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Abstract

Escalation with Overdose Control using a Toxicity Score for
Personalized Maximum Tolerated Dose in Phase I Clinical Trials

By Run Zhuang

The goal of many cancer Phase I clinical trials is to establish the level of dose toxicity
tolerance in order to estimate the maximum tolerated dose (MTD) used for future
trials. Common methods are divided into rule-based and model-based methods for
dose escalation. The most popular method currently used is the 3+3 rule-based
design. This method is simple and convenient, but has been shown to predict the
true MTD in about 35% of trials. Model-based designs establish a dose response
relationship that is equal to a pre-specified probability of dose limiting toxicity (DLT).
Escalation with overdose control (EWOC) is a Bayesian adaptive design for selecting
dose levels in cancer Phase I clinical trials while controlling the posterior probability
of exceeding the MTD. We extend EWOC to incorporate a novel toxicity score with
the addition of covariates for personalized medicine (EWOC-NETS with covariates).
Under our extensions, we found significant differences in the estimated MTD between
EWOC, EWOC-NETS, and EWOC-NETS with covariates for 4 simulated scenarios.
Our developed method is also safer with respect to toxicity and overdosing.
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1 Introduction

Randomized clinical trials are often considered the gold standard in experimental

testing of a newly developed drug or agent. The main goals of clinical trials are

to determine safety and efficacy of the drug or agent in question. Clinical trials

are divided into four phases, where each subsequent phase is only conducted after a

“successful” trial in the previous phase. Success is often defined differently in each of

the four phases. Phase I of a clinical trial is most often the first time that the agent

or drug is tested in humans, and is only conducted with a prior belief of safety and

efficacy from previous research in animal studies.

Treatments of cancer often involve highly toxic compounds that are aimed to kill

or suppress the functions of cancerous cells and tumors. However, these treatment

methods also impact normal functioning cells and organs, which determines the toxi-

city level of the treatment. In cancer clinical trials, many of the new agents or drugs

are expected to be cytotoxic, defined as being toxic to both normal and abnormal

functioning cells. The primary objective of a Phase I trial in cancer research is to de-

termine the maximum tolerated dose (MTD) in a human cancer patient [1]. The MTD

is clinically defined as the dose for which the probability of a dose-limiting toxicity

(DLT) is equal to a pre-specified proportion. The DLT is defined as a medically unac-

ceptable toxicity experienced at the MTD. In selecting the value of the pre-specified

probability, this parameter is set relatively high (30-50%) when the DLT is considered

to be correctable and non-fatal and extremely low when it is life threatening (5-10%).

Although the main objective of a Phase I trial is to determine the MTD, secondary

goals include early assessment of the agent’s efficacy as well as the pharmacokinetics

of the agent or drug [2].

Since a Phase I trial is the first usage of a proposed agent or drug in human
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patients, Phase I trials act as a barrier and are extremely important to the drug or

agent development. In contrast to other clinical trials, cancer clinical trials usually

involve patients at advanced disease stages who have exhausted all other treatments,

and therefore participating in the Phase I trials as a last resort. However, these trials

are not conducted without ethical considerations, as novel cytotoxic agents can be

extremely harmful even with no benefit to the patient. In addition, it is imperative

that the Phase I trial is designed such that the number of patients treated at low, non-

therapeutic doses and the number treated at severely toxic overdoses is minimized.

1.1 Rule-Based Methods in Phase I Trials

Phase I trials are deemed to be the most effective when one is able to accurately

determine the MTD in the fewest patients. This effectively assigns the maximum

number of patients in the Phase I cohort to doses at or around the MTD. Cancer

Phase I clinical trials are typically dose-escalation designs, where a cohort of patients

(typically 1-3 patients per cohort) is given a dose level and observed for the presence

of a DLT. The next cohort of patients is then given a dose level that is dependent on

the results of the previous cohort. Currently the simplest and still most commonly

used method for estimating the MTD is the 3+3 design, which guides up and down

dosing decisions using a modified Fibonacci series to determine the dose level for each

cohort. The Fibonacci series ensures that dose increases are larger at earlier doses,

and smaller at later doses. The 3+3 design is an example of a rule-based method,

which utilizes pre-specified rules based on observations of the DLT from the clinical

data to determine the MTD. Although simple and easy to implement, the 3+3 design

often treats a large proportion of patients at an inefficacious dose. As a result, the

use of the 3+3 design may incorrectly fail to reject the null hypothesis, resulting in

a Type II Error. The new agent or drug is then deemed ineffective when a benefit is
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actually present [3].

There have been several extensions to the original 3+3 design, including the best

of five design and accelerated titration design. Both of these designs attempt to in-

crease the rate of dose escalation in order to be more aggressive in the assignment

of dose levels. However, these methods are also not advantageous in that their ac-

curacy is not guaranteed and can result in misleading conclusions. Specifically, rule

based designs are inefficient in establishing the dose that meets the specified target

toxicity level (TTL), which is the probability that patients that will experience a

DLT in the trial. In addition, rule based designs only utilize information from the

previous cohort, and ignore all data previously accumulated. Lastly, the final MTD

and recommended dose for Phase II trials is selected from a range of pre-specified

dose levels, rather than a continuous set of dose levels bounded by a minimum and

maximum dose [4]. Regardless, rule based designs are the most commonly used due

to their simplicity. They do not require special software and are often conservative

with dose escalation. However, more advanced and accurate methods are needed to

more accurately determine the MTD, which can be accomplished with model-based

designs.

1.2 Model-Based Methods in Phase I Trials

Model-based designs use statistical models that actively seek a dose level to pro-

duce the pre-specified probability of a DLT or TTL. These models utilize toxicity

data from all enrolled patients in order to construct a more precise dose-toxicity

curve. The general concept of all model-based designs is based off the TTL, where

the dose-toxicity curve is constantly updated using Bayesian methods. The posterior

distribution of the MTD is evaluated to identify the dose that is closest to the TTL,
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resulting in the estimated MTD.

The first model-based design was developed by O’Quigley et al. in 1996 and

was named the continual reassessment method (CRM). The basic methodology of

the CRM consists of constantly updating of the dose-toxicity level after each patient

using the posterior distribution of the MTD. The next patient is then given the dose

that is currently the best estimated MTD [5]. Therefore, the main difference of

model-based methods from rule-based methods is the utilization of all patient data

in updating the MTD. The CRM was first developed under a two parameter logistic

model, although other models including the hyperbolic tangent and power model

have also been considered. In addition to the model, a TTL is chosen to indicate

the overall probability for a DLT in each patient. Using the TTL and a specified

model, the MTD can be solved for analytically using patient data. The CRM utilizes

a Bayesian approach with priors set for the MTD and probability of a DLT at the

lowest dose. The CRM has been shown to select the correct dose approximately

45% of the time in several simulated scenarios, where the 3+3 design only selected

the correct dose approximately 35% of the time. The CRM is also flexible in that

its operating characteristics can be easily optimized, such as continuous dose levels,

varying cohort sizes, and complex stopping rules [6].

1.3 Escalation with Overdose Control (EWOC)

Escalation with Overdose Control (EWOC) is a Bayesian adaptive design for se-

lecting doses in cancer Phase I trials. The main difference between the CRM and

EWOC is the implementation of a safety measure, defined as controlling the pos-

terior probability of exceeding the maximum tolerated dose. Essentially, EWOC is

constructed such that the probability of overdosing a patient based on current data
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is equal to or less than a pre-specified value known as the feasibility bound. This

feasibility bound is usually selected based on prior beliefs of toxicity [7]. Trials com-

mence at the lowest dose level and escalate based on the responses of the patients,

eventually converging to the maximum tolerated dose as rapidly as possible through

the logistic model. It is expected that EWOC will only under-dose patients at the

beginning of the trial, and that most patients past a certain time will be treated

at doses sufficiently close to the MTD. Similar to other model-based designs, the

underlying assumption is a monotonically increasing function of dose and toxicity,

indicating that agents are more toxic as the dose levels increase. Previous studies

have shown that EWOC was able to treat 55% of patients at optimal dose levels,

compared to only 35% for rule-based designs [4]. While these numbers are similar

when comparing EWOC and the CRM, EWOC is considered to be much safer as a

result of the added feasibility bound [8].

While EWOC is advantageous to previously developed methods in both rule and

model based designs, there are limitations that hinder the full effectiveness of the

method. In all previous methods and EWOC, the outcome of a patient is measured

as a binary response. Therefore, toxicity is either present (dose-limiting toxicity)

or absent [9]. However, toxicities vary in their severity, ranging from nausea and

vomiting to lymphedema and severe damage of one’s organs. The National Cancer

Institute (NCI) labels toxicities at six levels, with levels 1-4 indicating non-DLT

toxicities and levels 5-6 indicating a DLT toxicity. In the binary case, levels 1-4 are

treated equally as non-DLT and levels 5-6 treated equally as DLT. In reality, the

toxicity levels of non-DLT/DLT are not the same and should be considered different

when using modeling techniques.

The binary toxicity outcome is also limited in that we only observe a single max-

imum toxicity. In reality, a subject in Phase I could experience multiple toxicities,
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including multiple non-DLT toxicites and multiple DLT toxicities. Since all toxicity

data are regularly collected in a Phase I trial, the extra data does not complicate or

burden the actual trial. By changing the binary measure for the DLT and incorpo-

rating the number of toxicities, all data gathered in a trial can now be used to better

estimate the next dose level and the overall MTD.

1.4 Extensions and Goals

In addressing the limitations of a binary response, Chen et al. proposed a novel

toxicity scoring system to characterize toxicity as a continuous response [10]. The

proposed score is a function of the highest level of toxicity and all other toxicities,

with a weight parameter to vary the importance of the non-maximum toxicities. This

function therefore takes into account all available toxicity data, including the lev-

els of toxicity and number of toxicities [11]. The extended score is comprised of a

Normalized Equivalent Toxicity Score (NETS) for each patient and a Target Normal-

ized Equivalent Toxicity Score (TNETS) which is analogous to the TTL. Therefore,

EWOC must be reparameterized with the incorporation of NETS in the logistic model

instead of a binary indicator for DLT, forming EWOC-NETS [10].

In cancer research and the development of cancer drugs, personalized medicine has

recently become an extremely hot topic. Specifically, it is of great interest whether

certain cancer drugs are more or less effective/toxic in a subgroup of patients. We can

first begin modeling personalized medicine in the form of covariates that are added

into the logistic model. In the simplest, we consider a single discrete covariate, where

one subgroup of subjects exhibits a particular gene and the other group does not.

This covariate can then be added into the model in order to assess whether the dose

levels significantly change between these two groups. Therefore, the estimated MTD
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is adjusted for the covariate rather than the overall MTD. Continuous covariates can

also be considered, such as the patient’s weight, percent of tumor growth, or time

from cancer diagnosis. These covariates could potentially be important factors in

assessing the adjusted MTD, which could differ vastly to the overall MTD.

These two extensions can be added onto the originally developed EWOC model in

order to increase the accuracy of the model for the MTD. We believe that this is the

first method to incorporate covariates into EWOC, ultimately forming the method

EWOC-NETS with Covariates. To assess the performance of this model, simulation

studies will be conducted between EWOC-NETS and EWOC-NETS with Covariates

provided under multiple scenarios.

The thesis is organized as follows: 1) the proposed methods and simulation sce-

narios are described in Section 2; 2) the results of the simulations and performance

of the models are shown in Section 3; and 3) a thorough discussion of the practicality

and limitations of the developed methods are discussed in Section 4.

2 Methods

This section is comprised of multiple parts. First, we introduce EWOC and its

formulation originally developed by Babb in 1998 [7]. We then describe the continuous

scoring system for toxicity (NETS) developed by Chen in 2013 [10]. Following NETS,

we combine EWOC and NETS to form EWOC-NETS and show how to reparameterize

the model. We then introduce both discrete and continuous covariates in order to form

the final model EWOC-NETS with covariates. Finally, we discuss our simulations.
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2.1 EWOC

Under EWOC, the dose level and toxicity relationship is modeled as follows:

P (DLT |Dose = x) = F (β0 + β1x) (1)

where x is the specified dose level, F is a specified distribution function (tolerance

distribution), and β0 and β1 are unknown parameters. β1 is assumed to be greater

than 0 such that the probability of the DLT is a monotonic increasing function of

dose level. Since the distribution function is assumed to be logistic, we can write the

model as:

P (DLT |Dose = x) =
eβ0+β1x

1 + eβ0+β1x
(2)

The probability of the DLT at the minimum dose xmin is denoted by ρ0, with yi

as a binary indicator for the DLT of the ith patient. Utilizing all patient data, given

by Dn = {(xi, yi), i = 1, ..., n}, the likelihood function of β0, β1 given Dn is:

L(β0, β1|Dn) =
n∏
i=1

logit−1(β0 + β1xi)
yi [1− logit−1(β0 + β1xi)]

1−yi (3)

Prior information is incorporated about β0, β1 through a prior probability density

function h(β0, β1). Using Bayes Theorem, the joint posterior distribution of (β0, β1)

given the data Dk is then:

P (β0, β1|Dn) =
L(β0, β1|Dn)h(β0, β1)∫ ∫
L(x, y|Dn)h(x, y)dxdy

(4)
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We now must solve for our unknown parameters in terms of clinically meaningful

terms. The marginal posterior distributions of the MTD can be derived with a basic

transformation using ρ0 and the MTD γ. The TTL is given by θ and can be modeled

with the following equations:

logit(ρ0) = β0 + β1xmin (5)

logit(θ) = β0 + β1γ (6)

In equations (5) and (6), the probability of the DLT at the minimum dose ρ0 and

θ are written in terms of the minimum dose and MTD. These two equations can be

solved simultaneously for the β coefficients, and can be expressed as:

f1(ρ0, γ) = β0 =
1

γ − xmin
[γlogit(ρ0)− xminlogit(θ)] (7)

f2(ρ0, γ) = β1 =
1

γ − xmin
[logit(θ)− logit(ρ0)] (8)

We can now easily interpret the β coefficients as they are now functions of the

MTD γ, the pre-specified highest acceptable toxicity level θ, and the probability of

the DLT at the lowest dose level ρ0. Using these new parameterized terms, we can

now write the joint posterior probability density function of (ρ0, γ) given Dn using

Bayes Theorem as follows:

P (ρ0, γ|Dn) =
L(f1(ρ0, γ), f2(ρ0, γ)|Dk)h(f1(ρ0, γ), f2(ρ0, γ))f2(ρ0, γ)∫ ∫

L(x, y|Dn)h(x, y)dxdy
(9)
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Utilizing this joint posterior probability density function, the marginal posterior

PDF of the MTD γ given Dn as:

π(γ|Dn) =

∫ ∫
P (ρ0, γ|Dn)dρ0 (10)

To determine the MTD, we can integrate the marginal posterior PDF in (10) to

obtain the marginal posterior CDF of the MTD given Dn:

πk(z) =

∫ z

xmin

π(γ|Dn)dγ, x ∈ [xmin, xmax] (11)

The escalation scheme for EWOC then is described using the following notation.

There is an amount of data Dn after enrolling n patients in the trial, where yi is

the indicator for the DLT for the ith patient. The prior distribution for ρ and γ is

given by h(ρ0, γ) and bounded by [0, θ] and [xmin, xmax]. The first cohort of patients

receive x = xmin and if y1 = 0 (absence of the DLT), then the ith patient will receive

the dose xn = π−1n−1(α), where α is the feasibility bound. EWOC is constructed such

that the minimum and first dose is assumed to be safe. Dose escalation will only

proceed in the absence of the DLT. In the presence of the DLT, dose de-escalation

following the posterior distribution of γ will be calculated for the next cohort of

patients. Estimators of the final overall MTD include the mean, median, or mode of

the marginal posterior PDF of the MTD.

2.2 NETS

Chen et. al. developed a novel toxicity score in order to quantitatively characterize

each DLT experienced by a patient [10]. As described in the previous section, the
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original methodology of EWOC only incorporated binary outcomes, which does not

take into account the levels of the DLT. Using the NCI’s guidelines for assessing the

DLT, Chen developed the following score (NETS) [10].

Si =
1

6

[
Gi,max − 1 +

exp
{
α + β

(∑Ji
j=1

wi,jGi,j

Gi,max
− 1
)}

1 + exp
{
α + β

(∑Ji
j=1

wi,jGi,j

Gi,max
− 1
)}] (12)

The adjusted grade of the jth toxicity is given by Gi,j, j = 1, ..., Ji for the ith

patient. The value of Gi,j ranges from 0 to 6 and is defined based on the severity of

the DLT defined by the NCI:

Gi,j =



0, if Grade 0 Toxicity

1, if Grade 1 Toxicity

2, if Grade 2 Toxicity

3, if Grade 3 Toxicity non DLT

4, if Grade 4 Toxicity non DLT

5, if Grade 3 DLT

6, if Grade 4 DLT

(13)

The score for toxicity Si (NETS) defined in (12) is dependent on the toxic events

observed Gi,j and the maximum toxicity level Gi,max = max(Gi,j, j = 1, ..., Ji). As

seen in the equation, the maximum toxicity experienced is heavily weighted in the

determination of Si. The parameter wi,j is the correlation between the toxicities of

ith patient, and is usually predefined based on whether there is a belief that the agent

can cause related symptoms. The weight is increased with decreasing correlation. In

the event of complete independence between toxicities, the weight is set equal to 1.
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The β parameter is a slope parameter that controls the rate of increase of Si. If β is

set equal to 0, then the equation is reduced to the event of only considering the most

toxic event. The value of β is usually selected based on how much we value toxicities

that are not the most toxic. The parameter α in (12) assesses the difference between

the most toxic event and other toxic events. Chen has suggested that α be set to -2

for EWOC [10].

2.3 EWOC-NETS

In combining Escalation with Overdose Control (EWOC) with NETS to utilize

all toxicity data available, we must redefine certain parameters. The target toxicity

level (TTL) defined by θ is analogously defined to be a pre-specified target normalized

equivalent toxicity score (TNETS). Therefore, the formal definition of TNETS is the

score at which the MTD γ will converge. For consistency, we define θ to be TNETS

in this section.

The estimate of θ is defined to be a summation of the mid-range NETS score ml

and the target probability corresponding to the maximum adjusted grade l toxicity

(pl). Therefore, θ̂ is defined as:

θ̂ =
6∑
l=0

mlpl (14)

Similar to EWOC from Section 2.1, we model toxicity in the form of a logistic

model. Previously, EWOC modeled toxicity as a binary result. We can now model

the NETS using a similar model:
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Si = F (β0 + β1xi) (15)

where Si is the corresponding NETS for the ith patient and F is the specified

distribution function, assumed to be logistic. Following EWOC, we can model Si and

dose level as follows:

logit(Si|Dose = xi) =
logit(ρ0)(γ − xi) + logit(θ̂)(xi − xmin)

γ − xmin
(16)

Analogous to EWOC, ρ0 here is a measure of toxicity in terms of the NETS

when a patient is treated at the minimum dose xmin and γ is the maximum tolerated

dose corresponding to the target highest acceptable toxicity severity level in term of

NETS, θ̂. In the construction of the likelihood function for ρ0 and γ, we can consider

NETS to be viewed as fractional events. Therefore, a quasi-Bernoulli likelihood can

be constructed using a family of ”quasi” probability distributions that can provide

a simple way to incorporate NETS into parametric models. ”Quasi” distributions

that belong to linear exponential families exhibit quasi-maximum likelihood estimates

that are strongly consistent. A quasi-Bernoulli likelihood was first implemented in

the CRM and is also utilized here. Consider once again the data available Dn after

observing n patients. The quasi-Bernoulli likelihood of (ρ0, γ) given Dn is then given

by:

L̃(ρ0, γ|Dk) =
n∏
i=1

[
exp
{ logit(ρ0)(γ − xi) + logit(θ̂)(xi − xmin)

γ − xmin

}]Si

×
[
1 + exp

{ logit(ρ0)(γ − xi) + logit(θ̂)(xi − xmin)

γ − xmin

}]1−Si

(17)
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where Si is the NETS of the ith patient and is assumed to have a variance structure

given by

V ar(Si) = µSi|Xi
(1− µSi|Xi

) (18)

where µSi|Xi
is the mean of generated scores conditional on dose level xi for the

ith patient, assuming S1, ..., SN are mutually independent. The quasi-maximum like-

lihood estimate from (17) is strongly consistent following the Bernoulli distribution.

Therefore, this likelihood can be applied to update the posterior distribution of (γ, ρ0).

The posterior distribution of γ can be constructed through sampling using the

Metropolis-Hastings algorithm. Assume that h(γ, ρ0) be a prior distribution bounded

by [0, θ]× [xmin, xmax]. The quasi-Bernoulli posterior distribution of (γ, ρ0) given Dn

following Bayes Theorem is then:

π̃(γ, ρ0|Dn) =
L̃(ρ0, γ|Dn)h(γ, ρ0)∫ ∫

[0,θ]×[xmin,xmax]
L̃(ρ0, γ|Dn)h(γ, ρ0)dρ0dγ

(19)

The marginal posterior π̃n(γ) can be updated using a MCMC sampler with a

specific quantile level α.

2.4 EWOC-NETS with a Discrete Covariate

With the inclusion of a discrete covariate C to assess patient characteristics, the

MTD’s for each group could vary based on this covariate. We begin with the assump-

tion that the MTD γ1 for group 1 is different than the MTD γ2 for group 2. The

logistic model for this additional covariate modeling NETS and dose is:



15

θ = F (β0 + β1γmax + δ) (20)

where F is a logistic function and δ is an unknown parameter for the covariate.

The MTD is solved such that the TNETS is equal to θ. Assume that ρ1 is the average

NETS (ANETS) for group 1 and ρ2 be the ANETS for group 2. The model can then

be rewritten as:

logit(ρ1) = β0 + β1xmin (21)

logit(ρ2) = β0 + β1xmin + δ (22)

logit(θ) = β0 + β1γ2 + δ (23)

Similar to the reparameterization of EWOC and EWOC-NETS, the unknown

parameters can be expressed in terms of γ, ρ1, and ρ2:

β0 = logit(ρ1)−
logit(θ)− logit(ρ2)

γ2 − xmin
xmin (24)

β1 =
logit(θ)− logit(ρ2)

γ2 − xmin
(25)

δ = logit(ρ2)− logit(ρ1) (26)

γ1 = γ2 +
δ

β1
(27)

The MTD for group 1 is given by γ1 and is a function of γ2 and the regression

parameters. Utilizing these regression parameters, the model can now be set up to

determine individual MTD’s for each group of patients.
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2.5 EWOC-NETS with a Continuous Covariate

For patient characteristics such as weight, age, and gene expression levels, a con-

tinuous covariate can be added into the model to determine if there are drastic differ-

ences in the MTD. The model is constructed similar to EWOC-NETS with discrete

covariates, but the reparameterization of the unknown parameters is different. Given

a continuous covariate Z that is hypothesized to increase when the MTD increases,

the following equations are constructed:

logit(θ) = β0 + β1γ2 + δzmax (28)

logit(ρ1) = β0 + β1xmin + δzmin (29)

logit(ρ2) = β0 + β1xmin + δzmax (30)

where zmax and zmin are the highest and lowest possible values for the specific

covariate. We define γ2 as the MTD at covariate level zmax. The variable ρ1 then

measures the toxicity level for patients receiving the lowest dose level at the smallest

value for the covariate Z. Similarily, ρ2 measures the toxicity level for patients re-

ceiving the lowest dose level at the highest value for Z. The reparametrization of the

unknown parameters using equations (28)-(30) can then be shown to be:

β0 = logit(ρ1)−
logit(θ)− logit(ρ2)

γ2 − xmin
xmin −

logit(ρ2)− logit(ρ1)
zmax − zmin

zmax (31)

β1 =
logit(θ)− logit(ρ2)

γ2 − xmin
(32)

δ =
logit(ρ2)− logit(ρ1)

zmax − zmin
(33)
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Given a continuous covariate, the model can be constructed based on the toxicities

at xmin, ρ1 and ρ2, and the covariate levels between zmin and zmax. Essentially, our

model attempts to determine the MTD’s for covariate values at zmin and zmax.

2.6 Simulation Settings and Methods

In order to assess the efficacy and accuracy of the newly developed models, we con-

duct simulation studies using EWOC-NETS as the framework to incorporate patient

characteristics and biomarkers. In this thesis, three models will be considered, with

the original EWOC-NETS framework as the baseline model. This original framework

does not consider covariates in the estimation of the MTD, but patient covariate

data are still used. Therefore, the posterior distribution of the MTD is the overall

MTD, rather than subsets of MTD based on the covariates. The three models consid-

ered are: 1) model 1 is the original EWOC-NETS without covariates; 2) model 2 is

EWOC-NETS plus a discrete covariate {C = 0, 1}; and 3) model 3 is EWOC-NETS

plus a continuous covariate {Z ∼ (0,1)}:

Model 1 : logit(µSi|xi) = β0 + β1Xi (34)

Model 2 : logit(µSi|xi,ci) = β0 + β1Xi + δCi (35)

Model 3 : logit(µSi|xi,zi) = β0 + β1Xi + δZi (36)

The reparameterization for (β0, β1, δ) are all different between the three models

and are defined in the previous subsections. The advantage of EWOC-NETS with

covariates is evaluated by comparing models 2 and 3 to model 1, and assessed using

bias, standard error, and mean square error.
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Comparisons between the three models will be evaluated under a total of 8 sce-

narios, 4 for the discrete case and 4 for the continuous case. In the discrete case, we

define a covariate C that can either be 0 or 1, and thus creating two separate groups.

We assume that group 1 is defined to be when C = 0 and is expected to have a lower

MTD, γ1. Group 2 is defined to be when C = 1 and is expected to have the higher

MTD, γ2. Therefore, in the calculation of ANETS, we expect ρ2 to be lower than ρ1.

Specifically, we consider a continuous set of doses between [0, 1], satisfying xmin = 0

and xmax = 1. Therefore, the values of γ1 and γ2 must between be [0, 1]. Specifically,

we specify the true value of γ2 to be 0.5 for all 4 scenarios. The true values of γ1

are set to 0.27, 0.38, 0.44, and 0.5 for the four scenarios. The value of ρ2 is set to

.05 for all four scenarios. Using equations (24)-(26), ρ1 is solved to be 0.163, 0.096,

0.0689, and 0.05 for the γ1 values of 0.27, 0.38, 0.44, and 0.5, respectively. Since we

also assume group 2 will have the higher MTD and is generally considered safer, we

always enroll a patient with C = 1 to start the trial. Table 1 provides the details of

the simulation study for EWOC-NETS with a discrete covariate.

Scenario True Effect MTD, C = 0 MTD, C = 1

1 Yes 0.27 0.50
2 Yes 0.38 0.50
3 Yes 0.44 0.50
4 No 0.50 0.50

Table 1: Scenarios for Discrete Covariate

In the model considering a continuous covariate Z, we follow the same scenarios

described in the discrete covariate model. Specifically, we assume that MTD increases

with respect to Z, where zmax is considered to be the highest value for the covariate and

zmin is considered to be the lowest value for the covariate in the Phase I trial. Thus,

zmax is analogous to γ2 and zmin is analogous to γ1 in the same way as the discrete

case. The continuous covariate follows Z ∼ U(0, 1) and is randomly generated for

each patient. Table 2 provides the details of the simulation study for EWOC-NETS
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with a continuous covariate.

Scenario True Effect MTD, Z = 0 MTD, Z = 1

1 Yes 0.27 0.50
2 Yes 0.38 0.50
3 Yes 0.44 0.50
4 No 0.50 0.50

Table 2: Scenarios for Continuous Covariates
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In each trial, we simulate 30 patients and provide a dose based on a constantly

updated posterior distribution constructed from all previous data. The target NETS

(TNETS), θ, is set to be 0.476 for all scenarios, analogous to a target toxicity level

of 33%. The feasibility bound α is set to begin at 0.25, and increases by 0.05 up to

a maximum of 0.5. The feasibility bound only increases if the current information

on the MTD increases from the previous patient, and cannot exceed 0.5. The trial

will always start with the lowest dose level, and the recommended dose level for the

next patient is the αth percentile of the marginal posterior distribution of the MTD,

adjusting for the covariate.

Each scenario of each model is simulated 250 times and evaluated for its per-

formance. Specifically, we are interested in the following 4 criteria: 1) whether the

estimated MTD is a personalized MTD; 2) the measure of bias from the simulation;

3) the mean square error (MSE) of γ̂2 and γ̂1; and 4) the standard error of γ̂2 and γ̂1.

The marginal posterior distributions of (γ2, ρ1, ρ2) are constructed by direct sam-

pling using the Metropolis-Hastings algorithm. The original sampling of EWOC is

done in R using the RJAGS package. EWOC-NETS and EWOC-NETS with co-

variates are sampled from a user constructed MCMC sampler. We also specify non-

informative prior distributions of (γ2, ρ1, ρ2), where γ2 ∼ U(xmin, xmin), ρ1 ∼ U(0, θ),

and ρ2 ∼ U(0, θ). For each patient, we sample a total of 5,000 iterations with a burn

in period of 1,000 iterations. The final posterior MTD is assumed to be the mean of

the trials. We assess trace plots, histograms, and other diagnostic plots to assess the

convergence of (γ2, ρ1, ρ2).
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3 Results

In this section, we analyze the results of our simulation studies. We first assess

the performance of Model 1, followed by Model 2 with a discrete covariate, and then

Model 3 with a continuous covariate.

3.1 Discrete Covariate

The results of Model 1 are given in Table 3 with the overall mean MTD, bias,

standard error, and MSE. In Model 1 of the first scenario, which has the largest

true difference in MTD between the two groups, the mean MTD over a cohort of

30 patients is 0.355 over 250 simulations. The bias for group 2 (C = 1, true MTD

= 0.50) is -.145, while the bias for group 1 (C = 0, true MTD = 0.27) is .085 in

this first scenario. From this single scenario, we can see that the original EWOC-

NETS produces a large bias in the overall MTD. Therefore, the bias is large in both

directions for the first scenario.

In scenarios 2 and 3 for Model 1 where the MTD of group 1 is closer to the MTD

of group 2, the overall mean MTD from the simulation study increases. However,

this MTD is still an overall mean and does not distinguish between the two groups

(Figure 3). In scenario 4 where both group 1 and 2 have a true MTD of 0.5, indicating

that the covariate has no real effect, we can see that EWOC-NETS quite accurately

estimates the true MTD. In addition, the MSE for both groups is largest when the

two MTD’s are vastly different, indicating that Model 1 is much less robust when

there is a large true difference. Standard errors are relatively similar for all scenarios,

suggesting that no scenario was heavily influenced by error or convergence.
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Scenario Mean SE Bias, C=0 MSE, C=0 Bias, C=1 MSE, C=1

1 0.355 0.053 0.085 0.010 -0.145 0.024
2 0.446 0.051 0.066 0.007 -0.054 0.005
3 0.485 0.055 0.045 0.005 -0.015 0.003
4 0.518 0.062 0.018 0.004 0.018 0.004

Table 3: Simulation Results of Model 1, No Discrete Covariate Considerations

In Model 2 where we consider the effect of the discrete covariate, simulation results

show two separate MTD’s, one for group 1 and another for group 2. In scenario 1,

Model 2 is able to accurately estimate the MTD of group 1 (C = 0, true MTD =

0.27), with an estimate of .241 (Table 4). The bias of scenario 1 for this group is -

.029, indicating that this model correctly identified a unique MTD for this group. For

group 2 (C = 1, true MTD = 0.50) in scenario 1, the MTD was estimated to be 0.439,

also indicating an close estimate of the true MTD for group 1 (Table 5). In general,

while Model 2 does not precisely estimate the MTD’s for each group (all with varying

biases), the model is able to correctly identify the scenarios where the covariate has

a true effect (scenarios 1, 2, & 3). Standard errors for both groups decrease from

scenarios 1 to 4, suggesting that the point estimate of the MTD is more precise in

the latter scenarios. From the simulation results under a discrete covariate, Model 2

is more robust and accurate in estimating the true MTD compared to Model 1.

Table 6 gives the overdosing rates for Model 1 and Model 2. In general, Model 2 is

much less likely to overdose patients from the true MTD. While the overdosing rates

for scenarios 3 and 4 appear to be rather high, this is actually due to the continuous

dose levels, where doses given to patients were only slightly larger than the true MTD.

Table 7 gives the average NETS between Model 1 and 2, with subjects in Model 2

having expected NETS compared to Model 1 (θ = .476).



23

Scenario True Value Mean SE Bias MSE

1 0.27 0.241 0.064 -0.029 0.005
2 0.38 0.371 0.061 -0.009 0.004
3 0.44 0.459 0.059 0.019 0.004
4 0.50 0.527 0.056 0.027 0.004

Table 4: Simulation Results of Model 2 for Group 1, C = 0

Scenario True Value Mean SE Bias MSE

1 0.50 0.439 0.061 -0.061 0.007
2 0.50 0.460 0.056 -0.040 0.005
3 0.50 0.484 0.053 -0.016 0.003
4 0.50 0.492 0.049 -0.008 0.003

Table 5: Simulation Results of Model 2 for Group 2, C = 1

Scenario Model 1 Model 2

1 0.368 0.167
2 0.417 0.309
3 0.455 0.395
4 0.495 0.485

Table 6: Overdosing Rates between Model 1 and Model 2

Scenario Model 1 Model 2

1 0.573 0.497
2 0.524 0.480
3 0.489 0.472
4 0.471 0.462

Table 7: Average Nets between Model 1 and Model 2
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3.2 Continuous Covariate

Under a continuous covariate Z, simulation results for Model 1 that does not

consider the value of the covariate in the likelihood function is given in Figure 1. In

this figure, all four scenarios described earlier are plotted to show the relationship

between MTD and Z under Model 1. This relationship is constructed with all data

points from 250 simulations, and fitted in R using the Lowess function for a polynomial

fit. In general, we do not see a monotonically increasing relationship between MTD

and Z as we would expect. In scenarios 2-4, the relationship seems to increase and

decrease randomly with respect to the covariate Z. The four lines indicate that there is

no obvious pattern in the relationship between MTD and Z. Table 8 gives the results

of Model 1 for Z = 0 when the covariate is at its minimum value, and for Z = 1 when

the covariate is at its maximum value. Overall, the mean MTD ranges from 0.341 to

0.515 for scenarios 1 to 4. Standard errors are consistent among the four scenarios

and range from 0.053 to 0.60. Both the bias and MSE decrease from scenario 1 to

scenario 4, suggesting that Model 1 is only accurate when the two groups (Z = 0, Z

= 1) have equal MTDs. In the event of personalized medicine in scenarios 1, 2 and

3, Model 1 is unable to identify a difference in the MTDs.

Scenario Mean SE Bias, Z=0 MSE, Z=0 Bias, Z=1 MSE, Z=1

1 0.381 0.055 0.111 0.008 -0.119 0.028
2 0.435 0.057 0.056 0.006 -0.065 0.007
3 0.469 0.053 0.029 0.004 -0.031 0.004
4 0.515 0.060 0.015 0.004 0.015 0.004

Table 8: Simulation Results of Model 1, No Continuous Covariate Considerations
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Figure 1: Relationship between MTD and Z under Model 1

The results of Model 3 with a continuous covariate are given in Figure 2. Similar

to the previous figure, the four lines estimate the relationship between MTD and Z

for all four scenarios. In scenario 1, there is an obvious increase in MTD with respect

to Z, which is the expected result. Scenarios 2 and 3 also show a monotonically

increasing relationship between MTD and Z. In scenario 4 under a null effect in the

covariate, we see that the overall fit is completely constant with no change in slope.

Comparing Figures 1 and 2, the MTD changes drastically under Model 3 compared

to the MTD under Model 1.
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Figure 2: Relationship between MTD and Z under Model 3

Tables 9 and 10 estimates the MTD values when Z = 0 at the minimum covariate

value and Z = 1 at the maximum covariate value. Theoretical values of the MTD are

given in Table 1. In the most extreme scenario where the true MTD of the smallest

covariate value (Z = 0) and the largest covariate value (Z = 1) are extremely different,

the estimates are .276 and .498.Both of these estimates are extremely close to their

true values, with biases of 0.006 and -0.002. Estimates of the MTD in scenarios 1-3

under Model 3 determine a personalized MTD as expected. Under scenario 4, Model

3 estimates the two MTD’s to be 0.541, while the true MTD is 0.5. This estimate

is actually less accurate than Model 1 with the original EWOC-NETS, but is still

extremely close to the true values. Standard errors for all four scenarios are relatively

similar at around 0.05. The mean squared errors are all low and consistent among

the scenarios, suggesting that the performance of Model 3 under all 4 scenarios is
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consistent. Comparing the tables to Figure 2, the values at Z = 0 and Z = 1 do

not exactly match due to the polynomial fit. However, the monotonically increasing

pattern presented in the figure indicates the presence of a personalized MTD.

Scenario True Value Mean SE Bias MSE

1 0.27 0.276 0.058 0.006 0.003
2 0.38 0.399 0.057 0.019 0.004
3 0.44 0.467 0.049 0.027 0.003
4 0.50 0.541 0.049 0.041 0.004

Table 9: Simulation Results of Model 3 γ1 (Z=0)

Scenario True Value Mean SE Bias MSE

1 0.50 0.498 0.058 -0.002 0.003
2 0.50 0.515 0.057 0.015 0.003
3 0.50 0.525 0.049 0.025 0.003
4 0.50 0.541 0.049 0.041 0.004

Table 10: Simulation Results of Model 3 for γ2 (Z=1)

Under Model 1, the average NETS are high in scenarios 1 and 2, up to 60% and

53%, respectively. In scenarios 3 and 4, the average NETS return to expected rates at

49% and 46%, respectively (Table 11) . These ANETS values also indicate that Model

1 does not accurately estimate the MTD in scenarios 1 and 2. The ANETS values for

Model 3 are much closer to what we would expect, with all 4 scenarios having rates

that are very close to θ = 0.476. All 4 scenarios also have ANETS values less than θ

under Model 3, while the ANETS values of Model 1 under certain scenarios are much

higher than the safety limit.

Scenario Model 1 Model 3

1 0.601 0.447
2 0.530 0.465
3 0.498 0.467
4 0.465 0.463

Table 11: Average NETS between Model 1 and Model 3
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4 Discussion

In Model 1, only one overall MTD is given for each scenario for both discrete and

continuous covariates. In the continuous setting, it is impossible to give an estimate

of both γ1 and γ2 for Model 1 due to the continuous nature of the covariate. In the

discrete case for Model 1, it is actually possible to provide two MTD estimates, one for

γ1 (C = 0) and one for γ2 (C = 1). However, only one estimate is given because there

is no substantial difference in MTD between the two groups from Model 1 (Figure

3). In all scenarios, the MTD’s in Figure 3 between the two groups have relatively

similar medians and distributions. Therefore, for both the discrete and continuous

scenarios under Model 1, we only report an overall MTD.

The overall MTD’s from Model 1 in the discrete and continuous case are relatively

similar in the four scenarios. Since the range of values for all covariates are between

0 and 1, both scenarios under Model 1 attempt to model a mid-point value of the co-

variates (Z ∼ 0.5, C ∼ 0.5). Therefore, the overall MTD’s between the two covariates

are similar since the covariate values are similar.

In Model 2 for Group 1, estimated mean MTD’s are very close to the true value

and is successfully identified as a personalized MTD. For Group 2 where the true

MTD for all scenarios is 0.5, the estimated MTD is further away depending on the

true MTD of Group 1. For scenario 1, we see that the estimated MTD is much less

than scenario 4, even though the true MTD is 0.5 for both scenarios (Table 5). This

is caused by the equations for β0, β1, and δ given by (24)-(26). Since these equations

contain both γ1 and γ2, the lower γ2 for Group 1 causes the estimated γ̂2 to be lower.

When the two MTD’s are close, then both groups have very accurate MTD estmates.

If the MTD for group 1 was higher than group 2, we would expect the estimated

MTD’s for group 2 to be higher than the true values.
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In assessing overdosing rates, both Model’s 2 and 3 have lower rates than Model

1, suggesting that Model’s 2 and 3 are safer for patients. While some overdosing

rates appear to be high, an analysis of the simulated data shows that many patients

receive doses very close to the true MTD (+/- 0.05). This is caused by the nature

of the continuous dose levels and the original design of EWOC, where the model

rapidly escalates to the estimated MTD with recommended dose levels around that

value. In assessing average NETS, Model’s 2 and 3 also have lower rates than Model

1, suggesting that these patients are receiving less severe toxicities and therefore less

toxic doses. All average NETS for models 2 and 3 are close to the true value θ =

0.476. Overall, this results in a lower MTD estimate in Model’s 2 and 3 compared to

Model 1.

Overall, although Model’s 2 and 3 are not entirely precise in estimating the true

MTD for both groups, they are both much closer than the estimated MTD in Model

1. Larger discrepancies are seen when the true MTD’s are vastly different between

the two patient groups. From Model 1, we also see that overdosing rates and average

NETS are higher than expected when the MTD’s are different between the two groups.

In Model’s 2 and 3, overdosing and average NETS are consistent with expected values

and overdose control. We conclude that our developed methods are able to identify

the scenarios that have personalized MTD consistently, while the original EWOC-

NETS cannot be incorporated with patient distinct covariates.
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6 Appendix

Figure 3: MTD Distribution with no Discrete Covariate Consideration

Figure 4: MTD Distribution with Discrete Covariate Consideration
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Figure 5: Sample Diagnostic Plots Assessing the Convergence of the MCMC Sample

Figure 6: Average NETS with Respect to Dose Level using a Logistic Model
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Figure 7: Dose Level Frequencies for Scenario 4, C = 1
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Original EWOC with JAGS

install.packages ( ’ rjags ’ )
library (rjags)

#Model for JAGS (Bayesian Methods Book)

model=”model{
for ( i in 1:N){

tox[ i ]˜dbern(p[i ])
logit (p[ i ])<− (1/(gamma − Xmin))∗(gamma∗logit(rho0)−

Xmin∗logit(theta)+(logit(theta)−logit(rho0))∗X[i])
}

gamma ˜ dunif(Xmin,Xmax)
rho0 ˜ dunif(0,theta)
}”

#Function for logit
logit<−function(p) {

return(log(p/(1−p)))
}

#Input Parameters (Varying)
doses = seq(140,425,10) #Dose levels (discrete)
Xmin = 140
Xmax = 425
gam mtd = 160 #prior MTD
rho = .05 #probability of DLT at Xmin
theta = 1/3 #target toxicity level TTL

#B0 and B1 in logistic model
b0=1/(gam mtd−Xmin)∗(gam mtd∗logit(rho)−Xmin∗logit(theta))
b1=1/(gam mtd−Xmin)∗(logit(theta)−logit(rho))

prob dose<−1−(exp(−(b0+b1∗doses))/(1+exp(−(b0+b1∗doses))))

#Beginning of JAGS

subjects = 30
nsims = 10
finaldata=list ()
varying a = T

for ( i in 1:nsims){
alpha = .25 #alpha value
for (j in 1:subjects) {

if ( j == 1) {
data=list(tox=c(0),X=c(140),Xmin=140,Xmax=425,theta=theta,N=1)
initialize =list(rho0=rho,gamma=gam mtd)

N.sim<−jags.model(textConnection(model),data=data,inits=initialize,quiet=T)
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out <− coda.samples(model=N.sim,variable.names=c(’gamma’,’tox’,’rho0’), n.iter=5000)
gamma.next <− as.numeric(quantile(unlist(out[1][1001:5000,1]),alpha))
gamma.next1 <− findInterval(gamma.next,doses)

data$tox <− c(data$tox, NA)
data$X <− c(data$X, doses[gamma.next1])
data$N <− data$N + 1

if (varying a == T & doses[gamma.next1] != Xmin) {
alpha = alpha + .05
}
}

else {

N.simall <− jags.model(textConnection(model),data=data,inits=initialize,quiet=T)
#simulate Missing Patient

out1 <− coda.samples(model=N.simall,variable.names=c(’gamma’,’tox’,’rho0’), n.iter=5000)
prob.tox <− mean(unlist(out1[1][1001:5000,j+2]))

tox.sim <− sample(c(0,1),1,replace=T,prob=c(1−prob.tox,prob.tox))
data$tox[is.na(data$tox)] <− tox.sim

N.simall1<− jags.model(textConnection(model),data=data,inits=initialize,quiet=T)
#simulate actual data

out2 <− coda.samples(model=N.simall1,variable.names=c(’gamma’,’tox’,’rho0’), n.iter=5000)
gamma.mtd <− as.numeric(quantile(unlist(out2[1][1001:5000,1]),alpha))
gamma.mtd1 <− findInterval(gamma.mtd, doses)

data$tox <− c(data$tox, NA)
data$X <− c(data$X, doses[gamma.mtd1])
data$N <− data$N + 1

if (varying a == T & alpha<.45 & doses[gamma.mtd1] > data$X[j]) {
alpha = alpha + .05
}
}
}
data$tox<−head(data$tox,−1)
data$X<−head(data$X,−1)
finaldata [[ i ]] <− data

}

mtd<−list()

for ( i in 1:nsims) {
mtd[[i ]] <− finaldata[[ i ]] $X
}

finalmtd<−mean(unlist(mtd))
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EWOC NETS No Discrete (Model 1, No Discrete Covariate)

library (truncnorm)

#Likelihood function, no covariate
lik<−function(simdata,rho0,gamma){

alpha<−1/(gamma−simdata$Xmin)∗(gamma∗logit(rho0)−simdata$Xmin∗logit(simdata$theta))
beta<−1/(gamma−simdata$Xmin)∗(logit(simdata$theta)−logit(rho0))
s<−simdata$S
x<−simdata$X
p<−1/(1+exp(−(alpha+beta∗x)))
likli <−pˆ(s)∗(1−p)ˆ(1−s)
totlik<−prod(likli)
return ( totlik )
}

#Posterior distribution
post.up<−function(simdata,Xmin,Xmax,theta,it,init.rho0,init.gamma){

gamma.s<−rep(0,it)
rho0.s<−rep(0,it)
gamma.s[1]<−init.gamma
rho0.s [1]<−init.rho0
for( i in 2: it ){

gamma.s[i]=gamma.up(simdata,Xmin,Xmax,theta,it,rho0.s[i−1],gamma.s[i−1])
rho0.s [ i]=rho.up(simdata,Xmin,Xmax,theta,it,rho0.s[i−1],gamma.s[i])
}
pst.list <−list(gamma.s,rho0.s)

return( pst.list )
}

#updating of rho
rho.up<−function(simdata,Xmin,Xmax,theta,it,oldrho0,gamma.u){

rho.new<−runif(1,0,theta)
lik.new<−lik(simdata,rho.new,gamma.u)
lik.old <−lik(simdata,oldrho0,gamma.u)
ratio<−lik.new/lik.old
if ( ratio==”NaN”) ratio<−1
if ( ratio>=1){

y=rho.new
}else{

test<−runif(1)
if ( test<ratio){

y<−rho.new
}
else{

y<−oldrho0
}
}
return(y)
}

#updating of gamma
gamma.up<−function(simdata,Xmin,Xmax,theta,it,rho0.u,oldgamma){

gamma.new<−runif(1,Xmin,Xmax)
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lik.new<−lik(simdata,rho0.u,gamma.new)
lik.old <−lik(simdata,rho0.u,oldgamma)
ratio<−lik.new/lik.old
if ( ratio==”NaN”) ratio<−1
if ( ratio>=1){

y<−gamma.new
}else{

test<−runif(1)
if ( test<ratio){

y<−gamma.new
}
else{

y=oldgamma
}
}
return(y)
}

logit<−function(p) {
return(log(p/(1−p)))
}

Xmin<−0 #Minimum dose level
Xmax<−1 #Maximum dose level
gamma max<−0.5 #True MTD for Group 2
rho1<−c(0.16355,0.09455,0.06894,0.05) #Toxicity at Xmin for Group 1
rho2<−c(.05) #Toxicity at Xmin for Group 2
theta<−0.476 #TNETS
gammaa<−c(.32,.43,.49,.55) #Threshold Dose level

mean<−rep(NA,4)
se<−rep(NA,4)
biasgroup2<−rep(NA,4)
biasgroup1<−rep(NA,4)
msegroup2<−rep(NA,4)
msegroup1<−rep(NA,4)
mtdavg<−rep(NA,4)
lnetavg<−rep(NA,4)
finalgam0<−list()
finalgam1<−list()

for (p in 1:4){
#Parameter estimates for ANETS for Group 2
b0.2<−logit(rho1[p])−Xmin∗(logit(theta)−logit(rho2))/
(gamma max−Xmin)
b1.2<−(logit(theta)−logit(rho2))/(gamma max−Xmin)
delta.2<−logit(rho2)−logit(rho1[p])
gamma 0<−gamma max+delta.2/b1.2

#Parameter estimates for ANETS for Group 1
b0.1<−logit(rho1[p])−Xmin∗(logit(theta)−logit(rho2))/
(gamma 0−Xmin)
b1.1<−(logit(theta)−logit(rho2))/(gamma 0−Xmin)
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delta.1<−logit(rho2)−logit(rho1[p])

#Priors for rho and gamma
gamma<−0.8
rho<−0.8

#Number of patients
N<−30

#Number of simulations
Nsim<−2

t.table<−NULL
r.table<−NULL
res<−c()
MTDover0<−c()
MTDover1<−c()
MTDover<−c()
LNETS<−c()
gam0<−list()
gam1<−list()

#For each scenario (4 total)
for (n in 1:Nsim){

alpha<−0.25
nextdose<−rep(NA,N)
nextgamma<−rep(NA,N)

#Starting data: NETS = .341, Dose = 0, Z = 1, Gamma = 0
simdata<−list(S=c(0.341),X=c(0),Xmin=Xmin,theta=theta,N=1,Z=c(1),Gamma=c(0))

#FOr each Patient (30 total)
for ( i in 1:N){

print(c(p,n, i ))
if (( i !=1)&(alpha<0.45)){

alpha<−alpha+0.05
}

out1<−post.up(simdata,Xmin,Xmax,theta,5000,rho,gamma)
nextgamma[i]<−quantile(out1[[1]][1000:5000], prob=alpha)
simdata$Z<−c(simdata$Z,sample(c(0,1),1,prob=c(0.5,0.5)))
nextdose[i ]<−nextgamma[i]

#ANETS calculation and NETS score generated using truncated normal
if (simdata$Z[i+1] == 0) {

ANETS<−exp(b0.1+b1.1∗nextdose[i]+delta.1∗simdata$Z[i+1])/
(1+exp(b0.1+b1.1∗nextdose[i]+delta.1∗simdata$Z[i+1]))

}
else {

ANETS<−exp(b0.2+b1.2∗nextdose[i]+delta.2∗simdata$Z[i+1])/
(1+exp(b0.2+b1.2∗nextdose[i]+delta.2∗simdata$Z[i+1]))

}
NETS<−rtruncnorm(1,a=0,b=1,mean=ANETS,sd=sqrt(ANETS∗(1−ANETS)))
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simdata$X<−c(simdata$X,nextdose[i])
simdata$N<−simdata$N+1
simdata$S<−c(simdata$S,NETS)
simdata$Gamma<−c(simdata$Gamma,nextgamma[i])
}

sim.list <−list(simdata,Nsim.n=n,size=simdata$N,patientId=1:simdata$N)
t.list =data.frame(sim.list) [1:( simdata$N−1),]
r.list =data.frame(sim.list) [simdata$N,]

a<−which(t.list$Z==0)
aa<−which(t.list$Z==1)
t.lista <−t.list [a ,]
t.listaa <−t.list [aa ,]

#MTD of each Simulation, and performance
res [n]<−mean(t.list$Gamma)
#Overdosing rate
MTDover[n] <− sum(t.list$X>(gammaa[p]+.05))/30
#Average NETS
LNETS[n]<−sum(t.list$S>.526)/30
#MTD DATA
gam0[[n]]<−t.lista$X
gam1[[n]]<−t.listaa$X
}
mtdover<−MTDover
lnets<−LNETS
mtdavg[p]<−mean(mtdover)
lnetavg[p]<−mean(lnets)

finalgam0[[p ]]<−gam0
finalgam1[[p ]]<−gam1

#Overall result
r<−res
mean[p]<−mean(r)
se [p]<−sd(r)
biasgroup2[p]<−mean[p]−gamma max
biasgroup1[p]<−mean[p]−gamma 0
msegroup2[p]<−mean((r−gamma max)ˆ2)
msegroup1[p]<−mean((r−gamma 0)ˆ2)

}
( result<−round(cbind(mean,se,biasgroup2,msegroup2,biasgroup1,msegroup1),3))

library (coda)
ite=5000;burnin=1000
names(out1)<−c(”gamma”,”rho”)
out2<−mcmc(data.frame(out1)[burnin:ite,])
xyplot(out2)
acfplot(out2)
densplot(out2)
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traceplot(out2)

EWOC NETS with Discrete Covariate (Model 2)

#Likelihood function including discrete covariate
lik<−function(simdata,rho1,rho2,gamma){

alpha<−logit(rho1)−simdata$Xmin∗(logit(simdata$theta)−logit(rho2))/
(gamma−simdata$Xmin)
beta<−(logit(simdata$theta)−logit(rho2))/(gamma−simdata$Xmin)
delta<−logit(rho2)−logit(rho1)
s<−simdata$S
x<−simdata$X
z<−simdata$Z
p<−exp(alpha+beta∗x+delta∗z)/(1+exp(alpha+beta∗x+delta∗z))
likli <−pˆ(s)∗(1−p)ˆ(1−s)
totlik<−prod(likli)
return( totlik )
}

#Posterior Distribution
post.up<−function(simdata,Xmin,Xmax,theta,it,init.rho1,init.rho2,init.gamma){

gamma.s<−rep(0,it)
rho1.s<−rep(0,it)
rho2.s<−rep(0,it)

gamma.s[1]<−init.gamma
rho1.s [1]<−init.rho1
rho2.s [1]<−init.rho2

for( i in 2: it ){

gamma.s[i]=gamma.up(simdata,Xmin,Xmax,theta,it,rho1.s[i−1],rho2.s[i−1],gamma.s[i−1])
rho1.s [ i]=rho1.up(simdata,Xmin,Xmax,theta,it,rho1.s[i−1],rho2.s[i ],gamma.s[i])
rho2.s [ i]=rho2.up(simdata,Xmin,Xmax,theta,it,rho1.s[i],rho2.s[ i−1],gamma.s[i])

}
pst.list <−list(gamma.s,rho1.s,rho2.s)

return( pst.list )
}

#Updating of gamma
gamma.up<−function(simdata,Xmin,Xmax,theta,it,rho1.u,rho2.u,oldgamma){

gamma.new<−runif(1,Xmin,Xmax)
lik.new<−lik(simdata,rho1.u,rho2.u,gamma.new)
lik.old <−lik(simdata,rho1.u,rho2.u,oldgamma)
ratio<−lik.new/lik.old
#if(length(ratio )==0) ratio=1
if ( ratio==”NaN”) ratio<−1
if ( ratio>=1){

y<−gamma.new
}
if ( ratio<1){
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test<−runif(1)
if ( test<ratio){

y<−gamma.new
}
if ( test>ratio){

y=oldgamma
}
}
return(y)
}

#updating of rho1
rho1.up<−function(simdata,Xmin,Xmax,theta,it,oldrho1,rho2.u,gamma.u){

rho1.new<−runif(1,0,theta)
lik.new<−lik(simdata,rho1.new,rho2.u,gamma.u)
lik.old <−lik(simdata,oldrho1,rho2.u,gamma.u)
ratio<−lik.new/lik.old
#if(length(ratio )==0) ratio=1
if ( ratio==”NaN”) ratio<−1
if ( ratio>=1){

y<−rho1.new
}
if ( ratio<1){

test<−runif(1)
if ( test<ratio){

y<−rho1.new
}
if ( test>ratio){

y<−oldrho1
}
}
return(y)
}

#updating of rho2
rho2.up<−function(simdata,Xmin,Xmax,theta,it,rho1.u,oldrho2,gamma.u){

rho2.new<−runif(1,0,theta)
lik.new<−lik(simdata,rho1.u,rho2.new,gamma.u)
lik.old <−lik(simdata,rho1.u,oldrho2,gamma.u)
ratio<−lik.new/lik.old
#if(length(ratio )==0) ratio=1
if ( ratio==”NaN”) ratio<−1
if ( ratio>=1){

y<−rho2.new
}
if ( ratio<1){

test<−runif(1)
if ( test<ratio){

y<−rho2.new
}
if ( test>ratio){

y<−oldrho2
}
}
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return(y)
}

logit<−function(p){return(log(p/(1−p)))}

Xmin<−0 #Minimum dose level
Xmax<−1 #Maximum dose level
gamma r<−0.5 #True MTD for Group 2
rho1 r<−c(0.16355,0.09455,0.06894,0.05) #Toxicity at Xmin for Group 1
rho2 r<−c(.05) #Toxicity at Xmin for Group 2
theta<−0.476 #TNETS
gammaa<−c(.55,.43,.49,.32)

mean0<−rep(NA,4)
mean1<−rep(NA,4)
bias0<−rep(NA,4)
bias1<−rep(NA,4)
se0<−rep(NA,4)
se1<−rep(NA,4)
mse0<−rep(NA,4)
mse1<−rep(NA,4)
mtdavg<−rep(NA,4)
lnetavg<−rep(NA,4)
finalgam0<−list()
finalgam1<−list()

for (rr in c(1:length(rho1 r))){
#Parameter estimates for ANETS for Group 2
alpha r<−logit(rho1 r[rr ])−Xmin∗(logit(theta)−logit(rho2 r))/
(gamma r−Xmin)
beta r<−(logit(theta)−logit(rho2 r))/(gamma r−Xmin)
delta r<−logit(rho2 r)−logit(rho1 r[rr ])
gamma0 r<−gamma r+delta r/beta r

#Parameter estimates for ANETS for Group 1
alpha r0<−logit(rho1 r[rr])−Xmin∗(logit(theta)−logit(rho2 r))/
(gamma0 r−Xmin)
beta r0<−(logit(theta)−logit(rho2 r))/(gamma0 r−Xmin)
delta r0<−logit(rho2 r)−logit(rho1 r[rr ])

gamma<−0.2
rho1<−1
rho2<−1
N<−30
sim<−2
t.table<−NULL
r.table<−NULL
res0<−c()
res1<−c()
MTDover0<−c()
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MTDover1<−c()
MTDover<−c()
LNETS<−c()
gam0<−list()
gam1<−list()

for (k in 1:sim){
fb<−0.25
ew.nextdose<−rep(NA,N)
next gamma<−rep(NA,N)
next gamma0<−rep(NA,N)

#Starting data: NETS = .341, Dose = 0, Z = 1, Gamma = 0
simdata<−list(S=c(0.341),X=c(0),Xmin=Xmin,theta=theta,N=1,Z=c(1),G=c(0),G0=c(0))

for ( i in 1:N){
print(c(rr ,k, i ))
if (( i !=1)&(fb<0.45)){

fb<−fb+0.05
}

#Likelihood and Data
out1<−post.up(simdata,Xmin,Xmax,theta,5000,rho1,rho2,gamma)

#Gamma of Group 2
next gamma[i]<−quantile(out1[[1]][1000:5000],prob=fb)

#Gamma of Group 1
next gamma0[i]<−next gamma[i]+delta r/beta r

#Covariate Data
simdata$Z<−c(simdata$Z,sample(c(0,1),1,replace=TRUE,prob=c(0.5,0.5)))
if (simdata$Z[i+1]==1){

nextdose<−next gamma[i]
}
if (simdata$Z[i+1]==0){

nextdose<−next gamma0[i]
}

#Next dose based on group of patient
ew.nextdose[i ]<−nextdose

#ANETS calculation and NETS calculation
if (simdata$Z[i+1] == 0) {

ANETS<−exp(alpha r0+beta r0∗ew.nextdose[i]+delta r0∗simdata$Z[i+1])
/(1+exp(alpha r0+beta r0∗ew.nextdose[i]+delta r0∗simdata$Z[i+1]))
}
else {

ANETS<−exp(alpha r+beta r∗ew.nextdose[i]+delta r∗simdata$Z[i+1])
/(1+exp(alpha r+beta r∗ew.nextdose[i]+delta r∗simdata$Z[i+1]))
}
nets<−rtruncnorm(1,a=0,b=1,mean=ANETS,sd=sqrt(ANETS∗(1−ANETS)))
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simdata$X<−c(simdata$X,ew.nextdose[i])
simdata$N<−simdata$N+1
simdata$S<−c(simdata$S,nets)
simdata$G<−c(simdata$G,next gamma[i])
simdata$G0<−c(simdata$G0,next gamma0[i])
}
sim.list <−list(simdata,sim.n=k,size=simdata$N,patientId=1:simdata$N)
t.list =data.frame(sim.list) [1:( simdata$N−1),]
r.list =data.frame(sim.list) [simdata$N,]

a<−which(t.list$Z==0)
aa<−which(t.list$Z==1)
t.lista <−t.list [a ,]
t.listaa <−t.list [aa ,]

#MTD’s of each group
res0 [k]<−mean(t.list$G0)
res1 [k]<−mean(t.list$G)

#Overdosing rates
MTDover0[k] <− sum(t.lista$X>gammaa[rr])
MTDover1[k] <− sum(t.listaa$X>.55)
MTDover[k] <−(MTDover0[k] + MTDover1[k])/30
#Average NETS
LNETS[k]<−sum(t.list$S>.526)/30
#MTD data
gam0[[k]]<−t.lista$X
gam1[[k]]<−t.listaa$X

}

mtdover<−MTDover
lnets<−LNETS
mtdavg[rr]<−mean(mtdover)
lnetavg[ rr ]<−mean(lnets)

finalgam0[[ rr ]]<−gam0
finalgam1[[ rr ]]<−gam1

r0<−res0
r1<−res1
mean0[rr]<−mean(r0)
mean1[rr]<−mean(r1)
se0[ rr ]<−sd(r0)
se1[ rr ]<−sd(r1)
bias0[ rr ]<−m0[rr]−gamma0 r
bias1[ rr ]<−m1[rr]−gamma r
mse0[rr]<−mean((r0−gamma0 r)ˆ2)
mse1[rr]<−mean((r1−gamma r)ˆ2)
}
( result<−round(cbind(m1,bias1,se1,mse1,m0,bias0,se0,mse0),3))
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EWOC NETS no Continuous (Model 1, no Continuous)

lik<−function(simdata,rho0,gamma){
alpha<−1/(gamma−simdata$Xmin)∗(gamma∗logit(rho0)−simdata$Xmin∗logit(simdata$theta))
beta<−1/(gamma−simdata$Xmin)∗(logit(simdata$theta)−logit(rho0))
s<−simdata$S
x<−simdata$X
p<−1/(1+exp(−(alpha+beta∗x)))
likli <−pˆ(s)∗(1−p)ˆ(1−s)
totlik<−prod(likli)
return ( totlik )
}

post.up<−function(simdata,Xmin,Xmax,theta,it,init.rho0,init.gamma){
gamma.s<−rep(0,it)
rho0.s<−rep(0,it)
gamma.s[1]<−init.gamma
rho0.s [1]<−init.rho0
for( i in 2: it ){

gamma.s[i]=gamma.up(simdata,Xmin,Xmax,theta,it,rho0.s[i−1],gamma.s[i−1])
rho0.s [ i]=rho.up(simdata,Xmin,Xmax,theta,it,rho0.s[i−1],gamma.s[i])
}
pst.list <−list(gamma.s,rho0.s)

return( pst.list )
}

rho.up<−function(simdata,Xmin,Xmax,theta,it,oldrho0,gamma.u){
rho.new<−runif(1,0,theta)
lik.new<−lik(simdata,rho.new,gamma.u)
lik.old <−lik(simdata,oldrho0,gamma.u)
ratio<−lik.new/lik.old
if ( ratio==”NaN”) ratio<−1
if ( ratio>=1){

y=rho.new
}else{

test<−runif(1)
if ( test<ratio){

y<−rho.new
}
else{

y<−oldrho0
}
}
return(y)
}

gamma.up<−function(simdata,Xmin,Xmax,theta,it,rho0.u,oldgamma){
gamma.new<−runif(1,Xmin,Xmax)
lik.new<−lik(simdata,rho0.u,gamma.new)
lik.old <−lik(simdata,rho0.u,oldgamma)
ratio<−lik.new/lik.old
if ( ratio==”NaN”) ratio<−1
if ( ratio>=1){
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y<−gamma.new
}else{

test<−runif(1)
if ( test<ratio){

y<−gamma.new
}
else{

y=oldgamma
}
}
return(y)
}

logit<−function(p) {
return(log(p/(1−p)))
}

Xmin<−0 #Minimum dose level
Xmax<−1 #Maximum dose level
Zmin<−0 #Minimum covariate value
Zmax<−1 #Maximum covariate value
gamma max<−0.5 #True MTD for Group 2
rho1<−c(0.16355,0.09455,0.06894,0.05) #Toxicity at Xmin for Group 1
rho2<−c(.05) #Toxicity at Xmin for Group 2
theta<−0.476 #TNETS
gammaa<−c(.32,.43,.49,.55)

mean<−rep(NA,4)
se<−rep(NA,4)
biasgroup2<−rep(NA,4)
biasgroup1<−rep(NA,4)
msegroup2<−rep(NA,4)
msegroup1<−rep(NA,4)
mtdavg<−rep(NA,4)
lnetavg<−rep(NA,4)
finalgam0<−list()
finalgam1<−list()

for (p in 1:4){
#Parameter estimates for ANETS for Group 2
b0.2<−logit(rho1[p])−Xmin∗(logit(theta)−logit(rho2))/
(gamma max−Xmin)−Zmax∗(logit(rho2)−logit(rho1[p]))/(Zmax−Zmin)
b1.2<−(logit(theta)−logit(rho2))/(gamma max−Xmin)
delta.2<−(logit(rho2)−logit(rho1[p]))/(Zmax−Zmin)
gamma 0<−gamma max+delta.2/b1.2

#Parameter estimates for ANETS for Group 1
b0.1<−logit(rho1[p])−Xmin∗(logit(theta)−logit(rho2))/
(gamma 0−Xmin)−Zmax∗(logit(rho2)−logit(rho1[p]))/(Zmax−Zmin)
b1.1<−(logit(theta)−logit(rho2))/(gamma 0−Xmin)
delta.1<−(logit(rho2)−logit(rho1[p]))/(Zmax−Zmin)
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#Priors for rho and gamma
gamma<−0.8
rho<−0.8

#Number of patients
N<−30

#Number of simulations
Nsim<−2

t.table<−NULL
r.table<−NULL
res<−c()
MTDover0<−c()
MTDover1<−c()
MTDover<−c()
LNETS<−c()
gam0<−list()
gam1<−list()

#For each scenario (4 total)
for (n in 1:Nsim){

alpha<−0.25
nextdose<−rep(NA,N)
nextgamma<−rep(NA,N)

#Starting data: NETS = .341, Dose = 0, Z = 1, Gamma = 0
simdata<−list(S=c(0.341),X=c(0),Xmin=Xmin,theta=theta,N=1,Z=c(1),Gamma=c(0))

#FOr each Patient (30 total)
for ( i in 1:N){

print(c(p,n, i ))
if (( i !=1)&(alpha<0.45)){

alpha<−alpha+0.05
}

simdata$Z<−c(simdata$Z,runif(1,Zmin,Zmax))
out1<−post.up(simdata,Xmin,Xmax,theta,5000,rho,gamma)
nextgamma[i]<−quantile(out1[[1]][1000:5000], prob=alpha)
nextdose[i ]<−nextgamma[i]

ANETS<−exp(b0.2+b1.2∗nextdose[i]+delta.2∗simdata$Z[i+1])/
(1+exp(b0.2+b1.2∗nextdose[i]+delta.2∗simdata$Z[i+1]))

NETS<−rtruncnorm(1,a=0,b=1,mean=ANETS,sd=sqrt(ANETS∗(1−ANETS)))

simdata$X<−c(simdata$X,nextdose[i])
simdata$N<−simdata$N+1
simdata$S<−c(simdata$S,NETS)
simdata$Gamma<−c(simdata$Gamma,nextgamma[i])
}
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sim.list <−list(simdata,Nsim.n=n,size=simdata$N,patientId=1:simdata$N)
t.list =data.frame(sim.list) [1:( simdata$N−1),]
r.list =data.frame(sim.list) [simdata$N,]

#MTD of each Simulation
res [n]<−mean(t.list$Gamma)
MTDover[n] <− sum(t.list$X>(gammaa[p]+.05))/30
LNETS[n]<−sum(t.list$S>.526)/30
}

mtdover<−MTDover
lnets<−LNETS
mtdavg[p]<−mean(mtdover)
lnetavg[p]<−mean(lnets)

#Overall result
r<−res
mean[p]<−mean(r)
se [p]<−sd(r)
biasgroup2[p]<−mean[p]−gamma max
biasgroup1[p]<−mean[p]−gamma 0
msegroup2[p]<−mean((r−gamma max)ˆ2)
msegroup1[p]<−mean((r−gamma 0)ˆ2)

}
( result<−round(cbind(mean,se,biasgroup2,msegroup2,biasgroup1,msegroup1),3))

EWOC NETS with Continuous Covariate (Model 3)

lik<−function(simdata,rho1,rho2,gamma){
alpha<−logit(rho2)−(simdata$Xmin∗(logit(simdata$theta)−logit(rho2)))/
(gamma−simdata$Xmin)−(simdata$Zmax∗(logit(rho2)−logit(rho1)))/(simdata$Zmax−simdata$Zmin)
beta<−(logit(simdata$theta)−logit(rho2))/(gamma−simdata$Xmin)
delta<−(logit(rho2)−logit(rho1))/(simdata$Zmax−simdata$Zmin)
s<−simdata$S
x<−simdata$X
z<−simdata$Z
p<−exp(alpha+beta∗x+delta∗z)/(1+exp(alpha+beta∗x+delta∗z))
likli <−pˆ(s)∗(1−p)ˆ(1−s)
totlik<−prod(likli)
return( totlik )
}

post.up<−function(simdata,Xmin,Xmax,theta,it,init.rho1,init.rho2,init.gamma){

gamma.s<−rep(0,it)
rho1.s<−rep(0,it)
rho2.s<−rep(0,it)

gamma.s[1]<−init.gamma
rho1.s [1]<−init.rho1
rho2.s [1]<−init.rho2
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for( i in 2: it ){

gamma.s[i]=gamma.up(simdata,Xmin,Xmax,theta,it,rho1.s[i−1],rho2.s[i−1],gamma.s[i−1])
rho1.s [ i]=rho1.up(simdata,Xmin,Xmax,theta,it,rho1.s[i−1],rho2.s[i−1],gamma.s[i])
rho2.s [ i]=rho2.up(simdata,Xmin,Xmax,theta,it,rho1.s[i],rho2.s[ i−1],gamma.s[i])

}
pst.list <−list(gamma.s,rho1.s,rho2.s)

return( pst.list )
}

gamma.up<−function(simdata,Xmin,Xmax,theta,it,rho1.u,rho2.u,oldgamma){
gamma.new<−runif(1,Xmin,Xmax)
lik.new<−lik(simdata,rho1.u,rho2.u,gamma.new)
lik.old <−lik(simdata,rho1.u,rho2.u,oldgamma)
ratio<−lik.new/lik.old
#if(length(ratio )==0) ratio=1
if ( ratio==”NaN”) ratio<−1
if ( ratio>=1){

y<−gamma.new
}
if ( ratio<1){

test<−runif(1)
if ( test<ratio){

y<−gamma.new
}
if ( test>ratio){

y=oldgamma
}
}
return(y)
}

rho1.up<−function(simdata,Xmin,Xmax,theta,it,oldrho1,rho2.u,gamma.u){
rho1.new<−runif(1,0,theta)
lik.new<−lik(simdata,rho1.new,rho2.u,gamma.u)
lik.old <−lik(simdata,oldrho1,rho2.u,gamma.u)
ratio<−lik.new/lik.old
#if(length(ratio )==0) ratio=1
if ( ratio==”NaN”) ratio<−1
if ( ratio>=1){

y<−rho1.new
}
if ( ratio<1){

test<−runif(1)
if ( test<ratio){

y<−rho1.new
}
if ( test>ratio){

y<−oldrho1
}
}
return(y)
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}

rho2.up<−function(simdata,Xmin,Xmax,theta,it,rho1.u,oldrho2,gamma.u){
rho2.new<−runif(1,0,theta)
lik.new<−lik(simdata,rho1.u,rho2.new,gamma.u)
lik.old <−lik(simdata,rho1.u,oldrho2,gamma.u)
ratio<−lik.new/lik.old
#if(length(ratio )==0) ratio=1
if ( ratio==”NaN”) ratio<−1
if ( ratio>=1){

y<−rho2.new
}
if ( ratio<1){

test<−runif(1)
if ( test<ratio){

y<−rho2.new
}
if ( test>ratio){

y<−oldrho2
}
}
return(y)
}

logit<−function(p){return(log(p/(1−p)))}

Xmin<−0 #Minimum dose level
Xmax<−1 #Maximum dose level
gamma r<−0.5 #True MTD for Group 2
rho1 r<−c(.16355,0.09455,0.06894,0.05) #Toxicity at Xmin for Group 1
rho2 r<−c(.05) #Toxicity at Xmin for Group 2
theta<−0.476 #TNETS
Zmin<−0
Zmax<−1

m0<−rep(NA,4)
m1<−rep(NA,4)
bias0<−rep(NA,4)
bias1<−rep(NA,4)
se0<−rep(NA,4)
se1<−rep(NA,4)
mse0<−rep(NA,4)
mse1<−rep(NA,4)
lnetavg<−rep(NA,4)
totaldat<−list()
totaldatZ<−list()

for (rr in c(1:4) ){
alpha r<−logit(rho2 r)−(Xmin∗(logit(theta)−logit(rho2 r))/
(gamma r−Xmin))−(Zmax∗(logit(rho2 r)−logit(rho1 r[rr]))/(Zmax−Zmin))
beta r<−(logit(theta)−logit(rho2 r))/(gamma r−Xmin)
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delta r<−(logit(rho2 r)−logit(rho1 r[rr ]) )/(Zmax−Zmin)
gamma0 r<−gamma r+delta r/beta r

gamma<−1
rho1<−0.8
rho2<−0.7
N<−30
sim<−2
t.table<−NULL
r.table<−NULL
res0<−c()
res1<−c()
LNETS<−c()
dat<−list()
datZ<−list()

for (k in 1:sim){
fb<−0.25
ew.nextdose<−rep(NA,N)
next gamma<−rep(NA,N)
next gamma0<−rep(NA,N)
next gammak<−rep(NA,N)

#We start the treatment from the patient with the highest Z value, i.e. the oldest patient
simdata<−list(S=c(0.341),X=c(0),Xmin=Xmin,Zmin=Zmin,Zmax=Zmax,theta=theta,N=1,Z=c(0),G=c(0),G0=c(0))

for ( i in 1:N){
print(c(rr ,k, i ))
if (( i !=1)&(fb<0.45)){

fb<−fb+0.05
}

out1<−post.up(simdata,Xmin,Xmax,theta,5000,rho1,rho2,gamma)
next gamma[i]<−quantile(out1[[1]][1000:5000], prob=fb)

simdata$Z<−c(simdata$Z,runif(1,Zmin,Zmax))
next gamma0[i]<−next gamma[i]+delta r/beta r
next gammak[i]<−next gamma[i]+(delta r/beta r)∗(Zmax−simdata$Z[i+1])
ew.nextdose[i ]<−next gammak[i]

ANETS<−exp(alpha r+beta r∗ew.nextdose[i]+delta r∗simdata$Z[i+1])/
(1+exp(alpha r+beta r∗ew.nextdose[i]+delta r∗simdata$Z[i+1]))
nets<−rtruncnorm(1,a=0,b=1,mean=ANETS,sd=sqrt(ANETS∗(1−ANETS)))

simdata$X<−c(simdata$X,ew.nextdose[i])
simdata$N<−simdata$N+1
simdata$S<−c(simdata$S,nets)
simdata$G<−c(simdata$G,next gamma[i])
simdata$G0<−c(simdata$G0,next gamma0[i])

}
sim.list <−list(simdata,sim.n=k,size=simdata$N,patientId=1:simdata$N)
t.list =data.frame(sim.list) [1:( simdata$N−1),]
r.list =data.frame(sim.list) [simdata$N,]
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res0 [k]<−mean(t.list$G0)
res1 [k]<−mean(t.list$G)

LNETS[k]<−sum(t.list$S>.526)/30
dat [[k ]]<−t.list$X
datZ[[k ]]<−t.list$Z

}

totaldat [[ rr ]]<−unlist(dat)
totaldatZ [[ rr ]]<−unlist(datZ)
lnets<−LNETS
lnetavg[ rr ]<−mean(lnets)

r0<−res0
r1<−res1
m0[rr]<−mean(r0)
m1[rr]<−mean(r1)
se0[ rr ]<−sd(r0)
se1[ rr ]<−sd(r1)
bias0[ rr ]<−m0[rr]−gamma0 r
bias1[ rr ]<−m1[rr]−gamma r
mse0[rr]<−mean((r0−gamma0 r)ˆ2)
mse1[rr]<−mean((r1−gamma r)ˆ2)
}

( result<−round(cbind(m1,bias1,se1,mse1,m0,bias0,se0,mse0),3))

Plots for Model 3

plot( unlist (fdatZ [[1]]) , unlist (fdat [[1]]) ,type=’n’,xlab=’Values of Covariate
Z’,ylab=’MTD’,ylim = c(.2,.7))

lines (lowess( unlist (fdatZ [[1]]) , unlist (fdat [[1]]) ) ,lwd=2,lty=3)
lines (lowess( unlist (fdatZ [[2]]) , unlist (fdat [[2]]) ) ,lwd=2,lty=2,col=’red’)
lines (lowess( unlist (fdatZ [[3]]) , unlist (fdat [[3]]) ) ,lwd=2,col=’purple’)
lines (lowess( unlist (fdatZ [[4]]) , unlist (fdat [[4]]) ) ,lwd=2,lty=4,col=’blue’)
legend(.8 , .7 ,c(”Scenario 1”,”Scenario 2”,”Scenario 3”,”Scenario

4”),cex=.8,col=c(”black”,”red”,”purple”,”blue”),lwd=2,lty=c(3,2,1,4))
title ( ’MTD with Respect to Covariate Z for Model 1’)

plot( unlist (fdatZ [[2]]) , unlist (fdat [[2]]) ,type=’n’,xlab=’Values of Covariate
Z’,ylab=’MTD’,ylim=c(.2,.65))

lines (lowess( unlist (fdatZ [[1]]) , unlist (fdat [[1]]) ) ,lwd=2,lty=3)
lines (lowess( unlist (fdatZ [[2]]) , unlist (fdat [[2]]) ) , lty=2,col=’red’,lwd=2)
lines (lowess( unlist (fdatZ [[3]]) , unlist (fdat [[3]]) ) ,lwd=2,col=’purple’)
lines (lowess( unlist (fdatZ [[4]]) , unlist (fdat [[4]]) ) ,lwd=2,col=’blue’,lty=4)
legend(.8 , .35 ,c( ’Scenario 1’ , ’Scenario 2’ , ’Scenario 3’ , ’Scenario

4’) ,cex=.8,col=c(’black’ , ’red’ , ’purple’ , ’blue’) ,lwd=2,lty=c(3,2,1,4))
title ( ’MTD with Respect to Covariate Z for Model 3’)


