-SBM 0.755(0.065) 5.58(0.09) 0.500(0.025) 0.794(0.134) 1.75(0.02) 1.95(0.01) 5.35%
Chung-Lu 0.0786(0.0088) 4.73(0.05) 0.076(0.005) 0.006(0.008) 1.80(0.01) 1.94(0.02) 0.86%
ERGM 0.18(0.036) 6.15(0.04) 0.00940(0.00196) 0.00(0.00) 2.04(0.00) 1.87(0.00) 8.30%
VGAE 2.92(0.14) 8.66(0.87) 6.94(0.14) 133(11) 0.90(0.129) 1.86(0.01) 45.8%
NetGAN 2.42(0.70) 6.75(0.63) 4.53(0.18) 45.8(5.0) 1.36(0.04) 1.81(0.01) 55.9%

HH 1.85(0.03) 6.55(0.03) 1.12(0.02) 18.1(0.55) 1.86(0.01) 2.07(0.00) 2.71%

Improved HH 0.839(0.057) 7.64(0.29) 0.700(0.048) 2.10(0.72) 1.67(0.02) 2.07(0.00) 2.56%

Wedge count Rel. edge distr. entr. Gini coefficient Local cluster. Degree distr. Local sq. cluster.
×10+4 ×10−1 ×10−1 ×10−2 ×10−2 ×10−3

CiteSeer 2.60 9.54 4.28 0 0 0

CONF 2.60(0.00) 9.54(0.00) 4.28(0.00) 3.20(0.07) 0 7.26(0.26)
DC-SBM 2.73(0.04) 9.34(0.01) 5.16(0.04) 2.82(0.10) 3.15(0.12) 6.72(0.21)
Chung-Lu 3.00(0.12) 9.33(0.01) 5.18(0.04) 3.65(0.03) 3.15(0.19) 7.54(0.07)
ERGM 1.31(0.02) 9.79(0.00) 2.98(0.02) 3.83(0.02) 5.90(0.25) 7.66(0.03)
VGAE 5.38(0.08) 8.60(0.00) 7.15(0.01) 3.60(0.06) 19.41(0.62) 33.59(2.24)
NetGAN 4.21(0.30) 8.96(0.03) 6.40(0.10) 5.10(0.28) 16.26(0.58) 15.47(2.15)

HH 2.60(0.00) 9.54(0.00) 4.28(0.00) 3.47(0.02) 0 7.45(0.01)

Improved HH 2.60(0.00) 9.54(0.00) 4.28(0.00) 3.20(0.04) 0 4.71(0.19)

Table 2.6: Properties of Gene and the graphs generated by different models (averaged
over five random repetitions). EO means edge overlap and numbers in the bracket are
standard deviations. Boldfaced numbers are closest to those for the original graph.

Cluster. coeff. Charcs. path length Triangle count Square count LCC Powerlaw exponent Edge Overlap
×10−2 ×10+0 ×10+2 ×10+2 ×10+2 ×10+0

Gene 10.41 7.01 8.09 9.68 8.14 2.05

CONF 1.21(0.06) 5.01(0.05) 0.94(0.04) 0.11(0.04) 7.98(0.06) 2.05(0.00) 42.7%
DC-SBM 4.36(0.38) 5.01(0.06) 3.46(0.36) 3.09(0.78) 6.81(0.14) 1.92(0.03) 11.8%
Chung-Lu 0.382(0.058) 4.33(0.03) 0.42(0.07) 0.002(0.004) 6.90(0.06) 1.91(0.01) 1.52%
ERGM 0.374(0.146) 5.24(0.06) 0.08(0.03) 0.00(0.00) 7.92(0.02) 1.84(0.02) 0.60%
VGAE 13.8(0.05) 6.99(0.19) 17.2(0.40) 19.81(1.07) 5.44(0.22) 1.86(0.01) 64.9%
NetGAN 7.54(1.18) 4.50(0.31) 22.53(1.99) 28.78(5.95) 4.60(0.28) 1.72(0.03) 51.6%

HH 4.52(0.08) 5.80(0.06) 3.51(0.06) 3.51(0.07) 6.91(0.04) 2.05(0.00) 10.52%

Improved HH 8.41(0.25) 10.72(0.87) 6.54(0.19) 4.18(0.73) 6.32(0.25) 2.05(0.00) 11.67%

Wedge count Rel. edge distr. entr. Gini coefficient Local cluster. Degree distr. Local sq. cluster.
×10+3 ×10−1 ×10−1 ×10−2 ×10−2 ×10−3

Gene 7.79 9.53 4.26 0 0 0

CONF 7.79(0.00) 9.53(0.00) 4.26(0.00) 5.39(0.19) 0 14.24(0.28)
DC-SBM 8.20(0.33) 9.35(0.03) 4.95(0.01) 4.10(0.06) 2.71(0.55) 10.72(0.20)
Chung-Lu 9.49(0.39) 9.30(0.01) 5.09(0.04) 6.12(0.14) 2.49(0.25) 14.54(0.25)
ERGM 5.51(0.18) 9.78(0.01) 2.86(0.04) 6.41(0.06) 7.55(0.83) 14.79(0.12)
VGAE 10.48(1.58) 9.09(0.01) 5.79(0.05) 2.27(0.13) 8.34(0.21) 14.47(1.68)
NetGAN 15.40(1.20) 8.62(0.10) 6.91(0.21) 1.62(0.27) 23.5(3.21) 6.89(1.73)

HH 7.79(0.00) 9.53(0.00) 4.26(0.00) 5.79(0.07) 0 14.5(0.1)

Improved HH 7.79(0.00) 9.53(0.00) 4.26(0.00) 3.45(0.15) 0 2.02(0.54)
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2.5.3 Visualization of Generated Graphs

For qualitative evaluation, I visualize the original graph and two generated graphs:

one by NetGAN and the other by our model. The Cora-ML graphs are given

in Figure 2.4, the CiteSeer graphs are given in Figure 2.5 and Gene graphs are

given in Figure 2.6. Owing to the objective, NetGAN generates a graph considerably

overlapping with the original one, with the delta edges scattering like noise. On the

other hand, our model generates a graph that minimally overlaps with the original

one. Hence, the drawing shows a quite different look. We highlight, however, that

despite the dissimilar appearance, the many global and local properties remain close

as can be seen from Table 2.4, 2.5 and 2.6.

Figure 2.4: Cora-ML. Left: original graph; middle: generated by NetGAN; right:
generated by improved HH. Drawn are the subgraphs induced by the first 600 nodes
ordered by degrees.

Figure 2.5: CiteSeer. Left: original graph; middle: generated by NetGAN; right:
generated by improved HH. Drawn are the subgraphs induced by the first 600 nodes
ordered by degrees.
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Figure 2.6: Gene. Left: original graph; middle: generated by NetGAN; right: gen-
erated by improved HH. Drawn are the subgraphs induced by the first 600 nodes
ordered by degrees.

2.5.4 Link Prediction and GAN Training Results

In this section, I discuss about the training of the link predictor. The result of the

cycling approach described in the preceding section is illustrated in Figure 2.7, Figure

2.8 and Figure 2.9. The metrics are AP and AUC scores evaluated on all node pairs.

For Cora-ML, we use two cycles. One sees that the second cycle improves over the

score at the end of the first cycle, although the warm start begins at a lower position.

For CiteSeer and Gene, we use only one cycle, because the AUC score is already

close to full at the end of the cycle. For both data sets, the purpose of incrementally

inserting more negative edges in each round is fulfilled: scores progressively increase.

Had we not inserted additional negative edges over time, the curves would plateau

after the first round. Overall, the convergence history indicates that the enhanced

GraphSAGE training strategy is effective.

We also show the training process of GAN. GAN results are known to be noto-

riously hard to robustly evaluate. Here, we show the MMD; see the middle panel of

Figure 2.7, 2.8, 2.9. It decreases generally well, with small bumps throughout. The

challenge is that it is hard to tell from the value whether training is sufficient. There-

fore, we also investigate the empirical cdf of the pairwise data distance. As shown

in the bottom of Figure 2.7, 2.8, 2.9, the cdf for the training data and that for the

generated data are visually close. Such a result indicates that GAN has been trained
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reasonably well.

Figure 2.7: Results of link prediction and GAN for CORA-ML dataset. Left: Graph-
SAGE training progress (AP, AUC); Middle: GAN training progress (MMD); Right:
GAN result (pairwise distance distribution).

Figure 2.8: Results of link prediction and GAN for CITESEER dataset. Left: Graph-
SAGE training progress (AP, AUC); Middle: GAN training progress (MMD); Right:
GAN result (pairwise distance distribution).

Figure 2.9: Results of link prediction and GAN for GENE dataset. Left: GraphSAGE
training progress (AP, AUC); Middle: GAN training progress (MMD); Right: GAN
result (pairwise distance distribution).
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2.6 Downstream Task Example: Node Classifica-

tion

2.6.1 Background

In practice, a generated graph is used as a surrogate of the original one in downstream

tasks. For model developers, they desire that the model performs similarly on both

graphs, so that both the graph owner and the developer are confident of the use of

the model on the original graph. As a result, we use node classification task to show

our generated graph achieve this goal.

2.6.2 Experiment Setting

We experiment with the node classification task and test with two commonly used

model: GCN [63] and GraphSAGE [42]. The codes are downloaded from links given

by the authors and we use the default hyperparameters without tuning.

We use the same three datasets:Cora-ML ,CiteSeer , and Gene. Cora-ML

and CiteSeer come with node features while Gene not. For Gene, following con-

vention we use the identity matrix as the feature matrix. For all compared methods,

the node set is fixed and hence the node features are straightforwardly used when

running GCN and GraphSAGE; whereas for our method, because nodes are new, we

use their embedding generated by GAN as the input node features. To obtain node

labels, we augment GAN to learn and generate them. Specifically, we concatenate the

node embeddings with a one-hot vector of the class label as input/output of GAN. It

is senseless to use a fixed train/test split, which is applicable to only the original node

set. Hence, we conduct ten-fold cross validation to obtain classification performance.

Note that each generative model can generate an arbitrary number of graphs. In

practice, one selects one or a small number of them to use. In Table 2.7, we select
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the best one based on cross validation performance after 20 random trials.

2.6.3 Results

Table 2.7 shows that the graphs generated by our method indeed satisfy the desire,

producing competitively similar classification accuracies; whereas those generated by

other methods fall short, with accuracies departing from the original graph.

Table 2.7: Node classification results (10-fold cross validation) on original/generated
graphs. Top: GCN method; Bottom: GraphSAGE method. Boldfaced numbers are
closest to those for the original graph.

Cora-ML CiteSeer Gene

Origin. graph 76.37(0.07) 84.11(0.07) 81.46(0.12)

CONF 35.61(0.12) 51.99(0.06) 64.37(0.69)
DC-SBM 44.29(0.18) 50.06(0.20) 64.25(1.82)
Chung-Lu 35.61(0.12) 36.10(0.08) 58.99(1.24)
ERGM 38.16(0.05) 40.08(0.04) 55.90(0.22)
VGAE 55.05(0.20) 72.44(0.28) 76.21(1.85)
NetGAN 49.34(0.22) 63.62(0.32) 66.96(5.77)

HH 40.75(0.34) 40.12(0.15) 89.31(1.71)

Improved HH 74.15(0.13) 80.44(0.20) 80.84(0.17)

Cora-ML CiteSeer Gene

Origin. graph 79.10(0.06) 86.52(0.04) 85.14(0.16)

CONF 35.61(0.12) 51.99(0.06) 64.37(0.69)
DC-SBM 56.72(0.10) 60.63(0.05) 69.54(0.18)
Chung-Lu 49.07(0.11) 47.88(0.06) 62.02(0.08)
ERGM 52.59(0.05) 55.07(0.06) 59.41(0.31)
VGAE 50.75(0.18) 74.04(0.07) 76.42(0.32)
NetGAN 44.10(0.19) 67.97(0.04) 68.30(0.15)

HH 53.71(0.19) 53.66(0.13) 68.74(0.19)

Improved HH 78.07(0.10) 83.30(0.16) 80.89(0.12)
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Chapter 3

AUTM Normalizing Flows

3.1 Background

Normalizing flows are a class of generative models that aim to find an invertible

function f maps the distribution formed by the training data to a simple distribution,

such as Gaussian distribution.

Once the mapping is found, generating new data points boils down to simply

sampling from the base distribution and applying the forward transformation f to

the samples.

This makes normalizing flows a popular choice in density estimation, variational

inference, data generation, etc.

Let Y ∈ RD be a random variable with a possibly complicated probability density

function pY (y) and X ∈ RD be a random variable with a well-studied probability

density function pX(x). Assume that there is an invertible (vector-valued) function

f : RD → RD that transforms the “base” variable X to Y , i.e. Y = f(X). Then

according to the change of variables formula, the probability density functions pY and

pX satisfy

pY (y) = pX(x) |det Jf−1(y)| = pX(x) |det Jf (x)|−1 (3.1)
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where Jf (x) denotes the Jacobian of f evaluated at x.

People usually calculate the log of the density functions. As a result, Equation

(3.1) will become

log pY (y) = log(pX(x)) + log(|det Jf−1(y)|)

= log(pX(x)) + log(|det Jf (x)|−1)

= log(pX(x))− log(|det Jf (x)|)

(3.2)

In order to design practical normalizing flow model, the model should satisfy the

following three principles [65]:

• invertible

• sufficiently expressive to map the target distribution to base distribution

• computationally efficient for computing f, f−1 and determinant of Jacobian

A popular architectural design to address those points is to employ an invertible

triangular transformation, whose Jacobian is triangular and inversion can be com-

puted in an entrywise fashion. Two representative triangular normalizing flows are

autoregressive flows and coupling flows. Besides, another widely used type of nor-

malizing flow is called continuous flows, in which the calculation of the Jacobian is

different from the calculation in autoregressive flows and in coupling flows.

We use x1:k to denote the vector (x1, . . . , xk) in the following sections.



55

3.1.1 Coupling Flows

Coupling flows [21] partition the input vector x = (x1, . . . , xD) into two parts x1:d

and xd+1:D and then apply the following transformation:

y1:d = x1:d

yd+1:D = q(xd+1:D; θ(x1:d))

(3.3)

where the parameter θ(x1:d) is an arbitrary function of x1:d and the scalar coupling

function q is applied entrywisely, i.e., q(xd+1:D) = (q(xd+1), . . . , q(xD)).

The transformation in Equation (3.3) from x to y is called a coupling layer. In

normalizing flows, multiple coupling layers are composed to obtain a more complex

transformation with the role of the two mappings in Equation (3.3) swapped in al-

ternating layers. The Jacobian of Equation (3.3) is a lower triangular matrix with

a 2-by-2 block structure corresponding to the partition of x. In [21], the coupling

function q is chosen as an affine function: q(z) = z · exp(s(x1:d))+ t(x1:d) where s and

t are neural networks, and the resulting flow is termed affine coupling flow.

3.1.2 Autoregressive Flows

Autoregressive flows [61] choose f : RD → RD to be a mapping with autoregressive

structure:

f(x; θ) = (q1(x1; θ1),

q2(x2; θ2(x1)),

. . . ,

qk(xk; θk(x1:k−1)),

. . . ,

qD(xD; θD(x1:D−1)))

(3.4)
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where x = (x1, . . . , xD) and each qk is a bijection mapping.

The Jacobian of f is a lower triangular matrix. To guarantee the invertibility

of f , qk is chosen to be a monotone function of xk. Since qk is usually a nonlinear

neural network, an analytic inverse is not available and the inverse is computed by

root-finding algorithms.

3.1.3 Continuous Flows

Continuous normalizing flows [11] let the mapping f : RD → RD has the form of

ordinary differential equation: df
dt

= h(f(t), t). The input of continuous normalizing

flow layers is f(0) and the output is f(1).

Instead of calculating the determinant of the Jacobian, in continuous flows, people

calculate the change in log probability directly. The change in log probability formula,

which is:

∂ log(p(f(t)))

∂t
= −tr(

dh

df(t)
) (3.5)

3.1.4 Applications

There are many applications of normalizing flows, for example, image generation [60,

45], noise modelling [1], and reinforcement learning [77].

3.2 Problem

For the three types of normalizing flows, they have their own advantages and draw-

backs.

The advantages of coupling flows are:

• computationally efficient for computing f, f−1
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• computationally efficient for computing the determinant of Jacobian, due to the

triangular structure of the Jacobian

• fast training speed

But the drawbacks are:

• insufficiently expressive to map the target distribution to base distribution (com-

pared with continuous flows)

• performing poorly in specific 2D problems, in my experiments

The advantages of autoregressive flows are:

• computationally efficient for computing f, f−1

• computationally efficient for computing the determinant of Jacobian, due to the

triangular structure of the Jacobian

The drawback is:

• the data MUST be autoregressive structure

The advantages of continuous flows are:

• sufficiently expressive to map the target distribution to base distribution (com-

pared with coupling flows)

• performing the best among these three types of normalizing flows on the same

tasks

But the drawbacks are:

• requiring ODE solvers to computing f, f−1
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• high cost of calculating f, f−1

• high cost of calculating the change in log probability formula (3.5)

• slow training speed

As a result, researchers focus on designing normalizing flow models which are both

computationally efficient and sufficiently expressive.

3.3 Related Work

Different architectures have been proposed to improve existing normalizing flow struc-

tures. To simplify the Jacobian computation, most flows employ monotone triangular

mappings so that the Jacobian is triangular. Examples of monotone mappings used

in those flows include

Special function classes

• Affine functions used in NICE [20], RealNVP [21], GLOW [60].

• Rational functions used in Latent normalizing flow [117].

• Logistic mixture used in Flow++ [45].

• Splines used in Cubic-spline flows [24], Neural Spline Flows [25].

Neural networks

• Neural autoregressive flows [48] replaced the affine functions used in previous

autoregressive normalizing flow models with a neural network.

• Block Neural Autoregressive Flow [16] used a block matrix to improve Neural

Autoregressive Flow.
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Integral of positive functions

• SOS flow [51] used a sum of square of several functions.

• Unconstrained Monotonic Neural Networks(UMNN) [109] defined an integral of

specific functions to form the invertible transform.

To ensure monotonicity, methods using “special function classes” and neural net-

works have to impose constraints on model parameters, which often impede the ex-

pressive power of the transformation as well as the efficiency of training. Integral-

based methods rely on the simple fact that the function is always increasing as long as

the integrand g is globally positive. For example, g is modeled as positive polynomials

in sum-of-squares (SOS) polynomial flow by [51] and as positive neural networks in

unconstrained monotonic neural networks (UMNN) by [109]. Due to the flexibility

offered by an integral form, those methods allow unrestricted model parameters as

compared to other methods. It was shown in [109] that the method requires fewer pa-

rameters than straightforward neural network-based methods in [48, 16] and can scale

to high dimensional datasets. However, those integral-based monotone mappings do

not possess an explicit inverse formula and one has to find root-finding algorithms to

compute the inverse transformation. This leads to increased computational cost be-

cause in each iteration of root-finding, one has to compute an integral of a complicated

function. As discussed in [109], a judicious choice of quadrature rule is needed.

Also, there are some studies trying to improve the continuous flow. Neural

ODE [11] and Free-form Jacobian of Reversible Dynamics (FFJORD) [35] pioneered

the way of modeling the transformation as a dynamical system. The inverse can be

easily computed by reversing the dynamics in time, but Jacobian determinant is hard

to compute and the use of neural network to model the dynamics often leads to high

computational cost. OT-flow [83] phrases the continuous flows as optimal transport

(OT) problem by adding a transport cost, which will reduce the training time of
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continuous flows. CP-flow [49] tries a combination of optimal transport and convex

optimization to make the training process more efficienct.

3.4 Atomic Unrestricted Time Machine (AUTM)

flows

Lots of efforts have been made in recent years to construct a coupling function q(x)

which is strictly monotone (thus invertible) as well as expressive enough. As shown in

Table 3.1, sophisticated machinery is used to improve the expressive power and ensure

the monotonicity (invertibility) of the function q, which usually requires restricting

the form of q or the model parameters, for example, Latent normalizing flows [117],

Flow++ [45], Cubic-spline flows [24], Neural Spline Flows [25]. Moreover, since q is

a complicated nonlinear function, an analytic format of q−1 is generally not available

and thus numerical root-finding algorithms are often used to compute the inverse

transformation. It is natural to find a family of universal monotone functions with

analytic inverses and unrestricted model parameters or representations.

Hence, we propose the AUTM flows: Atomic Unrestricted Time Machine (AUTM)

flows.

3.4.1 AUTM Flow Layer

We propose a new approach to construct a monotone q(x) based on integration with

respect to a free latent variable. The introduction of the latent variable enables the use

of unconstrained transformations and renders exceptional flexibility for manipulating

the transformation and its inverse. The resulting coupling flows and autoregressive

flows can be inverted easily using the inverse formula and the Jacobian is triangular.
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Table 3.1: Comparison of different normalizing flow architectures. E.I. stands for
explicit inverse, U.P. for unrestricted parameters, U.F. for unrestricted function rep-
resentations.

Method monotone map E.I U.P. U.F.

Real NVP [21] affine function yes yes no
Glow [60] affine function yes yes no

Flow++ [45] ασ−1

(
r∑

i=1

ciσ
(

x−ai
bi

))
+ β no no no

NSF [25] rational-quadratic spline yes no no

SOS [51]
∫ x

0

L∑
i=1

pi(x)
2dx+ c no yes no

UMNN [109]
∫ x

0
f(x)dx+ β (f > 0) no yes no

AUTM (new) x+
∫ 1

0
g(v(t), t)dt yes yes yes

We define q : R → R through a latent function v(t) by

q : x → y = v(1), v(t) = x+

∫ t

0

g(v(t), t)dt (3.6)

where g(v, t) is uniformly Lipschitz continuous in v and continuous in t (0 ≤ t ≤ 1).

Equivalently, v(t) satisfies v′(t) = g(v(t), t) and v(0) = x. So the transformation

from x to y can be viewed as an evolution of the latent dynamic v(t). Note that the

integral in (3.6) is with respect to t instead of x and the integrand does not have to

be positive. Moreover, we can easily find the inverse transform as

q−1 : y → x = v(0), v(t) = y +

∫ t

1

g(v(t), t)dt (3.7)

An explicit inverse formula brings significant computational speedups as compared

to existing integral-based methods that rely on numerical root-finding algorithms.

Compared with other coupling functions/transformers, there is no assumption on g

other than Lipschitz continuity. We will show later in Section 3.4.2 that the transfor-

mation in (3.6) is strictly increasing and is general enough to approximate any given

continuously increasing map.
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We term the mapping q in (3.6) as an “Atomic Unrestricted Time Machine

(AUTM)”. “Atomic” means that

• function q is always univariate and scalar-valued

• g(v, t) can be as simple as an affine function in v and does NOT have to be a

deep neural network to achieve good performance

• the computation of the transformation as well as Lipschitz constant is lightweight

• the model can be easily incorporated into existing normalizing flow architectures

In fact, we will see later in Section 3.4.2 that any monotonic normalizing flow is

a limitation of AUTM flows.

“Unrestricted” means that there is no constraint on parameters or function forms

in the model.

“Time Machine” refers to the fact that the model is automatically invertible and

the computation of inverse is essentially a reverse of integral limits.

By the “atomic” property, AUTM can be easily incorporated into triangular flow

architectures such as coupling flows and autoregressive flows.

AUTM coupling flows

Given a D dimensional input x = (x1, . . . , xD) and d < D, the AUTM coupling layer

f : RD → RD is defined as follows.

y1:d = x1:d

yd+1:D = q(xd+1:D; θ(x1:d))

(3.8)

where q is the AUTM map defined in Equation (3.6).

Let f∗ denote the AUTM coupling layer with q applied to x1:d instead of xd+1:D,
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Figure 3.1: Structure of AUTM coupling flow.

y1:d = q(x1:d; θ(xd+1:D))

yd+1:D = xd+1:D

(3.9)

The AUTM coupling flow is defined by stacking f and f∗ in a multi-layer model.

Figure 3.1 illustrates the process of AUTM coupling flow when the dimension D of

the input data is 4 and set d = 2. Since the inverse q−1 is given in Equation (3.6),

the inverse transformation f−1 or f−1
∗ is readily available.

AUTM autoregressive flows

An autoregressive flow is composed of autoregressive mappings, similar to coupling

layers in coupling flows.
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Figure 3.2: Structure of AUTM autoregressive flow.

The AUTM autoregressive mapping on RD is defined in Equation (3.10)

f(x; θ) =(q1(x1; θ1), . . . , qD(xD; θD(x1:D−1))) (3.10)

where each qk(xk; θk(x1:k−1)) is an AUTM mapping with unrestricted conditioner

θk(x1:k−1).

Figure 3.2 illustrates the process of AUTM autoregressive flow when the dimension

D of the input data is 4.

The inverse mapping f−1 can be computed rapidly by first computing q−1
1 (which

gives x1) and then q−1
2 , q−1

3 , . . . , q−1
D , where each q−1

k is explicitly given by (3.7). The

Jacobian of f in Equation (3.10) is lower triangular, as in traditional autoregressive
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flow.

Jacobian determinant and log-density The Jacobian of AUTM flow is lower

triangular. It will be shown in Theorem 3.4.1 that the derivative of the mapping

q(x) is given by q′(x) = exp
(∫ 1

0
∂g
∂v
(v(t), t)dt

)
. Thus one can immediately derive

the Jacobian determinant of AUTM flow. If coupling layer is used, the Jacobian

determinant is

exp

(∫ 1

0

D∑
k=d+1

∂g

∂v
(vk(t), t; θ(x1:d))dt

)
(3.11)

If autoregressive layer is used, the Jacobian determinant is

exp

(∫ 1

0

D∑
k=1

∂g

∂v
(vk(t), t; θ(x1:k−1))dt

)
. (3.12)

From the above formulas and Equation (3.2), the change of log-density of an

AUTM flow follows immediately.

If coupling layer is used, the change of log-density formula will be

log pY (y) = log pX(x)−
∫ 1

0

D∑
k=d+1

∂g

∂v
(vk(t), t; θ(x1:d))dt. (3.13)

If autoregressive layer is used, the change of log-density formula will be

log pY (y) = log pX(x)−
∫ 1

0

D∑
k=1

∂g

∂v
(vk(t), t; θ(x1:k−1))dt. (3.14)

3.4.2 Theoretical Analysis

In this section, we present several theoretical analysis of AUTM flows, including

monotonicity and universality. The derivative of q(x) in Equation (3.6) is explicitly

available.

Theorem 3.4.1 (Derivative). Let q(x) be defined in Equation (3.6). Then q′(x) =
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exp
(∫ 1

0
∂g
∂v
(v(t), t)dt

)
.

It is easy to see that q′ > 0, so q is strictly increasing.

Proof. Let v = v(t, x) as a function of t and x. In fact,

v(t, x) = x+

∫ t

0

g(v(t, x), t)dt.

Let u(t) = ∂v
∂x
. It follows from the formula of v that

u(t) =
∂v

∂x
= 1 +

∫ t

0

∂g

∂v

∂v

∂x
dt (3.15)

Then we have that

du

dt
=

∂g

∂v

∂v

∂x
=

∂g

∂v
u (3.16)

This implies

u(t) = C exp

(∫ t

0

∂g

∂v
dt

)
(3.17)

Recall Equation ch3:eq:AUTM, we have u(0) = 1, as a result C = 1.

Since q(x) = v(1, x), we now conclude that

q′(x) =
∂v

∂x
(1, x) = u(1) = exp

(∫ 1

0

∂g

∂v
dt

)
(3.18)

Theorem 3.4.2 (Monotonicity). The mapping q(x) defined in Equation (3.6) is in-

vertible and strictly increasing.

Proof. Obviously, monotonicity implies invertibility, so it suffices to show that q is

strictly increasing. There are several ways to prove this. The simplest way is to use

Theorem 3.4.1 to see that q′(x) > 0, so q must be increasing. Below we present a

different proof without using the analytic expression of q′(x).
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Let vx(t) denote the function in Equation (3.6) with v(0) = x, where g(v, t) is

continuous on t and uniformly Lipschitz continuous on v. We need to show that

for any x < x′, there holds q(x) < q(x′). We prove this by contradiction. Assume

that there exist x < x′ such that q(x) ≥ q(x′). There are two cases to consider:

q(x) = q(x′) and q(x) > q(x′).

Case 1: q(x) = q(x′) = C for some constant C.

In this case, vx(1) = vx′(1) = C. Define wa(t) = va(1 − t) for any a ∈ R and

t ∈ [0, 1]. It is easy to see that wx(t), wx′(t) are both solutions to the ODE

dw

dt
= −g(w(t), 1− t), w(0) = C, t ∈ [0, 1]. (3.19)

Note that wx(t) and wx′(t) are two different solutions of Equation (3.19) because

wx(1) = x < x′ = wx′(1). This contradicts the uniqueness of solution to the ODE

(which is well-posed since g is Lipschitz) and we conclude that the assumption q(x) =

q(x′) can NOT hold.

Case 2: q(x) > q(x′).

In this case, we have vx(1) > vx′(1) and vx(0) < vx′(0). Applying intermediate

value theorem to vx(t)− vx′(t) yields that there exists τ ∈ (0, 1) such that

vx(τ) = vx′(τ) = C

for some constant C.

Similar to Case 1, if we define wa(t) = va(τ − t) for t ∈ [0, τ ], then we can deduce
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that the ODE

dw

dt
= −g(w(t), 1− t), w(0) = C (3.20)

has two different solutions wx(t) and wx′(t) as wx(τ) = x < x′ = wx′(τ), which

contradicts the well-posedness of Equation (3.20).

We can now conclude that the inequality q(x) ≥ q(x′) can NOT hold. Conse-

quently, q(x) must be strictly increasing and the proof is complete.

The expressive power of AUTM is summarized in the following three theorems,

which state that one can approximate ANY monotone continuous transformation with

a family of AUTM layers.

Theorem 3.4.3 (AUTM as a universal monotone mapping). Let C be the space of

continuous functions on R with compact-open topology and let M ⊂ C be the cone

of (strictly) increasing continuous functions. Then the set of AUTM bijections

Q = {q(x) in Equation (3.6) : v(0) = x ∈ R}

is dense in M.

Proof. Since the set of increasing Lipschitz continuous functions is dense in M, it

suffices to consider Lipschitz functions in M.

We need to show that, given an arbitrary increasing Lipschitz continuous function

ϕ(x), there exists a family of AUTM bijections {qs(x)}s>0 ⊂ Q that converge com-

pactly to ϕ(x) as s → 0, i.e. qs|K → ϕ|K uniformly on any compact set K ⊂ R as

s → 0.

We construct qs as follows. First we define

g∗(v) = ϕ(v)− v and gs(v, t) = Cse
− t2

s g∗(v) (s > 0)

where Cs =
(∫ 1

0
e−

t2

s dt
)−1

is a normalizing constant. Since g∗ is Lipschitz continuous,
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we see that gs(v, t) is uniformly Lipschitz continuous in v and continuous in t. Then

we define

qs(x) = x+

∫ 1

0

Cse
− t2

s [ϕ(vs(t))− vs(t)]dt (3.21)

which has the form

qs(x) = x+

∫ 1

0

gs(vs(t), t)dt with vs(t) := x+

∫ t

0

gs(vs(t), t)dt (3.22)

Note that vs(0) = x.

We prove next that qs converges compactly to ϕ as s → 0. That is, for any

compact set K ⊂ R,

lim
s→0

max
x∈K

|qs(x)− ϕ(x)| = 0

Notice that

ϕ(x) = x+ g∗(x) = x+ g∗(vs(0))

We can deduce that

|qs(x)− ϕ(x)| =
∣∣∣∣∫ 1

0

gs(vs(t), t)dt− g∗(vs(0))

∣∣∣∣
=

∣∣∣∣∫ 1

0

Cse
− t2

s g∗(vs(t))dt− g∗(vs(0))

∣∣∣∣
=

∣∣∣∣∫ 1

0

Cse
− t2

s [g∗(vs(t))− g∗(vs(0))]dt

∣∣∣∣ ≤ Iρ,s + Jρ,s

(3.23)

where ρ ∈ (0, 1) and

Iρ,s :=

∣∣∣∣∫ ρ

0

Cse
− t2

s [g∗(vs(t))− g∗(vs(0))]dt

∣∣∣∣ , Jρ,s :=

∣∣∣∣∫ 1

ρ

Cse
− t2

s [g∗(vs(t))− g∗(vs(0))]dt

∣∣∣∣ .
For an arbitrary ϵ > 0, we choose ρ ∈ (0, 1) such that |g∗(vs(t)) − g∗(vs(0))| ≤ ϵ
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for all vs(0) = x ∈ K and t ∈ [0, ρ]. It then follows that

Iρ,s ≤ ϵ

∫ ρ

0

Cse
− t2

s dt ≤ ϵ

∫ 1

0

Cse
− t2

s dt = ϵ. (3.24)

Next we estimate Jρ,s. Since K×[0, 1] is compact, |g∗(vs(t))| is uniformly bounded

by a constant M as s → 0. Thus we deduce that

lim
s→0

Jρ,s ≤ 2M lim
s→0

∫ 1

ρ

Cse
− t2

s dt = 0. (3.25)

Combine Equations (3.23), (3.24) and (3.25), we see that

lim
s→0

max
x∈K

|qs(x)− ϕ(x)| ≤ ϵ.

Since ϵ > 0 is arbitrary, we conclude that

lim
s→0

max
x∈K

|qs(x)− ϕ(x)| = 0,

which implies that Q is dense in M.

Theorem 3.4.4 (AUTM as a universal flow). For any coupling or autoregressive

flow F = F1 ◦ F2 ◦ · · · ◦ Fp from RD to RD, where each Fk is a triangular monotone

transformation, there exists a family of AUTM flows {Ts}s>0 = {Ts,1◦Ts,2◦· · ·◦Ts,p}s>0

such that Ts converges to F pointwisely and compactly as s → 0.

Proof. This is a result of Theorem 3.4.3. Since compact convergence implies pointwise

convergence, it suffices to show the compact convergence. According to Theorem

3.4.3, for each Fk (where each entry is a monotone continuous function), we can

construct a family of triangular AUTM transformations Ts,k (parametrized by s > 0)

that converge compactly to Fk as s → 0. Then it follows immediately that Ts :=

Ts,1 ◦ Ts,2 ◦ · · · ◦ Ts,p converges compactly to F = F1 ◦ F2 ◦ · · · ◦ Fp as s → 0.
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Theorem 3.4.3 and Theorem 3.4.4 imply that all coupling flows and autoregressive

flows can be approximated arbitrarily well by AUTM flows. In the following, we

present an explicit construction of such a family of AUTM flows that converge to

an arbitrarily given monotonic normalizing flow. The convergence result provides a

link between the proposed AUTM flows and existing monotonic normalizing flows

and illustrates the representation power of AUTM. Notice that every AUTM flow

layer has explicit inverse, so the universality result in this section shows that we can

approximate any monotonic flow by a flow with explicit inverse.

Universal AUTM flows

Let ϕ(x) be an arbitrary increasing continuous function on R. Define a family of

AUTM bijections parametrized by s > 0 as Equation (3.21):

qs(x) = x+

∫ 1

0

Cse
− t2

s [ϕ(vs(t))− vs(t)]dt, (3.26)

where vs(t) = x+
∫ t

0
Cse

− t2

s [ϕ(vs(t))−vs(t)]dt and Cs =
(∫ 1

0
e−

t2

s dt
)−1

is a normaliza-

tion constant. Then it can be shown that (see proof of Theorem 3.4.3): qs|K converges

to ϕ|K uniformly for any compact set K ⊂ R. Based on qs, one can construct a family

of AUTM coupling flows or autoregressive flows that converge to the given flow based

on ϕ.

In fact, the family of AUTM flows in Equation (3.26) is just one particular family

of universal AUTM flows. The function Cse
− t2

s in Equation (3.26) can be replaced

with a much larger class of functions κs(t) and the resulting AUTM flows are still

universal. This is formalized in the theorem below regarding universal AUTM flows

that generalize Equation (3.26).

Theorem 3.4.5. For s > 0, let κs ∈ C([0, 1]) be a positive function such that∫ 1

0
κs(t)dt = 1 and that for any ρ ∈ (0, 1), lim

s→0

∫ 1

ρ
κs(t)dt = 0. Given any increasing
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continuous function ϕ(x), we define qs (s > 0) as follows qs(x) = x+
∫ 1

0
κs(t)[ϕ(vs(t))−

vs(t)]dt, with vs(t) = x +
∫ t

0
κs(t)[ϕ(vs(t)) − vs(t)]dt. Then as s → 0, qs|K converges

to ϕ|K uniformly for any compact set K ⊂ R.

Proof. The proof follows the same argument as the proof of Theorem 3.4.3, where the

only difference is that the function Cse
− t2

s in the proof of Theorem 3.4.3 is replaced

with a general function κs(t). In this general case, the argument in the proof of

Theorem 3 still holds because of the two properties of κs(t):

•
∫ 1

0
κs(t)dt = 1

• for any ρ ∈ (0, 1), lim
s→0

∫ 1

ρ
κs(t)dt = 0

where the normalization property (i) is used in (3.23) and (3.24), while the limit

property (ii) is used in (3.25). Therefore, we conclude that qs|K → ϕ|K uniformly as

s → 0.

3.5 Numerical Experiments

In this section, we present the results of some experiments to evaluate AUTM flows.

In Section 3.5.1, we perform density estimation on five tabular datasets and compare

with other methods. In Section 3.5.2, we train our model on the CIFAR10 and

ImageNet32 datasets for image generation.

For image datasets, we model g(v, t) in Equation (3.6) as a quadratic polynomial

in v. For density estimation, we consider three different choices of g(v, t) in Equation

(3.6):

• g(v, t) = av + b+ cv2

• g(v, t) = av + b+ cv3

• g(v, t) = av + b+ cσ(v)
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where σ denotes the sigmoid function:

σ(x) =
1

1 + e−x
(3.27)

Note that this is different from many existing methods that rely on deep neural

networks to model the core function in the model, such as UMNN [109] for the positive

integrand, NAF [48] and BNAF [16] for the autoregressive mapping, neural ODEs [11]

and FFJORD [35] for the entire dynamical system. We show in the following that,

compared to the state-of-the-art models, our proposed AUTM model achieves excel-

lent performance with simple choices of g. More importantly, for high-dimensional

image datasets like ImageNet32, AUTM model requires less model parameters com-

pared to other models.

3.5.1 Density Estimation

Data sets and baselines

We first evaluate our method on four datasets from the UCI machine-learning reposi-

tory [19]: POWER, GAS. HEPMASS, MINIBOONE, and also the BSDS300 dataset,

which are all preprocessed by [86]. We compare our method to several existing normal-

izing flow models, including Real NVP [21], Glow [60], RQ-NSF [25]), CP-FLOW [49],

FFJORD [35], UMNN [109] and autoregressive models such as MAF [86], MADE [30]

and BNAF [16].

Model configuration and training

We use 10 (or 5) masked AUTM layers and set the hidden dimensions 40 times (or 10

times) the dimension of the input. We apply a random permutation of the elements

of each output vector, as the masked linear coupling layer, so that a different set of

elements is considered at each layer, which is a widely used technique [16], [21], [86].
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We use Adam as the optimizer and select hyperparameters after an extensive grid

search.

The hyperparameters used are shown in Table 3.2. Hyperparameters are obtained

after extensive grid search. For the number of layers, we tried 5,10,20. For the hidden

layer dimensions, we tried 10d, 20d, 40d, where d is the dimension of the vector in the

dataset. We trained our model by using Adam. We stop the training process when

there is no improvement on validation set in several epochs.

Table 3.2: Hyperparameters for Power, GAS, Hepmass, Miniboone, BSDS300
datasets, d is the dimension of the vector in the dataset.

POWER GAS Hepmass Miniboone BSDS300

layers 10 10 10 5 10
hidden layer dimensions 40d 40d 40d 10d 40d

epochs 450 1000 500 1000 1000
batch size 256 256 256 256 128
optimizer adam adam adam adam adam

learning rate 0.01 0.01 0.01 0.01 0.01
lr decay rate 0.5 0.5 0.5 0.5 0.5

Results

We report average negative log-likelihood metric, which is a widely used metric in

this task, on the test sets in Table 3.3.

We test three different g(v, t) functions in our AUTM flows: g1(v, t) = av+b+cv2,

g2(v, t) = av + b+ cv3, g3(v, t) = av + b+ cσ(v).

It can be observed that AUTM consistently outperforms Real NVP, Glow, MADE,

MAF, CP-Flow. On MINIBONDE dataset, our models perform better than all other

models except BNAF. On POWER, HEPMASS, BSDS300 dataset, one of our model

performs best among all baseline models. On GAS datase, our results are competitive

at either top 2 or top 3 spot with a tiny gap from the best.
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Table 3.3: Average test negative log-likelihood (in nats) of tabular datasets (lower is
better). Numbers in the bracket are standard deviations.Average/std are computed
by 3 runs.

Model POWER GAS HEPMASS MINIBOONE BSDS300

Real NVP [21] -0.17(0.01) -8.33(0.14) 18.71(0.02) 13.55(0.49) -153.28(1.78)

Glow [60] -0.17(0.01) -8.15(0.40) 18.92(0.08) 11.35(0.07) -155.07(0.03)

FFJORD [35] -0.46(0.01) -8.59(0.12) 14.92(0.08) 10.43(0.04) -157.40(0.19)

UMNN [109] -0.63(0.01) -10.89(0.70) 13.99(0.21) 9.67(0.13) -157.98(0.01)

MADE [30] 3.08(0.03) -3.56(0.04) 20.98(0.02) 15.59(0.50) -148.85(0.28)

MAF [86] -0.24(0.01) -10.08(0.02) 17.70(0.02) 11.75(0.44) -155.69(0.28)

CP-Flow [49] -0.52(0.01) -10.36(0.03) 16.93(0.08) 10.58(0.07) -154.99(0.08)

BNAF [16] -0.61(0.01) -12.06(0.09) 14.71(0.38) 8.95(0.07) -157.36(0.03)

RQ-NSF (C) [25] -0.64(0.01) -13.09(0.02) 14.75(0.03) 9.67(0.47) -157.54(0.28)

AUTM: g1(v, t) -0.63(0.03) -12.24(0.04) 14.62(0.30) 9.16(0.18) -157.45(0.05)

AUTM: g1(v, t) -0.64(0.01) -12.37(0.06) 14.76(0.25) 9.33(0.10) -157.54(0.10)

AUTM: g1(v, t) -0.61(0.02) -12.03(0.06) 14.94(0.33) 9.29(0.20) -157.28(0.14)

3.5.2 Experiments on Image Dataset

Data sets and baselines

We then evaluate our method on the CIFAR10 [67] and ImageNet32 [84] datasets.

Unlike density estimation tasks, image datasets are large-scale and high-dimensional.

As a result, there are only a limited number of normalizing flow models available for

image tasks. We calculate bits per dim and compare with other normalizing flow

models including Real NVP [21], Glow [60], Flow++ [45], NSF [25]. The results of

bits per dim for each model are given in Table 3.4. We also show sampled images by

using AUTM in Figure 3.3 and Figure 3.4.

Model configuration and training

In this experiment, most hyperparameters come from Deep Residual Learning [56].

We use 14 AUTM coupling layers with 8 residual blocks for each layer in our model.
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Like GLOW [60], before each coupling layers, there is an actnorm layer and a conv

1× 1 layer. Each residual block has three convolution layers with 128 channels. Our

method is trained for 100 epochs with batch size 64. We trained our model by using

Adamax with Polyak.

Results

From Table 3.4, we can find our method outperforms all baselines with the exception

of Flow++ [45] on CIFAR10 dataset, which uses a variational dequantization tech-

nique. In addition, Table 3.4 shows AUTM is not sensitive to the size of the dataset

when we transfer from CIFAR10 to ImageNet32. Comparing the number of param-

eters used for each method, we find that AUTM yields the best performance with

much fewer parameters compared to other models for ImageNet32. In particular, the

number of model parameters of Flow++ [45] increases dramatically as we move from

CIFAR10 to ImageNet32 while coupling normalizing flow models like RealNVP [21]

and Glow [60] only have a moderate increase in the number of parameters. This is

reasonable since Flow++ is the only nonlinear model other than AUTM. It demon-

strates that AUTM, as a nonlinear model, yields better efficiency and robustness in

terms of parameter use.

Table 3.4: Results of BPD (bits per dim) on CIFAR10 and ImageNet32 datasets.
Results in brackets indicate the model use variational dequantization.

CIFAR10 CIFAR10 ImageNet32 ImageNet32
Model BPD parameters BPD parameters

Real NVP 3.49 44.0M 4.28 66.1M
Glow 3.35 44.7M 4.09 67.1M

Flow++ (3.08) 31.4M (3.86) 169.0M
RQ-NSF (C) 3.38 11.8M - -

Our Method 3.29 35.5M 3.80 35.5M
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Figure 3.3: Samples generated by using a pretrained model on CIFAR10 dataset.

3.5.3 Numerical Inversion of AUTM

Existing normalizing flow models with no explicit inverse usually employ bisection to

compute the inverse transformation. For example, the neural spline flow [25].

For AUTM, more options are available to compute the inverse mapping, such as

fixed point iteration, which offers faster convergence than bisection. We compare

the performance of bisection and fixed point iteration for AUTM by considering a

toy example where function g in Equation (3.7) is chosen as a specific quadratic

polynomial in v and the input variable x is randomly chosen from the unit interval.

We use the discretized version (five-point trapezoidal rule) of the inverse formula in

Equation (3.7) as the initial guess for fixed point iteration.

Table 3.5 shows that this leads to significantly fewer (around 50%) iteration steps

than bisection to achieve the same solution accuracy.
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Figure 3.4: Samples generated by using a pretrained model on ImageNet32 dataset.

Table 3.5: Number of steps (averaged over 1000 random input) of root-finding method
to reach a certain error tolerance.

Error tolerance 1e-3 1e-4 1e-5 1e-6

Iteration Method 4.565 6.642 8.658 10.831
Binary Search 8.967 12.398 15.668 19.073

3.5.4 Reconstruction on Image Dataset

We examine the reserve step of the AUTM layer by showing the reconstruction of

images. The used model is the same as the model in Section 3.5.2 and use CIFAR10

and ImageNet32 dataset in this experiment. The computation of the inverse of our

layer is by using iterative method with the reverse of integral as the initial guess. As

Figure 3.5 shows, the average L1 reconstruction error converges in 15 steps. Also,

Figure 3.6 shows that the reconstructed images look the same as original images.
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Figure 3.5: The average value of the L1 of reconstruction error for 64 images.

3.5.5 Comparison of FFJORD and AUTM

In this subsection, we test the running time of FFJORD and AUTM on four datasets

from the UCI machine-learning repository POWER, GAS. HEPMASS, MINIBOONE,

all preprocessed by [86]. For AUTM, we choose g(v, t) = av + b+ cv3. We define the

target negative log-likelihood (target NLL) as the NLL achieved by FFJORD after

training for 12 hours. The time for each method to reach the target NLL is reported

in Table 3.6.

It demonstrates that AUTM is significantly more efficient than FFJORD. This

is attributed to the structural advantages of AUTM. Firstly, AUTM transforms the

input vector x ∈ RD in an entrywise fashion where the ith entry is a univariate

function of xi. In FFJORD, the transformation of x is characterized by a neu-

ral network where each output dimension is a nonlinear multivariate function of

x = (x1, . . . , xD). Secondly, due to the structural differences, AUTM has a triangular
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Figure 3.6: The reconstruction of selected images in CIFAR10 and ImageNet32
dataset. The 1st, 3rd rows are the original images, and the 2nd, 4th rows are the
reconstructions.

Jacobian while FFJORD has a dense Jacobian that induces difficulty in computing

the log-determinant accurately. Thirdly, the integrand g in AUTM can be chosen as

a simple function, for example, a quadratic function in v. In FFJORD, the integrand

needs to be a neural network with D input variables x1, . . . , xD. To evaluate the

integral of such a complicated integrand accurately, a large number of quadrature

nodes are needed, which will increase the cost in both forward and backward trans-

formations. Additionally, AUTM enables the use of user-defined integrand g, which

will be beneficial if prior information of the transformation to be learned is available.

Table 3.6: Runtime for FFJORD and AUTM to reach the target negative log-
likelihood for each dataset.

Dataset Target NLL FFJORD AUTM

POWER 0.23 12hr 6.92min
GAS -5.24 12hr 3.67min

HEPMASS 21.85 12hr 7.40min
MINIBOONE 11.29 12hr 1.75min

3.6 For Graph Problems

Recall Section 2.4.4, the framework of “Generating a Doppelganger Graph: Resem-

bling but Distinct” is that, given an input graph G0, first train a GraphSAGE model

on G0 with a link prediction objective, yielding node embeddings and a link predictor.
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Then train a Wasserstein GAN on the node embeddings of G0 and sample new

embeddings from it. Additionally, input node features can be generated similarly if

they are needed in a downstream task.

Finally, run the improved HH algorithm, wherein needed link probabilities are

calculated by using the link predictor on the new embeddings generated by the GAN

model. The resulting graph is a doppelganger of G0.

In this framework, we could use normalizing flow model to replace the Wasserstein

GAN in the second step in order to avoid the mode collapse. More specifically, we

can use the newly proposed AUTM flow model to generate node embeddings.
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Chapter 4

Denoising Diffusion Models for

Generating Graphs

4.1 Background

In this project, we consider generating graphs based on a set of small graphs instead

of one single graph.

The main motivation of this project is to generate molecules. The generation

of molecules is an important task in chemistry, as it can help researchers find new

molecules, especially new drugs for specific disease. Although molecules are 3D ob-

jects, researchers usually use 2D graphs to describe them. The atoms in molecules

are described by nodes in graphs, and the chemical bonds between two atoms are

described by edges in graphs. As a result, most researchers in the fields of computer

science and mathematics focus on generating molecular graphs instead of considering

3D molecules.

Traditional methods for generating small graphs are designed for specific purpose:

The Erdös-Rényi model [26, 31] is designed for generating edges with same proba-

bility, Barabási-Albert model [6] mimics the scale-free (powerlaw) property, and the
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stochastic block models [32, 57] try to keep community structures. However, those

traditional methods only focus on specific metrics and often perform poorly on certain

metrics.

As deep learning techniques can capture the complex information from a set of

examples, many researchers have proposed several novel deep learning techniques for

addressing this problem in recent years.

4.2 Problem

Given a set of small graphs {Gi}, generate a set of new graphs {Gnew
i }, which has

similar metrics (e.g. Maximum Mean Discrepancy of degrees between the given set

and generated graphs) with {Gi},.

4.3 Related Work

Classical Graph Theory methods discussed in Section 2.3 can be applied to solve this

problem and more recent work involves deep generative models discussed in Section

1.4. In particular, many work combine deep generative models and graph neural

networks.

For example, GraphVAE [99] and Graphite [38] try to reconstruct the graph ad-

jacency matrix. The Junction Tree VAE [53] constructs molecular graphs by trees,

and this method can be extended to construct molecular graphs by other substruc-

tures [54]. CGVAE [74] applies the gated graph neural network technique to the VAE

framework, and CCGVAE [93] improves CGVAE for molecule design. MolGAN [15]

combines GAN framework and reinforcement learning techniques to generate molec-

ular graphs. GraphRNN [113] and GRAN [72] are sequential molecular graph gen-

erators based on Graph Neural Network and GAN. Graph Normalizing Flow [73]

generates molecular graphs based on coupling flows, GraphAF [12] is based on au-
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toregressive flows, and MolGrow [70] is based on hierarchical flows. GraphDF [75]

uses discrete flow to generate molecular graphs. Niu et al. [82] applies score-based

diffusion model to generate molecular graphs, and Xu et al. [112] uses Denoising

Diffusion Probabilistic model generate 3D molecular graphs directly. Also, diffusion

models with discrete state spaces have been discussed in [50].

4.4 Graph DDPM

In this section, we propose Graph DDPM, which is a graph generative method based

on DDPM for generating similar graphs based on a set of graphs.

The proposed method contains two parts: (i) One Graph Auto-Encoder model,

which maps the space of the features of nodes to small latent space, and (ii) DDPM

model, which generates new node features. This method first trains a Graph Auto-

Encoder to get node embeddings and a link prediction model, then uses DDPM to

sample sets of new embeddings and get the edges by the link prediction model. Unlike

the method proposed in Chapter 2, we do not need the post processing technique such

as H-H algorithm.

Our method can generate permutation invariant graphs with good performance.

Besides, to our knowledge, it is the first method combining the DDPM model and

the node generation.

Next, I will provide the details of the proposed method “Graph DDPM” for gen-

erating simple graphs.

4.4.1 Graph Auto-Encoder

The graph auto-encoder model used in our work is inspired by VGAE [62] and Graph

Normalizing Flow [73] which has two separate components: encoder and decoder.

The input of the encoder is a graph G with node features X ∈ RN×d and ad-
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jancency matrix A ∈ RN×N , where N is the number of nodes in graph G and d is

the dimension of the node feature. The output of the encoder is node embeddings

Emb ∈ RN×k, where k is the dimension of the node embeddings.

The encoder is designed as a 2-layer Graph Convolutional Neural Network [64].

More specifically, the decoder takes the output Emb as the input, and the output of

the decoder is the edge probabilities matrix Â ∈ RN×N .

Unlike the decoder Â = EmbEmbT used in VGAE [62], in our work, we use

Âij = sigmoid(5− 5∥Embi − Embj∥22) as our fixed decoder:

Âij =
1

1 + exp(5∥Embi − Embj∥22 − 5)
(4.1)

We design this decoder based on the assumption that the connected nodes have

similar embeddings.

The loss function used in the graph auto-encoder is the binary cross entropy loss

function:

L(θ) = −
∑

(Aij log(Âij) + (1− Aij) log(1− Âij)) (4.2)

where θ is the parameters in the encoder.

4.4.2 DDPM

After training the graph auto-encoder as discussed in the previous section, we obtain

node embeddings for each graph in the dataset. Assume all these node embeddings

form a distribution. We choose DDPM [55] to learn this distribution and then sample

new embeddings.

4.4.3 Summary

The input data of our method is a set of graphs. First, our method trains a graph

auto-encoder model with a fixed decoder to get node embeddings. After that, we
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Figure 4.1: Framework of Graph DDPM.

train a DDPM on the node embeddings returned from the graph auto-encoder.

To generate new graphs, we sample new node embeddings from DDPM and use

the fixed decoder in the graph auto-encoder model to generate edges. Figure 4.1

shows the framework of Graph DDPM.

4.4.4 Theoretical Analysis

In this subsection, we analyze the Graph DDPM method. We prove that our method

is a permutation invariant method in Theorem 4.4.1.

Theorem 4.4.1. Assume the embeddings of the generated nodes are embi, and we

have a link prediction model LP with LP (a, b) = LP (b, a), and the graph generated

by embi and LP is G(V = {embi}, E = {LP (embi, embj)}). This graph generation

method is permutation invariant.

Proof. The permutation invariant property of graph generation method is that, for
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any reordering sequence (k1, k2, ..., kn) of sequence (1, 2, ..., n), the graph Gk(V =

{embki}, E = {LP (embki , embkj)}) should be isomorphism to the graph G(V =

{embi}, E = {LP (embi, embj)}).

For the reordering sequence (k1, k2, ..., kn), we define a function f(i) = ki, and

we can see that nodes i and j of G are adjacent if and only if f(i) and f(j) are

adjacent in Gk. As a result, the graph Gk(V = {embki}, E = {LP (embki , embkj)})

is isomorphism to the graph G(V = {embi}, E = {LP (embi, embj)}), which means

that our method is permutation invariant.

4.5 Numerical Experiments

In this section, we provide several experiments to demonstrate that the proposed

method can generate graphs which closely match the distribution of the input graphs.

We run our experiments with the dataset: EGO-SMALL. The dataset was in-

troduced by GraphRNN [113]. EGO-SMALL is the set of 200 graphs. The number

of nodes in each graph in EGO-SMALL is larger than 4 and smaller than 18. The

EGO-SMALL dataset is derived from the Citeseer dataset [98].

For all experiments described in this section, 80% of the graphs are used for

training and the other 20% graphs are used for testing.

4.5.1 Experiment Setting

Baseline models

We compare our method with the four existing methods: VGAE [62], DEEPGMG [114],

GraphRNN [113], and GraphNF [73]. In our experiments, the data of the baseline

models comes from [73].
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Evaluation of generated graphs

The evaluation of our method contains two parts:

1. We provide visual graphs generated by our method and the original graphs.

2. Follow the method from GraphRNN [113], we calculate the Maximum Mean

Discrepancy (MMD) [36] score between the graphs generated by our method and the

graphs in the test set. We consider the MMD scores on three widely-used metrics:

degrees, clustering coefficients, and orbit counts.

Table 4.1 shows the detail of each graph property that we use to evaluate gener-

ative models.

Table 4.1: Graph properties.

Property Description

Clustering coefficient Number of closed triplets divided by number of all
triplets.

Degree The degree of a node is the number of edges connecting
it. The degree of the graph is the set of the node degrees.

Orbit count A (vertex) automorphism in a graph G = (V,E) is a
permutation σ of the vertices that preserves adjacency.
Mathematically, (σ(u), σ(v)) ∈ E if and only if (u, v) ∈
E. The automorphisms of a graph induce a partition of
the vertices into orbits, where two vertices belong to the
same orbit if and only if there exists an automorphism
that takes one to the other. The number of the different
orbits is the orbit count.

Since the test set is small in our experiments, in order to avoid potential variance,

we calculate the MMD scores between the test set and the specific graphs selected

from the generated graphs. The process of the selection is that, first compute the

number of nodes in each graph in the test set, and then find a set of graphs with

the same distribution of node numbers from the generated graphs. This technique is

proposed in [113].
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Model configuration

Since the given dataset does not provide the node features, we generate node features

Xi ∼ N(0, σ2I) for each node i, where σ2 = 0.1. And, in different epoch, we generate

different node features from the normal distribution. This method forces the graph

auto-encoder to generate node embeddings only from the adjacency matrix.

The encoder in the graph auto-encoder is a 2-layer Graph Convolutional Neural

Network [64], with hidden dimension 128. The dimension of the node embeddings is

set as 20. We train the graph auto-encoder for 100 epochs with learning rate equal

to 0.01. We also set a dropout layer in GCN with parameter 0.1. We use Adam as

our optimizer.

The model used in DDPM contains 3 hidden layers, the dimension of each hidden

layers are 128. The other settings are the same with the DDPM released code. We

use some codes from DDPM [55].

4.5.2 Comparison of Baseline Models and Our Method

In this section, we compare the graphs generated by our method with the four baseline

models. Table 4.2 shows the results of MMD of degree, cluster, orbit on EGO-SMALL

dataset. All the results of baseline models come from [73].

We can see that our method performs best on the MMD of cluster and the MMD

of orbit. Also, our method performs competitive on the MMD of degree.

4.5.3 Visualization of Generated Graphs

In this section, we provide the visualization of the graphs generated by our method

and the graphs from the test set of EGO-SMALL. Figure 4.2 shows 10 selected graphs

from the test set of EGO-SMALL. Figure 4.3 shows 10 selected graphs generated by

our method.
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Table 4.2: The results of MMD (lower is better) of three graph statistics between
the test set of EGO-SMALL and graphs generated by our method. The results of
baseline models come from Graph Normalizing Flow [73]. We train models 3 times
and generate 3 sets of graphs, then calculate the mean and variance over these 9
trials.

Model Degree Cluster Orbit

GraphVAE 0.13 0.17 0.05
DEEPGMG 0.04 0.10 0.02
GraphRNN 0.09 ± 0.10 0.22 ± 0.16 0.003 ± 0.004
GraphNF 0.03 ± 0.03 0.10 ± 0.05 0.001 ± 0.0009

Our Method 0.09 ± 0.01 0.07 ± 0.03 0 ± 0

Figure 4.2: Selected graphs from the test set of EGO-SMALL.

Figure 4.3: Selected graphs generated by our method.
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Figure 4.4: Training loss of graph auto encoder.

Figure 4.5: F1 score of graph auto encoder.

4.5.4 Graph Auto-Encoder Training Results

In this section, we discuss about the training process of the graph auto-encoder in our

method. Figure 4.4 shows the training loss in each epoch during the training process.

The definition of the loss could be found in Section 4.4.1.

We use the F1 score, which is defined as the harmonic mean of precision and

recall, to evaluate the performance of our trained model. Figure 4.5 shows the F1

score for both the train set and the test set in each epoch. From the two figures, it is

obvious that our graph auto-encoder is effective.
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Figure 4.6: Training loss of DDPM.

4.5.5 DDPM Training Results

In this section, we discuss about the training process of the DDPM in our method.

Figure 4.6 shows the training loss in each epoch during the training process. We

train this model for 10000 epochs. Although it does not converge in 10000 epochs,

the generated distribution of the first dimension and the second dimension is almost

the same as the distribution of the two dimensions in the given training data when

we plot the 2D figure. Also, the performance of the generated graphs is acceptable.

As a result, we stop the training process at 10000 epochs.
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Chapter 5

Summary and Future Work

In this dissertation, I proposed several machine learning enhanced graph generation

methods.

In Chapter 1, I provided the mathematical background of graph generation prob-

lems. I introduced the general deep neural networks with emphasis on deep generative

models as well as several classical results from graph theory. Also, I compared four

popular deep generative models on a 2D toy problem.

In Chapter 2, I introduced our work “Generating a Doppelganger Graph: Resem-

bling but Distinct”. In this work, we try to combine Generative Adversarial Network

with Havel-Hakimi algorithm, which is a traditional graph theory algorithm, to im-

prove the performance of graph generation problem through introducing new node

embeddings and using their link probabilities to guide the execution of HH. Our work

shows that for some specific targets, it is better to consider graph theory rather than

only use deep learning methods. We empirically validate the method on three bench-

mark data sets, demonstrating appealing match of the graph properties and similar

performance in node classification.

In Chapter 3, I introduced our work “AUTM Normalizing flows”. It is an improve-

ment of the structure of normalizing flow layers. This work applies the continuous
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flow idea to coupling flows and autoregressive flows. The numerical experiments show

that our new normalizing flow layers perform well and reduce the training cost sig-

nificantly. Compared to FFJORD, AUTM demonstrates much better computational

efficiency because of the triangular Jacobian structure. Compared to other monotonic

flows, AUTM has unrestricted parameters and more convenient computation of the

inverse transformation. Theoretically, we have proved that AUTM is a universal ap-

proximator for any monotonic normalizing flow. The performance is demonstrated by

comparison to the state-of-the-art models in density estimation and image generation.

For Chapter 4, I introduced our work “graph DDPM”. This work aims to apply

the DDPM to design a permutation invariant method for generating graphs based on

a given set of graphs. This method performs competitively with existing state-of-the-

art methods.

This dissertation tries to bridge the gap between the classical graph theory and

deep neural networks on graph generation problems. The deep learning methods usu-

ally do not consider the graph theory or the domain knowledge behind the problem

and the metrics. However, the results from this thesis confirm that the combination

of graph theory and deep learning can reduce the dependence on the volume of the

training data and also improve the performance of deep learning methods on several

graph generation problems. More creative combination of classical graph theory al-

gorithms and deep learning methods can be studied to solve other challenging graph

related problems in the future.
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tive adversarial networks. In International Conference on Machine Learning

(ICML), 2017.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative
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