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Abstract

Flexible Semiparametric Regression Methods for Observational
Follow-up Studies

By Xiaoyan Sun

Observational follow-up studies often present various challenges that can
complicate statistical analysis, such as complex censoring mechanism, missing ob-
servations, and highly skewed measurements. In my dissertation, we have developed
flexible semiparametric regression methods for three different complex data scenarios.

The first one is recurrent events setting subject to window observation, which
arises when the observation of recurrent event is not available before the follow-up
starts and after the follow-up ends. We adopt the accelerated recurrent time model
(Huang and Peng, 2009), and develop two estimators for window observed recurrent
event data. We illustrate our method via an analysis of the time to expected
frequency of pseudomonas aeruginosa (PA) infection in Cystic Fibrosis (CF) children
through the use of the US CF Foundation Patient Registry (CFFPR).

The second project is about longitudinal data with skewed outcome subject to
left censoring and following an informative intermittent missing pattern, which is
motivated by the Michigan Long-Term Polybrominated Biphenyls (PBB’s) Study.
In this work, we consider quantile regression modeling for the data from such
longitudinal studies. We adopt an appropriate censored quantile regression technique
to handle left censoring and employ the idea of inverse probability weighting to
tackle the issue associated with informative intermittent missing data. We evaluate
our method by simulation studies. The proposed method is applied to the Michigan
PBB study to investigate the PBB decay profile.

The third data scenario is longitudinal data with skewed outcome subject to left
censoring and irregular outcome-dependent follow-up. For example, in the Michigan
PBB study, serum samples were not taken at a set of common time points but at
irregular time intervals. In this work, we propose an inverse intensity-ratio weighted
least absolute deviation estimator in censored quantile regression. This approach
yields consistent estimates of the quantile regression parameters provided that the
model for the follow-up visit process has been correctly specified. The proposed
method is also applied to the Michigan PBB study to investigate the PBB decay
profile.
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Chapter 1

Introduction
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1.1 Background

Observational follow-up studies often present various challenges that can complicate

statistical analysis, such as complex censoring mechanism, missing observations,

and highly skewed measurements. Many semiparametric regression models, such as

quantile regression, has received increased attention for their capability of handling

skewed data and allowing for varying covariate effects. In my dissertation, we have

studied three different data scenarios. The first one is recurrent events setting

subject to window observation, which arises when the observation of recurrent

event is not available before the follow-up starts and after the follow-up ends. The

second one is focused on longitudinal data with skewed outcomes subject to left

censoring plus outcome-dependent intermittent missingness. The third one deals

with longitudinal skewed measurements subject to left censoring and observed only

at irregular outcome-dependent follow-up times. As elaborated later, considerable

statistical challenges are involved in developing statistical methods for appropriately

analyzing the complex data scenarios described above.

In the first project, we have studied the accelerated recurrence time model for

recurrent events data subject to window observation. Recurrent events are frequently

encountered in biomedical research. Examples include tumor recurrences, asthmatic

attacks, and hospitalizations. In some observational studies, the observation of

recurrent events is constrained to an observation window between the start of

follow-up and the last follow-up visit. An example is the US Cystic Fibrosis

Foundation Patient Registry (CFFPR) study. Cystic Fibrosis (CF) is a life-limiting

genetic disease without known cure yet, affecting about 30,000 people in the United

States (Cystic Fibrosis Foundation, 2011). For CF patients, lung infections will

result in damaged and lower lung function. Pseudomonas aeruginosa (PA), the most

important pathogen that shortens survival of CF patients, infects more than half of
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people with CF (Cystic Fibrosis Foundation, 2011). The first 10 years were known to

be an important potentially beneficial period for early diagnosis and new therapies

(Campbell and White, 2005; Gross et al., 2006). Therefore, it is of scientific interest

to investigate the association between the timing of PA infection recurrences in the

first 10 years and its risk factors. Though the onset and remissions of PA infections

are usually well monitored during CFFPR follow-up, no record of PA infections is

available before the registry entry. The missing information on PA infection before

registry entry is not ignorable because most of CF children did not entry the registry

at or shortly after birth due to delayed diagnosis after birth or delayed entry to the

registry. At the same time the observation of PA infection is also terminated at the

last follow-up. Such a recurrent event setting is the focus of the first project in my

dissertation.

The second and the third projects are concerned with regression analyses of

longitudinal measurements, which have skewed distributions and are subject to left

censoring. Our motivating example is the Michigan Long-Term Polybrominated

Biphenyl (PBB) Study. PBBs are manufactured chemicals that accidentally mixed

with animal feed during 1973-1974. Residents on Michigan farms and neighboring

communities were exposed to PBBs by consuming meat, milk, and other food

products from contaminated animals. This study was established following exposure

to PBB’s. Since the initial enrollment period (1976 - 1978), the Michigan Depart-

ment of Community Health (MDCH) has periodically contacted cohort members to

obtain additional serum samples to measure PBB concentration levels. PBBs are

stable, persistent halogenated organic pollutants with extremely long half-lives that

have been shown to have suggested effects on several diseases in animal studies.

Participants in this study continued to have measurable serum PBB concentration

levels more than 20 years later. Thus, it is of interest to understand the pattern
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by which PBB is eliminated from the body. In the longitudinal data collected in

the Michigan PBB study, serum PBB concentration measurements are highly right

skewed (Figure 1.1). The measurements are also left censored due to laboratory

assay detection. If the serum PBB concentration is less than 1 pbb, it is recorded as

1 pbb.

Subject’s follow-up pattern may depend on observed PBB concentrations. Figure

1.2 presents the distribution of the first PBB measurement in each group of subjects

with the same number of visits. It is clear that the first PBB measurement is higher

in groups with more visits than groups with fewer visits. We take two different

perspectives to handle the statistical issues from the outcome-dependent follow-up

pattern. In project 2, we divide the continuous time scale into prespecified time-

intervals so that we formulate the PBB data as longitudinal data with fixed visit

times. When a subject did not come for a follow-up visit in a given time-interval, the

longitudinal outcome at the given time point is treated as missing. Under this view,

we encounter informative missing data because the missing pattern of longitudinal

outcome are not completely random, as implied by Figure 1.2. To handle the missing

data, we adpoted the assumption of missing at random (MAR), which allows the data

missingness to be related to the observed responses, but is assumed to be conditionally

independent of the missing responses (Little and Rubin, 1987). In the PBB study,

participants were given their PBB levels after they were analyzed. It is reasonable to

make the assumption that the missing pattern is related to the observed measurements

and is independent of the missing measurements given the observed measurements.

In the second projects, we study the estimation and inference of a quantile regression

model for longitudinal measurements subject to informative intermittent missing and

left censoring.
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Figure 1.1: Distribution of PBB concentration measurements after logrithm transfor-
mation

Figure 1.2: Distribution of log (PBB) at the first visit versus number of measurements
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In the third project, we treat visit times as continuous and the PBB data

are then formulated as longitudinal data with irregular follow-up times. By this

approach, we avoid the time interval division, which may involve arbitrariness.

To handle outcome-dependent follow-up, we adopt separate modeling for visit

times and longitudinal outcomes. We model follow-up visits via a recurrent event

process that follows a proportional intensity model. We develop a marginal quantile

regression method for left censored longitudinal data that appropriately handles the

outcome-dependent irregular follow-up.

In all projects, we have adopted semiparametric quantile regression models

that are more flexible than traditional models. Quantile regression can deal with

skewed data without imposing distributional assumptions, such as normality. Also

quantile regression formulates covariate effects separately on different quantiles

and do not require them to be constant over different quantile levels. This feature

may help detect inhomogeneous risk patterns. For example, in the Michigan PBB

study, quantile regression can capture the characteristic that the upper end of

PBB concentration distribution tends to decrease faster than the lower end of PBB

distribution while standard linear mixed models cannot. The accelerated recurrence

time model shares the same spirit as quantile regression. The accelerated recurrence

time model specifies covariate effects on time to expected frequencies. This model

does not imposing any assumption about the pattern of time to expected frequencies

for the reference group. It also has the flexibility to allow covariate to have different

effects on time to different expected frequencies.

In my dissertation, we develop new semiparametric regression methods, pursuing

the advantages described above while appropriately handling the data complexities

present in real studies. In the next section, we present literature reviews separately
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on regression for recurrent event data and regression for longitudinal data. An outline

of my dissertation is given in the end of this chapter.

1.2 Literature Review

1.2.1 Existing Work on Regression for Recurrent Event Data

Let T = {T (1), T (2), . . .} be the recurrent event times. Let Z be the associated p× 1

vector of covariates. The corresponding counting process to the recurrent event

times is denoted by N(t) =
∑∞

j=1 I(T (j) ≤ t). The regression analysis of recurrent

event time data, concerned by the first project, has been investigated in literature.

One well known approach is through intensity function which represents the in-

stantaneous probability of an event conditional on the process history. The intensity

function is mathematically defined as

λ(t|H(t)) = lim
∆→0

Pr{∆N(t) = 1|H(t)}
∆t

, (1.1)

where H(t) = {Z, N(s) : 0 ≤ s < t} denote the history up to time t. One popular

way to model the association between the intensity function and covariate is the

proportional intensity model proposed by Andersen and Gill (1982) which takes the

form

λ(t|Z) = λ0(t)eβ
TZ(t), (1.2)

where λ0(·) is an unspecified baseline intensity function and β is a vector of unknown

regression parameters. Andersen and Gill (1982) assumes zero intra-individual cor-

relation among recurrent events when estimating the coefficients which may not be

appropriate in many applications. A useful approach to accommodating the intra-

individual correlation is to incorporate a random effect also called frailty γ into model



9

(1.2):

λ(t|Z, γ) = γλ0(t)eβ
TZ(t). (1.3)

This model has been investigated by Nielsen et al. (1992) and Oakes (1992),

among others. Frailty is usually specified to follow a distribution, such as Gamma

distribution.

Another popular intensity models is through modeling waiting time or gap time

between two adjacent recurrent events. This type of methods is often adopted when

events are relatively infrequent. The simplest example is assuming that the gap times

are independent within one subject,

λ(t|H(t)) = h
(
t− TN(t−)

)
, (1.4)

where h(·) is the hazard function for the gap times between events which are

independent and identically distributed. Models for gap time have also been

investigated in literature. In dealing with the Gap times between adjacent recurrent

events, the main challenge is dependent censoring. When the overall follow-up time

is subject to independent censoring, the gap time except the first one are subject

to dependent censoring. Prentice et al. (1981) developed a regression for gap times

based on proportional hazard model but only applicable when recurrent event times

are conditionally independent, given the covariate. Regression procedures without

the requirement for conditional independence among recurrent event times also have

been investigated. For example, Huang (2002) proposed a regression procedure

for gap times based on accelerated failure time model. Schaubel and Cai (2004)

developed an estimating equation for fitting proportional hazard model for gap times.
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Conditional models based on intensity function usually requires assumption

about dependence structure among recurrent events within a subject. This potential

drawback makes robust marginal models based on expected event frequency be

popular alternative in practice. For example, proportional mean and rate models

formulate covariate effects on the mean frequency function E[N(t)|Z] or the rate

function E[dN(t)|Z]. These models have been studied by many authors, such as

Pepe and Cai (1993), Lawless and Nadeau (1995), and Lin et al. (2000), and been

extended to models with a more general class of transformation by Lin et al. (2001).

The model we adopted for project 1 falls into the model category that uses

mean/rate rather than intensity. A directly relevant model is Lin et al. (1998)’s

accelerated failure time model (AFT) for recurrent events data. Specifically,

Lin et al. (1998) proposed to specify covariate effects on the frequency of recur-

rences as expanding or contracting the time scale, E(N(t)|Z) = µ0(eβ
′
0Zt), where

µ0(·) is an unspecified continuous function. As pointed out by D. R. Cox (Reid

(1994), p. 450), “accelerated life models are in many ways more appealing [than

the proportional hazards model] because of their quite direct physical interpretation”.

It would be desirable to have the flexibility to accommodate varying effects of

covariates. However, Lin et al. (1998)’s AFT model does not have such a capability.

In fact, there are relatively limited work on marginal recurrent event models with

varying covariate effects. Fine et al. (2004) proposed temporal process regression

allowing time-varying covariate effects on the mean frequency function. Chiang and

Wang (2009) proposed a proportional rate model with time-varying coefficients.

Estimators are obtained through maximizing the kernel weighted partial likelihood

function which requires smoothing parameters.
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More recently, Huang and Peng (2009) proposed an accelerated recurrence time

model allowing for varying covariate effects. Define the inverse function of the mean

frequency function as τZ(u) = inf{t : E(N(t)|Z) > u}, which can be easily interpreted

as time to expected frequency u. The accelerated recurrence time model assumes

varying covariate effects dependent on the expected frequency:

log τZ(u) = β0(u)TX, ∀u ∈ (0,∞), (1.5)

where X = (1,ZT )T . This model could be viewed as a generalization of the acceler-

ated failure time model for counting process (Lin et al., 1998). When all components

of β0(u) except the intercept are constant in u, the accelerated recurrence time model

reduces to the accelerated failure time model for counting processes. Compared

with other varying-coefficient models, the accelerated recurrence time model retains

the appealing advantage of direct physical interpretation that covariate effects are

specified on each recurrence instead of on the mean frequency or rate function. The

modeling strategy for varying covariates effects in the accelerated recurrence time

model shares the same spirit as quantile regression. Quantile regression model for

survival data is a special case of the accelerated recurrence time model when each

individual may experience at most one event. The accelerated recurrence time model

has the flexibility allowing covariates to have different effects on time to different

expected frequencies. Compared to Lin et al. (1998)’s accelerated failure time model,

the new model could provide a more comprehensive view of covariate effects.

Note that, Huang and Peng (2009) only considered observation windows starting

from zero for recurrent events data analysis. It is not straightforward to extend

Huang and Peng (2009)’s work to handle the more realistic recurrent events data

setting where the observation of recurrent event may not start right from the time
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origin. This hurdles the exploration of the CFFPR data based on the flexible

accelerated recurrence time model. This constitutes the motivation for the first

project

1.2.2 Existing Work on Regression Analysis of Longitudinal

Data

The second and third projects are focused on longitudinal data with repeated mea-

surements where correlation among measurements on the same subject is often not

ignorable. There are two popular approaches to analyzing such data. One is to use

mixed effects model to handle intra-subject correlation through assuming random ef-

fects. Let yij be the jth response of the ith subject and xi be its covariate vector.

For example, one may assume that

yij = αi + βxi + εij, (1.6)

where αi is random intercept and εij is measurement error, both with distribution

fully specified. Estimates of β can be obtained through maximizing the likelihood.

For example, model (1.6) with normal random effects has been studied by Laird

and Ware (1982) and Ware (1985). The other commonly used method for analyzing

longitudinal data is called generalized estimating equation (GEE) developed by Liang

and Zeger (1986). The advantage of this method is that it does not require the correct

specification of the intra-individual correlation. When the correlation matrix is

misspecified, the resulting estimator is still consistent though less efficient compared

to the estimator resulting from an estimating equation with correct correlation matrix.

Missing data is not unusual in longitudinal data. A subject may dropout in
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the middle of the entire follow-up or a subject may be missing at one follow-up

visit but return at the next visit. Missing data in longitudinal studies has been

investigated by many literatures. Rubin (1976) defined three missing mechanisms.

Missing completely at random (MCAR) when missingness is unrelated with the

data. Missing at random (MAR) if missingness depends on the observed data

only (given the observed data, missingness is unrelated with the unobserved data).

Missing not at random (MNAR) that missingness depends on the unobserved data,

given the observed data. It is well known that MCAR and MAR are ignorable in

the likelihood and Bayesian approaches, while MAR is not ignorable in marginal

regression methods, such as generalized estimating equations (GEE’s) (Ibrahim and

Molenberghs, 2009). Robins et al. (1995) proposed an inverse probability weighted

GEE under the MAR assumption that yields consistent and asymptotically normal

estimators when the dependence of missingness on the observed past is correctly

specified.

Similar results have been shown for analysis of longitudinal data with irregular

outcome-dependent follow-up. Lipsitz et al. (2002) developed a likelihood-based

approach for analyzing longitudinal outcomes following a multivariate Gaussian

distribution. Under some mild assumptions, they showed that inferences can proceed

by analyzing the observed outcome only, without modeling of the follow-up visit

process. Fitzmaurice et al. (2006) extened their method to longitudinal binary data.

Ryu et al. (2007) presented a Bayesian regression method of jointly modeling the

follow-up visit process and the longitudinal outcome process through introducing

a subject-specific latent variable for studies when both precesses are of interest.

They also proposed a novel generalization of a cross-validated Bayesian procedure

for model diagnostics to check whether the ignorability assumption in Lipsitz et al.

(2002) is appropriate for a study. For marginal regression analysis, Lin et al. (2004)
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pointed out that ignoring the dependency between follow-up times and outcomes

would lead to biased estimation. In particular, for a marginal regression of the

conditional mean of the longitudinal outcome, they modeled the follow-up visit

process by a proportional intensity model (Andersen and Gill, 1982) and proposed

an inverse intensity weighted regression approach. When the follow-up visit process

is correctly modeled, their marginal regression estimator has been shown to be

consistent. However, to obtain a consistent estimator of the baseline intensity

function of the follow-up visit process requires kernel smoothing. To avoid estimating

the baseline intensity function, Buzkova and Lumley (2007) further proposed a class

of inverse intensity-ratio weighted estimators which is simple in computation and

moreover, can be applied under mixture of continuous and discrete follow-up visit

times.

Quantile regression for longitudinal data have been investigated by several litera-

tures (Jung, 1996; Lipsitz et al., 1997; Koenker, 2004; Geraci and Bottai, 2007; Wang

and Fygenson, 2009; Yi and He, 2009; Yuan and Yin, 2010; Lee and Kong, 2013). For

example, Lipsitz et al. (1997) studied regression models for marginal quantiles and

adopted estimating equations treating repeated outcomes as “independent”. They

further proposed inverse probability weighted estimators that account for missing

at random dropouts. Koenker (2004) considered quantile regression models with

subject-specific fixed effects which are intended to capture unobserved individual

heterogeneity and proposed an `1 regularization estimating method to modify the

inflation effect caused by the introduction of individual fixed effects. Wang and

Fygenson (2009) investigated quantile regression for longitudinal outcomes that

are left censored by fixed constants and developed inference procedures accouting

for both censoring and intra-subject dependency. Lee and Kong (2013) presents a

marginal quantile regression procedure for longitudinal data subject to left censoring
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and dropouts.

However, all quantile regression methods are restricted to situations when subjects

have a common set of visit time points with or without monotone dropouts. These

are not applicable to longitudinal data with intermittent dropouts or irregular follow-

up. The goal of my second and third projects are to develop appropriate quantile

regression procedures for longitudinal data with outcomes subject to left censoring

plus intermittent informative dropouts or outcome-dependent follow-up.

1.3 Outline

In Chapter 2, we present two proposed estimation methods for window observed

recurrent event data under the accelerated recurrence time model. First, we

proposed a two-stage estimation procedure which yields a consistent initial estimator

first and then derives a more efficient second stage estimator from an augmented

estimating equation. Asymptotical properties, uniform consistency and uniform

weak convergence, are established for the resulting estimators. Second, we proposed

an estimation procedure by utilizing a mean zero stochastic process associated

with recurrent event counting process. This new method enables more efficient and

stable computation as compared to existing methods. We derive the asymptotic

properties of the proposed estimator, and develop inference procedures. Results from

simulations demonstrate good finite-sample performance of the proposed methods.

We illustrate the second approach via an application to the CFFPR data.

In Chapter 3, we investigate quantile regression for longitudinal data with left

censored outcomes subject to missing resulted from intermittent subject dropout.

We adopt an appropriate censored quantile regression technique to handle left
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censoring and employ the idea of inverse probability weighting to tackle the issue

associated with informative intermittent missing mechanism. Asymptotic properties

are established for the proposed estimator. We evaluate our method by simulation

studies. The proposed method is applied to the Michigan PBB study to investigate

the PBB decay profile.

In Chapter 4, we develop a censored quantile regression procedure for longitudinal

data with irregular outcome-dependent follow-up. We adopt a proportional intensity

model for the follow-up visit process and propose an inverse intensity-ratio weighted

least absolute deviation estimator in censored quantile regression model. This

approach yields consistent estimates of the quantile regression parameters provided

that the model for the follow-up visit process is correctly specified. We evaluate our

method by simulation studies. The proposed method is also applied to the Michigan

PBB study to investigate the PBB decay profile.

In Chapter 5, we provide a summary of our completed work and plans for future

work.
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Chapter 2

Accelerated Recurrence Time

Analysis of Recurrent Events Data

Observed in a Time Window
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2.1 Regression Procedures

2.1.1 Data and Model

Let T = {T (1), T (2), . . .} be the recurrent event times. Let Z be the associated

p × 1 vector of covariates. The corresponding counting process of the recurrent

event is denoted by N(t) =
∑∞

j=1 I(T (j) ≤ t). Let {L,R} be the first and

last follow-up time for T. Denote the window observed counting process by

Ñ(t) =
∑∞

j=1 I(L ≤ T (j) ≤ (R ∧ t)). The observed data consists of {Ñ(·), L,R,Z}.

It is assumed that N(·) and {L,R} are independent conditionally on Z.

The mean function, defined as µZ(t) = E(N(t)|Z), is of interest. Its inverse

function, τZ(u) = inf{t : µZ(t) > u}, represents time to expected frequency u. The

accelerated recurrence time model takes the form that

τZ(u) = exp
(
XTβ0(u)

)
, (2.1)

where u > 0 and X = (1,ZT )T .

2.1.2 Two-Stage Estimation

Estimation Procedure

With the observation window starting from zero, Huang and Peng (2009) proposed

an estimating equation that

E
[
XI
(
R ≥ exp

(
XTβ0(u)

)) {
N
(
exp

(
XTβ0(u)

))
− u
}]

= 0.

However, with L > 0, N
(
exp

(
XTβ0(u)

))
is not always observable because of missing

observation before the follow-up starts. If we restrict our analysis on the subsample
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with L = 0, too much information was lost especially when most of subjects have

delayed starting time. Therefore, to extend usable sample size, we propose a baseline

frequency point strategy. Define a baseline frequency point v, less than u. The

definition of τZ(·) implies that E [N {τZ(u)} −N {τZ(v)}] = u − v. Restricting the

estimating equation on the subsample with N (τZ(u))−N (τZ(v)) observed, we have

0 =E

[
XI
{
L ≤ exp

(
XTβ0(v)

)}
I
{

exp
(
XTβ0(u)

)
≤ R

}
×

{
∞∑
j=1

I
{

exp
(
XTβ0(v)

)
< T (j) ≤ exp

(
XTβ(u)

)}
− (u− v)

}]
. (2.2)

The only problem here is that β0(v) is unknown. We note that 0 = τZ(0) =

exp
(
XTβ0(0)

)
and v < u. Hence, we propose obtaining β̂(u) by sequentially solving

the following estimating equation for β(u) plugging in β̂(v) as β0(v):

0 =
√
nΦ(β(u), u, v, β̂(v))

=n−1/2

n∑
i=1

XiI
{

exp
(
XT
i β(u)

)
≤ Ri

}
I
{
Li ≤ exp

(
XT
i β̂(v)

)}
×

[
∞∑
j=1

I
{

exp
(
XT
i β̂(v)

)
< T

(j)
i ≤ exp

(
XT
i β(u)

)}
− (u− v)

]
. (2.3)

The rule of selecting a baseline point, adopted in the following simulations

and real analysis, is that v(u) = max{vh : vh < u, h = 1, . . . , H}, where

0 = v0 < v1 < · · · < vH < U is a sequence of equally spaced baseline points. Other

choices of v(u) are possible but need to satisfy that v(u) < u.

The solution-finding problem in (2.3) is equivalent to locating the minimizer of
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the following objective function,

√
nΨ(β(u), u, v, β̂(v))

=n−1/2

n∑
i=1

[ ∞∑
j=1

(
XT
i β ∧ log(Ri)− log(T

[j]
i )
)+

I
{

exp
(
XT
i β̂(v)

)
≤ T

[j]
i ≤ Ri

}
−
(
XT
i β ∧ log(Ri)

)
(u− v)

]
× I

{
Li ≤ exp

(
XT
i β̂(v)

)}
.

However, some arbitrariness can be involved in the selection of baseline points.

A careless choice may lead to low efficiency in estimation and even large bias

especially when the sample size is small or moderate. In estimating equation

(2.2), time to expected frequency u is compared with time to expected preselected

baseline frequency, v. If v is too small, there may be only few subjects satisfying

L ≤ τZ(v); if v is too large, the time interval between τZ(v) and τZ(u) would be very

narrow. Our empirical rule of selecting the equally spaced baseline points is that

v1 × {# of subjects with L = 0} ≈ 10.

In the second stage, we propose to improve the performance through an augmented

estimating equation. The left end of the time interval is broaden, from time to

expected baseline frequency, τZ(v) ≥ L, to the follow-up starting time, L. The

stochastic estimating equation, which utilizes the event information between L and

τZ(u), is

0 =
√
n∆(β;u) = n−1/2

n∑
i=1

[
XiI

(
exp

(
XT
i β(u)

)
≤ Ri

)
×

{
∞∑
j=1

I
(
Li ≤ T

(j)
i ≤ exp

(
XT
i β(u)

))
− (u− u ∧ µ̃Zi(Li;β))

}]
, (2.4)

where µ̃Z(L;β) =
∫∞

0
I(L > exp(XTβ(u)))du represents the expectation of the

recurrent events number before the follow-up starts. Note that the parameter β here
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is a function on (0, U ], not a single vector.

The problem here is that the equation
√
n∆(β;u) = 0 is not easy to solve. That’s

why we consider a modification

√
n∆̃(a;u,β) = n−1/2

n∑
i=1

[
XiI

(
exp

(
XT
i a
)
≤ Ri

)
×

{
∞∑
j=1

I
(
Li ≤ T

(j)
i ≤ exp

(
XT
i a
))
− (u− u ∧ µ̃Zi(Li;β))

}]
. (2.5)

We propose a cadlag estimator β̂(u) jumping only on a equally-spaced grid, SK(n) =

{0 = u0 < u1 < · · · < uK(n) = U}. So µ̃Z

(
L; β̂

)
=
∫∞

0
I
(
L > exp

(
XT β̂(u)

))
du =∑K(n)

k=0
U

K(n)
I
(
L > exp

(
XT β̂(uk)

))
. We propose the following iterative algorithm of

estimating β0.

1. Let β̂(0) be the initial estimator from estimating equation (2.3). Estimate the

recurrent events number before the follow-up starts µ̃Z

(
L; β̂(0)

)
denoted by

µ̃(0). set m = 1;

2. Find β̂(m) by solving
√
n∆̃

(
a;u, β̂(m−1)

)
= 0;

3. Estimate µ̃(m) = µ̃
(
L; β̂(m)

)
;

4. Increase m by 1 and go back to step 2 until the convergence criteria, i.e.∥∥∥β̂(m) − β̂(m−1)

∥∥∥ < 10−10 and
∥∥µ̃(m) − µ̃(m−1)

∥∥ < 10−10 is met.

Denote the converged estimator as β̂. In step 2, the solution to
√
n∆̃(a;u, β̂(m−1)) = 0

is the same as the minimizer of a in the following objective function:

√
nΘ(a;u, β̂(m−1)) = n−1/2

n∑
i=1

[ ∞∑
j=1

(
XT
i a ∧ logRi − log T

(j)
i

)+

I(Li ≤ T
(j)
i ≤ Ri)

−
(
XT
i a ∧ logRi

){
u− u ∧ µ̃Zi

(
Li; β̂(m−1)

)}]
.
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This algorithm shares similar idea with the EM algorithm. At each iteration, the

expectation of recurrent events number before the follow-up starts based on estimates

from previous iteration is plugged in to the objective function to obtain the updated

estimates.

Asymptotic Results

We can show that β̂(0) is consistent. Based on that, we can prove that β̂ is consistent

although the original estiamting equation
√
n∆(β;u) = 0 may contain inconsistent

roots. We also want to point out that β̂(m) ieself is a legitimate estimator for any m.

The regularity conditions include:

C 1. For u ∈ (0, U ], E
[
X⊗2I

(
L ≤ exp(XTβ0(v(u)))

)
I
(
R > exp(XTβ0(u))

)]
is non-

singular.

C 2. β0(u) is a Lipchitz continuous function and in the interior of a compact and

bounded space B for all u ∈ (0, U ].

C 3. ‖Z‖ is bounded.

C 4.
∑∞

j=1 I(T (j) ≤ R) is bounded.

C 5. (L,R), given Z, has a bounded conditional density function fL,R|Z(l, r) at

{(l, r) = (τZ(u1),τZ(u2)) : u1, u2 ∈ (0, U ]}, for all Z.

C 6. µ̇Z(t) = dµZ(t)/dt is continuous and bounded at {τZ(u) : u ∈ (0, U ]} for all Z.

C 7. infu∈(0,U ] eigminE [X⊗2µ̇(τZ(u))τZ(u)I (L ≤ τZ(v(u))) I (R ≥ τZ(u))] > 0.

We establish the uniform consistency and weak convergence of β̂(τ) stated in the

following theorems.

Theorem 2.1.1. Under conditions C1-C6, supu∈(0,U ]

∥∥∥β̂(0)(u)− β0(u)
∥∥∥ p−→ 0.
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Theorem 2.1.2. Under conditions C1-C7, n1/2
{
β̂(0) − β0

}
converges weakly to a

Gaussian process with mean 0 and covariance matrix Σ, where Σ is presented in the

proof (2.5 Appendix).

Theorem 2.1.3. Under conditions C1-C6, supu∈(0,U ]

∥∥∥β̂(u)− β0(u)
∥∥∥ p−→ 0.

Theorem 2.1.4. Under conditions C1-C7, n1/2
{
β̂ − β0

}
converges weakly to a

Gaussian process with mean 0 and covariance matrix Σ, where Σ is presented in

the proof (2.5 Appendix).

The proof of all theorems are presented in section 2.5 Appendix.

Inference

Inference about β̂(u) are important for scientific conclusions; however, as seen in

proof of Theorem 2.1.4, the covariance matrix of n1/2
{
β̂(u)− β0(u)

}
is complicated

and not available. Therefore, we adopt the resampling approach of Jin et al. (2001)

to estimate the covariance matrix. Let vi, i = 1, . . . , n be i.i.d. from a nonnegative

distribution of unit mean and unit variance, e.g., an exponential distribution of unit

rate. We consider perturbed estimating equations

0 =n−1/2

n∑
i=1

viXiI
{

exp
(
XT
i β(u)

)
≤ Ri

}
I
{
Li ≤ exp

(
XT
i β̂(v(u))

)}
×

[
∞∑
j=1

I
{
T

(j)
i ∈

(
exp

(
XT
i β̂(v(u))

)
, exp

(
XT
i β(u)

)]}
− (u− v(u))

]
, (2.6)

and

0 =n−1/2

n∑
i=1

vi

[
XiI

(
exp

(
XT
i β(u)

)
≤ Ri

)
×

{
∞∑
j=1

I
(
T

(j)
i ∈

(
Li, exp

(
XT
i β(u)

)])
− (u− u ∧ µ̃Zi(Li;β))

}]
. (2.7)
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Solving perturbed estimating equations (2.6) and (2.7) following the same two-

stage estimating procedure, we could obtain a new estimator denoted by β̂
∗
(·). It

can be shown that the distribution of n1/2
{
β̂
∗
(u)− β̂(u)

}
conditionally on the data

is the same as n1/2
{
β̂(u)− β0(u)

}
. Thus, we can approximate the distribution of

n1/2
{
β̂(u)− β0(u)

}
by a simulated distribution of n1/2

{
β̂
∗
(u)− β̂(u)

}
. Pointwise

confidence interval for β0(·) can be obtained by the Wald method,

β̂(u)± Φ−1
0.975SE

{
β̂
∗
(u)
}
,

where SE
{
β̂
∗
(u)
}

is the empirical standard error of
{
β̂
∗
(u)− β̂(u)

}
and Φ−1

0.975 is

the 97.5th quantile from standard normal distribution.

2.1.3 Estimator Based on Counting Process

Estimation Procedure

Our key idea to estimate β0(u) is based on the fact that

E
{

X(Ñ(exp(XTβ0(u)))−
∫ u

0

I(L ≤ exp(XTβ0(s) ≤ R)ds)
}

= 0, (2.8)

where X = (1,ZT )T .

According to (2.8), the estimation of β0(u) only includes {β0(s) : s < u}. This

motivates us a grid-based estimation procedure for β0(u) sequentially from u = 0 to

the above limit of interest, say U . Define a grid SL(n) = {0 = u0 < u1 < · · · < uL(n) =

U}. Our proposed estimator β̂(u) is a right-continuous piecewise-constant function

that jumps only at grid SL(n). Note that 0 = τZ(0) = exp(XTβ0(0)); therefore, we

always set exp(XT β̂(0)) = 0. We propose to obtain β̂(uk) (k = 1, 2, . . . , L(n)) by
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sequentially solving the following monotone estimating equation for β(uk):

n1/2Sn(β, u) = n−1/2

n∑
i=1

Xi

{
Ñi(exp(XT

i β(uk)))

−
k−1∑
m=0

I(Li ≤ exp(XT
i β̂(um)) ≤ Ri)(um+1 − um)

}
= 0.

(2.9)

Because (2.9) is not continuous, an exact root may not exist and the proposed

estimator β̂(uk) are defined as generalized solutions (Fygenson and Ritov 1994).

The monotonicity of (2.9) greatly facilitates the computation. It implies that all

generalized solutions belong to a convex set and that the left side of (2.9) is the

gradient of a convex function. The solution-finding problem for (2.9) is equivalent to

locating the minimizer of the following L1-type convex objective function:

lj(h) =
n∑
i=1

∞∑
j=1

I(Li ≤ T
(j)
i ≤ Ri)

∣∣∣log T
(j)
i −XT

i h
∣∣∣

+

∣∣∣∣∣R∗ − (
n∑
i=1

∞∑
j=1

I(Li ≤ T
(j)
i ≤ Ri)(−Xi))

Th

∣∣∣∣∣
+

∣∣∣∣∣R∗ − (
n∑
i=1

2Xi

k−1∑
m=0

I(Li ≤ exp(XT
i β̂(um)) ≤ Ri)(um+1 − um))Th

∣∣∣∣∣ ,
where R∗ is a very large number and j = 1, . . . , L(n). The foregoing minimization

problem can be easily solved using the Barrodale-Roberts algorithm (Barrodale and

Roberts 1974), the implementation of which is available in standard statistical soft-

ware, for example, the l1fit() function in S-PLUS or the rq() function in R package

quantreg.
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Asymptotic Results

The proposed estimator β̂(·) has the properties of uniform consistency and weak

convergence under some regularity conditions. Define FL|Z(l) = Pr(L ≤ l|Z), FR|Z =

Pr(R ≤ r|Z), fL|Z(l) = dFL|Z(l)/dl, and fR|Z(r) = dFR|Z(r)/dr. The regularity

conditions are as follows:

C 1. Z is compact, i.e., supi ‖Z‖ <∞.

C 2. (a) Each component of E
[
X
∑∞

j=1 I
(
L ≤ T (j) ≤ exp

(
XTβ0(u)

)
∧R

)]
is a Lip-

schitz function of u, and (b) fL|Z(t) and fR|Z(t) are bounded above uniformly in

t and Z.

C 3. (a) E
[
I
(
L ≤ exp

(
XTb

)
≤ R

)
µ̇Z

(
exp

(
XTb

))
|Z
]
> 0 for any b ∈ B(d0),

(b) E (Z⊗2) is positive definite, and (c) each component of E[X⊗2 exp
(
XTb

)
{fL|Z(exp(XTb)) − fR|Z(exp(XTb))}]{E[X⊗2 exp(XTb)I(L ≤ exp(XTb) ≤ R)

µ̇Z(exp(XTb))]}−1 is uniformly bounded in b ∈ B(d0), where B(d0) is a neigh-

borhood containing {β0(u), u ∈ (0, U ]}, defined in Appendix A.

C 4. infu∈[v,U ] eigminE{I(L ≤ exp(XTβ0(u)) ≤ R)µ̇Z(exp(XTβ0(u))) exp(XTβ0(u))

X⊗2} > 0 for any v ∈ (0, U ], where eigmin(·) denotes the minimum eigenvalue

of a matrix.

C 5. Ni(t) is bounded above for all i = 1, . . . , n.

We have the following theorems.

Theorem 2.1.5. Assuming that conditions C1-C4 hold, if limn→∞ ‖SL(n)‖ = 0, then

supu∈[v,U ] ‖β̂(u)− β0(u)‖ p−→ 0, where 0 < v < U .

Theorem 2.1.6. Assuming that conditions C1-C6 hold, if limn→∞ n
1/2‖SL(n)‖ = 0,

then n1/2{β̂(u)−β0(u)} converges weakly to a Gaussian process for u ∈ [v, U ], where

0 < v < U .
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The proof of all theorems are presented in section 2.5 Appendix.

Inference

Similarly, we adopt the resampling approach of Jin et al. (2001) to estimate the

covariance matrix. Let vi, i = 1, . . . , n be i.i.d. from a nonnegative distribution

of unit mean and unit variance, e.g., an exponential distribution of unit rate. We

consider a perturbed estimating equation

n−1/2

n∑
i=1

viXi

{
Ñi(exp(XT

i β(uk)))

−
k−1∑
m=0

I(Li ≤ exp(XT
i β̂(um)) ≤ Ri)(um+1 − um)

}
= 0. (2.10)

The perturbed estimating equation (2.10) could be solved by minimizing an objective

function using rq() function in R. Denote a new estimator denoted by β̂
∗
(·). We can

approximate the distribution of n1/2{β̂(u) − β0(u)} by a simulated distribution of

n1/2{β̂
∗
(u) − β̂(u)}. Pointwise confidence interval for β0(·) can be obtained by the

Wald method,

β̂(u)± Φ−1
0.975SE{β̂

∗
(u)},

where SE{β̂
∗
(u)} is the empirical standard error of {β̂

∗
(u)− β̂(u)} and Φ−1

0.975 is the

97.5th quantile from standard normal distribution.

2.2 Simulation Studies

Finite-sample performance of the proposed method is evaluated through Monte Carlo

simulations similar to Huang and Peng (2009). A Gamma frailty on a standard ho-

mogeneous Poisson process was applied to generate recurrent events. Variance of the

Gamma frailty, σ2, determines the level of intra-individual correlation. We consid-
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ered σ2 = 0 and 0.5, where 0 corresponds to zero intra-individual correlation. Two

covaraites, Z1 and Z2, were generated from Bernoulli(0.5) and Uniform(−0.5, 0.5)

respectively. A reccurrent event time sequence was generated by

T (j) = exp

{
min

(
1,
T ∗(j)

1.5γ

)
Z1 + Z2

}
T ∗(j)/γ, j = 1, 2, . . . ,

where {T ∗(j), j = 1, 2, . . .} is a recurrent event sequence generated from a standard

homogeneous Poisson process and frailty γ was generated from a Gamma distribution.

It can be shown that under this setup,

τZ(u) = exp
{

log(u) + min(1,
u

1.5
)Z1 + Z2

}
.

Covariate Z1 had an increasing effect and Covariate Z2 had a constant effect. The

first visit time, L, was generated from w · Unif(0, 1), where w ∼ Bernoulli(0.8).

We included w to ensure L had a probability mass of 0.2 at zero and render a

scenario that the low tail of β0 was identifiable. The last follow-up visit time, R was

generated from distribution Unif(L, 12). This observation window resulted in an

average of 4 observed recurrent events.

Under each configuration, we generated 500 datasets of sample size n = 100.

For interval estimation and inference, the resampling size of 100 was chosen. An

equally spaced grid on u ∈ (0, 3] with size 0.02 was adopted when estimating β0. For

two-stage estimators, baseline points v’s were chosen as {0.5k : k = 0, 1, . . . , 5}. The

rule of selecting a baseline point is v(u) = max{0.5k : 0.5k < u, k = 0, 1, . . . , 5}. The

estimator from estimating equation (2.3) is referred as the initial estimator and the

estimator from the iterative algorithm is referred as the iterative estimator.

Simulation results are summarized in figures. Figure 2.1 and Figure 2.2 present
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simulation results from the set-up with σ2 = 0 and the set-up with σ2 = 0.5

respectively. In the first row, we plots the empirical bias from the stage-one

estimator (initial, doted line), the stage-two estimator (iterative, dashed line), and

the estimator based on counting process (sequential, solid line), versus expected

frequency u. It shows that the iterative estimator and the counting process based

estimator have smaller bias compared to the initial estimator. The plots in the second

row depicts the empirical mean squared errors (MSE) versus expected frequency u.

The iterative estimator and the counting process based estimator have smaller MSE

than the initial estimator. The third row presents the coverage probability of 95%

confidence intervals (CI) obtained from resampling of the iterative estimator and the

counting process based estimator. The resulting 95% CIs are slightly under-covered

and yet have coverage probabilities fairly close to the nominal value. In the last

row, we plot the relative efficiency of the counting process based estimator over the

iterative estimator. The effciency gain seems to increase with the expected frequency

and can be over 40% at some large u.

We also compare the estimation efficiency between the proposed estimator and

Huang and Peng (2009)’s estimator assuming that the observation window starts

from zero. We set L = 0 while keeping (T (j);R; Z) generated from the same way. In

Figure 2.3, we plot the relative efficiency of the counting process based restimator to

Huang and Peng (2009)’s estimator. It is shown that the new proposal for estimating

the ART model is always more efficient than the method of Huang and Peng (2009).

The efficiency gain seems to increase with the expected frequency and can be over

100% at some large u. This finding is consistent with Koenker (2008)’s empirical

results about the efficiency comparison between Peng and Huang (2008)’s and Powell

(1984, 1986)’s methods on censored quantile regression.



31

0.5 1.0 1.5 2.0 2.5 3.0

−
0.

1
0.

1
0.

2

Intercept

Expected Frequency

B
ia

s

 
 
 

Initial
Iterative

Sequential

0.5 1.0 1.5 2.0 2.5 3.0

−
0.

1
0.

1
0.

2

Z1

Expected Frequency

B
ia

s

 
 
 

Initial
Iterative

Sequential

0.5 1.0 1.5 2.0 2.5 3.0

−
0.

1
0.

1
0.

2

Z2

Expected Frequency

B
ia

s

 
 
 

Initial
Iterative

Sequential

0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

Intercept

Expected Frequency

M
S

E

 
 
 

Initial
Iterative

Sequential

0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

Z1

Expected Frequency

M
S

E
 
 
 

Initial
Iterative

Sequential

0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

Z2

Expected Frequency

M
S

E

 
 
 

Initial
Iterative

Sequential

0.5 1.0 1.5 2.0 2.5 3.0

0.
80

0.
90

1.
00

Intercept

Expected Frequency

C
ov

er
ag

e 
R

at
e

 
 

Iterative
Sequential

0.5 1.0 1.5 2.0 2.5 3.0

0.
80

0.
90

1.
00

Z1

Expected Frequency

C
ov

er
ag

e 
R

at
e

 
 

Iterative
Sequential

0.5 1.0 1.5 2.0 2.5 3.0

0.
80

0.
90

1.
00

Z2

Expected Frequency

C
ov

er
ag

e 
R

at
e

 
 

Iterative
Sequential

0.5 1.0 1.5 2.0 2.5 3.0

1.
0

1.
4

1.
8

Intercept

Expected Frequency

R
el

at
iv

e 
E

ffi
ci

en
cy

0.5 1.0 1.5 2.0 2.5 3.0

1.
0

1.
4

1.
8

Z1

Expected Frequency

R
el

at
iv

e 
E

ffi
ci

en
cy

0.5 1.0 1.5 2.0 2.5 3.0

1.
0

1.
4

1.
8

Z2

Expected Frequency

R
el

at
iv

e 
E

ffi
ci

en
cy

Frailty variance = 0, sample size = 100

Figure 2.1: Bias, MSE, coverage rate and relative efficiency of the counting process
based estimator compared with the stage-two estimator; Gamma frailty = 1; sample
size = 100.
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Figure 2.2: Bias, MSE, coverage rate and relative efficiency of the counting process
based estimator compared with the stage-two estimator; Gamma frailty variance =
0.5; sample size = 100.
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Figure 2.3: Simulation results on the efficiency of the proposed counting process based
estimator relative to Huang and Peng (2009)’s estimator

2.3 CFFPR Data Example

Cystic Fibrosis (CF) is a life-limiting genetic disease without known cure yet,

affecting about 30,000 people in the United States (Cystic Fibrosis Foundation,
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2011). For CF patients, lung infections will result in damaged and lower lung

function. Pseudomonas aeruginosa (PA), the most important pathogen that shortens

survival of CF patients, infects more than half of people with CF (Cystic Fibrosis

Foundation, 2011). Characterizing the timing of PA infections and assessing how

it is influenced by potential risk factors can help make treatment decisions and are

thus of scientific interests. To address these questions, we utilized the data from

2875 children documented in 1986-2008 CFF Patient Registry (CFFPR). All these

children were born in or after 1998, with ∆F508 mutation, and had at least 5 year

follow-up in the registry.

We applied the proprosed estimator based on the mean-zero stochastic process

to this CFFPR dataset. The recurrent event time T (j) is the age of a CF child when

s/he had the jth PA infection. Due to late diagnosis or late entry to the study

after diagnosis, some CF children had delayed CFFPR entries after birth. Time

from birth to registry entry constitutes the follow-up starting time L in our method

framework. In this dataset, age at the first CFFPR visit ranges from 0 to 5.7 years

with mean=0.7 years and median=0.4 years. The number of positive PA cultures at

CFFPR visits ranges from 0 to 50; the mean and median number of PA infections

are 3.9 and 2 respectively. We considered risk factors including sex, patient’s CFTR

gene classification (I=∆F508 homozygous, II=∆F508 heterozygous), meconium ileus

(MI), and pancreatic insufficiency. The covariates for a subject are coded as Female,

1 if the subject was female and 0 otherwise, F508/Other, 1 if the subject was ∆F508

heterozygous and 0 otherwise, MI, 1 if the subject was diagnosed by MI and 0

otherwise, and Pancreat, 1 if the subject was pancreatic insufficient (defined as never

on enzyme) and 0 otherwise.

Figure 2.4 displays the estimated coefficients (solid lines) along with the 95%
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Figure 2.4: Coefficient estimates (solid lines) and 95% pointwise confidence intervals
(dotted lines) from the proposed method; the coefficient estimates from Huang and
Peng (2009)’s method (dash dotted line)

pointwise confidence intervals (dashed lines). The intercept (panel A) represents the

estimated log time to expected frequency of PA infections for the reference group, i.e.,

CF boys with homozygous F508del mutations, had no MI, and pancreatic insufficient.

The non-intercept coefficient estimates (panels B-E) plot the estimated effects of

covariates, which are allowed to be frequency-varying. Negative coefficient estimates

indicate sooner progression to recurrence of PA infections. To better summarize the
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varying covariate effect estimates, we present the average covariate effects in the

frequency intervals (0.4, 1.4], (1.4, 2.4], and (0.4, 2.4] respectively in Table 2.1. The

estimates strongly suggest that CF children with pancreatic insufficiency tend to

experience recurrent PA infections at earlier ages than CF children with pancreatic

sufficiency. CF girls have marginal increased risk at later recurrent PA infections.

The average effect estimates for MI demonstrate a cross-over pattern, changing

from -0.37 to 0.74, though not reaching statistical significance in either frequency

interval. There is not enough evidence to show a significant difference between

F508del homozygous group and F508del heterozygous group. We also conducted

constancy tests for each covariate effect. MI has a frequency-dependent effect on the

timing of PA recurrence, while other covariates displayedmore constant effects over

the frequency of PA infections.

In Figure 2.4, we also plot the coefficient estimate obtained from applying Huang

and Peng (2009)’s method assuming that the observation window starts from zero

(dashed dotted lines). intercepts estimated by Huang and Peng (2009)’s method are

significantly larger than those from the proposed method. This observation conforms

to the intuition that naively treating PA infection frequency before registry entry as

0 would lead to over-optimistic estimates for time to expected frequency.

2.4 Remarks

The accelerated recurrent model offers a useful and flexible alternative to current

approaches for analyzing recurrent events data. In this project, we propose a two

estimation procedures for the accelerated recurrent time model when recurrent events

data is only observed in a random time window. In addition, we require L and R to

be always observed, which is often true in registry study setting. Both estimators are
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Table 2.1: The CFFPR example: average covariate effect estimates along with stan-
dard errors (SE) and the corresponding p values, and the p values from constancy
tests.

Average Covariate Effect Estimates
Frequency Interval Sex F508/Other MI Pancreat
(0.4, 1.4] Estimate -0.06 -0.17 -0.04 0.74

SE 0.10 0.12 0.09 0.29
P value 0.55 0.15 0.69 0.01

(1.4, 2.4] Estimate -0.11 -0.10 0.07 0.86
SE 0.06 0.07 0.06 0.21
P value 0.05 0.19 0.21 <.001

(0.4, 2.4] Estimate -0.09 -0.13 0.02 0.80
SE 0.08 0.09 0.08 0.24
P value 0.28 0.16 0.81 < .001

Constancy Tests
Constancy tests P value 0.32 0.26 0.06 0.50

consistent and asymptotically normal. The second estimator based on a mean-zero

stochastic process is more efficient and easier in implementation, which have been

shown by simulation studies.

2.5 Appendix

2.5.1 Proof of Theorems

Lemma 1. Define ψ(a, u, v,b) = E{Ψ(a, u, v,b)}. Given h, and u ∈ (vh, vh+1],

ψ(a, u, vh,β0(vh)) has a unique minimizer at a = β0(u), under condition(a).

Proof: Define

B(X, L,R; a, u, v,b) = E

{
I
(
L ≤ exp(XTb)

) [ ∞∑
j=1

(XTa ∧ logR− log T (j))+

× I(XTb ≤ log T (j) ≤ logR)− (XTa ∧ logR)(u− v)

]∣∣∣∣∣X, L,R
}
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Since we have

ψ(a, u, vh,β0(vh))

= E[B(X, L,R; a, u, vh,β0(vh))I(L > exp(XTβ0(vh)))]

+ E[B(X, L,R; a, u, vh,β0(vh))I{L ≤ exp(XTβ0(vh)),min(XTβ0(u),XTa) ≥ logR}]

+ E[B(X, L,R; a, u, vh,β0(vh))I{L ≤ exp(XTβ0(vh)),X
Tβ0(u) ≥ logR > XTa}]

+ E[B(X, L,R; a, u, vh,β0(vh))I{L ≤ exp(XTβ0(vh)),X
Tβ0(u) < logR}],

we could prove it case by case.

• When L > exp
{
XTβ0(vh)

}
, B(X, L,R; a, u, vh,β0(vh)) =

B(X, L,R;β0(u), u, vh,β0(vh)) = 0.

• When L ≤ exp(XTβ0(vh)),

1. When XTβ0(u) ≥ logR and XTa ≥ logR,

B(X, L,R; a, u, v,β0(vh)) = B(X, L,R;β0(u), u, v,β0(vh))

=E

{ ∞∑
j=1

(logR − log T (j))+I(XTβ0(vh) ≤ log T (j) ≤ logR)

− logR(u− vh)

∣∣∣∣∣X, L,R
}

2. When XTβ0(u) ≥ logR and XTa < logR,consider

f(y; X, L,R) =E

{
∞∑
j=1

I(XTβ0(vh) ≤ log T (j) ≤ logR)

× (y ∧ logR− log T (j))+ − (y ∧ logR)(u− vh)
∣∣∣X, L,R}.
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∂f(y; X, L,R)

∂y

=E

{
∞∑
j=1

I(XTβ0(vh) ≤ log T (j) ≤ y < logR)

− I(y < logR)(u− vh)

∣∣∣∣∣X, L,R
}

≤E

{
I(y < logR)

[
∞∑
j=1

I(XTβ0(vh) ≤ log T (j) ≤ logR)

− (u− vh)

]∣∣∣∣∣X, L,R
}

≤E

{
I(y < logR)

[
∞∑
j=1

I(XTβ0(vh) ≤ log T (j) ≤ XTβ0(u))

− (u− vh)

]∣∣∣∣∣X, L,R
}

=0

Since XTa < XTβ0(u), we have B(X, L,R; a, u, vh,β0(vh)) = f(XTa)

≥ f(XTβ0(u)) = B(X, L,R;β0(u), u, vh,β0(vh)).

3. When XTβ0(u) < logR,
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∂f(y; X, L,R)

∂y

=E

{
∞∑
j=1

I(XTβ0(vh) ≤ log T (j) ≤ y < logR)

− I(y < logR)(u− vh)

∣∣∣∣∣X, L,R
}

=E

{
I(y < logR)

[
∞∑
j=1

I(XTβ0(vh) ≤ log T (j) ≤ y)

− (u− vh)

]∣∣∣∣∣X, L,R
}

=I(y < logR)
[
I(y ≥ XTβ0(vh))(µ(exp(y))− vh)− (u− vh)

]

< 0 if y < XTβ0(u);

= 0 if y = XTβ0(u);

> 0 if XTβ0(u) < y < logR.

= 0 if y ≥ logR

So y = XTβ0(u) is the unique minimizor of f(y; X, L,R) which means

B(X, L,R; a, u, vh,β0(vh)) ≥ B(X, L,R;β0(u), u, vh,β0(vh)),

where the equality holds if and only if XTa = XTβ0(u).

In summary, for any u ∈ (vh, vh+1], ψ(a, u, vh,β0(vh)) ≥ ψ(β0(u), u, vh,β0(vh)). And

under condition (a), we have Pr{XT (β0(u) − a)I(L ≤ exp(XTβ0(vh)))I(logR >

XTβ0(u)) 6= 0} > 0 for any a 6= β0(u). Thus, strict inequlity holds that

E
{
B(X, L,R; a, u, vh,β0(vh))I

(
L ≤ exp(XTβ0(vh))

)
I
(
XTβ0(u) < logR

)}
>E

{
B(X, L,R;β0(u), u, vh,β0(vh))I

(
L ≤ exp(XTβ0(vh))

)
I
(
XTβ0(u) < logR

)}
.
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Hence,ψ(a, u, vh,β0(vh)) > ψ(β0(u), u, vh,β0(vh)) for any a 6= β0(u). Lemma 1 is

proved.

Proof of Theorem 2.1.1: β0(u) is a Lipchitz function, so there exist a finite number

C0 that for any u1, u2 ∈ (0, U ], ‖β0(u1) − β0(u2)‖ ≤ C0|u1 − u2|. If we could prove

that maxuk:k=1,...,K(n) ‖β̂(uk)− β0(uk)‖
p−→ 0, then

sup
u∈(0,U ]

‖β̂(u)− β0(u)‖

≤ max
k=1,...,K(n)

‖β̂(uk)− β0(uk)‖+ sup
u∈(0,U ]

‖β0(u)− β0(v(u))‖

≤ max
k=1,...,K(n)

‖β̂(uk)− β0(uk)‖+ C0 sup
u∈(0,U ]

|u− v(u)|

≤ max
k=1,...,K(n)

‖β̂(uk)− β0(uk)‖+ C0 ·
U

K(n)

p−→0

as n → ∞ and K(n) → ∞. Therefore, to prove theorem 1, we only need to prove

that maxk=1,...,K(n) ‖β̂(uk)− β0(uk)‖
p−→ 0.

Denote

ϕ(X, L,R,T; a, u, v,b) = I(L ≤ exp(XTb))×{
∞∑
j=1

[(
XTa− log T (j)

)+
+
(
logR− log T (j)

)+
]

(XTb ≤ log T (j) ≤ logR)

−
∞∑
j=1

(
XTa ∨ logR− log T j

)+ (
XTb ≤ log T (j) ≤ logR

)
− (XTa ∧ logR)(u− v)

}

Since linear functions, concave and convex functions are Glivenko-Cantelli (G-

C) classes and the sum or product of G-C classes are also G-C classes,

ϕ(X, L,R,T; a, u, v,b) is a G-C class with index a, u, v, and b under condition
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(b). This fact coupled with pointwise convergence by the strong law of large numbers

implies the convergence of Ψ(a, u, v,b) to ψ(a, u, v,b) uniformly in a, u, v,and b

(Andersen & Gill, 1982)

1. For uk ∈ (0, v1], it can be proved as Theorem 3. in Huang and Peng’s paper

(2009) that maxuk∈(0,v1] ‖β̂(uk)− β(uk)‖
a.s.−−→ 0.

2. For uk ∈ (vh, vh+1], h = 1, 2, . . . , H, we need to prove maxuk∈(vh,vh+1] ‖β̂(uk) −

β(uk)‖
p−→ 0 given β̂(vh)

a.s.−−→ β0(vh).

According to Glivenko-Cantelli theorem,

sup
a∈B,u∈(0,U ],v∈(0,U ],b∈B

|Ψ(a, u, v,b)− ψ(a, u, v,b)| a.s.−−→ 0

which implies

sup
β∈B,uk∈(vh,vh+1],β̂(vh)∈B

|Ψ(β, uk, vh, β̂(vh))− ψ(β, uk, vh, β̂(vh))|
a.s.−−→ 0. (2.11)

Under condition (c), (d), (e) and (f), given β̂(vh)
a.s.−−→ β0(vh),

sup
β∈B,uk∈(vh,vh+1],β̂(vh)∈B

|ψ(β, uk, vh, β̂(vh))− ψ(β, uk, vh,β0(vh))|
a.s.−−→ 0. (2.12)



43

0 ≤ψ(β̂(uk), uk, vh,β0(vh))− ψ(β0(uk), uk, vh,β0(vh))

=ψ(β̂(uk), uk, vh,β0(vh))− ψ(β̂(uk), uk, vh, β̂(vh))

+ ψ(β̂(uk), uk, vh, β̂(vh))− ψ(β0(uk), uk, vh, β̂(vh))

+ ψ(β0(uk), uk, vh, β̂(vh))− ψ(β0(uk), uk, vh,β0(vh))

=ψ(β̂(uk), uk, vh,β0(vh))− ψ(β̂(uk), uk, vh, β̂(vh)) (2.13)

+ ψ(β̂(uk), uk, vh, β̂(vh))−Ψ(β̂(uk), uk, vh, β̂(vh)) (2.14)

+ Ψ(β̂(uk), uk, vh, β̂(vh))−Ψ(β0(uk), uk, vh, β̂(vh)) (2.15)

+ Ψ(β0(uk), uk, vh, β̂(vh))− ψ(β0(uk), uk, vh, β̂(vh)) (2.16)

+ ψ(β0(uk), uk, vh, β̂(vh))− ψ(β0(uk), uk, vh,β0(vh)) (2.17)

Since (2.15) is less than or equal to zero,

max
uk∈(vh,vh+1]

|ψ(β̂(uk), uk, vh,β0(vh))− ψ(β0(uk), uk, vh,β0(vh))|

≤ max
uk∈(vh,vh+1]

|(2.13) + (2.14) + (2.16) + (2.17)|

≤ max
uk∈(vh,vh+1]

|(2.13)|+ max
uk∈(vh,vh+1]

|(2.14)|+ max
uk∈(vh,vh+1]

|(2.16)|+ max
uk∈(vh,vh+1]

|(2.17)|

According to (2.12), maxuk∈(vh,vh+1] |(2.13)| and maxuk∈(vh,vh+1] |(2.17)| con-

verges to zero almost surely. According to (4.10), maxuk∈(vh,vh+1] |(2.14)|

and maxuk∈(vh,vh+1] |(2.16)| converges to zero almost surely. Hence, we have

maxuk∈(vh,vh+1] |ψ(β̂(uk), uk, vh,β0(vh))− ψ(β0(uk), uk, vh,β0(vh))|
a.s.−−→ 0.

Next, we followed Huang & Peng (2009)’s proof of theorem 3. If

maxuk∈(vh,vh+1] ‖β̂(uk) − β0(uk)‖ 6
a.s.−−→ 0, then there exist an ε > 0 and a se-

quence of {u, ζ}, satisfying that ‖ψ(ζ, u, vh,β0(vh)) − ψ(β0(u), u, vh,β0(vh))‖ → 0

and ‖ζ − β0(u)‖ > ε. There must exist a subsequence converging to {u∗, ζ∗}. Since

ψ(a, u, v,b) is a continuous function in a and u and β0(u) is continuous in u, we have

ψ(ζ∗, u∗, vh,β0(vh)) = ψ(β0(u∗), u∗, vh,β0(vh)) and ζ∗ 6= β0(u∗) which contradicts



44

with the fact that β0(u∗) is the unique minimizor.

Since H is a finite number, we could conclude that maxk=1,2,...,K(n) ‖β̂(uk) −

β0(uk)‖
a.s.−−→ 0. Proof is completed.

Lemma 2. Denote φ(a, u, v,b) = E {Φ(a, u, v,b)}. Given

supu∈[vh,vh+1]

∥∥∥β̂(u)− β0(u)
∥∥∥ p−→ 0,

sup
u∈(vh,vh+1]

∥∥∥∥∥√n
{

Φ(β̂(u), u, vh, β̂(vh))−Φ(β0(u), u, vh,β0(vh))

− φ(β̂(u), u, vh, β̂(vh)) + φ(β0(u), u, vh,β0(vh))

}∥∥∥∥∥ p−→ 0.

Proof: Denote

Ai(a, u, v,b)

= I(Li ≤ exp(XT
i b))I(XT

i a ≤ logRi)Xi

[
N(exp(XT

i a))−N(exp(XT
i b))− (u− v)

]
Under the conditions (b) - (f), there exist finite numbers M1, M2, M3, M4, M5 that

• ‖X‖ ≤M1;

•
∑∞

j=1 I(T (j) ≤ R) ≤M2;

• µ̇Z(t) ≤M3;

• fR|Z(t) ≤M4 and fL|Z(t) ≤M4;

• ‖∂ exp(XT a)
∂a

‖ ≤M5 for any a ∈ B.
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E‖Ai(a1, u, v,b)−Ai(a2, u, v,b)‖2

=E

{
I(Li ≤ exp(Xib))Xi

×
[
I
(
XT
i a1 ≤ logRi,X

T
i a2 ≤ logRi

) (
N
(
exp(XT

i a1)
)
−N

(
exp(XT

i a2)
))

+ I
(
XT
i a1 ≤ logRi,X

T
i a2 > logRi

) (
N
(
exp(XT

i a1)
)
−N

(
exp(XT

i b)
)
− u+ v

)
− I

(
XT
i a1 > logRi,X

T
i a2 ≤ logRi

) (
N
(
exp(XT

i a2)
)
−N

(
exp(XT

i b)
)
− u+ v

)
− I

(
XT
i a1 > logRi,X

T
i a2 > logRi

)
· 0
]}2

≤M2
1 ·M2 ·M3 ·M5‖a1 − a2‖

+M2
1 ·M2

2 ·M4 ·M5‖a1 − a2‖

+M2
1 ·M2

2 ·M4 ·M5‖a1 − a2‖

=C1 · ‖a1 − a2‖

where C1 = M2
1M2M3M5 + 2M2

1M
2
2M4M5.

E‖Ai(a, u, v,b1)−Ai(a, u, v,b2)‖2

=E

[
I(Ri ≥ exp(Xia))Xi

×
{
I
(
Li ≤ min(exp(XT

i b1), exp(XT
i b2))

) (
N
(
exp(XT

i b2)
)
−N

(
exp(XT

i b1)
))

+ I
(
exp(XT

i b2) < Li ≤ exp(XT
i b1)

) (
N
(
exp(XT

i a)
)
−N

(
exp(XT

i b1)
)
− u+ v

)
− I

(
exp(XT

i b1) < Li ≤ exp(XT
i b2)

) (
N
(
exp(XT

i a)
)
−N

(
exp(XT

i b2)
)
− u+ v

)
− I

(
Li > max(exp(XT

i b1), exp(XT
i b2))

)
· 0
}]2

≤M2
1 ·M2 ·M3 ·M5‖b1 − b2‖

+M2
1 ·M2

2 ·M4 ·M5‖b1 − b2‖

+M2
1 ·M2

2 ·M4 ·M5‖b1 − b2‖

=C2 · ‖b1 − b2‖
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where C2 = M2
1M2M3M5 + 2M2

1M
2
2M4M5.

sup
u∈(vh,vh+1],‖a−β0(u)‖≤ε1,‖b−β0(vh)‖≤ε2

E‖Ai (a, u, vh,b)−Ai (β0(u), u, vh,β0(vh)) ‖2

= sup
u∈(vh,vh+1],‖a−β0(u)‖≤ε1,‖b−β0(vh)‖≤ε2

E
∥∥∥Ai (a, u, vh,b)−Ai (a, u, vh,β0(vh))

+ Ai (a, u, vh,β0(vh))−Ai (β0(u), u, vh,β0(vh))
∥∥∥2

≤2 sup
u∈(vh,vh+1],‖a−β0(u)‖≤ε1,‖b−β0(vh)‖≤ε2

E ‖Ai (a, u, vh,b)−Ai (a, u, vh,β0(vh))‖2

+ 2 sup
u∈(vh,vh+1],‖a−β0(u)‖≤ε1

E ‖Ai (a, u, vh,β0(vh))−Ai (β0(u), u, vh,β0(vh))‖2

≤2C2ε2 + 2C1ε1
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sup
u∈(vh,vh+1]

V ar

{
Ai(β̂(u), u, vh, β̂(vh))−Ai(β0(u), u, vh,β0(vh))

− E
[
Ai(β̂(u), u, vh, β̂(vh))

]
+ E [Ai(β0(u), u, vh,β0(vh))]

}
≤ sup

u∈(vh,vh+1]

E
∥∥∥Ai(β̂(u), u, vh, β̂(vh))−Ai(β0(u), u, vh,β0(vh))

∥∥∥2

= sup
u∈(vh,vh+1]

{∥∥∥Ai(β̂(u), u, vh, β̂(vh))−Ai(β0(u), u, vh,β0(vh))
∥∥∥2

× I

(
sup

u∈(vh,vh+1]

‖β̂(u)− β0(u)‖ ≤ ε1, ‖β̂(vh)− β0(vh)‖ ≤ ε2

)

+
∥∥∥Ai(β̂(u), u, vh, β̂(vh))−Ai(β0(u), u, vh,β0(vh))

∥∥∥2

× I

(
sup

u∈(vh,vh+1]

‖β̂(u)− β0(u)‖ > ε1 or ‖β̂(vh)− β0(vh)‖ > ε2

)}
≤ sup

u∈(vh,vh+1],‖a−β0(u)‖≤ε1,‖b−β0(vh)‖≤ε2
E
∥∥∥Ai (a, u, vh,b)−Ai (β0(u), u, vh,β0(vh))

∥∥∥2

+M2
1M

2
2 sup
u∈(vh,vh+1]

Pr

(
sup

u∈(vh,vh+1]

‖β̂(u)− β0(u)‖ > ε1 or ‖β̂(vh)− β0(vh)‖ > ε2

)

≤ 2C2ε2 + 2C1ε1 +M2
1M

2
2Pr

(
sup

u∈(vh,vh+1]

‖β̂(u)− β0(u)‖ > ε1

)

+M2
1M

2
2Pr

(
‖β̂(vh)− β0(vh)‖ > ε2

)
(2.18)

The inequality in (2.18) holds for any ε1 > 0 and ε2 > 0. Since β̂(u) is uniformly

consistent to β0(u), as ε1 and ε2 goes to zero,

sup
u∈(vh,vh+1]

V ar

{
Ai(β̂(u), u, vh, β̂(vh))−Ai(β0(u), u, vh,β0(vh))

− E
[
Ai(β̂(u), u, vh, β̂(vh))

]
+ E [Ai(β0(u), u, vh,β0(vh))]

}
p−→ 0.

(2.19)

Lemma 2 is proved.

Proof of Theorem 2.1.2: Let oI(pn) denote a term that converges uniformly to 0
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in probability in u ∈ I after being divided by pn. According to Lemma 2.,

√
n
[
Φ(β0(u), u, vh,β0(vh)) + φ(β̂(u), u, vh, β̂(vh))− φ(β0(u), u, vh,β0(vh))

]
=
√
nΦ(β̂(u), u, vh, β̂(vh)) + o(vh,vh+1](1) = o(vh,vh+1](1) (2.20)

Define

D
(1)
φ (a, u, v,b) =

∂φ(a, u, v,b)

∂a

=− E
[

exp(XTa)X⊗2
{
µZ(exp(XTa))− µZ(exp(XTb))− u+ v

}
×
∫ exp(XTb)

0

fL,R|Z(l, exp(XTa))dl

]
+ E

{∫ ∞
exp(XT a)

∫ exp(XTb)

0

fL,R|Z(l, r)dldrX⊗2µ̇(exp(XTa)) exp(XTa)

}

and

D
(2)
φ (a, u, v,b) =

∂φ(a, u, v,b)

∂b

= E

[
exp(XTb)X⊗2

{
µZ(exp(XTa))− µZ(exp(XTb))− u+ v

}
×
∫ ∞

exp(XT a)

fL,R|Z(exp(XTb), r)dr

]
− E

[∫ ∞
exp(XT a)

∫ exp(XTb)

0

fL,R|Z(l, r)dldrX⊗2µ̇Z(exp(XTb)) exp(XTb)

]
.

Using Taylor expansion of φ(β̂(u), u, vh, β̂(vh)), we get

√
n
[
φ(β̂(u), u, vh, β̂(vh))− φ(β0(u), u, vh,β0(vh))

]
= D

(1)
φ (β0(u), u, vh,β0(vh))

√
n(β̂(u)− β0(u)) + o

(√
n(β̂(u)− β0(u))

)
+ D

(2)
φ (β0(u), u, vh,β0(vh))

√
n(β̂(vh)− β0(vh)) + o

(√
n(β̂(vh)− β0(vh))

)
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where

D
(1)
φ (β0(u), u, vh,β0(vh)) = E

[
X⊗2µ̇(τZ(u))τZ(u)I (L ≤ τZ(v(u))) I (R ≥ τZ(u))

]
,

and

D
(2)
φ (β0(u), u, vh,β0(vh)) = −E

[
X⊗2µ̇(τZ(vh))τZ(vh)I (L ≤ τZ(v(u))) I (R ≥ τZ(u))

]
.

After replacing
√
n
{
φ(β̂(u), u, vh, β̂(vh))− φ(β0(u), u, vh,β0(vh))

}
in the LHS of

(2.20) by Taylor expansion, under condition (b*), we get

√
n(β̂(u)− β0(u))

= −
[
D

(1)
φ (β0(u), u, vh,β0(vh)) + o(1)

]−1
{
√
nΦ(β0(u), u, vh,β0(vh)) + ε(u)

+
(
D

(2)
φ (β0(u), u, vh,β0(vh)) + o(1)

)√
n(β̂(vh)− β0(vh))

}

Given
√
n
(
β̂(vh)− β0(vh)− 1

n

∑n
i=1 ξi(vh)

)
p−→ 0, we have

√
n

(
β̂(u)− β0(u)− 1

n

n∑
i=1

ξi(u)

)
p−→ 0,

where ξi(u) = −
[
D

(1)
φ (β0(u), u, vh,β0(vh))

]−1

×
{

Ai(β0(u), u, vh,β0(vh)) + D
(2)
φ (β0(u), u, vh,β0(vh))ξi(vh)

}
.

Based on this relationship and the fact ξi(0) = 0, we can get ξi(vh) denoted by

ξh,i sequentially for h = 1, 2, . . . , H. After determining ξh,i’s, for u ∈ (vh, vh+1], we
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can get ξi(u) = −
[
D

(1)
φ (β0(u), u, vh,β0(vh))

]−1

×
{

Ai(β0(u), u, vh,β0(vh)) + D
(2)
φ (β0(u), u, vh,β0(vh))ξh,i

}
.

Note, {ξ(u), u ∈ (0, U ]} is a Donsker class, which implies that

√
n
{
β̂(u)− β0(u)

}
D−→ G(u)

with mean 0 and covariance Σ(s, t) = E{ξ1(s), ξ1(t)}.

Lemma 3. Let θ(u, a, β) = E [Θ(u, a, β)]. Given u, θ(u, a,β0) has a unique mini-

mizer at a = β0(u), under the same condition as in lemma 1.

Proof: Denote

H(X, L,R;u, a,b) = E
[ ∞∑
j=1

(
XTa ∧ logR− log T (j)

)+
I(L ≤ T (j) ≤ R)

− (XTa ∧ logR) · (u− µ̃Z(L; b) ∧ u)
∣∣∣X, L,R]

Since we have

θ(u, a,β0)

=E
{
H(X, L,R;u, a,β0)I(XTβ0(u) ≥ logR , XTa ≥ logR)

}
+ E

{
H(X, L,R;u, a,β0)I(XTa < logR ≤ XTβ0(u))

}
+ E

{
H(X, L,R;u, a,β0)I(L ≤ exp(XTβ0(u)) ≤ R)

}
+ E

{
H(X, L,R;u, a,β0)I(exp(XTβ0(u)) < L)

}
,

we could prove it case by case.
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• When XTβ0(u) ≥ logR , XTa ≥ logR,

H(X, L,R;u,β0(u),β0) = H(X, L,R;u, a,β0)

• When XTa < logR ≤ XTβ0(u), ⇒ µZ(L) ≤ u,

consider f(y; X, L,R) = E
[∑∞

j=1

(
y − log T (j)

)+
I(L ≤ T (j) ≤ R) − y(u −

µZ(L))
∣∣∣X, L,R],

df(y; X, L,R)

dy
= E

[ ∞∑
j=1

I(y ≥ log T (j))I(L ≤ T (j) ≤ R)− (u− µZ(L))
∣∣∣X, L,R]

= I(L ≤ exp(y))(µZ(exp(y) ∧R)− µZ(L))− (u− µZ(L))

≤ 0,

because µZ(exp(y) ∧R) ≤ u and u ≥ µZ(L).

⇒

H(X, L,R;u,β0(u),β0) = f(logR) ≤ f(XTa) = H(X, L,R;u, a,β0).

• When L ≤ exp(XTβ0(u)) ≤ R,

df(y; X, L,R)

dy
= I(L ≤ exp(y))(µZ(exp(y) ∧R)− µZ(L))− (u− µZ(L))
< 0 if y < XTβ0(u);

= 0 if y = XTβ0(u);

> 0 if XTβ0(u) < y ≤ logR.

So y = XTβ0(u) is the unique minimizor of f(y; X, L,R) which means

H(X, L,R; a, u,β0) ≥ H(X, L,R;β0(u), u,β0),
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where the equality holds if and only if XTa = XTβ0(u).

• when exp(XTβ0(u)) < L,

H(X, L,R;u, a,β0) = E
[ ∞∑
j=1

(
XTb ∧ logR− log T (j)

)+
I(L ≤ T (j) ≤ R)

]
≥ 0 = H(X, L,R;u,β0(u),β0).

In summary, for any u ∈ (0, U ], θ(a, u,β0) ≥ θ(β0(u), u,β0). Under condition (a), we

have Pr
{

[β0(u)− a] XI(L ≤ exp(XTβ0(vh)))I(logR > XTβ0(u)) 6= 0
}
> 0 for any

a 6= β0(u). Since exp(XTβ0(vh)) < exp(XTβ0(u)),

Pr
{

[β0(u)− a] XI(L ≤ exp(XTβ0(u)) ≤ R) 6= 0
}

≥Pr
{

[β0(u)− a] XI(L ≤ exp(XTβ0(vh)))I(logR > XTβ0(u)) 6= 0
}

>0.

Then stict inequality holds that

E{H(X, L,R;u, a,β0)I(L ≤ exp(XTβ0(u)) ≤ R)}

>E{H(X, L,R;u,β0(u),β0)I(L ≤ exp(XTβ0(u)) ≤ R)}.

Hence, θ(a, u,β0) has a unique minimizer at a = β0(u) given u. End of proof.

Proof of Theorem 2.1.3: Let

ϑ(X, L,R,T;u, a,b) =
∞∑
j=1

[
(XTa− log T (j))+ + (logR− log T (j))+

]
I(L ≤ T (j) ≤ R)

−
∞∑
j=1

(XTa ∨ logR− log T (j))+I(L ≤ T (j) ≤ R)

− (XTa ∧ logR)(u− u ∧ µ̃Z(L; b))
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Since linear functions, and concave or convex functions are Glivenko-Cantelli classes

and the sum or product of G-C classes are still G-C class, ϑ(X, L,R,T;u, a,b) is a

G-C class with index u, a,b under condition (b). This fact coupled with pointwise

convergence by the strong law of large numbers implies the convergence of Θ̃(u, a,β)

to θ(u, a,β) uniformly in u, a, and β (Andersen & Gill, 1982).

sup
u∈(0,U ],a∈B,β∈B

|Θ(u, a,β)− θ(u, a,β)| p−→ 0 (2.21)

sup
u∈(0,U ],a∈B

|θ(u, a,β0)− θ(u, a, β̂(m−1))|

= sup
u∈(0,U ],a∈B

∣∣∣∣E [(XTa ∧ logR)
(
µ̃Z(L;β0) ∧ u− µ̃Z(L; β̂(m−1)) ∧ u

)] ∣∣∣∣
= sup

u∈(0,U ],a∈B
E

∣∣∣∣(XTa ∧ logR)

∫ u

0

(I(L ≥ exp(XTβ0(v)))

− I(L ≥ exp(XT β̂(m−1)(v))))dv

∣∣∣∣
≤ sup

u∈(0,U ],a∈B
E

[
(XTa ∧ logR)uM4M5 sup

v∈(0,u]

‖β̂(m−1)(v)− β0(v)‖

]
p−→ 0 (2.22)

0 ≤θ(u, β̂(m)(u),β0)− θ(u,β0(u),β0)

=θ(u, β̂(m)(u),β0)− θ(u, β̂(m)(u), β̂(m−1)) (2.23)

+ θ(u, β̂(m)(u), β̂(m−1))−Θ(u, β̂(m)(u), β̂(m−1)) (2.24)

+ Θ(u, β̂(m)(u), β̂(m−1))−Θ(u,β0(u), β̂(m−1)) (2.25)

+ Θ(u,β0(u), β̂(m−1))− θ(u,β0(u), β̂(m−1)) (2.26)

+ θ(u,β0(u), β̂(m−1))− θ(u,β0(u),β0) (2.27)
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Since (2.25) is less than or equal to zero,

sup
u∈(0,U ]

|θ(u, β̂(m)(u),β0)− θ(u,β0(u),β0)|

≤ sup
u∈(0,U ]

|(2.23) + (2.24) + (2.26) + (2.27)|

≤ sup
u∈(0,U ]

|(2.23)|+ sup
u∈(0,U ]

|(2.24)|+ sup
u∈(0,U ]

|(2.26)|+ sup
u∈(0,U ]

|(2.27)|

According to (2.21), supu∈(0,U ] |(2.24)| and supu∈(0,U ] |(2.26)| converges to zero in prob-

ability. According to (2.22), supu∈(0,U ] |(2.23)| and supu∈(0,U ] |(2.27)| converges to zero

in probability. Hence, we have supu∈(0,U ]

∣∣∣θ(u, β̂(m)(u),β0)− θ(u,β0(u),β0)
∣∣∣ p−→ 0.

Following similar arguments to those in Huang and Peng’s (2009) proof of theorem,

supu∈(0,U ] |β̂(m)(u)− β0(u)| p−→ 0.

Lemma 4. Given β̂(m−1) and β̂(m) are uniformly consistent,

sup
u∈(0,U ]

‖
√
n
{

∆̃(β̂(m)(u);u, β̂(m−1))− ∆̃(β0(u);u,β0)

− δ̃(β̂(m)(u);u, β̂(m−1)) + δ̃(β0(u);u,β0)
}
‖ p−→ 0,

where δ̃(a;u,b) = E[∆̃(a;u,b)].

Proof: Denote Di(a;u,b) = XiI(XT
i a ≤ logRi)[N(exp(XT

i a)) ∨ N(Li) − N(Li) −
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u+ u ∧ µ̃Zi(Li; b)].

E[Di(a1;u,b)−Di(a2;u,b)]2

=E
{

XiI(max(XT
i a1,X

T
i a2) ≤ logRi)

× [N(exp(XT
i a1)) ∨N(Li)−N(exp(XT

i a2)) ∨N(Li)]

+ XiI(XT
i a1 ≤ logRi < XT

i a2)[N(exp(XT
i a1)) ∨N(Li)N(Li)− u+ u ∧ µ̃Zi(Li; b)]

−XiI(XT
i a2 ≤ logRi < XT

i a1)[N(exp(XT
i a2)) ∨N(Li)N(Li)− u+ u ∧ µ̃Zi(Li; b)]

+ XiI(min(XT
i a1,X

T
i a2) > logRi)× 0

}2

≤M2
1 ·M2 ·M3 ·M5 · ‖a1 − a2‖

+M2
1 ·M2

2 ·M4 ·M5 · ‖a1 − a2‖

+M2
1 ·M2

2 ·M4 ·M5 · ‖a1 − a2‖

=C3‖a1 − a2‖ (2.28)

where C3 = M2
1M2M3M5 + 2M2

1M
2
2M4M5.

E[Di(a;u,b1)−Di(a;u,b2)]2

=E
{
XiI(XT

i a ≤ logRi)[u ∧ µ̃Zi(Li; b1)− u ∧ µ̃Zi(Li; b2)]
}2

≤E
{

Xi

[∫ U

0

(I(L ≥ exp(XT
i b1(u)))− I(L ≥ exp(XT

i b2(u))))du

]}
≤M2

1 · U ·M4 ·M5 · sup
u∈(0,U ]

‖b1(u)− b2(u)‖

=C4 sup
u′∈(0,U ]

‖b1(u′)− b2(u′)‖ (2.29)
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where C4 = M2
1M4M5U .

sup
u∈(0,U ],‖a−β0(u)‖≤ε1,supw∈(0,U ] ‖b(w)−(β0(w)‖≤ε2

E [Di(a;u,b)−Di(β0(u);u,β0)]2

≤2× sup
u∈(0,U ],‖a−β0(u)‖≤ε1,supw∈(0,U ] ‖b(w)−(β0(w)‖≤ε2

E [Di(a;u,b)−Di(a;u,β0)]2

+ 2× sup
u∈(0,U ],‖a−β0(u)‖≤ε1

E [Di(a;u,β0)−Di(β0(u);u,β0)]2

≤2C4ε2 + 2C3ε1

sup
u∈(0,U ]

V ar

{
Di(β̂(m)(u), u, β̂(m−1))−Di(β0(u), u,β0)

− E
[
Di(β̂(m)(u), u, β̂(m−1))

]
+ E [Di(β0(u), u,β0)]

}
≤ sup

u∈(0,U ]

E
∥∥∥Di(β̂(m)(u), u, β̂(m−1))−Di(β0(u), u,β0)

∥∥∥2

= sup
u∈(0,U ]

{∥∥∥Di(β̂(m)(u), u, β̂(m−1))−Di(β0(u), u,β0)
∥∥∥2

× I

(
‖β̂(m)(u)− β0(u)‖ ≤ ε1, sup

w∈(0,U ]

‖β̂(m−1)(w)− β0(w)‖ ≤ ε2

)

+
∥∥∥Di(β̂(m)(u), u, β̂(m−1))−Di(β0(u), u,β0)

∥∥∥2

× I

(
‖β̂(m)(u)− β0(u)‖ > ε1 or sup

w∈(0,U ]

‖β̂(m−1)(w)− β0(w)‖ > ε2

)}
≤ sup

u∈(0,U ],‖a−β0(u)‖≤ε1,supw∈(0,U ] ‖b(w)−β0(w)‖≤ε2
E
∥∥∥Di (a, u,b)−Di (β0(u), u,β0)

∥∥∥2

+M2
1M

2
2 sup
u∈(0,U ]

Pr

(
‖β̂(m)(u)− β0(u)‖ > ε1 or sup

w∈(0,U ]

‖β̂(m−1)(w)− β0(w)‖ > ε2

)

≤ 2C2ε2 + 2C1ε1 +M2
1M

2
2 sup
u∈(0,U ]

Pr
(
‖β̂(m)(u)− β0(u)‖ > ε1

)
+M2

1M
2
2Pr

(
sup

w∈(0,U ]

‖β̂(m−1)(w)− β0(w)‖ > ε2

)
(2.30)
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The inequality in (2.30) holds for any ε1 > 0 and ε2 > 0. Since β̂(m−1) and β̂(m)

uniformly consistent to β0, as ε1 and ε2 goes to zero,

sup
u∈(0,U ]

V ar

{
Di(β̂(m)(u), u, β̂(m−1))−Di(β0(u), u,β0)

− E
[
Di(β̂(m)(u), u, β̂(m−1))

]
+ E [Di(β0(u), u,β0)]

}
p−→ 0. (2.31)

Lemma 4 is proved.

Proof of Theorem 2.1.4: According to Lemma 4,

∥∥∥√n{∆̃(β̂(m)(u);u, β̂(m−1))− ∆̃(β0(u);u,β0)

− δ̃(β̂(m)(u);u, β̂(m−1)) + δ̃(β0(u);u,β0)
}∥∥∥ = o(0,U ](1). (2.32)

Suppose that
√
n(β̂(m−1) −β0) = n−1/2

∑n
i=1 ξi is a tight Gaussian process on (0, U ],

and β̂(m) is uniformly consistent to β0. We want to prove that
√
n(β̂(m) − β0) =

n−1/2
∑n

i=1 ξ
∗
i is also a Gaussian process.

First, we can see that

δ̃(a;u,b) = E

{
XI(R ≥ exp(XTa))

×
[
N(exp(XTa) ∨ L)−N(L)− u+

∫ u

0

I(L > exp(XTb(w)))dw

]}
=E

{
XI(R ≥ exp(XTa))

[
N(exp(XTa) ∨ L)−N(L)− u

]}
+

∫ u

0

E

{
XI(R ≥ exp(XTa))I(L > exp(XTb(w)))

}
dw (2.33)

Denote

δ̃1(β0(u);u,β0) =
dδ(a;u,b)

da

∣∣∣
a=β0(u),b=β0

=E
[
X⊗2µ̇(τZ(u))τZ(u)I (L ≤ τZ(v(u))) I (R ≥ τZ(u))

]
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and ρ(u,w) =
dE

{
XI(R≥τZ(u))I(L>exp(XT a))

}
da

∣∣∣∣
a=β0(w)

. Using Taylor expansion, we get

√
n[δ̃(β̂(m)(u);u, β̂(m−1))− δ̃(β0(u);u,β0)]

=δ̃1(β0(u);u,β0)
√
n(β̂(m)(u)− β0(u)) + op

(√
n(β̂(m)(u)− β0(u))

)
+

∫ u

0

ρ(u,w)
√
n[β̂(m−1)(w)− β0(w)]dw + op( sup

w∈(0,U ]

√
n[β̂(m−1)(w)− β0(w)])

(2.34)

Since
√
n
[
β̂(m−1)(u)− β0(u)

]
is a tight Gaussian process on u ∈ (0, U ],

op

(
sup

w∈(0,U ]

√
n(β̂(m−1)(w)− β0(w))

)
= op(1).

Plug equation (2.34) into equation (2.32),

√
n(β̂(m)(u)− β0(u))

=−
[
δ̃1(β0(u);u,β0) + op(1)

]−1{√
n∆̃(β0(u);u,β0) + o(0,U ](1)

+

∫ u

0

ρ(u,w)
√
n[β̂(m−1)(w)− β0(w)]dw + op(1)

}
(2.35)

=n−1/2

n∑
i=1

{
− δ̃1(β0(u);u,β0)−1

[
Di(β0(u);u,β0)

+

∫ u

0

ρ(u,w)ξi(w)dw
]}

+ o(0,U ](1) (2.36)

Define ξ∗i = −δ̃1(β0(u);u,β0)−1
[
Di(β0(u);u,β0)+

∫ u
0
ρ(u,w)ξi(w)dw

]
. Since ξ∗i is a

Donsker class,
√
n(β̂(m)−β0) asymptotically converges weakly to a Gaussian process

with mean zero and covariance Σ(s, t) = E{ξ∗1(s), ξ∗1(t)}.

Note that β̂ is a consistent solution to the stochastic estimating equation
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√
n∆(β;u) = 0. Equation (2.35) implies that

√
n(β̂(u)− β0(u))

=−
[
δ̃1(β0(u);u,β0)

]−1
{√

n∆̃(β0(u);u,β0)

+

∫ u

0

ρ(u,w)
√
n[β̂(w)− β0(w)]dw

}
+ o(0,U ](1). (2.37)

By viewing the foregoing stochatic differential equation (2.37) for n1/2
[
β̂ − β0

]
, and

using the theory for linear Volterra equations of the second kind (theorem 3.1 and

3.3, Peter Linz 1985), we get

n1/2
[
β̂(u)− β0(u)

]
= −δ̃1(β0(u);u,β0)−1

√
n∆̃(β0(u);u,β0)

+

∫ u

0

Γ(u,w)
{
−δ̃1(β0(w);w,β0)−1

√
n∆̃(β0(w);w,β0)

}
dw

= n−1/2

n∑
i=1

[
− δ̃1(β0(u);u,β0)−1Di(β0(u);u,β0)

+

∫ u

0

Γ(u,w)
{
−δ̃1(β0(w);w,β0)−1Di(β0(w);w,β0)

}
dw

]

where Γ(u,w) =
∑∞

j=1 kj(u,w) with k1(u,w) = −δ̃1(β0(u);u,β0)−1ρ(u,w) and

kn(u,w) =
∫ u
w

k1(u, v)kn−1(v, w)dv. Define

ξ∗∗i =− δ̃1(β0(u);u,β0)−1Di(β0(u);u,β0)

+

∫ u

0

Γ(u,w)
{
−δ̃1(β0(w);w,β0)−1Di(β0(w);w,β0)

}
dw.

Since ξ∗∗i is a Donsker class,
√
n(β̂ − β0) asymptotically converges weakly to a

Gaussian process with mean 0 and covariance matrix Σ(s, t) = E{ξ∗∗1 (s), ξ∗∗1 (t)}.

Proof of Theorem 2.1.5: Define A(b) = E[X
∑∞

j=1 I(L ≤ T (j) ≤

exp(XTb)∧R)] and B(b) = E[X⊗2 exp(XTb)I(L ≤ exp(XTb) ≤ R)µ̇Z(exp(XTb))],
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and vn(b) = n−1
∑n

i=1 Xi

∑∞
j=1 I(Li ≤ T

(j)
i ≤ exp(XT

i b) ∧ R) − A(b). Define

Ã(b) = E[XI(L ≤ exp(XTb) ≤ R)] and J(b) = E[X⊗2 exp(XTb){fL|Z(exp(XTb))−

fR|Z(exp(XTb))}], and ṽn(b) = n−1
∑n

i=1 XiI(Li ≤ exp(XT
i b) ≤ Ri)− Ã(b).

For d > 0, define B(d) = {b ∈ Rp+1 : infu∈(0,U ] ‖A(b) − A(β0(u))‖ ≤ d}.

Let an = ‖SL(n)‖; then L(n) = U/an. Let A(d) = {A(b) : b ∈ B(d)}.

Under condition C3, A(·) is a one-to-one map from B(d0) to A(d0), since

(b′ − b)(A(b′) − A(b)) = E((XTb′ − XTb)(Ñ(exp(XTb′)) − Ñ(exp(XTb)))) ≥ 0

and the equation only holds when b = b′ under condition C3. So the inverse function

of A(·) exists, denoted by κ(·), such that κ(A(b)) = b for any b ∈ B(d0).

Since β̂(uk) is the generalized solution to n1/2Sn(β, uk), we have

ζn,k = n−1

n∑
i=1

Xi

{ ∞∑
j=1

I(Li ≤ T
(j)
i ≤ exp(XT

i β̂(uk)) ∧Ri)

− I(Li ≤ exp(XT
i β̂(s)) ≤ Ri)ds

}

for k = 1, 2, . . . , L(n). Here, by the definition of a generalized solution,

maxk=1,...,L(n) ‖ζn,k‖ ≤ supi ‖Xi‖/n.

Simple algebra shows that

A{β̂(uk)} −A{β0(uk)} −
k−1∑
l=0

∫ ul+1

ul

{Ã(β̂(s))− Ã(β0(s))}ds

=− vn{β̂(uk)}+

∫ uk

0

ṽn{β̂(uk)}ds+ ζn,k.

Following similar arguments as in Peng and Huang (2008), it can be shown that

under condition C1-C3, supu∈(0,U ] ‖A(β̂(u))−A(β0(u))‖ p−→ 0.
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Using Taylor expansion of κ(A(β̂(u))) around A(β0(u)) for u ∈ [v, U ], from

condition C4, we get that

‖β̂(u)− β0(u)‖ ≤ ‖B(β0(u))−1(A(β̂(u))−A(β0(u)))‖+ ‖ε∗n(u)‖

≤ C6‖A(β̂(u))−A(β0(u))‖+ ‖ε∗n(u)‖,

where supu∈[v,U ] ‖ε∗n(u)‖ p−→ 0 and C6 > 0 does not depend on u. This completes the

proof.

Proof of Theorem 2.1.6: Following the proof of Lemma B.1. in Peng and

Huang (2008), we can show that given supu∈(0,U ] ‖A(β̂(u))−A(β0(u))‖ p−→ 0,

sup
u∈(0,U ]

∥∥∥n−1/2

n∑
i=1

Xi(Ñi(exp(XT
i β̂(u)))− Ñi(exp(XT

i β0(u))))

− n−1/2(A(β̂(u))−A(β0(u)))
∥∥∥ p−→ 0. (2.38)

and

sup
u∈(0,U ]

∥∥∥n−1/2

n∑
i=1

Xi(I(Li ≤ exp(XT
i β̂(u)) ≤ Ri)− I(Li ≤ exp(XT

i β0(u)) ≤ Ri))

− n−1/2(Ã(β̃(u))− Ã(β0(u)))
∥∥∥ p−→ 0. (2.39)

Let oI(an) denote a term that converges uniformly to 0 in probability in u ∈ I

after being divided by an. Because n1/2‖SL(n)‖ → 0, similar arguments as in Peng

and Huang (2008) show that n1/2Sn(β̂, u) = o(0,U ](1), a.s. Then (2.38) and (2.39),

coupled with the fact that A(β̂(u)) converges uniformly to A(β0(u)) for u ∈ (0, U ],
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imply that

− n1/2Sn(β0, u)

=n1/2[A(β̂(u))−A(β0(u))]−
∫ u

0

n1/2[Ã(β̂(s))− Ã(β0(s))]ds+ o(0,U ](1)

=n1/2[A(β̂(u))−A(β0(u))]

−
∫ u

0

(J(β0(s))B(β0(s))−1 + o(0,U ](1))n1/2(A(β̂(u))−A(β0(u)))ds+ o(0,U ](1)

According to the production integration theory (Gill and Johansen 1990; Andersen

et al. 1998, II.6), we get

n1/2(A(β̂(u))−A(β0(u))) = φ{−n1/2Sn(β0(u), u)}+ o(0,U ](1), (2.40)

where φ(·) is a linear operator from F to F (see Peng and Huang, 2008).

By the Donsker theorem, −n1/2Sn(β0, u) converges weakly to a tight Gaussian

process G(u) for u ∈ (0, U ]. Hence, n1/2{A(β̂(u)) − A(β0(u))} converges weakly

to φ(G(u)) which is also a Gaussian process since φ is a linear operator. Using

Taylor expansions we have n1/2{β̂(u)−β0(u)} converges weakly to a Gaussian process

B(β0(u))−1φ(G(u)), which is also a Gaussian.
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Chapter 3

Censored Quantile Regression

Analysis of Longitudinal Data with

an Informative Intermittent

Missing Pattern
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3.1 Regression Procedures

3.1.1 Data and Model

Suppose that N individuals are expected to be measured at K occasions. Let y∗i =

(y∗i1, y
∗
i2, . . . , y

∗
iK)′, where y∗ij denotes the jth outcome of the ith subject subject to

left censoring by a fixed known constant c, and let zi = (z′i1, z
′
i2, . . . , z

′
iK)′, where

zij denote the corresponding p × 1 covariate vector, i = 1, . . . , N and j = 1, . . . , K.

Define the observed yij = max(c, y∗ij) and ηij = I(y∗ij > c), where I(·) is an indicator

function. Let δij = 1 if (yij, ηij, zij) is available and 0 if missing. Observed data

include {(yij, ηij, zij) : δij = 1}. Without loss of generality, the conditional quantiles

of y∗ij given zij is defined as Qy∗ij
(τ |zij) = inf{y : Pr(y∗ij ≤ y|zij) ≥ τ} for τ ∈ [0, 1].

A quantile regression model may linearly link Qy∗ij
(τ |zij) to zij as follows:

Qy∗ij
(τ |xij) = xTijβ0(τ), (3.1)

where xij = (1, zij) and β0(τ) is a vector of unknown regression coefficients, repre-

senting the effects of covariates on the τth conditional quantile of y∗ij and may change

with τ . For the observed yij, the corresponding conditional quantile satisfies

Qyij(τ |xij) = max(c,xTijβ0(τ)). (3.2)

This fact serves as the base for the proposed estimation of β0(τ).
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3.1.2 Estimation Procedure and Inference

With complete data {(yij, ηij, zij) : i = 1, . . . , N, j = 1, . . . , K}, the estimating equa-

tion for censored longitudinal data is

0 =
N∑
i=1

K∑
j=1

xij
{
τ − I(yij < max(c,xTijβ))

}
. (3.3)

Missingness in the data may cause problem in estimating equation (3.3). When the

missingness is completely at random, the estimating equation (3.3) is still working.

However, when the missingness is informative about the response variable, estimators

resulting from equation (3.3) would be biased.

Our strategy is to adopt the inverse probability weighting method and assume the

responses are missing at random (MAR). Here are assumptions needed.

Assumptions:

(1) There is a q × 1 random vector vij, such that

πij = P (δij = 1|y∗i , zi) = P (δij = 1|vij) = p(vij,α),

where α denotes some parameters.

(2) For all v ∈ V ⊂ Rq, p(v) > 0, where V is a set of all possible vij.

(3) vij is observed whenever δij = 1.

We propose to weight the available data on (yij, zij, ηij) by the inverse probability of

δij = 1. Specifically, the proposed estimating equation for β0(τ) takes the form,

0 = Uπ
N(β) = N−1/2

N∑
i=1

K∑
j=1

I(δij = 1)

πij
xij
{
τ − I(yij < max(c,xTijβ))

}
. (3.4)

The probability πij is usually unknown. We need to conduct additional modeling
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for the missing mechanism. Note that δij is a binary variable. So regression models

for binary variable, such as logistic regression, could be adopted depending on the

missingness structure present in the data. Define an estimator, such as maximum

likelihood estimator, of α as α̂ and an estimator of πij as π̂ij = p(vij, α̂). Plugging

in πij in equation (3.4) by π̂ij = p(vij, α̂), we get a new estimating equation that is

UN(β) = N−1/2

N∑
i=1

K∑
j=1

I(δij = 1)

π̂ij
xij
{
τ − I(yij < max(c,xTijβ))

}
. (3.5)

It can be proved that if α̂ and p(v,α) satisfy some condition (C1 in section 3.1.3

Asymptotical Results), estimator β̂(τ) resulting from estimating equation (3.5)

would be uniformly consistent and asymptotical normal. Fortunately, the condition

C1 is not hard to satisfy. Examples satisfying condition C1 are present in 3.5

Appendix.

The solution-finding problem to (3.5) is equivalent to locating the minimizer of

the following objective function,

N∑
i=1

K∑
j=1

I(δij = 1)

π̂ij
ρτ
{
yij −max

(
c,xTijβ

)}
, (3.6)

where ρτ (u) = uτI(u ≥ 0)− u(1− τ)I(u < 0). The minimizer to (3.6) is denoted by

β̂(τ). The minimization problem of (3.6) can be easily solved using the Barrodale-

Roberts algorithms ((Barrodale and Roberts, 1974)), the implementation of which

is available in standard statistical software, for example, the l1fit() function in

S-PLUS or the rq() function in R package quantreg.

The covariance matrix of n1/2
{
β̂(τ)− β0(τ)

}
depends on some unknown value,

such as the probability density function of the outcome variable. Therefore, we
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adopted bootstrapping method to obtain the confidence interval of β0(τ).

3.1.3 Asymptotic Results

We can show that for τ ∈ (0, 1), β̂(τ) is uniformly consistent and n1/2
{
β̂(τ)− β0(τ)

}
converges weakly to a Gaussian process. The regularity conditions include:

C 1. Let α be the parameters in the missing model. Denote α̂ as the estimator and

α0 as the true value. Define π̂ij = p(vij, α̂).

(a) α̂ is consistent to α0;

(b) There exist ξ1,j, such that
∥∥∥√n (α̂−α0)− n−1/2

∑n
j=1 ξ1,j

∥∥∥ p−→ 0;

(c) p(vij,α) has continuous derivatives of α around α0, for all vij ∈ V.

C 2. z is bounded.

C 3. (a) β0(τ) is a Lipschitz continuous for τ ∈ (0, 1);

(b) The density function of Yik, fk(y|zi) is bounded above uniformly in zi.

C 4. For some ρ0 > 0 and c0 > 0, infb∈B(ρ0) eigminA(b) ≤ −c0, where B(ρ) = {b ∈

Rp+1 : infτ∈(0,1) ‖b− β0(τ)‖ ≤ ρ} and

A(b) =
d

db
E

[
−

K∑
k=1

I(δik = 1)

πik
xikI{yik ≤ max(c,xTikb)}

]
.

We establish the uniform consistency and weak convergence of β̂(τ) stated in the

following theorems.

Theorem 3.1.1. Under conditions C1-C4, supτ∈(0,1) ‖β̂(τ)− β0(τ)‖ p−→ 0.

Theorem 3.1.2. Under conditions C1-C4,
{
n1/2

(
β̂(τ)− β0(τ)

)
: τ ∈ (0, 1)

}
con-

verges weakly to a Gaussian process with mean 0 and covariance matrix Σ, where Σ

is presented in proof.
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Condition C 1 is usually satisfied if only we have a correct model for missingness

(examples see 3.5 Appendix). The proofs of Theorems 3.1.2 – 3.1.2 are presented in

3.5 Appendix.

3.2 Simulation Studies

Finite-sample performance of the proposed method was evaluated through Monte

Carlo simulations. We considered the scenario that 200 individuals are expected

to have repeated measurements at four time points, 0,5,11, and 18. We call the

measurement at time zero as the baseline measurement. Let xij be the jth visit time

of the ith subject. The latent response variable y∗ij is generated from the following

models:

• Case 1 (normal random effect and constant slope):

y∗ij = 1.5 + ai − 0.01xij + eij, i = 1, . . . , 200, j = 1, . . . , 4,

where random effect ai ∼ N(0, 1) and eij ∼ N(0, 0.09). In this setup, Qy∗ij
(τ |xij)

= 1.5 +
√

(1.09)× Φ−1(τ)− 0.01xij.

• Case 2 (skewed random effect and constant slope):

y∗ij = 1 + ai − 0.01xij + eij, i = 1, . . . , 200, j = 1, . . . , 4,

where random effect ai ∼ Γ(3, 0.5) − 1.5 and eij ∼ N(0, 0.09). In this setup,

Qy∗ij
(τ |xij) = 1 + F−1

a+e(τ) − 0.01xij, where Fa+e is the distribution function of

a+ e and F−1
a+e(τ) is gained from Monte Carlo simulation.

• Case 3 (normal random effect and changing slopes):
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y∗ij = 1.5 +ai0− (0.01 +ai1)xij−ai2
√
xij + eij, i = 1, . . . , 200, j = 1, . . . , 4,

where ai0 ∼ N(0, 0.91), ai1 ∼ N(0, 10−4), ai2 ∼ N(0, 0.02), and

eij ∼ N(0, 0.09). We can show that y∗ij given xij follows a normal distri-

bution, N(1.5− 0.01xij, (1 + 0.01x)2), that its quantile is linear in xij. That is,

Qy∗ij
(τ |xij) = 1.5 + Φ−1(τ)− 0.01(1− Φ−1(τ))xij.

We left censored y∗ij at zero, i.e. the observed yij = max(y∗ij, 0). About 10% of

response variables are left censored at zero. In our simulation, yi1 is always observed

and let vij = yi1, for j = 2, 3, 4. The probability of yij being available in the other

three time points follow a logistic regression model:

πij =
exp(2− yi1)

1 + exp(2− yi1)
, i = 1, . . . , 200, j = 2, 3, 4.

The average of πij for j = 2, 3, 4 in three cases are 40%, 30%, and 40% respectively.

Bootstrapping size for inference is 500. Each setup is repeated 500 times.

We fitted the model by using the proposed estimating equation (3.4) (referred to

as Weighted QR). We also applied Wang and Fygenson (2009)’s method which does

not account for informative missingness (referred to as Unweighted QR). Coefficient

estimates from both unweighted and weighted estimating equations of the 25th, 50th,

and 75th quantiles are summarized in Table 3.1. Without considering informative

missingness, unweighted estimators appear to be biased. The coverage rate of 95%

confidence interval from bootstrapping seems to deviate from the nominal value. In

contrast, the proposed estimator is virtually unbiased. The coverage rate of 95%

confidence interval from bootstrapping is close to the nominal value. Table 3.1 also

shows that the empirical standard error (Emp SE) agree quite well with average
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bootstrapping-based standard error estimates.

In summary, our simulation study suggests that the proposed weighted estimator

is a good estimator for quantile regression coefficients when outcome is under left

censoring and missing at random. It is also demonstrated that bootstrapping is an

appropriate approach for inference.

Table 3.1: Comparison of the unweighted censored quantile regression estimator
(Unweighted QR) and our proposed weighted estimator with logistic missingness
model(Weighted QR): Cov95 – coverage rate of the bootstrapping 95% confidence
interval; Emp SE – empirical standard error; Avg SE – average bootstrapping-based
standard error estimates.

Unweighted QR Weighted QR
TRUE Bias Cov95 Bias Emp SE Avg SE Cov95

τ = 0.25

Case 1 β̂(1) .796 -.077 .88 -.006 .098 .104 .94

β̂(2) -.010 -.014 .63 -.000 .005 .006 .97

Case 2 β̂(1) .344 -.015 .95 .004 .063 .063 .95

β̂(2) -.010 -.005 .93 .000 .004 .004 .95

Case 3 β̂(1) .826 -.054 .91 .006 .099 .100 .94

β̂(2) -.017 -.015 .79 -.000 .007 .007 .94
τ = 0.5

Case 1 β̂(1) 1.50 -.088 .82 -.002 .100 .101 .93

β̂(2) -.010 -.017 .99 .001 .006 .007 .96

Case 2 β̂(1) .856 -.049 .89 .001 .076 .078 .95

β̂(2) -.010 -.008 .98 .000 .005 .005 .96

Case 3 β̂(1) 1.50 -.065 .87 .006 .092 .096 .95

β̂(2) -.010 -.017 .85 .000 .007 .008 .96
τ = 0.75

Case 1 β̂(1) 2.20 -.096 .82 .002 .115 .120 .94

β̂(2) -.010 -.020 .13 .001 .010 .010 .97

Case 2 β̂(1) 1.50 -.087 .82 -.005 .113 .117 .94

β̂(2) -.010 -.012 .41 .000 .008 .008 .96

Case 3 β̂(1) 2.17 -.080 .84 .003 .111 .114 .95

β̂(2) -.033 -.019 .35 .001 .010 .011 .95
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3.3 PBB Data Example

In this project, we use the same data set as in Terrell et al. (2008) except for six

women whose first visit is more than 13 years later since the exposure (defined ad

July 1, 1973). These six women were excluded because they would contribute little

information for studying PBB change in a time window not far from exposure. The

data were collected during 1976 - 1994. Specifically, data were collected in 12 years:

1977, 1978, 1979, 1980, 1981, 1982, 1983, 1988, 1989, 1992, 1993, and 1994. The

outcome y∗ij is the underlying PBB level of the ith subject at the jth year in the 12

years listed above. The maximum visit number in the data is 7, which means many

y∗ij’s are not available. Knowing that the missingness pattern is related with the

observed measurements, we first need to model the missing pattern before conducting

quantile regression. We assume that the missingness pattern in the follow-up visit

is dependent on the observed measurement at the first visit which is referred to

as initial PBB measurement in the following. We categorized the initial PBB

measurement (after logarithm transformation) into six groups: [0, 1), [1, 2), [2, 3),

[3, 4), [4, 5), and [5, 7). Let p
(k)
j be the probability of a woman with first measurement

in the range [k − 1, k) or [5, 7) for k = 6 to have a PBB concentration measurement

in the jth year. We plot the empirical sample proportions in Figure 3.1. It shows

that high PBB concentration tends to have more measurements. As explained by

epidemiological investigator of this study, this occurred because in the late 1980’s

those with PBB > 10 were contacted by project staff for re-tests. They chose 10

ppb because they noted that it would be easier to see a decrease in PBB if the

level was around 10 ppb. In the 1990’s, there was an updated health questionnaire

done for the entire cohort, and at this time all participants were able to have their

PBB levels measured again. Figure 3.1 also demonstrates that (a) the visiting

pattern of each group in each year is quite different from the pattern in another

year; (b) the probability of being observed does not seem to be linearly correlated
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Figure 3.1: Empirical sample proportion of being available for each group in every
year

with the continuous initial PBB outcome. Based on these observations, we use the

sample proportion of being followed up in each year as the estimator of πij, π̂ij =∑6
k=1 p

(k)
j I(ith subject is in kth group according to the initial PBB measurement),

avoiding strong parametric assumptions.

We fit model (3.1) with xij being the jth visit time (referred to as Time) of

the ith subject since PBB exposure. We fitted the model by using the proposed

estimating equation (3.4) (referred to as Weighted QR). We also applied Wang

and Fygenson (2009)’s method which does not account for the informative missing

pattern (referred to as Unweighted QR). The estimates of quantile regression
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coefficients β(τ) are summarized in Table 1. From the weighted estimating equation,

the negative coefficients for Time conform to our intuition that PBB concentration

generally decreases over time. The increasing pattern in the magnitude of the Time

coefficient with τ further demonstrates that a faster decaying profile for high PBB

quantiles compared to low PBB quantiles.

The decay rates for the 25th, 50th, and 75th percentiles of PBB concentration

are not significant, while the estimated decay rates for the 85th, 90th, and 95th

quantiles are significantly lower than zero. Specifically, the 85th percentile decreases

3 percents per year (95% confidence interval: 0 - 5 percents per year). The 90th

percentile decreases 4 percents per year (95% confidence interval: 1 - 7 percents per

year). The 95th percentile decreases 6 percents per year (95% confidence interval: 3

- 11 percents per year).

On the other hand, results from the unweighted quantile regression appear to

underestimate the decay rate. In fact, the unweighted quantile regression results in

positive slope estimates for time. This result is not right, because the PBB serum

concentration is impossible to increase in body. This real example further demon-

strates that failing to handle informative missingness, the resulting estimates would

be substantially biased and conclusions would be incorrect.

3.4 Remarks

Left censoring and missing measurements are often simultaneously present in lon-

gitudinal studies. Failing to handle these data features, as shown in our simulation

study and data example, can lead to considerably biased estimation and consequently

misleading scientific conclusions. The new regression method developed in this work
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Table 3.2: Parameter estimates and 95% confidence interval for 25th quantile, 50th
quantile, 75th quantile, 85th quantile, 90th quantile, and 95th quantile

Unweighted QR Weighted QR
Quantile Effect Estimate 95% CI Estimate 95% CI
25th Intercept 0.159 ( 0.134, 1.109) 0.182 ( 0.127, 2.538)

Time 0.006 (-0.119, 0.013) -0.000 (-0.595, 0.014)
50th Intercept 0.851 ( 0.519, 0.968) 0.773 ( 0.556, 1.030)

Time 0.005 (-0.007, 0.022) -0.008 (-0.026, 0.008)
75th Intercept 1.533 ( 1.340, 1.859) 1.476 ( 1.289, 1.798)

Time 0.025 ( 0.000, 0.047) -0.006 (-0.029, 0.002)
85th Intercept 2.298 ( 1.838, 2.924) 2.208 ( 1.706, 2.695)

Time 0.019 (-0.012, 0.071) -0.026 (-0.054, -1e-4)
90th Intercept 2.973 ( 2.331, 3.617) 2.897 ( 2.168, 3.272)

Time 0.035 (-0.014, 0.085) -0.043 (-0.069, -0.006)
95th Intercept 3.872 ( 3.204, 4.852) 3.917 ( 3.032, 4.422)

Time 0.043 (-0.012, 0.075) -0.060 (-0.113, -0.026)

appropriately account for these complications. Furthermore, by adopting quantile

regression modeling, we may offer a more comprehensive view of the profile of

longitudinal outcomes as well as its relationship with covariates, as compared to

some traditional modeling, such as linear mixed models.

Here we need to emphasize that our proposed weighted estimating equation is

sensitive to the probability weight. For example, the unweighted quantile regression

without considering informative missingness is a kind of model without appropriate

weight. Good probability estimate for missingness is key to gain a good estimate in

quantile regression models.

3.5 Appendix

3.5.1 Examples of Estimators Satisfying Condition C 1

Condition C 1 is usually satisfied if only we have a correct model for missingness.
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• Example 1: Empirical sample proportion:

Empirical sample proportion of an event is a consistent estimator for true prob-

ability of the event. Define ξ1,j = I(event happens for the jth subject)−α0. It

is easy to see that ‖
√
n(α̂−α0)−n−1/2

∑n
j=1 ξ1,j‖

p−→ 0. Also, p(v,α) = α has

continuous derivatives in α.

• Example 2: Maximum likelihood estimator (MLE):

First, MLE is a consistent estimator. Denote the score function as S(α) =

1
n

∑n
i=1 Si(α) = 1

n

∑n
i=1

∂li(α)
∂α

, where li(α) is the log-likelihood function for the

ith subject. Define s(α) = E(Si(α)). Briefly, we have ‖
√
n{S(α̂) − S(α0) −

s(α̂) + s(α0)}‖ p−→ 0, S(α̂) = 0, and s(α̂) − s(α0) = (s′(α0) + op(1))(α̂ −

α0). Define ξ1,j = −s′(α0)−1Sj(α0). It can be proven that ‖
√
n(α̂ − α0) −

n−1/2
∑n

j=1 ξ1,j‖
p−→ 0. Also, p(v,α) = exp(vTα)

1+exp(vTα)
has continuous derivatives in

α.

3.5.2 Proof of Theorems

Proof of Theorem 3.1.1 Define µ(β, τ) = E
{
n−1/2Uπ

n (β, τ)
}

. Condition C1 cou-

pled with C2 implies that

sup
τ∈(0,1),β∈Rp+1

‖n−1/2Un(β, τ)− n−1/2Uπ
n(β, τ)‖ = o(1), a.s.

Define F =
∑K

k=1
I(δik=1)
πik

xik
[
τ − I

{
yik ≤ max(c,xTikβ)

}]
, β ∈ Rp+1, τ ∈ (0, 1).

The function class F is Donsker and thus Glivenko-Cantelli because the class of

indicator functions is Donsker. It then follows the Glivenko-Cantelli theorem that

supβ∈Rp+1,τ∈(0,1) ‖n−1/2Uπ
n(β, τ)− µ(β, τ)‖ = o(1), a.s. Therefore,

sup
β∈Rp+1,τ∈(0,1)

‖n−1/2Un(β, τ)− µ(β, τ)‖ = o(1), a.s. (3.7)
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Given µ(β0(τ), τ) = 0, we have supτ∈(0,1) ‖n−1/2Un(β0(τ), τ)‖ = o(1), a.s.. And

according to our estimating method, Un(β̂(τ), τ) = o(1). Simple manipulation shows

that

sup
τ∈(0,1)

‖µ(β̂(τ), τ)− µ(β0(τ), τ)‖

≤ sup
τ∈(0,1)

‖µ(β̂(τ), τ)− n−1/2Un(β̂(τ), τ)‖+ sup
τ∈(0,1)

‖n−1/2Un(β̂(τ), τ)‖

+ sup
τ∈(0,1)

‖n−1/2Un(β0(τ), τ)‖+ sup
τ∈(0,1)

‖n−1/2Un(β0(τ), τ)− µ(β0(τ), τ)‖

= o(1), a.s. (3.8)

Now we have supτ∈(0,1) ‖µ(β̂(τ), τ)‖ a.s.−−→ 0. If supτ∈(0,1) ‖β̂(τ) − β0(τ)‖ 6 a.s.−−→ 0, then

there must exist ρ0 ≥ ε > 0 and a sequence {τ, ζ} satisfying ‖ζ − β0(τ)‖ > ε such

that ‖µ(ζ, τ)−µ(β0(τ), τ)‖ → 0 . However, since uTµ(β0(τ) + uδ, τ) is a decreasing

function in δ for any u ∈ Rp+1 satisfying ‖u‖2 = 1 and condition C4, we have

‖µ(ζ, τ)− µ(β0(τ), τ)‖2 · ‖v‖2

≥
[
vT {µ(ζ, τ)− µ(β0(τ), τ)}

]2
≥
[
vT {µ(β0(τ) + εv, τ)− µ(β0(τ), τ)}

]2
≥ c2

0ε
2 (3.9)

where v = ζ−β0(τ)
‖ζ−β0(τ)‖ . Inequality in (3.9) contradicts with ‖µ(ζ, τ)−µ(β0(τ), τ)‖ → 0.

Therefore, we proved that supτ∈(0,1) ‖β̂(τ)− β0(τ)‖ a.s.−−→ 0.

Lemma 1. For any positive sequence {dn}∞n=1 satisfying dn → 0,

sup
b,b′∈B(ρ0),‖b−b′‖≤dn,τ∈(0,1)

∥∥∥∥Uπ
n(b, τ)−Uπ

n(b′, τ)− n1/2{µ(b, τ)− µ(b′, τ)}
∥∥∥∥ a.s.−−→ 0.
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Proof. This lemma can be proved by using the results in Alexander (1984) and the

arguments for theorem 1 of Lai and Ying (1988). The crucial step is to show that

there exists G0 > 0 such that

var

[
K∑
k=1

I(δik = 1)

πik
xik
[
I{yik ≤ max(c,xTikb

′)} − {I(yik ≤ max(c,xTikb))}
]]

≤ G0‖b− b′‖.

This follows from the uniform boundedness of fk(y|z) and the boundedness of Z and

B(ρ0), which are implied by C2 and C3.

Proof of Theorem 3.1.2 Denote

w(b, τ) = E

[
K∑
k=1

1

π2
ik

I(δik = 1)xik[τ − I{yik ≤ max(c,xTikb)}]hik

]
,

where hik = ∂p(vik,α)
∂α

∣∣∣
α=α0

. Using similar empirical process arguments for F , we can

show that n−1
∑n

i=1

∑K
k=1

1
π2
ik
I(δik = 1)xik[τ − I{yik ≤ max(c,xTikb)}]hik converges to

w(b, τ) uniformly in both b ∈ Rp+1 and τ ∈ (0, 1). Denote

ξ2,i(τ) =
K∑
k=1

I(δik = 1)

πik
xik
[
τ − I

{
yik ≤ max(c,xTikβ0(τ))

}]
.
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It follows from standard asymptotic arguments that

Un{β0(τ), τ}

=Uπ
n{β0(τ), τ}+ [Un{β0(τ), τ} −Uπ

n{β0(τ), τ}]

=n−1/2

n∑
i=1

ξ2,i(τ)

+ n−1/2

n∑
i=1

K∑
k=1

I(δik = 1)xik[τ − I{yik ≤ max(c,xTikβ0(τ))}]
{

1

π̂ik

− 1

πik

}
≈n−1/2

n∑
i=1

ξ2,i(τ)

+
1

n

n∑
i=1

K∑
k=1

I(δik = 1)xik[τ − I{yik ≤ max(c,xTikβ0(τ))}] 1

π2
ik

√
n

n∑
j=1

hikξ1,j

=n−1/2

n∑
i=1

ξ2,i(τ)

+ n−1/2

n∑
j=1

ξ1,j

[
1

n

n∑
i=1

K∑
k=1

1

π2
ik

I(δik = 1)xik[τ − I{yik ≤ max(c,xTikβ0(τ))}]hik

]

≈n−1/2

n∑
i=1

ξ2,i(τ) + n−1/2

n∑
j=1

ξ1,jw(β0(τ), τ)

=n−1/2

n∑
i=1

(
ξ2,i(τ) + w(β0(τ), τ)ξ1,i

)
(3.10)

where ≈ denotes asymptotic equivalence uniformly in τ ∈ (0, 1).

We claim that F∗ = {ξ2,i, τ ∈ (0, 1)} and F∗∗ = {w(β0(τ), τ)ξ1,i, τ ∈ (0, 1)} are

Donsker. First, given β0(τ) is continuous in τ and w(b, τ) is monotone in b and

τ , we can show w(β0(τ), τ) is Donsker. Since Donsker property perserves under

product, F∗∗ is a Donsker. Similar arguments as w(b, τ), we can show that F∗ is

also a Donsker.

Next, simple algebraic manipulations show that Un{β̂(τ), τ}−Un{β0(τ), τ} = (I) +
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(II), where

(I) = n−1/2

n∑
i=1

K∑
k=1

I(δik = 1)

πik
xik

[
I{yik ≤ max(c,xTikβ̂(τ))}

− I{yik ≤ max(c,xTikβ0(τ))}
]

and

(II) = n−1/2

n∑
i=1

K∑
k=1

I(δik = 1)xik

[
I{yik ≤ max(c,xTikβ̂(τ))}

− I{yik ≤ max(c,xTikβ0(τ))}
]( 1

π̂ik
− 1

πik

)
.

From Lemma 1 and the uniform consistency of β̂(τ), we have

(I) ≈ n1/2
[
µ{β̂(τ), τ} − µ{β0(τ), τ}

]
.

Since supi,k
{
π̂−1
ik − π

−1
ik

}
= o(1), it is easy to see that Un{β̂(τ), τ} − Un{β0(τ), τ}

is dominated by (I). Taylor expansion of µ(b, τ) around b = β0(τ), along with the

fact that β̂(τ) uniformly converges to β0(τ), gives that

Un{β̂(τ), τ} −Un{β0(τ), τ} = [A{β0(τ) + εn(τ)}] · n1/2{β̂(τ)− β0(τ)},

where supτ ‖εn(τ)‖ → 0. Given Un{β̂(τ), τ} = 0, this further implies that

n1/2{β̂(τ)− β0(τ)} = −A{β0(τ)}−1Un{β0(τ)}+ ε∗n(τ),

where supτ ‖ε∗n(τ)‖ → 0.It follows that

n1/2{β̂(τ)− β0(τ)} ≈ n−1/2

n∑
i=1

A{β0(τ)}−1
(
ξ2,i(τ) + w(β0(τ), τ)ξ1,i

)
. (3.11)
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Weak convergence of n1/2{β̂(τ)−β0(τ)} follows since F∗ and F∗∗ are Donsker classes

and the Donsker property preserves under addition.
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Chapter 4

Censored Quantile Regression

Analysis of Longitudinal Data with

Irregular Outcome-Dependent

Follow-Up
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4.1 Regression Procedures

4.1.1 Data and Model

Let Y ∗i (t) denote the outcome process of interest and Zi(t) denote a vector of external

covariate processes for the ith subject. Let [Li, Ri] be a time interval indicating

when the ith subject is under study. We assume that {Li, Ri} is independent of the

outcome process Y ∗i (·) given covariates Zi(·). The outcome process Y ∗i (·) and Zi(·)

are only observed at Li when a subject enters the study and at a sequence of follow-up

visit times {t(j)i : j = 1, 2, . . . ,mi} within (Li, Ri], where mi is the total number of

follow-up visits. Define a counting process on study entry as NL
i (t) = I(Li ≤ t) and a

counting process for follow-up visits as Ni(t) =
∑mi

j=1 I(t
(j)
i ≤ t). We allow Ni(t) to be

dependent on previsous outcome measurements in order to accommodate for outcome-

dependent follow-up. Observed outcome is left censored at a fixed constant c. Denote

Yi(t) = max(c, Y ∗i (t)). Hence, the observed data consists of n i.i.d. replicates, denoted

by {Li, Zi(Li), Yi(Li), t
(j)
i , Zi(t

(j)
i ), Yi(t

(j)
i ), Ri : j = 1, 2, . . . ,mi; i = 1, 2, . . . , n}.

Define a conditional τth quantile of a random variable Y given Z as QY (τ |Z) =

inf{y : Pr(Y ≤ y|Z) ≥ τ}. We assume that the conditional quantile of the longitudi-

nal outcome at time t, QY ∗i (t)(τ |Zi), follows the marginal regression model

QY ∗i (t)(τ |Zi(t)) = Xi(t)
>β0(τ), for all t > 0 (4.1)

where Xi(t) = (1,Zi(t)
>)> and β0(τ) is a vector of unknown regression coefficients.

External covariates Zi(t) can include the observation time. For example, in the

motivating PBB data where the primary goal is to characterize the change in outcome

over time, we let QY ∗i (t)(τ) = β0(τ) + β1(τ)t, where β0(τ) represents the baseline τth

quantile of outcome at time 0 and β1(τ) stands for the change rate of the τth quantile
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over time. This model could also be used with any monotone transformation of Yi(t).

Under model (4.1), quantiles of the left censored outcome Yi(t) follows a censored

quantile regression model

QYi(t)(τ |Zi(t)) = max(c,Xi(t)
>β0(τ)).

To have a good estimate in the quantile regression model, we also need to

model the visit process. The initial visit time, Li, is not necessary to be fixed

but is assumed to be conditional outcome-independent that Li ⊥ Y ∗i (·)|Zi(·). This

assumption is reasonable in most cases. In the PBB data, participants had little

knowledge about how much they were exposed to PBB until they received results

from their initial visits. Since conditional outcome-independent visit time will not

bias the estimation, it is not needed to specify the distribution of the initial visit time.

On the other hand, follow-up after the initial visit is outcome-dependent. In the

PBB data, subjects with high PBB levels are more likely to have frequent follow-up

visits. Define a history function Hi(t) as all observed data before time t of the ith

subject. The follow-up visit process are assumed to follow a proportional intensity

model (Andersen and Gill, 1982) that

λ(t|Hi(t)) = lim
∆t→0

1

∆t
P{Ni(t+ ∆t)−Ni(t) = 1|Hi(t)}

= I(Li < t ≤ Ri)λ0(t) exp
(
hi(t)

>α0

)
, (4.2)

where hi(t) is a time-dependent covariates belong to Hi(t) and α0 is a vector of

unknown coefficients. Suppose that hi(t) contains the initial outcome Yi(Li), then

the corresponding coefficient α0 represents how the follow-up visit process depends

on the initial outcome. A positive α0 means that subjects with large initial outcome

tend to have more visits while a negative coefficient means the opposite. And α0 = 0
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implies that follow-up is independent of the initial outcome. The choice of hi(t)

could contains initial outcome measurements or previous outcome measurements.

The validity of the inverse intensity-ratio weighting appraoch requires a stronger

assumption that dNi(t) ⊥ {Y ∗i (t),Zi(t)}|Hi(t); in words, dNi(t) is independent of

current outcome and covariates given the history.

4.1.2 Estimation Procedure

Without outcome-dependent follow-up, we can follow Powell (1986)’s method to es-

timate β0(τ) through minimizing an objective function

n−1/2

n∑
i=1

[∫ ∞
0

ρτ
{
Yi(t)−max

(
c,Xi(t)

>β
)} (

dNL
i (t) + dNi(t)

)]
, (4.3)

where ρτ (u) = u · {τ − I(u < 0)} is the quantile loss function.

However, as discussed in introduction, if follow-up is outcome-dependent, there

would be bias in estimates by minimizing the objective function (4.3). Suppose α0

is known. The inverse intensity-ratio weighting approach weights each observation

by the reciprocal of its intensity-ratio function compared to a reference group in

model (4.2). Specifically, the objective function (4.3) consists of two parts: one

is about the measurement at study entry Li; the other is about measurements at

follow-up visits. Study entry time Li is conditional independent with outcome,

hence we do not need to weight the part about Yi(Li); it is equivalent to that its

weight = 1. Since follow-up visits are outcome-dependent, we weight follow-up visits

by the reciprocal of their corresponding intensity ratio defined as wi(t;α0), where

wi(t;α) = exp
(
hi(t)

>α
)
. To balance the weights between these two parts, 1 versus

wi(t
(j)
i ,α0)’s, covariates in model (4.2) are centered at their average. For example,
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suppose gi(t) is a covariate belong to hi(t). Define a centered covariate g∗i (t) equal

to gi(t)− ḡ, where ḡ =
∑n

i=1

∑mi
j=1 gi(t

(j)
i )/

∑n
i=1 mi. By centering covariates, we can

ensure that at the “average level”, its inverse intensity-ratio weights is 1.

Since α0 is unknown, the estimation procedure consists of two steps. The first

step is to estimate α0 in model (4.2) through maximizing a partial likelihood func-

tion (Andersen and Gill, 1982). With consistent estimates α̂, we can estimate the

intensity-ratio weights by plugging α̂ into wi(t;α). In the second step, we estimate

β0(τ) by minimizing inverse intensity-ratio weighted objective function Ψ(β; τ, α̂),

where

Ψτ (β;α) = n−1/2

n∑
i=1

[ ∫ ∞
0

ρτ
{
Yi(t)−max

(
c,Xi(t)

>β
)}

×
(
dNL

i (t) +
1

wi(t;α)
dNi(t)

)]
(4.4)

The minimizer to the objective function Ψ(β; τ, α̂) is also a solution to

Uτ{β; α̂} = 0, (4.5)

where

Uτ (β;α) = n−1/2

n∑
i=1

[ ∫ ∞
0

Xi(t)I
(
Xi(t)

>β > c
)

×
{
I
(
Yi(t) ≤ Xi(t)

>β
)
− τ
}(

dNL
i (t) +

1

wi(t;α)
dNi(t)

)]
.

This fact will help to prove the asymptotical normality of
√
n(β̂(τ)− β0(τ)).
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Applying the objective function Ψτ (β; α̂) to a sample, it is equivalent to

n−1/2

n∑
i=1

[
ρτ
{
Yi(Li)−max

(
c,Xi(Li)

>β
)}

+

mi∑
j=1

1

wi

(
t
(j)
i ; α̂

)ρτ {Yi(t(j)i )−max

(
c,Xi

(
t
(j)
i

)>
β

)}]
, (4.6)

By treating each observed Yi(t) as independent and specifying weights as the

reciprocal of estimated intensity-ratio, the minimization problem can be implemented

by standard statistical software, such as the crq() function in R package quantreg.

4.1.3 Asymptotic Properties

First, we need to show good asymptotic properties of α̂. By imposing stronger

conditions as in Andersen and Gill (1982), we can follow their arguments to show that

α̂ converges to α0 almost surely and
√
n(α̂ − α0) + n−1/2J(α0)−1

∑n
i=1 ιi(α0)

d−→ 0,

where

J(α) = −E

(
1

n

n∑
i=1

∫ ∞
0

[∑n
j=1 I(Lj < t ≤ Rj)hj(t)

⊗2ehj(t)
>α∑n

j=1 I(Lj < t ≤ Rj)ehj(t)
>α

−

{∑n
j=1 I(Lj < t ≤ Rj)hj(t)e

hj(t)
>α∑n

j=1 I(Lj < t ≤ Rj)ehj(t)
>α

}⊗2 ]
dNi(t)

)

and

ιi(α) =

∫ ∞
0

{
hi(t)−

∑n
j=1 I(Lj < t ≤ Rj)hj(t)e

hj(t)
>α∑n

j=1 I(Lj < t ≤ Rj)ehj(t)
>α

}

×
{
dNi(t)− I(Li < t ≤ Ri)λ0(t)ehi(t)

>αdt
}
.

Since a good estimation of β0(τ) relies on a good estimation of α0, in the

following discussion of β̂(τ) it is always assumed to be true that α̂
a.s.−−→ α0 and
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√
n(α̂−α0) + n−1/2J(α0)−1

∑n
i=1 ιi(α0)

d−→ 0.

Define ζτi (β;α) =
∫∞

0
ρτ [Yi(t) − max

{
c,Xi(t)

>β
}

][dNL
i (t) +

exp{−hi(t)
>α}dNi(t)] and ψτ (β;α) = E{n−1/2Ψτ (β;α)}. Define lτi (β;α) =∫∞

0
Xi(t)I{Xi(t)

>β > c}[I{Yi(t) < Xi(t)
>β} − τ ][dNL

i (t) + exp{−hi(t)
>α}dNi(t)]

and µτ (β;α) = E
{
n−1/2Uτ (β;α)

}
. To guarantee good asymptotic properties of

β̂(τ), we further need some regularity conditions:

C1. (a) There exists γ > 0 such that E[
∫∞

0
I{X(t)>β(γ) > c}X(t)⊗2{dNL(t)+I(L <

t ≤ R)λ0(t)dt}] is positive definite;

(b) The conditional density function of Y (t) given Z(t), fY (t){y|Z(t)}, is contin-

uous and greater than zero at y = X(t)>β0(τ) for any τ ∈ [γ, 1).

C2. β0(τ) is in the interior of a compact space B for all τ ∈ [γ, 1).

C3. There exists a small circle of α centered at α0, denoted byA, such that ∂ψτ (β;α)
∂α

=

E
( ∫∞

0
ρτ
[
Y (t)−max

{
c,X(t)>β

}]
h(t) exp{−h(t)>α}dN(t)

)
is bounded uni-

formly in β ∈ B, α ∈ A, and τ ∈ [γ, 1).

C4. ζτi (β;α) has finite first and second moments for any β ∈ B, α ∈ A, and

τ ∈ [γ, 1);

C5. (a) The covariate space Z is compact, that is, supi,t ‖Zi(t)‖ < ∞, where ‖ · ‖

stands for Euclidean norm;

(b)
∫∞

0
exp

{
−hi(t)

>α
}
dNi(t) is uniformly bounded for any α ∈ A;

(c) fY (t)

{
X(t)>β0(τ)|Z(t)

}
is uniformly bounded for any Z(t) ∈ Z and τ ∈ [γ, 1);
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(d) For any d ≥ 0, there exists a positive constant M+ such that

sup
τ∈[γ,1)

E

∣∣∣∣ ∫ ∞
0

I
{
|X(t)>β0(τ)− c| ≤ ‖X(t)‖d

}
×
{
dNL(t) + I(L < t ≤ R)λ0(t)dt

} ∣∣∣∣ ≤M+ · d;

(e) E
[∫∞

0
h(t) exp

{
−h(t)>α

}
dN(t)

]
is uniformly bounded for α ∈ A.

C6. Define

Bτ (β;α0) =
∂µτ (β;α0)

∂β
= E

[ ∫ ∞
0

X(t)⊗2I
{
X(t)>β > c

}
× fY (t)

{
X(t)>β|X(t)

}{
dNL(t) + I(L < t ≤ R)λ0(t)dt

} ]
.

infτ∈[γ,1) eigminBτ (β0(τ);α0) > 0, where eigmin(·) denotes minimum eigenvalue

of a matrix.

We establish the asymptotic properties of β̂(τ) stated in the following theorems.

Theorem 4.1.1. Under conditions C1-C4, supτ∈[γ,1) ‖β̂(τ)− β0(τ)‖ → 0, a.s..

Theorem 4.1.2. Under conditions C1-C6,
{
n1/2

[
β̂(τ)− β0(τ)

]
: τ ∈ [γ, 1)

}
con-

verges weakly to a Gaussian process with mean 0 and covariance matrix Σ, where Σ

is presented in (4.15) in Appendix.

Condition C1 is very standard for identifiability of β0(τ) in censored quantile

regression. The boundedness of parameter space, the derivative function, and the

moments of the objective function imposed by conditions C2-C4 and the boundedness

requirement of covariates, the inverse intensity weighted number of measurements and

the density function associated with the outcome imposed in condition C5 are easy

to met in practice. The condition C5 (d) is a condition to rule out the situation that
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there exists a subpopulation with positive probability satisfying that the τth quantile

of their outcome is at c. Condition C6 is to ensure the finite asymptotical variance

of
√
n
{
β̂(τ)− β0(τ)

}
.

4.1.4 Inference

To make inference on β0(τ), bootstrapping procedures can be used. Each time,

randomly select n subjects with replacement. Based on every new bootstrapped

sample, repeat the estimation procedure and obtain a new estimator, denoted by

β̂(τ)∗. The asymptotic distribution of
√
n(β̂(τ) − β0(τ)) can be approximated by

the distribution of
√
n(β̂

∗
(τ)− β̂(τ)).

We also developed a sample-based inference procedure. The reason we can not

directly estimate the asymptotic variance matrix is that the unknown density func-

tion fYi(t)
(
X>i β0(τ)|Xi

)
is involved in matrix Bτ (β0(τ);α0). Huang (2002) and Peng

and Fine (2009) proposed a novel way to estimate a derivative matrix, such as matrix

Bτ (β0(τ);α0), by adding a “little-o” perturbation E to the primitive function which

is Uτ (β0(τ);α0) here. The idea is that if we could find two (p+ 1)× (p+ 1) matrices

β∗ ≡ (β∗1, . . . ,β
∗
(p+ 1)) and e ≡ (e1, . . . , e(p+1)) such that ej is relatively goes to zero

compared to Uτ (β0(τ);α0) as n increases and ej = Uτ (β
∗
j ;α0) − Uτ (β0(τ);α0) ≈

√
nBτ (β0(τ);α0)(β∗j − β0(τ)) for j = 1, . . . , (p + 1), we can estimate matrix

Bτ (β0(τ);α0) by n−1/2ED−1, where D = (β∗1−β0(τ), . . . ,β∗p+1−β0(τ)). The specific

procedure follows:

1. Define lτj (β;α) =
∫∞

0
Xj(t)I

(
Xj(t)

>β > 0
)
{I
(
Yj(t) ≤ Xj(t)

>β
)
− τ}

×
(
dNL

j (t) + 1
wj(t;α)

dNj(t)
)

, and Ω(τ) = n−1
∑n

j=1

{
lτj (β̂(τ); α̂)

}⊗2

, where

v⊗2 = vv>. Find a symmetric and nonsingular (p + 1) × (p + 1) matrix E

such that Ω(τ) = E2.
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2. Solve the equation

Uτ (b; α̂, γ̂) = Uτ (β̂(τ); α̂, γ̂) + ej (4.7)

for b, and denote the solution by β∗j (j = 1, . . . , p+ 1).

3. Calculate D =
(
b1 − β̂(τ), . . . ,bp+1 − β̂(τ)

)
.

4. Compute n−1/2ED−1, which provide consistent estimate for Bτ (β0(τ);α0).

It is not very straightforward to solve the estimating equation in step 2. In order

to take advantage of existing software package, we convert the estimating equation

as a new solution-finding problem:

n∑
i=1

∫ ∞
0

Xi(t)I(Xi(t)
>b > 0)

{
I(Yi(t) ≤ Xi(t)

>b)− τ
}(

dNL
i (t) +

1

wi(t;α)
dNi(t)

)
+ I(X

∗>b > 0)X∗
{
I(0 ≤ X

∗>b)− τ
}

= 0, (4.8)

plus a condition that X∗>b > 0, where X∗ = −n1/2ej(τ)/(1 − τ). The former

equation (4.8), ignoring the condition X∗>b > 0, can be solved using crq() function.

Denote the estimate by bj. If it satisfies that X∗>bj > 0, then β∗j = bj. Else if

X∗>bj < 0, we replace ej(τ) by −ej(τ). Since the change in the direction of ej does

not change its desired asymptotic order, our procedure is still valid. Then we have a

new X∗
′

= −X∗ and repeat step 2 to obtain a new vector b′j. Since bj and b′j are

both close to β̂(τ), X
′∗>b′j which is close to −X∗>bj should be greater than zero.

Then define β∗j = b′j. Note that if the direction of ej(τ) is changed, the direction of

ej in matrix E needs to be changed as well.

Denote the estimators of Bτ (β0(τ);α0) by B̂(τ). A consistent sample-based co-
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variance estimator may be given by

n−1

n∑
i=1

[
−B̂(τ)−1

{
lτi (β̂(τ); α̂)− Â(τ)Ĵ−1ιi(α̂)

}]
×
[
−B̂(τ)−1

{
lτi (β̂(τ); α̂)− Â(τ)Ĵ−1ιi(α̂)

}]>
.

4.2 Simulation Studies

Simulation studies were conducted to assess finite-sample performance of the proposed

method. We also compare the proposed estimator with censored quantile regression

for longitudinal data without adjustment for outcome-dependent follow-up (Wang and

Fygenson, 2009). Two covariates are considered: Zi1 ∼ Uniform(0, 1) and Zi2 ∼

Bernoulli(0.5). Two distributions are adopted: Normal distribution and Gamma

distribution. Specifically, we have the following two scenarios:

Case 1: Yi(t) = max(0, 4.5 + ai − Zi1 + Zi2 − t+ εi(t)),

where ai ∼ N(0, 1
4

{
(Zi1 + Zi2 + 1)2 − 1

2

}
) and εi(t) ∼ N(0, 1

8
) which are mutually

independent. It follows a quantile regression model that

QYi(t)(τ |Zi1, Zi2) = max
[
0, 4.5 + Φ−1(τ) +

{
−1 + Φ−1(τ)

}
Zi1 + {1 + Φ−1(τ)}Zi,2 − t

]
Case 2: Yi(t) = max(0, 3.5 + ai − 2Zi1 − t+ εi(t)),

where ai ∼ Gamma(3, 1
4

(Zi1 + Zi2 + 1)) and εi(t) ∼ Gamma(1, 1
4

(Zi1 + Zi2 + 1))

which are mutually independent. It follows a quantile regression model that

QYi(t)(τ |Zi1, Zi2) = max
(

0, 3.5 + F−1
Gamma(4,1)(τ)

+
(
−2 + F−1

Gamma(4,1)(τ)
)
Zi1 + F−1

Gamma(4,1)(τ)Zi2 − t
)
.

The study entry time Li were generated from Uniform(0, 1); the end of follow-up
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Ri were generated from Uniform(4, 5). Follow-up visits were generated according to

a proportional intensity model:

P{dNi(t) = 1|Hi(t)} = I(Li ≤ t ≤ Ri)0.2t exp
(
0.2Y (t−)

)
dt,

where Y (t−) represents the last observed outcome before time t. A positive coefficient

corresponding to Y (t−) indicates that subjects with large previous outcome have

higher intensity of follow-up visits. Under these setups, the average number of visits

are 4.4 and the average left censoring rate is 10% in both case 1 and case 2.

For each scenario, we generated 1000 data sets of sample size n = 200. Two

methods were applied to estimate covariate effects on three outcome quantiles (25th,

50th, and 75th): the censored quantile regression for longitudinal data without

adjustment for irregular outcome-dependnet follow-up (Naive); the proposed inverse

intensity-ratio weighted approach (Proposed). Bias and empirical standard deviation

of estimators from two methods are present in table 1. The proposed estimator

has much smaller bias compared to the naive estimator. Considering the empirical

standard deviation, the proposed estimator is virtually unbiased while the naive

estimator is biased in the presence of outcome-dependent follow-up.

Both bootstrapping and sample-based inference were applied for the proposed

estimator. The bootstrapping size is 500. The Emp SD in table 1 stands for

the empirical standard deviation of 1000 β̂’s and the Avg SD is the average of

estimated standard deviation from bootstrapping or sample-based inferences. Cov95

in table 1 stands for the coverage rate of 95% confidence intervals covering the true

value. Generally, both standard deviation estimates from two inference procedures

are acceptably close to the empirical standard deviation. In particular, the SD

estimates from bootstrapping method is closer to the empirical SD compared to
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Table 4.1: Comparison of the censored quantile regression estimator for longitudi-
nal data ignoring outcome-dependent follow-up (Naive) and the proposed inverse
intensity-ratio weighted estimator (Proposed): Emp SD – empirical standard devia-
tion; Avg SD – the average of standard deviation estimates; Cov95 – the coverage
rate of a 95% confidence interval.

Naive Proposed
Bootstrapping Sample-based

Effect True Bias EmpSD Bias EmpSD AvgSD Cov95 AvgSD Cov95
Case 1
τ = 0.25

Intercept 4.163 -0.077 0.157 -0.011 0.162 0.172 0.97 0.194 0.95
Z1 -1.337 0.149 0.284 0.028 0.307 0.323 0.96 0.348 0.94
Z2 0.663 0.131 0.175 0.011 0.190 0.189 0.95 0.201 0.94
t -1 0.033 0.032 0.0007 0.035 0.041 0.97 0.054 0.96

τ = 0.5
Intercept 4.5 -0.066 0.145 -0.007 0.144 0.153 0.95 0.162 0.95
Z1 -1 0.134 0.269 0.015 0.269 0.287 0.96 0.301 0.95
Z2 1 0.130 0.169 0.002 0.171 0.173 0.95 0.174 0.93
t -1 0.028 0.027 -0.0006 0.028 0.031 0.97 0.036 0.97

τ = 0.75
Intercept 4.837 -0.061 0.155 0.002 0.149 0.159 0.96 0.165 0.95
Z1 -0.663 0.117 0.300 -0.010 0.278 0.298 0.96 0.300 0.94
Z2 1.337 0.142 0.191 0.0008 0.178 0.185 0.96 0.184 0.94
t -1 0.025 0.027 -0.002 0.027 0.030 0.97 0.033 0.96

Case 2
τ = 0.25

Intercept 4.134 -0.029 0.121 0.006 0.121 0.125 0.94 0.135 0.93
Z1 -1.366 0.062 0.218 -0.003 0.211 0.225 0.96 0.235 0.95
Z2 0.634 0.065 0.127 -0.001 0.129 0.132 0.95 0.135 0.94
t -1 0.022 0.026 0.001 0.027 0.031 0.97 0.038 0.97

τ = 0.5
Intercept 4.418 -0.043 0.142 0.006 0.136 0.146 0.96 0.155 0.94
Z1 -1.082 0.097 0.261 -0.005 0.244 0.263 0.96 0.275 0.95
Z2 0.918 0.093 0.166 -0.007 0.154 0.155 0.94 0.157 0.93
t -1 0.027 0.028 0.001 0.028 0.031 0.97 0.035 0.96

τ = 0.75
Intercept 4.777 -0.060 0.195 0.002 0.178 0.190 0.96 0.199 0.95
Z1 -0.723 0.134 0.383 0.001 0.327 0.339 0.94 0.352 0.93
Z2 1.277 0.151 0.241 -0.008 0.209 0.210 0.94 0.205 0.92
t -1 0.033 0.035 0.0004 0.034 0.037 0.97 0.040 0.96
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the sample-based inference procedure. Both procedures have acceptable coverage

rates that are close to the nominal value. There is no trend of being over-covered or

under-covered.

We take a close examination of the boostrapping SD estimates and sample-based

SD estimates. Take the intercept in case 1 for example. Figure 3. contains histogram

plots of 1000 SD estimates from two inference procedures respectively. The solid

upright line stands for the empirical SD = 0.121, which could be viewed as a

true value. The bootstrapping SD estimates are distributed closer to the true

value. We conclude that the bootstrapping SD estimates is more accurate than the

sample-based SD estimates. We also notice an interesting trend that the difference

between the average of SD estimates from two inference procedure gets smaller when

τ increases, especially in case 1. Since the effective sample size that I(X>i β0(τ) > c)

increases as τ increases, we guess that as the sample size increases, the performance of

the sample-based inference procedure improves. Besides accuracy, we also compared

the computation time. The computation of the sample-based approach is about 50

times as fast as the bootstrapping procedure. Summarily, bootstrapping performs

better than the sample-based method while the latter one saves much computation

time.

In our simulation, we encounter a “feasible” problem with estimation in lower

quantiles. It is straightforward in censored quantile regression that if left censoring

rate in a sample is larger than, e.g., 25%, it is very likely that estimation of the 25%th
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Figure 4.1: Comparision between the SE estimates from bootstrapping and sample-
based appraoch; Intercept in case 1 for 25%th quantile, 50%th quantile and 75%th
quantile
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quantile is not feasible. The reason can be expressed in math that for any β,

∑
[I(Y ≤ max(c,XTβ))− τ ]

≥
∑

I(Y = c) · (1− τ)−
∑

I(Y > c) · τ

> n · τ · (1− τ)− n · (1− τ) · τ = 0.

However, for weighted censored quantile regression estimating equation, the story is

a little bit different that the requirement for a feasible estimate also depends on the

weight. Since
∑
w[I(Y ≤ max(c,XTβ))−τ ] ≥

∑
wI(Y = c)[1−τ ]−

∑
wI(Y > c)τ ,

a necessary condition is that
∑
wI(Y = c)[1 − τ ] −

∑
wI(Y > c)τ ≤ 0. In our

simulation setups and the PBB data example, subjects with lower outcome have

fewer visits thus have larger weight. In other words, weights of I(Y = c) are larger

than weights of I(Y > c); therefore, even that the left censoring rate is less than τ ,

it is still possible that the estimation of β0(τ) is not feasible.

In summary, simulation studies demonstrate that ignoring outcome-dependent

follow-up would result in biased estimation in censored quantile regression while our

proposed weighted estimator is unbiased. Two inference procedures are valid. SD

estimate from bootstrapping approach is more accurate while the sample-based in-

ference procedure saves computation time.

4.3 PBB Data Example

Polybrominated biphenyls (PBB’s) are manufactured chemicals added as flame

retardants to electrical devices, plastics, and various textiles. A widespread con-

tamination with PBB’s occurred in Michigan during 1973 - 1974 when Fire master

FF-1, instead of NutriMaster, was accidentally mixed with animal feed. Residents on
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Michigan farms and neighboring communities were exposed to PBB’s by consuming

contaminated animal food products. The Michigan Department of Public (now

Community) Health (MDCH), in collaboration with the US Health Service, estab-

lished a registry of individuals exposed to the contaminated food products. Since the

initial enrollment period (1976 - 1978), the MDCH has periodically contacted cohort

members to obtain additional serum samples. Serum samples from cohort members

were analyzed for PBB during 1976C1993.

Our analysis is focused on understanding the decay rate over time of serum PBB

concentration in females. PBB’s are stable, persistent halogenated organic pollutants

with extremely long half-lives. Participants continued to have measurable PBB levels

in serum after more than 20 years. PBB exposure is of special concern to the fetus and

neonate because it can cross the placenta and is concentrated in breast milk. There-

fore, we are interested in the elimination rate of PBB in serum among female subjects.

We include females who were born before the contamination incident (July, 1973)

if they had at least two serum PBB measurements, an initial serum PBB measurement

of ≥ 2 parts per billion (p.p.b.) and after age 16 and if the time between any two

consecutive measurements was at least 6 months apart. We required an initial serum

PBB measurement of at least 2 ppb to ensure that their levels were above the limit

of detection of 1 pbb. We exclude females who were younger than age 16 at initial

measurement because childhood growth could potentially affect the compartment

mobility and thus the equilibrium of serum PBB concentration levels. We also ex-

cluded measurements taken during pregnancy or during any period of breast-feeding

because of the potential mobilization of PBB into the bloodstream during these times.

Our analysis includes 386 women. The longitudinal data set was arranged with
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one observation per serum PBB measurement, yielding 2 - 7 measurements per

woman. Initial PBB concentration level ranges from 1 to 559.80 p.p.b. (mean=11.44,

median=2.40). Outcome Y is defined as log(PBB). Time origin is set as the

exposure time to PBB which is defined at July 1, 1973 (t=0). Study enter time L is

defined to be the first visit time and R is the end of study, December 31, 1993 (t=20.5).

When we model follow-up visits, the entire study were divided into three periods

(1976-1981, 1982-1989, and 1990-1993) according to the study design. During 1982-

1989, a substudy focused on high PBB levels was established since these participants

were more severely exposed and it may be easier to see a decrease in PBB. After 1990,

all participants were contacted again for serum samples. Converting three periods as

time since the time origin, time intervals are (2.5, 8.5], (8.5, 16.5], and (16.5, 20.5].

We also assume that follow-up are dependent on the initial measurement log(PBB).

Hence, the proportional intensity model of follow-up visits is specified as

P (dNi(t)|Hi(t)) = I(Li < t ≤ Ri)λ0(t)

× exp (α1I(t ≤ 8.5) · Yi(Li) + α2 · I(8.5 < t ≤ 16.5)Yi(Li) + α3 · I(t > 16.5)Yi(Li)) ,

where α1, α2 and α3 represent the effects of the initial outcome on the follow-up

visit process in three time intervals respectively. Table 4.2 presents the estimates of

coefficients in the recurrent event model. All coefficient estimates are positive, which

means that subjects with high initial log(PBB) levels tend to have more follow-up

visits. The estimate of α2 is much larger than α1 and α3 and is significantly larger

than zero (p value < 0.01). The outcome-dependent follow-up pattern is especially

strong during 1982-1989. An increase of 1 in initial log(PBB) would result in a 1.79

time increase in intensity of follow-up visits during year 1982-1990.
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Table 4.2: Parameter estimates of proportional intensity model

Coeff Estimate exp(Estimate) p-value
α1 0.027 1.03 0.61
α2 0.584 1.79 < 0.01
α3 0.039 1.04 0.52

We model the outcome log(PBB) by marginal quantile regression models that

QYi(t)(τ) = β0(τ) + β1(τ)× t, 0 < τ < 1, t > 0, (4.9)

where β0(τ) represents the τth quantile of log(PBB) level at time origin and β1(τ)

represents the decay rate of the population τth quantile of log(PBB) level over time.

Both censored quantile regression for longitudinal data ignoring outcome-dependent

follow-up (Naive) and the inverse intensity-ratio weighted estimator (Proposed) are

applied. Confidence interval is calculated through bootstrapping. Bootstrapping

size is 500. Table 4.3 presents point and interval estimates for six quantiles (25th,

50th, 75th, 85th, 90th, and 95th). All β1(τ) estimates from Naive method are

positive, which means that the distribution of log(PBB) shifts up as time goes. It

contradicts with the biologic fact that human bodies can not produce chemical PBB’s.

On the other hand, decay rate β1(τ) estimates from our proposed approach are

all negative except for the β1(τ) estimate of the 25th quantile which is really close to

zero. Negative coefficient estimates for time demonstrates that PBB concentration

generally decreases over time. Due to that fewer low outcomes are observed in follow-

up visits, the empirical quantile is higher than the population quantile in follow-

up time. By weighting more in the observed low outcomes, the weighted sample

quantile is pulled towards the actual population quantile. Furthermore, there is an

increasing pattern in the magnitude of β1(τ) estimates as τ increases. It is consistent

to our conjecture that upper quantiles decay faster than lower quantiles. This varying
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covariate effect pattern is not capturable in fixed effect models. Decay rates of lower

percentiles are not significant while the decay rate of the 95th quantile is significantly

less than zero. For example, the estimated decay rate for the 90th quantile is 2.6%

(= 1− exp(−0.052)) per year with 95% confidence interval between -0.5% and 5.4%.

The estimated decay rate for the 95th quantile is 5.1% (= 1− exp(−0.052)) per year

with 95% confidence interval between 0.7% and 9.2%.

Table 4.3: Parameter estimates and 95% confidence interval for 25th quantile, 50th
quantile, 75th quantile, 85th quantile, 90th quantile, and 95th quantile

Naive Proposed
Quantile Effect Estimate 95% CI Estimate 95% CI
25th quantile Intercept 0.150 (0.092, 0.208) 0.182 (0.155, 0.210)

Time 0.009 (2E-4, 0.018) 6E-17 (-0.008, 0.008)
50th quantile Intercept 0.852 (0.707, 0.997) 0.904 (0.609, 1.199)

Time 0.006 (-0.007, 0.018) -0.009 (-0.024, 0.007)
75th quantile Intercept 1.496 (1.246, 1.745) 1.435 (1.171, 1.699)

Time 0.028 (0.001, 0.054) -4E-17 (-0.012, 0.012)
85th quantile Intercept 2.298 (1.763, 2.833) 2.057 (1.635, 2.479)

Time 0.019 (-0.027, 0.064) -8E-4 (-0.024, 0.022)
90th quantile Intercept 2.829 (2.182, 3.475) 2.956 (2.357, 3.555)

Time 0.036 (-0.017, 0.090) -0.026 (-0.056, 0.005)
95th quantile Intercept 3.813 (3.112, 4.514) 4.047 (3.379, 4.716)

Time 0.046 (-0.003, 0.096) -0.052 (-0.097, -0.007)

In summary, the PBB concentration distribution shifts down slowly over time.

Upper quantiles decease faster than lower quantiles. Significant decrease at 95th

quantile has been shown by the data. Ignoring outcome-dependent follow-up would

result in very biased estimates of β1(τ) with opposite sign and opposite changing

trend as τ increases.

4.4 Remarks

Quantile regression analysis is a very robust and flexible approach for longitudinal

data with skewed outcome and varying covariate effects. Irregular outcome-dependent
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follow-up is a special missing pattern which is easy to be overlooked since there is no

obvious blank cell in data. However, similar to regular outcome-dependent missing

data, it can result in biased estimation in marginal regression methods, such as quan-

tile regression. The proposed inverse intensity-ratio weighted estimator can correct

the bias due to irregular outcome-dependent follow-up, given the model specification

for the visit process is correct.

4.5 Appendix

Proof of Theorem 1.

First, we want to prove that ψτ (β;α0) has a unique minimizer at β = β0(τ).

Define ντ{β; Z(t)} = E
(
ρτ
[
Y (t)−max

{
c,X(t)>β

}] ∣∣Z(t)
)
. We can show that

ντ{β; Z(t)} ≥ ντ{β0(τ); Z(t)} for any given β 6= β0(τ) in any possible situations.

(1) When X(t)>β0(τ) ≤ c and X(t)>β ≤ c, ντ{β0(τ); Z(t)} = ντ{β; Z(t)}.

(2) When X(t)>β0(τ) ≤ c and X(t)>β > c,

ντ{β0(τ); Z(t)} − ντ{β; Z(t)}

= E
[
I{Y (t) = c}(τ − 1)

{
X(t)>β − c

} ∣∣Z(t)
]

+ E
(
I
{
c < Y (t) ≤ X(t)>β

} [
τ
{
X(t)>β − c

}
+ Y (t)−X(t)>β

] ∣∣Z(t)
)

+ E
[
I
{
Y (t) > X(t)>β

}
τ
{
X(t)>β − τ

} ∣∣Z(t)
]

≤ E
(
[I{Y (t) = c}(τ − 1) + τI{Y (t) > c}]

∣∣Z(t)
) {

X(t)>β − c
}
.

Since X(t)>β0(τ) ≤ c, we have that E[I{Y (t) = c}] ≥ τ and E[I{Y (t) > c}] ≤ 1− τ .

Therefore, ντ{β0(τ); Z(t)} − ντ{β; Z(t)} ≤ 0.
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(3) When X(t)>β0(τ) > c,

ντ{β0(τ); Z(t)} − ντ{β; Z(t)}

= (1− τ)P
{
Y (t) ≤ X(t)>β0(τ)

} [
X(t)>β0(τ)−max

{
c,X(t)>β

}]
− τP

{
Y (t) > X(t)>β0(τ)

} [
X(t)>β0(τ)−max

{
c,X(t)>β

}]
+ E

(∫ X(t)>β0(τ)

max{c,X(t)>β}

[
y −max

{
c,X(t)>β

}]
fY (t){y|Z(t)}dy

∣∣∣Z(t)

)

= E

(∫ X(t)>β0(τ)

max{c,X(t)>β}

[
max

{
c,X(t)>β

}
− y
]
fY (t){y|Z(t)}dy

∣∣∣Z(t)

)

≤ 0 (4.10)

Under condition C1 (b), there exists a region around X(t)>β0(τ) satisfying

that fY (t){y|Z(t)} > 0; thus,
[
max

{
c,X(t)>β

}
− y
]
fY (t){y|Z(t)} < 0. So if

X(t)>β 6= X(t)>β0(τ), then ντ{β0(τ); Z(t)} < ντ{β; Z(t)}.

By condition C1 (a), we have that for any τ ∈ [γ, 1) and β 6= β0(τ),

E
[ ∫ ∞

0

I
{
X(t)>β0(τ) > c

}{
X(t)>β −X(t)>β0(τ)

}2

×
{
dNL(t) + I(L < t ≤ R)λ0(t)dt

} ]
> 0.

Hence, for any τ ∈ [γ, 1) and β 6= β0(τ),

E
[ ∫ ∞

0

I
{
X(t)>β0(τ) > c

}
[ντ{β; Z(t)}.

− ντ{β0(τ); Z(t)}]
{
dNL(t) + I(L < t ≤ R)λ0(t)dt

} ]
> 0.
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Since for any β 6= β0(τ),

ψτ (β;α0)− ψτ {β0(τ);α0}

= E

(∫ ∞
0

I
{
X(t)>β0(τ) ≤ c

}
I
{
X(t)>β ≤ c

}
[ντ{β; Z(t)} − ντ {β0(τ); Z(t)}]

× {dNL(t) + I(L < t ≤ R)λ0(t)dt}
)

+ E

(∫ ∞
0

I
{
X(t)>β0(τ) ≤ c

}
I
{
X(t)>β > c

}
[ντ{β; Z(t)} − ντ {β0(τ); Z(t)}]

× {dNL(t) + I(L < t ≤ R)λ0(t)dt}
)

+ E
(∫ ∞

0

I
{
X(t)>β0(τ) > c

}
[ντ{β; Z(t)} − ντ {β0(τ); Z(t)}]

× {dNL(t) + I(L < t ≤ R)λ0(t)dt}
)

> 0.

Therefore, under condition C1, we have proved that β0(τ) is a unique minimizer of

ψτ (β;α0).

Given α̂
a.s.−−→ α0, under condition C3, we have

sup
τ∈[γ,1), β∈B

|ψτ (β; α̂)− ψτ (β;α0)| a.s.−−→ 0. (4.11)

Note that the objective function

ζτi (β;α) =

∫ ∞
0

(
τ
[
Yi(t)−max

{
c,Xi(t)

>β
}]

− τI
[
Yi(t) ≤ max

{
c,Xi(t)

>β
}] [

Yi(t)−max
{
c,Xi(t)

>β
}]

+ (1− τ)I
[
Yi(t) ≤ max

{
c,Xi(t)

>β
}] [

max
{
c,Xi(t)

>β
}
− Yi(t)

] )
×
[
dNL

i (t) + exp
{
−hi(t)

>α
}
dNi(t)

]
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These three terms in the parenthesis (·) are either concave or convex functions of

β and linear in τ , and exp
{
−hi(t)

>α
}

is an either concave or convex function of

α. This fact coupled with pointwise convergence by the strong law of large numbers

given condition C4, implies the uniform convergence of n−1/2Ψτ (β;α) (Rockafellar,

1970 (Theorem 10.8)) that is

sup
τ∈[γ,1), β∈B, α∈A

|n−1/2Ψτ (β;α)− ψτ (β;α)| a.s.−−→ 0.

Coupled with (4.11), we will have that

sup
β∈B, τ∈[γ,1)

|n−1/2Ψτ (β; α̂)− ψτ (β;α0)| a.s.−−→ 0. (4.12)

Given ψτ {β0(τ);α0} = 0 and Ψτ

{
β̂(τ); α̂

}
= 0, simple manipulation shows that

sup
τ∈[γ,1)

∣∣∣ψτ {β̂(τ);α0

}
−ψτ {β0(τ);α0}

∣∣∣ ≤ sup
τ∈[γ,1)

∣∣∣ψ {β̂(τ);α0

}
−n−1/2Ψτ

{
β̂(τ); α̂

} ∣∣∣.
By (4.12), we have that

sup
τ∈[γ,1)

∣∣∣∣ψτ {β̂(τ);α0

}
− ψτ {β0(τ);α0}

∣∣∣∣ a.s.−−→ 0. (4.13)

Based on (4.13), we can prove uniform strong convergency of β̂(τ) by following

similar arguments in the proof of theorem 3 in Huang and Peng (2009). Specif-

ically, we need to prove that for any ε > 0, there exists δ > 0 such that if

supτ∈[γ,1) |ψτ {β(τ);α0} − ψτ {β0(τ);α0} | < δ, then supτ∈[γ,1) ‖β(τ) − β0(τ)‖ < ε.

Suppose that this is not true. Then, there must exist a constant ε∗ > 0. For any{
1
k

: k = 1, 2, . . .
}

, there exists (βk, τk) such that |ψτk {βk;α0}−ψτk {β0(τk);α0} | < 1
k

but ‖βk − β0(τk)‖ > ε∗. Since B is a compact space, there exists a subsequence

of (βk, τk) that converges to, say, (β∗, τ ∗). Then, we have that ψτ∗(β
∗;α0) =
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ψτ∗{β0(τ ∗);α0} but ‖β∗−β0(τ ∗)‖ ≥ ε∗. This contradicts that β0(τ ∗) is a unique min-

imizer of ψτ∗(β;α0). Therefore, it is proved that for any ε > 0, there exists δ > 0 such

that if supτ∈[γ,1) |ψτ {β(τ);α0}−ψτ {β0(τ);α0} | < δ, then supτ∈[γ,1) ‖β(τ)−β0(τ)‖ <

ε. Consequently, given supτ∈[γ,1)

∣∣∣ψτ {β̂(τ);α0

}
− ψτ {β0(τ);α0}

∣∣∣ a.s.−−→ 0, it is easy

to prove that supτ∈[γ,1) ‖β̂(τ)− β0(τ)‖ a.s.−−→ 0.

Lemma 1.

sup
τ∈[γ,1)

∥∥∥Uτ

{
β̂(τ); α̂

}
−Uτ{β0(τ);α0} − n1/2

[
µτ

{
β̂(τ); α̂

}
− µτ{β0(τ);α0}

] ∥∥∥ p−→ 0.

Proof of Lemma 1.

This lemma can be proved by using the results in Alexander (1984) and the arguments

for theorem 1 of Lai and Ying (1988). The crucial step is to show that

sup
τ∈[γ,1)

V ar
[
lτi

{
β̂(τ); α̂

}
− lτi {β0(τ);α0}

]
p−→ 0. (4.14)

Under condion C5 (a) and (b), there exists a finite number M1 such that when

α̂ ∈ A,
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sup
τ∈[γ,1)

V ar
[
lτi

{
β̂(τ); α̂

}
− lτi {β0(τ);α0}

]
≤ E

[
lτi

{
β̂(τ); α̂

}
− lτi {β0(τ);α0}

]2

≤M1 · sup
τ∈[γ,1)

E‖lτi
{
β̂(τ); α̂

}
− lτi {β0(τ);α0}‖

≤M1 · sup
τ∈[γ,1)

E

∥∥∥∥∫ ∞
0

Xi(t)I
{

Xi(t)
>β̂(τ) > c

}
I
{
Xi(t)

>β0(τ) > c
}

×
[
I
{
Yi(t) ≤ Xi(t)

>β̂(τ)
}
− I

{
Yi(t) ≤ Xi(t)

>β0(τ)
} ]

×
{
dNL

i (t) + I(Li < t ≤ Ri)λ0(t)dt
}∥∥∥∥

+M1 · sup
τ∈[γ,1)

E

∥∥∥∥∫ ∞
0

Xi(t)I
{

Xi(t)
>β̂(τ) > c

}
I
{
Xi(t)

>β0(τ) ≤ c
}

×
[
I
{
Yi(t) ≤ Xi(t)

>β̂(τ)
}
− τ
] {
dNL

i (t) + I(Li < t ≤ Ri)λ0(t)dt
}∥∥∥∥

+M1 · sup
τ∈[γ,1)

E

∥∥∥∥∫ ∞
0

Xi(t)
{

Xi(t)
>β̂(τ) ≤ c

}
I
{
Xi(t)

>β0(τ) > c
}

×
[
I
{
Yi(t) ≤ Xi(t)

>β0(τ)
}
− τ
] ] {

dNL
i (t) + I(Li < t ≤ Ri)λ0(t)dt

}∥∥∥∥
+M1 · sup

τ∈[γ,1)

E

∥∥∥∥∫ ∞
0

Xi(t)I
{

Xi(t)
>β̂(τ) > c

}[
I
{
Yi(t) ≤ Xi(t)

>β̂(τ)
}
− τ
]

×
[
exp

{
−hi(t)

>α0

}
− exp

{
−hi(t)

>α̂
}]
dNi(t)

∥∥∥∥
= (I) + (II) + (III) + (IV )

Under condition C5 (a) - (c) and theorem 1,

(I) ≤M1 · sup
τ∈[γ,1)

E

∥∥∥∥[ ∫ ∞
0

Xi(t)
⊗2I

{
Xi(t)

>β > c
}
I
{
Xi(t)

>β0(τ) > c
}

× fYi(t){Xi(t)
>β0(τ)|Zi(t)}

{
dNL

i (t) + I(Li < t ≤ Ri)λ0(t)dt
}

+ op(1)

]
×
{
β̂(τ)− β0(τ)

}∥∥∥∥
p−→ 0
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When
{

Xi(t)
>β̂(τ)− c

}{
Xi(t)

>β0(τ)− c
}
≤ 0, it is easy to see that

|Xi(t)
>β0(τ) − c| ≤ |Xi(t)

>β0(τ) − Xi(t)
>β̂(τ)| ≤ ‖Xi(t)‖‖β0(τ) − β̂(τ)‖. Under

condition C5 (a), (b), and (d) and theorem 1,

(II) ≤ sup
τ∈[γ,1)

E

∥∥∥∥∫ ∞
0

Xi(t)I
{
|Xi(t)

>β0(τ)− c| ≤ ‖Xi(t)‖‖β0(τ)− β̂(τ)‖
}

×
[
I
{
Yi(t) ≤ Xi(t)

>β̂(τ)
}
− τ
] {
dNL

i (t) + I(Li < t ≤ Ri)λ0(t)dNi(t)
}∥∥∥∥

p−→ 0.

Similarly, it can be proved that (III)
p−→ 0.

Under condition C5 (a) and (e) and the consistency of α̂,

(IV ) ≤M1 · sup
τ∈[γ,1)

∥∥∥∥∫ ∞
0

Xi(t)I
{

Xi(t)
>β̂(τ) > c

}[
I
{
Yi(t) ≤ Xi(t)

>β̂(τ)
}
− τ
]

× hi(t) exp(−hi(t)
>α0)dNi(t)

∥∥∥∥‖α̂−α0‖

p−→ 0

Therefore, (4.14) has been proved and Lemma 1 is a direct consequence.

Proof of Theorem 2.

According to Lemma 1 and Uτ

{
β̂(τ); α̂

}
= 0, we have

−Uτ {β0(τ);α0}

= n1/2
{
µτ

(
β̂; α̂

)
− µτ (β0;α0)

}
+ op:τ∈[γ,1)(1)

= [Bτ {β0(τ);α0}+ op(1)] · n1/2
{
β̂(τ)− β0(τ)

}
+ Aτ {β0(τ);α0} · n1/2 {α̂(τ)−α0(τ)}+ op:τ∈[γ,1)(1)
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where Aτ (β;α) = ∂µτ (β;α)
∂α

= −
∫∞

0
Xi(t)I

{
Xi(t)

>β > c
}

×
[
I
{
Yi(t) ≤ Xi(t)

>β
}
− τ
]
hi(t)

> exp
{
−hi(t)

>α
}
dNi(t),

and op:τ∈[γ,1)(1) means uniform convergence in probability to zero over τ ∈ [γ, 1).

Under condition C6,

n1/2
{
β̂(τ)− β0(τ)

}
= −Bτ {β0(τ);α0}−1

×
[
Uτ {β0(τ);α0}+ Aτ {β0(τ);α0} · n1/2 {α̂(τ)−α0(τ)}

]
+ op:τ∈[γ,1)(1)

Therefore,

n1/2{β̂(τ)− β0(τ)} = n−1/2

n∑
i=1

[
−Bτ {β0(τ);α0}−1 lτi {β0(τ);α0}

+ Bτ {β0(τ);α0}−1 Aτ {β0(τ);α0}J(α0)−1ιi(α0)

]
+ op:τ∈[γ,1)(1).

According to the definition of quantile and the quantile regression model

assumption, Xi(t)
>β0(τ) increases in τ . Since

∫∞
0
τXi(t)I{Xi(t)

>β0(τ) >

c}
[
dNL

i (t) + exp{−hi(t)
>α0}dNi(t)

]
and

∫∞
0

Xi(t)I{Xi(t)
>β0(τ) > c}I{Yi(t) ≤

Xi(t)
>β0(τ)}

[
dNL

i (t) + exp{−hi(t)
>α0}dNi(t)

]
are bounded and monotone func-

tions on τ ∈ [γ, 1), {lτi (β0(τ);α0) : τ ∈ [γ, 1)} is a Donsker class. By Donsker

theorem and pointwise central limit theory, n1/2
{
β̂(τ)− β0(τ)

}
converges weakly to

a Gaussian process with covariance matrix Σ(τ1, τ2) for τ ∈ [γ, 1), where

Σ(τ1, τ2) = E
{
ξi(τ1)ξi(τ2)>

}
(4.15)

with ξi(τ) = −Bτ {β0(τ);α0}−1 lτi {β0(τ);α0} +

Bτ {β0(τ);α0}−1 Aτ {β0(τ);α0}J(α0)−1ιi(α0).
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Chapter 5

Summary and Future Works
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5.1 Summary

In my dissertation we focused on three complex data scenarios often encountered

in biomedical observational studies. We proposed flexible semiparametric regression

methods that properly handle realistic data features including window observation

of recurrent events, outcome-dependent follow-up of longitudinal measurements, and

etc.

For recurrent event data subject to window observation, we developed a two-stage

estimation procedure as well as a novel counting process based estimation procedure

under the accelerated recurrence time model. The counting process based estimation

procedure is more efficient and simpler in computation. The resulting estimators are

shown to be uniformly consistent and converge weakly to a Gaussian. Resampling

method of Jin et al. (2001) and a new sample-based procedure are employed for

inference. Simulation studies show satisfactory performance of our methods with

moderate sample size. An application to the CFFPR data demonstrates practical

utility of our proposals.

We have also investigated quantile regression for longitudinal data with outcomes

subject to left censoring and follow-up pattern being outcome-dependent. While left

censoring is handled by censored quantile regression technique, we investigate two

different strategies to account for the dependency between outcomes and follow-up

visit times. In both strategies, the idea of inverse probability weighting is the essential

to deal with the relevant statistical issues. We evaluate our proposals by simulation

studies. The proposed methods are applied to the Michigan PBB study to investigate

the PBB decay profile. Both simulations and the real data example demonstrate that

failing to handle these data feature can lead to considerably biased estimation and

consequently misleading scientific conclusions.
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5.2 Future Works

In this subsection we discuss work to be done in near future and possible extensions

of this dissertation work.

First, we will conduct more sensitivity analysis simulations for our second and

third projects to obtain a better understanding about how a misspecified model of

missing pattern would influence the quantile regression estimator. Specifically, we

can consider situations when a significant covariate is not included in the model of

missingness or the whole model assumption is not correct.

It is worthwhile to consider the double-robust estimating method for the second

and the third projects. Double-robust approach could also be considered as a

diagnosis approach. If the double-robust estimates are quite different from the

proposed estimates, either the quantile regression model or the model of missing

data is likely to be misspecified.

For the first project, our proposed estimators of β0(u) requires the ART model

assumptions for all 0 < v < u. It would be best if we can find a competative estimator

under a local model with only ART model assumption for expected frequency equal

to u.
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