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Abstract

Complex iso-length-spectrality in arithmetic hyperbolic 3-manifolds

By Sean Thomas

The (real-)length spectrum of a compact hyperbolic 3-manifold is the set of lengths
of all closed geodesics along with the multiplicity of each length. A closed geodesic
also has an imaginary part that represents the twist encountered by traveling once
around the closed geodesic. So, the complex length of a closed geodesic is `+it, where
` is the length of the closed geodesic and t is the twist with 0 ≤ t < 2π. The complex
length spectrum of a compact hyperbolic 3-manifold is the set of complex lengths of
all closed geodesics along with the multiplicity of each length. Two compact hyper-
bolic 3-manifolds are called iso-length-spectral if their length spectra are the same.
Also, two compact hyperbolic 3-manifolds are called complex iso-length-spectral if
their complex length spectra are the same. The aim of this paper is to investigate if
iso-length-spectral arithmetic hyperbolic 3-manifolds are complex iso-length-spectral.
Arithmetic hyperbolic 3-manifolds are a class of hyperbolic 3-manifolds where arith-
metic data about the manifolds tells us a great deal of information about the mani-
folds.
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1 Introduction

An interesting question concerning manifolds is, to what extent does an invariant as-

sociated with a manifold determine the manifold? A famous paper entitled Can one

hear the shape of a drum? [9] tried to determine whether the sounds a drum could

make uniquely determine the shape of the drum. The frequencies at which the drum

vibrates are determined by the shape of the drum. If we know the set of frequencies

and their multiplicities, then can we deduce the shape of the drum? It turns out that

these frequencies are eigenvalues of the Laplacian operator, i.e., there exists an L2

function, f , on our drum such that ∆f = λf where ∆ is the Laplacian operator and

λ is the eigenvalue. The answer turned out to be ‘no,’ which was not shown until

1992 [7], but the drums would share certain characteristics such as equal surface area.

Two such manifolds that share the same eigenvalues along with their multiplicities

are called isospectral. Iso- means same and spectral comes from the fact that the λ

are the spectra of the Laplacian. However, this problem had been asked before the

1966 paper. We can generalize this problem by replacing our drum with a Rieman-

nian manifold. Examples of non-isometric, isospectral manifolds were constructed

by Milnor in 1964 [15] and later by Vignéras in 1980 [26]. Later in 1985, Sunada

formulated a method that gave rise to many examples of non-isometric, isospectral

manifolds [21], which have equal volume.

We can ask a similar question about the geodesic length spectrum of a manifold.

This is the set of all lengths of closed geodesics along with multiplicities. Two man-

ifolds are called iso-length-spectral if they share the same length spectrum. These

spectra are related by the following theorem [6]:

Theorem 1.1 Two compact negatively curved Riemannian manifolds which are isospec-

tral are iso-length-spectral.
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Although, in a more specific setting where the manifold is a hyperbolic 2-manifold,

the relationship is stronger. The following result can be found in [14]:

Theorem 1.2 Two compact hyperbolic 2-manifolds are isospectral if and only if they

are iso-length-spectral.

For a hyperbolic 3-manifold, closed geodesics have a real length along with a

purely imaginary part representing the twist encountered after traveling once along

the geodesic. If we define the complex length spectrum of a hyperbolic 3-manifold as

the set of all complex lengths of closed geodesics along with multiplicities, then we

have the following result [2] [6]:

Theorem 1.3 Two compact hyperbolic 3-manifolds are isospectral if and only if they

are complex iso-length-spectral.

One might wonder whether iso-length-spectral hyperbolic 3-manifolds are isospec-

tral. If one could show that iso-length-spectral manifolds are complex iso-length-

spectral, then the question would be settled. Many non-isometric, isospectral mani-

folds that have been constructed are commensurable. Two manifolds are commensu-

rable if they share a finite-sheeted covering space. Whether all isospectral hyperbolic

2-manifolds and hyperbolic 3-manifolds are commensurable is still an open problem.

However, it is known that iso-length-spectral arithmetic hyperbolic 2-manifolds and

arithmetic hyperbolic 3-manifolds are commensurable [20] [4]. Furthermore, a more

general result was proven for arithmetic hyperbolic 3-manifolds: two arithmetic hy-

perbolic 3-manifolds are commensurable if and only if they have equal rational length

sets [4], where the rational length set is the set of all rational multiples of lengths of

closed geodesics without multiplicity. In this paper, we restrict our viewpoint to arith-

metic hyperbolic 3-manifolds, which are a particularly tractable class of hyperbolic

3-manifolds. Our aim is to investigate the following question:
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Question 1.4 Let M1 and M2 be iso-length-spectral arithmetic hyperbolic 3-manifolds.

Are M1 and M2 complex iso-length-spectral?

It should be noted that the multiplicities of the lengths do matter. In [13], it

was proven that there exist hyperbolic 3-manifolds with equal complex length sets

but different volumes. Complex iso-length-spectral hyperbolic manifolds have equal

volumes. So, the manifolds have equal complex length sets but unequal complex

length spectra, which necessary implies the multiplicities do not match. Furthermore,

these manifolds can be chosen to be arithmetic.

To give an idea of what to expect, the following correspondence exists in hyperbolic

3-manifolds. Let γ be a closed geodesic in a hyperbolic 3-manifold. Then, the geodesic

corresponds to a matrix in PSL2(C). Furthermore, after an appropriate conjugation

we can make the matrix have the form as below.

γ ←→

 λ 0

0 1/λ


The complex length of the closed geodesic can be calculated from the correspon-

dence above. Let λ = reiθ, then

`(γ) = 2ln|λ|+ 2iθ

where 2ln|λ| is the (real) length of the closed geodesic and 2θ is the twist encountered

by traveling once around the geodesic. In our approach, we forget the purely imagi-

nary part of the complex length, and determine how much the real length determines

the purely imaginary part. Or, equivalently, for a fixed value of r such that λ = reiθ

is an eigenvalue of a matrix corresponding to a closed geodesic, how many other val-

ues on the unit circle, eiφ, make reiφ an eigenvalue of a matrix corresponding to a

closed geodesic? If we could show that there is only one eiφ that may be paired with
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a given r, then the problem would be solved for arithmetic hyperbolic 3-manifolds.

Although this is not the case, in Section 6.1 we will show that there are only finitely

many angles that may be paired with a given r arising from an arithmetic hyperbolic

3-manifold, which is formally stated in the following theorem.

Theorem 1.5 Let r = |λ| be the norm of a loxodromic eigenvalue from an element

γ in a Kleinian group derived from a quaternion algebra A/k. Then, there are only

finitely many eiθ such that reiθ is a loxodromic eigenvalue from some Kleinian group

derived from some quaternion algebra.

This will be our first result. While this result is promising, it would be nice

to pin down exactly how many angles may be paired with a norm of a loxodromic

eigenvalue to yield other loxodromic eigenvalues and, also, characterize when multiple

angles occur. In Section 6.2, we will look at a “small,” tractable case that will be

our jumping-off point. Then, we will conjecture about what is required for multiple

angles to occur. Following this up, in Section 6.3, we formalize the role of roots of

unity, as is seen in the following theorem.

Theorem 1.6 Let r = |λ| be the norm of loxodromic eigenvalues from elements γ1

and γ2 in Kleinian groups Γ1 and Γ2 derived from a quaternion algebra A/k. If

λ1 = reiθ1, λ2 = reiθ2, and λ1 6= ±λ̄2, then λ1/λ2 is a root of unity.

Then, in Section 6.4, we will return to the tractable case to fully characterize

what was going on with multiple angles, and, also, we will be able to generalize this

to something less restrictive than our “toy” case. Due to restrictions imposed by the

fact that [k : Q] = 3, the following degrees for r2 are the only ones possible.

Theorem 1.7 Let r = |λ| be the norm of a loxodromic eigenvalue from an element γ

in an arithmetic Kleinian group derived from a quaternion algebra A/k over a number

field k with [k : Q] = 3. Suppose that the discriminant of the trace field is −d, where
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d > 0 is a square-free integer. Then, the only possibilities for the degree of r2 are 3,

6, and 12.

i) If [Q(r2) : Q] = 12, then the angle of a loxodromic eigenvalue with norm r is

unique.

ii) Suppose [Q(r2) : Q] = 3. Then, the angle of a loxodromic eigenvalue with

norm r is unique if and only if d 6= 1, 3.

iii) Suppose [Q(r2) : Q] = 6. Then, the angle of a loxodromic eigenvalue with

norm r is unique if and only if Q(r2) does not contain
√
d (if d 6= 1) or

√
3d.

While the objects described above have not been formally introduced, the gist is

that certain Kleinian groups arise from a quaternion algebra over a number field. If

we restrict ourselves to number fields of degree 3, then we have great leverage over

the situation and we can characterize exactly when the angle with a loxodromic norm

r is unique. More generally, if the degree is a prime p 6= 2, then the following theorem

holds. The notation Nk refers to the Galois (or, equivalently, normal) closure of a

number field k and the notation Nα refers the Galois (or, equivalently, normal) closure

of Q(α), i.e., the minimal degree number field that contains all Galois conjugates of α.

Another way to word the latter is that it is a splitting field for the minimal polynomial

of α.

Theorem 1.8 Let r = |λ| be the norm of a loxodromic eigenvalue from an element

γ in a Kleinian group derived from a quaternion algebra A/k with [k : Q] = p where

p is a prime not equal to 2. Then, there is a unique quadratic extension contained

in the Galois closure of the trace field. If the quadratic extension is Q(
√
−d), where

d > 0 is a square-free integer.

i) If the Galois group of Nr2 is not isomorphic to Sp or Sp×Z2, then the angle

is unique.
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ii) If the Galois group of Nr2 is isomorphic to Sp. Then, the angle of a loxo-

dromic eigenvalue with norm r is unique if and only if d 6= 1, 3.

iii) If the Galois group of Nr2 is isomorphic to Sp × Z2. Then, the angle of a

loxodromic eigenvalue with norm r is unique if and only if the Galois closure of

r2 does not contain
√
d (if d 6= 1) or

√
3d.

After discovering the “culprit”, in Section 6.5, we leverage our knowledge of the

situation to produce infinitely many cases when we have a positive result:

Theorem 1.9 There exist infinitely many commensurability classes of arithmetic

Kleinian groups such that if Γ1 and Γ2 are derived and iso-length-spectral, then Γ1

and Γ2 are complex iso-length-spectral.

Theorem 1.10 Consider a commensurability class of arithmetic Kleinian groups

with invariant quaternion algebra A/k where [k : Q] = 3, k(
√
−1) 6↪→ A, and

k(
√
−3) 6↪→ A. Then, if Γ1 and Γ2 are derived and iso-length-spectral, then Γ1 and Γ2

are complex iso-length-spectral.

Then, a natural question is: over all loxodromic eigenvalues, is the number of

angles that may be paired with a loxodromic norm unbounded? The answer to this

is yes. This is summarized in the following theorem:

Theorem 1.11 For every n ≥ 2, there exists a loxodromic norm, r, such that exactly

n numbers on the unit circle make reiθ a loxodromic eigenvalue.

That is, the angle of a loxodromic eigenvalue can be highly non-unique. Then,

in the pursuit of our goal, we prove that a certain number theoretic conjecture is

equivalent to a conjecture about a certain class of arithmetic hyperbolic 3-orbifolds.

While this is not entirely our doing (see Chapter 12 [16]), we have expanded the

equivalence to a certain class of arithmetic hyperbolic 3-orbifolds. While equivalences
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like these do not directly help solve either conjecture, there are now two settings,

algebraic number theory and arithmetic hyperbolic 3-manifolds, to try to solve such

problems.

Theorem 1.12 The Salem conjecture is equivalent to the Short Geodesic conjecture

for arithmetic hyperbolic 3-orbifolds with invariant trace field k = k̄.

The Salem conjecture says that certain roots of integral polynomials are uniformly

bounded below by a number strictly greater than 1. The Short Geodesic conjecture

says that the length of closed geodesics are uniformly bounded below. Both con-

jectures will be explicitly mentioned in Section 6.6. Finally, in Section 7, we have

compiled results that were proven along the way that do not quite line up with the

main thrust of the paper. However, they answer some interesting questions and they

are included as well.

Now that the results of the paper have been enumerated, we need to outline what

background material is necessary to prove these results. In sections 2.1, 2.2, 3, and

4.1, we will introduce the necessary background material from hyperbolic 3-space, hy-

perbolic 3-manifolds, algebraic number theory, and arithmetic hyperbolic 3-manifolds.

After that, in Section 5, we will review some pertinent results that set the stage for

our investigation.
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2 Geometric Preliminaries

2.1 Hyperbolic 3-Space

Euclid’s Fifth Postulate states that given any line, L, and any point, p, not on that

line, there is exactly one line, L′ such that p lies on L′, and L and L′ do not intersect.

In an attempt to show that the first four postulates implied the fifth postulate, the

fifth postulate was proved to be independent of the first four postulates. Changing

the fifth postulate to allow infinitely many lines that contain p and do not intersect L

yields a consistent geometry. Hyperbolic space is an example of such a space, which

is defined below. The following material comes from Chapter 1 of [16].

Definition 2.1 Upper half space is the following subset of 3-dimensional Eu-

clidean space: H3 = {(x, y, z) ∈ R3 : z > 0}.

Once we choose the appropriate metric, upper half space will serve as a model for

hyperbolic 3-space. We use the line element ds2 = dx2+dy2+dt2

t2
. This induces a metric

on H3, which is complete in the sense that every Cauchy sequence converges. The

geodesics in H3 are Euclidean lines perpendicular to the x, y-plane and semi-circles

that are orthogonal to the x, y-plane. The volume of regions in H3 is computed using

the volume element dV = dxdydt
t3

. The orientation-preserving isometries of H3 are

Möbius transformations. These act on the x, y-plane plus a point at infinity, denoted

∂H3, and induce a unique map on H3. As a group, the set of Möbius transformations,

{z 7→ az+b
cz+d

| ad − bc = 1} with a, b, c, d ∈ C, is isomorphic to PSL2(C), which is

defined below.

Definition 2.2 The group PSL2(C) is the quotient group of SL2(C) and the subgroup

{±I} where I is the 2 × 2 identity matrix and SL2(C) is the set of 2 × 2 matrices

with complex entries and determinant equal to 1.
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The isomorphism between these two groups is given by the following correspondence:


 a b

c d


←→ z 7→ az + b

cz + d

where


 a b

c d


 represents the coset containing

 a b

c d

 and

 −a −b
−c −d

.

While isometries of hyperbolic 3-space should be denoted by an element of PSL2(C),

we denote such an element by representative in SL2(C) from the coset it represents.

For us specifically, this will mean that

 λ 0

0 1/λ

 and

 −λ 0

0 −1/λ

 correspond

to the same element of PSL2(C). Looking at the correspondence with Möbius trans-

formations above, both matrices correspond to z 7→ λ2z because the minus signs

cancel out. So, these eigenvalues, while unequal, are equivalent because they corre-

spond to the same isometry of hyperbolic 3-space.

Elements of PSL2(C) are characterized by their trace. That is, the geometry of

the isometry is determined by the value of the trace. Since the trace of a matrix

is invariant under conjugation, we may conjugate each type of element to a normal

form, i.e., Jordan canonical form. An element, γ, falls into one of four categories.

Elliptic elements have tr(γ) ∈ R and |tr(γ)| < 2. These elements can be conjugated

to

 eiθ 0

0 e−iθ

 ,

which is a rotation about the z−axis. Parabolic elements have tr(γ) = 2. These

elements can be conjugated to
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 1 1

0 1

 ,

which is a horizontal translation. Hyperbolic elements have tr(γ) ∈ R and |tr(γ)| > 2.

Loxodromic elements have tr(γ) ∈ C\R. Both hyperbolic and loxodromic elements

can be conjugated to

 λ 0

0 1/λ

 ,

which is a dilation that sends the z−axis to itself by a factor that depends on the

eigenvalue of the corresponding element in PSL2(C). If the element is loxodromic,

there is a screw motion that goes along with the dilation. Also, an element of the

above form is hyperbolic if and only if λ ∈ R and loxodromic if and only if λ ∈ C\R.

Note that isometries of hyperbolic 3-space map H3∪∂H3 to itself. By the Brouwer

fixed point theorem, hyperbolic isometries must fix at least one point in H3 ∪ ∂H3.

Furthermore, we can determine the fixed points of an element by the conjugated

form of each trace type. A parabolic element in normal form has one fixed point at

infinity. An elliptic element in normal form fixes the z−axis. A hyperbolic element

in normal form has two fixed points at 0 and ∞. Lastly, a loxodromic element in

normal form also has two fixed points at 0 and∞. Thus respectively, isometries that

are not necessarily in normal form correspond to fixing a line in hyperbolic space

with endpoints on the sphere at infinity, fixing one point on the sphere at infinity,

and fixing two points on the sphere at infinity. We will frequently refer to a group

of isometries that defines our manifold. In order to do that, we require the following

definitions.

Definition 2.3 A subgroup, Γ, of PSL2(C) is discrete if the induced topology on Γ

as a subspace of PSL2(C) is the discrete topology.
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Proposition 2.4 A subgroup, Γ, is discrete if and only if γn → Id, where γn ∈ Γ

implies γn = Id for sufficiently large values of n.

Definition 2.5 A Kleinian group is a discrete subgroup of PSL2(C).

A Kleinian group, Γ, acts properly discontinuously on H3. That is, for any γ ∈ Γ

and and compact subset K ⊂ H3, the cardinality of the set γK ∩K is finite. Then,

we may make the following definition of a fundamental domain.

Definition 2.6 A fundamental domain for a Kleinian group Γ is a closed set

F ⊂ H3 such that
⋃
γ∈Γ γF = H3, int(γF ) ∩ int(F ) = ∅, and the boundary of F has

measure zero, where int denotes the interior of a set.

Remark 2.7 As a side note: after an appropriate conjugation, an elliptic element

in a Kleinian group must have eigenvalues that are roots of unity. If they were not

roots of unity, then the group would not be discrete. This is easily seen by taking

successive powers of the element, noting that any power of such element will have

eigenvalues of norm 1, and the fact that the set {eniθ | n ∈ Z} is dense in the

unit circle precisely when eiθ is not a root of unity. In that case, we could produce

a sequence of elements that converged to the identity element and yet there would

be infinitely many elements in the sequence which were not the identity. This would

violate an equivalent condition for discreteness in Proposition 2.4. However, this does

not prohibit loxodromic elements from having an eigenvalue of reiθ where eiθ is not a

root of unity. The same argument does not apply since |r| 6= 1.

2.2 Hyperbolic 3-Manifolds

First, we give an informal review of covering spaces and their correspondence with

subgroups of the fundamental group of the space. A covering space is a topological

space along with a continuous map that surjects onto the “covered” space. Every
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point in the covered space has a neighborhood whose inverse image under the cover-

ing map consists of disjoint open sets that map homeomorphically onto the specified

neighborhood. An elementary result is that the fundamental group of the covering

space injects into the fundamental group of the covered space by the group homomor-

phism induced by the covering map. Thus, the fundamental group of the covering

space is isomorphic to a subgroup of the covered space. Furthermore, the index of

the injected subgroup is the cardinality of the inverse image of a point in the cov-

ered space. If the cardinality is finite, then we call the covering space finite-sheeted.

The classification of covering spaces theorem states that after fixing a base-point

in the covered space, conjugacy classes of subgroups of the fundamental group are

in direct correspondence with covering spaces up to isometry. Simply put, we may

use conjugacy classes of subgroups of the fundamental group and covering spaces

interchangeably. Specifically, we will be concerned about covering spaces that are

finite-sheeted. Shortly, we will use this terminology to develop an equivalence rela-

tion between two covering spaces (or subgroups). The following material comes from

Chapter 1 of [16].

A hyperbolic 3-manifold is a manifold which locally looks like hyperbolic 3-space,

i.e., the manifold is equipped with a Riemannian metric such that every point has a

neighborhood that is isometric to a ball in H3. If Γ is a torsion-free Kleinian group,

then Γ acts freely and properly discontinuously on H3. So, the quotient H3/Γ is an

orientable hyperbolic 3-manifold. For the converse, we have a theorem below, but,

first we require a few definitions.

Definition 2.8 Let g be an element of a group G. Then, g is a torsion element if

g has finite order in G.

Definition 2.9 A group G is said to be torsion-free if the only torsion element in

G is the identity element.
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Theorem 2.10 Let M be a hyperbolic 3-manifold. Then, M is isometric to H3/Γ

where Γ is a torsion-free Kleinian group.

Sometimes, our Kleinian group may not be torsion-free, i.e., it contains an elliptic

element, and Remark 2.7 shows that the eigenvalues are roots of unity. Therefore,

a Kleinian group is torsion-free if and only if it contains no elliptic elements. In the

case a Kleinian group is not torsion-free, we have the following definition.

Definition 2.11 A hyperbolic 3-orbifold is a quotient of H3 by a Kleinian group

Γ. Note that an orbifold is more general than a manifold because Γ may not be

torsion-free. Torsion elements have fixed points in hyperbolic 3-space.

Hyperbolic orbifolds are closely related to hyperbolic manifolds by the following

result of Selberg.

Theorem 2.12 (Selberg, 1960) Any finitely generated subgroup of SL2(C) has a

torsion-free subgroup of finite index.

Corollary 2.13 Every hyperbolic 3-orbifold of finite volume is finitely covered by a

hyperbolic 3-manifold.

We may use Kleinian group and hyperbolic 3-orbifold interchangeably, and we

may pass to a finite-sheeted covering space that is a hyperbolic 3-manifold. Group

terminology will generally be used in favor of manifold terminology. This is convenient

because we will see that properties of the manifold are reflected in characteristics of

elements of the Kleinian group, which are quite tangible as elements of PSL2(C).

A natural way to separate manifolds is via commensurability classes, which are

determined by finite-sheeted covering spaces. Throughout much of this paper, we will

investigate commensurability class invariants of arithmetic hyperbolic 3-manifolds.
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Definition 2.14 Two manifolds are commensurable if they share a common finite-

sheeted covering space. Two Kleinian groups, Γ1 and Γ2, are commensurable if

[Γ1 : Γ1 ∩ Γ2] and [Γ2 : Γ1 ∩ Γ2] are finite. More generally, two Kleinian groups are

commensurable in the wide sense if some conjugate of one of them is commen-

surable with the other.

Something very special about hyperbolic 3-manifolds (and more generally for any

dimension greater than or equal to 3) is that they are rigid. This is summed up in

the following theorem known as Mostow-Prasad Rigidity.

Theorem 2.15 Let Γ1 and Γ2 be finite covolume Kleinian groups and let φ : Γ1 → Γ2

be a group isomorphism. Then there exists an isometry of H3, g, such that for any

γ1 ∈ Γ1

φ(γ1) = gγ1g
−1

This is a very strong result. It says that isomorphic Kleinian groups are actually

conjugate, which is certainly not true for all groups. An equivalent statement given

in [16] is that if a compact orientable 3-manifolds has a hyperbolic structure, then

that structure is unique. This leads to the result that the volume of a hyperbolic

manifold is actually a topological invariant, which reinforces the idea that hyperbolic

3-manifolds are quite rigid.

Although there are orbifolds that are not manifolds, Selberg’s Lemma gives us

that every orbifold is covered by a hyperbolic 3-manifold. Also, commensurability

gives us a way of relating two hyperbolic manifolds. If two hyperbolic 3-manifolds,

or two Kleinian groups, are commensurable then we will see that they have isomor-

phic invariant quaternion algebras and equal invariant trace fields. At this point,

we mention that commensurability is an equivalence relation (which we have been

assuming for a little while). Later, we will isolate certain types of commensurability

classes that contain certain kinds of nice hyperbolic 3-manifolds. These will be arith-
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metic hyperbolic 3-manifolds. Much can be said about this subclass of hyperbolic

3-manifolds.

We have mentioned what happens when our Kleinian group contains elliptic ele-

ments. Below is a theorem that summarizes parabolic elements’ effect on the geometry

of the manifold. But first, note that any familiar term with the prefix co- means that

the fundamental domain has the property that follows the prefix. So, covolume refers

to the volume of the fundamental domain, F , which equals
∫
F
dV where dV is the

hyperbolic volume element.

Theorem 2.16 Let Γ be a finite covolume Kleinian group. Then Γ is cocompact if

and only if Γ contains no parabolic elements.

Lastly, what effect do loxodromic elements have on the hyperbolic 3-manifold?

They correspond to closed geodesics. Let γ be a loxodromic or hyperbolic element

of PSL2(C). As mentioned earlier, these elements have precisely two fixed points,

z, w ∈ C∞. The geodesic between z and w is called the axis of γ. The translation

length of γ is defined as `(γ) = infz∈H3{d(z, γ(z))}. This quantity is invariant under

conjugation by an isometry. Thus, we may conjugate γ to look like

 λ 0

0 1/λ

.

The closed geodesic that arises from this isometry comes from the identification of

two points on the axis of γ, and, furthermore, `(γ) = 2 · ln|λ|.

Definition 2.17 The length of a loxodromic element, γ, (conjugated as above) is

2ln|λ|.

Definition 2.18 The complex length of a loxodromic element, γ, (conjugated as

above) is 2ln|λ|+ 2iθ where 0 ≤ θ < 2π.

Recall in Section 1, we defined the length spectrum and the complex length spec-

trum. Now, we will restate those definitions.
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Definition 2.19 Let M be a compact hyperbolic 3-manifold. The length spectrum

of M is the collection of all real lengths of closed geodesics in M counted with their

multiplicities.

Definition 2.20 Let M be a compact hyperbolic 3-manifold. The complex length

spectrum of M is the collection of all complex lengths of closed geodesics in M

counted with their multiplicities.

Definition 2.21 Two compact hyperbolic 3-manifolds are iso-length-spectral if

their length spectra are identical.

Definition 2.22 Two compact hyperbolic 3-manifolds are complex iso-length-

spectral if their complex length spectra are identical.

Now, assume we have an hyperbolic 3-orbifold, H3/Γ, instead of a hyperbolic 3-

manifold. The length spectrum of Γ is defined identically, and we define the complex

length spectrum of Γ by changing it to a statement about the number conjugacy

classes of loxodromic elements of a given length.

Definition 2.23 Let Γ be a non-elementary Kleinian group. The multiplicity of a

complex length, ` + iθ, is the number of conjugacy classes of loxodromic elements in

Γ that share the same length.

Definition 2.24 Let Γ be a non-elementary Kleinian group. The complex length

spectrum of Γ is the collection of complex lengths of loxodromic elements counted

with their multiplicities.

Many theorems in Section 1 suppose we have a Kleinian group. The important

part to note is a Kleinian group, Γ, determines an orbifold, H3/Γ. Thus, our results

refer to orbifolds.

While we will later highlight the benefits of investigating arithmetic hyperbolic
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3-manifolds, some number theoretic results still hold for hyperbolic manifolds that

are not arithmetic. In order to prepare for this, we will now delve into the necessary

algebraic background.
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3 Algebraic Preliminaries

Algebraic number theory generalizes the concept of integer to arbitrary finite degree

extensions of the rational numbers. The inspiration for the definition of an algebraic

integer comes from the fact that the integral closure of the integers in the rational

numbers is precisely the integers, i.e., if a monic polynomial with integral coefficients

has a rational root, then the root is an integer. Another generalized concept is a

prime number. Since ideals are not necessarily principal, a prime in a number field,

or more specifically in the ring of algebraic integers, refers to a prime ideal. While

these concepts seem far from the realm of hyperbolic manifolds, we will see that the

relative tangibility of algebraic integers enables us to produce examples of eigenvalues

of loxodromic elements (along with help from the number theoretic software PARI),

and studying prime ideals in number fields will allow us to construct some particu-

larly nice quaternion algebras. These quaternion algebras can be used to construct

commensurability classes of arithmetic hyperbolic 3-manifolds.

3.1 Dedekind Domains

In order to extend the concept of an integer, some provisions must be made. It is

a well known fact that the unique factorization of the integers does not necessarily

hold in finite degree extensions of the rational numbers. This is due specifically

to the fact that the concepts of prime and irreducible are equivalent under certain

circumstances, but they are not equivalent in general. Fortunately, Dedekind domains

provide a different kind of unique factorization if we are willing to replace the idea of

a prime number with that of a prime ideal.

We assume the reader knows the definitions of the most basic terms: ring, subring,

and ideal. But, we will take some time to review the following terms in order to
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stress completeness. Also, we assume that our rings are commutative and contain a

multiplicative identity denoted as 1. The following material comes from the references

[5] and [21].

Definition 3.1 An ideal P is prime if P is properly contained in R and if whenever

the product ab ∈ R, then a ∈ P or b ∈ P . Also, an element p of a ring R is called

prime if the ideal generated by p is a prime ideal.

Later we will construct invariants (quaternion algebras and number fields) of arith-

metic hyperbolic 3-manifolds. Some classic results in algebraic number theory provide

a recipe for a quaternion algebra. We need a number field and a set of prime ideals.

(There are more specifications, but we will not elaborate yet.) Given a certain kind of

quaternion algebra we will be able to construct an arithmetic hyperbolic 3-manifold.

So, while these concepts may be from an introductory algebra class, they form the

basis of material to be used later.

Definition 3.2 An element u of a ring R is called a unit if there exists a v in R

such that uv = 1.

Lengths of closed geodesics in arithmetic hyperbolic 3-manifolds are of the form

2ln|λ| where λ is a specific type of unit.

Definition 3.3 Let r be an element of a ring R that is non-zero and not a unit.

Then, r is irreducible if whenever r = ab, then a or b is a unit in R.

Definition 3.4 An integral domain R is a unique factorization domain if every

element of R that is non-zero and not a unit has a decomposition into irreducible

elements that is unique up to multiplication by units.

Definition 3.5 An ideal M is maximal if the only ideals containing M are M and

R.
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Definition 3.6 An integral domain, R, is a ring such that if ab = 0, then a = 0

or b = 0.

Definition 3.7 Let R ⊂ S be a containment of rings. The integral closure of R is

the set of all elements of S that satisfy a monic polynomial with coefficients in

Definition 3.8 Let R ⊂ S be a containment of rings. A ring R is integrally closed

if R is equal to the integral closure of R in S.

If we wanted full generality, one usually defines an object called a module, then

proceeds to define a Noetherian module. The generality is eventually removed when

we observe that a ring is an R-module. As these definitions seem superfluous, we will

tailor our definitions to our situation.

Definition 3.9 A chain of sets is a sequence of subsets, S1 ⊆ S2 ⊆ . . . ⊆ Sn ⊆ . . .

A chain is said to stabilize if there are only finitely many distinct sets in the chain,

i.e., there exists an N such that if m,n ≥ N , then Sm = Sn.

Definition 3.10 A ring R is called Noetherian if every chain of subrings stabilizes.

Definition 3.11 An integral domain R is a Dedekind domain if it is Noetherian,

integrally closed, and every non-zero prime ideal is maximal.

Theorem 3.12 Let R be a Dedekind domain, P be the set of non-zero prime ideals

of R, and I be an ideal in R. Then, I can be uniquely expressed as follows:

I =
∏
℘∈P

℘n℘(I)

where n℘(I) ∈ Z and n℘(I) = 0 for all but finitely many prime ideals.

Here are some properties of the function n℘, which are valid for any ideals I,J

and any prime ideal ℘:

n℘(IJ ) = n℘(I) + n℘(J )
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I ⊂ R⇔ n℘(I) ≥ 0

I ⊂ J ⇔ n℘(I) ≥ n℘(J )

n℘(I + J ) = min(n℘(I), n℘(J ))

n℘(I ∩ J ) = max(n℘(I), n℘(J ))

We have completed the set up for generalizing the concept of an integer. Now, we

need to flesh out some definitions specifically dealing with finite degree field extensions

of the rational numbers.

3.2 Number Fields

These will be the most tangible invariants of hyperbolic manifolds. By use of PARI,

we will be able to produce polynomials whose roots are eigenvalues of matrices in

PSL2(C) that correspond to geodesics in arithmetic hyperbolic 3-manifolds and other

polynomials that can be used to construct fields that are invariant trace fields of

arithmetic hyperbolic 3-manifolds. The following material comes from Chapter 0 of

[16] and [21].

Definition 3.13 A number field, K, is a field extension of Q such that [K : Q] <

∞.

Definition 3.14 A complex number, α, is an algebraic number if there exists a

monic polynomial, f(x) ∈ Q[x], such that f(α) = 0.

Definition 3.15 A complex number, α, is an algebraic integer if there exists a

monic polynomial, f(x) ∈ Z[x], such that f(α) = 0.

Definition 3.16 A conjugate of an algebraic number is a root of the minimal poly-

nomial of the algebraic number.
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Theorem 3.17 Let K be a field of characteristic zero or a finite field, let K ′ be an

extension of degree n of K, and let C be an algebraically closed field containing K.

Then, there exist n distinct K−isomorphisms of K ′ into C.

Corollary 3.18 For an algebraic number, α, there are n complex Q-embeddings of

Q(α), where n is the degree of the minimal polynomial of α over Q.

Note that complex-conjugate pairs refer to x+ iy and x− iy in Cartesian coordi-

nates or reiθ and re−iθ in polar coordinates.

Definition 3.19 Let α be an algebraic number. The signature of α is (r, c) where r

is the number of real conjugates and c is the number of complex-conjugate pairs of con-

jugates. When the roots (or complex-conjugate pairs of roots) denote an embedding,

they are referred to as real or complex places.

Definition 3.20 An extension field K of the field F is simple if there exists an

element α ∈ K such that K = F (α). Furthermore, α is called a primitive element

of K/F .

Theorem 3.21 If K/F is finite and separable, then K/F is simple. In particular,

any finite extension of fields of characteristic 0 is simple.

Corollary 3.22 Any primitive element of a given number field has the same signa-

ture. Thus, we may speak of the signature of the number field as well.

We will be most interested in number fields with signature (n− 2, 1) and totally

imaginary quadratic extensions of such fields, which have signature (0, n). In less

opaque language, we are interested in number fields with exactly one complex place

(or exactly one pair of complex-conjugate embeddings) and quadratic extensions of

these fields in which all places are complex places.

The following theorem may be included with the previous section, but we wish to

emphasize the result for number fields. So, it is included here.
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Theorem 3.23 Let R be a ring (Q for example), A a subring of R (Z for example),

and x and y elements of R, which are integral over A. Then, x + y, x − y, and xy

are integral over A.

Theorem 3.24 The ring of integers of an algebraic number field is a Dedekind do-

main.

Therefore, we may speak of the ring of (algebraic) integers in a number field in the

same way that the ring of (algebraic) integers in the rational numbers is precisely the

integers. Something else to note is that all elements (besides 0) in a number field are

units. While this is true, we will use the term units to refer to the algebraic integers

that are units. Soon we will be able to connect the structure of the group of units

in an algebraic number field to the field’s signature using Dirichlet’s Unit Theorem.

Note that roots of unity, i.e. solutions to zn = 1 are an example of units. However,

units do not necessarily have finite multiplicative order. For example, 1+
√

5
2
∈ Q(

√
5)

has x2 − x − 1 as its minimal polynomial over Q. Then, 1+
√

5
2
· −1−

√
5

2
= 1, but

limn→∞

(
1+
√

5
2

)n
= ∞. We are interested in units because, later, we will see that

the eigenvalue of loxodromic and hyperbolic elements of PSL2(C) are units in some

number field, and we have already seen that eigenvalues of elliptic elements in a

Kleinian group must be roots of unity.

Theorem 3.25 (Dirichlet’s Unit Theorem) Let K be a number field, n its degree,

and let (r, c) be the signature of K. Set m = r + c − 1. The group of units of K is

isomorphic to Zm×G, where G is a finite cyclic group comprised of the roots of unity

contained in K.

What follows below illustrates the fact that we need to generalize the concept of

a prime number. Unique factorization of elements may fail in the ring of integers of

a finite extension of the rational numbers.
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Example 3.26 It is a well known fact that the rational integers factor uniquely into

a product of prime integers. For example, 24 = 23 · 3. But, this nice quality may

be forfeited if one ventures up to a finite degree extension of the rational numbers.

Consider the field Q(
√
−5) where the ring of integers is Z[

√
−5]. The element 6 has

two factorizations into irreducible elements: 2 · 3 and (1 −
√
−5) · (1 +

√
−5). This

is seen by noting that if the norm of an algebraic integer is ± a prime in Z, then

the element is an irreducible element in the ring of integers. Also, the norm of an

element, a+ b
√
D, in a quadratic extension of Q is a2 − b2D. Thus, we do not have

unique factorization. The work above shows a bypass around this difficulty. If we

pass to prime ideals, then this is no longer an issue and we can recover a property

that is close to the unique factorization characteristic of the rational integers. The

reason why this would remain unnoticed is that for the rational integers, the concept

of prime and irreducible are identical.

We mentioned that the eigenvalues of elements of arithmetic Kleinian groups will

be algebraic units. Something that will be useful as an invariant of the fields they

live in will be Galois groups. Before moving on with our current goal of generalizing

the concept of an integer, we will give the fundamental theorem of Galois theory.

Theorem 3.27 (Fundamental Theorem of Galois Theory) Let K/F be a Galois ex-

tension and set G = Gal(K/F ). Then, there is a bijection between subfields E of K

containing F and subgroups H of G. More specifically, E corresponds to the elements

of G fixing E, and H corresponds to the fixed field of H. These correspondences are

inverses of each other. Under this correspondence,

i) If E1, E2 correspond to H1, H2, then E1 ⊆ E2 if and only if H2 ≤ H1.

ii) [K : E] = |H| and [E : F ] = |G : H|, the index of H in G.

iii) K/E is always Galois, with Galois group Gal(K/E) = H.
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iv) E is Galois over F if and only if H is a normal subgroup in G.

v) If E1, E2 correspond to H1, H2, then the intersection E1 ∩ E2 corresponds to

the group 〈H1, H2〉 generated by H1 and H2 and the composite field E1E2 cor-

responds to the intersection H1 ∩ H2. Hence, the field lattice is the subgroup

lattice turned upside down.

Proposition 3.28 If K/Q is a Galois extension, then K has all real places or all

complex places.

Proof: This follows from the fact that each place corresponds to an embedding

of K into R or C determined by sending α such that K = Q(α) to a conjugate root

β. Since K is assumed to be Galois, all embeddings are actually automorphisms of

K. tu

Corollary 3.29 Fields with at least one complex place and at least one real place are

not Galois extensions of Q.

3.3 A Bridge and a Brief Aside

Example 3.26 demonstrates that we have to make some concessions in order to gener-

alize the fact that integers factor uniquely. We will show this is Section 3.4. However,

first we require a few more definitions.

Definition 3.30 The (field) norm of an algebraic number, α, is defined as NK/Q(α) =∏
σi

σi(α) where the product is taken over all Q-embeddings, σi : Q(α) ↪→ C.

Definition 3.31 The (field) trace of an algebraic number, α, is TrK/Q(α) =
∑
σi

σi(α)

where the sum is taken over all Q-embeddings, σi : Q(α) ↪→ C.

Proposition 3.32 Let K be a number field and OK the ring of integers. If α is a

non-zero element of OK, then |NK/Q (α) | is equal to the cardinality of OK/(α).



26

The proposition above justifies the following definition after we notice that if an

integral ideal I contains a non-zero element α, then the ideal generated by α is

contained in I. Thus, the cardinality of OK/I is less than or equal to the cardinality

of OK/(α).

Definition 3.33 The norm of a non-zero integral ideal I ⊂ OK is the cardinality of

OK/I.

Now, we define the Dedekind zeta function which is a generalization of the well-

known Riemann zeta function. This function is involved in determining the volume

of arithmetic hyperbolic 3-manifolds.

Definition 3.34 Let K be a number field. The Dedekind zeta function is

ζK(s) =
∑
I⊂OK

1

N(I)s

The function is defined for complex numbers, s, with real part greater than 1. If

we take K = Q, then the definition reduces to the Riemann zeta function.

3.4 Factorization of Prime Ideals

Now consider the situation where we have a finite extension, L, of a number field K.

The ring of integers in K, denoted OK , is a Dedekind domain. Given a prime ideal

℘ ⊂ OK , we know that ℘OL is an ideal contained in OL. Since OL is also a Dedekind

domain, ℘OL =
n∏
i=1

Peii where Pi are prime ideals contained in OL.

Proposition 3.35 In the discussion above, Pi where i = 1, . . . , n are the only prime

ideals contained in OL such that P ∩ OK = ℘.

Now we are ready to define what it means for a prime ideal to ramify in a field

extension and characterize which prime ideals ramify.
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Definition 3.36 Let ℘ ⊂ OK be a prime ideal, L/K a field extension, and ℘OL =
n∏
i=1

Peii . Then, ℘ is ramified with respect to a field extension L/K if there exists an

ei greater than 1.

Definition 3.37 The discriminant ∆K of a number field K/Q is defined as the

ideal generated by {det[σi(αj)]2}, where σi is an embedding of K into C, αj is a basis

of K/Q, and [σi(αj)] is an n× n matrix with [K : Q] = n.

Definition 3.38 The discriminant of L over K, denoted ∆L/K or ∆OL/OK is the

ideal of OK generated by the discriminants of bases of L over K which are contained

in OL.

Theorem 3.39 With the notation as above, a prime ideal ℘ ⊂ OK ramifies in OL

if and only if it contains the discriminant ∆OL/OK . Note that the discriminant is an

ideal and has a factorization that consists of finitely many primes ideals. Thus, only

finitely many primes ramify in a given field extension.

3.5 Non-Archimedean Local Fields

The aim of this section is to informally introduce local fields. They are prerequisite to

proving the Chebotarev Density Theorem (though not needed for its statement), and

they are needed to fully understand the notation in the section on quaternion algebras.

The descriptor, local, refers to the fact that the field is a locally compact topological

field with respect to a non-discrete topology. For our purposes, all local fields will

have characteristic zero. Local fields are completions of number fields in the sense

that every Cauchy sequence converges. This includes the Archimedean number fields

C and R, which are closed under Cauchy sequences when equipped with the usual

norms. Given a number field and an embedding into C, one may use the embedding to

derive a norm, which is simply norm(x) = |σ(x)|, where |·| denotes the usual complex

norm. Then, the completion of the field with respect to the aforementioned norm will
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be isomorphic to C or R depending on whether the embedding is real or complex.

A real embedding or complex-conjugate pair of embeddings are called infinite places.

Recall that they were called real and complex places in a previous section. Other

completions are the non-archimedean number fields, which arise from prime ideals.

Given a prime ideal, we can construct a norm and, then, a completion of that number

field. These are called finite places of the number field. Likewise, these fields are

complete in the sense that every Cauchy sequence converges. The important point

to take away from this section is that this very informal discussion of local fields only

serves to inform the reader of the terminology in the section on quaternion algebras.

Finally, the completion of a number field K at a place σ (whether finite or infinite)

is denoted Kσ, or K℘ if we want to emphasize that the place is finite.

3.6 Chebotarev Density Theorem

The Chebotarev Density Theorem is a result that specifies the statistical splitting

behavior of a prime ideal of number field in a finite-degree extension. Exactly what

is meant by statistical splitting behavior will be illuminated in an example following

the theorem. First, we give a basic definition of natural density of a set of rational

integers in order to put the definition of Dirichlet Density into perspective.

Definition 3.40 The natural density of a subset of positive integers, S, is defined

as limn→∞
S(n)
n

, where S(n) is the number of integers in S that are less than or equal

to n.

Now, instead of speaking about the density of a set in relation to the rational

integers, now we will introduce a definition that measures how dense a particular set

of prime ideals is with respect to the entire set of prime ideals. The counting function

S(n) now compares the number of prime ideals that split a certain way with the

total number of prime ideals, which lie over the rational prime p less than or equal
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to n. The density is the ratio of the size of these sets as n goes to infinity. While

this definition of density is quite natural, it is harder to compute than the Dirichlet

density, which is defined below. See [8] for a reference.

Definition 3.41 The Dirichlet density of a subset of primes, A, in a number field

is

lim
s→1+

∑
P∈A

N(P)−s

|log 1
1−s |

When the natural density of a set of prime ideals exists, the natural density is

equal to the Dirichlet density. Although, the converse is not true.

Remark 3.42 A simple observation is that there are infinitely many rational primes

and, thus, infinitely many prime ideals. Given that the Dirichlet density of a set of

prime ideals meshes with the natural density, the Dirichlet density of a finite set of

prime ideals must be zero. The contrapositive of this simple observation is that there

are infinitely many prime ideals in a set of non-zero density. See Chapter 4 Section

6 of [8] under Properties of Dirichlet Density.

Now, the following theorem will supply us with a multitude of prime ideals.

Theorem 3.43 (Chebotarev Density) Let K ′/K be a normal extension with Galois

group G. Let σ ∈ G and suppose σ has c conjugates in G. The set of primes ℘ of

K which have a prime divisor ℘′ in K ′ whose Frobenius automorphism is σ has a

density c/|G|.

We give the statement of the Chebotarev Density for completeness. However, all

we need is the following corollary, which is tailored to our situation. See Chapter

3 Section 2 of [8] for details as to why a prime splits completely if and only if its

Frobenius automorphism is the identity element.
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Corollary 3.44 For any finite collection of quadratic extensions of a number field

K, there are infinitely many primes of K that split completely in the entire collection

of quadratic extensions.

Proof: Let N be the Galois closure of the collection of quadratic extensions over

K. The set, S, of prime ideals of K that split completely has density 1/|G|, where

G is the Galois group of N over K. Recall 3.42, since 1/|G| is non-zero, there are

infinitely many prime ideals in S. Note that every prime ideal in S factors into exactly

[N : K] prime ideals in N . Let L be a quadratic extension of K in the collection and

℘ a prime of K that splits completely in N . If ℘ remains prime in L, then ℘ has

[N : L] prime factors in N . Since 2 · [N : L] = [N : K], we have a contradiction and

℘ must split in L (and, thus, split completely because [L : K] = 2).

Example 3.45 The Chebotarev Density Theorem specifies the likelihood of a prime

splitting in a certain way. The quadratic field Q(i) is a simple example of this phe-

nomenon. The ring of integers in Q(i) is Z[i]. Through elementary means, it can

be shown that the prime 2 ramifies in Z[i], primes p ≡ 3 mod 4 remain prime,

and primes p ≡ 1 mod 4 split completely. Since there are only finitely many ramified

primes, their density is zero. Otherwise, a prime either (completely) splits or remains

prime. Since the Galois group of Q(i) over Q is Z/2Z, the Frobenius automorphism

is either the identity element or the nontrivial element of the Galois group. Thus,

the density of the set of primes with a given Frobenius automorphism is 1/2. The

elementary method shows that “half” of the primes split and “half” remain prime,

and the theorem reinforces this intuitive notion.

3.7 Quaternion Algebras

Definition 3.46 A quaternion algebra, A over F is a four-dimensional F -space

with basis vectors 1, i, j, and k. Multiplication is defined such that 1A = 1F is the



31

multiplicative identity, i2 = a1, j2 = b1, and ij = −ji = k for some a, b ∈ F ∗ and

by extending multiplication linearly so that A is an associative algebra over F . A

quaternion algebra can be specified by
(
a,b
F

)
Definition 3.47 The reduced norm and reduced trace of an element x ∈ A are

n(x) = xx̄ ∈ F and tr(x) = x + x̄ ∈ F . Note that x̄ = a0 − a1i − a2j − a3k is the

conjugate of x = a0 + a1i+ a2j + a3k.

Definition 3.48 An integer of A is x ∈ A such that n(x) and tr(x) are integers of

F .

The following definition creates something analogous to the ring of integers in a

number field. Unfortunately, the integers of a quaternion algebra do not form a ring,

but Definition 3.50 corrects for such an inadequacy. The notion of ramification is

introduced and the discriminant of a quaternion algebra is defined. We will see that

only finitely many primes of a number field ramify in a quaternion algebra in the same

way only finitely many primes of a number field ramify in an algebraic extension of a

number field. While these definitions and theorems seem very abstract and without

purpose (to a topologist), there are theorems that will make use of these definitions

and theorems to produce results that will pertain to our situation, i.e., these number

theoretic objects will provide the framework to address the overall goal of this paper.

Remark 3.49 Previously in this section, F denoted the field over which the quater-

nion algebra, A, is defined. Now k will represent the number field over which A is

defined. We make the distinction because now we are narrowing our perspective to

that of a number field and, previously, k was used as one of the basis vectors of the

quaternion algebra.

Definition 3.50 An order O is a finitely generated ring of integers in A which con-

tains the ring of integers of k, denoted Rk, and kO = A.
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Note that the symbol O has previously been used to identify the ring of integers of

a number field. To avoid any confusion, O refers to an order in a quaternion algebra,

while Ok refers to the ring of integers of k. However, when both objects are referred

in a very close proximity as above, then Rk will denote the ring of integers of the

number field k.

Definition 3.51 A quaternion algebra A/k is ramified at a place, ν, of k if A
⊗

k kν

is the unique division algebra over kν. Otherwise, A splits at ν.

Now, we will state a theorem that provides equivalent statements dealing with

quadratic extensions of the number field, k, which our quaternion algebra lies over.

Recall that the ramification set contains places of the number field over which it is

defined. These correspond to real embeddings, complex-conjugate pairs of embed-

dings, or prime ideals of k. For a quadratic extension L/k, an infinite place of k, σ,

lifts to an embedding, σ̂, of L. A real embedding may or may not split and a complex

place always splits. A real embedding splits if [Lσ̂ : kσ] = 1 and does not split if

[Lσ̂ : kσ] = 2.

Theorem 3.52 Let L be a quadratic extension of k, where k is the number field over

which the quaternion algebra, A, is defined. Then, the following are equivalent:

i) L embeds in A.

ii) L splits A.

iii) L
⊗

k kν is a field for each ν ∈ Ram(A).

iv) Every element of Ram(A) does not split in L.

Definition 3.53 The discriminant of A/k, denoted ∆(A) is the product of prime

ideals:
∏

ν℘∈Ramf (A)

℘, where Ramf (A) is the set of finite places that ramify A.
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Theorem 3.54 (Classification of Quaternion Algebras) Let A1 and A2 be quaternion

algebras over the number field k and let Ram(A1) be the set of places where A1 is

ramified. Then,

i) The cardinality of Ram(A1) is even.

ii) A1
∼= A2 if and only if Ram(A1) = Ram(A2)

iii) For any finite set, denoted S, of places of k (excluding any complex places)

of even cardinality, then there exists a quaternion algebra A over k such that

Ram(A) = S.
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4 Combining Geometric and Algebraic Knowledge

4.1 Arithmetic Hyperbolic 3-Manifolds

Hyperbolic 3-manifolds are hard to study. More specifically, producing examples

of hyperbolic manifolds is tricky. The benefit of arithmetic hyperbolic 3-manifolds

is that they are much easier to produce. If one has a certain kind of quaternion

algebra and a certain kind of number field, then one may use these ingredients to

construct one. The burden is shifted to existence of a certain kind of number field,

and quaternion algebras, but the existence theorem for quaternion algebras greatly

lightens this burden to simply finding certain kinds of number fields. Under certain

circumstances, we may explicitly construct these types of number fields. Not only

is this class of hyperbolic manifolds easier to construct, but this class has a nice

characterization of commensurability, which relates to the quaternion algebra and

number field from which the groups are constructed.

Before embarking on our tour of arithmetic Kleinian groups, we will first state

some results that hold for a more general class of Kleinian groups. All of this material

can be found in [16].

Definition 4.1 Let Γ be a subgroup of PSL2(C). Then, Γ is elementary if the

action of Γ on H3 ∪ ∂H3 has a finite orbit. Otherwise, Γ is non-elementary.

Definition 4.2 Let Γ be a non-elementary subgroup of PSL2(C). Let Γ̂ = P−1(Γ),

where P is the surjective homomorphism from SL2(C) to PSL2(C) that mods out by

the subgroup {±I}. Then, the trace field of Γ, denoted by Q(tr Γ) is the field Q(tr

γ̂ : γ̂ ∈ Γ).

Theorem 4.3 Let Γ be a Kleinian group of finite covolume. Then the trace field of

Γ is a number field.
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Now we have the first appearance of a connection of hyperbolic 3-manifolds and

algebraic number theory. The proof relies on Mostow-Rigidity. Although, the trace

field of a finite covolume Kleinian group is always a number field. This is not a

commensurability invariant. The following is from [19].

Example 4.4 Consider the Kleinian group generated by the following two elements

 1 1

0 1

 ,

 1 0

−µ 1


where µ is a third root of unity equal to (−1 +

√
−3)/2. It is stated without proof that

this subgroup is an index 12 subgroup of the arithmetic group PSL2(O3) where O3 is

the set of algebraic integers in the field Q(
√
−3). Thus, the subgroup above is also of

finite covolume. Note, that multiplying the two elements above yields an element with

trace equal to 2− µ. Also, any product of powers of the two elements above will have

traces that are in Q(
√
−3). Thus, the trace field is Q(

√
−3). By adding,

 i 0

0 −i


we get a group such that the 2-generator subgroup above has index 2. By an appropri-

ate multiplication, we get an element with trace i/µ, which is a twelfth root of unity.

Hence, we have a commensurable groups with different trace fields.

We would like a notion of the trace field which is an invariant of the commen-

surability class. This is possible if we pass to a certain finite sheeted covering space

and take the trace field of that Kleinian group. Given a Kleinian group Γ, consider

Γ(2) = 〈γ2 | γ ∈ Γ〉. This is a finite index normal subgroup of Γ.

Theorem 4.5 Let Γ be a finitely-generated non-elementary subgroup of SL2(C). The
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trace field of Γ(2), denoted kΓ := Q(trΓ(2)), is an invariant of the commensurability

class of Γ. The field kΓ is called the invariant trace field of Γ.

While we are listing invariants of commensurability classes of Kleinian groups,

we might as well add to the list. Another invariant is a certain quaternion algebra

associated to a Kleinian group. Let Γ be a subgroup of SL2(C). Then, we define A0Γ

as the set {Σaiγi | ai ∈ Q(tr Γ(2)), γi ∈ Γ(2)}.

Theorem 4.6 Let Γ be a non-elementary subgroup of SL2(C). Then, A0Γ is a

quaternion algebra.

Similar to the trace field, we must pass to a finite-sheeted covering space and take

the quaternion algebra associated to that Kleinian group. This is actually a corollary

to Theorem 4.5.

Corollary 4.7 If Γ is a finitely generated, non-elementary subgroup of SL2(C), then

the quaternion algebra AΓ := A0Γ is an invariant of the commensurability class of Γ.

The quaternion algebra AΓ is called the invariant quaternion algebra of Γ.

Now, we finally define arithmetic Kleinian groups, but first we require one more

definition. Recall that an order, O, of a quaternion algebra, A/k, is a finitely gener-

ated ring of integers in A which contains the ring of integers of k, Rk, and kO = A.

This material in Chapter 8.2 of [16]

Definition 4.8 Let O be an order of A. Then, the elements of norm 1, denoted

O1, consists of all α ∈ O such that n(α) = 1 where n(·) is the reduced norm.

Definition 4.9 Let k be a number field with exactly one complex place and let A be a

quaternion algebra over k which is ramified at all real places. Let ρ be an embedding

of A into M2(C) and let O be an Rk-order of A. Then, a subgroup γ of PSL2(C)

is an arithmetic Kleinian group if it is commensurable with some Pρ(O1), where
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P refers to projectivizing. Hyperbolic 3-manifolds are called arithmetic when their

fundamental groups are arithmetic Kleinian groups.

Definition 4.10 An arithmetic Kleinian group is derived (from a quaternion alge-

bra) if, in addition to the criteria in the previous definition, it is contained in some

Pρ(O1).

We note now that groups constructed this way are discrete and have finite covol-

ume. These facts take proof, which are omitted but may be found in Chapter 8 of

[16].

Theorem 4.11 If Γ is an arithmetic Kleinian group which is commensurable with

ρ(O1), where O is an order in a quaternion algebra A/k and ρ is a k-embedding, then

kΓ = k and AΓ = ρ(A).

What follows here is a characterization when an arithmetic Kleinian group is

not cocompact. Notice that an arithmetic Kleinian group’s compactness is entirely

determined by arithmetic data.

Theorem 4.12 Let Γ be an arithmetic Kleinian group commensurable with Pρ(O1),

where O is an order in a quaternion algebra A/k. The following are equivalent:

i) Γ is not cocompact.

ii) k = Q(
√
−d) and A = M2(k)

Similarly, other arithmetic data determine precisely when a Kleinian group is

arithmetic.

Theorem 4.13 Let Γ be a finite-covolume Kleinian group. Then Γ is arithmetic if

and only if the following three conditions hold.
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i) kΓ is a number field with exactly one complex place.

ii) tr(γ) is an algebraic integer for all γ ∈ Γ.

iii) AΓ is ramified at all real places of kΓ.

And, here we see that an arithmetic Kleinian group has a finite-index subgroup

that is a derived Kleinian group, which is a stronger version of arithmeticity.

Theorem 4.14 Let Γ be a finite-covolume Kleinian group. Then, Γ is arithmetic if

and only if Γ(2) is derived from a quaternion algebra.

Another characterization of derived is contained in the following theorem:

Theorem 4.15 Let Γ be a finite-covolume Kleinian group. Then Γ is derived if and

only if the following three conditions hold.

i) kΓ is a number field with exactly one complex place.

ii) tr(γ) is an algebraic integer for all γ ∈ Γ.

iii) |σ(tr γ)| ≤ 2.

When our Kleinian group is derived from a quaternion algebra, we have a better

handle of what algebraic integers may appear as eigenvalues.

Proposition 4.16 Let Γ be an arithmetic Kleinian group derived from a quaternion

algebra A/k.

1) Let λ be an eigenvalue for a loxodromic element in Γ. If λ is not real then

k = Q(λ+ 1/λ).

2) Let Γ be derived from a quaternion algebra, and γ ∈ Γ a loxodromic element

with eigenvalues {λ, 1/λ}. Then the following possibilities hold for λ = reiθ.
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i) λ is not real and the Galois conjugates off of the unit circle are λ, 1/λ, λ̄,

and 1/λ̄.

ii) λ is real and the Galois conjugates off of the unit circle are λ and 1/λ.

Furthermore, λ is an algebraic integer with palindromic minimal polynomial. If λ is

not real, then k(λ) = Q(λ), and [k(λ) : k] = 2. If λ is real, then Q(λ+ 1/λ), denoted

k+ is the maximal totally real subfield of k, [k : k+] = 2 and Q(λ) is a degree two

extension of k+.

Proposition 4.17 Any λ that fulfills the conditions of part 2(i) or 2(ii) of the above

proposition occurs as an eigenvalue of an element of some arithmetic Kleinian group

derived from a quaternion algebra.

Something we will need later is a criterion as to when a certain eigenvalue appears

in an arithmetic Kleinian group. Recall that Theorem 3.52 gives a list of equivalent

criteria for when a quadratic extension embeds into a quaternion algebra.

Theorem 4.18 Let Γ be a Kleinian group derived from a quaternion algebra A/k.

Let L be a quadratic extension of k. Then L embeds in A if and only if Γ contains an

element γ of infinite order with L = k(λ) where λ is the eigenvalue of γ with norm

greater than 1.

4.2 Why Arithmetic Hyperbolic 3-Manifolds?

Constructing hyperbolic 3-manifolds is hard in general. As previously mentioned, a

good reason for studying arithmetic hyperbolic 3-manifolds is that they are easy to

construct. Another motivation is that arithmetic data can tell you something about

geometric qualities of the manifold. First, we will provide the volume formula for

Kleinian groups arising from maximal orders. Then, a later theorem can be used

to construct hyperbolic 3-manifolds in which all geodesics are simple. Note that the
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following two discussion points will not be used later, but are included to highlight the

ease of working with arithmetic hyperbolic 3-manifolds and the utility of arithmetic

data with respect to hyperbolic 3-manifolds.

Theorem 4.19 Let k be a number field with exactly one complex place, A/k be a

quaternion algebra ramified at all real places of k, O be a maximal order in A, P be

a prime ideal of k, and ∆(A) the discriminant of A. Then,

V ol(H3/Pρ(O1)) = (4π2)1−[k:Q]|∆k|3/2ζk(2)
∏

P |∆(A)

(N(P )− 1)

The covolume of an arithmetic Kleinian group is entirely determined by arithmetic

information. The degree of k over Q, discriminant of k, value of the Dedekind zeta

function at 2, and norms of prime ideals which ramify in A entirely determine the

volume of such a group. While not all arithmetic Kleinian groups arise this way,

they will share a finite-sheeted cover and, therefore, the covolume of any arithmetic

Kleinian group will be a rational multiple of the volume formula given in the theorem

above.

The following theorem and corollary give a method to produce arithmetic Kleinian

groups that only contain simple closed geodesics. Simple closed geodesics are closed

geodesics that do not self intersect.

Theorem 4.20 If M has a non-simple closed geodesic, then AΓ ∼= (a,b
kΓ

) for some

a ∈ kΓ and b ∈ kΓ ∩ R.

Corollary 4.21 Suppose that there are no elements a ∈ kΓ and b ∈ kΓ ∩ R such

that AΓ ∼= (a,b
kΓ

). Then, all of the closed geodesics of the closed hyperbolic 3-manifold

M = H3/Γ are simple.

While the corollary above does not necessarily need an arithmetic hyperbolic 3-

manifold, the construction of such Kleinian groups in [16] uses arithmetic Kleinian
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groups because they are easier to deal with than general Kleinian groups.

Another instance of algebraic data being able to describe geometric phenomena

deals with the lengths of closed geodesics in arithmetic hyperbolic 3-manifolds. Recall

Proposition 4.16 says the lengths of closed geodesics are highly related to certain roots

of integral polynomials which have most roots on the unit circle. Unlike the volume

formula and manifolds with only simple geodesics, the section will be used later in

this paper.
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5 Previous Results

These results provide the basis and theme for further investigation and can be found

in [4]. Recall our main goal is to see how many angles may be paired with the norm

of a loxodromic eigenvalue and yield a loxodromic eigenvalue. The main result from

[4] states that two arithmetic hyperbolic 3-manifolds are commensurable if and only

if their rational length sets are equal. Now, we are assuming that we have two iso-

length spectral arithmetic hyperbolic 3-manifolds, which implies their rational length

sets are equal. Thus, they are commensurable, and then they have equal invariant

trace fields. Furthermore, if we have two loxodromic eigenvalues of equal norm from

the pair of iso-length-spectral manifolds, then the loxodromic eigenvalues must be

quadratic extensions of the same trace field. This discussion sparks our interest in

the trace field.

Definition 5.1 Let k be a number field. Then the conjugate of k, denoted k̄, is the

field consisting of the complex conjugates of all elements in k.

Example 5.2 Let k be a number field. If k is a Galois field, then k = k̄. So, for

a positive, square-free integer D, Q(
√
−D) = Q(

√
−D).An example is that is not a

Galois extension is Q(i
√

2) = Q(−i
√

2) = Q(i
√

2). Furthermore, it is possible for

k 6= k̄. For example, Q(µ
√

3) 6= Q(µ̄
√

3) = Q(µ
√

3)

Recall that we would like to fix the norm, r, of a loxodromic eigenvalue and de-

termine how many eiθ may be paired with r such that reiθ is a loxodromic eigenvalue.

Previous work was done in the case that k = k̄. The following theorems, proved in

[4], give us information about what we can glean from this case.

Proposition 5.3 Let λ = reiθ be an eigenvalue of a loxodromic element in an arith-

metic Kleinian group derived from a quaternion algebra A/k. Suppose that k = k̄,

and let m = [k : Q].
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i) If k(λ) = k(λ̄), then eiθ is a root of unity of degree less than or equal to 4m over

Q. In this case, [Q(r2) : Q] < 2m.

ii) If k(λ) 6= k(λ̄), then r2 and e2iθ are roots of the same irreducible monic polyno-

mial over Q, and hence eiθ is not a root of unity. In this case, [Q(r2) : Q] = 2m.

Proposition 5.4 Let Γ1 and Γ2 be arithmetic Kleinian groups derived from quater-

nion algebras A1 and A2 over k. Let γ1 ∈ Γ1 and γ2 ∈ Γ2 be loxodromic isometries

with corresponding eigenvalues λ1 = reiθ1 and λ2 = reiθ2, with |λ1|, |λ2| > 1.

i) If k(λ1) 6= k(λ2), then λ1
2 = λ̄2

2.

ii) If k(λ1) = k(λ2) and r2, e2iθ1, and e2iθ2 are roots of the same irreducible monic

polynomial over Q, then λ1
2 = λ2

2.

So, under the circumstances of part ii), the angle is unique. (Recall that λ and

−λ correspond to a geodesic of the same complex length) Under the circumstances

of part i), the angle can have two values.

Remark 5.5 Later it will be proved that the second statement above has an analogue

if we remove the requirement on the conjugates of r2. That is, if k(λ1) = k(λ2),

then λ1
n = λ2

n for some n. Stated in another way, the first eigenvalue is equal to

the product of the second eigenvalue and an nth root of unity. Also, it will be shown

that for every n, we can find a pair of eigenvalues such that n is the smallest power

fulfilling the aforementioned equation. We do have a bound for n. Adjoining the root

of unity, µ, to k is necessarily a quadratic extension of k. As such, µ+ 1/µ ∈ k. So,

φ(n)/2 ≤ [k : Q] where φ is Euler’s totient function.

The following theorem helps us partially determine eiθ for a given r in the case

that k = k̄.

Corollary 5.6 In addition to the supposition of Proposition 5.4, suppose k = k̄, then
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i) If [Q(r2) : Q] < 2m, then both e2iθ1 and e2iθ2 are roots of unity of degree less

than or equal to 4m over Q.

ii) If [Q(r2) : Q] = 2m, then either λ1
2 = λ2

2 or λ1
2 = λ̄2

2.

Definition 5.7 Let Γ be a Kleinian group and let γ be a loxodromic element of Γ

with eigenvalue λ, meaning that tr(γ) = λ+ 1/λ, with |λ| > 1. Then, γ is generic if

no power of λ is real.

An equivalent definition of a generic loxodromic eigenvalue, λ = reiθ, is that eiθ

is not a root of unity. Note if eiθ were a root of unity, then some power of λ would

be real, and, thus, the corresponding normal form of the element in PSL2(C) would

have real trace.

Recall that a loxodromic eigenvalue, λ = reiθ, is generic if eiθ is not a root of unity.

So, for a given r that comes from a trace field that is fixed under complex conjugation,

norms of generic loxodromic elements may only be paired with two possible angles.

This creates a problem that will be discussed after 5.12. However, norms of non-

generic loxodromic elements are roots of unity and it is less clear as to which roots

of unity may be paired with these norms, but we will have a characterization of such

roots with Theorem 7.8.

The following is a standard result for invariant trace fields of arithmetic Kleinian

groups. Recall that Theorem 4.12 states if an arithmetic Kleinian group with invariant

quaternion algebra A/k is not cocompact then [k : Q] = 2.

Proposition 5.8 Let Γ be an arithmetic Kleinian group with invariant trace field k

such that [k : k ∩ R] > 2. Then, Γ does not contain a hyperbolic element.

Proof: If [k : k ∩ R] > 2, then [k : Q] > 2, which implies k has a real place.

Suppose γ ∈ Γ is a hyperbolic element with eigenvalue λ. Then, γ2m ∈ Γ(2) for any

m ≥ 1 and λ2m + 1/λ2m ∈ k ∩ R. Since [k : k ∩ R] > 2, there exists an embedding
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σ : k ↪→ R such that σ|k∩R is the identity map. Therefore, for some value of m, |σ(tr

γ2m)| = |tr γ2m| > 2. However, by Theorem 4.15 part 3), it must be the case that

|σ(tr γ2m)| ≤ 2. Hence, Γ cannot contain a hyperbolic element. tu

Note that this also implies that Γ only contains generic loxodromic elements if

[k : k ∩ R] > 2. Since otherwise, some power of a non-generic loxodromic element is

hyperbolic. The next proposition is a standard result for number fields and holds as

long as k has at least one complex place. However, we state it here as it is relevant

to our specific setting.

Proposition 5.9 Let k be the invariant trace field of an arithmetic Kleinian group

Γ. Then, [k : k ∩ R] = 2 if and only if k = k̄.

Proof: Suppose [k : k ∩ R] = 2. Then, k is a Galois extension of k ∩ R. Thus,

any non-trivial isomorphism that fixes k ∩ R must be an automorphism of k and,

furthermore, generate the Galois group. Conjugation fixes k ∩ R but does not fix

λ + 1/λ since λ /∈ R and |λ| > 1. Hence, conjugation is an automorphism of k. So,

we may conclude k = k̄.

Now, suppose k = k̄. By Proposition 4.16, Q(λ + 1/λ) = Q(λ̄ + 1/λ̄) for any

loxodromic eigenvalue of γ. Then, x2 − (α + ᾱ)x + α · ᾱ where α = λ + 1/λ is the

minimal polynomial of λ+ 1/λ over k ∩ R. The coefficients are real and elements of

k, since k = k̄. Since k 6⊂ R, it must be that [k : k ∩ R] = 2. tu

Corollary 5.10 Let k be the invariant trace field of of an arithmetic Kleinian group

Γ. If [k : Q] is odd, then k 6= k̄.

Proof: If [k : Q] is odd, then 2 - [k : Q]. Since [k : k ∩ R] | [k : Q], this implies

that [k : k ∩ R] 6= 2. By Proposition 5.9, this implies that k 6= k̄. tu
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For the moment, suppose that a derived Kleinian group, Γ, contains loxodromic el-

ements with eigenvalues of λ and λ̄. Then, by Theorem 4.16 part 1), k = Q(λ+1/λ) =

Q(λ̄ + 1/λ̄) = k̄. So, if k 6= k̄, then Γ cannot contain generic loxodromic elements

with eigenvalues that are conjugate. Conjugate eigenvalues may be a serious problem

for isospectrality. There is no way to control the number of times an eigenvalue and

its conjugate occur in the length spectrum. (Although number theoretic methods

exist to compute multiplicities in certain cases. These can be found in [26].) So, the

case where k 6= k̄ is nicer. Also, if k 6= k̄, then this does get rid of purely hyperbolic

elements and their angles which are roots of unity, but we will see that the roots of

unity do manifest themselves and create another problem. The following result may

be found in [24].

Theorem 5.11 Let K be a Galois extension of Q with Galois group G := G(K/Q),

and let k1 and k2 be subfields of K corresponding to subgroups H1 and H2 of G

respectively. Then, the following conditions are equivalent:

i) Each conjugacy class of G meets H1 and H2 in the same number of elements.

ii) The same primes p are ramified in k1 and k2, and, for the non-ramified p,

the decomposition of p in k1 and k2 is the same.

iii) The zeta functions of k1 and k2 are the same.

The following corollary follows either from the observation that isomorphic fields

have the same zeta function (it is a number field invariant) so iii) holds, or that

subgroups of the Galois group corresponding to isomorphic subfields of a Galois ex-

tension are conjugate subgroups and, thus, i) holds. (For the curious reader, the

converse is not true. There exist number fields with identical zeta functions that are

not isomorphic number fields. See [18].)



47

Corollary 5.12 Let k1 and k2 be quadratic extensions of the number field k. If k1

and k2 are isomorphic as fields, then any prime in k has identical splitting behavior

in k1 and k2.

In the case where k = k̄, the only solace we may offer is that if k(λ) = Q(λ)

embeds in a quaternion algebra where λ is a generic loxodromic eigenvalue, then

k(λ̄) = Q(λ̄) also embeds in the same quaternion algebra. Consider the following

argument. Since λ and λ̄ are roots of the same integral polynomial, the corresponding

fields, Q(λ) = k(λ) and Q(λ̄) = k(λ̄), are isomorphic. By Corollary 5.12, both fields

have identical prime splitting behavior, which determines whether or not the field

embeds in a given quaternion algebra by Theorem 3.52. However, this gives us no

control over the multiplicity of the eigenvalue and just because k(λ) embeds into a

quaternion algebra does not imply we have an element in a Kleinian group with an

eigenvalue of λ. It only implies that an element in our Kleinian group has a power of

λ as its eigenvalue. While this is not a definite obstruction, we do not have the tools

necessary to investigate this.
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6 New Results

6.1 Angles of Loxodromic Eigenvalues

In this section, we prove:

Theorem 1.5 Let r = |λ| be the norm of a loxodromic eigenvalue from an element

γ in a Kleinian group derived from a quaternion algebra A/k. Then, there are only

finitely many eiθ such that reiθ is a loxodromic eigenvalue in a Kleinian group derived

from A/k.

Previous work was done to make progress on the possible equivalence of real-length

and complex-length isospectrality in arithmetic hyperbolic 3-manifolds. We will see

how much the algebraic restrictions on the lengths of geodesics determine the angle.

For example, if the angle corresponding to the length of the geodesic were unique,

then we would have a positive solution to Question 1.4. From an algebraic perspec-

tive, the angle is not unique, i.e., there do exist loxodromic eigenvalues of equal norm

but different angles. We will give examples of such polynomials (if you believe the

output of PARI). Even though this is the case, important information can still be

obtained from this perspective.

Note that an eigenvalue of a loxodromic element is equivalent to the complex

length of the loxodromic element (the length is the complex logarithm of the eigen-

value). Since the eigenvalues are algebraic integers, it is more convenient to deal with

the eigenvalues as opposed to the actual length of a closed geodesic. In this section

λ = reiθ is an eigenvalue of a loxodromic eigenvalue in an arithmetic Kleinian group

Γ derived from a quaternion algebra A/k where k is a number field with exactly one

complex place such that [k : Q] = m. The first thing we will show is that the number

of angles that may be paired with a given length is finite. A frequently-used fact is
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that the conjugates of λ have norm equal to r, 1/r, or 1, which follows from Theorem

4.16 part 3 i). Furthermore, this implies that any product of conjugates of λ has

norm equal to r2, 1/r2, r, 1/r, or 1.

Lemma 6.1 Let λ = reiθ be a loxodromic eigenvalue from a Kleinian group derived

from A/k such that |λ| = r > 1. Then, the conjugates of r2 = λ · λ̄ and e2iθ = λ/λ̄

are r2, 1/r2, reiτ , 1/reiτ , or eiτ where τ varies depending on the given product.

Proof: Recall from Theorem 4.16 part 3 i) that the conjugates of λ look like λ, λ̄,

1/λ, 1/λ̄ or eiφ. Note, to exactly determine the conjugates of the product, we need to

know all elements in the Galois group of Nλ. (Recall that Nλ is the splitting field for

the minimal polynomial of λ or, equivalently, the Galois closure of Q(λ).) However,

what we desire is to know all of the possibilities. There are eight possible products

of the aforementioned quantities when we exclude products such as λ · 1/λ = 1,

which does not give a possible conjugate of r2. The possible valid products with λ

are r2 = λ · λ̄, e2iθ = λ · 1/λ̄, and reiτ = λ · eiφ. The remaining valid products of

λ̄ are e−2iθ = λ̄ · 1/λ and reiτ = λ̄ · eiφ. The remaining valid products of 1/λ are

1/r2 = 1/λ · 1/λ̄ and 1/reiτ = 1/λ · eiφ. Lastly, the remaining valid products of eiφ1

are eiτ = eiφ1 · eiφ2 . tu

The following proof relies on the fact that if a set of algebraic integers has uni-

formly bounded degree and the norms of the conjugates are uniformly bounded away

from 0 and ∞, then the set has finite cardinality. To see this, let α1, α2, . . . , αn be

the conjugates corresponding to a degree n polynomial f . Then, f(x) equals

n∏
i=1

(x− αi)

and the coefficients of f are symmetric polynomials in αi. Furthermore, we are looking
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at algebraic integers. So, the coefficients of the polynomial are integers. By bounding

the degree and norm of αi, the norm of the symmetric polynomials are bounded.

Hence, this implies there are only finitely many polynomials with integer coefficients

that correspond to the prescribed bounds.

Finally, we state some notation. Let α be an algebraic number. Then, we de-

note the Galois (or normal) closure of Q(α) as Nα. The Galois closure is simply the

splitting field for a polynomial that defines the field. Let K/F be a Galois extension.

We denote the Galois group of K/F by G(K/F ). Also, note that for a loxodromic

eigenvalue λ = reiθ, eiθ 6= ±1.

Proof of Theorem 1.5: By Proposition 4.16, λ is an algebraic integer, and,

thus, all conjugates of λ are algebraic integers, since they satisfy the same monic,

integral polynomial. Recall that 1/λ is a conjugate of λ. By Theorem 3.23, algebraic

integers form a ring. So, r2 = λ · λ̄ and 1/r2 = 1/λ · 1/λ̄ are also algebraic integers.

Since r and 1/r satisfy the polynomials x2− r2 and x2−1/r2, r and 1/r are algebraic

integers as well. Furthermore, algebraic integers are closed under multiplication. So,

eiθ = 1/r · reiθ is also an algebraic integer. Let σ ∈ G(Nr,eiθ/Q). We will consider all

σ that fix r. (The set of all such automorphisms is nonempty, since the identity map

is an automorphism that fixes r.) Note that from Theorem 4.16 the conjugates of λ

are known. If we assume that r is fixed under some embedding into C, then we can

determine the image of eiθ under the embedding as well.

Claim: If σ(r) = r, then σ(eiθ) = e±iθ.

Suppose by way of contradiction, there exists σ such that σ(r) = r and σ(reiθ) =

1/λ, 1/λ̄, or eiφ. First, assume σ(λ) = 1/λ̄. (If σ(λ) = 1/λ, then compose σ

with conjugation. Note that σ(r) will still equal r.) Then, σ(reiθ) = r · σ(eiθ),

which implies σ(eiθ) = 1/r2 · eiθ and also σ(e2iθ) = 1/r4 · e2iθ. Thus, e2iθ has

a conjugate with norm 1/r4, which is a contradiction by Lemma 6.1. Second,
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assume σ(reiθ) = eiφ. Then, σ(eiθ) = 1/r · eiφ and, furthermore, σ(e2iθ) =

1/r2 · e2iφ. By Lemma 6.1, the only possible conjugate of e2iθ with norm equal

to 1/r2 is precisely 1/r2. But, this implies eiφ = ±1, which is a contradiction.

By Theorem 3.27, Q(eiθ + e−iθ) is a subset of Q(r), which implies [Q(eiθ) : Q] is

bounded because [Q(r) : Q] is fixed and Q(eiθ) is a degree 2 extension of Q(eiθ+e−iθ).

Therefore, the degree of the minimal polynomial of eiθ is bounded. In this case, since

|σ(eiθ)| = |σ(reiθ)|/|σ(r)| and the norm of the conjugates of reiθ and r are bounded,

the norm of the conjugates of eiθ are bounded. Therefore, the set of loxodromic angles

with a corresponding loxodromic eigenvalue of norm equal to r has bounded degree

and all its conjugates have bounded norm. Hence, there are only finitely many such

values. tu

Now, there is a natural discussion that follows the proof of Theorem 1.5. However,

it does not address the main goals outlined in the introduction. As a result, we have

move this discussion to Section 7.2.

Remark 6.2 Consider an algebraic integer, α 6= 1, such that 1/α is a root of the

same minimal polynomial. Let σ be any embedding of Q(α) into C, and notice that σ

induces an embedding of Q(α+1/α) into C. Then, Q(α+1/α) is fixed by an embedding

if and only if α 7→ α±1. One implication is clear. To show the other implication,

assume that Q(α + 1/α) is fixed by an embedding. Then, α + 1/α = σ(α + 1/α) =

σ(α) + 1/σ(α). There are at most two solutions to the equation z + 1/z = β. To

see this, multiply both size by z and subtract βz from both sides, which yields the

quadratic equation z2 − βz + 1. Therefore, if Q(α + 1/α) is fixed by an embedding,

then α 7→ α±1.

Before we prove the corollary, consider a loxodromic eigenvalue with λ = ri. Then,

Q(i + 1/i) = Q ⊂ Q(r). Therefore, in the following corollary we do not consider the



52

case where eiθ = i. This corollary will be used in Section 6.6, which contains some

results that are not central to our investigation and may be skipped if so desired.

Corollary 6.3 Let λ = reiθ with eiθ 6= ±i,±1. If 1/r is a conjugate of r, then

Q(eiθ + e−iθ) ⊆ Q(r + 1/r). Otherwise, if 1/r is not a conjugate of r, then Q(eiθ +

e−iθ) = Q(r).

Proof: From the proof of Proposition 1.5, we see that Q(eiθ + e−iθ) ⊆ Q(r).

Recall, an automorphism of Nλ sends λ to some element of {λ, 1/λ, λ̄, 1/λ̄, e±iφk}.

Let σ ∈ G(Nr,eiθ/Q). Now, the proof breaks down into two cases.

Case 1: 1/r is a conjugate of r.

By Remark 6.2, we must show σ(r) = 1/r implies σ(eiθ) = e±iθ. Suppose σ(λ) =

λ. Then, 1/r · σ(eiθ) = σ(reiθ) = reiθ. Multiplication by r yields σ(eiθ) = r2eiθ,

which implies σ(e2iθ) = r4e2iθ. But, a conjugate of e2iθ cannot have norm

exceeding r2 by Lemma 6.1. Thus, we have a contradiction. If σ(λ) = λ̄, then

compose with conjugation to achieve the previous contradiction. If σ(λ) = 1/λ,

then, 1/r·σ(eiθ) = σ(reiθ) = 1/r·e−iθ. Multiplication by 1/r yields σ(eiθ) = e−iθ.

If σ(λ) = 1/λ̄, then 1/r · σ(eiθ) = σ(reiθ) = 1/r · eiθ. Canceling 1/r from both

sides, we see σ(eiθ) = eiθ. Finally, if σ(λ) = eiφ, another similar argument

shows σ(e2iθ) = r2e2iφ. But, the only possible conjugate of e2iθ of norm r2 is

precisely the real number r2 by Lemma 6.1. This implies that eiφ = ±1, which

is a contradiction.

Case 2: 1/r is not a conjugate of r.

The proof of Proposition 1.5 shows that Q(eiθ + e−iθ) ⊆ Q(r). Then, Q(eiθ +

e−iθ) = Q(r) if we show any automorphism sending eiθ to e±iθ fixes r. We can

assume that σ(eiθ) = eiθ because, otherwise, we may compose with conjugation.

Using the assumption that σ(eiθ) = eiθ, we can show the following. If λ is sent

to λ, λ̄, 1/λ, 1/λ̄, or eiφ, then we can conclude σ(r) = r, σ(r2) = r2e−4iθ,
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σ(r2) = 1/r2 · e−4iθ, σ(r) = 1/r, or σ(r) = ei(φ−θ), respectively. By Lemma 6.1,

the second and third possibility implies that eiθ is a fourth root of unity. The

fourth possibility directly implies that 1/r is a conjugate of r. Finally, the fifth

possibility implies that 1/r is a conjugate of r by Lemma 7.7. Both of these

possibilities cannot occur. Hence, r is fixed under σ. tu

6.2 Trace Fields of Degree 3

Thus far, the known results give us a fairly clear picture of how much a length of

a geodesic determines the twist of a geodesic when the trace field is closed under

complex conjugation. Naturally, one may ask what happens when the trace field

is not closed under complex conjugation. Now, we will investigate a particularly

manageable and enlightening case when the degree of the trace field is equal to 3.

Proposition 6.4 Let k be a number field with one complex place. If [k : Q] = 3,

then k 6= k̄.

Proof: Suppose k = Q(α). Let ᾱ ∈ C and β ∈ R be the conjugates of α. If

k = k̄, then Q(α) = Q(ᾱ) = Q(β). This is impossible since Q(β) ⊆ R. tu

Furthermore, the Galois group of the Galois closure of a trace field with [k : Q] = 3

is isomorphic to S3. To see this fact, considering the following. The only other

possibility is Z3 (see Chapter 14.6 of [5] for an explanation), which would imply that

k is Galois. Although, if G(Nk/Q) ∼= Z3, then k = k̄, which contradicts Proposition

6.25.

Proposition 6.5 Let λ be a loxodromic eigenvalue where [k : Q] = m. Then, [Nλ :

Q] ≤ 2mm!. Note that k = Q(λ+ 1/λ). So, [Q(λ) : Q] = 2m.

Proof: The Galois group of the closure of k has order at most m!. By Lemma 7.7,

we know that if α is a conjugate of λ, then 1/α is a conjugate of λ. Hence adjoining
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α to the Galois closure of k adds at least two roots because fields are closed under

division. tu

We can begin to see why this case is such an asset. All fields with exactly one

complex place and degree equal to 3 are not closed under complex conjugation. This

specific case will help us make conjectures about trace fields of any degree with k 6= k̄.

Now, we turn to PARI to aid the investigation. Pari will help us compute the Galois

groups of polynomials. The Galois groups are a good starting point. When the trace

field is closed under complex conjugation, the angle of the loxodromic eigenvalue was

partially determined by certain Galois conjugates of r2 = λ · λ̄.

Now, the reader may either assume that the minimal polynomial of a loxodromic

eigenvalue must be palindromic, i.e., the ith coefficient ai equals the (n−i)th coefficient

an−i where n is the degree of the polynomial and 0 ≤ i ≤ n, or (s)he may look at Sec-

tion 7.2 for an in-depth explanation of this fact. A census of polynomials of the form

x6 +ax5 + bx4 + cx3 + bx2 +ax+ 1 where |a|, |b|, |c| ≤ 10 was taken using PARI. Note

that this polynomial is palindromic. First, all reducible polynomials were filtered out

of the census. Then, all polynomials with at least one real root were filtered out of

the census. All polynomials that remained were minimal polynomials of loxodromic

eigenvalues (with the exception of any cyclotomic polynomials that were removed as

well). An irreducible, palindromic polynomial of degree six with all complex roots

must have at least one pair of conjugate roots with norm 1, since roots with norm

not equal to 1 occur in quadruplets, i.e., α, 1/α, ᾱ, and 1/ᾱ. By Proposition 4.17, all

of the polynomials in the census are minimal polynomials of loxodromic eigenvalues.

Furthermore, by Proposition 5.8 and Proposition 5.9, these are generic loxodromic

eigenvalues.

By Proposition 6.5 and [3], the only possible Galois groups for the Galois closure

of Q(λ) with trace fields of degree 3 are Z6, S3, D6, A4, S4, A4 × Z2, and S4 × Z2.
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Multiple polynomials in the census had Galois group S3, D6, S4, and S4 × Z2. Using

group theoretic arguments, one can show that Z6, A4, and A4 × Z2 cannot occur as

Galois groups of loxodromic eigenvalues. By the comment after Proposition 6.25, the

trace field of a degree 3 extension must have Galois group that is isomorphic to S3.

This would require Z6, A4, and A4 × Z2 to have normal subgroups whose quotient is

isomorphic to S3, which is not the case. A quotient of an abelian group is abelian,

so Z6 is impossible. A4 is impossible because it has no normal subgroups of order

2. Finally A4 × Z2 is impossible because mod-ing out by a normal subgroup must

annihilate the Z2 factor, but again A4 has no normal subgroup of order 2.

This section deals with the enumeration of the Galois groups of loxodromic eigen-

values that arise from trace fields of degree 3. The possible Galois groups are iso-

morphic to S3, D6, S4, and S4 × Z2. First of all, recall that a loxodromic eigenvalue

that arises from a trace field of degree 3 has a degree of 6. Furthermore, λ = reiθ has

conjugates λ, 1/λ, λ̄, 1/λ̄, e = eiφ, and 1/e = e−iφ. The motivation for the discussion

that follows is that Theorem 1.7 is stated in terms of the degree of r2 and Theorem

1.8 is stated in terms of the Galois group of Nr2 . We will eventually use Theorem

1.8 to prove Theorem 1.7 as a corollary, but we need to establish a correspondence

between the degree of r2 and the Galois group of Nr2 in order to translate a statement

about the Galois group of Nr2 into a statement about the degree of r2.

Group 1: S4 × Z2

When the Galois group is S4×Z2, any map that preserves the relation σ(1/z) =

1/σ(z) is valid. This follows from simple counting principles. There are 6 choices

for λ. Once you decide where λ maps, then the image of 1/λ is determined.

Then, there are 4 choices for λ̄. Once you decide where λ̄ maps, then the image

of 1/λ̄ is determined. Finally, there are 2 choices for e. Once you decide where

e maps, then the image of 1/e is determined. Furthermore, 6 · 4 · 2 = 48, which

is the order of S4 × Z2. Therefore, any valid map is an element of S4 × Z2.
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Then, the degree of r2 in this case is 12 because r2 = λλ̄, the images of λ and λ̄

are independent of each other, and this gives us 6 · 4/2 = 12 conjugates. Thus,

the conjugates (reciprocals are not listed) of r2 are r2, e2iθ, λeiφ, λe−iφ, λ̄eiφ, and

λ̄e−iφ. Hence, [Q(r2) : Q] = [Q(e2iθ) : Q] = 12. Notice that r2 and e2iθ share

the same minimal polynomial over Q. Thus by Proposition 5.4, |λ| has a unique

argument.

Group 2: S4

While it is possible to enumerate all the elements of S4, this is tedious and the

motivation is to determine the conjugates of r2. This can be avoided by showing

that the degree of r2 is 12. Also, note that r2 can have at most 12 conjugates

from the description of the Galois group when it is isomorphic to S4×Z2. This

case requires the most ingenuity to discovering the conjugates of r2. The key

idea is that the group of all valid maps from the set of conjugates to itself is

isomorphic to S4 × Z2. What we need to do is sift through these elements and

only select those that are contained in S4. Note that there is only one subgroup

of S4×Z2 that is isomorphic to S4. A convenient fact is that S4×Z2 contains a

nontrivial center. So, our approach is either an element of S4 ×Z2 is contained

within S4, or if not, maybe we can find the only nontrivial element of the center

of S4 × Z2, then the product of this nontrivial element and the element not

contained in S4 × Z2 is contained in S4 × Z2.

The element of order two in the center is the map σ : z 7→ 1/z where z is

any conjugate of λ. Notice this is true because if we have an automorphism

τ : x 7→ y, then

(σ ◦ τ)(x) = σ(y) = 1/y
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and

(τ ◦ σ)(x) = τ(1/x) = 1/τ(x) = 1/y

Therefore, z 7→ 1/z is the element of order two in the center of S4 × Z2. Now,

consider an element, τ , of S4 × Z2 that maps λ to x and λ̄ to y. By a previous

argument, we may choose x and y to be any distinct conjugates. If τ is an

element of the subgroup S4, then xy is a conjugate of r2 = λλ̄. However, if τ

is not an element of S4, then we may represent it as a product of τ ′ that lies

in S4 and σ the element of order two in the center. Post-composing with σ

yields an element of S4 such that λ maps to 1/x and λ̄ maps to 1/y. So, r2

maps to 1/xy. Therefore, for all possible conjugates of r2 either xy or 1/xy is a

conjugate. However, recall that e2iθ is a possible conjugate. So, this says that

r2 has at least six conjugates with no two being reciprocals of one another and

either e2iθ or e−2iθ is one of the six conjugates. By Lemma 7.7, we know that if

r2 has a conjugate of norm 1, then all reciprocals of roots are also roots. This

implies that the degree of r2 is 12, which means r2 has the maximum number

of conjugates.

The conjugates (reciprocals are not listed) of r2 are r2, e2iθ, λeiφ, λe−iφ, λ̄eiφ, and

λ̄e−iφ. Hence, [Q(r2) : Q] = [Q(e2iθ) : Q] = 12. Notice that r2 and e2iθ share

the same minimal polynomial over Q. Thus by Proposition 5.4, |λ| has a unique

argument.

Group 3: D6
∼= Z6 o Z2

An explicit set of maps for the Galois group D6 must respect the set of rigid

isometries of a regular hexagon. So, we must label the vertices of a hexagon in

such a way that respects: σ(1/z) = 1/σ(z). First, the hexagon must be labeled

such that z and 1/z are on opposite corners of the hexagon. Otherwise, there

would exist a map that fixed z and did not fix 1/z. To see this, look at the
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isometry that reflects about the line between the vertex labeled z vertex and the

vertex opposite z, which we have assumed is not labeled 1/z. Second, complex

conjugation is an element of order 2 that does not fix any of the conjugates since

they are all non-real. The rotation of order 2 cannot be complex conjugation

because we have already labeled the opposite vertex to z as 1/z. This means

that conjugation has to be a reflection that moves all the vertices. Therefore, λ

has to be adjacent to λ̄. The remaining two vertices must be labeled e and 1/e.

These two requirements uniquely determine the labeling up to a rigid isometry

of the hexagon. One such reading of the vertices in a counter-clockwise fashion

yields the following list: λ, e, 1/λ̄, 1/λ, 1/e, and λ̄.

By looking at the images of λ and λ̄ under the same element of the Galois group,

we can determine that the conjugates of r2 are r2, 1/r2, 1/λ ·eiφ, 1/λ̄ ·e−iφ, λe−iφ,

and λ̄eiφ. Hence, [Q(r2) : Q] = 6. The conjugates of e2iθ are e2iθ, e−2iθ, 1/λ ·

e−iφ, 1/λ̄ · e−iφ, λeiφ, and λ̄e−iφ. Hence, [Q(e2iθ) : Q] = 6. Notice that e2iθ is a

conjugate of another loxodromic eigenvalue with the same norm. At this point,

we have found a criterion that allows for non-unique angles.

Group 4: S3

Now, we will explicitly enumerate the elements of the Galois group when it is

S3. Note in this case the element of the Galois group is entirely determined

by the image of any conjugate of λ because [Q(λ) : Q] = 6, which is the order

of S3. So, Q(λ) is a Galois extension of Q, and, furthermore, Q(z) is equal

to Q(λ) where z is any conjugate of λ. An explicit set of maps for the Galois

group S3 must include the identity permutation and conjugation represented as

(λ, λ̄)(1/λ, 1/λ̄)(e, 1/e). Also, there must be a permutation, σ, that transposes

λ and 1/λ. This permutation must have order 2 because the order of a per-

mutation is the least common multiple of the length of the cycles when written
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as disjoint cycles and no element of S3 has order 6 or order 4. Furthermore,

σ cannot send e to 1/e because conjugation already does that. So, we have

(λ, 1/λ)(λ̄, e)(1/λ̄, 1/e). Note that there is some ambiguity here. Does λ̄ 7→ e

or does λ̄ 7→ 1/e? To resolve this, we realize that one of the two has to occur.

If the second occurs rename 1/e as e and rename e as 1/e. Composing with

conjugation yields a new element: (λ, 1/λ̄, e)(1/λ, λ̄, 1/e), which has order 3.

By composing the element of order 3 with itself, we get the following permu-

tation: (λ, e, 1/λ̄)(1/λ, 1/e, λ̄). Finally, composing the previous element with

conjugation yields (λ, 1/e)(1/λ, e)(λ̄, 1/λ̄).

By looking at the images of λ and λ̄ under the same element of the Galois group,

we can determine that the conjugates of r2 are r2, 1/λ·eiφ, and 1/λ̄·e−iφ. Hence,

[Q(r2) : Q] = 3. The conjugates of e2iθ are e2iθ, e−2iθ, 1/λ · e−iφ, 1/λ̄ · e−iφ, λeiφ,

and λ̄e−iφ. Hence, [Q(e2iθ) : Q] = 6. Again, notice that e2iθ is a conjugate of

another loxodromic eigenvalue.

Now, we know that the only Galois groups that might impede the uniqueness of

the angle are S3 and D6. An interesting feature about these groups is that, while

r2 and e2iθ are not Galois conjugates, e2iθ is a Galois conjugate of a loxodromic

eigenvalue. This is a special feature of degree 3 trace fields. Further investigation

produced two loxodromic eigenvalues with equal norms but different minimal polyno-

mials: x6 +3x5 +3x4−10x3 +3x2 +3x+1 and x6 +6x5 +12x4 +10x3 +12x2 +6x+1.

Computations suggested that the second eigenvalue was obtained by multiplying the

first eigenvalue by a sixth root of unity. Now, we have a possible characterization when

the length of a geodesic does not uniquely determine the angle. In the next section,

we will see that if Q(λ) contains nontrivial roots of unity, then the angle is not unique.
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6.3 Roots of Unity

In this section, we prove:

Theorem 1.6 Let r = |λ| be the norm of a loxodromic eigenvalue from an element

γ1 and γ2 in Kleinian groups Γ1 and Γ2 derived from a quaternion algebra A/k. If

λ1 = reiθ1, λ2 = reiθ2, and λ1 6= ±λ̄2, then λ1/λ2 is a root of unity.

Now we return to the question, when is the angle of a loxodromic eigenvalue not

uniquely determined? As hinted at before and the title of this section it has precisely

to do with roots of unity. That is, if the field generated by a loxodromic eigenvalue

contains nontrivial roots of unity, then the angle of the loxodromic eigenvalue is not

unique. First, we give a useful result of Kronecker [22] from [12] and a lower bound

for Euler’s totient function from [11], where φ(n) is the number of positive integers

less than or equal to n that are relatively prime to n.

Theorem 6.6 (Kronecker, 1857) Let α 6= 0 be an algebraic integer. Then, α is a

root of unity if and only if all conjugates of α have norm at most 1.

Theorem 6.7 Let φ be Euler’s totient function. Then, φ(n) ≥
√
n for n 6= 2, 6.

The following proposition is a standard result that can be found in [5].

Proposition 6.8 Let µ be an nth root of unity. Then, the degree of the minimal

polynomial of µ is φ(n).

Remark 6.9 There are only finitely many roots of unity in any number field. This

follows from the previous proposition and theorem along with the fact that the degree

of a subfield of a number field divides the degree of the number field.

Proof of Theorem 1.6: We do not need to worry about the case where k = k̄

because Corollary 5.6 shows that λ1 = ±λ2 or λ1 = ±λ̄2 for generic loxodromic
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eigenvalues and λ1/λ2 is a root of unity for non-generic loxodromic eigenvalues. Fur-

thermore, if λ1 6= ±λ̄2, then, by the contrapositive of part 1) of Proposition 5.4, we

know that Q(λ1) = Q(λ2). Note that we are assuming that the trace fields are the

same, i.e., Q(λ1 + 1/λ1) = Q(λ2 + 1/λ2).

Therefore, we have the following quadratic field extension

Q(λ1) = L = Q(λ2)∣∣∣∣
Q(λ1 + 1/λ1) = k = Q(λ2 + 1/λ2)

We need to show that for any σ ∈ G(Nλ1/Q), |σ(λ1)| = |σ(λ2)|. Then, the norm

of any conjugate of λ1/λ2 is 1, and, by a result of Kronecker, λ1/λ2 is a root of

unity. Let σ ∈ G(Nλ1/Q). Recall that part 3i) of Theorem 4.16 states that the only

conjugates of λ that are not on the unit circle are λ, λ̄, 1/λ, and 1/λ̄.

Case 1: Suppose σ(λ1) = λ1. Then, σ is the identity map on Q(λ1), which

equals Q(λ2). So, σ is the identity map on Q(λ2), and, thus, σ(λ2) = λ2.

Case 2: Suppose σ(λ1) = 1/λ1. Then, σ(1/λ1) = λ1, which implies σ fixes

Q(λ1 + 1/λ1), but σ does not fix Q(λ1). Due to the equalities mentioned above,

σ fixes Q(λ2 + 1/λ2), but σ does not fix Q(λ2). Since the field extension is

degree 2, σ(λ2) = 1/λ2.

Case 3: Suppose σ(λ1) = λ̄1. Then, this map is complex conjugation. So,

σ(λ2) = λ̄2.

Case 4: Suppose σ(λ1) = 1/λ̄1, but σ(λ2) 6= 1/λ̄2. Composing with complex

conjugation yields σ(λ1) = 1/λ1 and σ(λ2) 6= 1/λ2, which contradicts Case 2.
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Therefore, σ(λ1) = λ1 ⇔ σ(λ2) = λ2, σ(λ1) = 1/λ1 ⇔ σ(λ2) = 1/λ2, σ(λ1) =

λ̄1 ⇔ σ(λ2) = λ̄2, and σ(λ1) = 1/λ̄1 ⇔ σ(λ2) = 1/λ̄2. The only case left to consider

is if σ(λ1) lies on the unit circle. However, by the four cases above, this implies that

σ(λ2) also lies on the unit circle. Hence, |σ(λ1)| = |σ(λ2)|. tu

Now that we have proved Theorem 1.6, we see that roots of unity play an im-

portant role when the angle of a loxodromic eigenvalue is not unique. Recall that

Theorem 1.7 and Theorem 1.8 deal with invariant trace fields of prime degree. A

question that arises is “what roots of unity, µ, make k(µ) a quadratic extension of

k?” First, we require Lemma 6.10, but after we have Corollary 6.11, which answers

this question.

Lemma 6.10 Let k be a number field with exactly one complex place with [k : Q] 6= 2

(or equivalently k has at least one real embedding). If L is a quadratic extension of k

that contains a nontrivial root of unity, then µ 6∈ k and µ+ 1/µ ∈ k.

Proof: All conjugates of a non-trivial root of unity are not real, and all conjugates

of µ + 1/µ (= µ+ µ̄) are real. Therefore, since k has a real embedding µ 6∈ k. This

implies that L = k(µ) where µ is a non-trivial root of unity. The minimal polynomial

of µ over k must be a degree 2 polynomial with the following form: x2−(µ+α)x+µ·α

where α is a conjugate of µ (and, thus, a root of unity) and µ+ α, µ · α ∈ k.

Claim: α = 1/µ

Note that α = ±1/µ, since µ · α ∈ k has a real embedding and the only real

roots of unity are ±1. Suppose α = −1/µ. Consider the image of µ under τ , a

real embedding of k, in which τ(µ− 1/µ) is necessarily real number. Then,

τ(µ− 1/µ) = τ(µ)− 1/τ(µ) = τ(µ)− τ(µ)

Note that since the conjugate of a root of unity is a root of unity, τ(µ) is a
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root of unity, and, furthermore, the complex-conjugate of τ(µ) is 1/τ(µ). Now

consider z − z̄ where z is a complex number. If z = x + iy with x, y ∈ R,

then z̄ = x − iy. So, z − z̄ = 2iy. Thus, the difference of a complex number

and its conjugate is real if and only if y = 0. Therefore, the imaginary part of

τ(µ) must be zero, which implies τ(µ) = ±1. The only conjugates of ±1 is ±1.

Therefore, this implies that µ = ±1. However, this would contradict the fact

that µ is a non-trivial root of unity. Therefore, α = 1/µ.

Therefore, the minimal polynomial of µ over k is x2 − (µ+ 1/µ)x+ 1, which implies

µ+ 1/µ ∈ k. tu

Corollary 6.11 Let k/Q be a field with exactly one complex place. If [k : Q] = p 6= 2,

where p is a prime. Then, λ1/λ2 is 1, −1, a primitive third root of unity, a primitive

fourth root of unity, or a primitive sixth root of unity.

We have the following field extension diagram where L = Q(λ1) = Q(λ2) :

L

| 2

k∣∣∣∣p
Q

Proof: Let µ be a non-trivial root of unity. Then, µ + 1/µ = µ + µ̄ is a real

number with only real conjugates. This is because for a complex number z = x+ iy,

z + z̄ = 2x, which is clearly a real number. Furthermore, any conjugate of µ+ 1/µ is

a real number because any embedding of µ sends this number to τ(µ)+1/τ(µ), which

is a sum of complex conjugates and so is real as well. Therefore, if k has a complex
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embedding, [k : Q] = p where p is prime, and µ+ 1/µ ∈ k, then µ+ 1/µ must lie in a

proper subfield of k. Since the only proper subfield of k is Q, µ+ 1/µ ∈ Q. The only

such roots of unity, µ, such that µ + 1/µ ∈ Q are 1, −1, the primitive third roots of

unity, the primitive fourth roots of unity, and the primitive sixth roots of unity. tu

Remark 6.12 Now that we have Corollary 6.11 above, it is worth noting what quadratic

fields contain the fourth and sixth roots of unity. The former is clearly contained in

Q(
√
−1), since i :=

√
−1 is a generator for the fourth roots of unity. The latter

is contained in Q(
√
−3). To see this, a generator for the third roots of unity is

e2πi/3 = cos(2πi/3) + isin(2πi/3) = −1/2 + i
√

3/2 = −1/2 +
√
−3/2. Therefore,

Q(e2πi/3) = Q(
√
−3). Furthermore, −e2πi/3 is a primitive sixth root of unity con-

tained in Q(
√
−3).

Up to this point, we see that what may obstruct the equivalence of real length

isospectrality and complex length isospectrality is the appearance of roots of unity.

While adjoining primitive third and fourth roots of unity to any trace field yields

a degree 2 extension that contains a loxodromic eigenvalue, we still need to know if

multiplication of a loxodromic eigenvalue by a root of unity yields another loxodromic

eigenvalue. The following proposition answers that question.

Proposition 6.13 Let λ be a generic loxodromic eigenvalue with conjugates λ, 1/λ,

λ̄, 1/λ̄ and e±iφk for k = 1, . . . , n, and suppose [k : Q] > 2. Then, for every root of

unity µ ∈ Q(λ), λµ is a generic loxodromic eigenvalue with conjugates λµ, 1/λµ, λ̄µ̄,

1/λ̄µ̄ and e±iτj for j = 1, . . . , n

Proof: Lemma 6.10 shows µ+ 1/µ ∈ k and µ 6∈ k. Now, we need to ensure that

the only conjugates of λµ with norm not equal to 1 are λµ, 1/λµ, λ̄µ̄, and 1/λ̄µ̄.

Let σ ∈ G(Nλ/Q). If σ fixes λ, then σ also fixes µ. Also, if σ(λ) = 1/λ, then σ
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restricted to k(λ) is an element of G(k(λ)/k). Since µ /∈ k, σ does not fix µ. The

only other possibility is that σ sends µ to 1/µ. Also, since λ has a conjugate of norm

1 and all conjugates of µ have norm 1, it follows that λµ has a conjugate of norm 1.

Suppose λµ has a conjugate with norm not equal to 1 that is different from the four

possibilities above, i.e., a conjugate such as λµ′,λ̄µ̄′, 1/λµ′, or 1/λ̄µ̄′. We refer to this

list as (1). Since λ has a conjugate with norm equal to 1, its minimal polynomial is

palindromic by Lemma 7.7. If λ is conjugate to any of (1), then it is conjugate to all

of them. So we may suppose that σ(λµ) = λµ
′

for some embedding σ.

Claim: σ(λ) = λ

Note that σ must send λ to a conjugate and that σ must send µ to another root

of unity. Since |σ(λµ)| = r, by Theorem 4.16 part 3 i) the image of λ must be

λ or λ̄. If the image of λ is λ̄, then

λµ′ = σ(λµ) = σ(λ) · σ(µ) = λ̄ · σ(µ) = λ · λ̄
λ
· σ(µ) = λ · e2iθ · σ(µ)

Using the ends of the equalities above and dividing each side by λ implies

µ/σ(µ) = e2iθ. Conjugates of roots of unity are roots of unity, and the roots of

unity form a group under multiplication. So, this implies that µ/σ(µ) is a root

of unity, but this is a contradiction because λ is a generic loxodromic eigenvalue.

Therefore, σ must send λ to λ.

Finally, notice λµ /∈ k, since λµ has at least four non-real conjugates which would

exclude it from being contained in a field with exactly one complex place. So, λµ is

a loxodromic eigenvalue necessarily over the same quaternion algebras as λ. tu

Now, a natural question is which roots of unity may appear over a particular trace

field, and, more generally, under what circumstances does a quadratic extension of
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a trace field contain a loxodromic eigenvalue? These question will be answered by

Corollary 6.17 and Proposition 6.16, respectively. The following is a result from

Chapter 12 of [16] that we require to answer the aforementioned questions.

Theorem 6.14 Let Γ be a Kleinian group derived from a quaternion algebra A/k.

Then, L embeds in A if and only if Γ contains an element γ of infinite order such

that L = k(λ) where λ is an eigenvalue of γ.

The following theorem is a restatement of Theorem 3.52 in language relevant to

our setting. As a result, we restate it here.

Theorem 6.15 Suppose that Γ is derived from a quaternion algebra A/k and γ is

a loxodromic element of Γ with eigenvalue λ. Then, a quadratic extension, L, of k

embeds in A/k if and only if no place of k which splits in L is ramified in A/k.

Note that there are other equivalent conditions (see Theorem 3.52) to having a

quadratic extension of k embed in a quaternion algebra over k, but we prefer the

equivalent statement in terms of places of a number field.

Proposition 6.16 If L is a quadratic extension of a number field, k with exactly one

complex place, has no real embeddings, then L contains a loxodromic eigenvalue.

Proof: By Theorem 6.15, L embeds into a quaternion algebra A/k if and only

if no place of k which splits in L is ramified in A. Quaternion algebras that occur

as the invariant quaternion algebra of some Kleinian group are ramified at all real

places of k. If L has no real places, then no infinite place of k splits in L. Now, by

the classification of quaternion algebras we may choose RamfA = ∅. By Theorem

4.18, we know that L embeds in A if and only if there exists a Kleinian group Γ and

an element γ ∈ Γ such that L = k(λγ). tu
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While we can choose RamfA = ∅, using the Chebotarev density Theorem, we

could find an appropriate number of primes of k that do not split in L to put into

RamfA so that RamA is even.

Corollary 6.17 Let k be a number field with exactly one complex place. Suppose that

µ+ 1/µ ∈ k where µ is a nontrivial root of unity. Then, k(µ) contains a loxodromic

eigenvalue of some Kleinian group Γ derived from some quaternion algebra over k.

Proof: Since µ + 1/µ ∈ k and k has exactly one complex place, µ /∈ k. Fur-

thermore, x2 + (µ+ 1/µ)x + 1 is the minimal polynomial of µ over k. Therefore,

[k(µ) : k] = 2. Also, µ has no real embeddings. So, all embeddings of k(µ) are

non-real. tu

Let µ be a primitive third, fourth, or sixth root of unity. Then, taking any number

field, k, with exactly one complex place such that k 6= k̄ and adjoining µ yields a

number field that contains a generic loxodromic eigenvalue, by Corollary 6.17, and

also a nontrivial root of unity. Furthermore, the product of that loxodromic eigenvalue

with the nontrivial root of unity yields a loxodromic eigenvalue with equal norm but

different angle by Proposition 6.13. One tangential question is “does the angle of

a generic loxodromic eigenvalue completely determine the norm?” The answers to

these questions can be found in Section 7.1.

We have investigated the problem of finding loxodromic elements with equal norms

but unequal angles quite thoroughly. However, one question that remains is the

following: for every root of unity, does there exist a trace field such that adjoining

the root of unity results in a quadratic extension? This will be answered later after

we are in need of a result from Chapter 12 of [16] that will help us with a completely

separate result. But, now we return to the degree 3 case and more generally the

degree p case where p is a prime number not equal to 2 in lieu of the results of this

section.
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6.4 Back to Degree 3 and Onward to Degree p

In this section, we prove the following theorems:

Theorem 1.7 Let r = |λ| be the norm of a loxodromic eigenvalue from an element γ

in an arithmetic Kleinian group derived from a quaternion algebra A/k over a number

field k with [k : Q] = 3. Suppose that the discriminant of the trace field is −d, where

d > 0 is a square-free integer. Then, the only possibilities for the degree of r2 are 3,

6, and 12.

i) If [Q(r2) : Q] = 12, then the angle of a loxodromic eigenvalue with norm r is

unique.

ii) Suppose [Q(r2) : Q] = 3. Then, the angle of a loxodromic eigenvalue with

norm r is unique if and only if d 6= 1, 3.

iii) Suppose [Q(r2) : Q] = 6. Then, the angle of a loxodromic eigenvalue with

norm r is unique if and only if Q(r2) does not contain
√
d (if d 6= 1) or

√
3d.

Theorem 1.8 Let r = |λ| be the norm of a loxodromic eigenvalue from an element

γ in a Kleinian group derived from a quaternion algebra A/k with [k : Q] = p where

p is a prime not equal to 2. Then, there is a unique quadratic extension contained

in the Galois closure of the trace field. If the quadratic extension is Q(
√
−d), where

d > 0 is a square-free integer.

i) If the Galois group of Nr2 is not isomorphic to Sp or Sp×Z2, then the angle

is unique.

ii) If the Galois group of Nr2 is isomorphic to Sp. Then, the angle of a loxo-

dromic eigenvalue with norm r is unique if and only if d 6= 1, 3.
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iii) If the Galois group of Nr2 is isomorphic to Sp × Z2. Then, the angle of a

loxodromic eigenvalue with norm r is unique if and only if the Galois closure of

r2 does not contain
√
d (if d 6= 1) or

√
3d.

Now, the question may arise as to why Sp plays such an important role in the

Galois groups over trace fields of degree p. The answer is that the Galois group of a

trace field of prime degree p is isomorphic to the symmetric group on p objects. But,

first, we state Cauchy’s Theorem, which may be found in [5].

Theorem 6.18 (Cauchy’s Theorem)If G is a finite group and p is a prime dividing

the order of G, then G has an element of order p.

Just as a reminder, Nk refers to the Galois closure (or Galois closure) of k.

Proposition 6.19 Suppose that k is a number field with exactly one complex place

with [k : Q] = p a prime number. Then, G(Nk/Q) ∼= Sp.

Proof: Conjugation is a nontrivial automorphism of Nk. Since k has exactly

one complex place, conjugation is a transposition that swaps k and k̄ and fixes all

other fields isomorphic to k. Since [k : Q] is a prime number, the order of G(Nk/Q)

is divisible by p. By Cauchy’s theorem, there exists an element of G(Nk/Q) that

has order p. Furthermore, since the Galois group permutes the p roots of a minimal

polynomial defining k, the Galois group injects into Sp. An element of order p in

Sp is a p-cycle. A generating set for Sn is (x1 x2) and (x1 x2 x3 . . . xn). Without

loss of generality, we may assume that conjugation is represented by (x1 x2). Also,

by taking an appropriate power of our p-cycle, we can find another p-cycle in which

x1 is sent to x2. So, conjugation and the p-cycle generate a group isomorphic to Sp. tu

We will actually prove Theorem 1.8 first, then we prove Theorem 1.7 as a corollary.

From Theorem 1.6, we know that when the angles of loxodromic eigenvalues of equal
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norm are not equal, their quotient is a root of unity. Furthermore, by Proposition 6.13,

we know that λ has a unique angle precisely when Q(λ) does not contain nontrivial

roots of unity. We will start by characterizing when the Galois closure of r2 contains a

nontrivial root of unity. Then we apply the following proposition (Proposition 6.20),

which relates the Galois closure of r2 to the Galois closure of λ = reiθ. The result

that gives us these two field are equal is Proposition 4.4 from [4]. Proposition 6.20

follows from Proposition 4.4 of [4].

Proposition 6.20 If λ is a generic loxodromic eigenvalue, then the Galois closure

of r2, Nr2, is equal to the Galois closure of λ, Nλ.

Corollary 6.21 If k 6= k̄, then the Galois closure of r2, Nr2, is equal to the Galois

closure of λ, Nλ.

Proof: Recall that Proposition 5.9 tells us that k 6= k̄ if and only if [k : k∩R] > 2

and Proposition 5.8 tells us that if [k : k ∩ R] > 2, then the underlying Kleinian

group cannot contain hyperbolic elements. Therefore, all loxodromic eigenvalues are

generic. tu

So, the approach will be to first narrow down to the Galois closures of r2, or rather

the Galois closures of λ by the above proposition, that contain a nontrivial root of

unity. The Galois closure of r2 contains the trace field k. So, if it also contains a

nontrivial root of unity, then k(µ) is contained in the Galois closure of r2 and by

Corollary 6.17 this field contains a loxodromic eigenvalue and by Proposition 6.13 the

angle is not unique. Now, we need a result from [5].

Proposition 6.22 The Galois group of a number field with degree n is contained in

An if and only if the discriminant of the number field is a square in Q. If the Galois

group is isomorphic to the Sn, then Q(
√
D) is the unique quadratic extension of Q
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contained in the Galois closure of the number field, where D is the discriminant of

the number field.

Note that the uniqueness of Q(
√
D) follows from the correspondence from the fun-

damental theorem of Galois theory provided by the fact that Sn has only one group

of index two, An.

Proposition 6.23 Let K1 and K2 be Galois extensions of a field F . Then,

i) The composite K1K2 is a Galois extension of K1 ∩K2.

ii) The Galois group of K1K2/F is isomorphic to

H = {(σ, τ) | σ|K1∩K2 = τ |K1∩K2}

where σ and τ are elements of the Galois group of K1 and K2 respectively.

iii) Furthermore, if K1 ∩ K2 = F , then G(K1K2/F ) ∼= G(K1/F ) × G(K2/F )

where the isomorphism is specified by σ 7→ (σ|K1 , σ|K2).

Proof of Theorem 1.8 Now, the question arises: “why do we only need to con-

sider Galois groups isomorphic to Sp or Sp×Z2?” The Galois closure of a loxodromic

eigenvalue contains the Galois closure of the trace field. Furthermore, we know that

nontrivial roots of unity create angles that are not unique and by Remark 6.11 we

know that the only possible roots of unity that may appear are fourth and sixth roots

of unity. The fields Q(
√
−1) and Q(

√
−3) contain the fourth and sixth roots of unity.

Let n be a square-free integer. The composite of Nk and Q(
√
n) is a Galois extension

because the composite of two Galois extensions is a Galois extension of their intersec-

tion (see Proposition 6.23 below from [5]). Either the intersection of the two fields is

Q(
√
n) in which case the Galois group is the Galois group of Nk, which is isomorphic
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Sp under our assumptions, or the intersection is Q in which case the Galois group is

the direct product of Galois groups of each field, which is isomorphic to Sp × Z2.

Along the way, we will prove the following claims that will aid us in the proof.

a) If G(Nλ/Q) ∼= Sp, then G(Nλ/k) ∼= Sp−1.

b) If G(Nλ/Q) ∼= Sp × Z2, then G(Nλ/k) ∼= Sp−1 × Z2.

part i): For a), note that Nk = Nλ. Also, recall that k = Q(λ+ 1λ). So, we may

think of G(Nλ/Q) as permuting the p conjugates of λ+ 1/λ. Since k 6= k̄ or any real

isomorphic field for that matter, the elements of G(Nλ/Q) that fix λ+ 1/λ generate

a group isomorphic to Sp−1.

Assuming the Galois group of Nr2 is isomorphic to Sp implies that the Galois

closure of r2 is equal to the Galois closure of k. First of all, Sp has precisely one

subgroup of index 2, which is Ap. Therefore, the Galois closure of k contains exactly

one quadratic extension of Q, say Q(
√
−d). Also, the Galois group of Nk/k is iso-

morphic to Sp−1. Therefore, there is exactly one quadratic extension of k contained

in Nk. Also, k(
√
−d) is a quadratic extension of k contained in the Galois closure

of k, which means it must be the unique extension. Furthermore, this is the only

possible subfield that can contain a loxodromic eigenvalue. Since the degree of k is

an odd prime, by Remark 6.12 and Remark 6.11, k(
√
−d) contains a nontrivial root

of unity if and only if d = 1, 3. From Proposition 6.13, we know that the angle is not

unique precisely when the number field generated by a loxodromic eigenvalue contains

a nontrivial root of unity.

part ii): Before we prove part ii), we need to characterize the index 2 subgroups

of Sn × Z2 because this will tell us information about degree 2 extensions via the
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fundamental theorem of Galois theory. Let H be a subgroup of index 2 of Sn × Z2,

and consider the following sequences:

H ↪→ Sn × Z2 → Sn

H ↪→ Sn × Z2 → Z2

where the first map is inclusion, i, and the second map is the projection, π, on

the first and second factor respectively. Firstly, if π ◦ i is not surjective in the first

sequence, then we know that the image must be An. Otherwise, H would not have

index 2. Also, in this case, π ◦ i must be surjective because, otherwise, H would

not have index 2. This implies that H = An × Z2. Secondly, if π ◦ i is surjective

in the first sequence, then we know that the image must be Sn. Also, if π ◦ i is not

surjective in the second sequence, then H = Sn × 〈0〉. Finally, if π ◦ i is surjective in

the first sequence and surjective in the second sequence, then one possibility is that

H = {((ij), 1) | 1 ≤ i < j ≤ n}. Note the group generated by this set has order n!.

Are there any other possibilities? Since the image of the first sequence is isomorphic

to Sn, H must contain an element of the form ((ij), x) for every transposition in Sn.

Also, H cannot contain ((ij), 0) and ((ij), 1) because then H = Sn × Z2. The last

case to rule out is that H contains ((ij), 0) and ((k`), 1). We will show that in this

case the subgroup contains (e, 1), which would imply that the subgroup is the entire

group. If this is the case:

((jk), x) ((ij), 0) ((jk), x) ((k`), 1) = ((jk), x) ((ijk`), x+ 1)

((jk), x) ((jk`i), x+ 1) = ((k`i), 2x+ 1) = ((k`i), 1)

where x = 0, 1. Now, taking the third power of the last element gives (e, 1). Thus,

there are only three possibilities.
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For b), recall that we want to prove that G(Nλ/k) ∼= Sp−1×Z2 when G(Nλ/Q) ∼=

Sp × Z2, we claim that Nλ equals the composite of Nk and a degree 2 extension.

Nk ⊂ Nλ. All that we need is to show that Nλ contains a quadratic extension of Q

that is not contained in Nk. By the previous discussion, we have characterized the

index 2 subgroups of Sp × Z2 of which there are 3. However, there is only one index

2 subgroup of Sp. Via the fundamental theorem of Galois theory, we know that these

correspond to quadratic extensions of Q. Therefore, Nλ = NkQ(λ). By Theorem

6.23, we know that G(Nλ/Q) ∼= {(σ, τ) | σ ∈ G(Nk/Q), τ ∈ G(Q(
√
e)/Q)}. Now, we

will look at the image of G(Nλ/k) under this isomorphism with the direct product

G(Nk/Q)×G(Q(
√
−e)/Q) composed with the projection on the first component. Let

σ ∈ G(Nλ/k). Then, its image is σ|Nk , and this element fixes k. Since any isomor-

phism of Nk lifts to and isomorphism of Nλ, this map surjects onto G(Nk/k). Thus,

the image must be isomorphic to Sp−1, and in order for G(Nλ/k) to have index p the

only possibility is that G(Nλ/k) ∼= Sp−1 × Z2. Now, the proof is similar to part i).

Except now there are 3 quadratic extensions of Q contained in the Galois closure of

r2 because of the previous discussion. Let these be Q(
√
−d), Q(

√
−e), and Q(

√
de)

where e > 0 is square-free and e 6= d. Also, the Galois group of Nr2/k is isomorphic

to Sp−1 × Z2. Similarly, there are exactly three quadratic extensions of k contained

in Nr2 , which must necessarily be k(
√
−d), k(

√
−e), and k(

√
de). The loxodromic

eigenvalue with Galois group Sp × Z2 must be an element of k(
√
−e) because the

Galois group of k(
√
−d) is Sp and k(

√
de) has real embeddings since k has a real

embedding and
√
de is the square root of a positive real number. The field k(

√
−e)

contains a nontrivial root of unity precisely if e = 1, 3. Then, e = 1 precisely when

de = d and e = 3 precisely when de = 3d. tu

Proof of Theorem 1.7: From the discussion in Section 6.2, we know that the
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Galois group of Nr2 is not isomorphic to S3 × Z2 or S3 when the degree of r2 is

equal to 12. So, the angle must be unique. When the degree of r2 is equal to 6,

the Galois group is isomorphic to D6 (∼= S3 × Z2) so Theorem 1.8 part ii) applies. In

this case, the Galois closure of r2 has degree 12. If
√
d or

√
3d is not an element of

Q(r2), then real field Q(r2,
√
d) or Q(r2,

√
3d) is equal to the non-real Galois closure

of r2, which is a contradiction. Hence,
√
d or

√
3d is an element of Q(r2). When the

degree of r2 is 3 the Galois group is isomorphic to S3 so Theorem 1.8 part i) applies. tu

Now that we have characterized when the angle of a loxodromic eigenvalue is

not unique, we will come up with characterizations as to when the Galois closure of

the trace field contains a loxodromic eigenvalue that has a non-unique angle. This

discussion mainly serves to produce many examples when the angle is not unique.

The goal of the rest of this section is to show the following proposition.

Proposition 6.24 Let k be a number field with exactly one complex place such that

[k : Q] = 3. Then, Nk contains a loxodromic eigenvalue with a non-unique angle if

and only if either one of the following conditions hold:

i) The absolute value of the discriminant of k is a square, in which case the

fourth root of unity is the culprit.

ii) The number field k is a radical extension of Q, in which case the third (or

sixth) root of unity is the culprit.

Proposition 6.25 For any trace field k such that [k : Q] = 3, the Galois closure of

k contains a loxodromic eigenvalue.

Proof: Since k is a degree 3 field with exactly one complex place, the Galois

closure of k must have Galois group isomorphic to S3. Therefore, the Galois closure

of k is a degree 2 extension of k and is not contained in the set of real numbers. Since
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the Galois closure is non-real, it has no real embeddings. By Proposition 6.16, the

Galois closure contains a loxodromic eigenvalue tu

The next proposition is an elementary result on the Galois groups of polynomials of

degree 3 from [5]. An irreducible polynomial of degree 3 has Galois group isomorphic

to Z3 or S3 depending whether or not the discriminant of the field arising from the

polynomial is a square in Q. By Proposition 6.25, we know that the Galois group

is isomorphic to S3. Therefore, the discriminant is not a square in Q. However, we

know that adjoining the square root of the discriminant to the field k results in the

Galois closure. Thus, we have the following result.

Proposition 6.26 The closure of a trace field of degree 3 contains Q(
√
−d) if and

only if the square root of the discriminant of the trace field generates the quadratic

extension Q(
√
−d).

Corollary 6.27 The closure of the trace field of degree 3 contains the fourth roots of

unity if and only if the absolute value of the discriminant of the trace field is a square.

Such polynomials do exist! For example, x3 + 6x + 4 is irreducible over Q, has

discriminant equal to −1296, and 1296 = 362. Hence, the splitting field for this

polynomial contains the fourth roots of unity. Thus, x3 + 6x + 4 has only one real

root. The discriminant is not a square in Q, which means the Galois group must be

S3. Since the Galois closure must have only complex places (it contains a nontrivial

root of unity!), having only real roots would be a contradiction. Putting this together

with the proposition above, there do exist trace fields whose closures have a primitive

fourth root of unity.

Corollary 6.28 The Galois closure of a trace field of degree 3 contains the sixth roots

of unity if and only if the square class of the discriminant of the trace field has the

same square root class as
√
−3.
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In the degree 3 case, there is even more appealing characterization when the Galois

closure of the trace field contains the sixth roots of unity. But first, we need a result

characterizing when a cubic extension is radical from [10].

Theorem 6.29 Let K be a field such that char(K) 6= 3. Suppose that K(α) is an

extension field of K and the minimal polynomial of α over K is x3 + ax+ b for some

a, b ∈ K with b 6= 0. Let D = −4a3− 27b2. A necessary and sufficient condition that

there exists β ∈ K(α) such that K(α) = K(β) and β3 ∈ K is that, for some c ∈ K,

−3D = c2 if char(K) 6= 2.

Now, we may complete our discussion when the Galois closure of a trace field of

degree 3 contains the sixth roots of unity.

Proposition 6.30 Let k be an arbitrary number field such that [k : Q] = 3, k is

a radical extension if and only if the Galois closure of k contains a primitive third

root of unity. Furthermore, k must have one complex place if one of the previous

equivalent conditions hold, and, thus, k is the trace field of some Kleinian group.

Proof: Let Nk denote the Galois closure of k. If k = Q( 3
√
a) where a ∈ Q, then

3
√
a has minimal polynomial x3 − a and adjoining µ3

2 3
√
a or µ3

2 3
√
a yields Nk, which

has degree 6. Thus, Nk contains the third roots of unity, and, furthermore, x3 − a

has one real and two complex roots. If the Galois closure of a cubic field contains

the third roots of unity then the unique quadratic extension must be Q(
√
−3). Thus,

the discriminant of a minimal polynomial defining the cubic extension is in the same

square class as −3. Hence, −3D = −3 · −3 = 9, which is a square in Q. By Theorem

6.29, k must be a radical extension. tu

Therefore, the Galois closure of a trace field of degree 3 contains the sixth roots of

unity precisely when the trace field arises from an irreducible polynomial of the form

x3 + a, where a is an integer.
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6.5 Isospectrality

In this section, we prove the following two theorems and a corollary:

Theorem 1.9 There exist infinitely many commensurability classes of arithmetic

Kleinian groups such that if Γ1 and Γ2 are derived and iso-length-spectral, then Γ1

and Γ2 complex iso-length-spectral.

Theorem 1.10 Consider a commensurability class of arithmetic Kleinian groups

with invariant quaternion algebra A/k where [k : Q] = 3, k(
√
−1) 6↪→ A, and

k(
√
−3) 6↪→ A. Then, if Γ1 and Γ2 are derived and iso-length-spectral, then Γ1 and Γ2

are complex iso-length-spectral.

Theorem 1.11 For every n ≥ 2, there exists a loxodromic norm, r, such that exactly

n numbers on the unit circle make reiθ a loxodromic eigenvalue. That is, the angle of

a loxodromic angle can be highly non-unique.

A possible obstruction to the equivalence of real-length isospectrality and complex

length isospectrality is the angle of a loxodromic eigenvalue. If the two conditions are

equivalent, the trace field is not restrictive enough to prove equivalence. However,

we can find a certain restrictive case where the two conditions are equivalent. In this

section, we will find infinitely many commensurability classes of derived arithmetic

hyperbolic 3-manifolds where they are equivalent. The general idea is the following

argument. Suppose Γ is an arithmetic Kleinian group derived from A/k such that

k 6= k̄. Suppose Γ does not contain a loxodromic element whose eigenvalue λ is such

that k(λ) = k(µ) where k(λ) is a quadratic extension of k and µ is a root of unity. If

Γ′ is any arithmetic Kleinian group derived from A/k that is iso-length-spectral to Γ,

then Γ′ is complex iso-length-spectral to Γ. In order to prove Theorem 1.9, we will
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need a result from Chapter 12 of [16]. This characterizes when group of elements of

(reduced) norm 1 in a quaternion algebra contain an elements with finite order.

Theorem 6.31 Let A be a quaternion division algebra over a number field k such

that C(A) is a class of arithmetic Kleinian or Fuchsian groups. Then, the following

are equivalent:

i) P (A1) contains an element of order n

ii) µ2n + 1/µ2n ∈ k, µ2n /∈ k, and L = k(µ2n) ↪→ A

iii) µ2n + 1/µ2n ∈ k, µ2n /∈ k, and if ℘ ∈ Ramf (A), then ℘ does not split in

L/k.

Proof of Theorem 1.9: For any trace field k 6= k̄, there are only finitely many

“problematic” quadratic extensions of k because there are only finitely many roots

of unity of bounded degree by Theorem 6.7. Furthermore, we have established that

the problematic loxodromic eigenvalues come from quadratic extensions that contain

nontrivial roots of unity by Theorem 1.6. Producing such manifolds relies on placing

restrictions on the quaternion algebra A/k, which will prohibit embeddings of k(λ)

into A where k(λ) = k(µ) and µ is a root of unity. Recall that a commensurability

class of arithmetic Kleinian groups is fully specified by an invariant quaternion al-

gebra A/k and an invariant trace field k by Theorem 4.11. The flow of the proof is

given a trace field, k 6= k̄, with exactly one complex place, we specify a quaternion

algebra A/k such that for every µ+ 1/µ ∈ k, k(µ) does not embed in A. As a result,

if Γ1 and Γ2 are derived arithmetic Kleinian groups with invariant quaternion algebra

A/k and invariant trace field k such that Γ1 is iso-length-spectral to Γ2, then Γ1 is

complex iso-length-spectral to Γ2. In order to prove this theorem, we will have to use

a result in [16]. For clarification, P (A1) are the elements of reduced norm 1 in P (A)

where P (A) is the quotient of A and {±I}. Also, note that taking the quotient of A
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by {±I} makes elements of order 2n have order n in P (A1). This makes no difference.

We have noted before that λ and −λ give rise to the same geodesic length, and this

is what is happening here. Also, it is worth stating explicitly that any O1 ⊂ A1.

Let k be a number field with exactly one complex place such that k 6= k̄. By

the classification theorem of quaternion algebras, choosing the places for Ram(A)

will determine a quaternion algebra over k. We require that all real places of k be

in Ram∞(A), since we do want this quaternion algebra to arise as one in the con-

struction of arithmetic hyperbolic 3-manifolds. For every field k 6= k̄, we will specify

Ramf (A). There are only finitely many µ + 1/µ ∈ k where µ is a root of unity. We

need to ensure that for every µ+ 1/µ ∈ k, there exists some ℘ ∈ Ramf (A) such that

℘ splits in k(µ)/k. Then, by Theorem 6.31, P (A1) will have no torsion. And, thus,

every eigenvalue norm of elements in P (A1) has a unique angle paired with it.

This condition on Ramf (A) can be accomplished by using the Cheboratev Density

Theorem. Infinitely many primes split in k(µ)/k. Simply choose a prime in k that

splits in k(µ) for each µ + 1/µ ∈ k. It may be necessary to add an extra prime to

ensure that the cardinality of Ram(A) is even. Though, a different construction is

to choose a single prime ℘ of k such that ℘ splits in every k(µ), which may be done

by Corollary 3.44. Then, the rest of Ramf (A) may be populated with any primes so

long as the cardinality of Ram(A) is even. tu

Proof of Theorem 1.10: The assumptions in this proof are that k has prime

degree p 6= 2 and that k(
√
−1) 6↪→ A, and k(

√
−3) 6↪→ A. By Theorem 6.14, the lox-

odromic eigenvalues in these number fields cannot occur as a loxodromic eigenvalue

in such a derived Kleinian group. By Theorem ?? and Proposition 6.13, the angles

of loxodromic eigenvalues in these fields might not be unique. By Remark 6.12, these

are the only µ, such that k(µ) is a quadratic extension of k are the primitive fourth

and primitive sixth roots of unity. Therefore, these are the only quadratic extensions
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of k with loxodromic eigenvalues with possibly non-unique angles. tu

Now that we have proved Theorem 1.9 and Corollary 1.10, we shift gears to The-

orem 1.11. In the proof of a corollary to Theorem 6.31 in [16], number fields with

exactly one complex place are constructed with arbitrarily large degree such that

k = k̄. One may wonder, do there exist number fields k with exactly one complex

place such that k 6= k̄ and contains µ + 1/µ of arbitrarily large degree, where µ is a

root of unity. Theorem 1.11 shows that this is indeed the case. Although, the fields

produced have [k : k ∩R] = 3. A more general resolution to the problem would allow

us to find number fields k 6= k̄ with exactly one complex place containing µ+ 1/µ of

arbitrarily large degree and with [k : k ∩ R] = n for any integer n.

Proposition 6.32 Let eiθ be an algebraic integer on the unit circle such that all

conjugates of eiθ + e−iθ are real numbers (excluding ±1). Then, there exists a number

field k with exactly one complex place such that k0 = Q(eiθ + e−iθ) ⊂ k. (Due to the

restrictions of the construction, all the fields k have [k : k0] = 3.)

Proof: Given any finite set of real algebraic integers, we can multiply each num-

ber in the set by an integer q and then add an integer r to each number so that exactly

one of the numbers in the set is positive and all others are negative. To see that this

is possible, notice that the map from the real line to itself given by f(x) = q ·x fixes 0

and stretches the real line to ∞ and −∞. We need to choose q large enough so that

there exists an integer strictly between the largest element of the set and the second

largest element of the set. Then, we can choose r to be the negative of the integer

that is strictly between the two values. Then, our derived set will consist of real

algebraic integers with exactly one positive value and the rest will be negative. This

may seem a little odd at the moment, but the motivation is to start with a maximal

set of real algebraic integers that are conjugates and all of which are real numbers.
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Let α ∈ k0 be an algebraic integer such that Q(α) = k0. Next, we multiply α by

a rational integer q and add a rational integer r such that qα + r has one positive

conjugate and n − 1 negative conjugates. We may rename qα + r as α and assume

it is the positive conjugate. Note that the algebraic integers of a number field form a

ring, so we have not changed the fact that α is an algebraic integer. Choose a rational

prime, p, that does not ramify in k0. This is possible by Theorem 3.39 which states

only finitely many primes ramify in a given number field.

Now, consider D = −4(αp)3 − 27p2 ∈ k0. We desire that D has one negative and

n − 1 positive conjugates. If this is not the case, then multiply α by a large enough

positive, rational integer and rename as α. To see that this always accomplishes what

we want, recall that α is positive. Multiplying by p and taking the third power does

not make the new product negative. In fact, it makes the number even larger in

absolute value. Multiplying it by −1 makes the new product negative, then if we

have been careful, subtracting 27p2 will still keep the value negative. Furthermore,

all conjugates of −4(αp)3−27p2 are equal to −4(σ(α)p)3−27p2 for some σ. Running

through the same argument makes all of these values positive.

Now, we claim that k0 = Q(D). There are n conjugates of D, due to the fact that

the function g(x) = −4x3 − 27p2 is one-to-one when restricted to the real numbers.

This guarantees the claim is true. Now consider the polynomial f(x) = x3 + αpx+ p

with coefficients in k0. This polynomial is irreducible over k0 by Eisenstein’s crite-

rion: αp, p ∈ ℘, and p /∈ ℘2 where ℘ lies over p. Next, we claim that the Galois

group of f(x) over k0 is S3. This must be the case because the square root of the

discriminant,
√
D, is non-real. Thus, there are three degree 3 extensions contained

in the splitting field of f . Since the coefficients of f are totally real and the splitting

field of f is non-real, two of the three degree 3 extensions must be complex, call

these k and k̄, and the third must be real. Every other field isomorphic to k, k̄,

and the unnamed real field must be realized as the splitting field of x3 + pσ(α)x+ p,
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where σ is any embedding of k0 not equal to the identity embedding. We know by

construction that all of those discriminants must be positive. Hence the splitting

fields of those polynomials over σ(k0) must be real, which makes the three roots of

those polynomials real. Therefore, there is only one pair of degree 3 extensions of

k0 that are non-real. Thus, k has exactly one complex place and contains eiθ+e−iθ. tu

Proof of Theorem 1.11: Recall that any conjugate of a root of unity is a root

of unity. (They are solutions to the same minimal polynomial.) Any nontrivial root

of unity fulfills the requirements of the above theorem because µ+ 1/µ = µ+ µ̄ ∈ R

and the image of µ+ 1/µ under an isomorphism of Q(µ+ 1/µ), say τ , is

τ(µ+ 1/µ) = τ(µ) + 1/τ(µ) = τ(µ) + τ(µ) ∈ R

Hence, for every n, there exists a norm of a loxodromic eigenvalue such that there

are n loxodromic eigenvalues with the prescribed norm. Or in algebraic terms, for

every nontrivial root of unity µ, there exists a field k with exactly one complex place

such that [k(µ) : k] = 2, and we know this field contains a loxodromic eigenvalue by

Corollary 6.17.

Some fortunate investigation has produced a trace field of degree 6 that has a

degree 2 extension which contains a loxodromic eigenvalue and a primitive twelfth root

of unity: p(x) = x12−2x11−2x10 +4x9 +2x8−2x7−x6−2x5 +2x4 +4x3−2x2−2x+1

6.6 Salem Numbers and the Short Geodesic Conjecture

In this section, we prove the following theorem:

Theorem 6.33 The Salem conjecture is equivalent to the Short Geodesic conjecture

for arithmetic hyperbolic 3-orbifolds with invariant trace field k = k̄.
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The conjectures are now listed.

Conjecture 6.34 (Salem conjecture) There exists ms > 1 such that if u is a Salem

number, then u ≥ ms.

Conjecture 6.35 (Short Geodesic conjecture for dimension 3 with k = k̄. There

is a positive lower bound for the lengths of closed geodesics in arithmetic hyperbolic

3-orbifolds with k = k̄.

This conjecture, as a geometric statement, is fairly surprisingly. Why should the

set of all (real) lengths of closed geodesics in some subclass of arithmetic hyperbolic 3-

orbifolds be equal to the set of all lengths of closed geodesics in arithmetic hyperbolic

2-orbifolds? However, as an algebraic statement, the proof of this equivalence is quite

straightforward. Note that normally the Short Geodesic conjecture in dimension 3 is

not restricted to orbifolds with k = k̄. The motivation for Conjecture 6.35 is that

there is a connection between a conjecture of a universal lower bound on the lengths of

closed geodesics in arithmetic hyperbolic 2-orbifolds and the Salem conjecture. This

discussion can be found in Chapter 12.3 in [16], which is summarized in the following

theorem:

Theorem 6.36 The Salem conjecture is equivalent to the Short Geodesic conjecture

in the two dimensional case.

Conjecture 6.37 (Short Geodesic conjecture for dimension 2) There is a positive

lower bound for the lengths of geodesics in arithmetic hyperbolic 2-orbifolds.

Definition 6.38 A Salem number is a real algebraic integer α > 1 whose other

conjugates have norm at most equal to 1, with at least one conjugate that has norm

equal to 1.

Note that if eiθ is an algebraic integer, then eiθ = 1/eiθ is a conjugate. Therefore,

by Lemma 7.7, the minimal polynomial is palindromic.
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Proposition 6.39 Let α > 1 be a Salem number. Then the set of conjugates of α is

{α, 1/α, eiφ1 , . . . , eiφk}

Proof: Since α has a conjugate, eiθ, of norm equal to 1, the minimal polynomial,

p(x), of α is palindromic. Thus, if α is a root of p(x), then 1/α is also a root of

p(x). Since p(x) has only one root with norm greater than 1, the set of conjugates is

precisely as described above. tu

Now what we will show is that the square of the norm of a loxodromic eigenvalue is

a Salem number when k = k̄ with the exception of one case when [k : Q] = 2. The one

exceptional case is not a problem, which will be explained in the following paragraph.

Proposition 4.17 shows that for any Salem number, we can find an arithmetic Kleinian

group containing a hyperbolic element with eigenvalue equal to the Salem number.

Therefore, the entire real length set from all arithmetic Kleinian groups with k = k̄

only contains lengths of the form 2ln|λ| = ln|λ2| where either λ2 is a Salem number

or |λ2| is a Salem number. Then, the Short Geodesic conjecture in the 3-dimensional

case with k = k̄ is equivalent to the Short Geodesic conjecture in the 2-dimensional

case.

There are norms of loxodromic eigenvalues that are not Salem numbers when

[k : Q] = 2. However, in that case the norms are Pisot numbers, and it is known that

these have a universal lower bound greater than 1.

Definition 6.40 A Pisot number is a real algebraic integer α > 1 whose other

conjugates have norm less than 1.

Now, we directly handle the case when [k : Q] = 2.

Proposition 6.41 Let λ = reiθ be a loxodromic eigenvalue from a Kleinian group

derived from A/k. Suppose [k : Q] = 2. Then, r2 is a Salem number if and only if
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eiθ is not a root of unity. If eiθ is a root of unity, then r2 has two conjugates, r2 and

1/r2, and r2 is a Pisot number.

Proof: If [k : Q] = 2, then k = k̄. By Proposition 5.3, this falls into two cases:

Case 1: Q(λ) = Q(λ̄)

Note that k(λ) = Q(λ) = Q(λ̄) = k(λ̄). Therefore, by Proposition 5.3, eiθ is a

root of unity. Since Q(λ) contains all conjugates of λ, this is a Galois extension.

Since Q(λ) = Q(λ̄), determining the image of λ, determines the element of the

Galois group. Once we determine the Galois group, then we need to compute

the image of r2 = λλ̄ under all elements. Finally, we can then determine the

conjugates of r2 by listing the elements of the Galois group of the Galois closure

of λ in permutation notation.

λ 7→ λ : (λ)(λ̄)(λ−1)(λ̄−1)

λ 7→ λ̄ : (λλ̄)(λ−1λ̄−1)

λ 7→ λ−1 : (λλ−1)(λ̄λ̄−1)

λ 7→ λ̄−1 : (λλ̄)(λ−1λ̄−1)

The conjugates of r2 are r2 and 1/r2.

Case 2: Q(λ) 6= Q(λ̄)

Again, we have that k(λ) = Q(λ) = Q(λ̄) = k(λ̄). So, by Proposition 5.3, eiθ

is not a root of unity. Similarly, we compute the elements of the Galois group.

In this case, for every image of λ, there are exactly two such elements of the

Galois group.
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λ 7→ λ : (λ)(λ̄)(λ−1)(λ̄−1) (λ)(λ−1)(λ̄λ̄−1)

λ 7→ λ̄ : (λλ̄)(λ−1λ̄−1) (λλ̄λ−1λ̄−1)

λ 7→ λ−1 : (λλ−1)(λ̄λ̄−1) (λλ−1)(λ̄)(λ̄−1)

λ 7→ λ̄−1 : (λλ̄)(λ−1λ̄−1) (λλ̄−1λ−1λ̄)

Then, the conjugates of r2 are r2, 1/r2, e2iθ, and e−2iθ. tu

Now, we need a lemma and a remark before we prove that given a loxodromic

eigenvalue, λ = reiθ, from a derived Kleinian group such that [k : Q] > 2, then r2 is

a Salem number if and only if k = k̄.

Lemma 6.42 Let λ = reiθ be a loxodromic eigenvalue derived from a quaternion

algebra A/k. Then, if a Q-embedding σ : Q(r2) ↪→ C maps r2 to e2iθ then λ 7→ λ and

λ̄ 7→ 1/λ̄, or λ 7→ 1/λ̄ and λ̄ 7→ λ.

Proof: There exist conjugates of λ, say x, y, such that x 7→ λ and y 7→ λ̄. Since

x/y is sent to eiθ as well and the embedding is a permutation, x/y = r2. However,

from Lemma 6.1, the only possibility is that {x, y} = {λ, λ̄}. tu

Remark 6.43 Now suppose that r2 is not a conjugate of e2iθ. Then, no such embed-

ding can do any of the following four possibilities: λ 7→ λ and λ̄ 7→ 1/λ̄, λ 7→ 1/λ̄ and

λ̄ 7→ λ, λ 7→ λ and λ̄ 7→ 1/λ̄, or λ 7→ 1/λ̄ and λ̄ 7→ λ.

Proposition 6.44 Let λ = reiθ be a loxodromic eigenvalue from a Kleinian group

derived from A/k. Suppose [k : Q] 6= 2. Then, r2 is a Salem number if and only if

k = k̄.

Proof: Suppose r2 is a Salem number.

Case 1: e2iθ is not a conjugate of r2.

Then, r2 has conjugates r2, 1/r2, and eiφk . Any Q-embedding σ : Q(e2iθ) ↪→
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C lifts to an embedding σ̂ : Nλ ↪→ C where Nλ is the Galois closure of λ

and σ̂ ∈ G(Nλ/Q). Notice |σ̂(λ)| is in the set {r, 1/r, 1}, |σ̂(r2)| is in the set

{r2, 1/r2, 1} because r2 is a Salem number, and σ̂(λ)σ̂(λ̄) = σ̂(r2). Along with

Remark 6.43, we may deduce |σ̂(λ)| = |σ̂(λ̄)| for all σ̂ ∈ G(Nλ/Q). Therefore,

|σ̂(e2iθ)| = |σ̂(λ)|/|σ̂(λ̄)| = 1. By Theorem 6.6, all conjugates of e2iθ have norm

1, which implies eiθ is a root of unity. Hence, λ is the eigenvalue of a non-generic

isometry. By Proposition 5.8 and Proposition 5.9, k = k̄.

Case 2: e2iθ is a conjugate of r2.

By Lemma 6.42, any field isomorphism that sends r2 to e±2iθ lifts to a field

isomorphism that either fixes λ and inverts λ̄ or inverts λ and fixes λ̄ up to

complex conjugation. Since r2 has no conjugates of norm r or 1/r, the only

other possible images of λ and λ̄ under an embedding are elements of norm 1.

Then, λ + 1/λ and λ̄ + 1/λ̄ are not fixed because eiφ + 1/eiφ is a real number.

This implies that any map fixing Q(λ + 1/λ) also fixes Q(λ̄ + 1/λ̄) and vice

versa. Therefore, k = k̄.

For the converse, suppose k = k̄. By Proposition 5.3, either e2iθ is a root of unity or

e2iθ is a conjugate of r2.

Case 1: e2iθ is a root of unity.

Any σ̂ : Nλ ↪→ C must have |σ̂(λ)| = |σ̂(λ̄)|. Otherwise, there exists σ̂ ∈

G(Nλ/Q) such that |σ̂(e2iθ)| = |σ̂(λ)|/|σ̂(λ̄)| 6= 1, which contradicts Theorem

6.6. Thus, the possible conjugates of r2 are r2, 1/r2, and eiφk . By Proposition

6.39, we need to show that r2 has a conjugate of norm 1. Since [k : Q] > 2, we

know [k(λ) : Q] > 4. Thus, there exists σ̂ ∈ G(Nλ/Q) such that σ̂(λ) = eiτ .

Since |σ̂(λ)| = |σ̂(λ̄)|, it must be the case that |σ̂(r2)| = 1. Hence, r2 is a Salem

number.
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Case 2: e2iθ is a conjugate of r2.

By Proposition 4.16, k = Q(λ + 1/λ) and k̄ = Q(λ̄ + 1/λ̄). By Remark 6.42

and Q(λ + 1/λ) = Q(λ̄ + 1/λ̄), λ 7→ λ±1 if and only if k is fixed if and only if

k̄ is fixed if and only if λ 7→ λ±1. Otherwise, an embedding sends λ and λ̄ to

elements of norm 1. Furthermore, Q(λ+1/λ) 6= Q(eiφ+e−iφ), since eiφ+e−iφ is

a real number. Therefore, we may conclude |σ(λ)| = 1 if and only if |σ(λ̄)| = 1.

Hence, the only conjugates of r2 of norm not equal to 1 are precisely r2 and

1/r2. From degree argument in the case above, we know that λ has a conjugate

of norm 1. By Lemma 7.7, we know that 1/r2 is a conjugate of r2 because r2

has a conjugate with norm equal to 1. By Lemma 6.39, r2 is a Salem number.

tu

That finishes the proof that the Short Geodesic conjecture for arithmetic Kleinian

groups with k = k̄ is equivalent to the Salem conjecture. What follows in Section

7 are some results that followed from the theorem above and also Corollary 6.3.

The main motivation is to find which roots of unity may appear as the angle of a

non-generic loxodromic eigenvalue. By Proposition 5.8 and Proposition 5.9, these

necessarily occur in derived arithmetic Kleinian groups with k = k̄. Then, we also

show that some Salem numbers cannot appear as the norm of a generic loxodromic

eigenvalue through one case where a simple degree consideration argument works but

also another more interesting example when degree considerations are not enough.

This material is contained in Section 7.2.
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7 Appendix

7.1 More on loxodromic eigenvalues

Remark 7.1 The norm of a loxodromic eigenvalue does not completely determine

the angle of the eigenvalue as seen above. But, the angle of a generic loxodromic

eigenvalue completely determines the norm of the eigenvalue. Since we know the

conjugates of a loxodromic eigenvalue, we can determine the possible conjugates of

λ/λ̄ = e2iθ. The possible conjugates have one of the following forms: r2, λ ·eiφ, λ̄ ·eiφ,

and eiφ1 · eiφ2. (Of course, there are more possibilities. We could take reciprocals and

complex-conjugate if we wanted.) Either e2iθ only has conjugates of norm 1, in which

case it is a root of unity, or it has at least one conjugate of norm r2 or r. The latter

case means that eiθ has a real conjugate of norm r or a non-real conjugate of norm

√
r, and, thus, the angle completely determines the norm of the eigenvalue because

any other norm that occurs will be 1.

We have pretty much pinned down what loxodromic elements may occur in a

quadratic extension of a trace field k 6= k̄. That is, the only loxodromic eigenvalues

that do occur are the ones we have mentioned thus far. This is summed up in

Proposition 7.3 with the help of Lemma 7.2, which we state and prove now.

Lemma 7.2 Let λ1 = r1e
iθ1 and λ2 = r2e

iθ2 be loxodromic eigenvalues arising from

trace field k. Suppose eiθ1 and eiθ2 are not roots of unity and k(λ1) = k(λ2).

i) If λ1 6= ±λ̄1, then λ1 · λ2 is a loxodromic eigenvalue over k.

ii) If r1 6= r2 and eiθ1 6= eiθ2, then λ1/λ2 is a loxodromic eigenvalue over k.

Proof: From the proof of Proposition 1.6 and the fact that λ1λ2 +1/λ1λ2 /∈ R, we

may deduce Q(λ1λ2 + 1/λ1λ2) = k = Q(λ1 + 1/λ1) and Q(λ1λ2) = Q(λ1). A similar

argument shows ii) is true as well. tu
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Proposition 7.3 For a given generic loxodromic eigenvalue, λ, the only other lox-

odromic eigenvalues that Q(λ) contains are of the form λn · µ, where µ is a root of

unity.

Proof: From the discussion in the paragraph after Lemma 6.1, there must be

finitely many algebraic integers whose conjugates are uniformly bounded away from

0 and ∞. So, if a number field contains a loxodromic eigenvalue, then there must

be a loxodromic eigenvalue whose norm is greater than 1 but no other loxodromic

eigenvalue in the number field has norm closer to 1. By Lemma 7.2, we are able

to multiply and divide under certain circumstances, and what results will also be a

loxodromic eigenvalue.

Suppose that there exists λ1 such that |λ|k < |λ1| < |λ|k+1. By Remark 7.1, we

know that eiθ 6= eiθ1 . Thus, by Lemma 7.2, λ1/λ
k is a loxodromic eigenvalue (λk is also

a loxodromic eigenvalue), but the previous inequality implies that 1 < |λ1/λ
k| < |λ|.

This contradicts the fact that λ has norm closest to but larger than 1. tu

7.2 Salem numbers and possible angles

The natural predecessor of what follows here is Theorem 1.5. Corollary 6.3 is a corol-

lary to Theorem 1.5, which we will after some discussion on palindromic polynomials.

After Corollary 6.3, we will look at some fun applications of some facts we have

learned.

Definition 7.4 A polynomial f(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 with ai ∈ R

is called palindromic if ai = an−i for i = 1, . . . , n.

Definition 7.5 A polynomial f(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 with ai ∈ R

is called anti-palindromic if ai = −an−i for i = 1, . . . , n
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Lemma 7.6 A polynomial, q(x), is anti-palindromic if and only if q(x) = (x−1)·p(x)

where p(x) is palindromic.

Proof: Suppose p(x) is palindromic, that is, an−i = ai for i = 1, . . . , n. Then,

(x− 1) · (anxn + an−1x
n−1 + . . .+ a1x+ a0) =

anx
n+1 + an−1x

n + . . .+ a1x
2 + a0x− anxn − . . .− a2x

2 − a1x− a0 =

anx
n+1 + (an−1 − an)xn + . . .+ (a1 − a2)x2 + (a0 − a1)x− a0

By the assumption that p(x) is palindromic, an = −(−a0) and an−(i+1) − an−i =

ai+1 − ai = −(ai − ai+1). Therefore, (x− 1) · p(x) is anti-palindromic. Now, suppose

that q(x) is anti-palindromic. Then, q(1) =
∑
ai = 0. Therefore, we may divide by

x − 1 to get a polynomial p(x). The n coefficients of p(x) yielded by the division

algorithm for polynomials are

an, an + an−1, . . . , an + an−1 + . . .+ a2, an + an−1 + . . .+ a2 + a1

However, q(x) is anti-palindromic. So, the ith coefficient from the right with

i ≤ n/2 is

an + an−1 + . . .+ an−i + . . .+ ai

and this equals

an + an−1 + . . .+ an−i+1

which is equal to the ith coefficient from the left. Therefore p(x) is palindromic. tu
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Therefore, anti-palindromic polynomials are reducible. In the proof below, we

show that for every root, α, of a palindromic polynomial, 1/α is a root as well. Next

we show that if a minimal polynomial has α and 1/α as roots, then the polynomial

is palindromic.

Lemma 7.7 A minimal polynomial, f(x), is palindromic if and only if there exists

a non-zero α ∈ C such that f(α) = 0 = f(1/α).

Proof: Suppose f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 is palindromic. By the

fundamental theorem of algebra, there exists α ∈ C such that f(α) = 0. Consider

f(1/α) = an(1/α)n + an−1(1/α)n−1 + . . .+ a1(1/α) + a0. Multiplying each side by αn

yields:

αnf(1/α) = an + an−1α + . . .+ a1α
n−1 + a0α

n

However, we are assuming f is palindromic so,

αnf(1/α) = a0 + a1α + . . .+ an−1α
n−1 + anα

n

Furthermore, the value of the above expression is 0. Hence, f(1/α) is 0. On the

other hand, suppose there exists a non-zero α ∈ C such that f(α) = 0 = f(1/α) for

a minimal polynomial f . Thus, an = 1. First, we have that

0 = f(α) = (α)n + an−1(α)n−1 + . . .+ a1(α) + a0

And, by starting with the fact that f(1/α) = 0 and multiplying both sides by αn

we have that

0 = αnf(1/α) = 1 + an−1α + . . .+ a1α
n−1 + a0α

n
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However, this implies that α satisfies another polynomial. If a0 = 1, then the

polynomials have the same coefficients, since minimal polynomials are unique. Hence,

ai = an−i for i = 1, . . . , n. Otherwise, a0 6= 1. In this case, divide the polynomial by

a0. (If a0 6= 0, then p(x) is not irreducible.) Then, by the uniqueness of the mini-

mal polynomial the constant terms are equal. So, a0 = 1/a0, which implies a0 = −1.

However, this implies an−i = −ai, but, by the previous lemma, anti-palindromic poly-

nomials are reducible. Therefore p(x) is palindromic. tu

Note that by Proposition 4.16 eigenvalues of loxodromic and hyperbolic elements

have minimal polynomials that are palindromic because they have conjugates that

have norm 1. This fact will be used in Corollary 6.3 and later when we want to get

our hands dirty by looking at some examples of minimal polynomials of loxodromic

eigenvalues using PARI. To further explain the latter comment, we are going to ask

PARI to look through some integral polynomials and find those that are irreducible

with the appropriate types of roots (all but 4 are on the unit circle). By the discus-

sion above, we can further restrict the those integral polynomials to those that are

palindromic.

Proposition 7.8 If r is a Salem number and eiθ is a non-trivial root of unity, then

reiθ is a loxodromic eigenvalue if and only if Q(eiθ + e−iθ) ⊆ Q(r + 1/r).

Proof: By Corollary 6.3, if reiθ is a loxodromic eigenvalue, then Q(eiθ + e−iθ) ⊆

Q(r + 1/r). Now assume, Q(eiθ + e−iθ) ⊆ Q(r + 1/r). By Remark 6.2, r 7→ r±1

implies Q(r + 1/r) is fixed. By the containment of fields, if Q(r + 1/r) is fixed, then

Q(eiθ + 1/eiθ) is fixed. Again, by Remark 6.2, Q(eiθ + 1/eiθ) being fixed implies

eiθ 7→ e±iθ. Then, four conjugates of reiθ do not lie on the unit circle. The remaining

conjugates of r have norm equal to 1 and, since eiθ is a root of unity, any conjugate of

eiθ has norm equal to 1. Thus, if r is not sent to r±1, then |σ(reiθ)| = |σ(r)||σ(eiθ)| =
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1 · 1 = 1. This proves that all other conjugates of reiθ lie on the unit circle. Hence,

reiθ is a loxodromic eigenvalue. tu

Corollary 7.9 There exist roots of unity (primitive third and fourth roots of unity)

such that the product of the root of unity and any Salem number results in a loxodromic

eigenvalue.

Proof: For the roots of unity mentioned in the statement above, Q(eiθ+e−iθ) = Q.

Hence, the field is always contained in Q(r + 1/r). tu

Definition 7.10 A permutation group G acting on a set X is primitive if G acts

transitively on X and any nontrivial partition of X is not preserved by G. Otherwise,

G is imprimitive.

Note that the symmetric group on n objects is a primitive group because the

symmetric group is the set of all permutations. Thus, for any partition, there is some

element of the symmetric group that does not preserve the given partition.

Proposition 7.11 Let r2 be a Salem number. Then, if the Galois group of the min-

imal polynomial of r2 + 1/r2 is primitive, then r2 is not the norm of a generic loxo-

dromic eigenvalue.

Proof: Let eiφ be any conjugate of r2 that lies on the unit circle. Then, [Q(r2 +

1/r2) : Q] = [Q(eiφ+1/eiφ) : Q], since they are roots of the same minimal polynomial.

If the Galois group is primitive, then Q(r2 + 1/r2) 6= Q(eiφ + 1/eiφ). Otherwise, we

could find a nontrivial partition of the conjugates of r2 + 1/r2 that is preserved by

the Galois group. Therefore, Q(eiφ + 1/eiφ) 6⊆ Q(r2 + 1/r2). Now suppose that r2eiθ

is a loxodromic eigenvalue. Then, by Proposition 5.3, eiθ is a conjugate of r2. The

fact that Q(eiφ + 1/eiφ) 6⊆ Q(r2 + 1/r2) violates Corollary 6.3. Hence, r2 is not the

norm of a generic loxodromic eigenvalue. tu
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Recall that Salem numbers can only occur as eigenvalues of Kleinian groups de-

rived from A/k where k = k̄. Every Salem number is a hyperbolic eigenvalue, and

every Salem number is the norm of a periodically loxodromic eigenvalue. However,

every Salem number cannot be realized as the norm of a generic loxodromic element.

For example, Lehmer’s number is a Salem number that is a root of the irreducible

polynomial x10 − x9 + x7 − x6 + x5 − x4 + x3 − x + 1. By Proposition 5.3, we know

that the degree of the of Q(r2) must be equal to 2m, where m is the degree of the

trace field. In our case, r2 is a Salem number. By Proposition 5.9, the degree of the

trace field must be divisible by 2. Clearly, 5 is not divisible by 2. Hence, Lehmer’s

number cannot occur as the norm of a generic loxodromic eigenvalue. Moreover,

even if the degree of the Salem number is divisible by 4, this does not guarantee

that it may occur. By Proposition 7.11, the Salem number with minimal polynomial

x20 − x18 − x15 − x5 − x2 + 1 has a trace polynomial (the trace polynomial is the

minimal polynomial of r2 + 1/r2) with Galois group isomorphic to S10.
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