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Abstract 

More than a biomarker: vimentin function in lung cancer invasion and metastasis 

By Alessandra M. Richardson 

 
Vimentin expression has been shown for decades to correlate with increased 

metastatic potential across solid tumor types including lung, breast and prostate cancers. 
However, it has never been demonstrated whether vimentin is a necessary contributor to 
the metastatic cascade. The work in this dissertation demonstrates with in vitro models, in 
vivo models, and clinical samples that vimentin is more than a biomarker and contributes 
to the metastatic cascade through a role in the tumor microenvironment. 

We identified a role for vimentin in cell motility using lung cancer cell line 
models. Here we demonstrate that vimentin enters focal adhesion sites where it acts as a 
scaffold to promote EGF mediated phosphorylation of VAV2, the guanine exchange 
factor for the rho GTPase Rac1. Phosphorylation of VAV2 activates Rac1 to its GTP 
bound form where it promotes FAK activation at focal adhesion sites.  

To further elucidate the role of vimentin in lung cancer metastasis, we moved our 
work into a genetically engineered mouse model (GEMM). For this study we developed a 
novel GEMM by crossing the Cre-dependent lung cancer metastasis model LSL-
KrasG12D/LKB1fl/fl  (KLV+/+) to a whole body vimentin knockout mouse to generate the 
LSL-KrasG12D/LKB1fl/fl/Vim-/- mouse (KLV-/-). Comparison of the KLV models show that 
vimentin loss does not impact tumor formation or burden. However, loss of vimentin 
does significantly reduce the rate of metastasis to the mediastinal lymph node. 
Immunohistochemical analysis of the primary lung tumors demonstrates that vimentin 
expression is reserved to the tumor microenvironment. This expression pattern was 
consistent with lung adenocarcinoma patient tissue samples irrespective of genotype. 
Further analysis shows vimentin to be predominantly expression in cancer-associated 
fibroblasts (CAFs). These CAFs support collective invasion and metastasis via 
heterotypic CAF-cancer cell interactions.  

Overall this dissertation highlights the importance of vimentin as a functional 
player in cell motility and demonstrates a novel role in lung adenocarcinoma metastasis. 
Follow-up studies on the impact of vimentin on the tumor microenvironment will provide 
further insight on the role of vimentin on tumor progression.  
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1.1 Lung Cancer 
Lung cancer is the second most common cancer diagnosis among both men and 

women and is the leading cause of cancer-related deaths worldwide (1). In 2017 alone 

there are predicted to be 222,500 newly diagnosed cases and 115,870 estimated deaths in 

the United States (1). This high incidence of death is largely due to the high prevalence of 

metastatic disease upon diagnosis, with lung cancer patients most frequently diagnosed at 

metastatic stage IV (2). Globally, lung cancer patients with aggressive metastatic disease 

have a 5-year survival rate of 18% (1). Metastasis is an important prognostic factor not 

just for lung cancer patients, but also across solid tumor types since 90% of cancer-

related deaths are due to metastatic disease (3). Therefore, elucidating mechanisms of 

metastasis is a vital area of research not only in the context of lung cancer, but all 

cancers. 

The most common cause of lung cancer is tobacco use, exposure to which 

accounts for 80% of lung cancer cases in the United States  (American Cancer Society). 

However, epidemiologic studies show that there is a link between lung cancer 

susceptibility and family history (4). Specifically, SNP variations have been identified 

within two genes encoding subunits of nicotinic acetylcholine receptor alpha, which is 

regulated by nicotine exposure (4). 

Lung cancer risk is also impacted by DNA repair capacity. Individuals with 

impaired DNA repair pathways are more susceptible to develop lung cancer, especially 

when accompanied with exposure to tobacco smoke or other carcinogens (4). 

1.1.1 Histology 
Lung cancer is a broad term that describes a heterogeneous class of diseases. 

Broadly, lung cancer is divided into two main histological groups: small cell lung cancer 



	   	   7	  

and non-small cell lung cancer (NSCLC). Non-small cell lung cancer accounts for 85% 

of lung cancer cases (5). Non-small cell lung cancer can be further divided into three 

histological subtypes: squamous cell lung cancer, adenocarcinoma, and large cell lung 

cancer.  

Squamous cell lung cancer makes up 20-30% of NSCLC cases (6) and has the 

strongest historical association with cigarette smoking (4). Squamous cell carcinoma 

(SCC) is typically found in the proximal bronchi and is characterized by extensive areas 

of keratinization associated with an inflammatory component; however, less 

differentiated cases lose keratinization (7). The immunoprofile of SCC tends to be TTF-1 

negative, but positive for CK 5/6, CK7 and P63 (6). As smoking has decreased and 

cigarettes have been modified, incidence of SCC has decreased in recent years (8). 

The majority of NSCLC cases (50-70%) (6) are lung adenocarcinoma. 

Adenocarcinoma is a heterogeneous subtype consisting of bronchioloalveolar carcinoma, 

acinar, papillary, solid type, and mixed subtypes (9). They are marked 

immunohistochemically by positive markers Pro-SPC (10) and TTF-1 (11). While 

adenocarcinoma, like squamous cell carcinoma, is associated with cigarette smoking, the 

majority of never smokers (especially young women) who are diagnosed with lung 

cancer present with lung adenocarcinoma (7). Most adenocarcinomas are peripheral, 

presenting at surface alveolar epithelium or bronchial mucosal glands (7). 

Adenocarcinoma can be especially difficult to diagnose in early stages since most 

patients present as asymptomatic with metastatic disease (7) making overall prognoses 

worse. 
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Large cell lung cancer is typically defined as any NSCLC lacking the histological 

features found in squamous cell carcinoma or adenocarcinoma. It is the least common of 

the three main subtypes and as such does not have a defined treatment regimen (7). 

Each histology has its own characteristic prognosis and metastatic phenotype. For 

example, small cell lung cancer and adenocarcinomas both preferentially metastasize to 

the brain whereas squamous cell carcinoma typically invades through the thoracic wall 

(2). 

1.1.2 Genetic drivers 

Histological characterization has been instrumental in cancer diagnosis and 

treatment for decades. However, in recent years oncogenic mutations that drive lung 

cancer progression, specifically adenocarcinoma, have been uncovered. These ‘driver’ 

mutations are defined as those oncogenic mutations that initiate and maintain 

tumorigenesis (12).  The most prevalent oncogenic drivers of lung adenocarcinoma 

include EGFR, HER2, KRAS, ALK, BRAF, PIK3CA, AKT1, ROS1, NRAS and MAP2K1 

(5). The majority of these driver mutations are mutually exclusive of each other with the 

exception of PIK3CA, which may co-occur with EGFR mutations (12). 

Despite this oncogenic exclusivity, lung adenocarcinomas are not confined to 

single mutations. Many oncogenes are often co-mutated with tumor suppressors that 

exhibit loss of heterozygosity. These co-mutations add another level of complexity to 

lung cancer biology and treatment options. The most common tumor suppressors lost in 

adenocarcinomas include TP53, LKB1 (STK11), CDKN2A8, KEAP1, and SMARCA4 

(13).  
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KRAS is the most common oncogenic mutation in NSCLC lung cancer (13). A 

member of the Ras family of proteins, KRAS is most often mutated at G12 in lung 

adenocarcinoma cases with 40% mutated as G12C and 22% as G12V (14, 15). 

Constitutive activation of KRAS results in sustained proliferative growth signaling, a 

hallmark of cancer (16).  

While KRAS activation is sufficient to drive tumor growth (17), it is frequently 

co-mutated with key tumor suppressors. Common concomitant mutations include loss of 

heterozygosity in LKB1 (18) and TP53 (19). Mutation of LKB1 occurs in approximately 

one-third of KRAS mutated patients and generates particularly aggressive and metastatic 

tumors that have been under extensive study in recent years (20-24). 

Increased understanding of the genetic landscape of lung adenocarcinoma has 

been instrumental in developing and informing treatment options for patients. However, 

the vast majority of NSCLC patient tumors do not contain mutations in known drivers, 

making lung cancer an especially challenging diagnosis. 

1.1.3 Current treatments 

While NSCLC is a heterogeneous class of diseases, the different subtypes often 

cluster into similar protocols for diagnosis, staging, and treatment. Over the last several 

decades, the prognosis of advanced NSCLC cases has improved by the development of 

tolerable platinum doublet based chemotherapies (25). However, patient survival in these 

advanced cases has not drastically increased beyond the 12-month mark (25). 

Staging is the main determinant for prognosis and treatment regimens. A number 

of factors are incorporated into tumor staging and treatment, including tumor size and 

location, histologic type, tumor grade, surgical margins, lymph node involvement, and 
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distant metastasis (8). These factors are combined to group tumors into three main 

staging groups: surgically resectable disease, locally or regionally advanced disease, and 

distant metastatic disease. Staging groups are further subdivided using TNM staging, 

which takes into account tumor size (T0-T4), lymph node involvement (N0-N3), and 

distant metastasis (M0-M1) (26). 

NSCLC patients have relatively few treatment options. The majority of these 

patients undergo surgical resection to remove the primary lung tumors as well as any 

other accessible metastases. Depending on extent of disease, neoadjuvant or adjuvant 

chemotherapy and/or radiation therapy may be recommended. Neoadjuvant 

chemotherapy in combination with radiation therapy is typically used to shrink tumors 

prior to surgery. Adjuvant chemotherapy (sometimes with radiation) is prescribed to 

reduce recurrence and treat metastatic disease after surgical resection (8). Platinum-based 

chemotherapies such as cisplatin are typically used in combination with other 

chemotherapies such as gemcitabine or pemetrexed since these therapies have been 

shown to improve overall survival (25, 27).  

While treatment regimens are typically determined by tumor stage and histology, 

the genetic background of a tumor can determine whether a patient will respond to 

therapeutics. For example, KRAS/LKB1 and KRAS/TP53 co-mutations significantly 

reduce sensitivity to docetaxal as compared to “KRAS only” mutated tumors (28). 

This information sheds light on the need for precision therapeutics that target the 

specific mutations of each tumor. Currently, targeted immunotherapy approaches are only 

standard of care for recurrent NSCLC cases (8). These immunotherapies include 

Nivolumab, Pembrolizumab, Erlotinib, Gefitinib, and Crizotinib (8). Nivolumab and 
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Pembrolizumab target the programmed death-1 (PD-1) co-inhibitory immune checkpoint. 

Nivolumab has improved overall survival in patients with metastatic disease as compared 

to previously standard docetaxel treatment (29, 30) while Pembrolizumab significantly 

improves progression free survival (PFS) in patients expressing PDL-1 (PD-1 ligand) in 

over 50% of their cells (31). 

While many patients benefit from targeted immunotherapies, over time tumors 

often develop resistance mechanisms and the response to therapy diminishes. Further, 

there has yet to be any success in developing therapeutics beneficial to patients outside of 

those exhibiting EGFR or ALK mutations. The majority of NSCLC cases are either KRAS 

mutated or have unknown molecular drivers and do not have many treatment options 

beyond standard of care (5).  

Overall, lung cancer patients have limited treatment options regardless of whether 

targeted therapies are available to them. Therefore, in order to better treat all lung cancer 

patients, research needs to focus on what is common to all cases. High incidence of 

metastatic disease is the leading cause of cancer-related deaths across cancer types (3) 

and is highly prevalent at lung cancer diagnosis (2). If metastasis could be targeted, 

prevented, and reduced, then patient outcomes would improve across the board. To target 

metastatic disease, its central players and mechanisms need to be better elucidated. 

1.2 Metastasis 

The vast majority of cancer-related deaths (90%) are due to metastatic spread to 

vital organs such as the brain, liver, and kidney (3).  The key steps to metastasis that 

allow cancer cells to migrate to a secondary site are invasion, intravasation, circulation, 

extravasation, and metastatic colonization and growth.  Each of these steps is energy 
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intensive (32), resulting in cancers evolving different mechanisms by which they achieve 

the ultimate goal of metastatic spread.  

1.2.1 Migration Strategies 

Cancer cells may escape the primary tumor through either individual or collective 

migration strategies. During individual cell invasion, single cancer cells may utilize an 

amoeboid or mesenchymal migration pattern (33). Amoeboid migrating cells squeeze 

through extracellular matrix (ECM) fibers by rapidly cycling through morphological 

expansion and contraction. This mode of migration utilizes a ‘gliding’ motion in which 

the cells have light transient interactions with the surrounding ECM (33).  

Mesenchymal cancer cells have undergone an epithelial-to-mesenchymal 

transition (EMT) in which they undergo genetic (34) and epigenetic (35) alterations 

resulting in the loss of epithelial markers and morphology and the gain of mesenchymal 

morphology and markers (36). EMT is a transient and reversible program (37-39) that is 

regulated by transcription factors Snail and Twist (40). The migration pattern of 

mesenchymal cells is highly dependent on focal adhesion signaling (41) and strong 

interactions with the ECM (42). As mesenchymal cells migrate, they secrete matrix 

metalloproteases (MMPs), which degrade the ECM and facilitate migration (43).  

Through collective migration, cancer cells maintain cell-cell contacts through 

adhesion molecules and other communication junctions (44) and typically retain their 

epithelial morphology (45). Collectively invading cells may form a chain or pack of cells 

as they work as a cohesive unit to invade out from the primary tumor (33). Chains of 

streaming cancer cells maintain contact with the primary tumor as they reach out toward 

the blood vessels, whereas packs of cells bud off and migrate on their own, finding the 
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path of least resistance (33). Whether in streams or packs a collectively invading group 

has a “leading edge” that uses integrins and proteases to move through the extracellular 

matrix of the tumor microenvironment (46). Studies in breast and lung cancer models 

demonstrate that cells leading collective invasion are genetically and morphologically 

distinct from “followers” (46, 47).  
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Figure 1-1. Metastasis and Migration Strategies. 

One of the first steps of metastasis is tumor invasion. Cancer cells employ different 

invasion strategies based upon intrinsic mutations and the tumor microenvironment 
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1.2.1.1 Focal Adhesion Signaling 

As previously mentioned, focal adhesion signaling is integral to cell migration, 

particularly in the case of mesenchymal cells (41). Focal adhesions (FAs) are signaling 

complexes found at the cell-matrix interface of motile cells (48). The key players at these 

hubs include focal adhesion kinase (FAK), Src, integrins, Rho GTPases, and the 

cytoskeleton  (48). 

At sites of focal contact with the ECM transmembrane integrin heterodimers bind 

to ECM fibers such as fibronectin to activate an intracellular signaling cascade (49). This 

outside-in signaling induces autophosphorylation of the non-receptor tyrosine kinase, 

FAK, and its downstream effectors (50). Autophosphorylation of FAK in turn promotes 

inside-out signaling as it further activates integrins and strengthens adhesion to the ECM 

(51). 

Cytoskeletal proteins such as actin and vimentin directly enter focal adhesion sites 

where they promote FA maturation and stability (52, 53). As a result, FA signaling has 

been extensively studied in the context of cancer cell motility, and FAK expression and 

activity have been shown to correlate with poor patient prognosis and malignant, 

metastatic disease (54, 55). 

1.2.2 Intravasation, circulation, and extravasation 

Cancer cells invade through the tumor microenvironment to reach blood vessels 

where they undergo intravasation to enter the bloodstream. Secreted factors such as 

epidermal growth factor (EGF) and tumor necrosis factor 1α (TNF1α) help recruit 

invading cancer cells to blood vessels. Upon arrival at the blood vessels, cancer cells 
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undergo transendothelial migration via paracellular and transcellular mechanisms (56). 

Transforming growth factor β (TGFβ) and vascular endothelial growth factor (VEGF) 

weaken the endothelial barrier and allow more cancer cells to intravasate into the 

bloodstream (57). 

Upon entering the bloodstream, cancer cells are under extreme stress, as they 

must combat anoikis, shear stress, and immunological assaults prior to reaching their 

secondary site (56, 58). In order to survive, circulating tumor cells (CTCs) may cluster 

together (59). It has been well documented that CTCs traveling in homotypic clusters 

have an over 50 times greater chance of survival than individual CTCs (60-62).  

Heterotypic clusters have also been shown to form between CTCs and different 

stromal partners including platelets (63) and fibroblasts (64). CTCs may adhere to 

activated platelets via integrins, using them as a shield as they flow through the 

bloodstream as well as using them to facilitate extravasation via cell arrest and adhesion 

to the endothelium (63). In a similar way, fibroblasts carried over from the primary site 

improve the efficiency of metastatic colonization by providing a “native soil” for the 

metastatic seeds to grow (64). 

As mentioned previously, a cancer preferentially metastasizes to certain organs 

based on its organ of origin and histological subtype. CTCs of over 23 different cancers 

are “homed” to preferential sites of metastasis via CXCR4/CXCL12 signaling (65). 

CXCL12 binds to the CXCr4 receptor to activate many cell responses that contribute to 

metastatic spread, including proliferation, chemotaxis, and survival (66). 

As CTCs approach the site of homing, they are often mechanically trapped in the 

microcapillaries to prevent further circulation (67). Once lodged in place, CTCs may 
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extravasate by breaching vascular walls (68). Depending on the organ site of metastasis, 

CTCs may activate expression of certain genes to facilitate extravasation into a particular 

site (69). These intrinsic genetic programs, in addition to extrinsic stromal factors (70, 

71), facilitate successful extravasation and metastatic colonization (67, 70). 

The final steps of metastasis are colonization and expansion. Colonization is a 

huge hurdle as the CTCs, which developed at the primary tumor in co-evolution with 

tumor-associated stroma, now must adapt and survive in a new environment. These final 

steps are predominantly dependent on pro-tumorigenic signaling within the metastatic 

organ microenvironment (72). Since stromal components are more favorable for 

colonization in certain organs and CTCs preferentially settle in these same organs, the 

“seed and soil” hypothesis was formed and validated over decades of research (73). The 

“seed and soil” hypothesis, established by Stephen Padget in 1889, proposed that 

metastatic colonization depends on crosstalk between selected cancer cells (the 'seeds') 

and specific organ microenvironments (the 'soil') (73). Therefore, without strong ‘seeds’ 

and good ‘soil’ metastatic spread is impossible. 

Despite these advances in understanding, cancer metastasis remains a complex 

multi-step process that is difficult to predict in patients and impossible to investigate in 

vitro. As a result, many animal models have been developed to determine key factors that 

contribute to metastasis and ultimately identify actionable therapeutic targets. 

1.3 Tumor Microenvironment 

As noted in the review of current research models, a key factor in determining the 

translational efficacy of a tumor mouse model is the presence of an active and 

communicative tumor microenvironment. As Hanahan and Weinberg postulated in their 
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seminal review, cancer research has moved away from a reductionist view to a 

perspective that includes heterotypic cell biology by integrating microenvironmental 

factors into research models (74). Understanding the role of the microenvironment within 

tumor progression is an area of active research (75) as the membership and complexity of 

the tumor microenvironment have been shown to impact patient prognosis and 

therapeutic response (76, 77). 

1.3.1 Microenvironmental Factors 

The tumor microenvironment co-evolves with the cancer and includes various 

stromal cells that, depending on the context, may facilitate or inhibit tumor growth and 

progression (78, 79). The central players of the tumor microenvironment across solid 

tumor types, including lung cancer, are fibroblasts, immune cells, and vasculature (80).  

1.3.1.1 Fibroblasts 

Cancer-associated fibroblasts (CAFs) are among the most prevalent stromal cells 

within the tumor microenvironment of most solid tumors. CAFs may be derived from 

local fibroblasts or converted from other cell types including endothelial cells and 

adipose tissue, forming a heterogeneous population (79, 81). Activated CAFs typically 

express markers such as fibroblast-specific protein 1 (FSP1, also known as S100A4), 

fibroblast-activating protein (FAP), and alpha-smooth muscle actin (α-SMA) (79). 

CAFs are best defined by whether they promote or inhibit tumor growth and 

progression (79). CAFs have been shown to augment carcinogenesis by promoting cancer 

cell proliferation (82, 83), stemness (84) and migration (85) via paracrine signaling (86). 

Many of these tumor-promoting pathways are stimulated by a wound-healing response 

activated in tumor adjacent CAFs (87). Another key function of CAFs is their ability to 
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modulate tumor architecture and rigidity via secretion of extracellular matrix (ECM) 

proteins (including firbronectin and type I collagen) and matrix metalloproteases (MMPs) 

(79).  Specifically within lung cancer CAFs have been shown to regulate lung cancer 

stem cell plasticity via paracrine signaling through the IGFII/IGF1R pathway (88). 

The tumor inhibitory effects of CAFs have not been as extensively investigated. 

However, some studies demonstrate CAFs inhibiting cancer cell proliferation and early 

tumor progression (89, 90). 

Aside from direct interactions with cancer cells, CAFs can further impact the 

tumor microenvironment via secretion of pro-inflammatory factors that recruit either 

tumor-promoting or –inhibiting immune responses (91, 92). 

1.3.1.2 Immune Cells 

Tumor-promoting inflammation is an enabling characteristic of cancer (16). 

Across solid tumors, immune cell infiltration is prevalent with tumor-associated 

macrophages (TAMs), cytotoxic T cells, myeloid derived stem cells (MDSCs), and 

neutrophils all present and active within the tumor microenvironment (93, 94). These 

infiltrating immune cells not only modulate inflammation and immune system response 

to the tumor’s presence but also secrete growth factors that stimulate cancer cell 

proliferation and stromal recruitment, including epidermal growth factor (EGF), 

transforming growth factor β (TGF- β), fibroblast growth factors (FGFs) and interleukins 

(ILs) (95). 

1.3.1.3 Vasculature 

As tumors grow, resources become depleted; therefore, cancer cells rely on 

complex vascular networks to maintain access to oxygen and other nutrients. These 
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networks include existing neighboring vessels, angiogenic or vasculogenic vessels, and 

vasculogenic networks formed by the cancer cells (96-98). To recruit, form, and maintain 

tumor vasculature, cancer cells and other stromal cells secrete growth factors such as 

vascular endothelial growth factors (VEGFs), transforming growth factor betas (TGF-βs), 

fibroblast growth factors (FGFs), and epidermal growth factor (EGF) (96).  

Once tumors activate the “angiogenic switch” and recruit their own vasculature, 

they gain access not only to oxygen and nutrients for further proliferation but also a route 

for tumor cell dissemination and metastasis via the blood stream (99, 100). 

1.3.1.4 The role of the microenvironment in metastasis 

All three of the main components of the tumor microenvironment contribute to 

the metastatic cascade through different pathways. Infiltrating immune cells and CAFs 

secrete not only growth factors, but also matrix metalloproteases, which facilitate cancer 

cell escape and invasion by breaking down the tumor ECM and promoting cell motility 

(93, 101, 102). Tumor vasculature is typically quite leaky as it loosely associates with 

pericytes (103). This results in increased cell traffic in and out of the blood vessels. 

Through these weak structures, immune cells can further infiltrate the tumor 

microenvironment and cancer cells can escape into the circulatory system (93). 

1.4 Metastatic Biomarkers 

1.4.1 History and Prognostic Applications 

One canonical mechanism of cancer cell metastasis is the epithelial-to-

mesenchymal transition (EMT) (104). EMT is a developmental program involving 

changes in genetic and epigenetic expression to convert immotile, polarized, epithelial 

cells to motile, invasive, mesenchymal cells (104). EMT in cancer invasion and 
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metastasis has been extensively studied (105, 106). As a result, the majority of metastatic 

biomarkers for solid tumors, including lung cancer, are mesenchymal cell markers 

including fibronectin, N-cadherin, and vimentin (107-109). These mesenchymal markers 

have been shown to correlate with increased invasiveness and metastatic potential in 

clinical samples (110-112) and, as such, are used as prognostic markers to help determine 

the likelihood of cancer progression and metastasis in patients. 

Vimentin expression specifically has been shown to correlate with high nuclear 

grade (113), increased metastatic potential (114, 115), and poor overall survival (116, 

117) across solid tumor types.  

1.5 Vimentin structure and function 

Vimentin is a type III intermediate filament that is highly dynamic as it 

interconverts between three assembly states: particles, “squiggles”, and elongated 

filaments (118-120). Historically, intermediate filaments have been viewed purely as 

structural components of the cytoskeleton whose only function is to maintain cell 

integrity. However, recent studies have shown that intermediate filaments are integral 

cellular components, the disruption of which, can lead to many different diseases (121).  

1.5.1 Intermediate filament structure 

All intermediate filament monomers, including vimentin, have a tripartite 

structure with a highly conserved alpha-helical central “rod” capped by variable “head” 

and “tail” domains (122). The smallest functional unit of vimentin within cells is the 

tetramer. Vimentin tetramers further assemble into protofilaments, which require the head 

domains for successful assembly (123). Vimentin assembly is regulated by 

phosphorylation of serine sites by a few key kinases, namely PKA, PAK1, and PKC (124, 
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125). Phosphorylation sites have been identified at both ends of the vimentin monomer, 

with the majority located in the critical head domain (124). 

 

1.5.2 Vimentin in signal transduction 

In mesenchymal cells, vimentin filaments extend throughout the cell to control 

cell morphology (126), lamellipodia formation (127), cell integrity under stress (128), 

and signaling (129, 130).  

As mentioned previously, vimentin dynamics are regulated by phosphorylation at 

serine sites. Phosphorylation at certain sites not only regulates vimentin assembly but 

also influences binding partners and downstream signaling. For example, it has been 

shown that phosphorylated vimentin regulates cell cycle pathways via 14-3-3 (131) and 

can inhibit caspase-induced proteolysis, increasing cell survival and motility (132). As 

these studies demonstrate, vimentin has emerged as an important component of cell 

signaling and motility in recent years. 

1.6 Current research models 

In vivo models are integral tools for investigating not only carcinogenesis and 

drug treatments but also modeling the metastatic cascade. Cancer metastasis models, 

specifically, have been developed in many different animal models including drosophila, 

mice, zebrafish, and rats (133-135). The most versatile and informative models of 

metastasis are murine models, which provide opportunities to ask different experimental 

questions via transplantation models and genetically engineered mouse models 

(GEMMs). 
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  Figure 1-2. Summary of commonly used mouse models. 
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1.6.1 Transplantation models 

Transplantation models involve the injection of human or murine cell lines or 

tumor fragments into one of three main locations: the tail vein, under the skin 

(subcutaneous), or at the orthotopic site of the tumor’s origin (i.e. breast cancer injected 

into a mammary fat pad). Each of these transplantation models has different advantages 

and disadvantages and probes distinct experimental questions. 

Tail vein injection is the most commonly used experimental metastasis model 

(135). In this model, as with all experimental metastasis models, cancer cells are injected 

directly into circulation without the formation of a primary tumor. These experimental 

models skip the early steps of metastasis and instead probe a cell line’s capacity for 

surviving circulation, extravasating, and seeding the metastatic site (136, 137).  

Spontaneous metastasis transplantation models were developed to better mimic 

the full cascade of metastasis. These models may involve ectopic or orthotopic injection 

of tumors into mice, resulting in drastically different phenotypes.  

The most popular ectopic injection site is under the skin. Subcutaneous injection 

of cancer cell lines or tumor fragments, while sometimes useful, have generally proved to 

be an inadequate model for assessing tumor progression and metastasis. Because of the 

ectopic location of subcutaneous injections, the tumor microenvironment is often not 

suitable for the cancer cells, altering the doubling time and tumor progression (138). As a 

result, distant metastases do not often form, and testing therapeutics in these models may 

not accurately translate to the endogenous human setting (138, 139). 
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Orthotopic transplantation models most closely mimic human disease as 

evidenced by assessment of tumor histology, vascularity, tumor-stroma interactions, gene 

expression profiles, metastasis, and therapeutic response (140, 141). Direct 

transplantation into the orthotopic site may come from direct injection of cancer cells or 

surgical implantation of intact fragments of tumor (135). Surgical implantation has been 

shown to improve the reproducibility and metastatic outcomes within many orthotopic 

models (142).   

As mentioned previously, transplantation models may inject either human 

(xenograft) or murine (syngeneic) samples into the mouse. Use of either a xenograft or of 

syngeneic transplantation has its advantages and disadvantages. Xenograft models, while 

more similar to human disease, require the use of immunodeficient mice so that the tumor 

grafts will survive and progress (135, 143). While immunodeficiency facilitates tumor 

seeding and metastasis, without a functioning immune system, the functional contribution 

of the immune system to tumor progression and metastasis cannot be assessed in this 

model (144). Xenografts may be further impaired by inhibited growth factor signaling 

between the tumor microenvironment and the cancer cells. Species specificity of 

cytokine/cytokine receptor systems can limit the effectiveness of murine stromal 

components on human cancers (144, 145).  

Syngeneic transplantation models overcome the microenvironment issues 

presented in xenograft models. However, because murine cells injected into the tumor 

site are derived from inbred mouse strains, genetic heterogeneity is drastically reduced as 

compared to human patient samples (135, 143). 
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1.6.2 Genetically engineered mouse models (GEMMs) 

Genetically engineered mouse models or GEMMs provide further insight into 

cancer progression, as they allow for the study of early neoplasms in addition to 

metastatic disease. GEMMs have major advantages over transplantation models (146) 

including an intact tumor microenvironment (147) and the ability to manipulate gene 

expression in time and space using viral systems (148, 149). This tight regulation of gene 

expression is especially useful in cases where systemic expression or disruption of a gene 

has debilitating impacts such as embryonic lethality and sterility (137).  

Another key advantage of GEMMs over transplantation models is their translation 

to the clinic. Preclinical therapeutic investigations in GEMMs provide better insight into 

therapeutic success due to their more realistic timeline and orthotopic microenvironment 

(150). Because GEMMs display the full spectrum of tumor progression from tumor 

initiation to metastasis, they are ideal models for testing anti-metastatic therapies (137, 

151). 

GEMMs are particularly useful in lung cancer where orthotopic transplantation 

into the lungs, though possible (152), is technically difficult. The most frequently used 

lung cancer model is the Cre-inducible LSL-KrasG12D model (137). In this model a LoxP-

Stop-LoxP transcriptional stop cassette is located upstream of the oncogenic KrasG12D 

mutation and is removed in a Cre-dependent manner (153). Cre administration via viral 

inhalation in the LSL-KrasG12D model produces lung adenocarcinomas (153, 154). 

Concomitant mutations of KrasG12D with loss of tumor suppressors Trp53fl/fl, LKB1fl/fl, or 

INK4afl/fl via gene flanking LoxP sites result in aggressive metastatic lung 

adenocarcinoma (154).  
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Of the KrasG12D models, the KrasG12D, LKB1fl/fl model has been most extensively 

studied (20, 23, 24) as it combines two of the most common mutations found in lung 

adenocarcinoma patients (155, 156) and is a robust model of tumor initiation, growth, 

invasion and metastasis within a host murine microenvironment (21).  

1.7 Scope of Dissertation 

Despite advances in vimentin cell biology research, little is known about the 

functional role of vimentin within the context of lung cancer. This dissertation seeks to 

bridge the gap between cell biology and clinical data by exploring the role of vimentin 

within lung cancer cell invasion and metastasis. First we identify a role for vimentin 

within focal adhesion signaling using in vitro lung cancer cell line models and xenograft 

studies. This work was published in Oncogene in 2014 and details a model in which 

vimentin is directly inserted in focal adhesion sites to promote EGFR-mediated 

phosphorylation of VAV2, which activates Rac1 to induce FAK activation.  

This initial study inspired the main focus of my dissertation, which was 

characterization of lung cancer metastasis in a vimentin null mouse. For this study we 

developed a novel genetically engineered mouse model (GEMM) by crossing the Cre-

dependent lung cancer metastasis model LSL-KrasG12D/LKB1fl/fl  (KLV+/+) to a whole body 

vimentin knockout mouse to generate the LSL-KrasG12D/LKB1fl/fl/Vim-/- mouse (KLV-/-). 

Comparisons of these models show that loss of vimentin does result in a significant 

reduction in metastasis to the mediastinal lymph node. Further study identified that 

vimentin expression in cancer-associated fibroblasts (CAFs) supports collective invasion 

and metastasis via heterotypic CAF-cancer cell interactions in which CAFs physically 
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lead collective chains of cancer cells into the extracellular matrix (ECM) via cell-cell 

interactions.  

Both studies further our understanding of vimentin within the context of lung 

cancer and provide a springboard for future studies on the role of vimentin within the 

tumor microenvironment. 
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Chapter 2: Vimentin regulates lung cancer cell adhesion through a VAV2-

Rac1 pathway to control focal adhesion kinase activity 

Lauren S. Havel, Erik R. Kline, Alessandra M. Salgueiro, and Adam I. Marcus 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is adapted from a manuscript published by L Havel, E Kline, A Salgueiro, 

and A Marcus. Vimentin regulates lung cancer cell adhesion through a VAV2-Rac1 

pathway to control focal adhesion kinase activity. Oncogene 2014. doi: 

0.1038/onc.2014.123 

AMS contribution: manuscript review and experimental design and execution of HBEC 

experiments 



	   	   30	  

2.1 Introduction 

Lung cancer is the leading cause of cancer-related deaths in the United States 

(157). Non-small cell lung cancer (NSCLC), specifically, constitutes 80% of lung cancer 

deaths (158). The poor survival results from the aggressive nature of lung cancer. Most 

often, patients are diagnosed with advanced stage disease where metastasis of the primary 

tumor has already occurred (158). 

Metastasis is a hallmark of cancer (74) that is initiated by genetic and epigenetic 

alterations that transform stationary epithelial cells into motile mesenchymal cells (159). 

This transition is referred to as the epithelial to mesenchymal transition or EMT (160). 

EMT is characterized by alterations in cell morphology, cell-matrix interactions, 

cytoskeletal rearrangements, and protein expressions (38). One canonical biomarker of 

EMT is the intermediate filament protein, vimentin. Vimentin has been shown to 

correlate with increased metastatic potential and poor patient prognosis in NSCLC 

patients (161). While the role of vimentin as a biomarker has been well characterized, the 

functional role of vimentin in cancer metastasis is undefined. 

Increasing evidence indicates vimentin as a regulator of focal adhesions and cell 

motility. Vimentin has been shown to directly enter and strengthen focal adhesion sites 

(125) and vimentin expression increases focal adhesion (FA) turnover (130). However, 

the exact molecular mechanism connecting vimentin to focal adhesion signaling, 

specifically focal adhesion kinase (FAK) is yet to be elucidated.  

In this manuscript we identify a novel vimentin-dependent mechanism for cell 

adhesion and motility. We identified that phosphorylation at Y142 on VAV2, a guanine 

nucleotide exchange factor (GEF) for Rac1, is dependent on vimentin expression. Having 
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identified this dependence, we tested a vimentin-based model of lung cancer cell motility 

and invasion. In this model we found that vimentin promotes phosphorylation of VAV2, 

which, in turn, activates Rac1 at focal adhesions, leading to stabilization of FAK. These 

data provide a novel mechanism for vimentin-mediated cell motility within a lung cancer 

model. Since alterations in motility are among the first steps of metastasis, this work may 

provide mechanistic insight into those factors driving lung cancer metastasis. 

2.2 Experimental Procedures 

Cell Culture 

H1299, H460 and H1792 cell lines were grown in RPMI 1640 media 

supplemented with 10% FBS and 1% penicillin/streptomycin and maintained in a 

humidified chamber at 37 °C with 5% CO2. HEK 293 cells were grown in DMEM media 

supplemented with 10% FBS and 1% penicillin/streptomycin. All tissue culture plates 

and coverslips used for experiments were covered with 5 μg/cm2 human plasma 

fibronectin (Millipore) diluted in PBS and incubated for 30 min at 37 °C prior to cell 

seeding. 

 Antibodies 

Antibodies against pY397-FAK (Invitrogen), FAK (BD Biosciences), GAPDH 

(Cell Signalling), vimentin (Sigma), pY142-VAV2 (Full Moon Biosystems), pY172-

VAV2 (Abcam), VAV2 (Full Moon Biosystems), GFP (Covance, Princeton, NJ), pY418-

Src (Invitrogen) and FLAG (Sigma) were used for Western blotting, immunofluorescence 

and immunoprecipitation. HRP-conjugated secondary antibodies (Jackson 

ImmunoResearch) were used for Western blotting. 
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Transfections and Drug Treatments 

Lipofectamine 2000 and Plus reagents (Invitrogen) were used to transfect the 

FLAG, WT FAK-FLAG, Y397E FAK-FLAG, Y397F FAK-FLAG, GFP, WT FAK-GFP, 

Y397E FAK-GFP, WT VAV2-GFP, CA VAV2-GFP, inactive VAV2-GFP, WT Rac1-

GFP, Q61L Rac1-GFP, T17N Rac1-GFP, WT cdc42-GFP, Q61L cdc42-GFP and T17N 

cdc42-GFP constructs according to the Invitrogen supplied protocol. The RevTet-On 

system (Clontech), which includes pRevTRE carrying the human vimentin gene and 

pRevTet-On, was used. Oligofectamine (Invitrogen) was used to transiently transfect 

cells with VAV2 small interfering RNA (siRNA) (Qiagen FlexiTube VAV2 6. Cat. No. 

SI02662947), vimentin siRNA (Qiagen FlexiTube Hs_VIM_13. Cat. No. SI04201890) or 

FAK siRNA (ThermoScientific ON-TARGET plus PTK2 Cat. No. L-003164-00-0005) 

according to the manufacturer’s protocol. Two successive 24-hour transfections were 

performed before cell harvesting. For the production of stable vimentin knock-down 

H1299, H460 and H1792 lung cancer cells, vimentin shRNA (ThermoScientific, Catalog 

No. RHS3979-201759429, clone ID TRCN0000029122) and shVIM clone 2 were 

(ThermoScientific, Catalog No. RHS3979-201759427, clone ID TRCN0000029119) 

delivered in pLKO.1 lentiviral vectors (ThermoScientific). The shVIM sequence is 5′-

TTGAACTCGGTGTTGATGGCG-3′  and the shVIM clone 2 sequence is 5′ -

AATAGTGTCTTGGTAGTTAGC-3′. To produce the virus, HEK 293T cells were 

transfected with the shRNA and helper plasmids (pHRCMV8.2ΔR and CMV-VSVG) 

using LT1 transfection reagent (Myrius). To harvest the lentiviral stock, the media was 

centrifuged at 250g for 5 min then filtered through a syringe. Cells were infected with a 

1:4 dilution of lentivirus in complete media containing 8 μg/mL polybrene. The next day, 
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the media was changed to complete media containing 2 μg/mL puromycin. For the 

cyclohexamide (CHX) experiment, H1299 cells were treated with 20 ug/mL 

cyclohexamide (Sigma) in complete RPMI media. 

 

Adhesion Assays 

For the detachment assays, cells were plated at 1 × 105 or 1.5 × 105 cells/well of 

a 12-well plate, respectively. After 24 hours, each well was trypsinized for lengths of 

time ranging from 0 to 5 min. At each time point, 2 times the trypsin volume of complete 

RPMI media was added to the well. The non-adherent cell containing media was 

aspirated off and each well was washed with 1X PBS. The remaining adherent cells were 

trypsinized and counted. The number of adherent cells in each well was normalized to the 

total number of cells (0 time point). For the attachment assays, the concentration of each 

cell line after collection by trypsinization was equalized to 5 × 105 cells/mL. 1 mL of 

cells was added to each well of a 12-well plate and incubated for varying lengths of time 

ranging from 10 to 90 min. At each time point, the non-adherent cells were aspirated off. 

The adherent cells were washed gently with PBS, trypsinized then counted. 

Western Blotting 

Cells were harvested and lysed in cold TNES buffer (50 mM Tris pH 7.5, 100 

mM NaCl, 2 mM EDTA, 1% Nonidet P-40, 1X Roche Complete Protease Inhibitors, 10 

mM NaF, 1 mM NaVO4, 2 mM sodium pyrophosphate, and 2 mM β-glycerophosphate). 

Protein concentrations were determined using a protein assay kit (Pierce). Equal protein 

concentrations of whole cell lysate were solubilized in SDS sample buffer, separated on a 

10% SDS-polyacrylamide gel, and transferred to a methanol soaked polyvinyalide 



	   	   34	  

diflouride (PVDF) membrane, which was then blocked with 10% milk in 1X TBST. 

Primary antibody, diluted in 5% milk in TBST, was added to the membrane while 

rocking overnight at 4°C. After 3 TBST washes, the appropriate HRP conjugated 

secondary antibody diluted in 5% milk in TBST was added to the blot for 1 h at room 

temperature. After 3 more TBST washes, proteins were visualized using a 

chemiluminescent substrate (Denville). 

 

Wound-healing assay  

Cells were cultured to 100% confluence on glass coverslips. An X shaped wound 

was made using a small pipette tip followed by a brief 1X PBS wash. Cells were 

incubated for 16-24 hours at 37 °C then fixed and mounted onto slides. Coverslips were 

imaged using a 10X objective on a Zeiss Axioplan 2 microscope with a Zeiss Axiocam II 

camera. Identical imaging parameters were used for all images. 

 

Matrigel Invasion assay 

5 x 104 cells in serum free media were plated in BD Biocoat Matrigel invasion 

chambers (BD Biosystems). The well containing the insert was partially filled with 

complete RPMI media also containing fibronectin at 5 μg/cm2. The cells were incubated 

at 37 ºC for 18-24 h. The membrane from the insert was removed, fixed and stained 

according to the manufacturer's protocol then mounted on slides for imaging with a Zeiss 

Axioplan upright microscope using the 10X objective. 
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Xenotransplantation and tumor analysis 

All animal experiments were performed within institutional guidelines. Female 

HSD Balb/c Jhan Hsd-Prkdc SCID mice (7-8 weeks old) were subcutaneously injected 

with 1.5 x 106 cells/mL (in 200 μL PBS) of the H460 human large-cell lung cancer cell 

line into the left abdominal wall. For each cell line, 6 mice were injected. Primary tumors 

at the injection site were measured using digital calipers. Tumor volumes (in mm3) were 

calculated as follows: volume = (length x width2)/2. Mice were sacrificed after 4-6 

weeks. Using a dissecting microscope, the number of metastatic lung nodules was 

counted prior to fixation of the lung with 10% buffered formalin overnight at room 

temperature. The tissues were then processed by the Pathology Core at Emory University 

for hematoxylin and eosin (H&E) staining. The number of micrometastases on the 

stained slides was counted. Images of the lungs were taken with a Sony camera using an 

automatic exposure time. 

 

Drug Treatments 

Epidermal Growth Factor (EGF) was used at a concentration of 100 ng/mL in 

ddH2O. The calpain inhibitors, calpeptin (Calbiochem) and PD150606 (Calbiochem), 

were both used at a concentration of 200 μM in DMSO.  

 

Cdc42 activation assays 

The G-LISA cdc42 colormetric activation assay kit (Cytoskeleton, Denver, CO) 

was used to measure cdc42 activity in H1299 shVIM and pLKO.1 cells transfected with 

GFP, CA VAV2-GFP, WT VAV2-GFP or inactive VAV2-GFP. Cells were lysed in the 
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supplied lysis buffer. Lysates were diluted to 0.3 ug/uL then processed according to the 

supplied protocol. Readings were obtained using a BioTek spectrophotometer. 

 

Quantitative Real-Time PCR 

Total RNA was isolated using an RNeasy Mini Kit (Qiagen) then reverse 

transcribed with M-MLV Reverse Transcriptase (Invitrogen). The cDNA product was 

amplified using sequence specific primers to FAK (forward- 

TGGTGAAAGCTGTCATCGAG, reverse- TCATCCACAGTGGCCAATAA) and 

analyzed by real-time PCR using SYBR green detection. 25μL reactions contained 1 μL 

DNA, 0.2 μM of each primer, and 12.5 μL IQ SYBR Green Supermix (Bio-Rad). The 

following PCR protocol was used: 3 min hot start at 95 °C followed by cycles of 95 °C, 

10 s; 55 °C 60 s. Melt curve analysis verified a single product. Relative RNA quantities 

were calculated then standardized to levels of 18S rRNA. 

 

Immunofluorescence 

Cells were fixed on 1.5mm glass coverslips with PHEMO buffer (68 mM, PIPES, 

25 mM HEPES, 15 mM EGTA, 3 mM MgCl2, 10% DMSO) plus 3.7% formaldehyde, 

0.05% glutaraldehyde and 0.5% Triton X-100 for 10 min at room temperature. After 

three 5 min washes with PBS, the coverslips were blocked with 10% normal goat serum 

for 1 h at room temperature. Primary antibodies were diluted in 5% normal goat serum 

and added to the coverslips overnight at 4 °C. After 3 PBS washes, the coverslips were 

incubated for 1 h at room temperature with a fluorophore conjugated secondary antibody 

diluted in 5% normal goat serum. After 3 PBS washes, the coverslips were incubated 
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with 350 nM DAPI stain diluted in 1X PBS for 10 min at room temperature. The 

coverslips were mounted on glass slides using Prolong gold mounting medium 

(Invitrogen). The slides were imaged using Zeiss LSM 510 META confocal microscope 

using a 100X oil Plan-Apo objective (NA = 1.46). The images were processed using ZEN 

2009 software. A Nikon N-SIM microscope housed within the Emory Integrated Cellular 

Imaging Core was utilized to acquire super-resolution images of vimentin directly 

entering FAs. Images were acquired using a 100× 1.49 NA oil objective. All images 

within an experiment were taken under identical settings. Intensity levels were adjusted 

equally on all samples within an experiment. 

 

Immunofluorescence Image Quantification 

To assess focal adhesion site size and intensity, images were analyzed in 

ImageJ/Fiji. A 100 μm 2 rectangle was used as a region of interest (ROI) at the leading 

edge of cells. Pixels within this ROI were then thresholded to remove background and the 

same threshold was used for all samples stained with the same antibody. The “Analyze 

Particle” function was then implemented to detect objects. All objects less than 

0.5micrometers were then removed using a size filter. The intensities and size of the 

remaining objects were then quantified and imported into Excel. 

 

Co-Immunoprecipitation 

Cells were harvested and lysed in NP-40 lysis buffer (50 mM Tris pH 7.4, 50 mM 

NaCl, 0.1% Triton X-100, 1% NP-40) plus 1X Roche Complete Protease Inhibitors, 10 

mM NaF, 1 mM NaVO4, 2 mM sodium pyrophosphate and 2 mM β-glycerophosphate. 
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For co-immunoprecipitations involving vimentin, total lysate was used. For all other co-

immunoprecipitations, lysate was centrifuged at 14,000 × g at 4 °C for 10 min. 10 μg of 

primary antibody was incubated with 500 μg of protein at 4° C overnight while rotating. 

Each sample was incubated with 50 μL of Dynabeads (Invitrogen) for 1 hour at 4° C 

while rotating. After three 20 min washes with NP-40 lysis buffer, the protein-antibody 

complex was eluted from the beads in 2X Laemmli buffer at 100 °C for 10 min. 

 

Phosphorylation Screen 

H460 pLKO.1 and shVIM cell lysates were analyzed using the Phospho Explorer 

Antibody Array (Full Moon Biosystems), which is a microarray containing 1,318 

phospho-specific antibodies spotted on a coated glass slide in duplicate. Cell lysates were 

given to Full Moon Biosystems for processing and analysis. Lysates were labeled with 

biotin then bound to the array’s antibodies. The phosphorylated protein in each sample 

was detected using Cy3-streptavidin. The array was scanned with an Axon GenePix 

scanner to measure phosphorylation levels of individual proteins in each sample. The 

ratio of phosphorylated to total protein was calculated for both pLKO.1 and shVIM cells 

and reported as a fold change upon vimentin loss. The percent change in phosphorylation 

upon vimentin depletion was calculated as a ratio of phosphorylated:total protein in 

shVIM cells to phosphorylated:total protein in pLKO.1 cells. 

 

Rac1 Activation Assays 

The G-LISA rac1 luminescence-based activation assay kit (Cytoskeleton, Denver, 

CO) was used to measure rac1 activity in stably adherent cells. The cells were lysed in 
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the supplied lysis buffer. Lysates were diluted to 1 ug/uL then processed according the 

supplied protocol. Readings were obtained using spectraMax luminometer. For the 

timecourse experiment on trypsinized cells that were re-plated, we used a Rac1 activation 

pull-down kit (Cytoskeleton, Denver, CO). Cells were lysed in the supplied lysis buffer 

then diluted to 1.5 μg/μL and processed according to the supplied protocol. The pull-

down products were analyzed by western blotting using a Rac1 antibody from BD 

Biosciences. 

 

Statistical Analysis 

P-values of significance were obtained using one- or two-way ANOVA analysis 

followed by a multiple comparison test. In the case of the xenograft and qRT-PCR 

studies, a Student’s t-test was employed. 

 

2.3 Results 

Vimentin regulates lung cancer cell migration, invasion, and metastasis 

The role of vimentin in cell motility has been extensively studied by other groups 

(130); however, to verify this correlation in lung cancer cells, we depleted vimentin 

expression in H1299 lung cancer cells by siRNA (Supplemental Figure 2-1A). 

Knockdown of vimentin within lung cancer cells decreased their motility and invasive 

phenotypes as assessed by wound healing and Matrigel Boyden chamber assays 

(Supplemental Figure 2-1B and 2-1C). 

These studies were further validated by an in vivo xenograft model with H460 

lung cancer cells. H460 cells stably expressing vimentin shRNA (shVIM) or vector 



	   	   40	  

control shRNA (pLKO.1) were generated for these studies (Supplemental Figure 2-2A). 

H460 shVIM cells were significantly less invasive in vitro as compared to pLKO.1 cells 

(Supplemental Figure 2B). The pLKO.1 and shVIM H460 cells were injected 

subcutaneously into the flanks of nude mice. Primary tumor volume was not significantly 

different between the two experimental groups (Supplemental Figure 2-2C); however, 

there was a significant decrease in the number of metastatic lung nodules in the H460 

shVIM cohort compared to control (Supplemental Figure 2-2D and 2-2E). Furthermore, 

the H460 shVIM cells also generated fewer micrometastases. Together, these data 

indicate that vimentin contributes to in vitro lung cancer cell motility and invasion as well 

as in vivo metastasis. 

Vimentin regulates VAV2 phosphorylation and localizes VAV2 to FAs 

To determine the role of vimentin within lung cancer cell motility signaling, a 

phospho-proteomic screen was performed using H460 pLKO.1 and H460 shVIM cells to 

identify which cell motility proteins had the greatest change in phosphorylation upon 

vimentin depletion. Lysates from the H460 cell lines were probed with 1,318 phospho-

specific antibodies and their corresponding non-phosphorylated antibodies (Supplemental 

Figure 2-3 and Supplemental Table 1). The ratio of phosphorylated to total protein was 

calculated for each screened protein. For each protein, the ratio of phosphorylated/total in 

H460 shVIM was plotted against the H460 pLKO.1 cells (Figure 1A). This analysis 

revealed the guanine nucleotide exchange factor (GEF) VAV2 as having the greatest 

decrease in percentage of phosphorylation (at Y142) upon vimentin depletion (Figure 2-

1B and 2-1C). VAV2 is the GEF for Rac1 and cdc42 Rho GTPases, and has been shown 

to contribute to cell motility, spreading, and invasion (162, 163). VAV2 is regulated by 
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phosphorylation at tyrosines 142, 159, and 172 by EGFR (164). To validate the phospho-

proteomic screen, western blotting of H460 and H1299 shVIM and pLKO.1 cell lines 

was performed. Consistent with the screen, VAV2 phosphorylation at Y142 decreased 

upon vimentin depletion in both H460 and H1299 cell lines (Figure 2-1D and 2-1E). 

Conversely, when GFP-tagged vimentin (hVIM-GFP), which was under the control of a 

doxycycline inducible promoter, was expressed in HEK293 cells, VAV2 phosphorylation 

increased at Y142 (Figure 2-1F). Based on these data we have identified a novel GEF 

whose phosphorylation is mediated by vimentin expression. 

Immunofluorescence of pY142-VAV2 and vimentin in pLKO.1 and shVIM H460 

cells was performed to determine localization of activated VAV2. In pLKO.1 H460s 

pY142-VAV2 was localized to the edge of the cell membranes in punctate structures 

resembling focal adhesions. However, cells lacking vimentin demonstrated more of a 

nuclear localization of pY142-VAV2 (Figure 2-2A and 2B). Analysis of focal adhesion 

sites revealed that while size and intensity of pY142-VAV2 focal adhesions remained 

unchanged, the number of pY142-VAV2 positive focal adhesion sites significantly 

decreased with vimentin loss (Figure 2-2C). Tyrosine 172, another marker of VAV2 

activity, was also probed by immunofluorescence. In H1299 cells pY172-VAV2 was also 

localized to focal adhesions. Because VAV2 phosphorylation is mediated by the EGFR 

signaling pathway, we sought to determine whether vimentin regulates EGFR-mediated 

phosphorylation of VAV2. Our results show that vimentin regulates EGFR-mediated 

phosphorylation of VAV2 at Y142 and Y172 as shVIM cells had reduced levels of 

pY142- and pY172-VAV2 levels compared to pLKO.1 control cells after the addition of 

EGF. 
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To examine the interaction of vimentin and VAV2, we performed a co-

immunoprecipitation experiment that showed that pY142-VAV2 formed a complex with 

vimentin in whole cell lysates (Figure 2-2D). To determine if pY142-VAV2 was, in fact, 

localized to focal adhesions as predicted by the staining pattern, we performed dual 

immunofluorescence for pY142-VAV2 and focal adhesion kinase (FAK), which marks 

focal adhesions. Co-staining revealed that pY142-VAV2 colocalizes with FAK at the cell 

periphery (Figure 2-2E). These data were further validated by co-IP in which pY142-

VAV2 associated with FAK (Figure 2-2F). Together, these data demonstrate that VAV2 

is active in the focal adhesion complex and that vimentin is necessary for 

phosphorylation and localization of VAV2. 

Vimentin loss leads to decreased FAK activation at FA sites 

Because vimentin is integral for VAV2 activation and localization to focal 

adhesion sites, we tested whether vimentin is necessary for proper FAK localization. 

Immunofluorescence of pY397-FAK was performed in pLKO.1 and shVIM isogenic cell 

lines (in H1299 and H460 lung cancer cell lines) and focal adhesions at the leading edge 

of motile cells were imaged by confocal microscopy. Cells lacking vimentin exhibited 

significantly fewer, smaller, and less intense pY397-FAK sites than isogenic vector 

control cells (Figures 2-3A-F). Immunofluorescence of total FAK showed a similar 

staining pattern in which shVIM cell lines exhibited fewer total FAK adhesion sites 

(Figure 2-3G). In both pLKO.1 cell lines (H460 and H1299), vimentin filaments and 

squiggles directly entered pY397-FAK sites (Figures 2-3A, 2-3B, and 2-3E), suggesting a 

potential interaction between the pY397-FAK and vimentin. 
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To further elucidate the impact of vimentin expression on FAK, we probed three 

different pairs of isogenic shVIM and pLKO.1 whole cell lysates for pY397-FAK and 

total FAK by western blot. In all cell line pairs, pY397-FAK and total FAK levels 

decreased with vimentin loss, confirming that vimentin is required for both FAK 

expression and activation (Figure 2-4A). An independent shRNA vimentin clone was 

used to validate these results (Figure 2-4B). Quantitative real-time PCR revealed that 

FAK mRNA levels did not differ between the isogenic pairs, indicating that vimentin 

regulation of FAK does not occur at the transcriptional level (Figure 2-4C). Because total 

FAK levels decreased with vimentin depletion, vimentin regulation on FAK protein 

stability was investigated by cyclohexamide (CHX) treatment of H1299 pLKO.1 and 

shVIM isogenic cell lines, which prevented new protein translation. FAK protein was still 

present in pLKO.1 cells after 12 hours of CHX treatment; however, after only 2 hours of 

CHX treatment of shVIM cells there was very little total FAK remaining (Figure 2-4D). 

Since calpains can degrade FAK (165), we investigated whether vimentin regulates 

calpain-mediated degradation of FAK using two calpain inhibitors. The calpain inhibitors 

did not significantly increase FAK stability, suggesting that vimentin-mediated FAK 

degradation goes through a different degradation pathway. 

To assess vimentin-mediated promotion of pY397-FAK and total FAK levels, a 

GFP-tagged vimentin (hVIM-GFP) plasmid under control of a doxycycline-inducible 

promoter was expressed in HEK-293 cells. Western blot of whole cell lysates show that 

both pY397-FAK and total FAK expression increase with doxycycline induction of 

hVIM-GFP expression (Figure 2-4E). These data demonstrate that vimentin 

overexpression can induce FAK expression and activation. In combination with the 
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previous data, vimentin overexpression studies support that vimentin loss leads to 

increased FAK instability. 

To follow up on immunofluorescence data showing vimentin entering FAK sites, 

we tested FAK/vimentin interactions by co-immunoprecipitation. A co-IP was performed 

for endogenous vimentin and FAK from H1299 cells and the proteins were shown to 

associate (Figure 2-4F). We hypothesized Y397 would be critical for this interaction. To 

probe this mechanism, FLAG-tagged phosphomimetic (Y397E) and unphosphorylatable 

(Y397F) FAK mutant constructs were generated. A co-IP of each of these mutants with 

vimentin demonstrated a nearly complete loss of vimentin association upon inhibition of 

phosphorylation in the Y397F FAK mutant, while the phosphomimetic Y397E FAK 

mutant still associated with vimentin (Figure 2-4G). These results indicate that 

phosphorylation at Y397 on FAK is critical for vimentin-mediated stabilization of FAK 

expression and activation. 

Vimentin-mediated cell adhesion is dependent on FAK activation 

To determine the impact of vimentin-mediated FAK stability on cancer cell 

adhesion, we performed attachment and detachment assays with pLKO.1 and shVIM 

isogenic pairs in H460 and H1299 cell lines. Cellular attachment and detachment rates 

were measured on fibronectin-coated surfaces. Attachment rates were significantly lower 

in both shVIM cell lines compared to pLKO.1 control lines (Figure 2-5A, B). 

Detachment rates for the shVIM cell lines were also significantly decreased, indicating an 

overall decrease in adhesion upon vimentin depletion in shVIM cell lines. 

We hypothesized that these adhesion defects were mediated by FAK. To test this 

hypothesis H1299 shVIM cells were transfected with constitutively active (CA) Y397E 
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FAK-GFP, wild-type (WT) FAK-GFP, or GFP. Transfected FAK was found to have a 

slightly higher expression level than endogenous FAK. Adhesion defects in the shVIM 

cell lines were completely rescued with introduction of WT or Y397E FAK constructs 

(Figure 2-5E, F). These results show that vimentin-dependent adhesion defects can be 

restored by WT- or CA-FAK expression. 

VAV2 regulates vimentin-dependent FAK activation and cell adhesion 

Because vimentin associates with, and regulates both VAV2 and FAK activation 

and localization to focal adhesion sites, we hypothesized that vimentin regulates FAK via 

VAV2. Transfection of VAV2 siRNA in H1299 cells resulted in a decrease in FAK 

phosphorylation at Y397 compared to control siRNA transfected cells (Figure 2-6A). 

There was, however, no change in total FAK expression, indicating that VAV2 regulates 

FAK activation. Conversely, FAK siRNA transfection in H1299s revealed no impact on 

VAV2 activation at Y142 or Y172, indicating that FAK does not regulate VAV2 

activation directly (Figure 2-6B). 

To determine if VAV2 could rescue FAK activation and stability in shVIM cell 

lines, a GFP-tagged constitutively active (CA) VAV2 (CA VAV2-GFP) was used in 

which the first 184 amino acids of VAV2 were deleted (162). A GFP-tagged dominant 

negative VAV2 mutant was also used as a negative control. Transfection of CA VAV2-

GFP in shVIM cell lines, but not WT VAV2-GFP, rescued pY397-FAK levels lost upon 

vimentin depletion (Figure 2-6C). Expression of CA VAV2-GFP also rescued the 

adhesion defects previously seen in the shVIM cell lines. These results indicate that an 

active VAV2 can rescue both FAK activation and cell adhesion defects in vimentin-

depleted cells. 
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Vimentin regulates VAV2-mediated Rac1 activation 

As VAV2 is the guanine nucleotide exchange factor (GEF) for Rac1 and cdc42 

(162), key Rho GTPases in cell motility, we hypothesized that VAV2 acted through Rac1 

and/or cdc42 to regulate FAK. Rac1 activity assays revealed that Rac1 activity was 

significantly decreased upon vimentin depletion in shVIM cells (Figure 2-7A). This Rac1 

defect was rescued by CA VAV2, but not WT VAV2 or the dominant negative mutant, in 

vimentin-depleted cells (Figure 2-7B). While VAV2 acts as the GEF for cdc42, there 

were no defects in cdc42 activity in shVIM cells, indicating that vimentin regulates Rac1 

but not cdc42 in lung cancer cells. 

To test Rac1 regulation of FAK in the lung cancer context, rescue experiments 

were performed. H1299 shVIM cells were transfected with constitutively active Q61L 

Rac1, WT Rac1, or dominant negative T17N Rac1 (166) and whole cell lysates were 

probed for pY397-FAK. CA Q61 Rac1, but not WT or dominant negative constructs, was 

able to rescue pY397-FAK levels in shVIM cells (Figure 2-7C). A similar experiment 

was performed with cdc42 constructs but a rescue was not observed (Supplemental 

Figure 8B). Confocal imaging of CA Q61 Rac1 transfected shVIM cells revealed an 

increased number of pY397-FAK adhesion sites at the leading edge (Figure 2-7D). 

Together, these data show that CA Q61 Rac1 can rescue focal adhesion defects in 

vimentin-depleted lung cancer cells. Finally to test whether Rac1 is active during cell 

spreading we performed cell spreading assays on pLKO.1 and shVIM H1299 cells. In 

this experiment serum starved cells were trypsinized and then replated in full serum 

media. Peak Rac1 activity was observed after 2 hours of cell spreading in pLKO.1 cells; 

however, activity peak was achieved in shVIM cells (Figure 2-7E). These results suggest 
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that vimentin-depleted cells exhibit Rac1 activity defects during cell spreading. Together 

these data support a model in which vimentin mediates VAV2-Rac1 activation to regulate 

FAK-based cell adhesion. 
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Figure 2-1. Phospho-proteomic screen for cell motility proteins with an altered 

phosphorylation status upon vimentin depletion. 
(A) For each protein analyzed, the ratio of phosphorylated/total protein in H460 

shVIM cells was plotted agains the same ratio in H460 pLKO.1 cells. (B) Bar graphs 

showing that VAV2 had the greatest decrease in percent phosphorylation of all 

proteins screened. (C) Bar graph comparing VAV2 to other relevant proteins. (D) The 

reduction in VAV2 phosphorylation at Y142 was verified by western blot in H460 and 

H1299 cells. (E) Lysates from H1299 pLKO.1 or shVIM cells were analyzed by 

western blot for pY172-VAV2 levels. pY172-VAV2 levels are decreased in shVIM 

cells. (F) Representative western blot of lysate from HEK293 cells transfected with 

hVIM-GFP shows a 40% increase in pY142-VAV2 upon induction of vimentin 

expression with doxycycline.  Fold changes de3termined by densitometry 
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Figure 2-2. pY142-VAV2 localizes to focal adhesions in vimentin positive cells. 
(A) H460 pLKO.1 and shVIM lung cancer cells co-stained for pY142-VAV2 (red) 

and vimentin (green). Scale bars = 10μm. (B) H1299 and pLKO.1 and shVIM cells 

stained for pY142-VAV2. (C) Quantification of the count, area, and intensity of 

pVAV2 adhesions. (D) Co-immunoprecipitation shows association between 

endogenous pY142-VAV2 and vimentin in H460 whole cell lysates. (E) 

Immunofluorescence of pY142-VAV2 (green) and FAK(red) in H460 cells. (F) Co-

immunoprecipitation of endogenous pVAV2 and FAK. 
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Figure 2-3. Vimentin depletion reduces the number and intensity of 
activated FAK positive focal adhesion sites. 

(A and B) Immunofluorescence images of pY396-FAK (red) and vimentin 

(green) in H460 and H1299 cells from wound healing assay. Yellow arrows 

indicate where vimentin filaments and squiggles enter the pY397-FAK sites. 

(scale bar= 10μm). (C) The ROI at the leading edge of the cells, whose 

pixels were thresholded to remove background. (D) Quantification of the 

number, size, and intensity of focal adhesions in H460 pLKO.1 and shVIM 

cells. (N-SIM super resolution microscopy shows vimentin filaments (green) 

directly entering FAK sites (red). (G) H460 pLKO.1 and shVIM cells co-

stained for vimentin (green) and total FAK (red) (scale bar= 10μm). 
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Figure 2-4. Vimentin regulates FAK activation and expression. 

(A) Representative western blot of H460, H1299 and H1792 pLKO.1 and shVIM lung 

cancer cell lines show a reduction in FAK Y397 phosphorylation upon vimentin 

depletion. Fold changes determined by densitometry. (B) Western blot of H1299 

pLKO.1 and shVIM clone 2 cells measuring FAK expression and Y397 

phosphorylation levels. (C) Quantitative real-time PCR analysis of FAK mRNA levels 

in H460 and H1299 pLKO.1 and shVIM cells. (D) H1299 shVIM and pLKO.1 cells 

treated with CHX were analyzed by western blot for total FAK levels. (E) Western 

blot of FAK expression and Y397 upon doxycycline induction of hVIM-GFP 

expression in HEK293 cells. (F) Co-immunoprecipitation shows association between 

endogenous FAK and vimentin in H1299 total cell lysates. (G) Lysates from H1299 

cells transfected with WT FAK-FLAG, Y397F FAK-FLAG or Y397E FAK-FLAG 

were used for immunoprecipitation between tr5ansiently expressed FAK and 

endogenous vimentin. 
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Figure 2-5. Vimentin regulates FAK-mediated cell adhesion. 
(A-B)Adhesion assays performed with H1299 or H460 cells plated on fibronectin over 

time. Ratio of adherent to total cells plated was calculated for each cell type at each 

time point (***p<0.001). (C-D) Detachment assays performed with H1299 or H460 

pLKO.1 and shVIM cells measured by trypsinizing cells over time. For each time 

point, the ratio of adherent cells to the total cells was calculated. (***p<0.001, 

****p<0.0001). (E) Attachment rate was determined for H1299 pLKO.1 cells 

transfected with GFP and H1299 shVIM cells transfected with GFP, Y397E FAK-

GFP or WT FAK-GFP. (*p<0.05, **p<0.01, ****p<0.0001). (F) The detachment rate 

was determined for H1299 pLKO.1 cells transfected with GFP andH1299 shVIM cells 

transfected with GFP, Y397E FAK-GFP or WT FAK-GFP (*p<0.05, **p<0.01, 

***p<0.001). 
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Figure 2-6. VAV2 regulates vimentin dependent FAK activation and cell 

adhesion. 
(A) Lysates from H1299 cells transfected with VAV2 or control siRNA analyzed by 

western blot. Fold changes were determined by densitometry. (B) Lysates from H1299 

cells transfected with FAK or control siRNA were analyzed by western blot. (C) 

Western blot of H1299 pLKO.1 cells transfected with GFP and H1299 shVIM cells 

transfected with GFP, CA VAV2-GFP, WT VAV2 or inactive VAV2. Fold changes 

determined by densitometry. (D) A detachment assay with H1299 pLKO.1 cells 

transfected with GFP and H1299 shVIM cells transfected with GFP, CA VAV2-GFP, 

WT VAV2 or inactive VAV2 (*p<0.05, ***p<0.001). 
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Figure 2-7. Vimentin regulates VAV2-mediated Rac1 activation 
(A) An ELISA based Rac1 activation assay showed that Rac1 activity was reduced in 

shVIM cells compared to pLKO.1 cells (**p<0.01). (B) H1299 pLKO.1 cells 

transfected with GFP and shVIM cells were transfected with GFP, CA VAV2-GFP, 

WT VAV2-GFP or inactive VAV2-GFP (**p<0.01, ****p<0.0001). (C) Western blot 

of H1299 pLKO.1 cells transfected with GFP and shVIM cells transfected with GFP, 

Q61L Rac1-GFP, WT Rac1-GFP or T17N Rac1-GFP. Fold changes were determined 

by densitometry. (D) A rac1 activity pull-down assay on serum starved cells that were 

trypsonized then replated showed that cells expressing vimentin have a higher level of 

Rac1 activity during cell spreading than those depleted for vimentin (E) H1299 

pLKO.1 shVIM cells were transfected with Q61L Rac1-GFP. Co-staining of Q61L 

Rac1-GFP (green), pY397-FAK (red) and vimentin (greyscale). Expression of Q61L 

Rac1 restored FAK-positive focal adhesions in vimentin shRNA cells (scale bars= 

10μm). 
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Figure 2-8. Vimentin regulates FAK activity through a VAV2-Rac1 

dependent pathway. 
In the presence of vimentin, VAV2 is phosphorylated at Y142 and localizes to the 

focal adhesions with FAK and vimentin. Phosphorylated VAV2 activates Rac1, 

which allows FAK activation at the focal adhesions. 
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Chapter 2 Supplemental Figures 
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Supplemental Figure 2-1.  Vimentin loss reduces cell motility and invasion. (A) 

H1299 cells were transfected with two different vimentin siRNAs. Western blot analysis 

shows significant loss of expression. (B) A scratch wound was induced on a confluent 

monolayer of H1299 cells. White solid lines represent the initial wound front at time 

zero. After 24 hours, the cells transfected with control siRNA closed 88% of the wound 

whereas those transfected with vimentin siRNA only closed 43% of the wound. (C) An 

invasion assay in control and vimentin siRNA treated H1299 cells showed a significant 

decrease in invasion upon vimentin depletion. ** p < 0.01.  
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Supplemental Figure 2-2. Vimentin loss reduces invasion and metastasis. (A) 

Isogenic pairs of H1299 and H460 cells stably expressing shVIM or the pLKO.1 vector 

were produced. Western blotting verified depletion of vimentin protein. (B) An invasion 

assay showed decreased invasion of shVIM cells compared to pLKO.1 cells. ** p < 0.01.  

(C-G) H460 shVIM or pLKO.1 cells were injected into 7-8 week nude mice. (C) Bar 

graph showing that primary tumor volume was not significantly different between shVIM 

and control pLKO.1 injected mice. (D) Bar graph showing there were fewer metastatic 

lung nodules in shVIM mice compared to control mice. p <  0.05. (E) Images showing 

that control mice developed more metastatic lung nodules (marked by black arrows) than 

shVIM mice. (F) Bar graph showing that H&E staining of lung sections showed 

significantly fewer micrometastases in shVIM than control mice. * p < 0.05. (G) Images 

of H&E staining showing micrometastases in the control mice but not in the shVIM mice. 

There are two micrometastases; the largest one is surrounded by a box and is 

independently shown below while the smaller one is indicated by an arrow. 
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Supplemental Figure 2-3. Phospho-proteomic screen for altered phosphorylation 

status upon vimentin depletion. A phospho proteomic screen for cell motility proteins 

whose activity is vimentin dependent. An array with 1,318 different phospho antibodies 

spotted in a grid was incubated with either biotin labeled H460 shVIM lysate or H460 

pLKO.1 lysate then exposed to streptavidin with a fluorescent tag. The intensity of the 

fluorescence corresponds to the phosphorylation level of a particular protein.  
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Supplemental Figure 2-4. Vimentin is important for focal adhesion formation. H460 

pLKO.1 and shVIM cells were grown to confluency. A scratch wound was induced prior 

to co-staining for vimentin (green) and pY418-Src (red). The shVIM cells showed fewer 

pY418-Src positive focal adhesion sites than the pLKO.1 cells. Scale bar = 10 µm. 
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2.4 Discussion 

 
Vimentin expression has been repeatedly shown to correlate with increased 

metastatic potential and cell motility (116, 130). However, the exact mechanism by 

which vimentin regulates cancer cell invasion has been severely understudied. Here we 

demonstrate a novel role for vimentin as a hub of focal adhesion signaling and regulator 

of cellular adhesion and motility within lung cancer cells. Our data show that vimentin is 

required for proper FAK activation and localization at the leading edge of motile lung 

cancer cells (Figures 2-3 and 2-4). We demonstrate that FAK is regulated by vimentin in 

a VAV2-Rac1 dependent manner (Figure 2-8). First we showed that vimentin depletion 

inhibits VAV2 and pY397-FAK expression as well as Rac1 activity. Vimentin-dependent 

changes in focal adhesion protein expression translate into adhesion defects; all of which 

are rescued by CA VAV2, indicating that VAV2 acts upstream of both Rac1 and FAK.  

Surprisingly, the dominant negative VAV2 mutant demonstrated a partial rescue 

of pY397-FAK, perhaps due to an incomplete inactivation of VAV2 activity in the 

mutant. We further demonstrate that vimentin is necessary for proper localization of 

VAV2 to FAK-positive focal adhesion sites.  VAV2 associates with both vimentin and 

FAK and we believe this occurs at focal adhesion sites as vimentin directly enters 

VAV2/FAK-positive sites. Interestingly, we found that FAK autophosphorylation at 

Y397 is necessary for FAK-vimentin association as inhibition of phosphorylation by 

point mutation prevents association between the two proteins. Finally we show that CA 

Rac1 can rescue FAK expression and adhesion defects in vimentin-depleted cells by 

restoring pY397-FAK expression and localization to the leading edge of motile cells. 
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Based on these findings, we propose a molecular model in which vimentin is required for 

proper localization and activation of VAV2 at focal adhesions. VAV2 serves as the Rac1 

GEF and an active Rac1 is able to promote FAK-positive focal adhesion assembly 

(Figure 2-8). These data support previous findings that demonstrate Rac1 as a key 

regulator of focal adhesions (167). Therefore, vimentin promotes focal adhesion 

formation and stability via VAV2-Rac1 to regulate cell motility in lung cancer cells. 

Our proposed model is consistent with findings showing vimentin stabilizes and 

increases the size of focal adhesions (168). These results indicate that vimentin 

expression promotes VAV2 activation, which has been shown to regulate cell invasion 

and spreading (163, 169) as well as be linked to cancer invasion and metastasis (170). 

Both VAV2 and VAV3 have been shown to promote tumorigenesis and metastasis in 

breast cancer models that metastasize to the lung (61). 

 Rac1 activity is only slightly decreased upon vimentin depletion in stably 

adherent cells, which is indicative of VAV2 being only one of many potential GEFs that 

can activate Rac1 and compensatory GEFs remaining active in the absence of vimentin. 

While VAV2 acts as a GEF for both Rac1 and cdc42, which are both key players in cell 

motility, only Rac1 activity was dependent on vimentin expression. While VAV2 has 

been well characterized as a GEF of Rac1 (162), its GEF activity on cdc42 remains 

controversial (171). As mentioned, Rac1 is a critical player in cell motility via regulation 

of focal adhesion assembly (172). Our data show that CA Rac1 can rescue defects in cell 

adhesion and FAK signaling caused by vimentin depletion. Therefore, we believe that it 

is loss of Rac1 activity that reduces FAK autophosphorylation, activation, and 

localization to focal adhesion sites. Others have shown that pFAK is necessary for Rac1 
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activation and proper localization to focal adhesions (172); therefore, we propose a 

feedback loop in which increased FAK activation can in turn activate Rac1. However, 

this pathway does not likely act through VAV2 as VAV2 activity was unaffected by FAK 

depletion (Figure 2-6B). 

Together our data details the role of vimentin as a regulator of focal adhesion 

assembly and signaling via VAV2-Rac1 signaling. Because proper focal adhesion 

assembly is necessary for cell motility and metastasis, our proposed mechanism lays the 

groundwork for future studies investigating the role of vimentin as not only a metastatic 

biomarker but an important regulator of the metastatic cascade. We would predict, based 

on our findings, that in vivo vimentin would continue to play an important role in cellular 

motility within the context of an invasive and metastatic tumor. 
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3.1 Introduction 

Epithelial to mesenchymal transition (EMT) has served as a guiding principle 

underlying the initiation and progression of metastatic disease (173). During EMT, 

epithelial cells from the primary site undergo genetic (34) and epigenetic (35) alterations 

that trigger cancer cell invasion. A hallmark of EMT is the loss of epithelial proteins such 

as E-cadherin (174) and gain of mesenchymal proteins such as vimentin(175). These 

events can be transient as cells transition through partial and reversible EMT states (37-

39, 176). and it has been debated whether these transitions are necessary for metastasis to 

occur (177, 178). 

Lung adenocarcinoma often presents as advanced metastatic disease, which is 

associated with a 5-year survival rate that can approach 4% (155). As the genomic drivers 

of lung adenocarcinoma initiation and progression have become well-characterized, co-

mutations in KRAS and LKB1 are recognized as major drivers of the disease (28, 156). 

The KRAS and LKB1 co-mutation has previously been modeled in a Cre-dependent LSL-

KrasG12D, LKB1fl/fl genetically engineered mouse model (GEMM) (21) to investigate 

LKB1 loss in the context of metabolism (23), therapeutic response (20, 24), and 

microenvironment remodeling (179). In this GEMM, primary lung tumors develop at 8 to 

10 weeks with 52% of these mice having metastatic disease to draining lymph nodes (20, 

21). When Cre is delivered intranasally via lentiviral infection, 100% of primary tumors 

are lung adenocarcinomas that reproduce the stages of tumor progression from 

adenocarcinoma in situ to invasive disease (20). 

To assess EMT in lung adenocarcinoma, and more specifically the role of the 

canonical mesenchymal marker vimentin, we generated an LSL-KrasG12D/Lkb1fl/fl/Vim-/- 
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(KLV-/-) metastatic lung adenocarcinoma GEMM model, which contains a whole body 

vimentin knockout (180) in the Kras/Lkb1 GEMM (176, 181). Vimentin is an 

intermediate filament protein, which is associated with increased metastatic potential 

(182), high nuclear grade (113), and poor overall survival (183) across most solid tumor 

types including lung, prostate, and breast cancers (116, 184, 185). Since vimentin is 

integral for the structural integrity of the cell (128), lamellipodia formation (127), and 

adhesion signaling (53, 129), downregulating vimentin expression is sufficient to alter 

cell morphology in vitro (130) as well as inhibit cell motility and invasion (132).  

The data from these GEMM, human lung adenocarcinoma, and in vitro 3-D 

models show that vimentin is required for lung adenocarcinoma to metastasize at an early 

stage by acting in cancer associated fibroblasts (CAFs) that surround epithelial-like 

collective invasion packs (CIPs). These data support the concept that vimentin is critical 

for lung adenocarcinoma metastasis and could be a potential target for anti-metastatic 

therapies.  

 

3.2 Experimental Procedures 

Transgenic Mouse Model 

KLV-/- mouse was generated by crossing the LSL-KrasG12D/LKB1fl/fl mouse (21) 

with the Vimentin-/- (180) mouse until a homozygous KLV-/- mouse was generated. KLV-/- 

mouse took approximately four generations over 7 months to create. KLV+/- mice were 

generated by crossing KLV+/+ mice with KLV-/- mice. All mice were housed and treated 

according to Institutional Animal Care and Use Committee protocol #2003525 by the 

Emory University Division of Animal Resources. Kras and Lkb1 mutant mice were 
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purchased from The Jackson Laboratory. Vimentin null mice were obtained from the 

EMMA repository. Lentiviral Cre (1.2x10^7 i.u.) was administered intranasally to mice 

8-12 weeks old that were sedated with Avertin (20mg/mL working dilution). Infected 

mice were then monitored until tumorigenic symptoms (ie weight loss greater than 10%, 

respiratory distress, inactivity) presented. All mice infected with lentiviral Cre were 

monitored to a 25 weeks post infection endpoint and were sacrificed prior if they 

presented with clinical symptoms including weight loss, respiratory distress, and/or 

hunching. Upon sacrifice, lungs and mediastinal lymph nodes were harvested in either 

10% formalin or flash frozen in OCT pending use. 

 

Human Lung Adenocarcinoma Tissue 

De-identified human lung adenocarcinoma tissue is a mixed cohort of samples 

from Emory and Wellstar tumor banks and Emory clinical formalin-fixed paraffin-

embedded (FFPE) tumor specimens (IRB00009857). All Emory samples were sequenced 

using a workflow described (20). Lung adenocarcinoma staging was performed by a 

board certified thoracic pathologist according to the AJCC Cancer Staging Manual 

Seventh Edition. Vimentin IHC was scored by a board certified thoracic pathologist with 

a 40X objective on a scale from 0-3 based on stain intensity and was stratified by stromal 

or tumor compartment. Q score was determined by the multiplication of stain intensity by 

percent of cells staining at that intensity for a given cell compartment (i.e. 30% of stromal 

cells at level 3 stain has Q score of 90). 

Immunohistochemistry 
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Formalin-fixed paraffin embedded (FFPE) tissues were hydrated in a series of 

washes from xylenes to ethanol dilutions to water. Heat-mediated antigen retrieval was 

conducted with citrate buffer when necessary. Endogenous peroxidase activity was 

blocked with 3% hydrogen peroxide. Samples were blocked with 2.5% Normal Goat 

Serum (Vector Labs) and incubated in primary antibody overnight in 1:1 NGS:PBS 

solution (Vimentin R28 Cell Signaling 1:300, alpha SMA Invitrogen 1:1000, Pro-SPC 

Santa Cruz FL-197 1:150, CD31 ab28364 1:50 CD3 ab16669 1:100). Samples were 

incubated in secondary antibody (Rabbit 1:200), biotin, and streptavidin (Vector Labs). 

Staining was developed using Peroxidase Substrate Kit DAB (Vector Labs). Proliferation 

was measured by staining for Ki67 (ab16667, 1:200) using IMMpact Kit (Vector Labs). 

 

Immunofluorescence 

Tissue: Tissue sections frozen in OCT Compound were sliced in 10µm sections 

and fixed in 100% acetone. Sections were stored at -80oC until used. Sections were 

blocked for 1 hour in 10% Normal Goat Serum in PBS. Primary antibodies were 

incubated in PBS overnight overnight for the following antibodies at indicated 

concentrations: vimentin R28 Cell Signaling 1:50, F4/80 abcam  1:100, FSP1 ab27957 

1:200. FFPE tissues were hydrated as described above. Heat-mediated antigen retrieval 

was also conducted as above. A blocking buffer of 5% BSA in PBS was used. Primary 

antibodies were incubated at 4oC overnight in 1% BSA in PBS (FSP1 ab27957 1:200; E-

cadherin BD Biosciences 610181 1:1000). Secondary antibodies were incubated on 

tissues for 1 hour (1:1000).  
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Cells: CAFs were fixed and stained as described (53). Primary antibodies were 

diluted in 5% normal goat serum (Vimentin R28 Cell Signaling 1:50) and added to the 

coverslips overnight at 4 °C. The coverslips were mounted on glass slides using Prolong 

diamond mounting medium (Invitrogen). The slides were imaged using Leica SP8 

confocal microscope. 

Spheroids: Spheroids embedded in matrigel were fixed with 4% 

paraformaldehyde for 20 min. Glycine rinse (TBS/glycine 130 mM NaCl, 7 mM 

Na2HPO4, 3.5 mM NaH2PO4, 100 mM glycine) performed three times for 10 min at 

room temperature. Blocked in immunofluorescence (IF) buffer (130 mM NaCl, 7 mM 

Na2HPO4, 3.5 mM NaH2PO4, 0.2% Triton X-100, 0.05% Tween-20) plus 3% BSA, 5% 

goat serum and 0.3% Triton X-100 for 2 hours at room temperature. Primary antibodies 

incubated overnight in blocking buffer (FSP1 1:250) at room temperature. IF buffer used 

for three 20 min washes. Secondary antibody diluted1:500 in blocking buffer (Phalloidin 

488 1:40 and DAPI added) and incubated at room temperature overnight. Fluorescence 

was imaged on Confocal Leica SP8 microscope. 

 

Multiphoton microscopy 

Second harmonic generation images of H&E sections were taken using a Zeiss 

Axio Examiner Z1 microscope with 20X water immersion objective (1.0 NA DIC [UV] 

VIS-IR) as described (186). The SHG signal was obtained using a band pass cube of 

380–430nm. Images were taken with a Coherent Chameleon Verdi laser at 820 nm 

wavelength. Z-stack images were taken with a 1 μm interval.  
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Western Blot 

Lung tissue was harvested and flash frozen in liquid nitrogen. Frozen tissue was 

cut into 2mm pieces and ground in glass mortar and pestle in 1mL of lysis buffer TNES 

buffer (50 mM Tris pH 7.5, 100 mM NaCl, 2 mM EDTA, 1% Nonidet P-40, 1X Roche 

Complete Protease Inhibitors, 10 mM NaF, 1 mM NaVO4, 2 mM sodium pyrophosphate, 

and 2 mM β-glycerophosphate). Mixture was further homogenized with a sonicator. 

Lysate was centrifuged and supernatant was collected. Protein assay and western blot 

were performed as described (53). Primary antibody, diluted in either 5% BSA in TBST 

(vimentin R28 Cell signaling 1:1000) or 5% milk in TBST (tubulin Millipore MAB1864 

1:20:000, GAPDH CST 1:30,000) was added to membrane overnight. Secondary 

antibodies were incubated at a concentration of 1:1000 in 5% milk in TBST for 1 hour. 

 

Cell Culture 

H460 lung cancer cell line was subcultured in RPMI 1640 media supplemented 

with 10% FBS, 1% penicillin/streptomycin and 1% kanamycin. Human lung 

adenocarcinoma cancer-associated fibroblasts were purchased from Vitro Biopharma and 

subcultured in MSC Gro VitroPlus III, Low Serum media supplemented with 1% 

penicillin/streptomycin and 1% kanamycin. All cells were cultured in a humidified 

chamber at 37oC with 5% CO2. CAF cells were purchased from Vitro Biopharma 

(Golden, CO) in 2017. H460 cells were a lab stock originally purchased from ATCC 

(Manassas, VA).  
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Stable Cell Line Generation 

For the production of stable vimentin knock-down cancer-associated fibroblasts, 

pLKO.1 vector and vimentin shRNA virus described previously (53) was added to cells 

1:2 in media with 8ug/mL polybrene three times. Cells expressing the constructs were 

selected using Puromycin 2ug/mL treatment. 

 

3D Spheroid Invasion Assay 

Spheroids of H460s, CAFs, and H460/CAF 50/50 co-cultures were generated as 

described (20). Spheroids were collected and resuspended in 2.0mg/mL MatriGel (VWR) 

in 35mm Dish with 14mm bottom well (Cellvis) and a coverslip was attached with 

Vaseline. After 45min incubation at 37oC, 2mL of media was added. Images were taken 

at 0 and 24 hours on Olympus IX51 microscope. Spheroid invasion was quantified using 

ImageJ (NIH). For 3D immunofluorescence, spheroids were formed as described above. 

Each well of a 96 well flat-bottomed plate (Corning) was coated with 8mg/mL MatriGel. 

Spheroids were collected and resuspended in 2.0mg/mL MatriGel. After 45 min 

incubation at 37oC, 100uL of media was added. Spheroids were allowed to invade for 48 

hours. 

 

PCR 

Tissue was collected from candidate pups prior to weaning. Genomic DNA was 

extracted using Alkaline Lysis Buffer at 100oC for 45 minutes. A 40mM Tris-HCL 

Neutralization Buffer was then added and samples were stored at -20oC. PCR was 



	   	   73	  

performed using a GoTaq Flexi system from Promega. Samples were run on Biorad 

iCycler at recommended annealing temperatures. 

 

Image Analysis 

H&E and IHC stained tissue samples were imaged on the Zeiss Axioplan 2 

widefield microscope or whole slides were scanned into ImageScope software. 

Immunofluorescence images were taken on the Confocal Leica SP8. All images were 

analyzed with ImageJ and Photoshop Elements. CellProfiler was used for fluorescent 

image quantification. Imaris software was used for vim/FSP1 colocalization analysis 

where a mask was generated for each marker and then a colocalization mask was 

generated from this. The 2D histogram was generated in Imaris by removing background 

levels of each marker. Pearson’s coefficient was generated from the histogram. Imaris 

was also used for CAF cell size analysis. 

 

Tumor Histology 

Stromal and tumor compartments in KLV mouse were identified by a board 

certified thoracic pathologist. KLV model tumor grading was performed as described 

(154). 

 

Statistics 

P-values of significance were obtained using a Fischer’s exact test or unpaired t 

test when comparing two groups (ie KLV+/+ vs KLV-/- or metastatic vs non-metastatic). 

Data with more than two groups were analyzed by one-way ANOVA followed by 
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Tukey’s multiple comparisons test. Analysis of vimentin IHC in patient samples was 

performed using Wilcoxon Rank Sum test. Kaplan-Meier curves were analyzed by 

Mantel-Cox and Gehan-Breslow-Wilcoxon tests. 

 

3.3 Results 

Generation of a KrasG12D/LKB1fl/fl/Vim-/- GEMM (KLV-/-)  

Metastasis is well characterized in the LSL-KrasG12D/LKB1fl/fl (KLV+/+) model (20, 

21), where approximately 52% of mice that develop primary lung tumors at 8-10 weeks 

also develop metastasis to mediastinal lymph nodes at 12-16 weeks (20). A whole-body 

vimentin-/- mouse (180) was crossed to this KLV+/+ mouse to test the hypothesis that 

vimentin is necessary for metastatic disease. Through this cross a novel LSL-

KrasG12D,LKB1fl/fl,Vim-/-  (KLV-/-) mouse was generated (Supplemental Figure 3-1A) that 

lacks vimentin expression throughout and has the LSL-KrasG12D,LKB1fl/fl conditionally 

mutated in the lungs via intranasal delivery of lentiviral Cre recombinase. Disruption of 

the vimentin allele and lack of protein expression in the KLV-/- mouse was validated by 

RT-PCR, western blotting, and immunofluorescence (Supplemental Figure 3-1B-D). 

Disruption of one vimentin allele in the heterozygous KLV+/- mouse did not greatly 

reduce vimentin protein expression (Supplemental Figure 3-1C,D). These results 

demonstrate the development of a novel KLV-/- GEMM to probe the role of vimentin in 

lung adenocarcinoma metastasis. 
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KLV+/+ and KLV-/- mice have a similar primary tumor burden 

KLV+/+ and KLV-/- were infected intranasally with Cre lentivirus and a comparison 

of tumor burden between the two genotypes (either at 25 weeks or before due to 

morbidity) revealed no significant differences in primary tumor initiation or growth 

(Table 3-I and Figure 3-1A). In both genotypes, 100% of primary tumors were lung 

adenocarcinomas with no significant difference in tumor incidence (Table 3-1). Both 

KLV+/+ and KLV-/- mice generated primary lung tumors (Figure 3-1A) without a 

significant difference in lung weight (Figure 3-1B) or tumor multiplicity (number of 

tumor foci per H&E slice) (Figure 3-1C). Tumor histology was similar across genotypes 

with both KLV+/+ and KLV-/- mice developing tumors with and without invasive fronts 

(Figure 1D). Proliferative index using Ki-67 staining was also not significantly different 

between the two genotypes (Figure 3-1E, F). Based on these data, we conclude that 

vimentin loss does not impact primary lung tumor initiation or growth.  

A Kaplan-Meier curve to clinical symptoms shows that KLV-/- mice have 

decreased survival compared to KLV+/+ (Supplemental Figure 3-2). Stratification of KLV 

mice by genotype and lung weight demonstrate that morbidity of KLV-/- mice is less 

dependent on tumor burden than in the KLV+/+ mice.  These data are consistent with 

previous work that demonstrate increased morbidity in the vimentin-/- background when a 

disease state is induced (187). 

 

Vimentin null mice have reduced metastatic disease and less focal invasion 

The KLV+/+ model develops robust primary lung tumors and metastasis to the 

mediastinal lymph node (20, 21). We leveraged this phenotype to investigate how the 
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vimentin loss affects the metastatic potential of Kras/Lkb1 co-mutated lung 

adenocarcinomas. Vimentin loss in KLV-/- mice results in 54% less mediastinal lymph 

nodes metastasis compared to KLV+/+ mice (Figure 3-2A, B).  In mice with clinical 

symptoms (respiratory distress, weight loss, hunching), the vimentin loss was associated 

with significantly less metastatic disease to the draining lymph nodes compared to KLV+/+ 

mice (Figure 3-2C). In addition to decreased incidence of lymph node metastasis, 

vimentin loss in the KLV-/- is associated with significantly less invasive foci than KLV+/+ 

mice tumors as measured by the number of invasive fields (defined as a field with focal 

invasion) per mouse (Figure 3-2D). To assess the impact of vimentin loss on tumor 

progression, primary tumors of KLV+/+ and KLV-/- were graded on a scale of 1 to 4 with 

grade 1 tumors classified as atypical adenomatous hyperplasia and grade 4 tumors 

demonstrating stromal reaction in addition to irregular mitoses and invasive borders 

along lymphatic vessels. Higher tumor grade are also associated with more invasive and 

metastatic tumors (154).  Based on this analysis, we found that KLV+/+ mice developed 

significantly more high grade tumors than KLV-/- mice (Figure 2E) further supporting the 

claim that vimentin loss reduces metastatic disease and tumor progression. Taken 

together, these data show that vimentin is required for efficient metastasis in Kras/Lkb1 

co-mutated lung adenocarcinoma.  

Vimentin is required for collective invasion pack (CIP) formation  

To determine vimentin localization within the primary tumor, vimentin 

immunohistochemistry (IHC) was performed on KLV+/+ primary tumor samples (Figure 

3A). The vimentin antibody was validated for specificity by IHC in vimentin null tissue 

and by western blot (Supplemental Figure 3-3). To our surprise, in KLV+/+ samples, 
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vimentin expression was absent in tumor cells but present in the stromal niche often 

surrounding tumor cells that appear to have budded off from the primary tumor. We 

previously termed these tumor cell histologies collective invasion packs (CIPs) 

(20).  CIPs are surrounded by vimentin-positive, elongated stromal cells that resemble 

fibroblasts in morphology (Figure 3-3A).  

CIPs are positive for the lung adenocarcinoma marker pro-SPC (10) (Figure 3-

3B), indicating their type II pneumocyte origin, retain epithelial morphology (non-

elongated), and express E-cadherin (20), while lacking vimentin protein expression 

(Figure 3-3A). This pattern suggests that tumor cells within CIPs retain homotypic cell 

contacts and are likely not undergoing a traditional EMT.  CIPs range in size from 5-25 

cells (Figure 3-3C) and are found within this range in KLV+/+ and KLV-/- primary tumor 

samples. CIP density in each genotype was assessed and these data show that KLV-/- mice 

have significantly less CIPs per invasive field than KLV+/+ mice overall (Figure 3-3D). 

When CIP density is stratified by tumor grade (Figure 3E), high grade KLV-/- tumors have 

significantly less CIPs than high grade KLV+/+ tumors indicating that vimentin is required 

to maintain CIP density in invading tumors. 

To determine the role of CIPs in tumor progression and metastasis, CIP density 

and invasive area was stratified by extent of disease or tumor stage. These data 

demonstrate that CIPs are found in both early (non-metastatic) and late (metastatic) stage 

KLV tumors (Figures 3-3F, G) with significantly higher CIP density and invasion in late 

stage tumors.  

To probe CIP biology, immunofluorescence of extracellular matrix (ECM) 

components was performed. Fibronectin staining reveals that cancer cells themselves are 
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negative for fibronectin, but fibronectin is expressed in the regions surrounding emerging 

CIPs at the invasive front of the primary tumor in both KLV+/+ and KLV-/- samples (Figure 

3-3H, Supplemental Figure 3-4A). Interestingly, fibronectin expression is lost in CIPs 

farther away from the primary tumor, suggesting that fibronectin may only be important 

for early invasion events (Figure 3-3H). 

Second harmonic generation imaging was performed to assess the collagen ECM 

which showed high levels of aligned collagen at the invasive front of the primary tumor 

and surrounding CIPs in the KLV models (Figure 3-3I, Supplemental Figure 3-4B). This 

aligned collagen persisted at metastatic lymph nodes, indicating that collagen alignment 

and secretion is maintained at the distant metastatic site (Figure 3-3I). To probe cancer 

invasion and EMT, immunofluorescence of TGFβ1 ligand was performed in primary 

tumor samples (Supplemental Figure 3-4C). High expression was observed in areas of 

focal invasion at or near the primary tumor indicating TGFβ1 is promoting cancer 

invasion and progression in the KLV models without inducing some canonical EMT 

markers. 

 

Vimentin+ cancer-associated fibroblasts surround CIPs 

To characterize vimentin positive cells surrounding CIPs, FSP1 (Fibroblast 

Specific Protein 1) and alpha-Smooth Muscle Actin (α-SMA) were used to mark cancer-

associated fibroblasts (CAFs) (79). Dual labeling of vimentin and FSP1 in KLV+/+ 

primary tumor samples demonstrates that vim+ stromal cells are also FSP1+ (Figure 3-

4A). FSP1+/vim+ cells are randomly localized within the primary tumor (Figure 4A left) 

but surround CIPs at sites of focal invasion (Figure 3-4A right). Quantitative analysis of 
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FSP1+/vim+ cells surrounding CIPs show co-localization between vimentin and FSP1 

(Pearson coefficient = 0.59; Figure 4B). IHC of serial sections show that vim+ cells are 

also α-SMA+ (Supplemental Figure 3-5A). These data strongly suggest that vim+ cells 

are cancer-associated fibroblasts (CAFs). FSP1+ CAFs are found at the invasive fronts of 

both KLV+/+ and KLV-/- primary tumors (Supplemental Figure 3-5B); however, the 

significantly greater extent of focal invasion in KLV+/+ tumors (Figure 3-3D) indicates 

increased CAF recruitment in this model.   

Since many tumor-promoting components of the tumor microenvironment express 

vimentin, several members of the microenvironment were probed within the KLV models, 

including macrophages, inflammatory cells, and vascular cells. Immunofluorescence of 

tumor-associated macrophages (TAMs) with F4/80 in KLV+/+ and KLV-/- primary tumor 

samples show no significant difference in macrophage recruitment (Supplemental Figure 

6). IHC of a Pan T-cell marker (CD3) and endothelial marker (CD31) also demonstrated 

no difference in recruitment of these factors (Supplemental Figure 3-7A, B). Taken 

together, these data indicate vimentin loss does not impede the recruitment of vascular or 

inflammatory cells to the primary tumor microenvironment. 

To determine the relationship between CAF recruitment and metastatic disease, 

the presence or absence of CAFs was stratified by genotype and metastatic phenotype. 

These results show that 100% of metastatic mice contained CAFs at the primary tumor 

site (Figure 4C) but less than 50% of non-metastatic mice had CAFs recruited to the 

primary tumor in both KLV+/+ and KLV-/- genotypes. Vimentin IHC identified that CAFs 

are also found surrounding CIPs at the metastatic lymph nodes demonstrating that CAFs 

are important components of the tumor microenvironment at the secondary site (Figure 3-
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4D) and perhaps travel with tumor cells to the lymph node. These data suggest that CAF 

recruitment contributes to tumor metastasis by promoting CIP formation and facilitating 

metastasis to the secondary site. 

 

Vimentin regulates CAF invasion and stroma-cancer cell crosstalk. 

To probe the mechanisms of the heterotypic tumor cell-CAF interactions and 

CAF recruitment found in the KLV models, in vitro studies were performed. Stable 

knockdown of vimentin was achieved in human lung adenocarcinoma CAFs via shRNA 

(Figure 3-5A, B). CAFs lacking vimentin (shVIM19 and shVIM22) were found to be 

significantly smaller than pLKO.1 vector control (Figure 3-5C, D). To test the hypothesis 

that vimentin depletion inhibits CAF invasion in the KLV models, 3D spheroid invasion 

assays were performed with pLKO.1 and shVIM CAFs embedded in matrigel (Figure 

5E). Results show that shVIM CAFs invaded significantly less than pLKO.1 CAFs 

(Figure 3-5F), supporting the hypothesis that CAF motility is impaired with loss of 

vimentin in the KLV models. 

Co-culture 3D spheroid invasion assays were then performed to assess heterotypic 

cancer-cell-CAF interactions (Figure 3-5G). Invasion analysis revealed that the addition 

of CAFs to spheroids of H460s (lung adenocarcinoma cell line) decreases circularity, a 

surrogate for collective invasion branching (i.e. increased circularity means less 

collective invasion packs; Supplemental Figure 3-8).  Co-culture spheroids with shVIM 

CAFs exhibit significantly higher circularity (decreased branching) compared to those 

with pLKO.1 CAFs (Figure 3-5H). These data suggest impairment in shVIM CAFs to 

drive collective invasion. Immunofluorescence of FSP1 and actin in co-culture spheroids 
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(Figure 3-5I) show that CAFs facilitate collective invasion by leading chains of H460s 

into the surrounding ECM. CAFs lacking vimentin expression lose the ability to lead 

cancer cells out of the spheroid as evidenced by the decrease in invasive branches with 

CAFs leading the chain (Figure 3-5H). Together, these data indicate that vimentin 

contributes to both homotypic and heterotypic collective invasion. 

 

Vimentin is expressed in cancer-associated fibroblasts of lung cancer patient CIPs 

which lack EMT in tumor cells. 

To analyze the clinical relevance of the CIP phenotype found in the KLV models, 

vimentin staining in human lung adenocarcinoma patients with varying genetic subtypes 

was performed to assess vimentin localization, invasive histology, and EMT (Figure 3-

6A). A similar pattern to the KLV+/+ mouse samples was observed in human tissues, 

where the vast majority of patient samples (25 of 26) expressed vimentin in the 

mesenchymal stroma and not within the collectively invading cancer cells (Figure 3-6A). 

Vimentin intensity was scored and was significantly higher in stromal cells compared to 

tumor cells across the majority of samples, independent of driver mutation (Figure 6B). 

Furthermore, there were no observable differences in vimentin stromal Q score (product 

of stain intensity and percent of vimentin-positive cells in stromal compartment) based 

upon genetic subtype (Supplemental Figure 3-8).  

Since tumor cells lacked vimentin staining, the epithelial cell marker, E-cadherin, 

was used to further probe for evidence of EMT. Tumor cells within patient CIPs were E-

cadherin positive (20) (Figure 3-6C) and pro-SPC positive (Figure 3-6D), which is also 

consistent with the data in the KLV model. Immunofluorescence of FSP1 was performed 
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to determine if patient CIPs are surrounded by CAFs similar to the KLV model. These 

data show an expression pattern consistent with the KLV model in which FSP1+ CAFs 

surround CIPs of tumor cells (Figure 3-6E). Taken together, these data suggest that in 

human lung adenocarcinoma samples tumor cells are not undergoing EMT but instead 

contain invasive CIPs surrounded by vim+/FSP+ CAFs. 

To determine the clinical relevance of CIPs, CIP density was stratified by in 

human lung adenocarcinoma patient samples (Figure 3-6F, G). Stage 1 patients exhibit 

significantly higher CIP density than higher stage patients indicating an early 

dissemination of CIP and CAF invasion, though there are still CIPs present in late stage 

patients (p<0.05). Taken together, the formation of CIPs in early stage tumors supports an 

early dissemination model (188) in which metastatic seeds such as CIPs disseminate early 

during tumor progression.  
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  Figure	  3-‐1.	  KLV+/+	  and	  KLV-‐/-‐	  mice	  have	  a	  similar	  primary	  tumor	  burden	  

(A)	   Representative	   images	   of	   PBS	   control,	   KLV+/+,	   and	   KLV-‐/-‐	   lungs	   (scale=	  

50mm).	   (B)	   Graphs	   showing	   weight	   of	   PBS	   control,	   KLV+/+	   and	   KLV-‐/-‐	   lungs.	  

Statistical	  significance	  was	  determined	  by	  one-‐way	  ANOVA	  and	  Tukey’s	  multiple	  

comparisons	   test	   (p<0.05).	   (C)	   Tumor	   multiplicity	   of	  KLV+/+	   and	  KLV-‐/-‐	   mice	  

quantified	  as	  the	  number	  of	  tumor	  foci	  per	  H&E	  lung	  slice.	  Statistical	  significance	  

was	  determined	  by	  unpaired	  t	  test	  (p<0.05).	  (D)	  Representative	  H&E	  sections	  of	  

KLV+/+	  and	  KLV-‐/-‐	  primary	  tumors	  (scale	  =	  200μm).	  (E)	  IHC	  of	  Ki67	   in	  KLV+/+	  

and	  KLV-‐/-‐	  primary	  tumors.	  (F)	  Quantification	  of	  percent	  of	  Ki67	  positive	  tumor	  

cells.	  Statistical	  significance	  was	  determined	  by	  unpaired	  t	  test	  (p<0.05)	  	  



	   	   84	  

 
 

Figure 3-2. Vimentin depletion inhibits invasion and metastasis. 
(A) Representative H&E images of lung draining lymph nodes of LV-CRE infected 

mice (scale= 20μm). (B) Metastatic incidence by KLV genotype. Statistical 

significance was determined by Fisher’s exact test (p<0.05). (C) Metastatic incidence 

of mice sacrificed prior to 25-week endpoint due to lung cancer symptoms. Statistical 

significance was determined by Fisher’s exact test (p<0.05). (D) Quantification of 

invasive fields per mouse by genotype. Statistical significance was determined by 

unpaired t test (p<0.05). (E) KLV tumor grading by genotype. Statistical significance 

was determined by Chi-square test (p<0.05) 
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Figure 3-3. Vimentin is required for collective invasion pack (CIP) formation. 

(A Immunohistochemical staining of vimentin in KLV+/+ and KLV-/- primary tumors 

with (10x scale = 100μm, 40x = 20μm). (B) Representative Pro-SPC stained sections 

of KLV+/+ and KLV-/- primary tumors with CIPs marked by black arrows. (C) 

Quantification of the number of cells per CIP in both KLV+/+ and KLV-/- mice. 

Statistical significance determined by unpaired t test (p<0.05). (D) Quantification of 

CIPs per invasive field in KLV+/+ and KLV-/- mice. Statistical significance 

determined by unpaired t test (p<0.05). (E) CIPs per invasive field stratified by 

genotype and tumor grade. Statistical significance determined by ANOVA and 

Tukey’s multiple comparisons test (p<0.05). (F) Quantification of CIPs per invasive 

field stratified by metastatic phenotype in KLV models (p<0.05). (G) Quantification of 

invasive fields by metastatic phenotype in KLV models. Statistical significance 

determined by unpaired t test (p<0.05) (H) Immunofluorescence  of fibronectin in 

KLV primary tumor samples at the invasive front, emerging from the primary tumor, 

and at sites distant from the primary tumor. Yellow arrows mark CIPs with invasive 

front marked by dashed line (scale = 50μm). (I) Second harmonic generation imaging 

of collagen in KLV samples at the invasive front and surrounding CIPs in both primary 

tumor and metastatic lymph node. Yellow arrows mark CIPs with invasive front 

marked by dashed line (scale= 50 μm). 
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Figure 3-4. Vimentin+ cancer-associated fibroblasts surround CIPs. 
(A) Immunofluorescence of vimentin (488) and FSP1 (555) on primary tumors of 

KLV+/+ mice (scale = 50μm). (B) Colocalization of vimentin and FSP1 staining 

(scale= 10μm). (C) Quantification of percent of mice of each genotype with CAFs 

stratified by metastatic or non-metastatic phenotypes. (D) Immunohistochemical 

staining of vimentin in the metastatic and non-metastatic lymph nodes (scale bars 

10x= 100μm, 40x= 20μm) 
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Figure 3-5. Vimentin regulates CAF invasion and stroma-cancer cell 

crosstalk. 
(A) Western blot demonstrating generation of shVIM CAFs with two different 

shRNA clones. (B) Immunofluorescence of vimentin in pLKO.1 and shVIM19 

CAFs (scale = 50μm). (C) Immunofluorescence of actin and vimentin in 

pLKO.1 and shVIM CAFs demonstrating cell size (10x scale= 100μm, 20x 

scale= 100μm). (D) Quantification of cell area of pLKO.1 and shVIM CAFs. 

Significance determined by unpaired t test (p<0.05). (E) Representative images 

of  spheroid invasion assay with pLKO.1 and shVIM CAFs in matrigel (scale = 

100μm). (F) Quantification of invasive area in spheroid invasion assay. 

Significance determined by unpaired t test (p<0.05). (G) Representative 

images of coculture spheroid invasion assay with H460 lung cancer line alone 

or in combination with pLKO.1 or shVIM CAFs (scale = 100μm). (H) 

Circularity of invasive areas in coculture spheroids with pLKO.1 or shVIM 

CAFs. Value of 1= perfect circle. Significance determined by unpaired t test 

(p<0.05). (I) Representative images of immunofluorescence of FSP1 and 

phalloidin in coculture spheroids. Yellow arrows mark FSP1+ CAFs leading 

invasive chains of H460s (scale = 100μm). 
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Figure 3-6. Vimentin is expressed in cancer-associated fibroblasts of lung cancer 

patient CIPs, which lack EMT in tumor cells. 
(A) Representative images of patient primary tumor samples stained for vimentin by 

immunohistochemistry (scale bars 10x = 200μm, 20x = 100μm, 40x = 50μm). (B) 

Quantification of vimentin staining in tumor and stromal compartments. Pie chart of 

driver mutations in patient samples stained for vimentin. Statistical analysis was 

conducted using SAS Version 9.4. For the ordinal variable, frequency and average 

rank are calculated and presented. The univariate association of staining and different 

group, i.e., tumor cell and stroma was detected by Wilcoxon Rank Sum test. (C) 

Representative images of E-cadherin immunofluorescence of human lung 

adenocarcinoma sample marking collective invasion packs of tumor cells (40x= 

50μm). (D) H&E and SPC staining of adenocarcinoma samples. CIPs marked with 

arrows (scale= 200μm). (E) Immunofluorescence of FSP1 on Kras/LKB1 patient 

sample. CIP marked with an arrow (scale = 50μm). (F) Representative images of 

human lung adenocarcinoma samples stained for vimentin at stages 1-3. (G) CIPs per 

invasive field by stage in human lung adenocarcinoma samples. Statistical significance 

determined by ANOVA with Tukey’s multiple comparisons test (p<0.05) 
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Chapter 3 Supplemental Figures 
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Genotype	   Primary	  Tumor	  Rate	   Adenocarcinoma	  Histology	  
KLV+/+	   17/26	  (66%)	   17/17	  (100%)	  
KLV-‐/-‐	   47/70	  (67%)	   47/47	  (100%)	  
	  
Table 3-1. Infection rate and histology of lentiviral-Cre treated mice of both KLV+/+ and 

KLV-/- mice 
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Supplemental Figure 3-1.  Generation of a LSL-KrasG12D/LKB1fl/fl/Vim-/- GEMM 
(KLV-/-).  (A) Breeding scheme used to generate KLV-/- and KLV+/- mice. (B) PCR 

genotyping results showing disrupted alleles in KLV+/- and KLV-/- mice. (C) Western 

blot showing vimentin expression in the KLV+/+, KLV+/-, and KLV-/- mice. (D) 

Immunofluorescence of vimentin (red) in KLV+/+, KLV+/-, KLV-/- mice (scale=20μm). 
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Supplemental Figure 3-2. KLV model survival analysis (A) Kaplan Meier to Clinical 

Symptoms of KLV+/+ and KLV-/- mice. KLV+/+ median survival was 22 weeks and 

KLV-/- median survival was 16 weeks. (B) Kaplan-Meier to clinical symptoms of 

KLV+/+ and KLV-/- mice stratified by lung weight.  Lung blocks less than 0.6g were 

below average (0.6g) and lung blocks 0.6g or greater were considered to be average or 

above average. Statistical significance determined by Mantel-Cox and Gehan-Breslow-

Wilcoxon tests. 
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Supplemental Figure 3-3. Vimentin antibody validation. (A) Western blot of vimentin 

WT and KO cells. (B) Immunohistochemistry of vimentin WT and KO lung tissue. Scale 

bars 100μm. 
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Supplemental Figure 3-4. CIP biology is similar in both KLV+/+ and KLV-/- tumors. 
(A) Immunofluorescence of fibronectin shows secretion at the invasive front of both 

KLV+/+ and KLV-/- primary tumors. (scale= 50μm). (B) Second Harmonic Generation 

shows collagen surrounding CIPs in both KLV+/+ and KLV-/- samples (scale= 50μm). 

(C) Immunofluorescence of TGFβ-1 shows secretion in both KLV+/+ and KLV-/- 

samples (scale= 50μm). 
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Supplemental Figure 3-5. CAFs are present at the invasive front (A) IHC of serial 

sections showing KLV+/+ CAFs express both vimentin and α-Smooth Muscle Actin. 

Black arrows indicate CIPs (10x scale= 50μm). (B) Immunofluorescence of FSP1 shows 

CAFs are present in both KLV+/+ and KLV-/- invasive fronts (yellow dash line, scale= 

50μm). 
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Supplemental Figure 3-6. Macrophage recruitment is similar in both KLV models, 

Quantification of macrophages in KLV+/+ (n=2) and KLV-/- (n=2) mice by F480 

immunofluorescence. Graph shows mean +/- standard deviation. Significance determined 

by unpaired t-test 
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Supplemental Figure 3-7. Probing members of the tumor microenvironment. (A) 

Immunohistochemistry for CD3 (Pan-T cell marker) shows no difference in T cell 

recruitment between KLV genotypes. (B) Immunohistochemistry for CD31 (Endothelial 

cell marker) shows no difference in vasculature between KLV genotypes. 
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Supplemental Figure 3-8. Circularity of invasive areas in 3D spheroid assay. 

Statistical significance determined by one-way ANOVA and multiple comparison test. 

(p<0.05) 
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Supplemental Figure 3-9. Vimentin pathology Q score (staining intensity X percent of 

positive cells) 
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3.4 Discussion 

Vimentin expression has historically correlated with increased metastatic potential 

across numerous solid tumor types (116, 189); however, a functional role for vimentin in 

cancer progression has yet to be elucidated. Data from the KLV-/- GEMM show that 

vimentin is required for metastasis and progression but not primary tumor formation, 

whereby KLV-/- mice had less mediastinal lymph nodes metastasis, less invasive foci, and 

lower grade tumors compared to their KLV+/+ counterparts (Figures 3-1 and 3-2); 

therefore, this supports a model that vimentin is more than an EMT biomarker and plays 

a functional role in lung adenocarcinoma invasion and metastasis.  

EMT has been the canonical mechanism (38) for how cancer cells lose their 

epithelial morphology (174), invade through the basement membrane, and navigate the 

surrounding microenvironment (173, 190); however, this model is challenged by studies 

showing a more epithelial and collective-based migration by tumor cell clusters or packs 

(20, 191). The data presented here support the concept that a classical EMT does not 

occur in the majority of lung adenocarcinoma patients or in the lung adenocarcinoma 

KLV GEMM, but rather cancer cells undergo epithelial-like collective invasion and are 

surrounded by vim+/FSP1+ CAFs (Figures 3-3 and 3-4). Across 96% of lung 

adenocarcinoma patient samples tested (n=26), independent of driver mutation, vimentin 

was expressed in CAFs surrounding epithelial CIPs and only rarely in the tumor cells 

(Figure 6). Similarly, vimentin was not expressed within the tumor cells of the KLV+/+ 

GEMM, and only in the CAFs surrounding collective invasion packs at the primary 

tumor site and at secondary metastatic lymph nodes (Figure 3-3 and 3-4). This supports 
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the concept that malignant cancer cells are not undergoing EMT but partnering with 

vim+/FSP1+ CAFs to potentially co-metastasize to a secondary site (64). This finding is 

consistent with studies demonstrating that clusters of circulating tumor cells have a 

metastatic potential up to 50 times higher than that of single circulating tumor cells (60), 

suggesting that tumor cell cooperativity can lead to greater metastatic success. 

Furthermore, these heterotypic CAF-CIP clusters are enriched in early stage lung 

adenocarcinoma patient samples (Figure 6), indicating potential early dissemination (188, 

192) of metastatic seeding.  

Investigation of the role of vimentin within CAFs in homotypic and heterotypic 

cell cultures demonstrates that vimentin drives not only CAF invasion, but also the 

formation and maintenance of heterotypic collective invasion chains (Figure 5). We show 

that the ability of vimentin-depleted CAFs to form heterotypic invasive chains is 

significantly impaired compared to their wild-type counterparts. These data suggest that 

intact vimentin function is important for heterotypic collective invasion and would be 

consistent with impaired CIP formation in the KLV-/- mice.  

Taken together, our data support a model in which vimentin is required for lung 

cancer invasion and metastasis by facilitating CIP formation via regulation of CAF 

invasion and function. This supports the claim that there are early stage, epithelial and 

collective modes of metastasis that drive cellular escape from the primary tumor and 

require vimentin-positive CAFs.  
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Chapter 4: Discussion of Dissertation 
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4. Discussion of Dissertation 

4.1. Vimentin is identified as a key player in lung cancer invasion and 

metastasis 

Tumors are opportunistic. When a tumor has depleted all of the resources in the 

primary organ it must find a new source of oxygen and nutrients at a secondary site. The 

tumor will use whatever means necessary to escape the hypoxic tumor microenvironment 

in search of a chance at survival. This metastatic process accounts for 90% of cancer-

related deaths; however, the exact mechanisms by which cancer cells escape the primary 

tumor and colonize secondary organs remain poorly understood. As the canonical 

epithelial to mesenchymal transition (EMT) continues to be investigated (177), 

alternative models of tumor cell escape, such as collective invasion, are gaining support 

(47, 193).  

The data presented in this thesis explore functional roles for a canonical EMT 

marker, vimentin, in cancer cell invasion and metastasis. Though there are extensive 

studies demonstrating a correlation between vimentin expression and metastatic potential 

(116, 189) as well as mesenchymal cell morphology (130), the functional role of 

vimentin within these contexts has been severely understudied.  

Our initial findings, presented in Chapter 2, propose a model in which vimentin 

enters focal adhesion sites to promote focal adhesion assembly and stability via VAV2-

Rac1-FAK signaling in lung cancer cell lines. This was the catalyst for investigating 

whether vimentin is necessary for metastasis in vivo in the context of the Kras/LKB1 lung 

cancer metastasis mouse model. These results, presented in Chapter 3, identified that 

vimentin is necessary for metastasis to occur and revealed a shift in vimentin function 
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and expression, within the GEMM, from cancer cells to the tumor microenvironment. 

Taken together, these data demonstrate that vimentin is not only a biomarker of cancer 

metastasis but also a key player in the early invasive steps of the metastatic cascade. 

4.2. A novel mechanism of vimentin-mediated cell adhesion in vitro 

Identification of a cell adhesion pathway dependent on vimentin provided 

mechanistic insight into the role of vimentin as a signaling hub. The work presented in 

this dissertation built upon several seminal papers in the intermediate filament field that 

demonstrated vimentin is necessary in cell morphology, signaling, adhesion, and motility 

(127, 129, 130). Our work identifies vimentin as an upstream mediator of the focal 

adhesion signaling within lung cancer cells. We confirmed that vimentin filaments and 

squiggles directly enter focal adhesion sites (168). Once at the focal adhesion, vimentin 

facilitates EGFR-mediated activation of VAV2 at phosphorylation sites Y142 and Y172. 

Activated VAV2 acts as a guanine nucleotide exchange factor (GEF) for Rac1. Upon 

activation, Rac1 promotes FAK autophosphorylation and activation. Within this signaling 

pathway vimentin not only facilitates activation of VAV2, but also stabilizes an 

autophosphorylated pY397-FAK to strengthen cell adhesion. 

This work provided mechanistic insight into the role of vimentin within motile 

lung cancer cells. Further, it led to the development of subsequent in vitro and in vivo 

projects to advance vimentin as a key player in cancer cell invasion and metastasis.  

Others have shown that vimentin assembly is mediated by phosphorylation at key 

serine residues along the head and tail domains of the protein (124). We began exploring 

the role of specific serine sites in the vimentin head domain (S6, S38, S56, and S72) 
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using phospho-mutant constructs. These early studies revealed that mutations at each 

serine site did generate distinct vimentin filament morphology (data not shown). 

The central question that remained, however, was whether vimentin exhibited a 

functional role within lung cancer metastasis in vivo. Extensive correlative studies 

associating vimentin with metastatic disease (189) and our own findings, described 

above, led to the development of a lung cancer metastasis mouse model that lacked 

vimentin. 

4.3. Vimentin is necessary for lung cancer metastasis in vivo  

In order to probe whether vimentin is necessary for metastasis to occur, we 

developed a novel genetically engineered mouse model (GEMM): LSL-KrasG12D, LKB1fl/fl, 

Vim-/- (KLV-/-). The metastatic rate of the KLV-/- mouse was significantly lower than that 

of the KLV+/+ mouse. However, tumor burden was not impacted by vimentin depletion. 

These data established that vimentin is necessary for metastasis in a lung cancer GEMM. 

Histological analysis of the primary tumors in the KLV models demonstrate that 

mice lacking vimentin not only exhibited a reduced metastatic rate but also developed 

less aggressive primary tumors with smaller areas of focal invasion marked by less 

stromal involvement. These data suggest that vimentin is important for the early invasive 

steps of the metastatic cascade. 
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4.4. Lung adenocarcinoma metastasis occurs via vimentin-mediated 

collective invasion 

Based on our findings, published in Havel et al., we hypothesized that vimentin 

would promote metastasis by inducing cancer cell motility via focal adhesion signaling. 

Interestingly, immunohistochemical studies of our KLV+/+ model revealed that vimentin 

is predominantly expressed in the tumor microenvironment and not the cancer cells. We 

demonstrate that while vimentin is expressed in many components of the tumor 

microenvironment, lack of vimentin in the KLV-/- model most significantly impacted 

recruitment of cancer-associated fibroblasts (CAFs) as marked by a significant reduction 

in focal invasion in KLV-/- mice. Therefore, instead of a canonical EMT, we found that 

cancer-associated fibroblasts (CAFs) form heterotypic cell clusters with cancer cells 

termed “CIPs” (collective invasion packs). CIPs maintain their epithelial morphology and 

markers including e-cadherin and Pro-SPC (20). We demonstrate that CIP frequency and 

metastatic rates significantly increased with vimentin expression in the KLV models 

indicating that vimentin is instrumental for CIP formation, cancer invasion, and 

metastasis. 

We validated the immunoprofile of the heterotypic CAF-CIP clusters in patient 

lung adenocarcinoma samples from clinical collaborators. In 96% of lung 

adenocarcinoma samples tested, vimentin expression was found predominantly in the 

stromal compartment, which we show to be positively marked by the CAF marker, FSP1. 

Consistent with the KLV models, we demonstrate that CIPs in human lung 

adenocarcinoma tissue samples are positive for e-cadherin and Pro-SPC. This 

immunoprofile was found to be independent of genetic drivers as the samples tested had a 
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wide variety of genetic backgrounds. Together these data indicate that our KLV models 

translate histologically to clinical samples. Further, the predominant mode of invasion 

and metastasis within lung adenocarcinoma is not EMT but heterotypic collective 

invasion.  

To model heterotypic interactions in collective invasion, we performed homotypic 

and heterotypic spheroid invasion assays in vitro with CAFs and lung cancer cells. We 

demonstrate through these studies that vimentin depletion in CAFs impairs their invasive 

functions in both CAF only and co-culture spheroid experiments. CAFs expressing 

shRNA for vimentin exhibited significantly less invasion into an extracellular matrix than 

pLKO.1 isogenic control cells. Co-culture invasion experiments performed with CAFs 

and lung cancer cells demonstrate impairment in the ability of CAFs to lead cancer cells 

out of the spheroid in invasive chains upon loss of vimentin expression. These data 

suggest that vimentin is a key component of proper CAF function. Our proposed model is 

outlined in Figure 4-1. 
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Figure 4-1. Proposed model of vimentin-dependent CAF/CIP interactions. CAFs 
wild type for vimentin have fully functional motility machinery that allow them to be 
recruited to the primary tumor quickly and form many CIPs that result in lymph node 
metastasis. Loss of vimentin inhibits CAF motility resulting in generation of fewer 
CIPs 
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4.5. Context-dependent roles for vimentin 

Marked by the release of the seminal review by Hanahan and Weinberg on the 

cancer hallmarks, the scientific community’s approach to cancer research has shifted 

from away from a reductionist view in which cancer biology is completely dependent on 

the oncogenes and tumor suppressors expressed by cancer cells. Instead, heterotypic cell 

biology approaches reveal that there are many factors within the tumor microenvironment 

that determine the phenotype and fate of a tumor. The work presented in this dissertation 

supports that tumor cell context is an important factor in determining invasive behavior.  

Our findings described in Chapter 2 demonstrate a functional role for vimentin 

within lung cancer cell biology using predominantly in vitro approaches. Through this 

work we show that vimentin modulates focal adhesion signaling by acting as a scaffold 

for proteins at the leading edge of motile cells. While these data were the basis of the 

development of the KLV-/- mouse, our in vivo project demonstrated that within a tissue 

context, the role of vimentin shifts from cancer cells to the tumor microenvironment. The 

juxtaposition of these two projects shows that while the role of vimentin is context 

dependent, all work presented in this dissertation support that vimentin is an active 

mediator of cancer cell invasion and metastasis. 

In addition, our findings highlight the importance of testing hypotheses in 

multiple experimental model systems. As our understanding of cancer continues to 

develop, it is critical to take into account all potential variables mediating cancer 

formation, progression, and metastasis. By using a multi-pronged approach to 
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investigating vimentin function in lung cancer invasion and metastasis, we are better able 

to provide insight into how vimentin contributes to the metastatic cascade. 

4.6. Postulated mechanisms of vimentin-mediated stroma-cancer cell 

crosstalk 

Across cancer types and cell populations, the fact that remains constant is that 

vimentin regulates intrinsic motile and invasive phenotypes (130, 132, 194). However, 

the ability of vimentin to mediate cell-cell communication remains to be understood. 

Previous studies have shown that vimentin interacts with several cell surface proteins 

including integrins, plectins, and FAK (168, 195, 196). Vimentin could contribute to 

heterotypic crosstalk by regulating the localization of proteins at cell-cell junctions. As 

our work shows, presence of vimentin in focal adhesion sites strengthens the stability of 

the adhesions by providing a signaling scaffold for proteins at the leading edge of motile 

cells. Within heterotypic cell junctions vimentin could act as a signaling hub, supporting 

cell-cell contacts as a means of preserving the structural integrity of the tissue. Tumor 

stiffness has been shown to modulate tumor progression (197). Intermediate filaments, 

including vimentin, were first identified as important components in the preservation of 

cellular architecture and integrity (198). Vimentin could be maintaining cellular 

architecture and stiffness by both intracellular and intercellular structural regulation. 

Within a vimentin-expressing cell, vimentin filaments extend throughout the cell to 

protect the nucleus and cytoplasm from shear forces (199). In addition, vimentin could 

facilitate cells to maintain intercellular contacts as a way to further stabilize the vimentin-

expressing cell as well as the tissue at large. 
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4.7. Future directions and translational implications 

Understanding cancer metastasis is key to improving patient outcomes across 

solid tumor types and converting cancer from a death sentence to a chronic disease. As 

we gain more information regarding the complexities of tumors, including their 

microenvironment, it is important to revisit early theories on cancer progression and test 

their rigor in new models. Our work brings to the forefront the importance of the tumor 

microenvironment and how cell context can determine expression and function of key 

proteins that contribute to tumor progression.  

The work presented in this dissertation advanced the understanding of how lung 

cancer metastasis is regulated. Specifically, we identified vimentin as mediating lung 

cancer cell invasion and metastasis. Since vimentin is upregulated in metastatic tumors 

across solid tumor types, the findings presented here could have major impacts for large 

numbers of cancer patients. The importance of vimentin at the early invasive steps of the 

metastatic cascade provides a therapeutic opportunity for targeting cancer cell invasion 

that could promote the conversion of cancer from a death sentence to a chronic disease. 

One promising natural compound, withaferin A, has been shown to disrupt vimentin 

filaments and inhibit EMT in breast cancer (200, 201). Future works stemming from 

these studies will likely include optimizing vimentin inhibition therapeutically in 

metastatic disease models. 

Identification of vimentin as a signaling hub at the leading edge of motile cells 

directs us to consider what other signaling networks might be supported by vimentin, or 

other intermediate filaments. Further investigation into signaling complexes found in 
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vimentin-positive cells may reveal the importance of ubiquitous vimentin expression 

across tissue types. 

Future directions from this work would also include further investigation of the 

importance of vimentin expression in the tumor microenvironment. We show here that 

CAFs provide the greatest contribution to cancer metastasis in our GEMM model via 

vimentin expression. However, as we show, context is critical in cancer models. In other 

cancer types and models vimentin may be more predominant in other 

microenvironmental factors, such as macrophages. Intermediate filaments have been 

understudied for so long that it is important to fully investigate their impacts in multiple 

disease models. 

Overall, the work presented in this dissertation provides a foundation for 

understanding lung cancer metastasis. Through the analysis of in vitro and in vivo models 

as well as patient samples, the importance of vimentin as a modulator of cancer 

metastasis was revealed. The prevalence of vimentin overexpression in metastasis across 

solid tumor types emphasizes the importance of this study as broadly applicable to our 

understanding of cancer.  
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