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Abstract 
Long-term Exposure to Nitrogen Dioxide and Mortality: A Systematic Review and Meta-analysis 

 
By Shiwen Huang 

 
Background: Ambient air pollution is among the greatest environmental risks to human health. 
However, little is known about the health effects of nitrogen dioxide (NO2), a traffic-related air 
pollutant. Herein, we aimed to conduct a meta-analysis to investigate the long-term effects of NO2 
on mortality. 
 
Methods: We conducted a systematic search for studies that were published up to February 2020 
and performed a meta-analysis of all available epidemiologic studies evaluating the associations 
between long-term exposure to NO2 with all-cause, cardiovascular, and respiratory mortality. 
Overall pooled effect estimates as well as subgroup-specific pooled estimates (e.g. location, 
exposure assessment method, exposure metric, study population, age at recruitment, and key 
confounder adjustment) and 95% confidence intervals were calculated using random-effects 
models. Risk of bias assessment was accessed by following WHO global air quality guidelines. 
Publication bias was accessed by visually inspecting funnel plot and Egger’s liner regression was 
used to test of asymmetry.  
 
Results: Our search initially retrieved 1,349 unique studies, of which 34 studies met the inclusion 
criteria. The pooled hazard ratio (HR) for all-cause mortality was 1.06 (95%CI: 1.04-1.08, n=28 
studies, I2=98.6%) per 10 ppb increase in annual NO2 concentrations. The pooled HRs for 
cardiovascular and respiratory mortality per 10 ppb increment were 1.11 (95%CI: 1.07-1.16, n=20 
studies, I2=99.2%) and 1.05 (95%CI: 1.02-1.08, n=17 studies, I2=94.6%), respectively. The 
sensitivity analysis pooling estimates from multi-pollutant models suggest an independent effect of 
NO2 on mortality. Funnel plots indicate that there is no evidence for publication bias in our study. 
 
Conclusion: We provide robust epidemiological evidence that long-term exposure to NO2, a proxy 
for traffic-sourced air pollutants, is associated with a higher risk of all-cause, cardiovascular, and 
respiratory mortality that might be independent of other common air pollutants. 
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1. Introduction 

Ambient air pollution is among the greatest environmental risks to human health, and was reported 

to be responsible for 4.2 million deaths in 2016 worldwide [1]. Over the past decades, mounting 

epidemiological evidence has documented the adverse effects of particulate matter and ozone on 

human health [2-8]. Recently, there has been increased interest in nitrogen dioxide (NO2), another 

traffic-related air pollutant.  

Although NO2 has multiple ecological sources, combustion of fossil fuels and motor vehicle 

emissions represent the primary source of NO2 in the environment [9]. Previous work has 

considered NO2 as an indicator of traffic pollution, given its strong correlation with other 

components of mobile exhaust. Additionally, NO2 levels have been used to characterize other 

ambient air pollutants, such as NOx and ozone [10-12]. More recent work has focused on NO2 as 

a possible independent contributor to adverse health effects. A growing body of evidence has 

reported associations between NO2 and respiratory and cardiovascular disease-related mortality 

[13-15]. For example, Jerrett, Finkelstein [16], reported that long-term exposure to NO2 is 

positively associated with cardiovascular (RR=1.45, 95%CI: 1.11-1.91) and respiratory mortality 

(RR=1.06, 95%CI: 0.79-1.43). However conflicting results have emerged, as Bentayeb, Wagner 

[17] reported null associations between NO2 and cardiovascular mortality (HR=0.88, 95%CI: 0.51-

1.54) and respiratory mortality (HR=0.76, 95%CI: 0.48-1.18). It should be noted that such 

discrepancies in the data is highly dependent upon location of measurement, time of measurement, 

sample sizes, study population, study designs, as well as other factors [18]. Thus, a more robust 
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estimate is needed to improve the understanding of the relationship between NO2 and overall 

mortality, in addition to respiratory and cardiovascular disease-related mortality.  

To date, three meta-analyses, Faustini et al. (2014)[19], Atkinson et al. (2018)[9] and Huangfu et 

al. (2020)[20], integrated existing studies published prior to January 2013, October 2016, and 

January 2018, respectively, all of which reported a link between long-term exposure to NO2 (e.g., 

annual mean or multiple-year average) and overall and cause-specific mortality. However, previous 

studies mainly focused on cohorts in the United States and Europe, and cohorts in Asia and Oceania 

were limited. Recently, an emerging interest in the health effects of NO2 has motivated the study 

and publication of NO2-exposed cohorts that provide a more global representation of the affected 

populations. Given this increased interest, to date, the latest epidemiological studies on long-term 

NO2 have not been incorporated in any systematic review, presenting a serious gap in our 

understanding of the current data.  

In the present study, we performed a systematic literature search with no location restriction and 

performed a meta-analysis of all available up-to-date epidemiological studies to examine the 

association between long-term exposure to ambient NO2 and mortality endpoints, including all-

cause, cardiovascular, and respiratory mortality. We have incorporated 6 new studies compared 

with Huangfu et al. (2020)[9, 20]with a total of 15 million study population in this meta-analysis 

that have not been included in the previous ones.  

2. Methods 

2.1 Search strategy 
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We conducted a systematic search using both PubMed and EMBASE to identify epidemiologic 

studies that evaluated long-term exposure to NO2 and mortality. We restricted our search to all-

language studies that were published up to February 29, 2020.  

We used the following search terms: ("nitrogen dioxide" OR "NO2" OR "NOX" OR "nitrogen 

oxide" OR "traffic-related air pollution" OR "traffic related air pollution") AND ("mortality" OR 

"cardiovascular mortality" OR "respiratory mortality") AND ("epidemiology" OR 

"epidemiological" OR “epidemiologic” OR "cohort" OR "case-control" OR “case control”). We 

limited our search to human studies. Synonyms of NO and mortality were included using Medical 

Subheadings (MeSH) terms.  

2.2 Study selection 

We excluded toxicity studies, in vitro studies, book chapters, commentaries, letters to the editor, 

conference abstracts, review articles, meta-analyses, and studies that were not written in English. 

We also excluded epidemiology studies that did not provide risk estimates for NO2 exposure, or 

that reported extremely high risk estimates (HR>5), or that did not evaluate all-cause, 

cardiovascular, or respiratory mortality. In addition, for studies examining the same cohort, we 

included only the most updated and comprehensive study. 

The included population-based studies of all ages exposed to long-term concentration of NO2 (> 1 

year). Outcomes included in our study were all-cause, cardiovascular, and respiratory mortality. 
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Following the PRISMA guidelines, four authors (initial name SH, HL, MW, YQ) independently 

evaluated titles and abstracts found in the 2 databases (n=1,774). Reference lists of review articles 

and meta-analyses were also reviewed to further identify epidemiology studies of NO2 exposure 

and mortality (n=1). This resulted in a total of 159 potentially relevant articles for full-text review 

by four independent authors (SH, HL, MW, YQ). The eligibility of each study was independently 

assessed by two investigators (SH and YQ, or HL and MW) and the discrepancy was resolved 

through discussion with a third investigator. The protocol was registered at OSF and the link is 

provided at the bottom of the Figure 1. Detailed description of PECOS question is provided in 

Supplemental Table S1. 

2.3 Data extraction 

Data extraction and accuracy assessment were done by four independent authors (SH, HL, MW, 

YQ) on July 2020. Extracted information was entered into an Excel database, which included titles, 

authors’ names, publication year, country, study design, study period, cohort name, sample size, 

age range, sex distribution, time period of exposure assessment, exposure assessment method, 

exposure levels, exposure increment, effect measure, effect estimate and its standard error, and co-

pollutant adjustment as well as adjustment for other confounders. For each study, we extracted the 

effect estimates from the main model or with the most stringent adjustment of potential confounders. 

Several studies employed both single- and multiple-pollutant models. In this situation, we extracted 

estimates from both models, and used estimates from the former in the main analyses and the other 

in sensitivity analysis.  
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2.4 Statistical analysis 

After data extraction, all effect estimates were converted to HR (95%CI) per 10 ppb increase in 

NO2 concentrations. Unit conversion is followed by Air Pollution Information System[21] and 

assumed ambient pressure of 1 atmosphere and a temperature of 25 degrees Celsius (1 ppb = 1.88 

μg/m3).Forest plots were used to display the brief study information and HRs in each study 

graphically as well as the pooled results.  

We  tested for  heterogeneity in the reported effect estimates, and we provided the p-values of the 

I2-based Cochran Q test and the I2 metric of inconsistency [22]. We considered I2 >50% to represent 

substantial heterogeneity [23]. An inverse variance random effects model was used to provide the 

pooled estimates. We performed stratified analyses to explore potential sources of heterogeneity 

by either cohorts or methodological characteristics. These included (1) study location: we divided 

study locations into four regions including North America, Europe, Asia and Oceania; (2) exposure 

assessment method: we separated the exposure assessment method to fixed monitor sites, land use 

regression (LUR) and other exposure assessment methods; (3) exposure metrices: annual single 

year average verses multiple year average; (4) study population: general population cohorts versus 

cohorts using subjects with preexisting disease; (5) age at recruitment; (6) key confounders 

adjustment for individual measures of BMI and smoking versus no adjustment. We screened for 

publication bias using funnel plot analysis with standard error as the measure of study size and 

Egger’s liner regression test of asymmetry [24, 25].  
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We conducted a series of sensitivity analyses to assess the robustness of results. We added back 

the studies with duplicated cohorts (n=8) and with extremely high HRs (n=2) and reran the meta-

analysis. We also extracted estimates from the multi-pollutant models in the sensitivity analysis, if 

both single- and multi-pollutant models were fit. Moreover, we also excluded the articles that 

include high risk for each domain if available and rerun the model. Additionally, if I2 ≥ 50%, we 

fit Hartung-Knapp-Sidik-Jonkman random effects models and compare the results with those from 

the DerSimonian-Laird random effects models. Statistical significance was assessed at the α = 0.05 

level, unless otherwise reported. All statistical analyses were conducted in R version 4.0.1 using 

packages “meta”, “metagen” and “robvis”. 

2.5 Risk of bias assessment 

 A Risk of Bias (RoB) tool was developed by a working group convened by WHO for the 

assessment of cohort studies in air pollution epidemiology [26]. The tool consists of six domains: 

confounding, selection bias, exposure assessment, outcome assessment, missing data and selective 

reporting, each divided to one to four subdomains. In total, there are 13 sub-domains each 

potentially rated as low, moderate, or high risk of bias [27]. If any single sub-domain is rated 

medium or high RoB then the domain is rated similarly. RoB was applied to each NO2-outcome 

pair for studies included in a meta-analysis. For all-cause mortality, assessment of RoB for the 

confounding sub-domain “Were all confounders considered adjusted for in the analysis?” important 

confounders were: age, sex, body mass index (BMI) and individual- or area-level socio-economic 

status (SES). For respiratory mortality we also added smoking. 
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3. Results 

3.1 Characteristics of the eligible studies 

Our study selection process is presented in Figure 1, which represents the PRISMA Flowchart. A 

total of 159 peer-review articles were identified for our search in PubMed and EMBASE. 125 

studies did not meet with the inclusion criteria and were excluded. The reason for the exclusion 

were: 9 studies not related to NO2 concentration; 75 studies not in correct endpoint of interest; 15 

studies not in qualified results; 8 studies published as editorial pieces or conference; 1 review study; 

and 7 studies not published in English. Of these, after title and abstract screening, we identified a 

total of 44 articles that fulfilled our initial inclusion criteria, of which eight were excluded because 

the same cohort was analyzed in other more recent publications (i.e., duplicated cohorts). 

Particularly, two studies reporting extreme estimates (HR>5) based on the Shenyang cohort were 

excluded for the further analyses, given that there were expressed concerns about the validity of 

the results (Supplemental Table S2) [28, 29]. As a result, 34 studies based on 32 separate cohorts 

were included in the final meta-analysis (3 studies were based on the same cohort but reported the 

risk estimates on three endpoints separately), comprising 10 studies from North America (7 from 

USA and 3 from Canada), 17 studies from Europe, 5 studies from Asia, and 2 studies from Oceania 

(Table 1). The measure of association reported in most studies was a hazard ratio along with 95% 

confidence intervals, while two studies reported relative risks (and 95% confidence intervals). Of 

the 34 studies, 28 studies examined all-cause mortality, 20 studies examined cardiovascular 

mortality, and 17 studies examined respiratory mortality. Particularly, Sanyal et al. (2018) [30] 
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reported results for two partial-overlapping cohorts, including the ESPS survey data (Health, Health 

Care and Insurance Survey) and the CépiDc database (French Epidemiology Centre on Medical 

Causes of Death). We extracted results based on the CépiDc database due to the larger sample size 

and is therefore relatively more representative of the study. The study period, exposure assessment 

method, and exposure levels varied across the included studies. Most studies included both sexes, 

but two studies recruited only females [31, 32] and three studies recruited only males [33-35]. One 

article [36] studied males and females separately. Table 1 summarizes detailed characteristics for 

the studies included in the final meta-analysis. 

3.2 Risk of bias assessment  

The risk of bias assessment for each study is shown in traffic light plot (Figure 2) in six different 

domains. The traffic light plot indicates that the quality for all studies was moderate to high. None 

of our studies had a ‘high’ or ‘probably high’ risk rating in all the key elements (exposure 

assessment, outcome assessment, and confounding) and therefore no studies were excluded from 

the analyses. Detailed rationale for each domain for subdomain of each study are provided in 

supplement material Table S3 a-c. 

3.3 Results of the meta-analysis 

Table 2 presents the pooled effect estimates and heterogeneity for each of the three endpoints of 

interest. Despite substantial heterogeneity across studies, and the fact that estimates vary by region 

and exposure assessment method, the results generally suggest an association of NO2 with all three 
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endpoints. Figures 3-5 respectively summarize the studies examining all-cause, cardiovascular, and 

respiratory mortality associated with traffic-related air pollution as measured by NO2. 

3.4 All-cause mortality 

The overall pooled meta-estimate for all-cause mortality was 1.06 (95%CI: 1.04-1.08, n=28 studies) 

per 10 ppb increase in long-term NO2 exposure (Figure 3). The pooled HRs for studies in Asia 

(HR=1.13, 95%CI: 0.83-1.54, n=4 studies) and Oceania (HR=1.12, 95%CI: 1.01-1.23, n=2 studies) 

were larger than that in North America (HR=1.06, 95%CI: 1.03-1.09, n=9 studies) and Europe 

(HR=1.03, 95%CI: 1.02-1.05, n=13 studies). The estimated heterogeneity across all 28 studies was 

substantially high, with I2 of 98.6% (P<0.05). We also observed considerable heterogeneity across 

the studies in North America (I2=97.9%), Europe (I2=88.4%), and Asia (I2=99.1%). Notably, there 

is no heterogeneity for studies in Oceania partially because of insufficient study numbers (I2=0%, 

n=2 studies).  

Four studies investigated the associations with mortality in cohorts selected on the basis of 

preexisting disease: STEMI [37], respiratory disease [16], stroke [38] and lung cancer [39]. Meta-

analysis gave a summary HR of 1.14 (95%CI: 1.02, 1.28) compared with 1.05 (95%CI: 1.04, 1.07) 

from the general population. Eight studies recruited old population (age>60 years) and twenty 

studies recruited all age population. Meta-analysis reported substantial difference in HR for 

different age at recruitment, 1.08 (95%CI: 1.02, 1.14) versus 1.05 (95%CI: 1.04, 1.07), respectively. 

Meta-analytic summary estimates stratified by BMI and smoking status adjustment are also 
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reported in Table 2. Moderate heterogeneity was also observed in the studied that used exposure 

estimates derived from LUR (I2=61.3%). 

3.5 Cardiovascular mortality 

The overall meta-estimate for cardiovascular mortality was 1.11 (95%CI: 1.07-1.16, n=20 studies) 

per 10 ppb increase in long-term NO2 exposure (Figure 4). The pooled estimate was higher in 

studies from Asia (HR=1.39, 95%CI: 1.02-1.88, n=3 studies), compared to the studies in North 

America (HR=1.09, 95%CI: 1.05-1.12, n=7 studies) and Europe (HR=1.05, 95%CI: 1.00-1.09, 

n=10 studies), which was marginally significant. The overall heterogeneity between 21 studies was 

significantly high, with I2 of 99.2% (P<0.05). Like all-cause mortality, there was also considerable 

heterogeneity across the studies in North America (I2=88.8%), Europe(I2=86.9%), and 

Asia(I2=92.8%). Larger summary of HRs was observed in cohorts with an older age (age>=60 years, 

HR=1.26, 95%CI: 1.02-1.55); and in studies by using fixed-site monitor (HR=1.24, 95%CI: 0.96-

1.60). Meta-analytic summary estimates stratified by BMI and smoking status adjustment are also 

reported in Table 2. 

3.6 Respiratory mortality 

The overall meta-estimate for respiratory mortality was 1.05 (95%CI: 1.02-1.08, n=17 studies) per 

10 ppb increase in long-term NO2 exposure (Figure 5). The stratified analysis by continent 

disclosed that the pooled estimate in Asia (HR=1.16, 95%CI: 1.00-1.34, n=3 studies) was larger 

than the estimates in North America (HR=1.03, 95%CI: 1.02-1.04, n=5 studies) and Europe 
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(HR=1.04, 95%CI: 0.98-1.09, n=9 studies). The overall heterogeneity between 17 studies was 

significantly high, with I2 of 94.6% (P<0.05). In addition, we observed a substantial heterogeneity 

across the studies in Europe (I2=92.8%) and a moderate heterogeneity in Asia (I2=63.0%), while 

the heterogeneity for North America was null (I2=0%). Larger summary of HRs was also observed 

in cohorts with an older age (age≥60 years, HR=1.10, 95%CI: 0.94-1.28); in studies using fixed-

site monitor (HR=1.06, 95%CI: 0.96-1.18); and in cohorts with BMI (HR=1.09, 95%CI: 1.02-1.16) 

as well as smoking (HR=1.06, 95%CI: 1.02-1.09) adjustment (Table 2). We observed low 

heterogeneity in the studied that used LUR exposure assessment method (I2=34.9%) as well as the 

studies that did not adjust for smoking (I2=0%). We also found moderate heterogeneity for the 

studies that recruited at an elder age (age≥60, I2=60.7%) for the respiratory mortality (Table 2). 

3.7 Publication bias 

The funnel plots were visually symmetrical for cardiovascular mortality as well as respiratory 

mortality endpoint and asymmetrical for all-cause mortality endpoint (Figure 6). To further 

quantify the funnel asymmetry, we performed the Egger’s linear regression test. The P-value was 

0.26 for all-cause mortality, 0.21 for cardiovascular mortality, and 0.17 for respiratory mortality, 

indicating no evidence of publication bias in all three endpoints. 

3.8 Sensitivity analysis 

Table 3 summarizes the sensitivity analyses for long-term NO2 exposure and mortality.  We 

calculated pooled effect estimates only for studies using multi-pollutant models, and the results 
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were essentially the same. Adding back the studies that reported extremely high HRs, the meta-

estimates for cardiovascular and respiratory mortality were moderately elevated as expected and 

were nearly identical for all-cause mortality. We also removed the articles that identified as“high 

risks” for each domain and performed a subgroup analysis and the results were also identical for 

every domain (supplement Table S4). 

4. Discussion  

In this systematic review, we identified 34 studies from 32 separate globally representative cohorts 

that evaluated the effect of long-term exposure to NO2 on all-cause, cardiovascular, and respiratory 

mortality. Our study provides evidence that long-term NO2 exposure is positively associated with 

all three endpoints, with the largest effect estimates in Asia. No evidence of publication bias was 

observed, and none of our studies had a ‘high’ or ‘probably high’ risk rating within the risk of bias 

assessment, therefore, no studies were excluded from the meta-analysis. The sensitivity analysis in 

which we replaced the results from the single-pollutant models with those from the multi-pollutant 

models, when available, presented nearly identical results. This suggests that NO2 has independent 

effects on each of the health outcomes defined in this study.  

Three recent meta-analyses have respectively evaluated studies published prior to January 2020[20], 

October 2016 [9], and January 2013 [19, 20], all of which reported substantial heterogeneity and 

significant associations between long-term exposure to NO2 and all-cause, cardiovascular, and 

respiratory mortality, consistent with our present findings. Our study updates existing evidence by 
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incorporating 6 new studies published from January 2018 through February 2020, indicating a 

growing evidence base. These 6 new studies include 15 million additional participants, which 

represent a 170% increase in sample size analyzed in previous meta-analyses, creating the largest 

evidence base to date. Moreover, 3.5 million, 1.6 million, and 0.4 million deaths were newly 

included for all-cause mortality, cardiovascular, and respiratory mortality, respectively. There are 

two studies conducted in Australia [34, 40], where for the first time long-term NO2-mortality 

associations in Oceania were investigated, and a meta-estimate of 1.12 (95CI%: 1.01-1.23) with no 

heterogeneity (I2=0) was reported. These results were not included in previous studies; therefore, 

our analysis covers a broader geographical area. Compared to previous reviews, our overall meta-

estimates are slightly larger with the addition of new studies with updated cohorts, longer follow-

up periods, or better exposure estimates. We also examined the publication bias which had rarely 

been done in previous NO2-mortality meta-analysis [9, 19], and we found that all our eligible 

studies lie symmetrically around our pooled effect sizes. 

We registered our protocol to OSF and followed our a-priori decisions as reflected in the protocol. 

We did not register our protocol to PROSPERO which is the major registration platform of 

systematic reviews and this could be a limitation of our study. 

Consistent with previous meta-analyses, our study observed a large degree of heterogeneity for all 

NO2-outcomes pairs across enrolled studies, indicating a significant variation among results that 

could not be expected by chance alone. Although such heterogeneity does not impact our 

determination of consistency in causal inference, it is still essential to explore why the results are 
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so disparate with each other [41]. We explored possible sources of heterogeneity by performing 

subgroup analyses using variables that can biologically or based on prior knowledge drive these 

associations. For instance, we stratified analyses by exposure assessment method (i.e. fixed-site 

monitor versus LUR versus other) and we found that the monitor-based studies had the highest 

estimates for all three endpoints, which is consistent with Atkinson et al. (2018) [9]. One possible 

reason is that amongst the limited studies that based on fixed monitors, the study populations were 

mainly comprised of elderly population that are typically vulnerable to air pollution [38, 39]. Apart 

from these sources, high statistical heterogeneity could attribute to methodological diversity or 

differences in outcome assessments. The methodological diversity is due to, first, substantial 

variation of sample size across different studies, ranging from 2,000 to 44.5 million [42]. Other 

possible factors further relate to the variation of study demographics, such as location of the study 

population, study population, and NO2 concentration levels and different levels of confounding 

adjustment, which made the studies suffer from different degrees of bias and lead to diverse 

estimates. For instance, Atkinson et al. (2013) [43] adjusted for 4 covariates including age, sex, 

Body mass index, and smoking status, and reported an effect on all-cause mortality of 1.13 (95%CI: 

1.07, 1.20) per 10 ppb increase in NO2 levels. In contrast, Katanoda et al. (2011) [44] adjusted for 

17 potential confounders such as lifestyle, dietary, socioeconomic status, marital status, and 

medical history and reported an estimated effect on all-cause mortality of 0.97 (95%CI: 0.91, 1.04) 

per 10 ppb increase in NO2 levels. Moreover, the ICD code for cause-specific mortality can be 

slightly different, which may also result in high heterogeneity. Even though the high heterogeneity 

suggests that the studies are not all estimating the same quantity, it does not necessarily suggest 
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that the true exposure effect varies. 

Accurate exposure estimates are crucial for environmental epidemiology studies. Recently, satellite 

data have been widely used in high-resolution air pollution level predictions, such as daily 1-km 

PM2.5 and ozone prediction [45, 46]. However, high-resolution NO2 prediction models utilizing 

satellite information are very sparse [47], and only two latest cohort studies from Denmark and 

Australia included in our meta-analysis were able to integrate satellite retrieved NO2 estimates [40, 

48]. The NO2 levels in studies included in the meta-analysis tended to be derived from fixed-site 

monitors, LUR and CHIMERE chemistry transport models that yielded larger exposure 

measurement errors, as compared to more advanced exposure techniques such as machine learning. 

Further, fixed-site monitors are usually insufficient to adequately capture the spatial and temporal 

variability within a large area. Though geospatial statistical methods (such as LUR and Kriging) 

allow characterizing the spatial variation of exposure, they do not generally capture temporal 

variability in exposure, because they are commonly averaged over on a year, bi-annually or more. 

Chemical transport models usually increase the spatial variability to a few hundred kilometers, still 

not comparable to the satellite-based approach. Epidemiology studies with finer-resolution NO2 

exposure estimates (and consequent less exposure measurement error) are in urgent need.  

Toxicological studies suggest possible mechanisms via which NO2 might contribute to mortality. 

For example, NO2 is related to increased levels of oxidative free radicals and inflammation [49, 

50]. Numerous experimental studies demonstrated that air pollution promotes a systemic vascular 

oxidative stress reaction [51]. Radical oxygen species can cause endothelial dysfunction, monocyte 
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activation, and certain pro-atherosclerotic changes in lipoproteins, thereby initiating plaque 

formation, exacerbating disease, and increasing mortality [51].  

Previous epidemiologic reviews concluded that even though some evidence between NO2 and 

mortality is suggestive, it is still not sufficient to infer a causal relationship between long-term 

exposure to ambient NO2 and mortality [9, 52]. In most of the epidemiological studies, ambient 

NO2 is positively related to mortality, but we cannot rule out the possibility that such an association 

may be due to confounding variables, such as socioeconomic status (SES), behavioral factors, and 

co-pollutants (e.g., O3, PM2.5, PM10，SO2). Because different studies may adjust for different 

confounding variables as well as co-pollutants and such different adjustment could affect the result 

of effect estimates. Moreover, substantial high heterogeneity between the study results can also 

weaken the causality argument. Therefore, we believe that based on current evidence, the causal 

association for estimating the burden of NO2 on mortality and life expectancy is still moderate. 

Although this study cannot provide a confirmed causal relationship between NO2 and mortality, it 

can still help to evaluate the scientific debate as the meta-analysis improves the precision and 

validity of estimates as increased amounts of data are utilized. The pooled effect estimates we 

provided can also be useful for future health impact assessment.     

5. Conclusion 

In conclusion, we provide robust epidemiological evidence that long-term exposure to NO2, a proxy 

for traffic-sourced air pollutants, is associated with a higher risk of all-cause, cardiovascular, and 
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respiratory mortality that might be independent of other criteria air pollutants. This finding can 

inform public health policy regarding the health effects of traffic pollution on taking appropriate 

measures to reduce exposure to traffic pollution, especially in vulnerable populations.  
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7. Tables 

Table 1. Descriptive characteristics of cohorts included 

Country Study 
Study 

period 

Total 

population 

Mean age 

(SD) or 

range (yrs) 

Exposure assessment 

Mean annual 

exposure (SD) 

or range 

Study population 

North America 

USA Lipfert et al. (2006) 1997-2001 26,843 51 (12) Air monitoring sites 21.5 (6.1) ppb Washington University- EPRI 
       Veterans cohort 
 Hart et al. (2011) 1985-2000 53,814 42.1 (9.9) Spatial smoothing 14.2 (7.1) ppb US Trucking Industry cohort 
     exposure model    

 Lipsett et al. (2011) 1997-2005 12,366 ≥ 20 
Air monitoring 
stations 33.59 (9.63) ppb 

California Teachers Study 
(CTS) 

 Hart et al. (2013) 1990-2008 84,562 30-55 Generalized additive 13.9 ppb*  Nurses’ Health Study (NHS) 
     models   

 Eckel et al. (2016) 1988-2009 352,053 69.3 (11.0) 
Air monitoring 
stations 21.9 (10.2) ppb Lung cancer patients 

 Turner et al. (2016) 1982-2004 669,046 ≥ 30 Land use regression 11.6 (5.1) ppb 
American Cancer Society’s 
Cancer 

       
Prevention Study II (ACS CPS-
II) 

 Eum et al. (2019) 2000-2008 14.1million 65-120 
Air monitoring 
stations 14.2 ppb*  U.S. Medicare cohort 

Canada Jerrett et al. (2009) 1992-2002 2,360 60* Land use regression 22.9 ppb Toronto respiratory cohort 
 Chen et al. (2013) 1982-2004 205,440 35-85 Land use regression 12.1-21.7 ppb#  The Ontario Tax Cohort 
 Crouse et al. (2015) 1991-2006 2,521,525 25-89 Land use regression 11.6 (6.7) ppb Canadian Census Health and 

       
Environment Cohort (Can 
CHEC) 

Europe 

Norway Næss et al. (2007) 1992-1998 77,891 51-70 Air dispersion model NA Oslo cohort 
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Netherla

nds  Beelen et al. (2008) 1987-1996 120,852 58-67 Interpolation,  36.9 (8.2) μg/m3 The Netherlands Cohort Study 
     regressions, and GIS&  on Diet and Cancer (NLCS) 

 
Fischer et al. 
(2015) 2004-2011 7,218,363 ≥ 30 Land use regression 31 μg/m3* The Dutch Environmental  

       Longitudinal Study (DUELS) 
UK Maheswaran et al.  1995-2006 3,320 70.3 (14.6) Air monitoring Sites 41 (3.3) μg/m3 South London Stroke cohort 
 (2010)       

 Carey et al. (2013) 2003-2007 830,429 40-89 Air dispersion model 22.5 (7.4) μg/m3 
Clinical Practice Research 
Datalink 

 
Tonne and 
Wilkinson (2013) 2004-2010 154,204 68 (13) Gaussian dispersion 18.8 μg/m3 Myocardial Ischaemia National 

     model  Audit Project (MINAP) 

 
Halonen et al. 
(2016) 2003-2010 >8,000,000 ≥ 25 KCL urban dispersion 

38.9 (6.21) 
μg/m3 London cohort 

     model   
 Dehbi et al. (2017) 1989-2015 7,529 48.45 (7.0) Land use regression 28.80 μg/m3* National Study of Health and 

       
Development (NSHD) + 
Southall 

       and Brent Revisited (SABRE) 

Italy 
Cesaroni et al. 
(2013) 2001-2010 1,265,058 ≥ 30 Land use regression 43.6 (8.4) μg/m3 

Rome Longitudinal Study 
(RoLS) 

Denmark 
Hvidtfeldt et al. 
(2019) 1993-2015 49,564 50-64 THOR/AirGIS  25.0 μg/m3*   

The Diet, Cancer and Health 
cohort 

     dispersion model   

France 

Bentayeb et al. 
(2015) 1989-2013 20,327 43.7 (3.5) CHIMERE chemistry- 23 (12.1) μg/m3 Gazel cohort 

     transport model   

 Sanyal et al. (2018) 1999-2012 13,239 ≥ 15 CHIMERE chemistry- 
4.55-46.96 
μg/m3 French cohort 

     transport model   

Spain 

de Keijzer et al. 
(2017) 2009-2013 44,561,414 NA CALIOPE air quality 9.48 μg/m3 Spain cohort 

     forecasting system   
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Nieuwenhuijsen et 
al. 2010-2014 792,649 50.9 (18.3) Land use regression 53.42 μg/m3 SIDIAP cohort 

  (2018)       
Multi-

countries Beelen et al. (2014) 1985-2007a 367,251 All ages Land use regression 5.2-59.8 μg/m3 
European Study of Cohorts for 
Air 

       Pollution Effects (ESCAPE) 

 Beelen et al. (2014) 1985-2007a 367,383 All ages Land use regression 5.2-59.8 μg/m3 
European Study of Cohorts for 
Air 

       Pollution Effects (ESCAPE) 

 
Dimakopoulou et 
al. 1985-2007a 307,553 All ages Land use regression 5.2-59.8 μg/m3 

European Study of Cohorts for 
Air 

 (2014)      Pollution Effects (ESCAPE) 
Asia 

Japan 
Katanoda et al. 
(2011) 1983-1995 63,520 ≥ 40 

Air monitoring 
stations 1.2-33.7 ppb Three-prefecture Cohort Study 

 
Yorifuji et al. 
(2013) 1999-2009 13,412 74 (5.4) Land use regression 22 (15) μg/m3 The Shizuoka elderly cohort 

China Chen et al. (2016) 1998-2009 39,054 
44.29 
(13.95) 

Air monitoring 
stations 40.66 μg/m3 Four Northern Chinese city 

 Yang et al. (2018) 1998-2011 66,820 70.2 (5.5) Land use regression 
104 (25.6) 
μg/m3 

Hong Kong Elderly Health 
Service 

       Cohort 
South 

Korea Kim et al. (2017) 2007-2013 136,094 
42.05 
(14.83) 

Air monitoring 
stations 

34.45 (12.92) 
ppb 

National Health Insurance 
Service- 

       
National Sample (NHIS-NSC) 
cohort 

Oceania 

Australia 

Dirgawati et al. 
(2019) 1996-2012 11,627 72.1 (4.4) Land use regression 13.4 (4.1) μg/m3 Health in Men Study (HIMS) 

 
Hanigan et al. 
(2019) 2007-2015 75,145 45-79 Satellite-based spatial 17.75 (4.80)  “45 and up study” Cohort 

     regression model μg/m3  
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Notes: a baseline study period; * median; # mean annual exposure concentrations are 12.1 ppb in Windsor, 15.5 ppb in Hamilton, and 21.7 ppb 

in Toronto; & Sum of regional (interpolation), urban (regressions), and local traffic (GIS).   

SIDIAP: Sistema d’Informació pel Desenvolupament de la Investigació en Atenció Primària  

NA indicates Not Applicable, SD standard deviation. 

 

 

 

 

 

 

Table 2. Pooled effects of nitrogen dioxide on all-cause, cardiovascular, and respiratory mortality 

 All-cause mortality Cardiovascular mortality Respiratory mortality 

  
Studies 

(n) 
HR (95% CI） I2 (%) 

Studies 

(n) 
HR (95% CI） I

2 
(%) 

Studies 

(n) 
HR (95% CI） I

2 
(%) 

Full meta-estimate 28 1.06 (1.04, 1.08) 98.6 20 1.11 (1.07, 1.16) 99.2 17 1.05 (1.02, 1.08) 94.6 

Continent          

    North America 9 1.06 (1.03, 1.09) 97.9 7 1.09 (1.05, 1.12) 88.8 5 1.03 (1.02, 1.04) 0 

    Europe 13 1.03 (1.02, 1.05) 88.4 10 1.05 (1.00, 1.09) 86.9 9 1.04 (0.98, 1.09) 92.8 

    Asia 4 1.13 (0.83, 1.54) 99.1 3 1.39 (1.02, 1.88) 92.8 3 1.16 (1.00, 1.34) 63.0 

    Oceania 2 1.12 (1.01, 1.23) 0 - - - - - - 

Exposure assessment method         

    Fixed-site 

monitor 
7 1.10 (1.04, 1.16) 99.3 3 1.24 (0.96, 1.60) 97.0 3 1.06 (0.96, 1.18) 95.4 

Land use 

regression 
10 1.05 (1.04, 1.06) 61.3 9 1.09 (1.05, 1.13) 82.1 7 1.04 (1.01, 1.07)  34.9 
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    Other 11 1.02 (1.01, 1.03) 80.3 8 1.07 (1.00, 1.15) 81.5 7 1.03 (0.89, 1.18) 92.4 

Exposure metric 

Single year 10 1.06 (1.04, 1.08) 76.4 8 1.09 (1.06, 1.12) 81.9 7 1.10 (1.03, 1.17) 86.5 

Multiple year 16 1.06 (1.03, 1.07) 98.8 11 1.14 (1.07, 1.22) 99.5 9 1.03 (0.99, 1,07) 96.3 

Study population 

   General 

population 
24 1.05 (1.04, 1.07) 98.3 19 1.11 (1.06, 1.15) 99.2 16 1.05 (1.02, 1.08) 94.9 

   Preexisting 

disease 
4 1.14 (1.02, 1.28) 85.5 1 NA NA 1 NA NA 

Age at recruitment 

≥60 8 1.08 (1.02, 1.14) 98.1 4 1.26 (1.02, 1.55) 87.6 4 1.10 (0.94, 1.28) 60.7 

All age 20 1.05 (1.04, 1.07) 97.4 16 1.09 (1.05, 1.13) 94.3 13 1.05 (1.00, 1.10) 93.7 

Key confounders adjustment for individual measures 

 BMI          

   Yes 16 1.08 (1.04, 1.11) 97.3 11 1.14 (1.09, 1.20) 90.7 10 1.09 (1.02, 1.16) 83.2 

   No 12 1.05 (1.02, 1.08) 98.9 9 1.06 (1.02, 1.11) 92.3 7 1.02 (0.97, 1.08) 95.3 

 Smoking          

   Yes 21 1.03 (1.01, 1.05) 97.8 14 1.07 (1.02, 1.24) 99.5 14 1.06 (1.02, 1.09) 95.3 

   No 7 1.11 (1.06, 1.17) 99.4 6 1.20 (1.12, 1.30) 94.0 3 1.04 (1.02, 1.06) 0 
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Table 3. Sensitive analysis of NO2 and all-cause, cardiovascular, and respiratory mortality 

 All-cause mortality Cardiovascular mortality Respiratory mortality 

  
Studies 

(n) 
HR (95% CI） I

2
 (%) 

Studies 

(n) 
HR (95% CI） I

2
 (%) 

Studies 

(n) 
HR (95% CI） I

2
 (%) 

All countries           

Including duplicate 

cohorts (a) 
35 

1.07 (1.05, 
1.08) 

98.3 25 
1.13 (1.08, 

1.17) 
99.0 20 

1.06 (1.03, 
1.09) 

93.7 

Including extremely 

high effect estimates 

(b) 

28 
1.06 (1.04, 

1.07) 
98.6 21 

1.20 (1.15, 
1.26) 

99.4 18 
1.12 (1.08, 

1.17) 
97.8 

Including both (a) and 

(b)  
35 

1.07 (1.05, 
1.08) 

98.3 26 
1.21 (1.16, 

1.26) 
99.2 21 

1.12 (1.08, 
1.17) 

97.4 

Studies using multi-

pollutant model 
9 1.05(1.02, 1.08) 98.4 7 

1.09 (1.02, 
1.16) 

99.7 5 
1.00 (0.97, 

1.03) 
97.0 

 Two- pollutants model 2 
1.00 (0.93, 

1.09) 
99.7 1 NA NA 2 

1.01 (0.96, 
1.06) 

95.4 

 Three- pollutants 

model 
5 

1.03 (1.01, 
1.07) 

91.1 5 
1.02 (0.99, 

1.06) 
86.9 3 

0.99 (0.99, 
0.99) 

0 

Hartung-Knapp-Sidik-

Jonkman model 
         

Full meta-estimate 28 
1.07 (1.03, 

1.12) 
98.6 20 

1.15 (1.04, 
1.27) 

99.2 17 
1.04 (0.96, 

1.13) 
94.6 

Continent          

North America 9 
1.06 (1.00, 

1.12) 
97.9 7 

1.13 (0.93, 
1.37) 

88.8 5 
1.03 (0.99, 

1.06) 
0 

  Europe 13 
1.05 (0.99, 

1.12) 
88.4 10 

1.09 (0.96, 
1.25) 

86.9 9 
1.01 (0.88, 

1.17) 
92.8 



 

 28 

 

 

 

 

 

 

  Asia 4 
1.13 (0.79, 

1.61) 
99.1 3 

1.39 (0.68, 
2.82) 

92.8 3 
1.16 (0.77, 

1.75) 
63.0 

  Oceania 2 
1.12 (1.11, 

1.13) 
0 - - - - - - 
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8. Figures  

Figure 1. Flow chart of the study selection process.  
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Figure 2. Traffic light plot of risk of bias assessment for each study. 

 



 

 31 

Figure 3. Forest plot of study-specific hazard ratio (HR) of all-cause mortality associated with a 

10-ppb increase in exposure to NO2. The meta-estimate and weights in the forest plot are 

estimated from random effects meta-analyses. 
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Figure 4. Forest plot of study-specific hazard ratio (HR) of cardiovascular mortality associated 

with a 10-ppb increase in exposure to NO2. The meta-estimate and weights in the forest plot are 

estimated from random effects meta-analyses. 
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Figure 5. Forest plot of study-specific hazard ratio (HR) of respiratory mortality associated with a 
10-ppb increase in exposure to NO2. The meta-estimate and weights in the forest plot are 
estimated from random effects meta-analyses. 
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Figure 6. Funnel plots for (a) all-cause mortality, (b) cardiovascular mortality, and (c) respiratory 
mortality. 
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9. Appendix 

Table S1 

Explicit PECOS question 

PECOS Inclusion Exclusion 

 

Population 

• Population-based human studies 

(including sub-groups at risk: 

children, pregnant women, 

elderly, or patients with 

underlying conditions), of all 

ages, developed and developing 

areas, both urban and rural. No 

geographical restrictions. 

• Study population expose to NO2 

via inhalation through ambient 

air  

• Study population 

exposed to NO2 in 

occupational 

settings or indoor 

exposure 

exclusively 

Exposure • Long-term exposure (year or 

more) to ambient air 

NO2 expressed in a 

concentration unit (ppb and 

μg/m3 respectively). 

•  Less than one year 

of data available 

Comparator • Exposure to per concentration 

increased unit of the air pollutant 

of interest in the same 

population 

• Measures of 

association and 

uncertainty not 

provided 

Outcome • Health outcomes selected in 

relation to long-term exposure 

include (ICD 10 codes, version 

• Outcomes other 

than mortality, 

including infant 
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2016 in brackets): all cause 

(A00-Z99); respiratory (J00-

J99); COPD (J40-47) 

mortality [Note: Studies vary in 

selection of codes.] 

mortality due to 

neonatal exposure 

of pollutant 

Study • Prospective and retrospective 

epidemiological studies in 

humans  

Published peer reviewed (or 

accepted for publication i.e. in 

press) journal articles in 

English,) 

• Qualitative studies 

• No adjustment for 

socio-economic 

status (individual or 

area) 

• Studies where no 

original data were 

analyzed 

• Reviews and 

methodological 

papers 

• Non-human studies 

(in vivo, in 

vitro, other) 
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Table S2 

Excluded studies with reasons (n=125 studies). 

Not related to NO2 (n=9 studies) 

1. Ren, C. and S. Tong, Temperature modifies the health effects of particulate matter in 

Brisbane, Australia. Int J Biometeorol, 2006. 51(2): p. 87-96. 

2. Liu, C.C., et al., Ambient exposure to criteria air pollutants and risk of death from bladder 

cancer in Taiwan. Inhal Toxicol, 2009. 21(1): p. 48-54. 

3. Rosenlund, M., et al., Traffic-generated air pollution and myocardial infarction. 

Epidemiology, 2009. 20(2): p. 265-71. 

4. Faustini, A., et al., The relationship between ambient particulate matter and respiratory 

mortality: a multi-city study in Italy. Eur Respir J, 2011. 38(3): p. 538-47. 

5. Lobdell, D.T., et al., Feasibility of assessing public health impacts of air pollution reduction 

programs on a local scale: New Haven case study. Environ Health Perspect, 2011. 119(4): 

p. 487-93. 

6. Lyons, J., et al., Air quality impacts mortality in acute medical admissions. Qjm, 2014. 

107(5): p. 347-53. 

7. Atkinson, R.W., et al., Short-term exposure to traffic-related air pollution and daily 

mortality in London, UK. J Expo Sci Environ Epidemiol, 2016. 26(2): p. 125-32. 

8. Zuniga, J., et al., Assessment of the Possible Association of Air Pollutants PM10, O3, NO2 

With an Increase in Cardiovascular, Respiratory, and Diabetes Mortality in Panama City: 

A 2003 to 2013 Data Analysis. Medicine (Baltimore), 2016. 95(2): p. e2464. 

9. Dadbakhsh, M., et al., Death from respiratory diseases and temperature in Shiraz, Iran 

(2006-2011). Int J Biometeorol, 2017. 61(2): p. 239-246. 

Not in correct endpoint (n=75 studies) 

10. Ritz, B., M. Wilhelm, and Y. Zhao, Air pollution and infant death in southern California, 

1989-2000. Pediatrics, 2006. 118(2): p. 493-502. 

11. Rosenlund, M., et al., Long-term exposure to urban air pollution and myocardial infarction. 

Epidemiology, 2006. 17(4): p. 383-90. 

12. Liu, C.C., et al., Ambient exposure to criteria air pollutants and female lung cancer in 

Taiwan. Inhal Toxicol, 2008. 20(3): p. 311-7. 

13. Medina-Ramon, M., et al., Residential exposure to traffic-related air pollution and survival 

after heart failure. Environ Health Perspect, 2008. 116(4): p. 481-5. 

14. Ren, Y.J., et al., A case-crossover study on air pollutants and the mortality of stroke. 

Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi, 2008. 29(9): p. 878-

881. 

15. Rosenlund, M., et al., Traffic-related air pollution in relation to incidence and prognosis of 

coronary heart disease. Epidemiology, 2008. 19(1): p. 121-8. 

16. Wang, X.Y., W. Hu, and S. Tong, Long-term exposure to gaseous air pollutants and cardio-

respiratory mortality in Brisbane, Australia. Geospat Health, 2009. 3(2): p. 257-63. 
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17. Dennekamp, M., et al., Outdoor air pollution as a trigger for out-of-hospital cardiac arrests. 

Epidemiology, 2010. 21(4): p. 494-500. 

18. Vidale, S., et al., Air pollution positively correlates with daily stroke admission and in 

hospital mortality: a study in the urban area of Como, Italy. Neurol Sci, 2010. 31(2): p. 

179-82. 

19. Bhaskaran, K., et al., The effects of hourly differences in air pollution on the risk of 

myocardial infarction: case crossover analysis of the MINAP database. Bmj, 2011. 343: p. 

d5531. 

20. Nuvolone, D., et al., Short-term association between ambient air pollution and risk of 

hospitalization for acute myocardial infarction: results of the cardiovascular risk and air 

pollution in Tuscany (RISCAT) study. Am J Epidemiol, 2011. 174(1): p. 63-71. 

21. Yorifuji, T., et al., Associations of outdoor air pollution with hemorrhagic stroke mortality. 

J Occup Environ Med, 2011. 53(2): p. 124-6. 

22. Andersen, Z.J., et al., Stroke and long-term exposure to outdoor air pollution from nitrogen 

dioxide: a cohort study. Stroke, 2012. 43(2): p. 320-5. 

23. Ou, C.Q., et al., Dietary habits and the short-term effects of air pollution on mortality in 

the Chinese population in Hong Kong. J Epidemiol Community Health, 2012. 66(3): p. 

254-8. 

24. Scaife, A., et al., Lack of effect of nitrogen dioxide exposure on heart rate variability in 

patients with stable coronary heart disease and impaired left ventricular systolic function. 

Occup Environ Med, 2012. 69(8): p. 587-91. 

25. Shin, H.H., et al., Tracking national and regional spatial-temporal mortality risk associated 

with NO2 concentrations in Canada: a Bayesian hierarchical two-level model. Risk Anal, 

2012. 32(3): p. 513-30. 

26. Turin, T.C., et al., Ambient air pollutants and acute case-fatality of cerebro-cardiovascular 

events: Takashima Stroke and AMI Registry, Japan (1988-2004). Cerebrovasc Dis, 2012. 

34(2): p. 130-9. 

27. Wellenius, G.A., et al., Ambient air pollution and the risk of acute ischemic stroke. Arch 

Intern Med, 2012. 172(3): p. 229-34. 

28. Atkinson, R.W., et al., Long-term exposure to outdoor air pollution and incidence of 

cardiovascular diseases. Epidemiology, 2013. 24(1): p. 44-53. 

29. Cai, Y., et al., Effect of air pollution on prevalence of chronic bronchitis symptoms-a cross-

sectional analysis of 5 cohort studies. European Respiratory Journal, 2013. 42. 

30. Chen, R., et al., Acute effect of ambient air pollution on stroke mortality in the China air 

pollution and health effects study. Stroke, 2013. 44(4): p. 954-60. 

31. Ensor, K.B., L.H. Raun, and D. Persse, A case-crossover analysis of out-of-hospital cardiac 

arrest and air pollution. Circulation, 2013. 127(11): p. 1192-1199. 

32. Finnbjornsdottir, R.G., et al., Association of air pollution and use of glyceryl trinitrate 

against angina pectoris: a population-based case-crossover study. Environ Health, 2013. 

12: p. 38. 
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33. Gan, W.Q., et al., Associations of ambient air pollution with chronic obstructive pulmonary 

disease hospitalization and mortality. Am J Respir Crit Care Med, 2013. 187(7): p. 721-7. 

34. Lin, H., et al., Gaseous air pollution and acute myocardial infarction mortality in Hong 

Kong: Atime-stratified case-crossover study. Atmospheric Environment, 2013. 76: p. 68-

73. 

35. Qian, Y., et al., Epidemiological evidence on association between ambient air pollution 

and stroke mortality. J Epidemiol Community Health, 2013. 67(8): p. 635-40. 

36. Raaschou-Nielsen, O., et al., Long-term exposure to traffic-related air pollution and 

diabetes-associated mortality: a cohort study. Diabetologia, 2013. 56(1): p. 36-46. 

37. Wang, D., et al., Effect of air pollution on coronary heart disease mortality in Tianjin, 2001-

2009: a time-series study. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue 

zazhi, 2013. 34(5): p. 478-483. 

38. Bennett, O., et al., Spatial variation of heart failure and air pollution in Warwickshire, UK: 

an investigation of small scale variation at the ward-level. BMJ Open, 2014. 4(12): p. 

e006028. 

39. Bhinder, S., et al., Air pollution and the development of posttransplant chronic lung 

allograft dysfunction. Am J Transplant, 2014. 14(12): p. 2749-57. 
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42. Katsoulis, M., et al., Long-term exposure to traffic-related air pollution and cardiovascular 

health in a Greek cohort study. Science of the Total Environment, 2014. 490: p. 934-940. 
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44. Sorensen, M., et al., Combined effects of road traffic noise and ambient air pollution in 

relation to risk for stroke? Environ Res, 2014. 133: p. 49-55. 
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according to demography: a 10 year case-crossover study. Environ Pollut, 2014. 192: p. 

179-85. 

47. Argacha, J.F., et al., Particulate matter and NO2 air pollution trigger ST-elevation 

myocardial infarction: A case cross over study of the Belgian STEMI registry. European 

Heart Journal, 2015. 36: p. 710. 

48. Dai, J., et al., Ambient air pollution, temperature and out-of-hospital coronary deaths in 

Shanghai, China. Environ Pollut, 2015. 203: p. 116-121. 

49. Ha, K.H., et al., Air pollution and unintentional injury deaths in South Korea. Environ Sci 
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Table S3a 
Detailed rationale for confounding and selection bias 
Study Confounding  Rationale Selection 

bias 
Rationale 

Lipfert et al. 2006 High-risk Do not adjust for sex. Low-risk No evidence of selection bias in this 

study 

Hart et al. 2011 High-risk Quote: “We do not have information 

on other risk factors for mortality, 

such as cigarette smoking, body mass 

index (BMI), medication use, high 

cholesterol or blood pressure 

diagnoses, or existing 

comorbidities.....however, there is 

likely some residual confounding if 

they are also associated with 

pollution.” 

Comment: Do not adjust for critical 

confounder like BMI and SES. 

Low-risk No evidence of selection bias in this 

study 

Lipsett et al. 2011 High-risk Do not adjust for critical confounder 

SES. 

Moderate-

risk 

Quote: “Of the 124,614 women living in 

California at baseline, we 

excluded..These exclusions left 101,784 

women in the analytic cohort for the 

mortality analyses of all pollutants.” 

Comment: may result in marginal bias 

Hart et al. 2013 Low-risk All critical and other/additional 

potential confounders adjusted. 

Low-risk Quote: “with response rates above 90%” 

Eckel et al. 2016 High-risk Do not adjust for BMI. High-risk Quote: “The air pollution monitoring 

network is less dense in rural areas; so, 

exclusion of patients living >25 km from 

a monitor differentially excludes patients 

in rural areas.” 
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Turner et al. 2016 Low-risk All critical and other/additional 

potential confounders adjusted. 

Low-risk No evidence of selection bias in this 

study. 

Eum et al. 2019 High-risk Do not adjust for BMI and other 

additional confounders. 

Low-risk No evidence of selection bias in this 

study. 

Jerrett et al. 2009 Low-risk All critical and other/additional 

potential confounders adjusted. 

Low-risk No evidence of selection bias in this 

study. 

Chen et al. 2013 Moderate-risk comment: Indirect adjustment for 

smoking or BMI. 

Low-risk Quote: “Subjects were selected randomly 

from among Canadians who filed federal 

income.” 

Crouse et al. 2015 High-risk Do not adjust for age, sex Low-risk Quote: “it is a population-based cohort of 

subjects who were ≥ 25 years of age at 

baseline; a usual resident of Canada on 

the census reference day.” 

Næss et al. 2007 High-risk Do not adjust for BMI and other 

potential confounders. 

Low-risk Quote: “A total of 143,842 individuals 

were identified as the source population. 

For all of these persons, information 

on ...... was available and was included in 

the analysis.” 

Comment: No evidence of selection bias 

in this study. 

“Beelen et al. 2008 High-risk Do not adjust for BMI. Low-risk No evidence of selection bias in this 

study. 

Fischer et al. 2015 High-risk Do not adjust for BMI and additional 

confounders. 

Moderate-

risk 

Quote: “The follow-up period of the 

cohort was from 1 January 2004 to 1 

January 2011. Subjects were lost to 

follow-up if their final record in the 

longitudinal file ended before 1 January 

2011 and death was not registered as a 

reason for termination. Emigration was 

the main cause of censoring.” 

Maheswaran et al. 2010 Low-risk All critical and other/additional 

potential confounders adjusted. 

Low-risk Quote: “Nonresponse was followed up 

by contact with the patients’ general 
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practitioners, the health services 

authority, and next of kin.” 

Comment: Low risk of selection bias 

here. 

Carey et al. 2013 Low-risk All critical and other/additional 

potential confounders adjusted. 

Low-risk Quote: “we identified 836,557 

patients ....A total of 950 patients had no 

census information and were dropped 

from the analyses.” 

Tonne and Wilkinson 

2013 

Moderate-risk Do not directly adjust for BMI. Low-risk No evidence of selection bias in this 

study. 

Halonen et al. 2016 High-risk Do not adjust for BMI. Low-risk No evidence of selection bias in this 

study. 

Dehni et al. 2017 Moderate-risk Do not directly adjust for BMI. Moderate-

risk 

Quote: “The cohort responding at the 

data collection at age 60–64 remains 

broadly representative of the general 

population, despite some loss to follow-

up for more deprived groups.” 

Cesaroni et al. 2013 High-risk Do not adjust for BMI. Low-risk No evidence of selection bias in this 

study. 

Hvidtfeldt et al. 2019 Low-risk All critical and other/additional 

potential confounders adjusted. 

Moderate-

risk 

Quote: “Of the 57,053 enrolled 

participants, we excluded 581 because of 

cancers prior to baseline, 2084 because 

residential address history and thus 

exposure were unavailable at some point 

in the period from 1979 to baseline, and 

4624 because of missing information on 

the potential confounders. The total study 

population included 49,564 participants.” 

Bentayeb et al. 2015 Low-risk All critical and other/additional 

potential confounders adjusted. 

Low-risk No evidence of selection bias in this 

study. 

Sanyal et al. 2018 High-risk Do not adjust for sex. Low-risk No evidence of selection bias in this 

study. 
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de Keijzer et al. 2017 High-risk Do not adjust for BMI. Low-risk No evidence of selection bias in this 

study. 

Nieuwenhuijsen et al. 

2018 

High-risk Do not adjust for age, BMI and 

additional confounders. 

Low-risk Quote: “SIDIAP is a primary care 

computerized medical record of a 

representative sample of 5.8 million 

people (80% of the population) in 

Catalonia (Spain).” 

Beelen et al. 2014a Low-risk All critical and other/additional 

potential confounders adjusted. 

Low-risk Quote: “All cohorts were samples from 

the general population.” 

Beelen et al. 2014b Low-risk All critical and other/additional 

potential confounders adjusted. 

Low-risk No evidence of selection bias in this 

study. 

Dimakopoulou et al. 

2014 

Low-risk All critical and other/additional 

potential confounders adjusted. 

Moderate-

risk 

Quote: “Cohorts were included in the 

study if the number of respiratory 

mortality cases exceeded seven during 

the follow-up period and if data for the 

most important potential confounders 

were available.” 

Comment: Suspect having selection bias 

Katanoda et al. 2011 High-risk Do not adjust for critical confounder 

SES. 

Moderate-

risk 

Quote: “A self-administered 

questionnaire was distributed to 118820 

individuals identified based on residence 

registries in cooperation with the 

municipal government of each area, and 

responses were returned by 100615 

(84.7%). Individuals were excluded from 

the study if they had resided in the study 

areas for less than 10 years (n = 19 542) 

or provided incomplete answers to 

questions related to smoking status, 

pack-years (ever smokers only), smoking 

status of family members, frequency of 

vegetable and fruit consumption, or use 
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of indoor charcoal or briquette braziers 

(sumi or rentan in Japanese) for heating 

(n = 17 553).” 

Comment: moderate level of non-

response rate and the smokers may tend 

to participate the study 

Yorifuji et al. 2013 Low-risk All critical and other/additional 

potential confounders adjusted. 

High-risk Quote: “response rate: 63%” 

Chen et al. 2016 Low-risk All critical and other/additional 

potential confounders adjusted. 

High-risk Comment: 39,054 / 48,114 Considerable 

rate of loss to follow up 

Yang et al. 2018 Low-risk All critical and other/additional 

potential confounders adjusted. 

Low-risk No evidence of selection bias in this 

study. 

Kim et al. 2017 Moderate-risk Do not directly adjust for BMI. Low-risk Quote: “The NHIS-NSC is a population-

based cohort including 1 025 340 

individuals who were randomly sampled 

from the population database—

equivalent to %2% of the Korean 

population." "In this study, participants 

aged ≥18 years who resided in Seoul 

between 2007 and 2013 were selected 

from the NHIS- NSC. Those with a 

previous history of cardiovascular 

disease such as AMI, CHF, and stroke 

were excluded.” 

Dirgawati et al. 2019 Low-risk All critical and other/additional 

potential confounders adjusted. 

Low-risk No evidence of selection bias in this 

study. 

Hanigan et al. 2019 Low-risk All critical and other/additional 

potential confounders adjusted. 

Low-risk No evidence of selection bias in this 

study. 
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Table S3b 
Detailed rationale for exposure assessment and outcome measurement 
Study Exposure 

assessment 
Rationale Outcome 

measuremen
t 

Rationale 

Lipfert et al. 

2006 

Moderate-

risk 

Quote: “the analysis does not account for 

differences in residential construction that could 

modify exposures to air pollution or noise.” 

Moderate-risk Comment: Do not provide ICD code, 

suspect have outcome 

misclassification. 

Hart et al. 2011 Moderate-

risk 

Quote: “Additionally, although in surveys of this 

cohort the average time living in the current 

residence is 17 years, we cannot be certain that 

we have the correct home address for all 

participants in all years. This would add to the 

nondifferential misclassification of exposures 

and may help to explain some of the 

nonsignificant results we observe.” 

Moderate-risk Quote: “For many of the outcomes 

this may lead to some 

misclassification in the cause-specific 

analyses, because some outcomes may 

not always be appropriately coded.” 

Lipsett et al. 

2011 

Low-risk The exposure models used in study can 

adequately predict the exposure. 

Low-risk Quote: “Although some of these 

participants may have experienced 

silent events, it is unlikely that such 

misclassification of disease would be 

differentially distributed by pollutant 

exposure. Also, these outcomes were 

measured here only as hospitalizations 

or deaths, which could have resulted 

in incomplete ascertainment. 

Nevertheless, there is no reason to 

think that such unrecorded events 

would have biased the results in a 

differential manner.” 

Hart et al. 2013 Moderate-

risk 

Quote: “it is possible that the 2007 roads do not 

accurately represent the US roadway system in 

earlier years. However, the most likely scenario 

Low-risk Quote: “We assessed incident cases of 

Mi, defined as first nonfa- tal or fatal 
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is that new roads have been built and that 

existing roads have gotten larger. if this is the 

case, some of the earlier addresses consid- ered 

close to roadways may have in fact not been 

close. this misclassification would bias the 

results toward the null.” 

Mi (icD-9 codes 410–414; icD-10 

codes i20–i25) from 1990 to 2008.” 

Eckel et al. 2016 Moderate-

risk 

Quote: “We focused on air pollution exposures 

with large-scale regional variability using spatial 

interpolation of air quality monitoring data, 

which does not capture the effects of traffic-

related pollution (TRP) that varies over a finer 

spatial scale.” 

Low-risk Quote: “Our study population 

included lung cancer cases (ICD-O-3 

site code C34) diagnosed in 1988–

2009 and registered by the California 

Cancer Registry (CCR).” 

Turner et al. 

2016 

Moderate-

risk 

Quote: “leading to potential misclassification of 

both air pollution concentrations" comment: also, 

the exposure level in 2006 might not be 

representative of the variable from 1982-2004.” 

Low-risk Quote: “Deaths were classified by 

underlying cause using the 

International Classification of 

Diseases, 9th and 10th revisions.” 

Eum et al. 2019 Low-risk The exposure models used in study can 

adequately predict the exposure. 

Low-risk Quote: “Using the International 

Classification of Disease (ICD–10) 

codes, we identified deaths from non-

accidental and accidental causes of 

mortality, as well as three major 

causes including CVD, respiratory 

disease, and cancer.” 

Jerrett et al. 2009 Moderate-

risk 

Quote: “Although the measurement period for 

NO2 was at or beyond the end of mortality 

follow-up, there is evidence suggesting spatial 

exposure contrast observed from these shorter 

periods captures the essential aspects of the 

chronic exposure experience for the cohort.” 

Low-risk No systematic error in the 

measurement of the outcome. 

Chen et al. 2013 Moderate-

risk 

Quote: “the land use regression models were 

developed toward the end of our study and might 

Low-risk Quote: “this (outcome) measurement 

error was likely independent of 

exposure.” 
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not characterize exposure adequately during 

earlier periods of our study." 

Crouse et al. 

2015 

Low-risk The exposure models used in study can 

adequately predict the exposure. 

Low-risk Quote: “The date of death and the 

underlying cause of death were 

extracted from death certificates coded 

by nosologists to the International 

Classification of Diseases, 9th 

Revision (ICD-9) for deaths before 

2000, and to the 10th Revision (ICD-

10) for those that occurred from 2000 

onward.” 

Næss et al. 2007 Low-risk The exposure models used in study can 

adequately predict the exposure. 

Low-risk No systematic error in the 

measurement of the outcome. 

Beelen et al. 

2008 

Moderate-

risk 

Quote: “In summary, long-term exposure to 

outdoor air pollution at the 1986 home address 

was estimated for all participants as the sum of 

regional, urban, and local traffic contributions." 

Comment: The exposure at 1986 may not be 

representitive of the exposure status from 1987-

1996, and the time varying change does not take 

into account. However, other article suggests that 

the exposure status did not vary much and such 

method won't lead to serious bias. 

Low-risk Quote: “Mortality was assessed 

between 1 January 1987 and 31 

December 1996. Mortality data were 

obtained from the Dutch Central 

Bureau of Genealogy and the Dutch 

Central Bureau of Statistics.” 

Comment: No evidence of error in 

outcome measurement. 

Fischer et al. 

2015 

Moderate-

risk 

Quote: “Exposures were estimated by a LUR 

model for the year 2001 and assigned to the 

follow-up period 2004–2011. Although the 

exposure assignment precedes the follow-up 

period, we are not sure that the 2001 annual 

average adequately represents a longer exposure 

window, which is relevant for long-term 

exposure. However, there is evidence from the 

literature that spatial distribution of air pollution 

Low-risk Quote: “A database with mortality 

data was available from Statistics 

Netherlands. We selected 

nonaccidental mortality [International 

Classification of Diseases, 10th 

Revision (ICD-10) codes A00-R99], 

circulatory disease mortality (ICD-10 

codes I00-I99), respiratory disease 

mortality (ICD-10 codes J00-J99), and 
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is stable over 10-year periods....people might 

have moved since 2004 to unknown addresses 

and therefore changed their exposure.” 

lung cancer mortality (ICD-10 codes 

C33–C34).” 

Maheswaran et 

al. 2010 

High-risk Quote: “We used modeled exposure estimates 

from a single year, and pollution levels could 

have varied across the study period....Exposures 

derived from prediction models are associated 

with nontrivial prediction error, but properly 

incorporating that error into health effects models 

is difficult, and the optimal procedure for doing 

so is still uncertain.” 

Comment: The exposure assessment method may 

biased the effect estimate. 

Moderate-risk Comment: Do not provide ICD code, 

suspect have outcome 

misclassification.  

Carey et al. 2013 Moderate-

risk 

Quote: “Misclassification is also likely to have 

resulted from assigning pollution estimates at a 1 

km2 resolution.” 

Comment: potential misclassification and do not 

take time-varying changes of exposure into 

consideration 

Low-risk Quote: “The underlying cause of death 

[coded according to the International 

Classification of Diseases, 9th 

Revision (ICD-9; WHO 1977)] for 

deceased subjects was retrieved from 

the Lazio regional health information 

system.” 

Tonne and 

Wilkinson 2013 

Low-risk The exposure models used in study can 

adequately predict the exposure. 

Low-risk Quote: “Vital status was obtained 

from the Office of National Statistics.” 

Halonen et al. 

2016 

Moderate-

risk 

Quote: “exposure misclassification due to 

secondary housing may partly explain the 

negative associations observed in the low 

deprivation groups.” 

Low-risk Quote: “The underlying cause of death 

was classified using the 10th revision 

of the International Classification of 

Diseases (ICD10)” 

Dehni et al. 2017 Moderate-

risk 

Quote: “Great- Britain-wide air pollution maps 

were produced with a resolution of 

100m×100mforBSandSO2, 

and200m×200mforNO2.TheX-Ycoordinates of 

the residence of participants were overlaid with 

these maps to assign concentration estimates. 

Low-risk Quote: “Cohort participants are 

flagged on the NHS central register so 

that all deaths are identified, and CVD 

mortality diagnosed as International 

Classification of Disease-Ninth 

Edition [ICD-9] codes 390–459 and 
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Model building employed 80% of the sites for 

BS and SO2, and 75% of the sites for NO2. The 

remaining sites were retained for model 

validation, and hold-out r2 values of 0.34, 0.31 

and 0.62 were obtained for BS, SO2 and NO2 

respectively. Two sets of air pollution estimates 

were available. Firstly, concentration estimates 

of sulphur dioxide [SO2], black smoke [BS] and 

nitrogen dioxide [NO2] were available for 1991, 

based on contemporaneous air pollution 

monitoring data” 

Comment: There are two different cohorts used 

in this study 

ICD- Tenth Edition [ICD-10] chapter I 

codes. The follow-up for mortality 

was until the end of 2014 for NSHD 

and November 2015 for SABRE” 

Cesaroni et al. 

2013 

Low-risk Queto: “We are fairly confident that the spatial 

gradient of pollutants within the city remained 

stable over time.” 

Low-risk No systematic error in the 

measurement of the outcome. 

Hvidtfeldt et al. 

2019 

Low-risk Quote: “In brief, the system enables the 

calculation of ambient air pollution concentration 

at high temporal (hourly basis) and spatial 

(individual address) resolutions.” 

Low-risk Quote: “We defined the cause of death 

ac- cording to the underlying cause of 

death recorded on death certificates. 

Participants who died from external 

causes such as injuries, accidents and 

suicides (ICD-10 codes S–Z) were 

censored at date of death. In addition, 

we investigated cardiovascular 

(ICD10 codes ‘I00’–‘I99’) and 

respiratory (ICD10 codes ‘J00’–‘J99’ 

and ‘C34’) subgroups of mortality.” 

Bentayeb et al. 

2015 

High-risk Queto: “Final data contained uncer-tainties due 

to the low number of monitoring stations 

(measurements) in the initial years of the study, 

especially for PM2.5 and benzene. This resulted 

in an underestimation of exposure, ...Moreover, 

Low-risk Quote: “We considered all causes 

apart from suicides and accidents 

(ICD-9 codes 001-799 and ICD-10 

codes A00-R99), cardiovascular 

mortality (ICD-9 codes: 390-459; 
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our exposure assessment did not consider traffic 

emissions which may have led to an underesti- 

mation of concentrations in urban areas.” 

ICD-10 codes: I00-I99), and 

respiratory mortality (ICD-9 codes 

460-519 or ICD-10 codes J00-J98) 

including lung cancer (ICD-9 code 

162 or ICD-10 codes C33-C34).” 

Sanyal et al. 

2018 

Moderate-

risk 

Quote: “In addition, exposure to indoor air 

pollution, like wood stoves and fireplaces, was 

not considered in our study” 

Low-risk Quote: “However, the ESPS survey 

data is questionnaire-based, where 

individuals were asked about the 

occurrence of a disease during the past 

12 months.” 

de Keijzer et al. 

2017 

Low-risk The exposure models used in study can 

adequately predict the exposure. 

Low-risk Quote: “Mortality data for natural 

causes (International Classification of 

Dis- eases codes: ICD-9: 001–799, 

ICD-10:A00–R99) of years 2009–

2013 were obtained from the Spanish 

Mortality Register” 

Nieuwenhuijsen 

et al. 2018 

Moderate-

risk 

Quote: "These models predicted 62–76% of 

variation in pollutant levels in our study area 

during 2008–2009.” 

Moderate-risk Comment: Do not provide ICD code, 

suspect have outcome 

misclassification. 

Beelen et al. 

2014a 

Low-risk Quote: “Land use regression models were 

developed to explain the spatial variation of 

measured annual average air pollution 

concentrations within each area.” 

Low-risk Quote: “Natural-cause mortality was 

defined on the basis of the underlying 

cause of death recorded on death 

certificates as International 

Classification of Diseases (ICD)-9 

codes 001–779 and ICD-10 codes 

A00–R99.” 

Beelen et al. 

2014b 

Moderate-

risk 

Quote: “the land-use regression models used for 

exposure assessment were based on air pollution 

measurements in the period 2008–2011, whereas 

the cohort studies included in eScaPe started in 

the past....spatial air pollution contrasts often 

Low-risk Quote: “Outcomes were defined on 

the basis of the underlying cause of 

death recorded on death certificates: 

all cVD mortality (International 

Classification of Diseases [ICD]-9: 

400–440; ICD-10: i10-i70), ischemic 
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remained the same, even with a decrease in 

concentrations over time.” 

heart disease mortality (ICD-9: 410–

414; ICD-10: i20-i25), Mi mortality 

(ICD-9: 410; ICD-10: i21, i22), and 

cerebrovascular disease mortality 

(ICD-9: 430–438; ICD-10: i60-i69)” 

Dimakopoulou et 

al. 2014 

Low-risk The exposure models used in study can 

adequately predict the exposure. 

Low-risk Quote: “Nonmalignant respiratory 

mortality was defined on the basis of 

the underlying cause of death recorded 

on death certificates. Nonmalignant 

respiratory mortality included ICD-9 

codes 460 to 519 or ICD-10 codes J00 

to J99.” 

Katanoda et al. 

2011 

Low-risk The exposure models used in study can 

adequately predict the exposure. 

Low-risk Quote: “Causes of death were 

confirmed by vital statistics obtained 

with official permission, and coded 

according to the International 

Classification of Diseases, 9th revision 

(ICD-9).” 

Yorifuji et al. 

2013 

Low-risk The exposure models used in study can 

adequately predict the exposure. 

Low-risk Quote: “The underlying causes of 

death were coded according to the 

10th International Classification of 

Disease (ICD-10).” 

Chen et al. 2016 Low-risk The exposure models used in study can 

adequately predict the exposure. 

Low-risk Quote: “More than 98% of all known 

causes of death were recorded in this 

survey. We classified deaths according 

to the cause of death using the 

International Classification of 

Disease-10 (ICD-10) (C33, C34 for 

lung cancer) coding system.” 

Yang et al. 2018 Moderate-

risk 

Quote: “a lack of highly spatially resolved 

historical measurement data is clearly a weakness 

for our exposure assessment.” 

Low-risk Quote: “Deaths were coded according 

to the International classification of 

Diseases, 10th Revision (ICD-10; 
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WHO 2010) including natural cause 

mortality (A00–R99), overall 

cardiovascular disease (I00–I99) and 

overall respiratory disease (J00–J47 

and J80–J99).” 

Kim et al. 2017 Moderate-

risk 

Quote: “Each individual’s exposure to air 

pollutants was determined by linking the location 

of the monitoring stations to the ZIP code of his 

or her residence.” 

Low-risk Quote: “AMI was defined as a 

hospitalization with ICD-10 codes I21 

to 23 as the primary or secondary 

diagnosis. CHF was defined based on 

discharge diagnosis (ICD-10 codes 

I11.0, I13.0, I13.2, I25.5, I42, I50, 

O90.3) after a hospitalization. Stroke 

was defined by discharge diagnosis 

(ICD-10 codes: I60–64) among 

patients who had been hospitalized 

and undergone brain imaging studies 

such as computed tomography and 

magnetic resonance imaging. Ischemic 

and hemorrhagic strokes were defined 

by ICD-10 codes I63 to 64 and I60 to 

62, respectively. Composite 

cardiovascular events were defined as 

a composite of cardiovascular death, 

AMI, CHF, and stroke.” 

Dirgawati et al. 

2019 

Moderate-

risk 

Quote: “Time spent away from home was not 

recorded, thus could be exposure 

misclassification.” 

Low-risk Quote: “Mortality and hospitalization 

data were recorded using the clinical 

modification of the ninth revision of 

the In- ternational Statistical 

Classification of Diseases (ICD-9-

CM)” 

Hanigan et al. 

2019 

Moderate-

risk 

Quote: “For NO2, we used estimated 

concentrations for 2007 from a spatial regression 

Low-risk Quote: “Mortality data from 2007 to 

2015 was extracted from the NSW 
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model using satellite and land use data (Knibbs et 

al., 2014; Knibbs et al., 2016). Knibbs et al. 

(2014) found that year to year differences were 

small for the NO2 model between 2006 and 2011 

so we assumed the 2007 data were representative 

of long-term exposures.” 

Register of Births Deaths and 

Marriages (RBDM) and linked to ‘45 

and Up Study’ participants.” 
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Table S3c 
Detailed rationale for missing data and selective reporting 
Study Missing data Rationale Selective 

reporting 
Rationale 

Lipfert et al. 2006 Moderate-risk Quote: “Sample sizes may be reduced due 

to missing ambient air quality data.” 

Low-risk No evidence of selective report. 

Hart et al. 2011 Moderate-risk Quote: “Only 81% of the cohort was 

successfully geocoded to the street level. 

However, in sensitivity analyses conducted 

in just those individuals geocoded to the 

street level, the conclusions were not 

different than those from the whole cohort” 

Comment: high proportion of missing data 

for exposure value but the result are not 

seriously biased 

Low-risk No evidence of selective report. 

Lipsett et al. 2011 Low-risk Quote: “we excluded those who...were 

missing information for continuous 

variables used in the regression models" 

Low-risk No evidence of selective report. 

Hart et al. 2013 Low-risk No missing data of either outcome or 

exposure were detected in this study. 

Low-risk No evidence of selective report. 

Eckel et al. 2016 Low-risk No missing data of either outcome or 

exposure were detected in this study. 

Low-risk No evidence of selective report. 

Turner et al. 2016 High-risk Quote: “The majority of exclusions were 

due to missing or invalid residence (n = 

385,422) or covariate (n = 130,119) data.” 

Low-risk No evidence of selective report. 

Eum et al. 2019 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

Jerrett et al. 2009 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

Chen et al. 2013 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 
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Crouse et al. 2015 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

Næss et al. 2007 Low-risk Quote: “All death certificates ........, with no 

missing cases." 

Comment: No missing data of either 

outcome or exposure were incepted in this 

study. 

Low-risk All estimates of subgroups have 

been reported. 

Beelen et al. 2008 Low-risk Quote: “The exact residential address at 

baseline was available for all study 

participants. All cohort members consented 

to participation by completing a mailed, 

self-administered questionnaire.” 

Comment: No evidence of missing data 

Low-risk No evidence of selective report. 

Fischer et al. 2015 Moderate-risk Quote: “Subjects were lost to follow-up if 

their final record in the longitudinal file 

ended before 1 January 2011 and death was 

not registered as a reason for termination.”  

Low-risk No evidence of selective report. 

Maheswaran et al. 2010 Moderate-risk Quote: “Six hundred seventy-two of the 

3320 patients moved during the study 

period, with 118 moving out of Greater 

London.....For these patients, their exposure 

was taken as the average of pollution values 

at the start and end of their follow-up 

period. For patients who had moved out of 

Greater London, pollution values could not 

be assigned to their postal code location at 

the end of their follow-up time. We 

therefore used half their follow-up time, 

censored their contribution to the study at 

that point, and used the pollution value at 

the time of stroke.” 

Low-risk No evidence of selective report. 



 

 
 

61 

Comment: High proportion of missing data 

of exposure but having method mentioned 

in the study to fix the issue 

Carey et al. 2013 Low-risk Comment: Using appropriate method to 

cope with missing value 

Low-risk No evidence of selective report. 

Tonne and Wilkinson 

2013 

Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

Halonen et al. 2016 
 

Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

Dehni et al. 2017 Moderate-risk Quote:" despite some loss to follow-up for 

more deprived groups " 

Low-risk No evidence of selective report. 

Cesaroni et al. 2013 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

Hvidtfeldt et al. 2019 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

Bentayeb et al. 2015 High-risk Quote: “Unfortunately, data on cause- 

specific mortality were not available after 

2010 to extend analyses to 2013.” 

Low-risk No evidence of selective report. 

Sanyal et al. 2018 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

de Keijzer et al. 2017 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

High-risk Comment: the data stratified by 

urban and rural areas but did not 

provide corresponding HR 

Nieuwenhuijsen et al. 

2018 

Moderate-risk Quote: “the limitations are that some 

potential confounders are missing or were 

not available on individual level, 

specifically individual level SES.” 

Low-risk No evidence of selective report. 

Beelen et al. 2014a Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk All estimates of subgroups have 

been reported. 

Beelen et al. 2014b Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 
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Dimakopoulou et al. 

2014 

Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

Katanoda et al. 2011 Low-risk Comment: Subjects with missing data were 

exclude in this study 

Low-risk No evidence of selective report. 

Yorifuji et al. 2013 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

Chen et al. 2016 Low-risk Quote: “In addition, 2743 (0.6%) with 

missing residence location detail.” 

Comment: low level of missing rate 

Low-risk No evidence of selective report. 

Yang et al. 2018 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

Kim et al. 2017 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

Dirgawati et al. 2019 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Low-risk No evidence of selective report. 

Hanigan et al. 2019 Low-risk No missing data of either outcome or 

exposure were incepted in this study. 

Moderate-risk Quote: “the results were sensitive 

to some covariates such as 

marital status, sufficient physical 

activity, area-level SES and 

missing data imputation.” 

 

 

 

Table S4. Pooled effects of subgroup analyses for per risk of bias domain when exclude high risks studies 
Domain All-cause mortality Cardiovascular mortality Respiratory mortality 

  
Studies 

(n) HR (95% CI） I2 (%) Studies 
(n) 

HR (95% CI） I2 (%) Studies 
(n) 

HR (95% CI） I2 (%) 

Confounding 15 1.11 (1.04, 1.17) 97.0 11 1.20 (1.10, 1.30) 90.2 8 1.09 (0.97, 1.22) 83.6 

Selection bias 25 1.06 (1.04, 1.08) 98.0 19 1.10 (1.05, 1.14) 99.2 16 1.05 (1.02, 1.08) 94.8 

Exposure 
assessment 26 1.06 (1.04, 1.07) 98.7 19 1.11 (1.07, 1.16)  99.2 16 1.05 (1.03, 1.09) 94.9 
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Missing data 26 1.06 (1.04, 1.08) 98.7 18 1.12 (1.07, 1.17) 99.3 15 1.06 (1.03, 1.09) 95.2 

Selective 
reporting 27 1.06 (1.04, 1.08) 98.6 20 1.11 (1.07, 1.16) 99.2 17 1.05 (1.02, 1.08) 94.6 
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