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Abstract 

 
 
 

Ordinal Support Vector Classifier for Clinical Staging of Major Depression Using 
Multimodal Imaging 

By Yujie Zhao 
 
 

Introduction: Major depressive disorder (MDD) is a highly widespread, disabling, and 

pricey illness. Diagnosis and treatment of MDD is considered as a complex problem, 

because MDD results from a comprehensive interaction of social, psychological and 

biological factors. Patients received ineffective initial treatment would have significant 

personal and social costs as well as continued suffering. Identification of biomarkers of 

MDD in neuroimaging studies is a feasible method to improve diagnostic accuracy and 

will be helpful to guide treatment selection for individual patients. This study aimed to 

provide a neurobiological support for practical MDD diagnosis model – clinical staging 

model by establishing algorithms that discriminate clinical staging subtypes using 

machine-learning methodology and define most interesting features related to MDD 

clinical staging model to improve precision of diagnosis and treatment selection for 

MDD patients.  

Methods: Three different treatment status (treatment naïve, treatment responsive 

recurrent, treatment resistant) and control group were treated as a surrogate of clinical 

stage for MDD. Two ordinal multiclass support vector classifiers (SVM) were developed 

to classify subjects into these four clinical stages using functional magnetic resonance 

imaging data and diffusion tensor imaging data comparing to two traditional multiclass 

SVM classifiers. SVM recursive feature elimination (SVM-RFE) was applied after each 

model to select most significant features in this study. 

Results: The result of cross-validation indicated that SVM models built on multimodal 

data have much better classification accuracy than those built on single neuroimaging 

modal. All-subset ordinal SVM model was more sensitive to ordinal features as well as 

similar classification accuracy compared to traditional one-to-one SVM model.  

Discussion: With the hypothesis of ordinal trend in four clinical stage, all-subset 

ordinal model is more capable of defining most interesting features related to MDD 

clinical staging model. Therefore, this model could provide a new strategy using selected 

significant features for MDD early diagnosis and patients individualized treatment 

selection.  
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1. INTRODUCTION AND REVIEW OF THE LITERATURE 

 
 

Major depressive disorder (MDD), also known simply as depression, is a common 

illness worldwide.  There are more than 300 million people of all ages suffer from 

depression all over the world. MDD affects individual’s attitude towards life and make 

person suffer greatly. Nearly 800,000 people die due to suicide every year (World 

Health Organization, 2017). Although there are many known treatments for depression, 

effectiveness of these treatments is mainly dependent of patients themselves. Because 

depression results from a complex interaction of social, psychological and biological 

factors, there are no definitive algorithms that can directly determine or predict the 

sufficient and necessary treatment for individual patients. Fewer than 40% of patients 

achieve remission with initial treatment (C. L. McGrath et al., 2013). Given the public 

health consequence of ineffective treatment, new perspectives are needed on the 

biological characteristics of depressive disorders with relationship to disease diagnosis 

and treatment strategies. Identification of biomarkers was evaluated to have an 

improvement to guide treatment (H. S. Mayberg, 2003 & R. C. Craddock, 2009). It can 

be predicted that in near future quantitative measures of brain function will be an 

essential process to establish optimal treatment for a given patient with major 

depressive disorder.  

In previous neuroimaging studies of MDD patients, biomarkers are defined with 

a direct association with improvement of a single treatment response (C. L. McGrath et 

al., 2013 & S. Haller et al., 2014). However, diagnosis and treatment of MDD is a more 

systematic and comprehensive procedure. New relationship needs to be established 
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between neurobiological features and practical diagnosis-treatment model of MDD. 

Clinical staging models have been first proposed as a reliable model for MDD diagnosis 

over two decades ago (G. A. Fava et al., 1993). It defined the extent of progression of 

disease at a time point and focused on detailed description of where a person lies 

currently along the continuum of the course of illness (P. D. McGorry et al., 2006). With 

construction and extensive research on clinical staging model, this model provided a 

strategy for development and evaluation for clinical interventions of MDD. However, 

these was little biological evidence for such classifications. 

In recent few years, there have been growing interests in use of machine learning 

methodology for analyzing neuroimaging data (F. Pereira et al., 2009 & A. Cerasa et al., 

2015 & J. R. Sato et al, 2012). Studies have shown that machine learning methods could 

mine new information from neuroimaging data comparing to traditional approaches (C. 

Chu et al, 2015). These novel methods, including classifier methods, facilitated analysis 

of high-dimensional datasets and were less sensitive to noise (I. Guyon et al, 2003).  

Support vector machine (SVM), which is the most popular multivariate machine 

learning feature selection method, has been successfully applied to neuroimaging data 

in many situations. Recent research showed SVM classifiers had several advantages over 

common univariate methods and could identify features contributes most to subject 

classification (S. R. Gunn, 1998 & A. M. Andrew, 2000). 

In this study, new extensive method based on SVM was developed to classify 

MDD patients using clinical staging model incorporating neuroimaging biomarkers. 

Functional magnetic resonance imaging (fMRI) and Diffusion tensor tractography 

imaging (DTI or DTT) were examined to distinguish significant biological features with 

association clinical staging. Establishment of multivariate classification methods that 
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can discriminate MDD stages using a combination of diffusion and functional MRI 

imaging techniques will provide a new strategy to stratify patients in order to select their 

optimal treatment at any given time point.   

 

1. METHODOLODY 

 

1.1. Study Overview 

 

In this study, three treatment status (treatment naïve, treatment responsive 

recurrent, treatment resistant) and control group were treated as a surrogate of clinical 

stage for MDD and assumed that these four stages have intrinsic ordinal trend from the 

slightest to the severest on MDD status. Multiclass SVM classifiers were trained to 

classify individual subjects into four different stages of MDD using functional magnetic 

resonance imaging data and diffusion tensor imaging data and selected most significant 

features related to this ordinal clinical staging models. 

 

1.2. Objectives 

 

This study considered two objectives: to develop algorithms that discriminate 

stage subtypes using multimodal neuroimaging data and to define neurobiological 

biomarkers of MDD staging modal.   

 

1.2.1. Objective 1: To Train Multiclass Classifiers for Four 
Ordinal Groups of Outcome 
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Given that SVM method is a binary classifier, there is no ideal SVM-based 

methods for multiclass classification (S. R. Gunn, 1998). In this research, two extensive 

multiclass SVM classifier was developed based on ordinal hypothesis of MDD clinical 

stages comparing two traditional multiclass approaches. New approaches focused on 

ordinal features and provided comparable prediction accuracy considering ordinal 

clinical stages. 

 

2.2.2. Objective 2: To Define Most Significant Features Related 
to Four-Group Classification 

 

Feature selection are generally including two different processes, filter methods 

and wrapper methods (I. Guyon et al., 2002). Filter methods treat feature selection as a 

preprocessing step and remove features based on some criterion. Wrapper methods 

consider feature selection as an optimization problem and select features with minimal 

prediction error.  In this study, univariate ANOVA, commonly used filter method, was 

used to test correlation between each feature and outcome and selection features by a 

threshold. Then multiclass SVM classifiers recursive feature elimination method, a 

nested iterative wrapper based method, was utilized to find feature subset with minimal 

prediction error. Finally, since I trained four multiclass SVM classifiers in our analysis, I 

compared feature subsets selected by all four models and ordinal characteristic of 

selected features. 

 

2.3. Statistical learning methods 

 

2.3.1. Support Vector Machine (SVM) 
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Support vector classification is a statistical learning theory to solve binary 

classification problems. Given a dataset with N observation each of p input features, 

SVM classification maps every observation into a point of p-dimensional hyperspace 

and performs a hyperplane in this hyperspace to discriminate all observations into two 

classes with the maximal distance between the hyperplane and the nearest observation 

in either class. In detail, for 𝑋 ∈ 𝑅𝑝 with corresponding class labels 𝑦 ∈ {−1,1}, SVM 

define a hyperplane 

𝑦(𝑋) =  𝑤𝑇𝑋 + 𝑏 

Where the parameter 𝑤 is the normal vector to the hyperplane and 
𝑏

‖𝑤‖
 determines the 

offset of the hyperplane from the origin along the normal vector 𝑤. The distance 

between two hyperplanes 

𝑤𝑇𝑋 + 𝑏 = 1 𝑎𝑛𝑑 𝑤𝑇𝑋 + 𝑏 =  −1 

is 
2

‖𝑤‖
, which is called ‘margin’. To maximize the margin, the hyperplane is determined 

by solving the convex quadratic programming optimization problem 

min 𝐶 ∑ 𝜉𝑖 +

𝑖

1

2
‖𝑤‖2 

Subject to 

𝑦𝑖(𝑤𝑇𝑋 + 𝑏) ≥ 1 − 𝜉𝑖  

𝜉𝑖 ≥ 0  

Where 𝜉𝑖 is the distance of the 𝑖𝑡ℎ misclassified observation from its correct side of the 

margin and the box constraint 𝐶 > 0  controls the degree to which the misclassified data 

points affect the solution. This problem is solved by adding Lagrange multipliers to 
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obtain its dual problem. However, more specific details will not be discussed in this 

work. Once this hyperplane is determined, a classification rule induced is 

𝑦(𝑋) =  𝑠𝑖𝑔𝑛(𝑤𝑇𝑋 + 𝑏) 

The performance of SVM is evaluated by cross validation, which will be described below. 

 

2.3.2. Multiclass SVM 

 

SVM is a binary classifier only works for two-class classification. There are two 

traditional approaches for multiclass classification based on SVM methods as following 

(A. Govada, 2015).  

1) One versus One: Every binary classifier is built to differentiate between each 

pair of two classes, while discarding the rest of the classes, which requires constructing 

N(N-1)/2 binary classifiers.  When testing a new object, a voting is performed among the 

classifiers and the class, and the classifier with the maximum output will be considered 

as the best choice.   

2) One versus All: This simple approach is to decompose the problem of 

classifying N classes into N binary problems, where each problem differentiates a class 

versus all other classes. In this approach, I require N binary classifiers, where the Kth 

classifier is trained with positive examples belonging to class K and negative examples 

belonging to the other N-1 classes. When to predict a new test subject, the classifier with 

the maximum output is considered as the best choice, and the corresponding class label 

is assigned to that test object.  

Following are ordinal methods I am working on.  
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1) In this study, as groups of outcomes have ordinal scale, one intuitive thought is 

to use an ordinal SVM method. This problem can be decomposed into N-1 binary 

problems, where the 𝐾𝑡ℎ classifier is trained with positive examples belong to class 1 to 

class K and negative examples belong to class K+1 to class N. When to test a new object 

by these N-1 binary classifiers, the results will become a list of numbers, positive means 

it belongs to positive group in this binary classifier and negative means it belongs to 

negative group in this binary classifier. I find the first number S that number in 𝑆𝑡ℎ 

position and (𝑆 + 1)𝑡ℎ position is different, and last number T that number in 𝑇𝑡ℎ 

position and (𝑇 + 1)𝑡ℎposition are different. This object is thought belonging to an open 

set between group S and group T+1.  

2) For more precise results, I consider an iteration for ordinal SVM method 

showed above. As this is a N-class classification problem, I tried my algorithm as 

following. For every K in (1, 2, 3, …, N), I choose every possible combination of K groups 

from N groups and run ordinal SVMs to get results of open sets. Then I combine all 

results together to find out the group that this new object has the highest probability to 

be located in. 

In this study, the model I am most interested in is all-subset ordinal model. I 

performed comparisons among all four model, especially the comparison between all-

subset ordinal model and most common-used multiclass SVM method – one to one 

model. 

 

2.3.3. SVM Recursive Feature Elimination (SVM-RFE) 
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SVM Recursive Feature Elimination (SVM-RFE) is commonly used method in 

genetics to find out the most significant genes based on SVM method (I. Guyon, 2002). 

It’s a stepwise feature selection method using weight magnitude of SVM as ranking 

criterion. 

When using SVM classification, a hyperplane 𝑤𝑇𝑋 + 𝑏 = 0 is generated to 

separate two classes of objects into largest marginal distance. This weight vector 𝑤 =

 ∑ 𝛼𝑖𝑌𝑖𝑋𝑖  is also trained to decide the weight of each features in SVM model (X. Zhou, 

2007). Intuitively, those features with the largest weights 𝑤2 is believed most 

significant.  The SVM-RFE method is an iteration training a SVM classifier by using 𝑋, 𝑌 

and selecting the lowest absolute value in 𝜔, then recording its feature index, removing 

this feature from 𝑋, and starting to train a new SVM classifier. The result of this 

iteration is a feature rank list and most interesting features can be selected in this list. 

This method works for a single SVM classifier. To implement to multiclass SVM, I 

grade every feature in feature rank list, sum up their grade for all binary classifiers and 

sort these features based on their grade. 

 

2.3.4. Cross-validation 

 

In the study, I ran 10-fold cross-validation for 100 times. In detail, I partitioned 

objects into 10 groups, each round of cross-validation I trained multiclass SVM models 

based 9 groups and used the last group to validate my result. This process was repeated 

10 times (10 folds) in a round. And I did 100 rounds of cross validation by using 

different partitions. Accuracy was evaluated by the mean proportion of objects classified 

into correct group. 
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2.4. Simulation Study 

 

At first, 80 datasets were generated (4 settings by 20 replicates in each setting), 

and each dataset has 400 observations (100 observations in each group) multiplied by 

50 features. Every dataset 𝑋 is trained as following, 

𝑋 =  𝜔 ∙ 𝛽 + 𝜀, 𝜔 = (

𝜔1
𝜔2

𝜔3
𝜔4

)  ,   𝛽 = (𝛽1 𝛽2),   𝜀 ~ 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝛴)  

Here dataset 𝑋 is a 400 by 50 matrix, each row represents an observation and 

each column represents a feature. 𝜔 is a 400 by 1 vector showing the setting of ordinal 

scale observations on all these features, so I used four numbers {𝜔1, 𝜔2, 𝜔3, 𝜔4} indicating 

means of every feature in four groups and each number was duplicated 100 times 

because of the number of observations in each group. There are 4 different settings. 

First is linear using {1, 2, 3, 4}; second is ordered but not linear using four sorted 

random number between 1 and 4; third is not ordered using four random number 

between 1 and 4; last is combination of all above using one-third of feature from first 

setting, one-third from second setting and one-third from third setting. 𝛽 is a 1 by 50 

vector representing characteristic of features. It can be separated into two parts  

(𝛽1, 𝛽2), where 𝛽1~𝑁(0, 𝛴) means all the features in 𝛽1 is related to our outcome and 

𝛽2 = 0 means features in  𝛽2 is not related to our outcome. In this simulation, I chose 6, 

12, 18, 24, respectively as number of features associated with our outcome. ε is noise, 

generated by Normal distribution. At last, all datasets were standardized to Z-score. Our 

outcome Y is a 400 by 1 vector, and I used {1,2,3,4} as the class label of each group. 
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2.5. Experimental  Study 

 

2.5.1. Dataset 

 

In this study, I got functional magnetic resonance imaging (fMRI) and diffusion 

tensor tractography imaging (DTI or DTT) dataset with our features of interest the 

connectivity between different regions in brain. These datasets were obtained from 

patients in three major depressive disorder (MDD) treatment status (treatment-naïve, 

treatment responsive-recurrent and treatment-resistant) as well as control group. In 

terms of severity of depression, I assumed there is an order, objects in control group 

(CON) have the slightest MDD status; objects in treatment naïve group (CIDAR) have a 

slighter MDD status; objects in treatment responsive recurrent group (R01) have a 

severer MDD status; and objects in treatment resistant group (DBS) have the severest 

MDD status. Since the exact gradient of four ordinal MDD status wasn’t clarified, I set 

value of {1,2,3,4} as the outcome of CON, CIDAR, R01, DBS group.  

In our datasets, connectivity between 85 different brain regions were presented. 

fMRI dataset for every object is a Z-score 85 by 85 correlation matrix. Since this matrix 

was symmetric, I treated every cell in upper triangular matrix as a feature, and there 

were totally 85*84/2 = 3570 features. DTI dataset for every subject was an 85 by 85 

matrix, and each cell was the number of streamlines that are not rejected from row 

region to column region. In every cell the proportion of streamlines in its row was 

calculated and this proportion of streamlines from row region to column region and that 

from column region to row region were averaged and treated as a feature. Like fMRI 
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data, DTI data also had 85*84/2 = 3570 features. As there were many zero in DTI data, 

logit transformation was not proper for this dataset. For using multimodal data, I 

directly combined fMRI and DTI data together, so the number of feature in multimodal 

dataset was 2*3570 = 7140. 

 

2.5.2. Screening 

 

Univariate ANOVA was used to compute correlation coefficient between every 

feature and outcome. Features with P-value < 0.2 was retained for further feature 

selection step. fMRI and DTI data selected were combined as our final dataset. 

 

3. RESULTS 

 

3.1. Simulation Study 

 

3.1.1. Classification Accuracy 

 

Table1   Mean classification accuracy of cross-validation for 4 models and 4 feature settings 

6 of 50 features 

are related to 

outcome 

Feature settings 

Linear Feature Ordinal, not linear 

Feature 

Not ordinal 

Feature 

Combined 

Feature 

One to one 0.6263 0.5258 0.5259 0.6349 

One to all 0.5779 0.5109 0.4998 0.6256 

Ordinal 0.6444 0.5477 0.4001 0.6365 

All-subset ordinal 0.6387 0.5445 0.5081 0.6496 

     

12 of 50 features 

are related to 

outcome 

Feature settings 

Linear Feature Ordinal, not linear 

Feature 

Not ordinal 

Feature 

Combined 

Feature 
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One to one 0.7831 0.6035 0.6554 0.7824 

One to all 0.6641 0.5552 0.6019 0.7470 

Ordinal 0.7883 0.6162 0.4766 0.7807 

All-subset ordinal 0.7869 0.6140 0.6185 0.7933 

     

18 of 50 features 

are related to 

outcome 

Feature settings 

Linear Feature Ordinal, not linear 

Feature 

Not ordinal 

Feature 

Combined 

Feature 

One to one 0.8627 0.7342 0.6511 0.8525 

One to all 0.7036 0.6403 0.5876 0.7927 

Ordinal 0.8632 0.7413 0.4618 0.8405 

All-subset ordinal 0.8627 0.7402 0.6067 0.8531 

     

24 of 50 features 

are related to 

outcome  

Feature settings 

Linear Feature Ordinal, not linear 

Feature 

Not ordinal 

Feature 

Combined 

Feature 

One to one 0.8878 0.7069 0.6946 0.9064 

One to all 0.7092 0.6221 0.6043 0.8381 

Ordinal 0.8884 0.7164 0.5015 0.8960 

All-subset ordinal 0.8881 0.7164 0.6571 0.9070 

 

The results of cross-validation in Table 1 showed that in linear and ordinal 

feature setting, all-subset ordinal SVM methods had a similar accuracy as one to one 

method. In not ordinal situation, original ordinal method didn’t work very good, 

however, all-subset ordinal SVM had a comparable results as one-to-one method. In 

most conditions, one-to-all method was not a good choice. 

When the number of features related to outcome increased (compared rows in 

figure 1), the accuracy of cross-validation in all four models also increased. This result 

indicated that SVM models were quite sensitive for pre-step of feature selection, and 

additional screening step should be added for real data analysis before utilizing SVM 

models. 
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Figure 1   Boxplots for four different number {6, 12, 18, 24} of related features are presented by rows 

and four different feature settings {linear, ordinal not linear, not ordinal, combined} are presented by 

columns. In each plot, results of four multiclass SVM {One to one, One to all, Ordinal, All subset ordinal} 

are presented in order. 

 

3.1.2. Classification Accuracy 

 

Because some of features were generated with association to outcome, I 

considered these features were most significant features that I needed while the other 

features were treated to be unrelated to outcome. I calculated the proportion whether 

these significant features were selected from feature space by SVM-RFE. For example, 

for datasets with 6 significant features and 44 unrelated features, I counted the 



P a g e  | 14 

 

proportion of these 6 features presented in the top 6 significant elements of feature 

space generated by SVM-RFE. 

 

Table 2  Proportion that significant features are selected in feature subset by SVM-RFE on condition of 

four feature settings  

6 of 50 features 

are related to 

outcome 

Feature settings 

Linear Feature Ordinal, not linear 

Feature 

Not ordinal 

Feature 

Combined 

Feature 

One to one 0.7917 0.6444 0.6056 0.7306 

One to all 0.6542 0.5583 0.5542 0.6292 

Ordinal 0.8722 0.7889 0.4667 0.7333 

All-subset ordinal 0.8422 0.7265 0.5520 0.7294 

     

12 of 50 features 

are related to 

outcome 

Feature settings 

linear Feature Ordinal, not linear 

Feature 

Not ordinal 

Feature 

Combined 

Feature 

One to one 0.7708 0.6833 0.6764 0.7069 

One to all 0.6333 0.6125 0.6229 0.6250 

Ordinal 0.8333 0.7722 0.6472 0.7694 

All-subset ordinal 0.8064 0.7324 0.6539 0.7348 

     

18 of 50 features 

are related to 

outcome 

Feature settings 

Linear Feature Ordinal, not linear 

Feature 

Not ordinal 

Feature 

Combined 

Feature 

One to one 0.8287 0.7602 0.7944 0.7870 

One to all 0.7361 0.6931 0.7264 0.7194 

Ordinal 0.8574 0.8278 0.7685 0.8093 

All-subset ordinal 0.8523 0.7938 0.7791 0.7997 

     

24 of 50 features 

are related to 

outcome  

Feature settings 

Linear Feature Ordinal, not linear 

Feature 

Not ordinal 

Feature 

Combined 

Feature 

One to one 0.8438 0.7792 0.7708 0.8056 

One to all 0.7677 0.7135 0.7167 0.7427 

Ordinal 0.8778 0.8264 0.7347 0.8278 

All-subset ordinal 0.8659 0.8083 0.7475 0.8167 

 

According to results in Table 2, it showed that for those linear and ordinal 

features, ordinal SVM methods had higher proportion to select these features from 
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datasets than traditional methods. However, ordinal SVM model could only select the 

lowest proportion non-ordinal features and in combined feature settings, the result of 

this model was similar to result from one to one model. 

All-subset ordinal SVM model is what I am interested in. This model got a good 

chance to select linear and ordinal features, just a little lower than ordinal SVM model, 

and also a good result to select non-ordinal features which was much better than ordinal 

method. Compared to one to one model, this all-subset ordinal model still had an 

advantage in ordinal feature selection and a disadvantage in non-ordinal selection. I will 

discuss this further in discussion section. 

 

3.2. Experimental Study 

3.2.1. Screening 

 

 

Figure 2    histogram of feature correlation between real data and clinical stage 

 

In all 3570 features of fMRI and DTT data, the correlation between feature and 

clinical stage is showed in Figure 2. There are 1456 (40.8%) features in DTT dataset and 
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1313 (36.8%) features in fMRI dataset have P-value < 0.2. There are 961 (26.9%) 

features in DTT dataset and 878 (24.6%) features in fMRI dataset have P-value < 0.1. 

There are 616 (17.3%) features in DTT dataset and 605 (16.9%) features in fMRI dataset 

have P-value < 0.05. 

 

3.2.2. Classification Accuracy 

 

There was not much difference in mean accuracy when I chose univariate 

ANOVA P-value = 0.2 or 0.1 or 0.05 as screening threshold see in Figure 3. The mean 

accuracy didn’t increase when screening threshold decreased. In this study, I chose 0.2 

as my threshold for further feature selection.  

Results in Table 3 also indicated that ordinal model didn’t work very well in fMRI 

data, giving that ordinal model are in favor of ordinal features, it showed in fMRI data 

ordinal features are not dominated. In the other side, the mean accuracy of ordinal 

method in DTI data is high against one to one model. So there are probably more 

ordinal features in DTI dataset. The result in multimodal dataset was much higher than 

the other two groups. Owing that the number of features in multimodal dataset was the 

combination of fMRI and DTI dataset, this result couldn’t directly show the advantage 

of multimodal method. However, compared to fMRI and DTI dataset separately, it is 

certain that multimodal data could receive a better prediction accuracy in MDD clinical 

staging. 
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Figure 3    Prediction accuracy of Cross Validation for fMRI data, DTT data and multimodal data are 

presented by rows after screening. In each plot, results of four multiclass SVM {One to one, One to all, 

Ordinal, All subset ordinal} are presented in order. 

Table 3    Mean prediction accuracy of Multiclass SVM Cross-Validation in 100 times 

fMRI One to one One to all Ordinal All-subset Ordinal 

P<0.2 0.7841 0.7714 0.6670 0.7412 

P<0.1 0.8006 0.8029 0.6792 0.7494 

P<0.05 0.7824 0.7846 0.6616 0.7309 

     

DTT One to one One to all Ordinal All-subset Ordinal 

P<0.2 0.5789 0.5515 0.5876 0.5856 

P<0.1 0.6151 0.5575 0.5886 0.6228 

P<0.05 0.6290 0.5676 0..5673 0.6141 

     

Multimodal One to one One to all Ordinal All-subset Ordinal 

P<0.2 0.8915 0.8681 0.8209 0.8661 

P<0.1 0.8798 0.8644 0.8316 0.8620 

P<0.05 0.8901 0.8480 0.8366 0.8631 
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3.2.3. Significant Features selection 

 

In each SVM model, a 100-feature subset was generated by SVM-RFE and these 

100 features were considered the most significant features selected by these models (see 

graph of feature lists in Appendix Figure 1). With the hypothesis that there is an ordinal 

trend in MDD staging, I am very interested in ordinal data among groups. I compared 

the mean value of selected features among groups and Table 4 shows the numbers of 

ordinal features in top 50 significant features. The feature selected in four models were 

very different, it’s more likely to select ordinal features in ordinal model and all-subset 

model than one to one model. These results should be double-checked by its clinical 

significance. 

In this study, I compared results from fMRI data, DTI data and their 

combination. Results indicated the classification accuracy of fMRI data is better than 

that of DTI data. Among top 200 significant features selected in multimodal data 

showed in Table 5, most features are from fMRI, which means fMRI data are more 

sensitive to MDD staging model. 

Table 4   Number of ordinal features in top 50 significant features selected by four models  

 One to one One to all Ordinal All-subset 

fMRI 1 2 21 17 

DTI 13 7 24 17 

Multimodal 3 2 21 15 

 

Table 5   Number of features from fMRI data and DTI data in top 200 significant features selected by four 

models in multimodal dataset 

 One to one One to all Ordinal All-subset 

fMRI 171 191 144 142 

DTI 29 9 56 58 

Multimodal 200 200 200 200 
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4. DISCUSSION 

 

Although many clinical staging models of major depression have been proposed 

in recent papers, there were few studies focusing on the relationship between 

neurobiological markers and these classification models. However, development of 

biomarkers that can be used to identify MDD progression is still an important clinical 

goal for patients’ early diagnose and individualized treatment selection. The purpose of 

this report was to define neurobiological biomarkers of major depressive disorder 

clinical staging using multimodal neuroimaging dataset. It’s a new perspective to utilize 

machine learning analyses on multimodal data to identify brain networks contributed 

most to stage classifications. Multiple multiclass SVM classifiers were applied to 

neuroimaging data in the classification of MDD, including two traditional methods one-

to-one model and one-to-all model as well as two novel algorithms developed in this 

study ordinal model and all-subset ordinal model. Results showed that classification 

accuracy of multimodal data was higher than both ordinal model and all-subset ordinal 

model have higher chance to identify ordinal features and all-subset ordinal model had 

a quite good cross-validation result compared to one-to-one model. Classification 

accuracy of multimodal data was much better than results from fMRI and DTI data 

separately.  

Support vector machine is a supervised machine learning algorithm, which 

means it needs an output value in every observation for classification. In this study, 

there is a hypothesis that four group of MDD patients (control group, treatment naïve 

group, treatment responsive recurrent group and treatment resistant group) have a 
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trend in severity, and I set label value as the outcome of these four groups. further 

research could treat MDD clinical episodes of patients as new outcome, which is 

probably more accurate than label value used here. Additionally, if this hypothesis needs 

to be verified, an unsupervised machine learning algorithm should be applied to 

datasets, because unsupervised machine learning algorithms, for example clustering 

and Gaussian mixture models, can draw inferences without outcome.  

In this study, four different SVM models were applied to same datasets. Ordinal 

methods and All-subset ordinal methods were two models built for selecting ordinal 

features. However, these two models were similar to one-to-one model and one-to-all 

model. All models divided a multiclass classification problem into several binary 

classification problems. These models are combinations of local optimization problems 

rather than a single global optimization problem. Ordinal models and All-subset models 

which had restrictions that only evaluate ordinal separations are reliable to get a result 

not good as one-to-one model. Therefore, more multiclass SVM models, especially those 

use global optimizations, could be utilized in our study to improve classifications results. 

Although those methods developed in recent research still have problems in 

computation complexity, it is feasible to extend these models into ordinal form for 

ordinal feature selection.    
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APPENDICES 

Figure 1.1.1 – 1.12.1 are graphs I generated based on top 100 significant features. 

First 4 graphs are results of fMRI dataset with One-vs-one method, One-vs-all method, 

Ordinal method and All-subset Ordinal method. Next 4 graphs are results of DTT 

dataset with One-vs-one method, One-vs-all method, Ordinal method and All-subset 

Ordinal method and Last 4 graphs results of Multimodal dataset with One-vs-one 

method, One-vs-all method, Ordinal method and All-subset Ordinal method.  

Table 1.1 – 1.12 are regions with most frequency in top 100 significant features. 

Figure 1.1.2 – 1.12.2 are plot of mean and standard error of top 50 significant 

features in four groups 
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Figure 1.1.1   Graph of top 100 significant features in fMRI data selected by one to one SVM model 

 

Table 1.1   Regions with most frequency in top 100 significant features in fMRI data 

     fMRI one to one 

     Region     Frequency in Top 100 edges 

    'Right-Caudate' 

    'Left-Thalamus-Proper' 

    'Right-Putamen' 

    'Right-Thalamus-Proper' 

    'Right-Pallidum' 

    'ctx-lh-cuneus' 

    'ctx-rh-bankssts' 

    'ctx-lh-superiorparietal' 

    'ctx-rh-superiortemporal' 

    'Left-Putamen' 

    'Brain-Stem' 

    'Left-Hippocampus' 

    'ctx-lh-isthmuscingulate' 

    'ctx-lh-parahippocampal' 

    'ctx-rh-cuneus' 

    'ctx-rh-inferiorparietal' 

    'Left-Caudate' 

    'ctx-lh-entorhinal' 

    'ctx-lh-middletemporal' 

    'ctx-lh-paracentral' 

    20 

    13 

     9 

     8 

     8 

     7 

     6 

     5 

     5 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     3 

     3 

     3 

     3 
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Figure 1.1.2   Plot of top 50 significant features in fMRI data selected by one to one method 
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Figure 1.2.1   Graph of top 100 significant features in fMRI data selected by one to all SVM model 

 

Table 1.2   Regions with most frequency in top 100 significant features in fMRI data 

     fMRI one to all  

     Region     Frequency in Top 100 edges 

    'Right-Caudate' 

    'Left-Thalamus-Proper' 

    'Right-Pallidum' 

    'Right-Thalamus-Proper' 

    'Right-Putamen' 

    'Left-Accumbens-area' 

    'Left-Hippocampus' 

    'Left-Amygdala' 

    'Right-Hippocampus' 

    'ctx-lh-middletemporal' 

    'ctx-rh-rostralmiddlefrontal' 

    'Left-Caudate' 

    'Left-Pallidum' 

    'Brain-Stem' 

    'Left-VentralDC' 

    'Right-Accumbens-area' 

    'Right-VentralDC' 

    'ctx-rh-inferiorparietal' 

    'ctx-rh-lingual' 

    'Left-Putamen' 

    15 

    11 

     9 

     8 

     8 

     7 

     6 

     6 

     5 

     5 

     5 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     3 
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Figure 1.2.2   Plot of top 50 significant features in fMRI data selected by one to all method 
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Figure 1.3.1   Graph of top 100 significant features in fMRI data selected by ordinal SVM model 

 

Table 1.3   Regions with most frequency in top 100 significant features in fMRI data 

     fMRI ordinal SVM model  

     Region     Frequency in Top 100 edges 

    'Left-Hippocampus' 

    'ctx-rh-parstriangularis' 

    'Left-Pallidum' 

    'Brain-Stem' 

    'Right-Putamen' 

    'Right-Pallidum' 

    'Right-Amygdala' 

    'ctx-lh-middletemporal' 

    'ctx-lh-rostralanteriorcingulate' 

    'ctx-rh-entorhinal' 

    'Left-Putamen' 

    'ctx-lh-superiorparietal' 

    'ctx-lh-superiortemporal' 

    'ctx-lh-insula' 

    'ctx-rh-medialorbitofrontal' 

    'ctx-rh-precuneus' 

    'Left-Thalamus-Proper' 

    'Left-Amygdala' 

    'Left-VentralDC' 

    'Right-Caudate' 

     6 

     6 

     5 

     5 

     5 

     5 

     5 

     5 

     5 

     5 

     4 

     4 

     4 

     4 

     4 

     4 

     3 

     3 

     3 

     3 
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Figure 1.3.2   Plot of top 50 significant features in fMRI data selected by ordinal method 
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Figure 1.4.1   Graph of top 100 significant features in fMRI data selected by all-subset ordinal model 

 

Table 1.4   Regions with most frequency in top 100 significant features in fMRI data 

     fMRI all-subset ordinal  

     Region     Frequency in Top 100 edges 

    'Right-Caudate' 

    'ctx-rh-parstriangularis' 

    'ctx-lh-transversetemporal' 

    'ctx-rh-rostralanteriorcingulate' 

    'Left-Thalamus-Proper' 

    'Brain-Stem' 

    'Left-Hippocampus' 

    'Right-Putamen' 

    'ctx-lh-cuneus' 

    'ctx-lh-parstriangularis' 

    'ctx-lh-insula' 

    'ctx-rh-bankssts' 

    'ctx-rh-medialorbitofrontal' 

    'Right-Pallidum' 

    'Right-VentralDC' 

    'ctx-lh-entorhinal' 

    'ctx-lh-paracentral' 

    'ctx-lh-rostralanteriorcingulate' 

    'ctx-lh-superiortemporal' 

    'ctx-lh-temporalpole' 

     8 

     7 

     6 

     6 

     5 

     5 

     5 

     5 

     5 

     5 

     5 

     5 

     5 

     4 

     4 

     4 

     4 

     4 

     4 

     4 
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Figure 1.4.2   Plot of top 50 significant features in fMRI data selected by all-subset method 
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Figure 1.5.1   Graph of top 100 significant features in DTI data selected by one to one model 

 

Table 1.5   Regions with most frequency in top 100 significant features in DTI data 

     DTT one to one  

     Region     Frequency in Top 100 edges 

    'ctx-lh-cuneus' 

    'Left-Caudate' 

    'ctx-rh-lateralorbitofrontal' 

    'Brain-Stem' 

    'Left-VentralDC' 

    'Right-Caudate' 

    'ctx-lh-middletemporal' 

    'ctx-lh-rostralmiddlefrontal' 

    'ctx-rh-rostralmiddlefrontal' 

    'Left-Amygdala' 

    'Right-Pallidum' 

    'Right-Thalamus-Proper' 

    'Right-Putamen' 

    'ctx-lh-caudalmiddlefrontal' 

    'ctx-lh-lateralorbitofrontal' 

    'ctx-lh-lingual' 

    'ctx-lh-precentral' 

    'ctx-rh-rostralanteriorcingulate' 

    'ctx-rh-frontalpole' 

    'Left-Thalamus-Proper' 

     8 

     7 

     7 

     6 

     6 

     6 

     6 

     6 

     6 

     5 

     5 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     3 
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Figure 1.5.2   Plot of top 50 significant features in DTI data selected by one to one method 
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Figure 1.6.1   Graph of top 100 significant features in DTI data selected by one to all model 

 

Table 1.6   Regions with most frequency in top 100 significant features in DTI data 

     DTT one to all  

     Region     Frequency in Top 100 edges 

    'Left-Putamen' 

    'Left-Amygdala' 

    'Right-Caudate' 

    'Left-Thalamus-Proper' 

    'Left-Caudate' 

    'Brain-Stem' 

    'Left-VentralDC' 

    'Right-Pallidum' 

    'Right-VentralDC' 

    'ctx-lh-lateraloccipital' 

    'ctx-lh-lateralorbitofrontal' 

    'ctx-lh-parstriangularis' 

    'ctx-rh-lateralorbitofrontal' 

    'Left-Pallidum' 

    'Left-Hippocampus' 

    'Right-Putamen' 

    'Right-Hippocampus' 

    'Right-Amygdala' 

    'ctx-lh-cuneus' 

    'ctx-lh-rostralmiddlefrontal' 

     8 

     8 

     7 

     6 

     6 

     6 

     5 

     5 

     5 

     5 

     5 

     5 

     5 

     4 

     4 

     4 

     4 

     4 

     4 

     4 
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Figure 1.6.2   Plot of top 50 significant features in DTI data selected by one to all method 
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Figure 1.7.1   Graph of top 100 significant features in DTI data selected by ordinal model 

 

Table 1.7   Regions with most frequency in top 100 significant features in DTI data 

     DTT ordinal  

     Region     Frequency in Top 100 edges 

    'ctx-lh-parsorbitalis' 

    'ctx-lh-rostralmiddlefrontal' 

    'Left-Caudate' 

    'ctx-lh-lateraloccipital' 

    'ctx-rh-caudalmiddlefrontal' 

    'ctx-rh-rostralmiddlefrontal' 

    'Left-Amygdala' 

    'Left-VentralDC' 

    'Right-Caudate' 

    'Right-Pallidum' 

    'ctx-lh-cuneus' 

    'ctx-lh-superiortemporal' 

    'Left-Hippocampus' 

    'Right-Putamen' 

    'ctx-lh-middletemporal' 

    'ctx-lh-parsopercularis' 

    'ctx-lh-parstriangularis' 

    'ctx-lh-supramarginal' 

    'ctx-rh-fusiform' 

    'Brain-Stem' 

     7 

     7 

     6 

     6 

     6 

     6 

     5 

     5 

     5 

     5 

     5 

     5 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     3 
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Figure 1.7.2   Plot of top 50 significant features in DTI data selected by ordinal method 
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Figure 1.8.1   Graph of top 100 significant features in DTI data selected by all-subset model 

 

Table 1.8   Regions with most frequency in top 100 significant features in DTI data 

     DTT all-subset ordinal  

     Region     Frequency in Top 100 edges 

    'Left-Caudate' 

    'Right-Caudate' 

    'ctx-lh-cuneus' 

    'ctx-lh-parsorbitalis' 

    'ctx-lh-rostralmiddlefrontal' 

    'ctx-rh-lateralorbitofrontal' 

    'Left-VentralDC' 

    'ctx-lh-superiortemporal' 

    'ctx-lh-frontalpole' 

    'ctx-rh-rostralanteriorcingulate' 

    'Left-Amygdala' 

    'Right-Putamen' 

    'ctx-lh-lateraloccipital' 

    'ctx-lh-parsopercularis' 

    'ctx-rh-caudalmiddlefrontal' 

    'ctx-rh-medialorbitofrontal' 

    'ctx-rh-rostralmiddlefrontal' 

    'ctx-rh-superiorfrontal' 

    'ctx-rh-superiorparietal' 

    'ctx-rh-frontalpole' 

     6 

     6 

     6 

     6 

     6 

     6 

     5 

     5 

     5 

     5 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     4 
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Figure 1.8.2   Plot of top 50 significant features in DTI data selected by all-subset method 
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Figure 1.9.1   Graph of top 100 significant features in multimodal data selected by one to one model 

 

Table 1.9   Regions with most frequency in top 100 significant features in multimodal data 

     Multimodal one to one (fMRI features are in blue, DTT features are in red) 

     Region     Frequency in Top 100 edges 

    'Right-Caudate' 

    'Left-Thalamus-Proper' 

    'Left-Caudate' 

    'Right-Thalamus-Proper' 

    'Left-Putamen' 

    'Brain-Stem' 

    'ctx-rh-superiortemporal' 

    'Left-Amygdala' 

    'Right-Pallidum' 

    'ctx-rh-cuneus' 

    'ctx-rh-superiorparietal' 

    'Left-Pallidum' 

    'Right-Putamen' 

    'ctx-lh-cuneus' 

    'ctx-lh-transversetemporal' 

    'ctx-lh-insula' 

    'ctx-rh-bankssts' 

    'ctx-rh-inferiorparietal' 

    'ctx-rh-isthmuscingulate' 

    'Left-Hippocampus' 

    22 

    16 

     8 

     8 

     6 

     6 

     6 

     5 

     5 

     5 

     5 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     3 
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Figure 1.9.2   Plot of top 50 significant features in multimodal data selected by one to one method 
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Figure 1.10.1   Graph of top 100 significant features in multimodal data selected by one to all model 

 

Table 1.10   Regions with most frequency in top 100 significant features in multimodal data 

     Multimodal one to all (fMRI features are in blue, DTT features are in red) 

     Region     Frequency in Top 100 edges 

    'Left-Thalamus-Proper' 

    'Right-Thalamus-Proper' 

    'Left-Caudate' 

    'Brain-Stem' 

    'Left-Amygdala' 

    'Left-Accumbens-area' 

    'Left-Putamen' 

    'Left-Pallidum' 

    'Left-Hippocampus' 

    'ctx-rh-cuneus' 

    'ctx-rh-middletemporal' 

    'Left-VentralDC' 

    'ctx-rh-inferiorparietal' 

    'ctx-rh-lateraloccipital' 

    'Right-Caudate' 

    'Right-VentralDC' 

    'ctx-lh-cuneus' 

    'ctx-lh-lateraloccipital' 

    'ctx-lh-precentral' 

    'ctx-lh-superiorparietal' 

    19 

    12 

    10 

    10 

     7 

     7 

     6 

     6 

     5 

     5 

     5 

     4 

     4 

     4 

     3 

     3 

     3 

     3 

     3 

     3 
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Figure 1.10.2   Plot of top 50 significant features in multimodal data selected by one to all method 
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Figure 1.11.1   Graph of top 100 significant features in multimodal data selected by ordinal model 

 

Table 1.11   Regions with most frequency in top 100 significant features in multimodal data 

     Multimodal ordinal (fMRI features are in blue, DTT features are in red) 

     Region     Frequency in Top 100 edges 

    'Right-Pallidum' 

    'Left-Amygdala' 

    'Left-Thalamus-Proper' 

    'Brain-Stem' 

    'ctx-lh-caudalmiddlefrontal' 

    'ctx-lh-lateralorbitofrontal' 

    'ctx-lh-medialorbitofrontal' 

    'ctx-rh-parstriangularis' 

    'Left-Accumbens-area' 

    'Right-Thalamus-Proper' 

    'Right-Hippocampus' 

    'ctx-lh-bankssts' 

    'ctx-lh-isthmuscingulate' 

    'ctx-lh-middletemporal' 

    'ctx-lh-rostralanteriorcingulate' 

    'ctx-rh-bankssts' 

    'ctx-rh-inferiorparietal' 

    'ctx-rh-precuneus' 

    'ctx-rh-temporalpole' 

    'Left-Putamen' 

     8 

     7 

     6 

     6 

     6 

     6 

     6 

     5 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     4 

     3 
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Figure 1.11.2   Plot of top 50 significant features in multimodal data selected by ordinal method 
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Figure 1.12.1   Graph of top 100 significant features in multimodal data selected by all-subset model 

 

Table 1.12   Regions with most frequency in top 100 significant features in multimodal data 

     Multimodal all-subset ordinal (fMRI features are in blue, DTT features are in red) 

     Region     Frequency in Top 100 edges 

    'Right-Pallidum' 

    'Right-Caudate' 

    'ctx-rh-insula' 

    'Left-Thalamus-Proper' 

    'ctx-lh-frontalpole' 

    'ctx-rh-rostralanteriorcingulate' 

    'ctx-lh-parsorbitalis' 

    'ctx-rh-parstriangularis' 

    'ctx-rh-superiorfrontal' 

    'Left-Caudate' 

    'ctx-lh-rostralanteriorcingulate' 

    'ctx-rh-cuneus' 

    'ctx-rh-inferiorparietal' 

    'ctx-rh-medialorbitofrontal' 

    'Brain-Stem' 

    'Left-Amygdala' 

    'Left-Accumbens-area' 

    'Right-Amygdala' 

    'Right-VentralDC' 

    'ctx-lh-caudalmiddlefrontal' 
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Figure 1.12.2   Plot of top 50 significant features in multimodal data selected by all-subset method 


