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Abstract 

Developing and Testing a Simple Approach for Projecting Temperature Trends to 

Facilitate Public Health Preparedness  

 

By Shivangi Khargonekar 

 

Extreme heat events (EHEs) are expected to intensify in North America in the 21
st
 

century, posing challenges outside current public health capacity. Adaptation will likely 

be required to minimize health impacts. Most adaptation to date has been in response to 

extreme weather events, e.g., the response to the European heat wave of 2003. The US 

has not experienced a similarly dramatic EHE and likely has a significant preparedness 

deficit. Scenario-driven table-top exercises are one way to facilitate preparedness, but 

these require credible projections of climatic shifts. Downscaled projections are 

computationally expensive, unavailable for most localities, and most public health 

agencies cannot make their own. Given the advent of warming trends in many locales, 

our objective is to determine whether it is appropriate to use historical weather data to 

project future temperature trends. Such an approach is relatively straightforward, 

intuitive, inexpensive, scalable, and generalizable compared with downscaled projections.  

To test this proposition, we used a dataset of historical weather for selected major US 

cities to identify appropriate indicators for projection, test multiple methods for 

extrapolating historical trends, project findings forward by climate region and city, and 

compare findings with available downscaled projections. Average daily temperature, 

average daily maximum temperature, and maximum of the daily maximum temperature 

in June-July-August (JJA) from 1950-2010 were selected as indicators. Stepwise 

autoregressive methods were used to generate polynomial projections of the indicators. 

The projections most consistent with historical data occurred with the indicators of 

central tendency and showed mostly positive trends (e.g., average daily temperatures in 

JJA in the Southeast are projected to increase by 5.6°F by 2035, and 10.0°F by 2055). 

Negative trends for extremes (maximum of the daily maximum temperature in JJA) 

resulted for three regions. The trends were determined to be a function of the 

extrapolation method and greater variability in historical data for these regions. Available 

downscaled regional projections were in concordance with our findings that much of the 

US will experience warming in the future. We conclude that this approach has promise 

but may systematically underestimate the magnitude of likely future temperature changes 

in regions with variable historical temperature trends. 
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Introduction 

 

Background 

 

Extreme weather, particularly heat, causes significant morbidity and mortality in 

the US and many other developed countries. Human exposure to extreme heat can result 

in detrimental health outcomes, including dehydration and heat stroke, as well as 

exacerbate a range of underlying illnesses [1].  Heat is the leading weather-related cause 

of mortality in the US [2], and there are over 60,000 emergency department visits for heat 

illness in the US every year [3]. Extreme heat events (EHEs) are thus one of several 

significant threats associated with climate change in the developed world.   

The US, like other Northern Hemisphere mid-latitude regions, has experienced 

warming and increasing weather variability in the summer months [4], trends consistent 

with anthropogenic climate forcing and in alignment with expectations of how climate 

change will affect weather in North America [5]. These shifts are expected to lead to a 

greater frequency of climate extremes.  Climate extremes have been defined as “the 

occurrence of a value of a weather or climate variable above (or below) a threshold value 

near the upper (or lower) ends of the range of observed values of the variable” [6]. EHEs 

are one such extreme.  The Fourth Intergovernmental Panel on Climate Change (IPCC) 

Assessment report concluded that in the twenty-first century, it is very likely (i.e., a 

probability greater than 90%) that EHEs will intensify in magnitude and duration [6]. 

Some of these expected trends are already manifest.  For instance, a study conducted by 

Alexander et al. concluded that the lowest and highest daily minimum and maximum 
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temperatures in the later part of the 20th century increased in many regions around the 

world [7].  

Future EHEs are likely to be increasingly frequent and severe.  Diffenbaugh et al. 

explored the nature of future EHEs from the perspective that previous temperature 

extremes may become less severe than future minimum temperatures, and with increasing 

confidence observed that many regions of the world may experience increasing intensity 

of extreme heat as captured by global climate models [8].  Furthermore, Li et al. used a 

global circulation climate model to project temperature trends, and found that monthly 

average temperatures will increase in the 2059–2070 time period, especially in the 

summer months [9]. In addition, the global average temperature is predicted to further 

increase by between 1° and 3° Celsius by the year 2100 according to the IPCC [5].  

The aforementioned studies and findings, among others, provide evidence for the 

potential for a shift in temperature, consistent with anthropogenic climate change. Shifts 

in average temperatures will likely result in a non-linear large increase in the frequency 

of extreme weather events, such as EHEs [10]. In the US, regions including the Northeast 

and Midwest are likely to experience the greatest number of illnesses and deaths as a 

result of to the predicted EHE intensification [11]. Consequently, extreme heat related 

mortality and morbidity within vulnerable populations - the elderly, children, those ill 

with chronic diseases, and individuals engaged in outdoor labor - are expected to 

increase, in the absence of adaptation, in a warming climate [1].  

The European heat wave of 2003 vividly underscores the great need for public 

health preparedness for shifting EHE severity, particularly for rare, severe events that 

occur relatively infrequently but are becoming more likely as a result of climate change. 
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This particular heat wave was the result of climate variability on top of an already shifted 

temperature distribution.  In the historical record, such an event had an annual probability 

of approximately 1 in 1,000 (this probability is often referred to as a “1-in-1000 year” 

event).  Given anthropogenic climate change, however, the probability of such an event at 

the time was shifted and the new probability in the anthropogenically forced climate was 

approximately 1 in 250 [12]. This heat wave was associated with an excess mortality of 

approximately 35,000 people [13]. This large death toll resulted in part from lack of 

public health preparedness for such an event [14-16].  

In light of this unprecedented EHE, the Third IPCC Assessment indicated that 

treatment of extreme weather events is “clearly inadequate” [17].  While no formal 

assessment of heat wave preparedness in the US has been conducted recently, presumably 

this concern includes the US as well.  Preparedness and response measures that were 

implemented in Europe following this incident have reduced the health impact and the 

burden of illness of subsequent similar events [18]. For example, increased access to 

cooling centers and air conditioning prevalence, as well as heat health warning systems, 

have been implemented since 2003 [19]. Studies of a 2006 European heat wave suggest 

that these measures were effective and resulted in the avoidance of an expected 4,400 

excess deaths during the 2006 event [20].  

As exemplified by the response to the 2003 heat wave, most climate change 

adaptation (CCA) to date has been in response to extreme weather events [21]. It appears 

that local public health authorities are not yet shifting preparedness activities to account 

for the shifting temperature distribution [22]. Shifts in temperature may become greater 

in the future in the absence of aggressive mitigation strategies and efforts. Thus, 
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preparedness for EHEs going forward needs to be based on expectations of these climate 

shifts occurring at a local level [21].  

CCA to EHEs can take a wide range of forms, many of which originate and are 

administered and promoted locally. Some prevention messaging is aimed at changing 

individual behaviors, including use of air conditioning, taking frequent showers, and 

wearing lightweight clothing [11]. Local level action for prevention and adaptation can 

involve planting trees, heat health warning systems, media announcements, public 

education, and opening of cooling centers, among others  [19, 23].   

As heat wave response plans are complicated, often requiring coordinated efforts 

that typically include multiple partners, planned adaptation at the local level can be also 

facilitated using scenario-based approaches [24]. For example, reliable information and 

knowledge regarding likely hazard scenarios can support better preparation for heat-

related emergency situations with regards to planning for response capacity and 

placement of emergency resources and personnel [20]. Furthermore, understanding the 

areas that will allow for an effective public health response is critical. Some of the key 

areas of response that have been identified include heat response plans, the use of remote 

sensing and GIS methodologies, and effective communications strategies [25].  In 

addition, it is imperative that early warning systems are in place to prepare for EHEs.  

Studies have shown that early warning systems implemented in Philadelphia and Chicago 

following severe heat waves that occurred in those cities  have saved lives and costs [26].  

Another widely accepted method for scenario-based planning and preparedness is 

the use of tabletop exercises to gather teams of individuals for identifying gaps in 

preparedness. These teams will ultimately need to work together in a real event. The 
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Homeland Security Exercise and Evaluation Program (HSEEP), for instance, is an 

exercise-based program accessible on-line that provides tools and resources for 

improving capacity, capability, and performance for a wide range of scenarios and 

events, including EHEs [27]. In the case of EHE preparedness, tabletop exercises 

bringing together key players, such as emergency responders, city managers, health care 

delivery personnel, urban planners, and utility managers may be very effective at 

identifying areas in which preparedness efforts are likely to fall short, as well as finding 

weaknesses in protective systems.   

Prevention requires a range of actions at different levels, from health system 

preparedness coordinated with meteorological early warning systems, to timely public 

and medical advice and improvements to housing and urban planning [12]. Moreover, 

preparedness planning should be robust compared with the range of possible climate 

futures that emergency responders may face. As the US has not yet experienced an event 

such as the European heat wave, preparedness efforts have generally not incorporated the 

increasing potential for a very severe event in the US [22]. 

Significance 

 

Preparedness for extreme heat is a climate change adaptation priority for public 

health.  To facilitate this process through activities such as table-top exercises, there is a 

need for credible, locally-relevant projections of likely climatic shifts, along with robust 

preparedness planning compared with the range of possible climate futures that 

emergency responders may face. Projections of temperature trends could be helpful in 

emergency preparedness planning. Reliable climate projections for numerous regions of 

the world are now increasingly available due to more advanced climate modeling 
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capabilities [28]. Such projections are often obtained through downscaling of Generalized 

Circulation Models (GCMs), which have relatively low-resolution outputs, to scales that 

are more locally relevant.  

GCM projections are credible because they are generated from well-established 

physical climate models, they can simulate important aspects of the current climate, and 

they are able to replicate previous climatic trends [28].  These downscaled projections are 

computationally intensive, however, and are not available for a wide range of locales.  

Moreover, the public health sector does not house the relevant expertise to secure and 

interpret these downscaled projections [22], and frequently must request them from their 

state climatologists (in the case of state and local public health agencies) or from 

universities or federal agencies that have access to GCMs.  As a result, most local public 

health planners do not have easy access to locally relevant projections. This is a barrier to 

public health preparedness for EHEs [29], particularly in regions that have yet to 

experience dramatic EHEs outside public health’s historic coping range.    

Extreme value theory (EVT) is a statistical method that can be used to predict 

EHEs. However, there are few data available to make such assessments, specifically 

regarding changes in the frequency or intensity of EHEs;  increasing rarity of an event 

makes it more difficult to determine long-term climate changes [6].  Furthermore, while 

there have been significant efforts to model EHEs, such as the European Statistical and 

Regional Dynamic downscaling of Extremes for European regions (STARDEX) and 

Modeling the Impacts of Climate Extremes (MICE), clarity regarding impact of climate 

change on EHEs remains hindered by the lack of very long data series and difficulties of 

existing climate models to efficiently represent these events [30]. Parey et al., among 
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others, have conducted studies on predicting EHEs using EVT in a stationary context for 

fixed periods in the future based on available simulations [31]. Often, these extreme 

value statistics are extrapolations for estimating return values and return periods, and do 

so by fitting the data to the tails of probability distribution functions [32].  

Further evaluation using EVT for characterizing the likely severity and frequency 

of rare future EHEs as a result of climate change would be useful. Since changes in 

extremes can be linked to changes in the mean, variance, or shape of probability 

distributions, or all of these [6], EVT could be used to provide further insight into the 

relationship between measures of central tendency and extremes, as well as creating 

reliable predictions of return periods for EHEs in the future [31]. Such an exercise, 

however, would require examination of historical temperature trends, evaluation of 

appropriate indicators to use, and consideration of how to project future trends.  

Goals and Objectives 

 

The rationale for this study is that local public health agencies need to enhance 

their preparation for severe EHEs as a result of climate change.  This effort is impeded by 

lack of easily available, reliable information regarding local climate shifts.  Our aim is 

thus to explore a possible approach to filling this preparedness gap by considering 

whether it is possible to use available historical data and straightforward methods for 

characterizing and projecting historical temperature trends to generate locally-specific 

projections of temperature trends in the near-term.  One common maxim in climate 

science is that “stationarity is dead,” i.e., that we can no longer assume that static 

historical trends will prevail [33, 34]. Recent trends, however, may still provide a reliable 
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guide to near- and mid-term climate shifts.  The complexity and unavailability of 

downscaled GCM output is a barrier to public health adaptation to climate change [29].   

Projections based on freely-available recent historical data would have several 

advantages over downscaled model outputs:  ready availability, low cost, consistency 

with local historical data, and intuitive connections between historical data and likely 

future trends.  They would also allow local public health agencies, which are voicing 

increasing concern over CCA needs and the lack of resources for these activities, to 

channel this concern into quickly generating relevant projections and pursuing 

preparedness activities, rather than securing and learning how to manipulate downscaled 

climate data.  Furthermore, the climatic projections generated from this study would be 

especially intrinsic to emergency preparedness planning, as they could be used to 

generate predictions of the frequency and magnitude of future EHEs using EVT.   

Our study aims to address this barrier by developing and testing a straightforward 

approach to generating local projections for near-term temperature shifts using historical 

data. Our goal is to develop such an approach and evaluate its efficacy based on several 

predetermined a priori criteria and in comparison with available downscaled regional 

projections.  Accordingly, the study has several objectives: 

1. To evaluate several possible temperature indicators to assess what measure(s) are 

most highly correlated with measures of extremes; 

2. To determine what type of curvilinear function best fits historical temperature 

trends for the chosen indicators; 

3. To project future temperatures by climate region and city using the derived 

curvilinear functions; 
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4. To apply a priori criteria, e.g. whether projected trend lines for temperature 

maxima cross those for average temperatures, to projection results to determine 

their face validity; and  

5.   To compare projection results with available downscaled regional projections to 

assess the degree of con- or discordance with more computationally intensive 

methods for generating downscaled projections.     

Questions remain, however, regarding feasibility, generalizability, and validity of this 

approach.  Consequently, our study objectives pertain both to development of appropriate 

methods for using EVT  for predicting EHEs, and to evaluation of their overall 

performance compared with more data-intensive downscaled climate projections, where 

available. Ultimately, the goal of this study is to determine whether it is appropriate to 

use readily available historical data to project temperature trends for the near to mid-term. 

If these projections are valid and reliable, they will be useful for local preparedness 

planning surrounding EHEs.  

Methods 

 

Study Design 

 

To address the need for EHE preparedness, we developed and tested a relatively 

low-cost, straightforward, more intuitive approach for generating projections that can 

easily be replicated by local public health authorities with freely available data. This 

approach involved using a freely available dataset of historical weather for major US 

cities to identify appropriate indicators of temperature trends (including those for central 

tendency and extremes), test multiple methods for extrapolating historical trends, project 
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findings forward by climate region and city, and compare findings with available 

downscaled climate model projections to evaluate the degree of agreement.  

Study Setting 

 

The study setting was the contiguous lower 48 states of the United States from 

1950 to 2010.  Specifically, we used historical daily temperature and humidity data from 

1950-2010 for 87 major US cities and 9 NOAA climate regions.  Projections of 

extrapolated temperature trends were made for these cities and regions through 2055.  

Site Selection 

 

The current top 100 most populous cities in the US, based on population size, 

were identified from the 2010 US Census Bureau for our study sample. This list was 

cross-referenced to ensure that it included cities from the lower 48 states; if not, capital 

cities from states not represented were added to the list. Cities were then selected as final 

sites to be used in the study sample if they had historical data spanning the time period of 

1/1/1950 to 12/31/2010. The cities were further categorized by the 9 US National 

Oceanic and Atmospheric Administration (NOAA) climate regions (Figure 1) [35] and 

the 9 US Census regions (Figure 2) [36]; this enabled regional climatic trend derivation. 

Note that cities representative of Alaska and Hawaii were not included in our sample 

because they were not included in the NOAA climate regions. 

Data Sources and Management 

 

Daily weather data for this sample (Tmax, Tmin, and Tavg, humidity, and 

precipitation) from 1950 to 2010 was captured from the National Climatic Data Center 



11 

 

 

(NCDC) weather database. Specifically, archived temperatures (in degrees Fahrenheit) 

and dew points between 1/1/1950 until 9/1/2011 from about 200 weather stations were 

extracted using tools provided on-line by the NCDC from the Integrated Surface Hourly 

datasets [37]. Most weather stations used were located at airports or air bases. Multiple 

readings from a single hour were combined to generate a single average for that hour. The 

24-hourly averages were combined to produce the final daily temperature maximums, 

minimums, and averages. Daily relative humidity averages were calculated from the 

temperatures and dew points using a standard formula [38].  

Some cities lacked data for the time period from 1965-1973. During this time 

period, many weather stations only collected data every third hour throughout the day due 

to budgetary cut-backs. In this case, the available measures were used as reported. As a 

result, from the initial 100 cities in our sample, 87 cities had complete datasets (i.e., daily 

data from at least 1/1/1950-12/31/2010). A subset of daily weather data for June-July-

and-August (JJA) from 1950-2010 for each of the 87 cities was created, containing at 

least 22,428 observations; it was assumed that the summer months would include the 

most relevant data of temperature extremes for the study.   

Data Analysis and Outcomes 

 

Indicators 

 

An exploratory factor analysis was performed of seasonal weather variables to 

identify which of these are most highly correlated with measures of extreme summer 

temperatures (e.g. temperature of the warmest JJA day of the corresponding year). A 

literature review to identify seasonal weather variables was conducted on PubMed and 
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Google Scholar (Google, Mountain View, CA). Specific search terms included: climate 

change, temperature indicators, temperature variables, climate variables, temperature 

projections, temperature trends, extreme heat events, and extreme value theory. Based on 

the results of this search, forty seasonal weather variables were identified and considered 

for the analysis, which included measures of counts (e.g., number of days above a 

maximum threshold temperature), measures of central tendency (e.g., average summer 

daily maximum temperatures during JJA), and measures of extremes (e.g., maximum 

summer daily maximum temperatures during JJA).  

Bivariate correlation analyses were then conducted for all of the seasonal weather 

variables; for each NOAA climate region, correlation matrices were generated containing 

Pearson correlation coefficients, as well as descriptive statistics of the variables, 

including mean and standard deviation. The magnitude of the correlations between the 

variables, and evidence of consistent high correlations, were two criteria used to identify 

potential indicators to be used for the study sample. These indicators would act as our 

dependent variables for extreme temperature, and were assumed to be most highly 

correlated with truly extreme heat events.   

Descriptive statistics (i.e., mean, median, minimum, maximum, range, and 

standard deviation) of the three indicators for all regions were examined by decade from 

1950-2010 to determine if there was any significant decadal variation among these values 

or variation among regions. These findings would enable assessment of the reliability of 

the time period the historical data spanned for projecting trends.  

Three relevant factors for the 87 cities and the nine NOAA US climate regions 

from 1950 to 2010 were chosen and used for extrapolation of trends. For determining 
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indicator values for an entire region, an average was taken of the indicator values for all 

cities in the region. This established mean indicator values for regional trend derivation.  

Projections 

 

A comparison of two curvilinear functions (i.e., linear and polynomial) was 

conducted to determine which was best for extrapolation of trends. Thus, R
2
 values of 

historical data were used to assess goodness-of-fit for the trend lines to the historical data. 

Using the most appropriate curvilinear function, temperature trends were extrapolated 

based on the historical data from 1950-2010, and were projected forward through 2060 to 

generate point estimates of the three temperature indicators of EHEs. Specifically, a 

stepwise autoregressive method was used which combined a quadratic time trend 

regression with an autoregressive model in order to capture short-term fluctuations that 

were assumed to occur in daily temperature data. The stepwise regression procedure 

allows for the selection of appropriate autoregressive parameters for the model; the 

parameters are only used at lags during which they are statistically significant. This 

method also fits a quadratic time trend regression for the entire data series and places 

equal weights on all observations in the data set [39].  

The projections of the three indicators based on historical data from 1950-2010 

for the 87 cities and nine climate regions in the sample were then compared for positive 

or negative trends.  Deviations in temperature projections in 2035 and 2055 compared to 

temperature normal (the average baseline temperatures for 1950-2010) for all three 

indicators for each region were also assessed. Maps of the US and its climate regions 

with these data were created to visualize the deviations using ArcGis 10 (Redlands, CA).  
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Confidence intervals surrounding the projected trend lines for each indicator of 

five regions exhibiting positive and negative trend lines were calculated to further assess 

reliability of the projections extrapolated from the 1950-2010 historical data (Figures 39-

41). To assess for sensitivity to multi-year trends in historical data, trend lines were also 

derived for subsets of the historical sample subsets (i.e., 1950-2010, 1960-2010, 1970-

2010, and 1980-2010) for regions with unanticipated results (Figures 42-44).   

All data management and analyses were performed using SAS 9.3 (SAS Institute, 

Cary, NC) and Microsoft Excel 2010 (Microsoft Corporation, Redmond, WA). 

Comparisons 

  

A comparison was conducted to evaluate consistency with expectations for 

regional changes based on downscaled projections. A literature review using PubMed and 

Google Scholar (Google, Mountain View, CA) was conducted to identify existing 

downscaled GCM temperature projection trends in New York, NY, Sacramento, CA, and 

the US to assess any concordance or discordance with our study’s approach and results 

for both cities and regions. Search terms included: New York, California, United States, 

climate change, climate regions, temperature trends, projections, and extreme heat 

events. 

Results 

 

Study Sample  

 

Of the 100 most populous US cities identified, a total of 87 cities met the 

inclusion criteria. These cities and their respective NOAA climate regions were compiled 
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for the study sample (Table 1). A total of 1,980,131 temperature observations were in the 

sample. Most of the cities in our sample had a dataset including 22,524 observations 

(1/1/1950-9/1/2011), while a few others had slightly less data; however, all cities in our 

sample had enough data to conduct analyses using a consistent time period of historical 

data from 1/1/1950-12/31/2010.  

Indicators 

  

When assessing indicators, we were interested in identifying which were the best 

indicators of extremes. Three out of the 40 seasonal variables (Table 2) that were 

evaluated were determined to be highly correlated with EHEs, including: mean of the 

daily summer average temperatures during JJA for each year (“Mean_Tavg”), mean of 

the daily summer maximum temperatures during JJA for each year (“Mean_Tmax”), and 

maximum of the daily summer maximum temperatures during JJA for each year 

(“Max_Tmax”). The indicators of central tendency contained consistently higher Pearson 

correlation coefficients closer to 1 compared to other indicators considered, such as those 

of count (e.g., number of days above a threshold temperature).  

Max_Tmax was selected to be an indicator of EHEs to include a measure of 

extremes, even though it did not maintain consistently high Pearson correlation 

coefficients (Table 3). Specifically, Max_Tmax had correlation coefficients ranging from 

-0.27 to 0.91 across all regions. 

Variability of Historical Data 

 

Most regions had similar and fairly low standard deviation values (in degrees 

Fahrenheit) for the three indicators across each decade of the historical data (1950-2010), 
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except the West (region 5) Standard deviation values ranged from 2.3 to 4.4 for the 

Northeast (region 1), 2.2 to 4.5 for the Southeast (region 2), 2.4 to 4.1 for the South 

(region 3), 4.7 to 6.2 for the Southwest (region 4), 3.3 to 6.4 for the Northwest (region 6), 

2.8 to 4.7 for the West North Central (region 7), 3.4 to 4.6 for the East North Central 

(region 8), and 3.0 to 4.6 for the Central climate region (region 9). The West, however, 

had much higher standard deviation values, ranging from 9.0 to 12.2. The range between 

the minimum and maximum values (in degrees Fahrenheit) for each indicator in the West 

was also much higher than the other regions (ranged from 30.7 to 38.0). Finally, as 

expected, across all regions, values of other descriptive statistics (i.e., mean, median, 

minimum, maximum) for Max_Tmax were highest, followed by Mean_Tmax, and 

Mean_Tavg.  

There is thus evidence of historical variability over time among and within 

regions (Table 4). The spread of data given by the descriptive statistics for each indicator 

can also be visualized in the boxplots for the Northeast and West climate regions (Figures 

3-5). The boxplots show the mean, median, minimum, maximum, and interquartile range 

(i.e., the difference of the upper and lower quartiles, or the middle 50% of the data) for 

each climate region over time. It is evident that the West displays a larger interquartile 

range and a larger overall range of temperatures compared to the Northeast, indicating 

that there is historical variability between regions for all three temperature indicators. 

Furthermore, it is apparent that there is some decadal variability within the regions, as the 

mean, median, interquartile range, and overall range (difference between the maximum 

and minimum temperatures), seem to moderately fluctuate over time for all three 
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temperature indicators. This is especially apparent for the West, reflective of its variable 

historical data.  

Projections 

  

Both polynomial and linear functions were fit to the historical data. Based on R
2
 

values, the polynomial functions had a stronger goodness-of-fit for the historical data 

compared to linear functions (Figures 6-14), though R
2
 values for both linear and 

polynomial functions were relatively low.  Based on our a priori criteria, we selected 

polynomial projections with quadratic trend lines of temperature based on historical data 

to extrapolate for regions and cities using a stepwise autoregressive method.  Results for 

these extrapolations are presented in Figures 21-29.  

The Northeast, Southeast, South, Southwest, Northwest, and Central climate 

regions (regions 1, 2, 3, 4, 6, and 9, respectively) all showed positive trends for all three 

indicators. Some Regions had projected trends that sloped more positively than others 

(confirmed by their quadratic functions), including the Southeast, South, and Central 

climate regions (regions 2, 3, and 9, respectively). The West (region 5) showed negative 

trends for all three indicators. The West North Central and East North Central regions 

(regions 7 and 8, respectively) showed slight negative trends for the indicators involving 

maximum temperature (Max_Tmax and Mean_Tmax), but a positive trend for 

Mean_Tavg based on point estimates at 2035 and 2055, as well as overall trends for 

projected data (Table 5). None of the projected quadratic curves for any indicator crossed, 

with projected temperatures being highest for Max_Tmax, followed by Mean_Tmax, and 

Mean_Tavg (Figures 30-38).  
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Projections at 2035 and 2055 of all three temperature indicators were assessed in 

regards to regional levels of deviation (both positively and negatively) from the 

temperature normal (average temperature of the indicators from 1950-2010). The West, 

West North Central, and East North Central climate regions deviated negatively in 

differing amounts for all three indicators, while the Southeast, South, and Central regions 

deviated more positively from the temperature normal (Table 6, Figures 15-20).  

 Given the negative projections in the Western climate region, we used this region 

to test for sensitivity to variability in the historical data by generating derivations using 

subsets of the historical data to generate projections, as described in the Methods section.  

Subsets of data including 1950-2010 and 1960-2010 generated negative trends for all 

three indicators for the region. Historical data from 1970-2010 generated negative trends 

in Mean_Tavg and Mean_Tmax, but a positive trend for Max_Tmax. Finally, historical 

data from 1980-2010 generated positive trends for all three indicators (Figures 42-44). 

The positive trends generated from more recent data for this region (1980-2010) appeared 

to be much more positively sloped for all three indicators compared to any positive trends 

generated from the entire historical dataset or any subset of it. In addition, the trend 

generated for this region for Max_Tmax was much more positively trended compared to 

the other two indicators for this region, based on historical data from 1980-2010.  

Comparisons with Downscaled GCM Outputs 

 

There are limited published downscaled GCM outputs for the US as a whole and 

no published studies providing outputs that were directly comparable with our results for 

the entire sample.  We were only able to find downscaled GCM outputs reflecting 

seasonal and annual global temperatures for “warm days” and “warm nights” during the 
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20
th

 century (1901-2003) from a study by Alexander et al. (2006) [40]. The study 

concluded that the Northern Hemisphere mid-latitudes showed significant shifts in 

temperatures reflecting warming over the area, based on stations with nearly complete 

data from 1901 to 2003. In addition, the US was found to have significant temperature 

increases for “warm nights” in JJA by 0-6°F for most of the country from 1979-2003.  

Moreover, a significant increase in annual nighttime temperatures was observed for 

regions in the northern hemisphere (including the US) from 1979-2003 compared to the 

earlier historical data of the 20
th

 century. The aforementioned findings suggest continued 

trends of warming for these regions in the future (Figure 48). Only a small portion of the 

country (visually appeared to be some part of the West North Central climate region) had 

negative temperature projections associated with extremes; however, these were claimed 

to be of lesser magnitude and insignificant by the study’s authors compared to the 

significant positive temperature projections. Their study results were consistent with our 

overall projections of warming for most of the US. However, our negative trended 

projections for the West, West North Central, and East North Central, are not in 

concordance with their findings. 

To compare more localized projections, we found existing projected temperature 

data and GCM outputs available in the literature for New York, NY and Sacramento, CA. 

In 2009, the New York City Panel on Climate Change published their findings on climate 

change scenarios, and future temperature trends based on 16 downscaled GCM outputs 

and 3 climate scenarios (Figure 46) [41]. They analyzed extreme heat events using 

threshold indicators of temperature maxima, including: the number of days with 

maximum temperatures greater than 90°F or greater than 100°F based on historical data 
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from 1971-2000. Their projections included maximum temperatures in New York City 

increasing by 1.5 to 3°F by the 2020s, 3 to 5°F by the 2050s, and 4 to 7.5°F by the 2080s. 

Their findings are similar to ours in the near-term, as our projections have New York City 

average maximum temperatures increasing by 2.6°F by the 2020s; however, we projected 

an increase of 9.3°F by the 2050s which is more extreme compared to their projections 

(Tables 7-8, Figures 45-46).  

In 2012, a study by Mastrandrea and Luers [42] was published with projections of 

various climate extremes, including temperature, for the state of California. Specific 

summer temperature projections for mid-century were generated for Sacramento, CA 

using baseline data from 1971-2000. The authors of this study found that the average 

annual temperature of the state is projected to increase by 1.8 to 5.4°F, under either the 

A2 (higher emissions) or B1 (lower emissions) scenario. The projections are more 

extreme for the end of the century under the A2 scenario, with temperatures expected to 

rise by 4.5 to 9°F. The study also concluded that by mid-century, Sacramento summer 

temperatures are projected to increase by 5.4 to 10.8°F for the A2 scenario, and 2.7 to 

7.2°F for the B1 scenario (Table 10). However, our study projects opposite trends, with 

average daily summer temperatures in JJA for Sacramento expected to decrease by 1.2°F 

by mid-century (2050); this negative projection is based on the city’s temperature normal 

of 72.2°F, calculated from historical data for average daily summer temperatures in JJA 

from 1950-2010 (Tables 9-10, Figure 47). 

Discussion 

 



21 

 

 

It was determined that two temperature indicators, both of central tendency, were 

most highly correlated with measures of extremes. This finding is in concordance with 

what is in the literature regarding EHEs and temperature indicators: changes in extremes 

can be linked to changes in the mean [6]. A measure of extremes, maximum of the daily 

maximum temperature in JJA, was also included in our analyses to assess any resulting 

trends that may be more pronounced in the future for temperature maxima. Polynomial 

functions were found to fit the historical temperature trends better than linear functions 

for these chosen indicators, and were used to project future temperatures by climate 

region and city. Projected trend lines for temperature maxima never crossed those for 

average temperatures, demonstrating that recent historical trends in all projected 

indicators follow similar trajectories. Most of the projections were positive, suggesting a 

trend of warming for much of the country for all three temperature indicators.  

Certain findings were surprising, particularly the negative projection results for 

three of nine regions.  However, the reliability of these trends was less certain given the 

greater variability and lower R
2
 values in the historical data for these regions. Moreover, 

in the West, there is a much wider range of temperatures in the data compared to other 

regional locales, and this relatively wide range may have resulted in less reliable trends. 

For the regions with negative projections based on data from 1950-2010, positive 

projections resulted when using a more recent subset of historical data (e.g., 1980-2010), 

which supports the idea that these regions may be more sensitive to the local historical 

data variability and trends.  This prompts the question of what is the most appropriate 

historical baseline to use for projecting future temperature trends, and whether a more 

recent data series that shows more pronounced warming trends, is most appropriate.  
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Using more recent data may result in more uniformly positive trends across all regions, 

though confidence intervals are likely to be larger as there is less data available to 

generate extrapolations.   

Overall, the results of our method generated projections that were largely in 

accordance with available downscaled regional projections, with future warming to occur 

across most of the US. However, several regions and cities with negative projections 

were discordant with what is available in the current literature.  As noted above, these 

projections were recognized as being less precise, most likely due to our method and the 

use of historical data for these regions which were more variable than other regions. That 

the method we developed produced projections that were not in accordance with GCM 

outputs suggests that our approach may be prone to over- or underestimating future 

temperature trends.  In some regions, this method may not be reliable and the more 

computationally intensive GCM outputs may be required for public health activities 

requiring precise estimates of future warming likely from climate change.  

Indicators 

  

It was evident that the indicators of central tendency in temperature distributions 

were more highly correlated to with extreme values (our proxy for EHEs) than indicators 

based on counts of days with temperatures above predefined thresholds. This is consistent 

with the findings of prior studies that changes in climate extremes are associated with 

changes in mean [6].  This result may also be artifactual, as two continuous variables 

within a distribution are more likely to demonstrate correlation than a continuous variable 

and a discrete one. The maximum of the daily maximum temperature in JJA 

(Max_Tmax), which was the selected indicator of extremes for EHEs, resulted in more 
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extreme temperature projections (i.e., the slopes of the quadratic curves were higher) 

regardless of whether projections were positively or negatively trended. The mean of the 

daily average temperature in JJA and the mean of the daily maximum temperature in JJA 

produced less extreme projections. These findings suggest that indicators of central 

tendency may be more reliable for projecting future temperature trends; however, it is 

possible that there could be a separate trend in extremes that could be more pronounced 

in the future.  

Variability of Historical Data 

 

 The descriptive statistics provided evidence of variability within each decade for 

the climate regions, which generally neither increase nor decrease over time, suggesting 

short-term fluctuations of historical data. The highest standard deviations resulted in the 

West (region 5), indicating that this region’s observed data is highly variable compared to 

other climate regions. When examining local projections within this region, Las Vegas, 

NV, had much higher temperatures than the other cities and these data points extended the 

region’s data range much further than in other regions.  Las Vegas was also the only city 

with positively trended higher temperature results for all three temperature indicators. 

Oakland, CA was also found to have positively projected trends for average daily 

maximum temperature in JJA and maximum of the daily maximum temperature in JJA. 

Finally, Fresno, CA and Sacramento, CA had positively projected trends for maximum of 

the daily maximum temperature in JJA. Otherwise, all other cities in this region had 

negatively trended projections with lower temperatures for all three indicators (Table 9). 

Thus, it is important to recognize that the negative projection for this region may be a 

result of the variability of data present among the cities in the region. Slightly higher 
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variability was also apparent in the West North Central and East North Central climate 

regions (regions 7 and 8, respectively). It is possible that the variable historical data of 

these regions may be a cause for decreased precision and reliability of their projected 

temperatures; the decrease in precision is reflected in their 95% confidence intervals 

which were larger than other regions’ with positive projected trends, such as the 

Southeast (region 2). Furthermore, statistics such as the maximum, minimum, and mean, 

for Max_Tmax (the maximum of the daily maximum temperature in JJA) had values that 

were higher than for the other two indicators which were measures of central tendency; 

this further supports our earlier conjecture that the measure of extreme produces more 

extreme temperature estimates than the measures of central tendency.  

Projections 

 

We used an observational historical dataset from 1950-2010 to study past, present, 

and future daily temperature trends across major cities and regions of the US through 

2060. Polynomial functions were chosen over linear functions to extrapolate trends, as 

these functions were able to account for short-term fluctuations in the historical data and 

were assumed to be better for approximating the curvilinear historical data trends. 

Projected trends for regions and cities within our study sample suggested that most of the 

US will experience increasing temperature trends, but regional projections were more 

variable.  The West North Central and East North Central climate region projections 

suggested that temperature maxima would decrease but average temperatures would rise.  

Ultimately these two trends are incompatible, though the trendlines did not cross for the 

study period we projected.  As historical temperature maxima are more variable, these 
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findings again suggest that projections based on highly variable data are likely less 

reliable than projections based on historical data with relatively little variability.  

Projected temperature trends for all three indicators in the West were negative, 

despite recent historical warming trends in this region. The projected negative trends 

were surprising and prompted close examination of these projections to assess the 

reliability of historical data generating these trends and the validity of the projections 

themselves. This led to several conclusions.  First, we again see that projections based on 

highly variable data (e.g. on historical Max_Tmax) produce more extreme projections, 

even for negative trends.  Thus the trends for maxima may be less reliable because they 

are based on fewer data points than those of central tendency. Second, since projected 

trends of temperature maxima for the West, West North Central, and East North Central 

became positive when using a subset of historical data (1980-2010), we conclude that 

more recent data in which warming trends are more pronounced may be more reliable for 

projecting short-term to medium-term trends for all three indicators, though the 

confidence intervals around such projections will be wider than for projections based on a 

longer time series. Third, we conclude that this method produces estimates with wide 

confidence intervals past mid-century, indicative of less precision and greater uncertainty 

in later years (closer to 2060). This finding is even more pronounced for the West 

compared to the Northeast, Southeast, West North Central, and East North Central 

climate regions, suggesting that the projections for the West are less reliable than for 

other regions.  

Comparisons 
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When comparing our projections with downscaled GCM outputs of future trends 

for “warm nights” across the globe including the US, most of our regions had similar 

projections of positive trending (Figure 48) [40]. The comparison was not based on 

consistent measurements. The study by Alexander, et al. (2006) used annual temperatures 

for their global projections, whereas we focused on summer temperatures in JJA. 

However, the GCM outputs supported the positive trends seen in most of our regional 

projections. Their statistically insignificant findings of negative trends of lower 

magnitudes in the northern hemisphere mid-latitudes may support the idea that some of 

our negative projections for the West, West North Central, and East North Central may 

also be insignificant, given that the projections become positively trended based on more 

recent historical data compared to using the entire historical dataset (1950-2010).  

For comparing local maximum temperature projections for New York City, 

projections were similar in terms of general positive trending in the near and medium-

term. However, the comparison was not consistent; our projections were seasonal and 

based on a conservative approach, while their projections were annual and based on 

combined data from 16 GCM outputs and three climate scenarios. Moreover, they 

projected specific ranges of increases in temperature maxima based on threshold 

indicators, which we compared to our measure of average maximum temperature, a 

measure of central tendency. Nevertheless, projections of temperature increases from 

baseline temperature normal were similar in the 2020s, which suggests that our 

projections are consistent in the near-term. While the projections for increases in 

temperature maxima by the 2050s differed, the comparisons were not based on consistent 

indicators of temperature, nor on similar periods of time for baseline data. Overall, the 



27 

 

 

evident trend of warming in New York City is apparent in their findings and in ours, 

although the rate of increase of projected warming in their study is lower than ours, 

leading to progressively larger differences in projected trends further into the future. 

Our projections for Sacramento, CA differed from the findings from the 

Mastrandrea and Luers (2012) study. Their study projected positive trends for summer 

temperatures by mid-century, whereas our study projected negative trends. Again, the 

comparison is not exact. Firstly, it is unclear from the study what months were used to 

project the summer temperature increases. Secondly, their study used different baseline 

data from 1971-2000, and our projections were based on 1950-2010. Since Sacramento, 

CA is in the West climate region (region 5), we may extrapolate that this city may also 

show positive trends based on more recent historical data, just as the region did when 

using data from 1980-2010 for projecting average summer daily temperatures in JJA. 

Study Strengths and Limitations 

   

 It is notable that our study took a relatively conservative approach, as compared to 

downscaled climate models, for generating temperature projections; it did not take into 

consideration the accumulation of atmospheric carbon dioxide, which is expected to 

result in accelerating warming over time. Despite this, the downscaled GCM projections 

for New York City were of a smaller magnitude than those we generated, particularly for 

the mid-century. For Sacramento, our method produced negative projections compared to 

existing downscaled positive projections based on the A2 and B1 emissions scenarios. 

Additionally, in other regions across the country, the changes projected using our 

methods are considerably smaller than expected based on GCM outputs. Thus, our study 
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method appears to result in a wider range of projections than GCMs and to be much more 

sensitive to local historical data variability and trends.   

 Concerns regarding both internal and external validity of our study are evident. 

Different levels of data variability by region over time were apparent; this variability 

overwhelmed other trends in some regions. This detracted from the internal validity of 

our study. In addition, some climate regions had many data points while others had 

relatively few, due to the cities in our study sample (i.e., our sample contained more cities 

that were categorized in the Northeast climate region). This suggests that the findings 

from our study are more valid for regions with more data, implicating the external 

validity of our study. 

The approach we developed is based on freely available historical data and is 

easily replicable and low-cost.  Our decision to use a stepwise autoregressive method to 

produce polynomial projections took into account significant short-term fluctuations and 

variability in the historical data.  Comparisons to GCM outputs supported the positive 

direction of most of our regional projections, confirming warming trends across the US. 

For the regions that had negative projections based on the entire dataset, it is clear that 

using a more recent subset of data gave way to projections that were positively sloped. 

Thus, projections for these regions using only more recent data subset may increase the 

validity of these projections. Overall, our method appears to be appropriate for 

facilitating public health preparedness for most US climate regions, with projections 

reflecting warming trends for much of the country. However, our approach may 

systematically under- or overestimate the magnitude of likely future temperature changes 

in regions with variable historical temperature trends.   
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Conclusion 

 

Currently only geographically coarse temperature projections are widely 

available, and these projections are limited in their ability to capture local climatic 

phenomena and climate extremes [43] and are thus too general to facilitate public health 

preparedness.  To address this issue, either new methods for generating local projections 

will need to be developed, or downscaled GCM outputs will need to be made much more 

widely available in order to facilitate public health preparedness for EHEs.  We have 

developed a low cost, generalizable approach for generating temperature projections 

using historical data that performed relatively well in a majority of US climate regions.  

Increases in both average and maximum temperature were projected for most climate 

regions, suggesting future warming across much of the US and consistent with existing 

available downscaled GCM outputs. The method’s universal validity is in question, 

however, as projections for some regions resulted in negative trends.  These projections 

become positive if a more recent historical baseline is used, suggesting that the overall 

method is sensitive to the range and variability of historical data.  

Our approach may be used to facilitate public health preparedness for EHEs, 

particularly for regions with relatively little historical variability, keeping in mind that it 

has the potential for over- or underestimation of future temperature trends. Future studies 

may wish to only use more recent data to project temperature trends in the future, 

especially for the medium- to long-term. Additionally, one may wish to pursue 

projections using threshold indicators of EHEs. While our results showed that these 

factors did not have high correlation coefficients, indicating they are not the best 

indicators of EHEs, it is worth noting that other studies have utilized threshold variables 
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as they enable analyses of multiple heat waves in a given time period [44]. Further, our 

study assessed seasonal summer temperatures, which was defined using data from only 

JJA. The same approach may be used while considering data from additional months, 

such as May-September. This may account for additional temperature extremes which 

may not have been included in our dataset.  Finally, all available downscaled GCM 

outputs should be used for facilitating preparedness of EHEs, though currently these 

outputs are rare.  Future efforts should be made to provide the public health community 

with such downscaled outputs and the skills required to apply the outputs to activities that 

will increase public health preparedness for EHEs.   
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Tables and Figures 
 

 
Figure 1: NOAA US Climate Regions. 

 

Figure 2: US Census Regions.  
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City State 

Number of 

Observations 

NOAA Climate 

Region 

NOAA  

Climate 

Region Code 

Akron Ohio 22524 Central 9 

Albuquerque New Mexico 22524 Southwest 4 

Atlanta Georgia 22524 Southeast 2 

Bakersfield California 22524 West 5 

Baltimore Maryland 22524 Northeast 1 

Billings Montana 22524 Central 9 

Birmingham Alabama 22524 Southeast 2 

Charleston West Virginia 22524 Central 9 

Charlotte North Carolina 22524 Southeast 2 

Cheyenne Wyoming 22524 West North Central 7 

Chicago Illinois 22524 Central 9 

Colorado 

Springs Colorado 22524 Southwest 4 

Columbia South Carolina 22524 Southeast 2 

Concord Massachusetts 22524 Northeast 1 

Corpus Christi Texas 22524 South 3 

Denver Colorado 22524 Southwest 4 

Duluth Minnesota 22524 East North Central 8 

El Paso Texas 22524 South 3 

Fort Wayne Indiana 22524 Central 9 

Fresno California 22524 West 5 

Greensboro North Carolina 22524 Southeast 2 

Honolulu Hawaii 22524 N/A N/A 

Houston Texas 22524 South 3 

Indianapolis Indiana 22524 Central 9 

Jacksonville Florida 22524 Southeast 2 

Kansas City Missouri 22524 Central 9 

Las Vegas Nevada 22524 West 5 

Long Beach California 22524 West 5 

Louisville Kentucky 22524 Central 9 

Lubbock Texas 22524 South 3 

Madison Wisconsin 22524 East North Central 8 

Memphis Tennessee 22524 Central 9 

Miami Florida 22524 Southeast 2 

Milwaukee Wisconsin 22524 East North Central 8 

Minneapolis Minnesota 22524 East North Central 8 

Nashville Tennessee 22524 Central 9 

New York New York 22524 Northeast 1 



36 

 

 

Newark New Jersey 22524 Northeast 1 

Norfolk Virginia 22524 Southeast 2 

Oklahoma City Oklahoma 22524 South 3 

Philadelphia Pennsylvania 22524 Northeast 1 

Phoenix Arizona 22524 Southwest 4 

Portland Oregon 22524 Northwest 6 

Providence Rhode Island 22524 Northeast 1 

Raliegh North Carolina 22524 Southeast 2 

Richmond Virginia 22524 Southeast 2 

Rochester New York 22524 Northeast 1 

Salt Lake City Utah 22524 Southwest 4 

San Antonio Texas 22524 South 3 

San Diego California 22524 West 5 

San Francisco California 22524 West 5 

Seattle Washington 22524 Northwest 6 

Shreveport Louisiana 22524 South 3 

Sioux Falls South Dakota 22524 West North Central 7 

Spokane Washington 22524 Northwest 6 

St. Louis Missouri 22524 Central 9 

Tampa Florida 22524 Southeast 2 

Tulsa Oklahoma 22524 South 3 

Washington 

District of 

Columbia 22524 N/A N/A 

Wichita Kansas 22524 South 3 

Austin Texas 22523 South 3 

Baton Rouge Louisiana 22523 South 3 

Boise Idaho 22523 Northwest 6 

Boston Massachussetts 22523 Northeast 1 

Buffalo New York 22523 Northeast 1 

Columbus Ohio 22523 Central 9 

Dallas Texas 22523 South 3 

Des Moines Iowa 22523 East North Central 8 

Jackson Mississippi 22523 South 3 

Little Rock Arkansas 22523 South 3 

Montgomery Alabama 22523 Southeast 2 

Fargo North Dakota 22522 West North Central 7 

Tucson Arizona 22522 Southwest 4 

Detroit Michigan 22521 East North Central 8 

Lexington Kentucky 22521 Central 9 

New Orleans Louisiana 22521 South 3 

Cincinnati Ohio 22520 Central 9 

Cleveland Ohio 22519 Central 9 
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Burlington Vermont 22515 Northeast 1 

Oakland California 22506 West 5 

Pittsburgh Pennsylvania 22505 Northeast 1 

Toledo Ohio 22503 Central 9 

Sacramento California 22489 West 5 

Bridgeport Connecticut 22487 Northeast 1 

Fayetteville North Carolina 22453 Southeast 2 

Wilmington Delaware 22136 Northeast 1 

Omaha Nebraska 21854 West North Central 7 

Table 1: List of cities in study sample. 

Variable Name Variable Definition 

mean_tavg Mean of daily average temperature 

mean_tdiff 

Mean of the difference between daily maximum temperature and 

daily minimum temperature 

mean_tmax Mean of daily maximum temperature 

mean_tmin Mean of daily minimum temperature 

med_tavg Median of average daily temperature 

med_tdiff 

Median of the difference between daily maximum temperature 

and daily minimum temperature 

med_tmax Median of daily maximum temperature 

med_tmin Median of daily minimum temperature 

max_tmax Maximum of daily maximum temperature 

mean_3dtmax 3-day rolling average of maximum temperature 

Days_Tmaxabove85f 

Number of days where maximum temperature is above 85 

degrees F 

Days_Tmaxabove90f 

Number of days where maximum temperature is above 90 

degrees F 

Days_Tmaxabove95f 

Number of days where maximum temperature is above 95 

degrees F 

Days_Tmaxabove100f 

Number of days where maximum temperature is above 100 

degrees F 

Days_Tmaxabove105f 

Number of days where maximum temperature is above 105 

degrees F 

Days_tmax50_80_1SD 

Number of days the maximum temperature is above 1 standard 

deviation measured from 1950-1980 

Days_tmax80_10_1SD 

Number of days the maximum temperature is above 1 standard 

deviation measured from 1980-2010 

Days_tmax50_80_2SD 

Number of days the maximum temperature is above 2 standard 

deviations measured from 1950-1980 

Days_tmax80_10_2SD 

Number of days the maximum temperature is above 2 standard 

deviations measured from 1980-2010 

Days_tmax50_80_3SD 

Number of days the maximum temperature is above 3 standard 

deviations measured from 1950-1980 

Days_tmax80_10_3SD 

Number of days the maximum temperature is above 3 standard 

deviations measured from 1980-2010 
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Days_tmax50_80_pctl99 

Number of days the maximum temperature is above the 99th 

percentile measured from 1950-1980 

Days_tmax50_80_pctl95 

Number of days the maximum temperature is above the 95th 

percentile measured from 1950-1980 

Days_tmax80_10_pctl99 

Number of days the maximum temperature is above the 99th 

percentile measured from 1980-2010 

Days_tmax80_10_pctl95 

Number of days the maximum temperature is above the 95th 

percentile measured from 1980-2010 

mean_HI_tmax Mean of heat index of daily maximum temperature 

mean_HUM_tmax Mean of humidex of daily maximum temperature 

mean_HUM_tmin Mean of humidex of daily minimum temperature 

mean_HUM_tavg Mean of humidex of daily average temperature 

mean_HUM_diff 

Mean of humidex of the difference between daily maximum 

temperature and daily minimum temperature 

mean_AT_tmax Mean of the apparent temperature of daily maximum temperature 

mean_AT_tmin Mean of the apparent temperature of daily minimum temperature 

mean_AT_tavg Mean of the apparent temperature of daily average temperature 

mean_AT_diff 

Mean of the apparent temperature of the difference between daily 

maximum temperature and daily minimum temperature 

Days_HImaxabove90 Number of days where humidex is above 90 degrees F 

Days_HImaxabove105 Number of days where humidex is above 105 degrees F 

Days_HImaxabove130 Number of days where humidex is above 130 degrees F 

Days_ATmaxabove80 

Number of days where maximum apparent temperature is above 

80 degrees F 

Days_ATmaxabove90 

Number of days where maximum apparent temperature is above 

80 degrees F 

Days_ATmaxabove95 

Number of days where maximum apparent temperature is above 

80 degrees F 

Table 2: Names and definitions of potential indicators of EHEs. 
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Region Variable 
mean_t

avg 

mean_t

diff 

mean_t

max 

mean_t

min 

med_t

avg 

med_t

diff 

med_t

max 

med_t

min 

max_t

max 

1 

mean_tavg 1.00 -0.25 0.93 0.96 0.99 -0.20 0.91 0.96 0.49 

mean_tmax 0.93 0.05 1.00 0.82 0.92 0.09 0.98 0.83 0.59 

max_tmax 0.49 0.33 0.59 0.40 0.48 0.37 0.57 0.41 1.00 

2 

mean_tavg 1.00 -0.16 0.83 0.92 0.99 -0.17 0.80 0.90 0.22 

mean_tmax 0.83 0.35 1.00 0.60 0.83 0.34 0.98 0.59 0.56 

max_tmax 0.22 0.66 0.56 -0.03 0.22 0.66 0.56 -0.01 1.00 

3 

mean_tavg 1.00 0.01 0.84 0.85 0.98 0.01 0.80 0.84 0.40 

mean_tmax 0.84 0.50 1.00 0.48 0.84 0.50 0.98 0.48 0.70 

max_tmax 0.40 0.70 0.70 0.03 0.41 0.68 0.67 0.04 1.00 

4 

mean_tavg 1.00 -0.32 0.85 0.93 0.98 -0.37 0.80 0.91 0.63 

mean_tmax 0.85 0.17 1.00 0.63 0.86 0.11 0.98 0.61 0.80 

max_tmax 0.63 0.26 0.80 0.43 0.65 0.21 0.79 0.41 1.00 

5 

mean_tavg 1.00 0.61 0.98 0.87 1.00 0.61 0.98 0.85 0.86 

mean_tmax 0.98 0.70 1.00 0.79 0.97 0.70 0.99 0.78 0.90 

max_tmax 0.86 0.75 0.90 0.60 0.85 0.75 0.88 0.58 1.00 

6 

mean_tavg 1.00 0.86 0.98 0.69 0.98 0.86 0.97 0.67 0.82 

mean_tmax 0.98 0.93 1.00 0.59 0.97 0.92 0.99 0.57 0.82 

max_tmax 0.82 0.72 0.82 0.59 0.77 0.71 0.77 0.53 1.00 

7 

mean_tavg 1.00 -0.54 0.94 0.98 0.98 -0.58 0.89 0.97 0.73 

mean_tmax 0.94 -0.26 1.00 0.87 0.94 -0.31 0.96 0.85 0.76 

max_tmax 0.73 -0.19 0.76 0.68 0.71 -0.23 0.70 0.67 1.00 

8 

mean_tavg 1.00 -0.06 0.95 0.95 0.98 -0.06 0.94 0.93 0.74 

mean_tmax 0.95 0.20 1.00 0.82 0.93 0.19 0.98 0.81 0.78 

max_tmax 0.74 0.14 0.78 0.66 0.71 0.12 0.75 0.64 1.00 
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9 

mean_tavg 1.00 -0.13 0.91 0.96 0.99 -0.15 0.87 0.95 0.54 

mean_tmax 0.91 0.21 1.00 0.80 0.91 0.18 0.98 0.78 0.74 

max_tmax 0.54 0.44 0.74 0.40 0.54 0.41 0.75 0.39 1.00 

Table 3: Sample of correlation values across temperature variables for the three selected indicators of EHEs by NOAA climate region.
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Region 1 (Northeast) 

Indicator Decade Mean (°F) SD (°F) 
Max 

(°F) 

Min 

(°F) 

Median 

(°F) 

Range 

(°F) 

Mean_Tavg 

1950-59 71.4 2.8 76.3 65.8 71.7 10.5 

1960-69 70.6 2.9 76.9 64.6 70.4 12.3 

1970-79 71.4 2.7 77.3 65.6 71.3 11.7 

1980-89 71.7 3.1 77.3 65.3 71.8 12.0 

1990-99 72.3 3.2 78.4 65.4 72.2 13.0 

2000-09 71.9 3.1 77.4 66.0 71.6 11.5 

Mean_Tmax 

1950-59 81.3 2.7 86.6 75.5 81.4 11.1 

1960-69 80.3 2.7 87.3 74.0 79.8 13.3 

1970-79 80.7 2.3 85.8 74.9 80.5 11.0 

1980-89 81.1 3.0 88.1 75.5 80.8 12.6 

1990-99 81.7 3.1 88.3 74.2 81.6 14.1 

2000-09 80.8 3.0 87.1 74.2 80.6 13.0 

Max_Tmax 

1950-59 95.3 3.6 102.0 88.0 95.0 14.0 

1960-69 93.8 3.4 104.0 88.0 93.0 16.0 

1970-79 94.1 3.4 104.0 86.0 94.0 18.0 

1980-89 94.9 3.4 104.0 86.0 95.0 18.0 

1990-99 95.2 4.4 105.0 87.0 96.0 18.0 

2000-09 94.4 3.8 103.0 87.0 95.0 16.0 

Region 2 (Southeast) 

Indicator Decade Mean (°F) SD (°F) 
Max 

(°F) 

Min 

(°F) 

Median 

(°F) 

Range 

(°F) 

Mean_Tavg 

1950-59 78.7 2.2 82.9 73.5 78.8 9.4 

1960-69 77.3 2.5 82.5 72.5 77.2 10.0 

1970-79 77.6 2.4 82.5 72.9 77.1 9.7 

1980-89 78.8 2.2 83.7 73.7 78.7 10.0 

1990-99 79.0 2.3 84.4 73.7 79.0 10.7 

2000-09 78.9 2.2 83.7 74.3 78.8 9.3 

Mean_Tmax 

1950-59 88.9 2.3 95.2 83.4 89.0 11.8 

1960-69 86.7 2.3 91.9 81.2 86.8 10.8 

1970-79 87.1 2.2 92.2 82.6 87.2 9.6 

1980-89 88.6 2.3 93.6 82.8 88.8 10.9 

1990-99 88.6 2.5 93.9 82.6 89.0 11.4 

2000-09 88.2 2.4 94.6 82.9 88.5 11.7 

Max_Tmax 

1950-59 98.4 3.2 106.0 92.0 98.0 14.0 

1960-69 96.0 2.8 106.0 89.0 96.0 17.0 

1970-79 96.0 3.0 105.0 90.0 96.0 15.0 

1980-89 98.3 3.4 106.0 90.0 98.0 16.0 

1990-99 98.1 3.0 106.0 93.0 98.0 13.0 

2000-09 97.3 4.5 129.0 90.0 97.0 39.0 

Region 3 (South) 

Indicator Decade Mean (°F) SD (°F) 
Max 

(°F) 

Min 

(°F) 

Median 

(°F) 

Range 

(°F) 

Mean_Tavg 

1950-59 81.8 2.7 88.0 73.3 81.8 14.7 

1960-69 80.8 2.6 87.8 74.2 80.6 13.5 

1970-79 80.5 2.4 91.6 75.4 80.2 16.1 

1980-89 81.5 2.5 89.3 75.5 81.3 13.7 

1990-99 81.6 2.6 88.4 74.4 81.6 14.0 
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2000-09 81.9 2.6 91.4 75.1 81.7 16.3 

Mean_Tmax 

1950-59 92.6 3.2 99.9 84.0 92.3 15.8 

1960-69 91.4 2.9 100.5 85.9 91.1 14.6 

1970-79 91.1 2.4 99.9 86.2 90.7 13.7 

1980-89 92.4 2.9 101.5 86.4 91.9 15.1 

1990-99 92.4 2.8 100.6 86.0 92.3 14.6 

2000-09 92.5 3.0 104.8 86.5 92.1 18.3 

Max_Tmax 

1950-59 101.5 4.1 113.0 94.0 102.0 19.0 

1960-69 100.5 3.8 109.0 92.0 100.0 17.0 

1970-79 100.1 3.9 111.0 93.0 99.0 18.0 

1980-89 101.8 4.1 112.0 94.0 102.0 18.0 

1990-99 101.7 4.1 114.0 93.0 102.0 21.0 

2000-09 101.8 3.7 109.0 93.0 102.0 16.0 

Region 4 (Southwest) 

Indicator Decade Mean (°F) SD (°F) 
Max 

(°F) 

Min 

(°F) 

Median 

(°F) 

Range 

(°F) 

Mean_Tavg 

1950-59 74.4 5.2 85.6 65.5 73.8 20.1 

1960-69 73.3 5.3 85.0 64.9 73.2 20.1 

1970-79 75.2 5.5 86.5 67.2 75.0 19.3 

1980-89 76.3 5.7 87.2 65.7 75.7 21.5 

1990-99 76.1 6.2 90.1 65.2 75.8 24.9 

2000-09 77.1 5.8 87.4 64.4 77.2 23.0 

Mean_Tmax 

1950-59 87.3 5.5 98.7 78.4 86.3 20.3 

1960-69 86.2 5.6 98.2 76.4 84.9 21.8 

1970-79 88.0 5.3 99.4 77.6 87.8 21.8 

1980-89 89.1 5.5 102.0 78.3 88.5 23.7 

1990-99 88.9 6.0 104.8 79.0 88.3 25.7 

2000-09 89.4 5.3 100.4 77.0 88.9 23.3 

Max_Tmax 

1950-59 98.6 5.0 110.0 89.0 98.5 21.0 

1960-69 97.6 4.8 109.0 88.0 97.0 21.0 

1970-79 99.3 4.8 110.0 90.0 98.8 20.0 

1980-89 99.9 4.7 113.0 93.0 99.0 20.0 

1990-99 100.9 5.4 116.0 91.5 100.0 24.5 

2000-09 100.4 4.9 113.0 91.0 99.0 22.0 

Region 5 (West) 

Indicator Decade Mean (°F) SD (°F) 
Max 

(°F) 

Min 

(°F) 

Median 

(°F) 

Range 

(°F) 

Mean_Tavg 

1950-59 71.8 9.0 89.7 57.5 70.4 32.2 

1960-69 72.4 9.2 90.0 58.7 71.1 31.3 

1970-79 73.2 9.4 90.2 59.5 71.3 30.7 

1980-89 73.5 9.1 91.3 59.3 72.0 31.9 

1990-99 73.4 9.1 93.1 59.8 72.3 33.3 

2000-09 73.8 9.9 92.8 60.8 72.0 32.0 

Mean_Tmax 

1950-59 84.5 11.6 102.8 67.2 85.6 35.6 

1960-69 84.4 11.9 103.5 67.7 84.7 35.9 

1970-79 85.1 12.2 103.6 67.2 86.0 36.3 

1980-89 85.7 11.8 104.4 68.6 86.1 35.8 

1990-99 85.1 11.6 105.3 67.8 86.0 37.5 

2000-09 85.4 12.2 104.1 69.9 86.6 34.2 

Max_Tmax 1950-59 99.3 9.6 115.0 81.0 102.0 34.0 
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1960-69 98.8 10.2 115.0 81.0 102.0 34.0 

1970-79 100.4 10.1 115.0 80.0 103.0 35.0 

1980-89 100.3 9.2 116.0 82.0 104.0 34.0 

1990-99 100.3 9.8 115.0 81.0 104.0 34.0 

2000-09 100.2 9.9 117.0 79.0 103.5 38.0 

Region 6 (Northwest) 

Indicator Decade Mean (°F) SD (°F) 
Max 

(°F) 

Min 

(°F) 

Median 

(°F) 

Range 

(°F) 

Mean_Tavg 

1950-59 65.7 4.0 72.1 58.4 65.7 13.7 

1960-69 66.6 3.8 75.8 60.5 65.9 15.3 

1970-79 67.1 3.5 74.2 61.2 66.7 12.9 

1980-89 66.7 3.3 73.8 60.4 66.4 13.4 

1990-99 67.1 3.7 75.1 60.8 66.5 14.3 

2000-09 68.3 4.3 77.0 60.8 67.3 16.2 

Mean_Tmax 

1950-59 79.0 5.6 88.3 68.1 79.0 20.2 

1960-69 79.9 5.3 91.6 70.7 79.0 20.9 

1970-79 80.4 5.0 89.6 71.9 80.3 17.6 

1980-89 80.5 5.1 91.0 70.6 80.5 20.4 

1990-99 80.7 5.3 91.8 71.1 80.2 20.7 

2000-09 81.8 5.8 92.6 71.1 81.2 21.5 

Max_Tmax 

1950-59 95.7 6.4 106.0 80.0 97.0 26.0 

1960-69 97.5 6.3 109.0 84.0 98.0 25.0 

1970-79 97.9 5.2 107.0 85.0 99.5 22.0 

1980-89 97.7 5.2 106.0 85.0 99.0 21.0 

1990-99 98.0 5.2 108.0 86.0 99.0 22.0 

2000-09 99.5 5.5 109.0 87.0 100.0 22.0 

Region 7 (West North Central) 

Indicator Decade Mean (°F) SD (°F) 
Max 

(°F) 

Min 

(°F) 

Median 

(°F) 

Range 

(°F) 

Mean_Tavg 

1950-59 70.2 4.2 78.0 61.9 69.3 16.1 

1960-69 69.7 3.6 76.3 62.7 69.6 13.6 

1970-79 70.1 4.0 76.9 63.4 69.8 13.5 

1980-89 70.3 3.8 76.8 63.9 70.6 12.9 

1990-99 69.5 3.7 76.4 62.7 69.5 13.7 

2000-09 70.6 3.6 77.6 63.0 70.2 14.6 

Mean_Tmax 

1950-59 82.7 3.6 89.5 75.0 82.2 14.5 

1960-69 82.2 2.8 87.7 76.3 82.1 11.4 

1970-79 82.9 3.6 89.9 77.0 81.9 12.9 

1980-89 83.0 3.5 90.2 76.9 83.3 13.3 

1990-99 81.4 3.1 88.6 75.0 81.2 13.6 

2000-09 82.5 3.2 89.1 76.0 82.6 13.1 

Max_Tmax 

1950-59 97.7 4.6 107.0 89.0 98.0 18.0 

1960-69 96.7 3.6 106.0 90.0 97.5 16.0 

1970-79 97.7 4.6 107.0 89.0 97.5 18.0 

1980-89 98.7 4.7 109.0 90.0 100.0 19.0 

1990-99 95.5 4.5 109.0 90.0 95.0 19.0 

2000-09 96.6 3.9 105.0 89.5 97.0 15.5 

Region 8 (East North Central) 

Indicator Decade Mean (°F) SD (°F) 
Max 

(°F) 

Min 

(°F) 

Median 

(°F) 

Range 

(°F) 
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Mean_Tavg 

1950-59 69.6 3.9 75.8 59.6 70.5 16.2 

1960-69 68.6 3.6 73.5 59.8 69.4 13.7 

1970-79 69.5 3.8 75.8 60.6 70.2 15.1 

1980-89 70.0 4.0 78.7 60.2 70.3 18.4 

1990-99 69.6 3.7 75.3 59.0 70.2 16.3 

2000-09 70.2 3.8 75.8 60.1 70.7 15.7 

Mean_Tmax 

1950-59 80.4 3.9 87.1 70.6 80.6 16.4 

1960-69 79.1 3.5 84.2 70.9 79.4 13.3 

1970-79 80.3 3.9 88.0 71.7 80.9 16.3 

1980-89 80.8 4.1 90.2 71.2 80.9 19.0 

1990-99 79.4 3.6 85.4 69.6 80.2 15.8 

2000-09 79.9 3.6 85.9 70.8 80.2 15.0 

Max_Tmax 

1950-59 94.7 4.1 105.0 87.0 95.0 18.0 

1960-69 93.7 3.4 100.0 86.0 94.0 14.0 

1970-79 95.0 3.9 103.0 86.0 95.0 17.0 

1980-89 95.7 4.6 107.0 84.0 95.0 23.0 

1990-99 94.1 4.1 103.0 84.0 94.0 19.0 

2000-09 93.8 3.7 101.0 86.0 94.0 15.0 

Region 9 (Central) 

Indicator Decade Mean (°F) SD (°F) 
Max 

(°F) 

Min 

(°F) 

Median 

(°F) 

Range 

(°F) 

Mean_Tavg 

1950-59 74.0 3.8 83.9 65.2 73.7 18.8 

1960-69 72.8 3.3 80.7 66.5 72.4 14.2 

1970-79 73.2 3.3 82.6 65.9 72.7 16.6 

1980-89 74.3 3.8 85.5 67.7 73.9 17.8 

1990-99 73.9 3.6 82.5 63.0 73.9 19.5 

2000-09 74.1 3.6 83.7 67.2 73.6 16.5 

Mean_Tmax 

1950-59 85.1 3.8 95.6 77.8 84.9 17.8 

1960-69 83.4 3.0 90.5 77.8 83.1 12.6 

1970-79 83.5 3.1 92.0 76.4 83.1 15.6 

1980-89 84.9 3.8 95.4 77.3 84.6 18.1 

1990-99 84.2 3.4 91.9 76.4 84.4 15.5 

2000-09 84.1 3.6 93.5 76.6 83.9 16.9 

Max_Tmax 

1950-59 97.2 4.3 113.0 89.0 97.0 24.0 

1960-69 95.2 3.7 105.0 88.0 95.0 17.0 

1970-79 94.9 3.3 106.0 87.0 95.0 19.0 

1980-89 97.0 4.4 108.5 90.0 96.0 18.5 

1990-99 96.3 3.4 105.0 87.0 96.0 18.0 

2000-09 95.4 4.6 106.0 85.0 95.0 21.0 

Table 4: Values of descriptive statistics for three temperature indicators for each region by decade. 
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Figure 3: Boxplots by decade for Mean_Tavg for the Northeast (region 1) and West (region 5). 

Decade 1=1950-59, 2=1960-69, 3=1970-79, 4=1980-89, 5=1990-99, 6=2000-09 

 

 

 

 
Figure 4: Boxplots by decade for Mean_Tmax for the Northeast (region 1) and West (region 5). 

Decade 1=1950-59, 2=1960-69, 3=1970-79, 4=1980-89, 5=1990-99, 6=2000-09 
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Figure 5: Boxplots by decade for Max_Tmax for the Northeast (region 1) and West (region 5). 

Decade 1=1950-59, 2=1960-69, 3=1970-79, 4=1980-89, 5=1990-99, 6=2000-09 

 

 
Figure 6: Region 1 historical data trend lines for all three indicators for JJA from 1950-2010. 
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Figure 7: Region 2 historical data trend lines for all three indicators for JJA from 1950-2010. 

 

 
Figure 8: Region 3 historical data trend lines for all three indicators for JJA from 1950-2010. 
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Figure 9: Region 4 historical data trend lines for all three indicators for JJA from 1950-2010. 

 

 
Figure 10: Region 5 historical data trend lines for all three indicators for JJA from 1950-2010. 
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Figure 11: Region 6 historical data trend lines for all three indicators for JJA from 1950-2010. 

 

 

 
Figure 12: Region 7 historical data trend lines for all three indicators for JJA from 1950-2010. 
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Figure 13: Region 8 historical data trend lines for all three indicators for JJA from 1950-2010. 

 

 
Figure 14: Region 9 historical data trend lines for all three indicators for JJA from 1950-2010. 
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Region 

Avg_T

_avg 

2035 

Avg_T

_avg 

2055 

Avg_T_

max 

2035 

Avg_T_

max 

2055 

Max_

T_max 

2035 

Max_

T_max 

2055 

Trends 

(Avg_Tavg, 

Avg_Tmax, 

Max_Tmax) 

1 (Northeast) 74.2 75.6 81.0 82.7 84.1 94.7 +, +, + 

2 (Southeast) 83.8 88.3 88.0 93.6 98.5 97.4 +, +, + 

3 (South) 86.2 90.3 92.1 93.2 97.6 101.3 +, +, + 

4 (Southwest) 79.4 81.0 88.2 91.1 92.0 99.5 +, +, + 

5 (West) 72.0 69.8 85.0 83.7 82.0 99.9 -,-,- 

6 (Northwest) 69.2 70.1 80.4 82.3 82.8 97.7 +, +, + 

7 (West North 

Central) 
71.4 72.4 82.5 81.0 79.8 97.1 +,-,- 

8 (East North 

Central) 
72.7 74.5 80.0 79.9 79.8 94.5 +,-,- 

9 (Central) 77.3 80.2 84.0 87.2 90.1 95.7 +, +, + 

Table 5: Trends for each region with point estimates at 2035 and 2055 for all three indicators. 

Region 

Avg_T

_avg 

2035 

Avg_T

_avg 

2055 

Avg_T

_max 

2035 

Avg_T

_max 

2055 

Max_T

_max 

2035 

Max_T

_max 

2055 

1 (Northeast) 2.6 4.0 1.7 3.1 2.1 3.8 

2 (Southeast) 5.6 10.0 5.7 10.5 6.4 12.1 

3 (South) 4.8 8.9 1.1 5.5 5.4 9.9 

4 (Southwest) 3.9 5.6 2.9 3.8 3.0 4.0 

5 (West) -1.0 -3.2 -1.3 -3.0 0.1 -0.6 

6 (Northwest) 2.2 3.1 2.0 2.4 2.0 2.1 

7 (West North Central) 1.3 2.4 -1.5 -2.6 -6.2 -11.2 

8 (East North Central) 3.0 4.9 -0.1 -0.2 -4.8 -9.2 

9 (Central) 3.8 6.7 3.2 6.1 2.6 5.3 

Table 6: Deviation of point estimates at 2035 and 2055 from the temperature normal (average of 

each of the three indicators from 1950-2010). 
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Figure 15: Regional deviations of average temperatures at 2035 from their temperature normal 

(regional average temperature from 1950-2010). 
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Figure 16: Regional deviations of average temperatures at 2055 from their temperature normal 

(regional average temperature from 1950-2010). 
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Figure 17: Regional deviations of average maximum temperatures at 2035 from their temperature 

normal (regional average maximum temperature from 1950-2010). 
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Figure 18: Regional deviations of average maximum temperatures at 2055 from their temperature 

normal (regional average maximum temperature from 1950-2010). 
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Figure 19: Regional deviations of maximum of maximum temperatures at 2035 from their 

temperature normal (regional maximum of maximum temperature from 1950-2010). 
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Figure 20: Regional deviations of maximum of maximum temperatures at 2055 from their 

temperature normal (regional maximum of maximum temperature from 1950-2010). 

  

 

 
Figure 21: Region 1 historical and projected trends for Mean_Tavg, Mean_Tmax, and Max_Tmax 

for JJA from 1950-2060.  
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Figure 22: Region 2 historical and projected trends for Mean_Tavg, Mean_Tmax, and Max_Tmax 

for JJA from 1950-2060.  

 

 
Figure 23: Region 3 historical and projected trends for Mean_Tavg, Mean_Tmax, and Max_Tmax 

for JJA from 1950-2060. 
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Figure 24: Region 4 historical and projected trends for Mean_Tavg, Mean_Tmax, and Max_Tmax 

for JJA from 1950-2060. 

 

 
Figure 25: Region 5 historical and projected trends for Mean_Tavg, Mean_Tmax, and Max_Tmax 

for JJA from 1950-2060. 
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Figure 26: Region 6 historical and projected trends for Mean_Tavg, Mean_Tmax, and Max_Tmax 

for JJA from 1950-2060. 

 

 
Figure 27: Region 7 historical and projected trends for Mean_Tavg, Mean_Tmax, and Max_Tmax 

for JJA from 1950-2060. 
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Figure 28: Region 8 historical and projected trends for Mean_Tavg, Mean_Tmax, and Max_Tmax 

for JJA from 1950-2060. 

 

 
Figure 29: Region 9 historical and projected trends for Mean_Tavg, Mean_Tmax, and Max_Tmax 

for JJA from 1950-2060. 
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Figure 30: Region 1 projected trends for three EHE indicators for JJA from 2011-2060. 

Max_Tmax: y = 0.0004x
2
 - 1.5571x + 1603 

Mean_Tmax: y = 0.0003x
2
 - 1.3207x + 1366.3 

Mean_Tavg: y = 0.0004x
2
 - 1.6355x + 1666.1 

 

 
Figure 31: Region 2 projected trends for three EHE indicators for JJA from 2011-2060. 

Max_Tmax:  y = 0.002x
2
 - 8.0711x + 8071.1 

Mean_Tmax: y = 0.0017x
2
 - 6.8788x + 6881.4 

Mean_Tavg: y = 0.0015x
2
 - 5.9051x + 5897 
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Figure 32: Region 3 projected trends for three EHE indicators for JJA from 2011-2060. 

Max_Tmax:  y = 0.0015x
2
 - 6.0719x + 6089.8 

Mean_Tmax: y = 0.0013x
2
 - 5.3105x + 5335.9 

Mean_Tavg: y = 0.0015x
2
 - 5.8453x + 5853.9 

 

 
Figure 33: Region 4 projected trends for three EHE indicators for JJA from 2011-2060. 

Max_Tmax:  y = -3E-05x
2
 + 0.1793x - 131.63 

Mean_Tmax: y = -2E-05x
2
 + 0.118x - 77.081 

Mean_Tavg: y = 0.0001x
2
 - 0.4322x + 438.08 
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Figure 34: Region 5 projected trends for three EHE indicators for JJA from 2011-2060. 

Max_Tmax:  y = -0.0005x
2
 + 1.9043x - 1810.6 

Mean_Tmax: y = -0.0008x
2
 + 3.2021x - 3101.3 

Mean_Tavg: y = -0.0013x
2
 + 5.048x – 4979 

 

 
Figure 35: Region 6 projected trends for three EHE indicators for JJA from 2011-2060. 

Max_Tmax:  y = -0.0005x
2
 + 1.9043x - 1810.6 

Mean_Tmax: y = -0.0008x
2
 + 3.2021x - 3101.3 

Mean_Tavg: y = -0.0013x
2
 + 5.048x - 4979 
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Figure 36: Region 7 projected trends for three EHE indicators for JJA from 2011-2060. 

Max_Tmax:  y = -0.0024x
2
 + 9.4837x - 9344.1 

Mean_Tmax: y = -0.0006x
2
 + 2.364x - 2275.1 

Mean_Tavg: y = 0.0002x
2
 - 0.8668x + 906.68 

 

 
Figure 37: Region 8 projected trends for three EHE indicators for JJA from 2011-2060. 

Max_Tmax:  y = -0.0024x
2
 + 9.4837x - 9344.1 

Mean_Tmax: y = -0.0006x
2
 + 2.364x - 2275.1 

Mean_Tavg: y = 0.0002x
2
 - 0.8668x + 906.68 
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Figure 38: Region 9 projected trends for three EHE indicators for JJA from 2011-2060. 

Max_Tmax:  y = 0.0011x
2
 - 4.3793x + 4438.2 

Mean_Tmax: y = 0.0011x
2
 - 4.2378x + 4274.3 

Mean_Tavg: y = 0.0009x
2
 - 3.6637x + 3677.4 
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Figure 39: Regions 1, 2, 5, 7, and 8 Mean_Tavg projections with confidence intervals. The upper 

plotted line represents the upper bound for the 95% confidence intervals. The lower plotted line 

represents the lower bound for the 95% confidence intervals. The middle plotted line contains the 

projected point estimates. 
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Figure 40: Regions 1, 2, 5, 7, and 8 Mean_Tmax projections with confidence intervals. The upper 

plotted line represents the upper bound for the 95% confidence intervals. The lower plotted line 

represents the lower bound for the 95% confidence intervals. The middle plotted line contains the 

projected point estimates. 
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Figure 41: Regions 1, 2, 5, 7, and 8 Max_Tmax projections with confidence intervals. The upper 

plotted line represents the upper bound for the 95% confidence intervals. The lower plotted line 

represents the lower bound for the 95% confidence intervals. The middle plotted line contains the 

projected point estimates. 
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Figure 42: Region 5 projected trends for Mean_Tavg using different subsets of historical data. 

 

 
Figure 43: Region 5 projected trends for Mean_Tmax using different subsets of historical data. 
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Figure 44: Region 5 projected trends for Max_Tmax using different subsets of historical data. 

 

Region 1 

Avg_

T_avg 

2035 

Avg_

T_avg 

2055 

Avg_T

_max 

2035 

Avg_T

_max 

2055 

Max_

T_max 

2035 

Max_

T_max 

2055 

Trends 

(avg_avg, avg_max, 

max_max) 

Baltimore 78.2 80.5 87.0 88.5 101.0 103.7 +, +, + 

Boston 71.3 71.5 78.6 78.2 93.8 91.8 +,+,- 

Bridgeport 73.3 73.8 82.6 85.5 98.2 102.1 +, +, + 

Buffalo 71.6 73.4 79.1 80.4 92.5 95.0 +, +, + 

Burlington 71.3 73.8 80.5 81.9 92.3 91.5 +,+,- 

Concord 70.0 71.4 80.3 80.6 95.7 96.3 +, +, + 

Newark 75.5 74.9 84.7 85.1 103.7 108.7 -,+,+ 

New York* 80.3 84.7 88.1 92.9 104.3 110.8 +, +, + 

Philadelphia 80.2 83.7 87.4 89.4 101.3 105.3 +, +, + 

Pittsburgh 80.2 83.7 83.1 85.2 91.0 90.7 +,+,- 

Providence 72.4 73.1 80.6 80.6 94.8 93.3 -,-,- 

Rochester 72.4 73.1 78.2 77.9 91.2 90.7 +,-,- 

Wilmington 75.9 76.8 85.3 86.7 98.5 100.7 +, +, + 

Table 7: Temperature (°F) projection estimates and trends for all three indicators at 2035 and 

2055 for cities in region 1 (Northeast). All temperatures are in degrees Fahrenheit. 

*New York is bolded for comparison of this study’s projected temperatures to that of existing 

GCM output for this city. 
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Figure 45: New York City historical and projected trends for all three indicators for JJA from 

1950-2060. 

 

 
Figure 46: New York City historical and projected trends for annual temperature from 1910-2100 

from the New York City Panel on Climate Change study [41].  
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 Temperature 

Normal*   

Avg_Tmax in the 2020s 

(Deviation from Normal) 

Avg_Tmax in the 2050s 

(Deviation from Normal) 

Our Study 83.5 86.1 (+2.6) 92.8 (+9.3) 

Panel on 

Climate 

Change Study 

N/A N/A (+1.5 to 3) N/A (+3 to 5) 

Table 8: Comparison of our study with New York City Panel on Climate Change study [41] for 

projected increases of temperature maxima in the 2020s and 2050s compared to baseline data. All 

temperatures are in degrees Fahrenheit.  

*Temperature normal for our study is calculated using the mean of daily temperature maxima in 

JJA from 1950-2010. 

 

Region 5 

Avg_T

_avg 

2035 

Avg_T

_avg 

2055 

Avg_T

_max 

2035 

Avg_T

_max 

2055 

Max_T

_max 

2035 

Max_T

_max 

2055 

Trends  

(avg_avg, 

avg_max, 

max_max) 

Bakersfield 79.1 76.2 92.9 90.0 106.8 105.3 -,-,- 

Fresno 80.3 78.7 96.5 95.8 111.2 113.0 -,-,+ 

Las Vegas 96.5 101.4 105.4 108.2 114.5 116.4 +, +, + 

Long Beach 63.5 55.8 74.2 67.7 83.4 69.4 -,-,- 

Oakland 61.2 59.9 75.2 79.3 112.0 131.2 -,+,+ 

Sacramento* 71.7 70.7 89.4 87.6 108.1 109.3 -,-,+ 

San Diego 62.4 56.1 67.4 61.3 76.7 67.0 -,-,- 

San Francisco 60.9 59.7 68.8 66.0 87.6 82.8 -,-,- 

Table 9: Temperature (°F) projection estimates and trends for all three indicators at 2035 and 

2055 for cities in region 5 (West). All temperatures are in degrees Fahrenheit. 

*Sacramento is bolded for comparison of this study’s projected temperatures to that of existing 

data for this city. 

 

 
Figure 47: Sacramento, CA historical and projected trends for all three indicators for JJA from 

1950-2060. 
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Temperature Normal*   

Average Summer Temperatures 

by 2050 (Deviation from 

Normal) 

Our Study’s findings 

for Sacramento 
72.2 71.0 (-1.2) 

Higher A2 Scenario 

for Sacramento 
N/A  N/A (+5.4 to 10.8) 

Lower B1 Scenario for 

Sacramento 
N/A N/A (+2.7 to 7.2) 

Table 10: Comparison of our study with Mastrandrea and Luers (2012) study for projected 

increases of average summer temperatures in Sacramento, CA by mid-century (2050) compared 

to baseline data. All temperatures are in degrees Fahrenheit.  

*Temperature normal for our study is calculated using the mean of daily average temperatures in 

JJA from 1950-2010. 

 

 
Figure 48: Alexander et al. (2006) study on seasonal occurrence of warm nights in days for June-

August. Seasonal results for warming are significant, and insignificant for cooling. 


