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Analysis of avalanches in the landscape of disordered systems
By Mahajabin Rahman

The construct of an energy landscape makes it possible to use the same physics
machinery to study completely unrelated scenarios, like fitness landscapes in evolution
and algorithmic complexity in constraint satisfaction problems. I use this construct
to study disordered (particularly, glassy) systems. When a thermal quench is used
to access the inherent structure of their landscape, the consequence is aging – a
relaxation process that exhibits interesting behaviors like memory e↵ects, that can
ideally be harnessed for engineering purposes, but the slow time-scales make this
process di�cult and tedious to study.

My dissertation starts and ends with the archetypal models of complex systems -
the mean field Ising model called the Sherrington Kirkpatrick spin glass, and a sparse
lattice model called the Edwards-Anderson spin glass. The first part of my thesis
employs these models to study the statistical signatures of this relaxation process,
which reflects the hierarchy of time scales of the energy landscape being explored.
My research is anchored on a phenomenological description known as record dynamics
(RD), which argues that large fluctuations (also called quakes or avalanches) – the
rare events, rather than the averaged events – can exclusively be used to describe
the relaxation process. I show that an RD-borne minimal model can reproduce even
anomalous e↵ects quintessential to aging, o↵ering a simple alternative to mean field
theoretic tools.

The second part of my thesis explores how critical avalanches are produced. In-
spired by the idea that saturation bounds of marginally stable spins are indicators
of whether avalanches will be critical, I use di↵erent modes of hysteretic driving to
study the e↵ects of dislodging the stability distribution to di↵erent extents. This
helps drive the Edwards Anderson spin model, a di�cult problem to solve (specifi-
cally NP hard), into a percolation transition, and elucidates the consequent changing
correlation structure. In addition, I explore attempts to further understand the re-
lationship between marginal stability and information transmission, and leave some
open ended questions.
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1 When I first started to work with Stefan, he used the phrase “throw the

baby out with the bath water” a lot, to describe the risk of mean-field

assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Summary of this section. On the left column, (a) depicts a ferromag-

net where all bonds are the same and consequently, constraints are not

complex enough to create perpetual frustration unlike (b) which shows

a spin glass. In the depiction, the red bond is frustrated since it favors

opposite facing means but this bond cannot be satisfied without frus-

trating another bond. On the right column are di↵erent visualizations

of relaxation. (c) corresponds to the aging of the spin glass after a

hard quench, whereas (d) shows a visual of “ordering” from the paper

[23]. The blocks of homogeneous regions are known as domains, where

all the spins face the same direction. In a ferromagnet, larger domains

of spins facing the same direction indicates larger equilibrated regions.

This is not the case for SK, since the bonds don’t necessarily favor

spins facing the same direction. . . . . . . . . . . . . . . . . . . . . . 7



1.2 Hierarchical energy landscape. An example is drawn of a hierarchical

energy landscape with a black outline. Each of the basins/valleys repre-

sent an the same energy “level” or “tier” within the hierarchy, although

there may be di↵erences in the microscopic arrangements within the

system (similar to the equilibrium macroscopic-microscopic relations).

However, the di↵erence in the out of equilibrium regime is indicated

by the yellow arrows – with large enough fluctuations, the system will

be able to escape from its current basin to the next ”lower tier” – i.e

the next marginally more stable state. . . . . . . . . . . . . . . . . . 9

1.3 Example of a hysteresis loop. On the left is a typical hysteresis loop,

where a spin glass starts at a magnetization of zero, and is exposed

to an external magnetic field that gradually increases until the system

is fully magnetization, but once the direction of the field is reversed,

there is a lag time between the system’s magnetization matching the

external field. The right column shows a closer look of the hysteresis

loop in order to discern the avalanches, which occur every time there

is a change in magnetization. It is clear that avalanches grow in size

closer to a coercive field of zero. . . . . . . . . . . . . . . . . . . . . . 16

2.1 Illustration of the definition of valleys. The trace through an energy

landscape produces a time sequence of energy records (Ei) and of bar-

rier records (Bi ), relative to the most recent “Ei”. Only the highest

and lowest records of the “Ei”and “Bj”are kept to give a strictly alter-

nating sequence “... E1B1E2B2 ....” Then, any sequence “BiEiBi+1 ”

demarcates a valley (vertical lines). . . . . . . . . . . . . . . . . . . . 30



2.2 Average number of valleys in EA, as defined in Fig.2.1, that are tra-

versed with time after a quench to T = 0.7J0 in a Ld = 163 spin glass

with a fraction p of ferromagnetic bonds and 1 � p anti-ferromagnetic

bonds. For p  0.75, the generation of valleys evolves essentially in-

dependent of p, while for a larger admixture of ferromagnetic bonds

valley generation progresses to cease ever more rapidly and the number

of valleys reached plateaus. . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Average magnetization per spin, hmi, observed with time after a quench

in EA during the ensuing aging process, as described in Fig. 2.2. Like

there, systems with p  0.75 behave glassy in a p-independent manner

with little discernible magnetic ordering, while the more ferromagnetic

systems become increasingly more ordered. . . . . . . . . . . . . . . . 33

2.4 Finite-time snapshots of the numbers of valleys generated (top) and

the corresponding magnetization per spin, hmi (bottom), in EA, as a

function of ferromagnetic bond fraction p for three di↵erent moments

in time, taken from the data at T = 0.7J0 shown in Fig. 2.2 and

Fig. 2.3, respectively. The vertical line at pc = 0.77 indicates the zero-

temperature transition found in Ref.[60] between a spin-glass and a

ferromagnetic phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Instantaneous rate of record barrier crossing events in EA, as defined in

Fig. 2.1, with time after the quench, as described in Fig. 2.2. Asymp-

totically, for larger times, that rate varies as a power-law with a seem-

ingly hyperbolic decline, ⇠ 1/t (dotted line), for smaller p to an almost

quadratic decline, ⇠ 1/t2 (dash-dotted line), for larger p. . . . . . . . 34



2.6 Instantaneous average valley counts and magnetization in EA as func-

tion of ↵ at di↵erent sweep-times t = 16, 256 and 4096 from left to

right, each for three di↵erent system sizes indicated on the legend.

The first row shows the average number of valleys, and the second row

shows the average magnetization. According to this data, the valley

production is time dependent as the sharpness of the transition be-

comes more pronounced in the later sweeps. In contrast, the magneti-

zation appears to be saturated already early on, predicting the critical

threshold within 16 sweeps. Additionally, we see no system size e↵ects

when using ↵as the parameter. . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Number of valleys traversed during relaxation ensuing after a quench

of SK for di↵erent bond fractions ↵ from a high temperature T = 1

to T = 0.7J0, averaged over an ensemble of trajectories for N = 2048

spins. In the range 0.0  ↵  0.6, the number of valleys traversed

grows logarithmically and largely independent of ↵, indicating that

the regime is glassy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Instantaneous rates for the number of record barrier crossings as a

function of time, for every ↵-value in SK. The instantaneous rate de-

creases as a power-law for all but the highest admixture values. In the

glassy regime, the decelerations is essentially hyperbolic (dotted line),

while the rate drops more sharply for ↵ > 0.6, up to roughly t�1.5 at

↵ = 1.6 (dash-dotted line), beyond which further record events become

immeasurably rare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



2.9 Average magnetization for SK in the same simulations shown in Fig.

??. According to this measurement, the system begins to order at ↵c ⇡

0.6, since a non-zero magnetization in the long-time limit indicates that

majority of the spins have ferromagnetically ordered. The transition

in magnetization shown here is far more dramatic than in the valley

counts, but nevertheless a�rms the same critical threshold. . . . . . . 39

2.10 Instantaneous average valley counts and magnetization in SK as func-

tion of ↵ at di↵erent sweep-times t = 16, 256 and 4096 from left to

right, each for three di↵erent system sizes indicated on the legend.

The first row shows the average number of valleys, and the second row

shows the average magnetization. According to this data, the valley

production is time dependent as the sharpness of the transition be-

comes more pronounced in the later sweeps. In contrast, the magneti-

zation appears to be saturated already early on, predicting the critical

threshold within 16 sweeps. Additionally, we see no system size e↵ects

when using ↵ as the parameter. . . . . . . . . . . . . . . . . . . . . . 39

3.1 Increase of (a) MSD and (b) average cluster size with the logarithm

of time, for di↵erent values of � in Eq. (3.1). The results show that

motion slows systematically with increasing �. Panel (c) shows the

dependence of the log-slope A on � in fitting � ⇠ A ln(t) to the cluster

sizes hhi in (b), yielding A ⇡ ��� with � ⇡ 0.7. The inset demonstrates

the collapse of the appropriately rescaled data from (b). . . . . . . . 45



3.2 Rejuvenation and memory e↵ects produced on an L = 64 square lattice

subject to a temperature cycle. The system at tw = 0 undergoes a

hard quench to �1 = 0.5, ages until time (in sweeps) t1 = 50, when

temperature is reduced once more to �2 = 5. After aging further until

t2 = 500, it is reset to �1. In (a), the susceptibility � defined in Eq.(3.4)

is plotted as a function of tw using ⌧ = !�1 = 2 ⌧ t1. In turn, (b)

shows that �, when reheated at t2, is a continuation of the dynamics

from the system prior to the second quench at t1. Both can therefore

be “stitched together”. In (c), a physical depiction of the situation

is provided. The top row shows the cluster formation on the lattice

(di↵erent colors indicate separate clusters). The bottom row shows the

corresponding lattice configuration, here color coded with the survival

time �t for that cluster to collapse. The region most a↵ected by the

quench at t1 is circled in all the snapshots. There, some cluster of size

h = 22 happens to break up and solely its freed particles are able to

move during a time window of size ⌧ = 2 after t1. Right before the

lattice is reheated, we see that many of those particles integrated into

surrounding clusters, while the remaining ones assembled into a newly

formed cluster (yellow), with a longer survival time. Once reheated, the

cluster-size distribution is almost identical to the first column, which

is why the dynamics seems to pick up where they left o↵ prior to the

second quench. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



3.3 MSD in the soft sphere system studied in [99] and MSD the cluster

model. The top panel enclosed by the dashed red line shows the results

in the original Scalliet et al study. On the bottom panel, (a) after

quench to �1 = 0.5 (without subsequent temperature changes) and (b)

after a subsequent quench at t1 = 50 to �2 = 5.0, in the cluster model.

In both cases, the quenched system is aged up to certain waiting time

tw, before the dynamics of the particles are measured relative to the

configuration at tw as a function of lag-time ⌧ = t � tw. Both (a) and

(b) show the characteristic dependence of MSD on the age tw. For (b)

this implies that the second quench actually rejuvenated the system,

albeit at a much lower mobility due to the lower temperature. . . . . 52

3.4 Demonstration for the end of of memory. The protocol for demon-

strating the end of memory is shown here. In the most left panel, the

matching highlighted colors of the � values and highlighted parts of the

energy trace, show that the quench determines what parts of the land-

scape the system can explore. In (a), we measure the MSD �(t1+⌧, t1)

for particles in the cluster model initially quenched to �1 = 1.0, then

aged for t1 = 25 sweeps, when it undergoes the second quench to �2.

The system remains entrenched in its metastable state attained at t1

for a time ⌧ = ⌧2 that depends on �2, before significant displacement

occurs that erases the memory of that state. In (b), this data collapses

when ⌧ is rescaled according to Eq. (3.5). . . . . . . . . . . . . . . . 54



4.1 The left and right column show distributions P (n) for avalanche dura-

tions n (duration is measured by the number of spins that flip) along

the hysteresis loop of the EA and SK model, respectively. In each row,

(A) and (D) show the resulting P (n) for a ramping rate of dH = 1/N

and (B) and (E) for dH = 1/
p
N , for a range of system sizes N . In the

bottom row, (C) and (F) show P (S) for dH = c at di↵erent strengths

c at system size N = 1000. Ignoring empty avalanches (D) and (E) for

SK are indistinguishable, each showing power-law decay and the size-

dependent scaling in the cut-o↵ characteristic of self-organized critical-

ity (SOC), which is absent in (A) and (B) for EA with an exponentially

decreasing P (n) where only the sizeable number of uncorrelated spins

triggered (⇠
p
N) at each ramp dH a↵ects a perceptable shift. For the

size-independent ramp dH = c, broader avalanche durations arise in

both models with only little sensitivity to c. For the SK model, we see

that there is eventually a supercritical transition that leads to a second

peak in the distribution at the largest c value. For EA, we notice this

peak becomes pronounced much earlier at smaller c values. . . . . . . 67



4.2 The distribution of avalanche durations are shown for di↵erent system

sizes, with the ramping rate fixed to dH = .25. (A) shows the statistics

for the EA cubic spin glass, and (B) the SK spin glass with the inset

showing the collapsed curves corresponding to (B). For (A), there is

a mixture of distribution shapes that demonstrates finite size e↵ects,

as N = 216 follows an exponential, N = 1000 resembles a power law,

but for N > 1000, the distributions show a peak near n ⇡ 103 instead

of an exponential cuto↵. For (B), every curve follows a power law,

P (n) ⇠ n�⇢ with ⇢ = .9 with an exponential cuto↵ at n⇤ that scales

with N� where � = 1.0. The exponents � and ⇢ are used to collapse

the distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



4.3 Di↵erence in ”branching” process in SK and EA at two fixed c values.

The “branching” process refers to the number of the spins that flip

during an avalanche n as a result of the number of spins dislodged in the

first place d. The main panels show hn/di as a function of the external

magnetic field (H), since avalanche activity varies along the hysteresis

loop. (A) and (B) show the hn/di for EA, whereas (C) and (D) show

hn/di for SK. (A) and (C) o↵er a clear comparison of EA and SK when

c = 0.25. In the SK spin glass, as N gets larger, so does hn/di, which

means that asymptotically, a few dislodged spins can trigger infinite

avalanches. In the EA spin glass, the averaged statistics indicate that

there is an upper bound for the number of avalanches possible that is

set by d. We show in the insets that the distribution of n/d is positively

skewed for smaller system sizes, but asymptotically approaches to 0.

This means that hn/di is a stronger constraint when system sizes are

larger, such that n is capped, but because d ⇠ n, there are excess spins

that flip and form a bulge towards the upper limit of the avalanche

distribution as seen in the previous figure. . . . . . . . . . . . . . . . 71



4.4 The top panel illustratons the algorithm used to identify whether or not

a cluster has percolated. At first, all the spins which have flipped are

recorded, and are placed into clusters based on a common nucleation

site (each color in (B) represents a separate cluster). A path from one

boundary to another is identified using a breadth-first search algorithm.

On the bottom panel, each grid represents a di↵erent system size N ,

and marks the probability of a percolating cluster as a function of both

the constant ramping rate c, and the occupation probability (p), which

is equivalent to the fraction of spins which have flipped at least once

during an avalanche. Note that each value of c produces a range of

occupation probabilities, mostly because the distribution of spin flips

changes for EA along the hysteresis loop. Based on these statistics,

the threshold at which there is an onset of percolation emerges around

c ⇡ 0.30, at a critical occupation probability of ⇡ 0.24. . . . . . . . . 74
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5.1 Modified HO performed on the EA cubic spin glass. (A) depicts the

optimization procedure where the hysteretic loop is iteratively shrunk,

and (B) shows the average minimum ground state as a function of c.

For each instance (µ), we perform 100 runs for each c value, which

returns the lowest energy value seen Eµ

min
at that c. Then, for each c

value, we average over all Eµ

min
values over all the runs per instance

< Eµ

min
>= Eµ, and then average over all instances < Eµ >. There

is an alignment between where the lowest < Eµ >, and where there

is an onset of percolation. At extremely high c values, where perco-

lation is frequent, the system refreshes all the helpful correlation that

would have facilitated cooperative behavior. If the c value is too low,

the system is more or less myopic and randomly chooses landscape ex-

ploration, whereas a balanced c values ensures that the ”right” spins

are mutually frustrated so that flipping them will encourage the most

exploration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



1

Chapter 1

General Introduction

”the discovery that two events, symbols, thoughts or texts, while so utterly separated

by time and space that they could not ”really” be connected, seem nevertheless, to be

the same or to be speaking directly to one another raises the possibility of a secret

interconnection of things that is the scholar’s most cherished article of faith” - J.Z

Smith, The Bare Facts of Ritual

1.1 The trouble with bridging disordered systems

The notion of disorder serves as a bridge between disparate subjects [1]; disorder is

fodder for artists to find “beauty” in, against the backdrop of disharmony, writers

to make sense of with words, and scientists to be perpetually puzzled by, and yet,

it is unclear what exactly bridges disordered systems. When far from equilibrium,

disordered systems are especially challenging to study as they are excluded from

the assumptions made in traditional (equilibrium) physics. Primarily, the appeal of

physics is that the invariant nature of certain principles without context can serve as

a description of reality in many di↵erent contexts. A simple testament to the power

of these principles is that our understanding of the laws of motion and formulation

of mechanics is built on symmetry in space and time. However, these types of con-
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servation principles are not clear for disordered materials, where di↵erent kinds of

symmetries are broken [2, 3]. The linchpin of this dissertation is to explore how to

bridge the complex behaviors of di↵erent disordered systems using a single framework

that is premised on avalanches as a driving mechanism for spatiotemporal complexity

[4], and then to analyze the nature of those avalanches, particularly in terms of the

constraints that give rise to them, which in turn informs what parameters can be

tuned to extensively produce them where they do not naturally arise.

1.1.1 Spatial Complexity

In disordered systems, spatial symmetries are non-existent, and the fundamental laws

which govern the structural dynamics are not easily analytically tractable due to the

multivariable and combinatorial nature of components’ interactions. Concrete exam-

ples of this particular aspect are nearly everywhere and tend to be intuitive. We start

with an example most relevant to this thesis: windows and containers are often made

from glass, which is an amorphous material with little structural clarity that would

indicate the fact that it is actually flowing, just at imperceptibly slow time-scales

[5][6] [7]. Unlike ordered materials such as crystals [8], arrangements between par-

ticles in a glass are heterogeneous, which gives them greater viscosity and therefore

higher persistence - spatial complexity is due to particles known as ”soft spots” that

are more prone to moving than others. In biology, for example, the embryogenic

process in organisms is considered “glassy” since tissues contain heterogeneous cell

organization and motion, and it is unclear what structural variables govern the very

distinct, yet deterministic cell nucleation behaviors [9]. With the rise of computa-

tional social science since the 1970s, examples in this area are aplenty: Forrester’s

”Urban Dynamics”, which piqued Kadano↵’s interest in public infrastructure is an

epitome of spatial complexity in society [10]. A tangible example is in the economy,

on individual level, all agents theoretically have the same goal, which is to maxi-
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mize their utility function subject to the same information, and yet macroeconomic

problems like unemployment arise that a↵ect groups di↵erently, due to unaccounted

variables and ”coordination” failures [11]. For all of these systems, there is clearly

a need to understand a feedback mechanism between the components, that relates

microscopic to macroscopic behavior.

1.1.2 Temporal Complexity

To address multivariate and combinatorial systems as mentioned in the previous sec-

tion, statistical physics has traditionally been the perfect tool to relate microscopic to

macroscopic dynamics. It does so by representing macroscopic states as an ensemble

of many microscopic states, then writing concise canonical partition function that

can generate various attributes about the system using partial di↵erential relations

between variables [12]. Even the treatment of fluctuations can be simple through

the assumption of Gaussian processes and therefore, also the assumption of central

limit theorem in the asymptotic regime. Unfortunately, these assumptions are invalid

for disordered systems that have fallen out of equilibrium. This leads to another

challenge: For a system that is not in equilibrium, it is unclear whether averaged

descriptions are truly su�cient, since all “microstates” are no longer equally likely.

While most real systems, like in biological processes, are naturally out of equilib-

rium [13], we are mainly concerned with quenched disorder that is out of equilibrium,

which can also serve as a model for other complex systems. Disorder that has fallen

out of equilibrium through a quench, undergo a slow relaxation process towards its

equilibrium state (albeit, unlikely that it will ever get there), also known as ”aging”

[14]. A key part of this process is the imprint of the system’s history, which means

that if tw is the ”age” of a certain system, then its dynamics will change as a function

of tw (its past events).

Here we discuss terminology that will be used throughout this thesis regarding
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“aging”. Glasses and relaxation phenomena are often discussed together, including in

this thesis. The reason can be explained using one of the first examples in 1.1.1: When

liquid undergoes a thermal quench so rapidly that it fails to crystallize, it undergoes

a glass transition instead, where there is a viscous slowdown by many magnitudes.

How the transition from the liquid to the glass stage occurs is still a big mystery,

known as the glass transition problem, but this is an equilibrium phenomenon and

therefore outside the scope of this research. Once a system is past the glass transition,

it is out of equilibrium and exhibits the signatures of aging. The imprint of history is

specifically evidenced through the fact that the older the glass gets, the mobility of

particles, typically measured as mean squared distance, also decreases. Theoretical

understanding of this relaxation is rather limited [15].

This phenomena is ubiquitous: The most obvious are in soft matter physics –

polymers (which are ”glassy”) gradually reduce in volume as they settle into more

relaxed configurations [15], the constituents of granular materials enter a jammed

state without any apparent structural order, after rearrangement events triggered by

an external source[16, 17], and quenched magnetic systems seem to be “frozen” into

random orientations seemingly without any change in the system’s symmetry for a

very long time, until there is sudden change in configuration, which becomes rarer

with time. Interesting biological systems are almost always far from equilibrium,

in the scale of cellular processes to evolutionary dynamics [13][18][19]. Despite the

qualitative and abstract commonality in all these systems, there are a lack of variables

which can be used to describe them for quantitative comparison, or even distinguish

them from ordered systems using a common denominator.
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1.2 Practical motivation for studying far from equi-

librium disordered systems

This thesis focuses more on the theoretical challenges – like finding universal fea-

tures, or learning whether aging systems should be measured using averaged events

(since their stasis periods are so long, anyway) or the events that punctuate the

stasis (avalanches). However, there are many practical reasons for studying aging.

Both theoretical and engineering challenges that ensue as a result of physical aging

in glassy systems is most saliently seen in polymers, which constitute a wide breadth

of materials due to their versatility. They are used in every day packaging, electron-

ics, biosynthetic materials for implants and tissue engineering, natural gas filtration,

etc – in order to get polymers to take a certain form, they are melted, molded and

cooled until they resemble a solid but they are subject to the aging process that wears

the very properties that are exploited in the first place [15, 20]. A suitable example

for this point is that membrane technology utilize polymers for gas purification due

to their porosity, but aging decreases the volume of polymers, making them denser

and reducing permeability, which renders them less useful for filtration purposes [21].

Compounded with this, the history dependent behavior in aging materials creates

further complications, because the time scales of the dynamics are a↵ected by the

perturbations encountered during the production process, after being molded and

quenched below the glass temperature[15]. On top of all of this, how these perturba-

tions a↵ect the time scales vary from polymer to polymer. Therefore, it is necessary

to understand the simple picture first, even to tackle the engineering problems.

Studying the actual process of physical aging is di�cult precisely because it is so

slow, so models that resemble aging systems combined with computationally e�cient

simulations that allow wider parameter explanation are valuable.
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1.3 Order parameters

The central task for theorists is to find a set of organizational principles, indepen-

dent of context, that can explain the behavior of multiple complex systems through

their common features. This goal has somewhat of a precedence in statistical physics

through the idea of “universality” which argues that a simple theoretical model can be

used to capture the main dynamics of systems with di↵erent microscopic details. This

is done by keeping details that matter to the dynamics from ones that do not, usually

through coarse-graining – with the example that is most prominent being renormal-

ization. Systems simplified through coarse-graining, which show similar behavior at

di↵erent length scales, are considered to be in the same universality class.

Being able to group di↵erent kinds of systems is not an obvious task, since it is

contingent on identifying an order parameter [22]. A broken symmetry (or several

broken symmetries) exist for systems that are far from equilibrium and to describe

them macroscopically, the order parameter is an ad-hoc variable that describes the ex-

tent to which the symmetry is broken. It needs to be defined, based on some coherent

behavior. The choice of order parameter is crucial because not only does it a↵ect the

universality class, but also helps detect phase transitions and critical points. Along

these lines, one point of contention in this research is to use a new order parameter

as a way to delineate between two systems whose relaxation dynamics is often put

in the same category. This research does not try to establish a universality class

yet, but merely illustrates that a di↵erent choice of order parameter can elucidate

fundamental di↵erences in how two separate systems age due to their inherent struc-

tural di↵erences. A “toy” model (called that cluster model, which mimics colloidal

dynamics) that is purely based on this order parameter is then used to reproduce

quintessential features of aging behavior, which will be discussed in great detail in

later parts of this thesis.
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1.4 Ising Models

1

En
er
gy

Time

(A)

(B)
(C)

(D)

Figure 1.1: Summary of this section. On the left column, (a) depicts a ferromagnet
where all bonds are the same and consequently, constraints are not complex enough
to create perpetual frustration unlike (b) which shows a spin glass. In the depiction,
the red bond is frustrated since it favors opposite facing means but this bond cannot
be satisfied without frustrating another bond. On the right column are di↵erent
visualizations of relaxation. (c) corresponds to the aging of the spin glass after a
hard quench, whereas (d) shows a visual of “ordering” from the paper [23]. The
blocks of homogeneous regions are known as domains, where all the spins face the
same direction. In a ferromagnet, larger domains of spins facing the same direction
indicates larger equilibrated regions. This is not the case for SK, since the bonds
don’t necessarily favor spins facing the same direction.

Toy models are supposed to represent more complicated systems, stripped of their

”unnecessary” details. Examples of existing ones include Ising spin systems, graph

networks, total asymmetric exclusion model, etc, which seem deceptively simple and

a farcry from reality, and yet they produce rich and nontrivial behavior.

Ising spin models consist of random couplings between variable spins and are

considered to be simplest representation of complex systems. The model consists of

spins (si) with only one degree of freedom – its orientation, which can be facing up

(si = 1) or down (si = �1). Spins are coupled to one another with a bond/interaction

coupling, denoted as J , which can be drawn from a bimodal distribution or a Gaussian

distribution. (The admixture can be used to control the “glassiness” of the model.)

The Hamiltonian for an Ising spin system with N spins is the following:
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H = �

NX

i

Jijsisj � Hext

X

i

si (1.1)

where h is an external field. The couplings, or bonds themselves, are obtained from

either a Gaussian distribution of J ,

P (Jij) =
1

p

2⇡J2
exp{�

Jij � J2
o

2J2
}, (1.2)

where J ⇠
1
N

or a bimodal distribution

P (Jij) = p�(Jij � J) + (1 � p)�(Jij + J), (1.3)

where J is ±1.

We primarily work with two types of spin glasses: the mean field model, known

as the Sherrington Kirkpatrick (SK) spin glass, where every spin is coupled to every

other spin and thus, there is no locality [24]. The second model is the nearest neighbor

model on a lattice of Ld where d is the dimension, known as the Edwards-Anderson

(EA) spin glass (when d = 1, the EA has then reached the SK limit) [25]. Contrary

to SK spin glass, the finite dimensional EA spin glass is a lattice model, where every

spin only interacts with its nearest neighbors. For both of these, the admixture of

ferromagnetic and antiferromagnetic spins are represented by p. When p = 1, the

system becomes a full ferromagnet and when p = 0, it is an antiferromagnet.

The dynamics of these models are governed by the following: If the bond between

two spins is zero, the spins will orient either way with no energy cost (�E). If the

bond between two spins are negative, then spins need to be faced opposite directions

in order to “satisfy” the bond. Lastly, if two spins are coupled by a positive bond,

then the spins need to be facing the same direction in order for that bond to be
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satisfied. “Frustrated” bonds are ones that are not satisfied (as illustrated in the

figure), as a result of competing interactions. One can imagine the following scenario

to understand how aging plays out in an Ising spin system.

For example, if there is an admixture p = .5 in a bond matrix in Equation 1.1,

the ratio of ferromagnetic to antiferromagnetic bonds is 1 so frustration is inevitable.

At a very high temperature, the spins fluctuate repeatedly, where any configuration

is equally probable. However, the moment the spin glass is quenched to a very low

temperature T < Tg, the current configuration will “freeze” in its frustrated state,

and will minimize frustrated bonds very slowly during its relaxation process. The

geometry and growth of interface between the domains is also integrated into the

real-space droplet model, and studied to better understand aging and its resemblance

to coarsening, which will be discussed in greater detail in 2 and other parts of this

thesis.

1.5 Energy landscapes

En
er
gy

Figure 1.2: Hierarchical energy landscape. An example is drawn of a hierarchical
energy landscape with a black outline. Each of the basins/valleys represent an the
same energy “level” or “tier” within the hierarchy, although there may be di↵er-
ences in the microscopic arrangements within the system (similar to the equilibrium
macroscopic-microscopic relations). However, the di↵erence in the out of equilibrium
regime is indicated by the yellow arrows – with large enough fluctuations, the system
will be able to escape from its current basin to the next ”lower tier” – i.e the next
marginally more stable state.
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Glassy materials like amorphous fluids [14], jammed grains [26, 17], colloids [27,

7], disordered magnets [28, 29], or entangled polymers[30], all face frustration while

relaxing their free energy. Due to competing variables exerting geometric or ener-

getic constraints on each other, a complex, multimodal landscape is imposed on the

space of all possible configurations. A universal framework of how a system traverses

its landscape can shed light the organizational principles that give rise to di↵erent

phases of behavior[2, 3]. In order to understand these principles, it is necessary to

understand the basics first: Namely, what are the di↵erent states (configurations)

of the system, and what do the transitions between the states look like? Thermo-

dynamically, “states” refer to energetic states – one can write an energy function of

a configuration and determine that the most thermodynamically stable state is the

state with the lowest energy, and thus preferred at T ! 0. Higher energy values

indicate higher “frustration” in the system. Thus, the surface of an energy landscape

is a schematic of the “frustratedness” where di↵erent energetic states are depicted by

di↵erent basins (or valleys, local minima, etc), and the transitions between states are

represented by energetic or entropic barriers that appear as ridges between the two

di↵erent basins.

In the 1960s, to further understand the puzzling nature of viscous flow in glass,

this energy landscape scheme was proposed by Goldstein as an alternative to existing

theories[31]. The scheme developed by Goldstein was simple – the potential energy

function encapsulates both the transport and configuration of a system, so the state

of glass can be seen as any point along the potential energy surface, that would

also need to account for the temperature. At zero temperature, the glass does not

have movement and would therefore be stuck in a configuration that is considered a

potential minima, although this is not necessarily the optimal minimum. In order to

change configurations, the molecules will need some kind of activation energy that will

mobilize them and facilitate a rearrangement, which will land them in a new minima.
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To describe organizational principles of glass, potential barriers are used to describe

the transitions while the basins are used to describe the configurations. To probe the

inherent structure of the landscape, one can imagine the representative state point on

the potential energy landscape moving as a function of temperature. That said, the

most “naive” landscape consists of a sequence of minima and random barrier heights,

termed random energy fields (R.E.F) [7]. The conjectures surrounding the structure

of basins have evolved since – rather than being random, barriers are structurally

organized in ways that are distinct to certain materials and systems.

This construction is easily translatable as energy landscapes are widely used across

di↵erent fields [32]. For example, in biology, Waddington epigenetic landscapes rep-

resent cell di↵erentiation as a point rolling through a surface where each valley repre-

sents a cellular state [33, 34], fitness landscapes separate valleys based on mutations

[35], and adaptive evolution can be studied through tunable landscape like the NK

model in which the e↵ect of agent on the landscape structure itself can be studied [18].

In engineering, the design of amorphous materials requires studying how interatomic

potential functions give rise to particular landscape attributes [36], which directly

a↵ect their dynamics. On the computational side of things, lossy landscapes in deep

learning represent the a high dimensional cost function, similar to parameter spaces

in optimization problems [37]. To fully understand this range of systems, there are

two main and intertwined challenges, concerning the energy landscape – (1) What

is the structure of the barriers? To answer questions that reveal universal patterns

in the structural features of the landscape, it is also necessary to be able to sample

enough of the space. This becomes a challenge in multivariate systems with a large

parameter space, which leads to another related aspect – (2) How can one sample high

dimensional complex energy landscapes in a way that is computationally e�cient?

Specific physical systems correspond to specific landscapes (the ones representing

proteins come in many forms such a funnel or a golf course but ultimately have one
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clear minima, whereas the SK spin glass has a hierarchically organized landscape,

for example). Therefore, to understand phenomena in disordered system, it is best

to start with a system that is versatile and easily generalizable, which is another

advantage of using the Ising spin glass models described in 1.1.

1.5.1 Mean Field Theory

What does it mean to “understand” the full energy landscape picture? The mean

field spin glass is a perfect example of a system whose energy landscape structure

is understood relatively thoroughly thanks to analytical calculations performed by

Giorgio Parisi, leading to replica theory for the SK model [38, 39]. The crux of his

calculations was that probability distribution of ”pure states” was non-trivial - rather,

it seemed to demonstrate ultrametric structure. The physical meaning of this is that

the free energy landscape has a hierarchical organization, where the states themselves

are self-similar [40]. However, whether these characteristics can be applied to other

glasses has been unclear until more recently with landscapes of jamming transitions

in structural glasses showing ultrametric structure [41]. From a plethora of literature,

it is clear that one possible way to understand the glassy structure is through the

framework of the mean field model.

Showing that mean field theoretic tools can be used for structural glasses as well,

means that the energy landscape in structural glasses initially has a random first

order transition (a landscape that consists of a featureless basin and large barriers)

but through the Gardner transition, the basins begin to have a fractal structure,

or a hierarchy of sub-basins [42, 7]. It is said that after the Gardner transition,

the structural glass has properties akin to the Sherrington-Kirkpatrick model (SK).

Having a structure that resembles the mean field model means that it can be subject

to same analytical tools.

In terms of the aging of glassy systems, there are several implications of using
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mean field: First, the physical interpretation is that as a system ages, it is continu-

ously descending down an energy landscape (which has exponentially many states)

[23]. In terms of observables, measurements require using averaged statistics: For

instance: one can measure a correlation function between the variables as they age,

where C(t, tw) = hS(t)S(tw)i � hS(t)ihS(tw)i where S denotes an observable, and

the <> indicates both a thermal and disordered (di↵erent bond realizations) average

over an ensemble. Similarly, the susceptibility, �(t, tw) is based on an averaged re-

sponse function R(t, tw) to a discretized change in local field, since it calculated by
R

t

tw
dt0R(t, t0), so it is integrating information over time.

In this thesis, it is argued that this mean field theory approach ends up throwing

out important information about the system – mainly its avalanches (i.e all forms of

activated dynamics), as elaborated in the next section.

1.6 Avalanches

So far, it has been established that mean field theory is considered convenient and

aspirational in the disordered systems community. However, the fact that it involves

averaging information over time, means that it can also lose information about rare

”activated” events – also referred to avalanches, record events, quakes, etc (in this

work, all of these terms are interchangeable). Thus, one prominent theme in my thesis

is comparing the description of aging using the rare events, rather than averaged ones

(mean field). Another overarching theme is investigating the role of these avalanches

in aging processes, and the generation of avalanches in general.

Why the emphasis on avalanches? These events are of interest because there is ev-

idence that intermittent avalanches create substantial structural changes in a system.

To paraphrase a quote in [4], avalanches are the source of spatiotemporal complexity,

throughout nature and natural history. For example, in biological evolution, though
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contentious, the theory of “punctuated equilibrium” argues that evolutionary periods

are mostly static with intermittent bursts of changes [43] – the sudden introduction

of a new phenotype will allow species to exploit new features of an environment, and

thus momentarily changes the evolutionary dynamics. Along the same lines, mass

extinctions create substantive changes to evolutionary dynamics and ecology for [44].

Earthquake faults are another common example of such bursty dynamics [45, 46, 47],

among depinning transitions in charge density waves [48], superconducting vortices

[49], granular media [50], and even neuronal dynamics in the brain [51]. Although of

course, these examples are driven where “aging” is a naturally occurring process, but

the e↵ect of avalanches are similar in both.

Between the ”quasi-equilibrium” or metastable states, aging progresses with large

intermittent fluctuations. The significance of these intermittent events during the ag-

ing process were not “obvious” previously, but became salient experimentally through

aging colloids, where time resolved correlation showed bursts of long range correla-

tions corresponding intermittent events [52]. Such rare intermittent events are key

to evolving the system, since it is only during long-range rearrangements that any

substantial changes in the system occur – for instance, this is essentially the di↵er-

ence between cage rattling and cage breaking events in jammed glasses [53], where

the former is only ballistic motion among a smaller group of particles, and the latter

creates enough motion to completely change neighborhoods.

1.6.1 Record Statistics

Even if the aging and driven processes do not originate from the same mechanism by

nature, several things are clear: the record fluctuations are what break time reversal

symmetry; this means that they serve the role as the system’s “internal clock” since

they determine the time-scales of di↵erent configuration states. If that is the case,

then what if these were the only events that “mattered” in the relaxation process?
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This assumption is what underlies the coarse-grained description of aging processes,

known as record dynamics [54, 55, 56, 57, 58, 59]. Under this framework, a system

that is undergoing the relaxation process is seen as ultimately tumbling down a se-

ries of metastable states that are hierarchically arranged, within its complex energy

landscape. A record fluctuation is therefore supposed to be an indication of having

overcome an energetic barrier and tumbling onto the next more marginally stable

metastable state – or in other words, the “next step” down the hierarchy of basins

(see Figure 1.2). The rate �(t) at which such record fluctuations, also known as

quakes, occur, decelerates with time as 1/t. The expected number of events in a time

interval [t, tw] is therefore,

hn(t, tw)i /

Z
t

tw

�(t0)dt0 / ln(
t

tw
) (1.4)

. Given the ”fixed” average number of events per logarithmic time, aging is a log-

Poisson process. Studies in the past have shown that these statistics are in agreement

with previous experimental studies on jamming colloids [57].

Indeed, there are older models that are based on activated process, also known

as “activated barrier hopping”. In the trap model [60], for example, an ”energy

landscape” is composed of a surface with wells (representing the minima) with depths

that correspond to the activation energy, or energy required to overcome the trap.

When a system is aging, it will fall down a series of wells as it does a random walk

on the landscape. Every time the system falls into well (a trap), it will take ⌧ time

to escape the trap. In this case, ⌧(x) = exp(�Ex) where E is power law distributed.

While the trap model may have successfully schematized aging, the fundamental

di↵erence between the RD framework and the trap model is that RD has memory,

which is more true to the history dependent behavior in aging – valleys are defined

contingent on previous valleys that have been encountered. On the contrary, the trap
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model is memoryless and treats aging as a renewal process. Therefore, this activated

model is di↵erent from previous ones because it operates on completely di↵erent

assumptions.

1.6.2 Hysteresis

Figure 1.3: Example of a hysteresis loop. On the left is a typical hysteresis loop,
where a spin glass starts at a magnetization of zero, and is exposed to an external
magnetic field that gradually increases until the system is fully magnetization, but
once the direction of the field is reversed, there is a lag time between the system’s
magnetization matching the external field. The right column shows a closer look of
the hysteresis loop in order to discern the avalanches, which occur every time there is
a change in magnetization. It is clear that avalanches grow in size closer to a coercive
field of zero.

There are many questions surrounding critical avalanches, independent of aging:

How does a system’s history a↵ect its generated avalanches? What are the parameters

within the dynamics that determine the scale of an avalanche? How do correlations

build during an avalanche, if any?

It is much easier and accessible to approach these questions through driven dis-

order, rather than aging processes due to the inconvenient time-scale of the latter.

For driven disorder, hysteresis, which has been most widely used in magnetic sys-

tems, proves to be an appropriate tool since it has a couple of the same features as

aging glasses like being in a nonequilibrium regime, having history dependence and

avalanches.
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Hysteresis is a memory e↵ect - more specifically, it describes the phenomenon of

when a system is subjected to a changing external force but the system’s history

dependence makes it react to the varying external force with a lag time [12]. The

“sensitivity” of certain materials to the applied force varies - some will “crackle” or

display bursty dynamics whereas others will be robust to small values of the external

force f until a threshold is reached, which will the depin the material [61], exhibiting

a first order phase transition. This first order phase transition makes hysteresis a

useful phenomenon to exploit for materials with switches.

When a ferromagnet is exposed to an external magnetic field Hext, and that mag-

netic field is slowly ramped up, then the ferromagnet will yield – i.e individual spins

will align with the external field. However, when the external magnetic field is ramped

down to return to Hext = 0, the spins will take a longer time to recover their order

due to new barrier formations, which means that even when Hext = 0, there will be

remanent magnetization. What is especially interesting and relevant to this research

is something called Barkhausen noise that was observed in both ferromagnets and the

SK spin glass [62, 63, 64]. Here, as the magnetic field is ramped, it “depins” domain

walls, leading to clusters of spin flips that successively lead to pinned configurations,

until there is stability. The sequence of spin flip (the avalanches) in Barkhausen noise

also happen to exhibit a power spectra with an exponential fall o↵ [65] . The fact

that the system can do this without any parameter tuning, was considered to be a

sign of self organized criticality (SOC).

For the SK model in particular, the wide range of avalanche sizes has been ex-

ploited to help find lower energy configurations by overcoming large barriers (as op-

posed to Monte Carlo or gradient descent) through an algorithm called hysteretic op-

timization (HO) [66, 67]. Here, an external magnetic field is used to add Barkhausen

noise to the system, which gives the spin an energetic ”kick” to rearrange into substan-

tially di↵erent configurations that can help overcome energetic barriers. If a gradient
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descent method were used, the system would remain trapped in a local minimum.

When the same protocol is performed on the EA model, for example, the avalanche

spectrum remains subextensive, which means that one cannot use HO for sparse sys-

tems. This occurs because correlated behavior is only confined to neighbors, and in

order for there to be critical avalanches, there needs to be long-range correlations.

Another broad theme of my research is to understand whether critical behavior can

be induced in sparse systems through driving methods that deviate from traditional

hysteresis. While there is an understanding that the all-to-all connectedness in the

SK model helps it have long-range correlations, an external magnetic field introduces

more bias into the correlated behavior. To understand how this leads to criticality,

one approach is to study the state that immediately precedes an avalanche, called

the marginally stable state. What does the marginally state of the SK model reveal

about how it should be perturbed in order to get critical avalanches? What would

one have to do to equally perturb the marginal stable configuration in EA, and get

critical avalanches?

1.7 If a spin glass avalanches, does a traveling sales-

man see it?

Optimization theory is naturally related to the topic of spin glasses, which is a NP-

hard problem, which is a problem for which solutions cannot be verified determin-

istically. After all, just as avalanches help an aging glass move along meta-stable

states, they can also be used to explore better solutions in a combinatorial optimiza-

tion problem provided that the avalanches trigger the right correlations to facilitate

”learning” the landscape.

In the prior section, hysteretic optimization (HO) was mentioned as just one

heuristic to explore spin configurations in the SK spin glass [67]. This heuristic
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operates on criticality – avalanches of a broad size distribution means that more

distinct configurations are explored, which makes it easier for the system to escape

local minima [68, 69]. Of course, there is no guarantee that the solution will be

optimized. Thus far, there is no mechanism that explains why a critical state per se

would have any connection to finding necessarily better ground states, but it does at

least provide better opportunity. However, there is a collection of literature that does

define the critical state as being optimal for information processing in computation

and even the brain. In the classic Langton paper “Computation at the edge of chaos”,

criticality is defined as being in the border between order and disorder, which is

supposed to allow optimal trade-o↵ between retaining memory (the right information

for learning by remaining “ordered”) and learning new information (through disorder)

[70]. The importance of criticality has even shown in ”plastic adaptation”, a process

that facilitates learning[71, 72].

The very last and (incomplete) part of my research investigates whether critical

fluctuations are enough to improve an optimization algorithm, and tries to understand

the feedback mechanism that helps coordinate the information processing.

1.8 Outline

So far, I have summarized the requisite concepts that led to my research projects.

Chapters 2 and 3 are anchored in record dynamics, as discussed in 1.6.1 part of the

introduction. Collectively, these chapters establish that RD is a su�cient description

of aging, because unlike previous work (to our knowledge), it integrates intermittent

events to create a coarse-graining framework (described in the computational meth-

ods section) and is able to discern between systems that were placed into the same

category, or ”universality class”, that we now know is not actually the case. If RD

truly captures the ”essence” of aging, then a model that embodies purely RD princi-



20

ples (everything else is coarse grained out) should be able to replicate the anomalous

signatures of aging, such as memory and rejuvenation. The breakdown: Chapter 2

therefore describes one of my first projects, which uses ”aging” as a protocol to probe

energy landscapes and finds using the RD based order parameter that ”true” aging

is di↵erent from coarsening. Chapter 3 shows that a very minimal model, named

the cluster model, that is based purely on record dynamics phenomenology is able to

reproduce the behavior of aging systems (memory and rejuvenation) and how these

phenomena can be explained by the hierarchical energy landscape.

Chapter 4 discusses how the mutual frustration between marginally stable spins

leads to strong correlation structure that causes avalanches in the mean field model.

This inspires us to look at three di↵erent driving methods that change the interactions

of marginally stable spins to build a correlation structure in the real space EA model.

We compare the resulting avalanche distributions, and then find the best parameters

that would facilitate long-range correlations in the EA model.

In Chapter 5, I summarize work that is built on analysis performed in Chapter 4

and explore the implications of this on an NP-hard problem.

Chapter 6 concludes my thesis with a discussion.
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Chapter 2

Valleys in aging and coarsening

processes

2.1 Summary

Referring to the definition in section 1.1.2, ”aging” refers to slow relaxation towards

the equilibrium state, and the literature which describes this process has many sub-

tleties. Through a coarsening paradigm, aging is depicted as a gradual ordering of

the system; the ordering is measured through a correlation length scale L(t), which

involves taking coarse-grained measurements of correlated activity over time, [73, 23,

74]. While there are di↵erent classes of coarsening, to say that aging and coarsening

are the same is misleading – In the literature, the ferromagnetic coarsening picture is

used to create generalized scaling assumptions on spin glass aging, which is problem-

atic because their dynamics are fundamentally di↵erent. The crux of the problem is

rather simple – aging is only one kind of coarsening and it applies to disordered sys-

tems (like glasses) only, not ferromagnets. To avoid such confusion, we propose using

a new order parameter entirely based on record dynamics (RD) that directly elicits

the barrier structure in the landscape to interpolate between glassy and ferromagnetic
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behaviors. This method ends up having two advantages - first; it clearly interpolates

between the logarithmic aging in glasses in comparison to the linear aging in a fer-

romagnet (the range between a full ferromagnet and a full spin glass have not been

explored before, except in [75] where the critical exponents in the growing correlation

length was used to interpolate between the glassy and ferromagnetic regime). The

distinguishing factor in our study is that RD is based on intermittent (rare) events,

which was experimentally noted to be a signature of aging [52]. In both of classes

of Ising models that we use - the real-space Edwards Anderson spin glass and mean

field Sherrington Kirkpatrick spin glass - we are able to find a critical point that

delineates between ferromagnetic and glassy regime based on how barriers scale with

the ordering length scale.

This section of the thesis is based on the paper “Analysis of landscape hierarchy

during coarsening and aging in Ising spin glasses” in: Phys. Rev. B 103.2 (2021),

pp. 1–8, authored by Stefan Boettcher and Mahajabin Rahman. The EA simulations

were performed by Stefan, and SK simulations were performed by Mahajabin.

2.2 Introduction

In previous literature, aging has been described by a process in which systems gradu-

ally equilibrate through coarsening [23], which is synonymous to the domain growth.

As part of the ordering process, regions of the system begin to locally equilibrate into

homogenous clusters known as domains. Then, such domains begin to “compete”

with one another, until smaller domains merge with larger ones, eventually leading

to global equilibration [76]. Two aspects of coarsening are emphasized: (1) its rep-

resentation of correlated and thus, coherent behavior, of the spins as they move an

interface boundary, and (2) because moving an interface boundary has an energy cost

�E, the rate at which the length scale of the average domain grows can have depen-
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dence on the free energy barriers [77]. The growing correlation length measures how

close a system is to its equilibrium state. As it approaches there, it does not reach a

stationary state but merely arrives at a state of detailed balance. This indicates a lack

of bias in terms of fluctuation probability, such that the system appears reversible

instead of “flowing” towards a certain configuration. At equilibrium, the notion of a

”dynamic length scale” exists to describe macroscopic correlated behavior in the form

of CAB(r1, r2, t) = hA(r1, 0)B(r2, t)i where A and B denote some observable, such as

spin orientation, for example, and ri indicates either location in real space or an index

at a given time, t [78]. Although equilibrium systems are not static, the canonical

ensemble average is able to capture correlations that are conserved from one config-

uration to another. This equilibrium concept is then extended to out of equilibrium

systems, through the idea that while a system equilibrates, there is also an increasing

correlation length [73]. This series of events can easily be visualized in a ferromagnet:

When quenched from a high temperature T > Tg, to a low temperature T < Tg, spins

in a ferromagnet appear to be in a kinetic arrest due to their mutual frustration.

Very slowly, they will re-orient themselves into small clusters (domains) where they

are all facing the same direction, until eventually a cluster has expanded throughout

the system, such that all spins are correlated to one another and always facing in

the same direction whether it is up or down. In comparison to this, coarsening is

rather di�cult to visualize in spin glasses since clusters of uniformly oriented spins

lose significance when the interaction energy J has an admixture p 6= 0. However,

even though domains in spin glasses cannot be pictured in the same way they can in

ferromagnets, the representation of a domain through a correlation length, must still

exist in spin glasses. The extension of ferromagnetic coarsening to generic aging phe-

nomena is the reason much of the literature leads to the impression that relaxation

via coarsening in a ferromagnet and glassy aging are similar [79, 74, 23]. We already

know in contrast to the hierarchical, multimodal energy landscape of a glass, that of
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a ferromagnet is smooth, so it is unclear that they should coarsen similarly.

There are di↵erent kinds of coarsening, expressed through a simple calculation

where the characteristic size of locally equilibrated domains generally scale as one of

the following:

L(t) ⇠ tz(T )n (2.1)

L(t) ⇠ z(T ) ln(t) (2.2)

where z is pre-factor that is temperature dependent contingent on the system in

question [80], in order to account for the di�culty in overcoming entropic barriers,

and n di↵erentiates between universality classes for fundamentally di↵erent growth

patterns based on interfacial dynamics [81].

Related to equation 2.1, there are two prevalent types of coarsening in nature,

for which there are designated universality classes that indicate fundamental physical

di↵erence: n = 1
3 describes a growth called Lifshitz-Slyozov, where interface dynamics

lead to phase separation, also known as spinodal decomposition, a mechanism that

forms patterns in polymer blends [82, 83], surface waves [84], and dendritic growth

[71]. Through all of these processes, the system’s order parameter is conserved [76].

Recall from section 1, the order parameter is an the ad-hoc variable that discerns

the “brokenness” of symmetry, which in this case is the number of molecules of each

subspecies/phase. In spinodal decomposition, a conserved order parameter means

that di↵erent species are spatially separated, the number of molecules of each type

remains the same. On the other hand, n = 1
2 describes the Lifshitz-Allen-Cahn

growth where the domain expansion is curvature driven, and the order parameter

is not conserved i.e the phase order kinetics changes the symmetry breaking. This

type of growth describes the grain growth in metals, ordered arrangement of binary

alloys, coarsening of a foam, for example, where surface tension generates curvature
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driven growth of the bubbles. The point of these example is to illustrate that the

di↵erences in the universality classes do happen to make a di↵erence and can have

tangible impacts in real life – in fact, space shuttle experiments were conducted just

to understand the coarsening of metal alloys, which can be used for designer materials

that constitute everyday technology such as automobiles and aircraft [85].

Equation 2.2 describes logarithmic coarsening where the free energy barrier itself

scales with the length, such that the rate of interface growth (dL/dt) follows Ar-

rhenius behavior dL/dt = z0 exp(
EB
kBT

). As the correlation length grows, it becomes

increasing more di�cult for separate domains to ”merge” because the energy cost

(�E) to initially flip spins along either boundary becomes higher, leading to slower

growth. This class of growth is more relevant to this work, as it pertains to systems

with randomly imposed disorder such as random field Ising magnets or spin glasses.

However, as stated explicitly in [81], universality classes are subtle. These are not the

only coarsening patterns possible, so physicists are always trying to delineate details

within them [86].

Unlike the established growth classes which have been mentioned, which use or-

der parameters based on “real space” - whether it is magnetization or number of

molecules, the order parameter introduced in this paper uses the trajectory through

the energy landscape instead of the physical “space”. This new order parameter is

based on a phenomenological description of aging called record dynamics, cursorily

introduced in 1.6.1. It is almost natural to use record dynamics as a framework to

choose an order parameter from, for the following simple reason: non-equilibrium

systems have a clock because they change over time, whereas equilibrium systems

do not. Therefore, if record fluctuations act as a system’s “internal clock”, then the

number of record-size fluctuations that have facilitated the system’s tumbling down

nv valleys, is a reflection of how much time has elapsed, a measurement that is only

meaningful in systems that age. We are further encouraged to use the RD framework
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because previous experimental results in [57] with jammed colloids fit the RD de-

scription, discussed more thoroughly in 1.6.1. Now, the RD-borne order parameter,

the number of valleys the spin glass has passed through (nv), which is described in

further detail in the Methods (2.3) is put to test, by discerning ferromagnetic from

spin glass behavior. While it may be a matter of semantics, if being able to delin-

eate between di↵erent dynamics is a meaningful goal, then it can be argued that

understanding aging as as coarsening can be misleading for several reasons. The very

simplest argument is that while there are di↵erent classes for coarsening, there are

not di↵erent classes for aging – if aging is a particular instance of coarsening, then

it would be incorrect to say that all coarsening processes are also aging, which ends

up putting ferromagnetic and glassy relaxation dynamics in the same category [79,

74, 23]. For instance, the coarsening picture is used to arrive at the ferromagnetic

measurement L(t, tw) ⇠
t

tw
in [23] which is then generalized to all of aging since it

reflects history dependence, but also depicts spin glasses and ferromagnets similarly.

As discussed before in this section, and in [81], the two systems have fundamentally

di↵erent dynamics as they coarsen.

Our RD-based order parameter, nv, is more closely tied to the barrier structure

of the energy landscape, and thus the coarsening discussion on systems whose corre-

lation length scales increase with barrier sizes. After all, the structure of landscapes

hugely a↵ects the dynamics of the systems evolving through them, as more complex

energy landscapes can possess a myriad of metastable states to temporarily or per-

manently trap any dynamic process, making periods of relaxation appear kinetically

arrested. Glassy and otherwise homogeneous systems such as a ferromagnet distin-

guish themselves in the manner that fluctuations a↵ect their relaxation dynamics.

In the latter, barriers are comparably low and remain invariant independent of the

depth within the landscape and, thus, of the age of the process. Fewer events, like the

evaporation of a domain in coarsening, happen not because individual events become
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so much harder, but rather because fewer events can happen with fewer domains left.

Larger domains may take a little more time to evaporate, as meandering interfaces

need to find each other and collide, but such an entropy barrier does not dominate

the otherwise domain-size independent energetic barriers [81]. Yet, fluctuations of

any size can bring those interfaces together.

In the glassy system, however, it is the barrier height growing with domain size

that decelerates the event-rate. Although many domains remain available even af-

ter a long aging time, few muster the chance fluctuation required to disintegrate or

shrink the domain. In a landscape with those barriers, ordinary fluctuations be-

come ine↵ective to drive the relaxation process. They merely “rattle” the system

in increasingly longer quasi-equilibrium interludes. Only rare, extraordinary large,

in fact, record-size fluctuations manage to scale such barriers to expel excess heat,

advance the relaxation, and grow domain size, minutely. Record dynamics is inspired

by these very features which are shared across a wide breadth of disordered systems.

In this work, we use a class of Ising spin models with the Hamiltonian described

in equation 1.3, and vary the admixiture p from the glassy state (at p = .5), to wher-

ever clear ferromagnetic behavior emerges in order to interpolate where the landscape

structure undergoes a transition from the glassy to ferromagnetic regime. We only

employ record dynamics after using the “aging” protocol as a diagnostic tool, since

variations in temperature can be used to take a full measure of landscapes. At high

temperature correspondingly higher echelons in energy get explored, while annealing

or quenching is used to trace out a descent through the landscape toward configura-

tions of lower energy. A conceptually simple protocol consists of preparing a system

at a high temperature, where it equilibrates easily, and then instantaneously quench-

ing it down to a fixed, low temperature, to explore how it relaxes toward equilibrium

thereafter. Such an “aging” protocol when applied to systems in a complex energy

landscape, elicits quite subtle relaxation behaviors which keep the system far from a
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new equilibrium for very long times. Anomalously slow relaxation and full aging in a

complex landscape ensues when downward paths are obstructed by barriers, energetic

or entropic, that trap the system in neighborhoods with many local minima.

Our findings confirm that while coarsening is only a specific instance of aging,

aging does not indicate coarsening. The accumulation of record events grows log-

arithmically with time in the glassy regime for both the Sherrington-Kirkpatrick

(mean-field) and Edwards-Anderson spin glass, with a sharp transition at a specific

admixture into the ferromagnetic regime where such activations saturate quickly.

While the test itself is incredibly simple, the implication of these being separate is

that there are intrinsic di↵erences in the structure of the energy landscapes, therefore

elucidating deeper insight into the relationship between landscape morphology and

aging dynamics.

2.3 Computational Methods

2.3.1 Simulation of quenches

The distinction between slow relaxation in glassy versus homogeneous systems is

succinctly analyzed in the simplest conceivable protocol of a hard quench from an

easily equilibrated high-temperature state into an ordered phase, whether glassy or

ferromagnetic, crossing a phase transition in the process. Such a pure aging protocol

has been studied extensively in the last 40 years [23, 20] In this process, the system

is thrown far out of equilibrium, left with an enormous amount of excess heat to be

released to the bath to be able to descent deeper into its energy landscape to reach

states with the appropriate energy.

To facilitate such a quench for the family of Ising spin models considered in our

study, for each instance at time t = 0, we initiate with randomly assigned spins, either

�i = ±1, which corresponds to T = 1, and run the simulation for t > 0 at a low,
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finite temperature. For the family of mean field models, we only vary the admixture

of ferromagnetic bonds minutely, so that the transition temperature does not deviate

much from that of SK, which is known to be Tc = J0/kB where kB = 1 [24]. Here,

we also quench to Tq = 0.7J0 throughout.

We use the Monte Carlo Metropolis Hastings method to evolve the spin glass

through the quench. In each “step”, a spin is chosen to flip by random and this move

is readily accepted if the cost of flipping the spin is negative. If not, then the move

is accepted only with a probability of P = exp ��E

kBTq
. In our simulations, the time is

measured in sweeps, which is equivalent to N steps with N being the system size.

One run generates a time trace, which is coarse-grained based on record fluctuations,

a procedure which is described in detail below. For each value of admixture p in our

investigation, we generate over 104 runs for at least 104 realizations, and average over

the coarse-grained statistics.

2.3.2 Detecting records and introducing the RD order pa-

rameter

To use the RD description, it is necessary to monitor the internal energy of the entire

spin system through its energy trajectory, also referred to here as a “time trace” along

the landscape, after the hard quench. Since the system is expelling energy into some

“bath” to relax, on average, the energy gradually decreases via localized, intermit-

tent events which can then be captured by the coarse-graining framework inspired

by RD. The very general idea is to have the time-trace coarse-grained into valleys

(marked with E in the Figure 2.1) and barriers (marked with B in the same figure),

to mark local minima and barrier crossings, respectively. While there are bound to be

numerous barrier crossings particularly in landscape that is already rugged, this pro-

cedure only retains those rare crossings that correspond to a record fluctuation that

has enabled the system to tumble into the next marginally more stable metastable
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Figure 2.1: Illustration of the definition of valleys. The trace through an energy
landscape produces a time sequence of energy records (Ei) and of barrier records (Bi

), relative to the most recent “Ei”. Only the highest and lowest records of the “Ei”and
“Bj”are kept to give a strictly alternating sequence “... E1B1E2B2 ....” Then, any
sequence “BiEiBi+1 ” demarcates a valley (vertical lines).

state. Discarding the rest of the information, this method is able to keep record

of metastable states the system has evolved through during its descent into distinct

“tiers” of the landscape hierarchy, as depicted in the Figure 1.2. These distinct states

can be considered as macroscopic descriptions that represent ensembles of configu-

rations where dynamics occur in homogeneous time-scales, pictorially encompassed

in a single valley. Therefore, the RD-based order parameter is the number of valleys

encountered nv up to the current time (t), as it also reflects the number of record

events that need to have happened in order to get to a certain local minimum. The

following are the set of rules of coarse-graining the time-traces.

As mentioned before, the time trace is simply the energy value of the entire spin

glass system E(t) as a function of the time, as depicted in the Figure 2.1. With every

accepted move by the Monte Carlo algorithm, there is clearly a new energy value.

To implement this as an algorithm, it is easiest to think of this protocol in terms of

simultaneously identifying pairs of energies – the lowest and highest, signifying the

most extreme fluctuations. As new energy values are generated during the dynamics,



31

the lowest instantaneous energy (E(t)) that is encountered up until time (t) is marked

with an “Ei” where i marks the valley index, and the highest instantaneous energy,

relative to Ei is marked with Bi. At the very beginning of the time trace, we seek

out E1 and B1, to demonstrate.

Immediately after the quench, the first spin flip generates E1 since that is the

only data point we have, and now we need a peak to see an activation in the energy.

However, for as long as the energy decreases with more spin flip dynamics, this E1

is repeatedly replaced with subsequent energies that are lower, such that the system

only has memory of the last minimum. To permanently “lock” E1 in place, there are

two criteria: (1) the barrier height, which is the di↵erence between the most recent

Ei (E1, in this example), and the current energy Et needs to be the highest di↵erence

encountered, and (2) after the peak is chosen, there is an energy, after that peak,

that is less than the previous Emin, to mark the beginning of the succeeding record

fluctuation. In summary, assuming the very beginning of the procedure, there must

be a marking of “E1B1E2” with the last E2 being tentative, and it must be true that

E2 < E1. E2 then gets locked in place in the same way as E1 and B1. Ultimately,

there should be a series in the form of E1B1E2B2...EnBn as shown in Figure 2.1. The

main observable here, nv, or the number of valleys, is equivalent to n – the pairs of

EiBi.

2.4 Numerical results

The results are presented for a class of Ising spin models, that include the Edwards

Anderson spin glass on a cubic lattice, and the Sherrington-Kirkpatrick (mean-field)

model as discussed in section 1.1. Both models are investigated, as conclusions about

one cannot be drawn to the other – the flipping of domains and meandering interfaces

can be visualized in the cubic EA spin glass, but not the SK model since it lacks
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Figure 2.2: Average number of valleys in EA, as defined in Fig.2.1, that are traversed
with time after a quench to T = 0.7J0 in a Ld = 163 spin glass with a fraction
p of ferromagnetic bonds and 1 � p anti-ferromagnetic bonds. For p  0.75, the
generation of valleys evolves essentially independent of p, while for a larger admixture
of ferromagnetic bonds valley generation progresses to cease ever more rapidly and
the number of valleys reached plateaus.

locality. Additionally, it is clear what a homogeneous ferromagnet is in both the

finite and infinite dimensional cases. In both EA and SK, the admixture p = 1.0 by

definition creates a ferromagnet, but it is unclear how many antiferromagnetic bonds

can be in the mixture for the system to still maintain ferromagnetic behavior. Hence,

we analyze a range to interpolate a transition point.

2.4.1 Edwards Anderson Spin Glass

Applying the measure of a valley number defined in Sec.2.3.2 to the cubic Edwards An-

derson model provides a notable distinction between glassy and homogeneous coars-

ening behavior, as Fig. 2.2 shows. For all p < pc ⇡ 0.77, the critical threshold found in

Ref. [60], we find that the valley count progresses logarithmically in time (in fact, like

the root of that logarithm [87], consistent with Eq. (1.4). For larger values of p, the

valley count slows ever more significantly to eventually plateau at a finite value, ap-
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Figure 2.3: Average magnetization per spin, hmi, observed with time after a quench in
EA during the ensuing aging process, as described in Fig. 2.2. Like there, systems with
p  0.75 behave glassy in a p-independent manner with little discernible magnetic
ordering, while the more ferromagnetic systems become increasingly more ordered.
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Figure 2.4: Finite-time snapshots of the numbers of valleys generated (top) and
the corresponding magnetization per spin, hmi (bottom), in EA, as a function of
ferromagnetic bond fraction p for three di↵erent moments in time, taken from the
data at T = 0.7J0 shown in Fig. 2.2 and Fig. 2.3, respectively. The vertical line
at pc = 0.77 indicates the zero-temperature transition found in Ref.[60] between a
spin-glass and a ferromagnetic phase.
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Figure 2.5: Instantaneous rate of record barrier crossing events in EA, as defined in
Fig. 2.1, with time after the quench, as described in Fig. 2.2. Asymptotically, for
larger times, that rate varies as a power-law with a seemingly hyperbolic decline,
⇠ 1/t (dotted line), for smaller p to an almost quadratic decline, ⇠ 1/t2 (dash-dotted
line), for larger p.

parently. All the results shown here were obtained for systems with N = 163 = 8096

spins, using periodic boundaries, since we found very little variation with system size

for larger N .

The fact that the underlying ordered state is either glassy or ferromagnetic af-

fords us to also measure the increase in magnetization with time, as demonstrated in

Fig. 2.3. This measure actually exhibits a more dramatic transition between the glassy

and the ferromagnetic case, as consecutive snapshots of both, of the valley count as

well as the magnetization, are shown in Fig. 2.4 for a progression of times that in-

creases by a factor of 8. In these plots, we have also marked the zero-temperature

transition at pc ⇡ 0.77, which proves well consistent asymptotically with the transi-

tion out of the glassy relaxation behavior.

Finally, we can also look at the instantaneous rate of barrier crossing events, e↵ec-

tively the derivative of the valley production, i.e, inverting the integral in Eq. (1.4).

Indeed, throughout the glassy regime, the rate decelerates roughly hyperbolically, in
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accordance with the RD predictions for a logarithmically divergent valley production.

[Note that this could miss a minor logarithmic correction, such as �(t) ⇠ 1/(t
p
ln t),

for instance, needed to get
p
ln t for the valley production in Fig. 2.2.] For p > pc,

in the ferromagnetic coarsening regime, we notice that the rate falls o↵ increasingly

sharper, ultimately about as ⇠ 1/t2. Consequently, its integral stalls out into the

plateaus seen in Fig. 2.2. Apparently, domain mergers occur more rapidly, on a

power-law scale, in coarsening ferromagnets. Despite the rapid drop in the event

rate, the average domain size manages to increase as a power-law [81], because later

mergers expel larger amounts of excess heat. In case of the glass, each event expels

on average a fixed amount of heat, roughly. Therefore, both valley production and

domain growth proceed similarly (logarithmically), as an integral of the event rate,

since each activation has the same impact.

2.4.2 Sherrington-Kirkpatrick Spin Glass

Here, the coarse-graining framework as applied to the Sherrington-Kirkpatrick spin

glass and the ferromagnet is shown, with Hamiltonian described in Section 1.1. A

family of models are defined, parametrized by ↵, used in p = 1
2 + ↵p

n
, which is the

admixture variable in the bimodal distribution. The reason for this parametrization

is that for the SK model, a subextensive excess of ferromagnetic bonds will very

quickly result in ferromagnetic behavior, so one cannot assume that having half of the

bonds be ferromagnetic will generate glassy behavior. After all, mutual connections

between all spins require the number of ferromagnetic bonds to only slightly exceed

the number of antiferromagnetic bonds, in order to tip the system into becoming

ordered. The transition to the ferromagnetic regime occurs almost immediate beyond

a bond density of p = 0.5, with a strong system size dependence, forcing us to adapt

a di↵erent scale to observe it. To explore a full range of behaviors, ↵ is varied such

that 0  ↵  2.
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Figure 2.6: Instantaneous average valley counts and magnetization in EA as function
of ↵ at di↵erent sweep-times t = 16, 256 and 4096 from left to right, each for three
di↵erent system sizes indicated on the legend. The first row shows the average number
of valleys, and the second row shows the average magnetization. According to this
data, the valley production is time dependent as the sharpness of the transition
becomes more pronounced in the later sweeps. In contrast, the magnetization appears
to be saturated already early on, predicting the critical threshold within 16 sweeps.
Additionally, we see no system size e↵ects when using ↵as the parameter.



37

For our simulation, we look at a system size of N = 2048 spins that are quenched

from infinitely high temperate T = 1 to T = 0.7J0. We implement the Monte

Carlo Metropolis Hastings algorithm (described in the introduction) to generate an

ensemble of time traces, which are then coarse-grained according to RD.

Figure 2.7: Number of valleys traversed during relaxation ensuing after a quench
of SK for di↵erent bond fractions ↵ from a high temperature T = 1 to T = 0.7J0,
averaged over an ensemble of trajectories for N = 2048 spins. In the range 0.0  ↵ 

0.6, the number of valleys traversed grows logarithmically and largely independent of
↵, indicating that the regime is glassy.

Similar to Fig. 2.2 for EA, in Fig. 2.7 we show the numbers of valleys found in

a SK system with N = 1024 spins. There appears to be a critical threshold at ↵c ⇡

0.6. For ↵  0.6, the valley production increases about as log(t), essentially uniform

with bond density, given the nearly perfect overlap in the data. This is no longer case

when ↵ > 0.6, where the production of valleys decreases gradually before plateauing

completely. While domains in the sense of geometric regions of a certain length do

not exist in a mean field system with long-range interactions, individual spins develop

clusters of increasingly ordered local fields with some of their neighbors that entrench

the system into deeper valleys. It becomes increasingly more di�cult for the system
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to overcome the energy barrier of flipping the entire cluster, causing the relaxation

process to evolve logarithmically, as mentioned in the introduction [81].

That said, evidence of a critical threshold suggests that beyond ↵c, the system

changes its landscape dramatically. It exhibits an inclination to order rapidly, facil-

itated by the fact that local fields of individual spins immediately a↵ect all others,

as the evolution of magnetization in Fig. 2.9 suggests. Flat interfaces between such

clusters, as they may exist between domains in low-dimensional lattices like EA, are

absent here and any imbalance in curvature quickly erodes inferior clusters. There-

fore, despite the quantitative di↵erences pertaining to local structure between the

Edwards-Anderson and Sherrington-Kirkpatrick spin glass, our results suggest that

the glassy behavior in both can be attributed to the hierarchical nature of the energy

landscape, and the lack of it beyond the transition to ferromagnetic order, seen both

in Fig. 2.3 and Fig. 2.9.

Figure 2.8: Instantaneous rates for the number of record barrier crossings as a function
of time, for every ↵-value in SK. The instantaneous rate decreases as a power-law
for all but the highest admixture values. In the glassy regime, the decelerations is
essentially hyperbolic (dotted line), while the rate drops more sharply for ↵ > 0.6,
up to roughly t�1.5 at ↵ = 1.6 (dash-dotted line), beyond which further record events
become immeasurably rare.
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Figure 2.9: Average magnetization for SK in the same simulations shown in Fig.
??. According to this measurement, the system begins to order at ↵c ⇡ 0.6, since
a non-zero magnetization in the long-time limit indicates that majority of the spins
have ferromagnetically ordered. The transition in magnetization shown here is far
more dramatic than in the valley counts, but nevertheless a�rms the same critical
threshold.

Figure 2.10: Instantaneous average valley counts and magnetization in SK as function
of ↵ at di↵erent sweep-times t = 16, 256 and 4096 from left to right, each for three
di↵erent system sizes indicated on the legend. The first row shows the average number
of valleys, and the second row shows the average magnetization. According to this
data, the valley production is time dependent as the sharpness of the transition
becomes more pronounced in the later sweeps. In contrast, the magnetization appears
to be saturated already early on, predicting the critical threshold within 16 sweeps.
Additionally, we see no system size e↵ects when using ↵ as the parameter.
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The evolution of valley counts across di↵erent system sizes was also studied, only

to find a minimal dependence of the transition on larger size, as shown in Fig. 2.10.

While the relationship (or lack thereof) between the number of valleys encountered

and the bond admixture exhibits time dependence, the critical threshold with regard

to ordering already emerges after about two hundred sweeps.There is clearly an agree-

ment between valley statistics and the ferromagnetic order parameter in suggesting

↵c t 0.6 as the critical threshold.

Lastly, the deceleration of the rate of record barrier crossing events in Fig. 2.8

were studied. Clearly, the rate decays with a power of time t. While there is a steeper

deceleration in the barrier crossing events for larger ↵-values, the di↵erence between

the exponents is quite subtle on this time scale within our simulations. In the glassy

regime, ↵ < ↵c ⇡ 0.6, the rate clearly decays hyperbolically, as consistent with RD,

whereas it falls o↵ steeper above ↵c. However, for values ↵ > 1.6, the fall-o↵ becomes

so significant that new valleys are not encountered beyond the first ⇠ 100 sweeps.

2.5 Conclusion

This study explored the distinction between glassy relaxation and ordinary coars-

ening, which is often ignored in the description and analysis of aging systems. Fo-

cusing on families of models that interpolate between either extreme, we not only

apply measures [88, 89] that clearly indicate the di↵erence but also show a rather

sharp transition in the nonequilibrium behavior between those extremes that, for

the Edwards-Anderson model on a cubic lattice, appears to coincide with the (equi-

librium) zero-temperature transition between spin glass and ferromagnet [90].The

corresponding transition that we find at a subextensive scale in SK seems to have

been unnoticed. While the distinction we are making between a coarsening (ferro-

magnetic) and an aging (glassy) regime can be seen as semantic, considering that
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both, algebraic as well as logarithmic growing domains, are commonly portrayed as

coarsening [81], the di↵erence in dynamic behavior after a quench is profound. The

picture that emerges is one of a largely convex landscape on one side with invariant

energetic barriers in the case of coarsening, a system that despite its often complex

network of fractal interfaces locally homogenizes rather quickly. On the other side,

we find a very hierarchical landscape [91, 92, 93, 94, 28] with energetic (and poten-

tially entropic) barriers that grow with deeper entrenchment within the landscape,

rendering all but record fluctuations ine↵ective for relaxation. From this study, it

can also be confirmed that the aging protocol can act as ”landscape classifier” that

reflects the complexity of a system (i.e whether or not it needs “feedback” to learn

more about the global landscape). In the future, this kind of analysis can potentially

help understand whether certain landscapes are actually learnable, which can help

inform what kind of questions (depending on the structure of their landscape) can

and cannot be solved by learning algorithms.
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Chapter 3

Hierarchical Landscapes and

Memory

3.1 Summary

The content in this chapter is primarily taken from the pre-print, ”Real-space model

for activated processes in rejuvenation and memory behavior of glassy systems” by

Mahajabin Rahman and Stefan Boettcher, available through this link:

https://arxiv.org/abs/2209.00794. For full disclosure, this manuscript is still under-

going changes after feedback from two rounds of reviews. As this work re-introduces

debates from the early 2000s, we are continuing to reconcile our work with previous

literature, which means that we will further refine our framing of the problem and

hone our understanding as to where our work stands in the debate regarding the

extension of mean field machinery to finite dimensional systems.

In the previous section, we used ferromagnets and two classes of Ising spin models

as our two separate landscape structures and use RD to see if the essential features of

their dynamics, unique to those structures, can be captured with RD. The a�rmation

that RD is a viable alternative to using the growing length scales (an averaged value)
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as a measure of “ordering” also means that coarse-grained rare events can still capture

the most essential dynamics of the system at least as well averaged measurements.

In this chapter, we e↵ectively do the reverse – we use a model specifically designed

to record dynamics, to see if we can infer a hierarchical structure by identifying

rejuvenation and memory e↵ects (signatures of the hierarchy). Ultimately, our study

points out a simple and alternative perspective to the myriad of literature in which

mean field theory is central to memory e↵ects. Thus, both models that are mean field

based, and activated processes based, may be used to study aging.

3.2 Introduction

Memory introduces non-monotonic e↵ects in the relaxation process of some disordered

systems. E↵ects related to memory can be seen through momentarily perturbing

the conditions in which the systems relaxes in. The archetypal example involves a

temperature shift. When a spin glass, for example, is quenched from T > Tg to

T1 < Tg, the spin glass starts to age, as we already know. However, after a second

downward quench from T1 to T2, there is a re-initialization of the aging, meaning

that the spin glass starts to behave like a younger version of itself, hence called

rejuvenation. When the spin glass is reheated back to T1, it is able to recall its

last “state” before the second quench, and evolves from there, proving that it has

memory. This non-monotonic behavior is considered to be rather puzzling and for

that reason, rejuvenation and memory e↵ects, especially in spin glasses, have been

studied in detail [95, 96] especially in the 2000s. In this part of the research, there

are two main points that are addressed: First, another test of record dynamics is

conducted – If one wants to make the claim that RD distinguishes glassy systems

that have hierarchical landscapes, then it is necessary to check whether anomalous

aging behaviors can be reconstructed simply with record dynamics as well. If this is
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successful, then it fulfills the second purpose of this project, which to explain how

aging facilitates memory and rejuvenation with activated processes rather than the

mean field description.

Rejuvenation and memory e↵ects have fully been explained by mean field theory,

which uses all-to-all connected systems like the Sherrington-Kirkpatrick spin glass.

As briefly mentioned in 1.5.1, the physical meaning of analytical results of the SK spin

glass points to there being a free energy landscape that is organized hierarchically.

That is why downward quenches seem to “re-start” the dynamics, precisely because

of the self-similarity as those states. The fact that a complete explanation exists

along with analytic tools, makes mean field theory very appealing for other systems

that as well. However, analytically, it is unclear whether conclusions from mean field

calculations can be applied to finite dimensional systems, such as structural glasses or

amorphous systems. Numerical and molecular dynamics simulations have shed light

on this, and it appears that much progress has been made recently in characterizing

di↵erent phases of behavior in particular for structural glasses in the context of mean-

field replica theory [16, 7]. Remarkably, some of those predictions – from a physical

space with infinite dimensions – are valid all the way down to realistic hard-sphere

systems in a two-dimensional plane [26, 42].

This study takes a step back to note that mean field is only one way of under-

standing aging. A common caveat made in applying those results concern their lack

of including collective, activated processes which are expected to supersede some of

the microscopic dynamics in the glassy regime. Such activated process set in when

significant barriers in the free energy landscape localizes the motion [97, 98], as would

be the case for “caging” in a colloidal glass, for example.

Here, we o↵er an alternative real-space description based purely on activated

processes for the understanding of relaxation dynamics in hierarchical landscapes. To

this end, we use the cluster model, a coarse-grained lattice model of a jammed system,
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Figure 3.1: Increase of (a) MSD and (b) average cluster size with the logarithm
of time, for di↵erent values of � in Eq. (3.1). The results show that motion slows
systematically with increasing �. Panel (c) shows the dependence of the log-slope
A on � in fitting � ⇠ A ln(t) to the cluster sizes hhi in (b), yielding A ⇡ ��� with
� ⇡ 0.7. The inset demonstrates the collapse of the appropriately rescaled data from
(b).

which is also a physical incarnation of RD, to analyze rejuvenation and memory e↵ects

during aging after a hard quench. In this model, neighboring particles on a lattice

aggregate through local interactions into clusters that fragment with a probability

based on their size. Despite the simplicity of the cluster model, it has been shown to

reproduce salient observables of the aging dynamics in colloidal systems, such as those

accounting for particle mobility and displacements. Here, we probe the model using

more complex quench protocols and show that it exhibits the same rejuvenation and

memory e↵ects attributed to the complex hierarchical structure of a glassy energy

landscape [99, 100], and also o↵ers a real space explanation.
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3.3 The Cluster Model

The cluster is a simple on-lattice model that is considered a physical incarnation

of RD, and has been specifically designed [87] to capture the combined temporal

and spatial heterogeneity found in a generic aging system, although it particularly

resembles jamming in colloids [57]. In this cluster model, particles completely fill a

lattice, one on each site at all times. Yet, each particle by itself is either isolated,

forming a cluster of size h = 1 (known as a ’singleton’), or it is jammed in with

adjacent particles as a member of a cluster of size h > 1. Isolated particles (h = 1)

possess independent mobility, those in clusters with h > 1 are locked in and require

activation to become mobile. At the time of the quench, t = 0, all particles are

mobile, owing to the prior “liquid” high-T or low-density state of the system. When

a site is picked for an update at any t > 0, there are two possible outcomes, depending

on the state of the particle on that site:

1. (h = 1): A mobile particle interacts with a random neighbor and both exchange

position, the basic unit of mobility in the model. Whether that neighbor itself

was mobile (h = 1) or already part of a larger cluster (h > 1), the addition of

the mobile particles now leads to a (jammed and thus immobile) cluster with

h0 = h+ 1 > 1.

2. (h > 1): An immobile particle jammed inside a cluster of size h > 1 may

activate an event with an h-dependent probability per sweep [101],

P (h) / e��h. (3.1)

If it occurs, such an event will break the cluster and create h newly mobilized

particles.
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3.3.1 How the cluster model represents RD

Following a quench out of the liquid state of mobile particles, clusters form and break

up irreversibly to re-mobilize and re-distribute their particles to neighboring clusters.

To put this in terms of the record dynamics framework, the breaking of a cluster

can be considered a “cage breaking” since particles quite physically become released

from the cluster they were a part of. Once there is cage breaking, a large fluctuation

that represents the change in free volume (as opposed to change in energy, like the

previous section) marks a “record” event. Initially, at the start of the quench, there

is a transient period im which clusters break up and accrete quickly, until gradually

there is jamming-like behavior – (i.e the average cluster size hhi is large enough

that it does not collapse in a short time scale). For a su�ciently large value of the

external control parameter � (that acts as a density or an inverse temperature), a

large fraction of particles soon accrete into jammed clusters that only intermittently

break up and almost instantaneously feed their particles into ever fewer, and thus ever

larger, neighboring clusters, which in turn necessitate ever larger and thus ever more

rare fluctuations, requiring a time exponential [81, 29] in the size of those clusters.

The e↵ect of all regular fluctuations that only rarely achieve such a significant

event beyond reversible in-cage rattle is coarse-grained into P (h) in Eq. (3.1). Clus-

ter growth ultimately decelerates the dynamics, since only larger and fewer clusters

remain, which signifies the slow structural changes that characterizes aging.

Despite its simplicity, the model has already been shown to reproduced [57, 102]

salient experimental [53] and simulational [103] results for quenches in colloids. In

particular, the two-time mean-square displacement (MSD),

� (t, tw) =
1

N

NX

i=1

⌦
|~ri (t) � ~ri (tw)|

2↵ , (3.2)

was shown to grow logarithmic as � (t, tw) ⇠ A ln (t/tw), depending on the waiting
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time tw after the quench when the measurement commences. In RD, this is a direct

consequence of the ⇠ A/t decline in the rate of cluster break-up events (such a rate

for irreversible events was explicitly verified in experimental data for aging colloids

[57]). In Fig. 3.1, we also demonstrate that the proportionality factor A is a function

of �, similar to what has been observed for domain growth in spin-glass simulations

[104], granular compaction [17], but also for MSD in colloidal experiments at di↵erent

densities [57].

3.4 The waiting time method

This method orders all possible events in a chronology based on their probability of oc-

curring as shown in Eq. (3.1), thus avoiding rejected moves that occur in conventional

Monte Carlo algorithms. Given Eq. (3.1), newly freed particles will join clusters on

sub-sweep time scales, meaning that each cluster break-up event will typically moves

many particles nearly simultaneously. That said, this method can rapidly telescope

into the future within just a few update steps when break-ups become rare, which

allows us to explore longer time scales > 1010 sweeps. The waiting time algorithm is

the following:

(1) First, assign a global time t. Prior to any event, while all the clusters have size

(h) of 1, the global time should be set to t = 0. This global time is updated every

time in the event from the queue occurs.

(2) To create a queue, each of the k clusters is assigned a survival time, {� ti}
k

i=1,

based on its current size hi according to [105]

� ti = � log(Xi)/P (hi), (3.3)

with P (hi) as given in Eq. (3.1) and made stochastic by employing a random number

Xi sampled from a uniform distribution.
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(3) Then, the cluster with the lowest �tmin = mini {�ti} is selected to determine the

event which takes place, which is either a cluster break-up or an accretion depending

on the size of k cluster. After the system reconfigures according to the event selected,

the global time is then updated to t+ �tmin.

(4) Clusters which have been modified due to the selected event are assigned a new �t.

For example, if the event was a breaking of a cluster, then each of the freed particles

are each assigned a new �t, which are all expected to be very small, so they are still

in the front of queue, which means they will make their moves, before other events.

On the other hand, if the most recent update was the growth of a cluster, then the

whole cluster gets assigned one �t, which will most likely be larger than the previous

�t, placing it closer to the end of the queue.

(5) With the updated queue, repeat step (3).

3.5 Simulation Results

3.5.1 Rejuvenation and Memory

In Fig. 3.2, this simple model is shown to be capable of exhibiting both rejuve-

nation and memory e↵ects, under the temperature shift protocol. Following Ref.

[Scalliet19], we employ the MSD given in Eq. (3.2) to define a dynamic susceptibil-

ity function

� (tw,!) = ��
�
tw + !�1, tw

�
, (3.4)

where ⌧ = !�1 sets a time-window over which the decay of the instantaneous mobility

at time tw is assessed. This function allows us to measure a ”rate” of activity, rather

than accumulated activity like total mean squared distance (MSD), which would

allow easier comparison of the dynamics at di↵erent times. Note that in the case

of both structural glasses and our model, the parameters to generate the typical
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Figure 3.2: Rejuvenation and memory e↵ects produced on an L = 64 square lattice
subject to a temperature cycle. The system at tw = 0 undergoes a hard quench to
�1 = 0.5, ages until time (in sweeps) t1 = 50, when temperature is reduced once more
to �2 = 5. After aging further until t2 = 500, it is reset to �1. In (a), the susceptibility
� defined in Eq.(3.4) is plotted as a function of tw using ⌧ = !�1 = 2 ⌧ t1. In turn,
(b) shows that �, when reheated at t2, is a continuation of the dynamics from the
system prior to the second quench at t1. Both can therefore be “stitched together”.
In (c), a physical depiction of the situation is provided. The top row shows the cluster
formation on the lattice (di↵erent colors indicate separate clusters). The bottom row
shows the corresponding lattice configuration, here color coded with the survival time
�t for that cluster to collapse. The region most a↵ected by the quench at t1 is circled
in all the snapshots. There, some cluster of size h = 22 happens to break up and
solely its freed particles are able to move during a time window of size ⌧ = 2 after t1.
Right before the lattice is reheated, we see that many of those particles integrated into
surrounding clusters, while the remaining ones assembled into a newly formed cluster
(yellow), with a longer survival time. Once reheated, the cluster-size distribution is
almost identical to the first column, which is why the dynamics seems to pick up
where they left o↵ prior to the second quench.
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rejuvenation and memory picture (referring to Figure 3.2) require the system to be

in a marginally stable state in order to find any dynamics at all deep into the aging

regime. In the study that we compare our work to (Scalliet et al., [99]), the marginally

stable state was found using a very specific temperature and age of the system, in

order to make sure the quench was done right at the cusp of a cage breaking event.

The significance of the marginally stable state is discussed in more detail after this

chapter in Section 4.2.1.

To produce the statistics in Figure 3.2, the initial quench occurs from an infinite

temperature (� = 0) to �1 = 0.5. At that point, � drops as a function of tw, using

a window size of ⌧ = 2 (in sweeps), while the system is aged up to t1 = 50 sweeps.

At that time the system has developed a Poissonian cluster-size distribution with

average cluster size reaching about hhi ⇡ 30, see Fig. 3.1(b), leaving a number of

the smallest and most marginally stable clusters below that size most likely to break.

In fact, as illustrated in Fig. 3.2(c), a fraction of those clusters are in the process of

steadily collapsing at time t1 in a large enough system.

At time t1, a further quench of the system is performed, down to �2 = 5. At this

much reduced temperature, only clusters below the corresponding average cluster

of hhi ⇡ 3, as shown in Fig. 3.1(b), would qualify as unstable on this time-scale.

Clearly, all of the existing clusters are much too large and are completely frozen at

this temperature. Only those currently freed particles from the cluster break-ups

that are already in progress can contribute to the instantaneous mobility in this part

of the temperature cycle. This small but extensive fraction of mobile particles, in

turn, relives the entire history of an aging system freshly quenched to �2, within the

background of otherwise frozen clusters. As in Ref [Scalliet19], the overall reduction

in mobility� is partially compensated by the relative factor of � (here, �2/�1 = 10) in

the definition of � in Eq. (3.4). Thus, � “rejuvenates”, immediately jumping up above

the previous level reached before t1, before decaying itself. When the temperature is
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(a*) (b*)

Figure 3.3: MSD in the soft sphere system studied in [99] and MSD the cluster model.
The top panel enclosed by the dashed red line shows the results in the original Scalliet
et al study. On the bottom panel, (a) after quench to �1 = 0.5 (without subsequent
temperature changes) and (b) after a subsequent quench at t1 = 50 to �2 = 5.0, in the
cluster model. In both cases, the quenched system is aged up to certain waiting time
tw, before the dynamics of the particles are measured relative to the configuration
at tw as a function of lag-time ⌧ = t � tw. Both (a) and (b) show the characteristic
dependence of MSD on the age tw. For (b) this implies that the second quench
actually rejuvenated the system, albeit at a much lower mobility due to the lower
temperature.

then reset to �1 = 0.5 after t1 + t2 = 100 sweeps, the impact left by the rejuvenating

sub-system had a minimal e↵ect on the entire system. Merely those clusters already

breaking up at t1 advanced minutely. Accordingly, its instantaneous mobility returns

to the level frozen in at t1.

3.5.2 Replication of results from soft spheres

Since this study was mostly inspired by a 2019 PRL by Scalliet and Berthier [99],

in which the dynamics of soft repulsive spheres were used to look for rejuvenation

and memory e↵ects in order to confirm similarities to mean field spin glasses. As
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a validation of rejuvenation, Ref.[99] compared the age-dependent (two-time) MSD

observed following the initial quench to �1 with the MSD found after the second

quench to �2 while using its starting point t1 as the new origin of time.

Indeed, in Figure 3.3 (a* and b*), they demonstrate that in both measurements

the two-time MSD behaves analogously, as if t1 was an entirely independent quench.

To replicate these results in RD, the same setting as in Fig. 3.2 is used in the cluster

model, but with a simple quench to � = 0.5. Now, the system is aged (without second

quench) up to various waiting times tw to measure MSD � (tw + ⌧, tw) for the lag-time

⌧ = t � tw. This data is plotted in Fig. 3.3(a), which reproduces Fig. 3 of Ref.[99].

It demonstrates that a system that was aged up to a time tw remains confined for

a corresponding time / tw before exhibiting any discernible MSD. Incidentally, this

fact, as well as a collapse of this data as function of t/tw, was previously explained for

experiments on colloids in terms of RD in Ref.[57]. Although mean-field arguments

would suggest that MSD after a transient should saturate at long times [106], the

existence of activated dynamics in real systems induce further (logarithmic) growth.

More importantly, the rejuvenation e↵ect seen in Fig. 4(a) of Ref. [Scalliet19]

is captured for the cluster model in Figure 3.3(b) which presents the two-time MSD

of particles for several tw during the second stage of the temperature cycle. Having

undergone the initial quench to � = 0.5, the dynamics are evolved up to time t1 = 50

sweeps, at which time the system is cooled down even further to � = 5. Once

the particles are quenched to the second temperature, they are aged up to a given

waiting time tw, now taking t1 as the new origin of time. As above, the dynamics

are measured as a function of lag-time ⌧ = t � tw for each tw. While the MSD after

the second quench di↵ers by a magnitude compared to Fig. 3.3, the tw dependence

shows that rather than continuing the dynamics from the prior quench, the process

re-initializes and dynamics are refreshed based on tw, the age of the system following

the second quench at t1. It is apparent from this analysis that in the cluster model
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Figure 3.4: Demonstration for the end of of memory. The protocol for demonstrating
the end of memory is shown here. In the most left panel, the matching highlighted
colors of the � values and highlighted parts of the energy trace, show that the quench
determines what parts of the landscape the system can explore. In (a), we measure
the MSD �(t1+⌧, t1) for particles in the cluster model initially quenched to �1 = 1.0,
then aged for t1 = 25 sweeps, when it undergoes the second quench to �2. The
system remains entrenched in its metastable state attained at t1 for a time ⌧ = ⌧2
that depends on �2, before significant displacement occurs that erases the memory of
that state. In (b), this data collapses when ⌧ is rescaled according to Eq. (3.5).

the intervening quench to �2 (if it is not excessively long, see below) leaves little mark

on the large fraction of frozen-in clusters, which on re-heating at t1+ t2 continue their

mobility where it froze in at t1.

We note that, unlike in Figs. 3 and 4(a) of Ref [99], the coarse-grained motion

in our model by design eliminates both, the (trivial) initial ballistic motion and the

subsequent rattle particles experience at the shortest times while confined within their

cages. Thus, the lower plateau visible for the continuum MD simulation there, due to

rattle within a finite-sized cage, is strictly zero for particles that are bound to discrete

lattice sites until an event occurs.

3.6 Predictive power of the cluster model

Finally, we point out that the cluster model reproduces other properties predicted for

systems exhibiting rejuvenation and memory e↵ects. For instance, for spin glasses it

was shown in Ref.[97] that the memory e↵ect may diminish for a very long, intervening
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rejuvenation stage. In Fig. 3.2, the system ages from the initial quench at temperature

�1 and at t1 has entrenched itself in a metastable state of some free-energy barrier

�F . To escape the memory of that state at �1, a record fluctuation is needed,

which according to RD typically occurs at time ⌧1 ⇡ t0 exp {�1�F} with ⌧1 ⇠ t1,

where t0 is some system-specific microscopic time. Quenching anew at t1 from �1

to �2 leaves the system even deeper entrenched within that state, now needing a

time ⌧2 ⇡ t0 exp {�2�F} to escape and loose its memory. Thus, reheating at a time

t2 � ⌧2, i.e., a time beyond

⌧2 ⇠ B t�2/�1
1 , (3.5)

with some constant B = t1��2/�1
0 , memory will have been lost. In Fig. 3.4, we demon-

strate this e↵ect in the cluster model.

3.7 Conclusion

The main takeaway from this study is that in addition to mean field tools, activated

processes can purely account for rejuvenation and memory. The cluster model, despite

being extremely minimal, reproduces the macroscopic observable rejuvenation behav-

ior of the structural glass studied in Ref. [99]. However, some of their conclusions can

be qualified. For one, that these results fit well with predictions of mean-field theory

should not necessarily be taken as evidence that all aspects of the theory apply to real

systems. As our dramatically simplified model suggest, an elementary description of

the requisite hierarchical landscape features [57] may exist that the much more intri-

cate mean-field theory also happens to provide. It does not follow that all aspects of

that theory apply. Rejuvenation and memory by themselves are not even su�cient

to imply glassy behavior [96].

In Scalliet paper, it is suggested that all particles partake in the rejuvenation

phase, i.e the entire system resets. Clearly, in the cluster model, rejuvenation works
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because majority of the system freezes at T2, whereas a subset of particles are mobile,

but slow down with tw thus leading to MSD decay. At first glance, it may seem that

the cluster model does not actually rejuvenate – however, a closer look at the Scalliet

study reveals that the MSD shown is in cage rattling, which is course-grained out in

the cluster model. While this may appear as ”featureless” and therefore homogeneous,

it has been shown that the actual irreversible events that drive relaxation during aging

are highly intermittent and localized [55], and are likely hidden deep within the large-

�r2 tail of those pdf. This heterogeneity is exactly what is captured by the break-up

of clusters in our model, after coarse-graining out the in-cage rattle, as that rattle

only rarely amounts to meaningful (record-sized) displacements [107].

Lastly, like in other structural glasses, demonstrating rejuvenation and memory

e↵ects does require calculating the marginally stable states, where clusters are on the

cusp of breaking. When the temperature is changed exactly at a marginally stable

state, a collapsed cluster will then have self-similar events on a smaller length scale

and faster time-scale. While not addressed in this study exactly, it is clear that being

able to understand and target marginally stable states is pivotal if one wanted to

”trigger” record events. In the next section 4, marginal stability is an underlying

theme that is studied through driven methods such as hysteresis.
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Chapter 4

Creation of critical avalanches

4.1 Summary

The Sherrington-Kirkpatrick model has special properties – its dynamics specifically

chooses ground states that are marginally stable (and not just meta-stable). Through

hysteretic driving, the marginally stable spins become mutually frustrated with one

another, which ends up facilitating criticality. In this work, we introduce modified

versions of hysteretic driving to trigger criticality in a sparse system (the cubic Ed-

wards Anderson lattice) using what we know about the mechanism in which mutual

frustration arises in SK.

4.2 Introduction

Through studies of relaxation processes in the in non-equilibrium systems in the pre-

vious sections of this thesis, it has been reinforced that avalanches drive the complex

evolution of a system through successive metastable states, determining the time-

scale and length-scale (if in real space) of the system’s dynamics. However, it has

not yet been emphasized that equally pertinent as avalanches, is the way in which

they arise. In the naturally occurring processes discussed, like aging, the avalanches
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are brought on by a series random fluctuations within the system with a probability

of P = 1/t. These large avalanches are possible due to marginal stability, which de-

scribes the state of the system when the smallest perturbation can initiate collective

behavior. In terms of the cluster model discussed in section 3 or the soft sphere model

in [108], it is immediately prior to a cluster collapsing and subsequently launching a

period of increased mobility, or soft spheres about to undergo an abrupt cage breaking

after a period of localized vibrations, respectively. Various studies in the past have

articulated that marginally stable states are non-generic and their basins have special

characteristics within the energy landscape: For example, [109] points out that the

energy landscapes structural glasses evolve through have varying regimes which can

be accessed by tuning temperature and packing structures (densities) of the glasses.

Depending on those parameters, the glasses may be in the vicinity of the jamming

transition where collective excitations help overcome complex barrier structures, or

further from the jamming regime where there are low frequency localized excitations,

resembling two-level systems [110, 111] where a system has e↵ectively one barrier

which can be su�ciently small for tunneling. In addition to the transitions within

the landscape, [109] also demonstrates that whether or not a glass/amorphous system

evolves through the marginally stable state depends on the nature of the glass itself,

such as its density, preparation history and previous states. To some extent, the dis-

cussion around marginal stability in SK mirrors this point as well. [112] discusses the

widely held notion of the Edwards hypothesis, that the ground state which the SK

spin glass converges to is based on entropy maximization, is incorrect – in fact, the

SK dynamics specifically chooses a marginally stable state with specific properties

that will be discussed quite extensively in this section. Therefore, the characteristics

of a local minimum, whether it is a marginal state or not, determines the nature of

its avalanche – i.e how large it will be, whether it will have a characteristic length

scale, and so on. This is particularly important for driven disorder, where avalanches
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can be triggered, but understanding the relationship between the marginally stable

state and the driving mechanism can help better tune the distribution of avalanches.

From the two previous projects, it is clear as to why being able to tune to

marginally stable states is useful - in fact, in [99], parameters to create rejuvena-

tion and memory e↵ects in the first place are chosen based on [109], from a phase

diagram mapping the evolution of glasses from di↵erent preparation states to marginal

stability. An even simpler point is that if one had the power to skip over the states

where there is no activity and skip to the marginally stable state, then this can po-

tentially be used to create adaptive optimization heuristics as well for problems that

have intrinsically di↵erent landscapes and accompanying barrier structures.

In this section, we zoom in on the marginal stability in the SK spin glass in more

detail, in particular the manner in which its interesting properties came into obser-

vation as this background directly influences our problem formulation in the later

section 4.2.2. Just as the research on aging in section 1.6.1 was first contextual-

ized through the coarsening of interfacial dynamics, the exceptional properties of SK

convergence to metastable states can be contextualized through driving interfacial

dynamics [64]. The latter is typically interesting due to a phenomena known as the

depinning transition – this is when a continuous external force f is driven through

media with quenched disorder, but the force has no e↵ect on the interface because it

is ”pinned” and will only move when the force reaches f = fc, where fc is a critical

threshold proportional to the degree of disorder. As an external force approaches fc

from eiher f < fc, or f > fc, the system undergoes movements in the current interface

with specific patterns in its morphology (depinning in the random field Ising magnet

(RFIM) creates percolating fractals, for example), that can be described with scaling

exponents expressed as (f � fc)�/f [113]. This interface behavior was considered to

be a generic consequence of moving boundaries in quenched disorder media, until

the hysteretic behavior of disordered ferromagnets and spin glasses proved otherwise
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[114, 115, 116]. When exposed to a gradually varying external magnetic field, (H,

which would act as a force (f) in comparison to the depinning studies), new pinned

configurations are generated without any threshold equivalent to fc. This behavior,

termed Barkhausen noise, consists of avalanches of spin flips that follow a power law

distribution, and appears everywhere along the hysteresis loop [63, 115, 64, 117].

Given the lack of tuning required to achieve this e↵ect, these systems from which

Barkhausen noise generates were arguably considered to exhibit self-organized criti-

cality (SOC) [118], described in more detail in the introduction in section 1.6. The

validity of calling Barkhausen noise as a manifestation of SOC has been debated, as

arguments pointed out that the SOC is a consequence of the infinite range of interac-

tions, rather than self-organization [62, 119, 64]. However, this debate is outside the

scope of this work; while it is possible that is a matter of semantics, it does bring up

the question of how di↵erent driving mechanisms changes the dynamics within the

magnet. Thus, more pertinent to our purpose here are studies conducted on random

field ferromagnets at various levels of disorder, like in the recent work by Spasojević

et al and references therein, in order to understand how di↵erent driving mechanisms

e↵ect the distribution of avalanches [120]. In this study, we analyze three di↵erent

driving mechanisms in the SK and EA spin glass, unlike previous studies which focus

on random field ferromagnets or sandpile models [120, 121]. We choose the SK and

EA spin glass models specifically because “traditional” hysteretic driving has shown

that unlike SK, hysteresis on EA does not generate critical avalanches [65]. Rather

than having a power law, EA avalanches are sub-extensive, and follow an exponential

distribution which can be explained by the fact that interactions are only neighbor

to neighbor. Therefore, EA cannot be critical with the traditional hysteretic driving

method.
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4.2.1 Marginally stable spins and mutual frustration: A Case

Study with the SK model

Careful consideration of the most marginally stable spins before the next ramp-up

dH in the external field H attributed the critical behavior to the mutually correlated

state these spins attain within SK [112, 68]. To first define the terms, stability (hi)

of a given spinsi with the external field Hext is

hi = si(
NX

j

Jijsj +Hext) (4.1)

as a measurement of the spin’s overall frustration with its local environment. To be

marginally stable, the minimum stability allowed is 0. It turns out that in certain

systems, the distribution of stabilities P (h) have a rather distinct shape, particularly

in the h << 1 regime, where there happens to be a linearly vanishing density of states

towards h = 0. Here, a “pseudo-gap” emerges, which is bounded by an exponent ✓

in the form of

P (h) = Ah✓ +N
�✓
1+✓ (4.2)

For the SK spin glass, that ✓ = 1 only for near-zero local fields. We emphasize the

characteristics of P (h) in this case, because it does not dynamically emerge based

on adopting configurations which maximize entropy, but rather, out of all metastable

configurations the SK spin glass can converge to, its dynamics specifically select a

marginally stable state, whereas generic metastable states have P (0) not occupied by

some small number [112].

Such a marginally stable state allows for the dynamic emergence of mutual frus-

tration. During the relaxation process to a marginally stable state, which is simulated

using gradient descent at T=0, the spins with negative stabilities will flip sequentially.
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Yan et al [68] gives a rather clear analysis using a random walker as an example:

Closer to the “steady state”, we know that the weakest spin has a stability that is

to the order of ⇠ 1/
p
N . The change in this spin’s stability will then be �h = 2h

so h0 = �h 1/
p
N so the main point is that the newly stable spin will still be a

near zero local field. Once this spin flips, all the spins that are frustrated with its

current orientation will drift towards instability by �2Jijsisj ⇠ �1/
p
N , while spins

that are satisfied will move by 1/
p
N towards the right of the distribution. Each

time there is a spin flip, this keeps repeating — After some time, the weakest spins

will be the ones that have drifted from right to left due to increasing frustration with

newly flipped spins with stabilities < 1/
p
N . So, a group of mutually frustrated spins

emerge dynamically in the linear portion of the P (h) distribution.

This is what sets apart systems that display criticality versus those that do not.

Mutual frustration ensures correlated behavior – if one were to impinge on any of

the weakly stable spins, then it is likely to launch of series of spin flips. The e↵ect

of impinging marginally stable spins on mutual frustration, is what inspires our new

driving methods, which are meant to create extensive critical avalanches.

The particular emergence of mutually frustrated marginally stable spins in the

SK model is tied to the traditional hysteretic procedure. Broadly, studying Ising

spin glasses along a hysteresis loop at zero temperature involves slowly ramping an

external magnetic field Hext until a spin becomes destabilized (�i < 0) [63, 122, 67,

123, 68]. The process of relaxing the system following an update of the external field

will then involve flipping a causal sequence of destabilized spins, thus creating an

avalanche that lasts until all spins are again stable (�i > 0 for all i). This relaxation

and destabilization protocol then repeats until magnetic saturation is reached, unless

some other termination condition is specified. This protocol is referred to as being

’adiabatic’ [120], as it implies a continuous external triggering mechanism that is

only applied to initiate an avalanche, but is absent otherwise, which is of course only
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realistic in simulations. This protocol also reveals other manners in which properties

of marginally stable spins are distinct. The typical ramp dH needed to dislodge the

next most-unstable spin in SK is ⇠ 1/
p
N while it is ⇠ 1/N for EA, which is easy to

show [68]. Thus, comparing the critical behavior of SK and lack of critical behavior

in EA in this driving mode seems inconsistent. In either case, as mentioned in [120],

those ramps also appear to be unphysical, considering that in a real experiment one

would likely advance the external field via a fixed, constant dH that destabilizes at

once a large (sub-)extensive set of spins. This is because advancing the field by an

increment small enough to trigger exactly one (or a few) of the spins employed in

simulations seems rather di�cult in reality [67, 120] and is conducive to deterministic

behavior.

4.2.2 Problem Formulation

In a stable configuration, it is hi > 0 for all i in Eq. (4.1), with the most unstable

spins being the smallest. These populate the low end, h ! 0, of the distribution of all

stabilities, say, P (h) ⇠ �✓ for some ✓ > �1. Then, the fraction of spins with stability

hi < h is given by n(h)/N =
R

h

0 dh0P (h0) ⇠ h✓+1. Thus, the typical spacing in stability

between the weakest spins is given by dh ⇠ N� 1
1+✓ and, accordingly, to dislodge just

one (or a finite number) of spins, we need to ramp the field by dH ⇠ N� 1
1+✓ [68]. For

SK, it is well-known that ✓ = 1
2 [124, 112, 125], meaning that dH ⇠

1p
N
on average for

the adiabatic procedure. For EA it is ✓ = 0 [125], which makes the di↵erence between

consecutive weakest spins, and thus the ramp needed to dislodge a finite number of

them in the adiabatic procedure, scale as dH ⇠
1
N

instead. For any realistic driving

mechanism applied in an experiment, it stands to reason that dH would be a constant

value independent of N [67, 120].

Here, we use two methods in which SK and EA spin glasses can be compared side

by side. Two of those methods are N-dependent and are based on what we already
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know about the adiabatic protocol. Instead of continuously ramping the external

magnetic field until the weakest spin is destabilized, the external magnetic field is

changed in fixed increments of dH = 1/N, dH = 1/
p
N and finally, in dH = c, where

c is some constant value. This last mode is bound to introduce more stochasticity to

the driving method, while the other two will produce deterministic behavior for SK,

and only introduce some stochasticity to EA through dh = 1/
p
N . It should be noted

that there is very little di↵erence between the adiabatic driving of EA or SK that

results in an average hdHi ⇠ 1/N or hdHi ⇠ 1/
p
N , compared to the static driving

methods (1) or (2) with constant c, resp. For larger N and small enough c, at most a

vanishingly small number of spins ⌧ N is triggering each avalanche, and the results

remain asymptotically unchanged from those found in earlier studies with adiabatic

driving [122, 123, 65, 68]. Further, if we drive SK with method (1), almost always

no weak spin is in reach of a change dH, resulting in many empty avalanches, since

typically ⇠
p
N such updates are needed to dislodge the next weakest spin. Thus,

aside from those empty avalanches, driving method (1) for SK will not be di↵erent

than method (2). Only if we drive EA with method (2), or EA and SK with method

(3), could we expect new results di↵erent from those earlier studies.

After we compare the e↵ects of each of these three driving modes applied to both

models, SK and EA, we find that the N-dependent driving modes have no e↵ect on

SK, as the distribution is left unchanged. The N-independent driving mode creates

broader distributions for the SK model, which remains critical until dH is large enough

to generate super critical avalanches. On the contrary, N-dependent driving modes on

the EA generate exponential avalanche distributions within a relatively narrow range.

Increasing constant rates create increasingly broader distributions, but the shape of

these distributions ultimately have system size dependence as well, and therefore does

not achieve critical avalanches. Even though the N-independent method does not

produce critical avalanches for EA, we look for possible correlatedness by identifying
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a ramping rate that creates a percolation transition.

4.3 Models and summary of methods

We study spin glasses with the Hamiltonian in 1.1 with couplings Jij assigned from

a Gaussian distribution with variance hJ2
i = 1

N
for the SK model, and hJ2

i = 1
2d for

the EA model. In the following, we only consider the cubic case (d = 3) for EA. The

stability hi of each spin si takes into account its coupling with the global external

field Hext and with the local field imposed by its neighbors sj through their mutual

bond Jij, as incorporated in equation 4.1.

Using the logic described in section 4.2.1, we use three driving modes to look at

the avalanche distribution sizes for both SK and EA models. Unlike the traditional

adiabatic protocol, these driving modes do not involve continuously changing the ex-

ternal magnetic field until the weakest spin destabilizes. With the adiabatic method,

the average interval (dH) ends up being 1/N for EA and 1/
p
N for SK, based on the

h ! 0 regime of the P (h) distributions. Our driving methods are almost identical

to the adiabatic method, except we keep a fixed interval dH at which the magnetic

field is changed. All three driving methods are initiated in the same manner. Once a

bond matrix corresponding to one of the two models is generated, we assign all spins

a positive orientation to start with a fully magnetized system. To ensure that this

initial configuration is stable, we calculate the original stability values h without an

external field, and select an external field H > hmin. After this initialization process,

the stability values always incorporate the external magnetic field H. First, the ramp

is decreased and thus moves in a negative direction in fixed increments of dH. The

ways in which we select dH is what ultimately distinguishes the three modes that we

explore here:

(1) In the first mode, dH = c/N , where c is fixed to 1.



66

(2) In the second mode, dH = c/
p
N , and c is fixed to 1 here as well.

(3) In the last mode, dH = c where c is a range of values from c = 0.05 to c = 0.8

(we tried higher values that do not give us more fruitful information and therefore

decided not to include them here). We decide to explore a wide range of c values to

look for potential transitions through a critical point, in which long-range correlations

become possible.

We search for transitions in the models in two ways: through avalanche distribu-

tions, and through a percolation transition. We know that for SK the avalanches are

already critical, but we search to see at what point the avalanches become supercrit-

ical.

4.4 Comparison of Avalanche Distributions

In an all-to-all connected model such as the SK, it is likely that given enough mutual

frustration [68], even the weakest spin will launch a cascade of spin flips. However, in

sparse systems where the weakest spin may be connected only to its closest neighbors,

the system will relax rather quickly due to a lack of long range correlations in frus-

tration. Accordingly, it has been found that SK achieves a SOC state [122], whereas

EA exhibits only relatively narrow avalanches [123, 65].

Figure 4.1 shows the distribution P (n) of avalanche durations n for the cubic EA

lattice and the SK model. The duration n here refers to the total number of spin

flips during an avalanche. For adiabatic driving modes, (1) for EA and (2) for SK,

the dependence of the ramping rate dH on N ends up imposing an unequal compar-

ison between the two models. Thus, we force the driving modes to be the same to

create a side-by-side comparison. In Fig. 4.1, from top to bottom, panels in each row

correspond to modes (1), (2), and (3), while the left column refers to EA and the
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Figure 4.1: The left and right column show distributions P (n) for avalanche durations
n (duration is measured by the number of spins that flip) along the hysteresis loop
of the EA and SK model, respectively. In each row, (A) and (D) show the resulting
P (n) for a ramping rate of dH = 1/N and (B) and (E) for dH = 1/

p
N , for a range

of system sizes N . In the bottom row, (C) and (F) show P (S) for dH = c at di↵erent
strengths c at system size N = 1000. Ignoring empty avalanches (D) and (E) for SK
are indistinguishable, each showing power-law decay and the size-dependent scaling in
the cut-o↵ characteristic of self-organized criticality (SOC), which is absent in (A) and
(B) for EA with an exponentially decreasing P (n) where only the sizeable number of
uncorrelated spins triggered (⇠

p
N) at each ramp dH a↵ects a perceptable shift. For

the size-independent ramp dH = c, broader avalanche durations arise in both models
with only little sensitivity to c. For the SK model, we see that there is eventually a
supercritical transition that leads to a second peak in the distribution at the largest
c value. For EA, we notice this peak becomes pronounced much earlier at smaller c
values.
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(a) (b)

Figure 4.2: The distribution of avalanche durations are shown for di↵erent system
sizes, with the ramping rate fixed to dH = .25. (A) shows the statistics for the EA
cubic spin glass, and (B) the SK spin glass with the inset showing the collapsed curves
corresponding to (B). For (A), there is a mixture of distribution shapes that demon-
strates finite size e↵ects, as N = 216 follows an exponential, N = 1000 resembles a
power law, but for N > 1000, the distributions show a peak near n ⇡ 103 instead of
an exponential cuto↵. For (B), every curve follows a power law, P (n) ⇠ n�⇢ with
⇢ = .9 with an exponential cuto↵ at n⇤ that scales with N� where � = 1.0. The
exponents � and ⇢ are used to collapse the distributions.

right column to SK. As Ref. [68] noted, the SK displays critical behavior all along

the hysteresis loop, which is why there is consistently a power law distribution of

the avalanches irrespective of the actual driving. Even when driven in mode (3), a

power-law distribution of avalanche duration persists, see panel (F). A fixed dH = c

in SK means that every ramp typically dislodges ⇠
p
N spins simultaneously, which

according to panel (F) creates only marginally broader avalanches as shown in Figure:

4.2 compared to the modes (1) and (2) when N = 1000. We also identify the expo-

nential cuto↵s (n*) using a similar method to [122], by finding the crossover point

from power law to exponential. Then, we find the dependence of n⇤ on N, which is

n⇤ ⇠ N� where � = .9. This relation is accounted for in the more precise finite size

scaling form,

P (n) = An�⇢d(n/N�) (4.3)

where ⇢ = 1, A is an N dependent prefactor, and d is a function of n and the cut o↵
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N�. Since N ! 1 means that n⇤ ! 1, an infinite system would not have a cut o↵,

a�rming self-organized criticality (SOC).

For EA, avalanches along the hysteresis loop closer to saturated magnetized states

hardly occur, since there is rarely enough mutual frustration in the system. Naturally,

the largest response to a ramp can be expected at the point where the susceptibil-

ity, � = dm/dH, is highest (usually close to coercion, i.e., when m = 0 at Hcoer
ext ,

see Fig. 4.3 or 1.3). However, in the adiabatic driving, i.e., mode (1) for EA, at

no point along the loop achieves avalanche sizes with a correlation length anywhere

close to system size, as panel (A) in Fig. 4.1 demonstrates. Yet, to facilitate a

“fair” comparison with SK, EA would at least have to be driven in mode (2). With

the spacing between the most marginal stabilities hi being ⇠ 1/N , ramping with

dH ⇠ 1/
p
N should dislodge ⇠

p
N spins simultaneously throughout the lattice,

while SK in this mode merely triggers a finite number of spins. Still, there is no

criticality in form of a correlation length cut o↵ by system size, as panel (B) in Fig.

4.1 shows. Merely a shift in the overall duration S of avalanches is observed that is

commensurate with the increase in the number of dislodged spins. We can conclude

that asymptotically those ⇠
p
N small avalanches triggered simultaneously through-

out the lattice each remain too localized to blend into larger correlated domains of

flips that could percolate the system. Thus, even for this side-by-side comparison of

SK and EA in mode (2), the conclusions of Refs. [123, 65] remain applicable. Only

increasing the ramping rate to mode (3), as in panel (C) of Fig. 4.1, can clearly

induce su�ciently correlated spin-flip behavior in EA to span the system. It turns

out that method (3) does create spanning avalanches in EA, but broad distributions

are not necessarily an indication of the correlatedness of the spins. It is expected

that when the external field changes in large increments, more spins will flip whether

or not their activity is correlated. These distributions alone cannot conclude as to

whether there is critical behavior, since a similar collapse to SK is not possible here.
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In EA, the distributions are dependent on both N and c. Figure 4.2 (A) shows that

smaller system sizes at dH = 0.25 remain exponentially distributed. It seems that

power law behavior can be seen until larger n where peaks in the distribution arise,

rather than an exponential cuto↵. These peaks become more pronounced with larger

system sizes, and according to Figure 4.1, with larger ramping rates as well, so EA

curves clearly cannot be collapsed in the same way as the ones generated through SK.

4.4.1 Limitations on the branching process

A side by side comparison between the Edwards Anderson and mean field model

in Figure 4.2 makes salient that ”excess” spin flips are allowed to occur but the

maximum size of avalanches are still suppressed in EA due to a constraint that has an

increasingly stronger e↵ect as system size increases or, as shown in Figure 4.1, as the

rate at which the external field is changed. We learn that this constraint is related to

the fact that in the Edwards Anderson model, the number of spins that flip during an

avalanche is proportional to the number of spins that have have been dislodged in the

first place, so in other words, on average, hn/di = ↵(c,H), where d is the number of

spins that have been destablized, or dislodged, in order to initiate an avalanche, and ↵

is fixed for the system size, but is dependent onH, since the avalanche activity changes

depending on the location of the hysteresis loop. The relationship between n and d

is very similar to the notion of a critical branching process, in which one constituent

of a critical system would impact (destabilize, in this case) another constituent, and

when this dynamic propagates throughout the system [126], an avalanche is created.

Therefore, the critical branching process parameter is the ratio of the number of spins

that become perturbed to the number of spins those spins then perturb. If n = d,

then clearly there is neither critical nor correlated behavior, but n > d indicates that

there is some level of mutual frustration that is allowing the system to explore more
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(A) (B)

(C) (D)

Figure 4.3: Di↵erence in ”branching” process in SK and EA at two fixed c val-
ues. The “branching” process refers to the number of the spins that flip during an
avalanche n as a result of the number of spins dislodged in the first place d. The main
panels show hn/di as a function of the external magnetic field (H), since avalanche
activity varies along the hysteresis loop. (A) and (B) show the hn/di for EA, whereas
(C) and (D) show hn/di for SK. (A) and (C) o↵er a clear comparison of EA and SK
when c = 0.25. In the SK spin glass, as N gets larger, so does hn/di, which means that
asymptotically, a few dislodged spins can trigger infinite avalanches. In the EA spin
glass, the averaged statistics indicate that there is an upper bound for the number of
avalanches possible that is set by d. We show in the insets that the distribution of
n/d is positively skewed for smaller system sizes, but asymptotically approaches to
0. This means that hn/di is a stronger constraint when system sizes are larger, such
that n is capped, but because d ⇠ n, there are excess spins that flip and form a bulge
towards the upper limit of the avalanche distribution as seen in the previous figure.
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configurations. While all system sizes in EA indicate that there is a well defined

average hn/di, the distributions becomes skewed less positively with an increase in

system size, indicating that asymptotically, d determines an upper bound on the

maximum avalanche size. At large N values, the average n/d begins to plateau.

Since d ⇠ N , there are simply more avalanches that scale as ⇠ O(d) but a constraint

imposed on their size, thus creating ”excess” spin flips towards the tail-end of the

avalanche distribution. Because the n/d cut o↵ is dependent on c, an increase in c

decreases the system size in which the excess peak develops. Unlike the saturated

avalanche sizes in EA, n/d diverges with system size, indicating infinite avalanches

asymptotically given a su�ciently small c, as seen in Figure 4.1. Here, when c is

as large as x, the avalanche distribution nearly begins to resemble those of the EA

model. We learned that at large c values, even n/d in the SK model begins to converge

asymptotically just like in EA. This can be explained by the mechanism that if too

many spins become dislodged simultaneously, the opportunity to dynamically build

a correlation structure that leads to a critical state diminishes. Then, SK e↵ectively

acts as like a sparse model where long-range correlations naturally do not exist. This

goes to show that in addition to the marginally stable state having certain properties

especially in the P (h) distribution, the driving mode also determines whether or not

criticality is reached.

4.5 Percolation

4.5.1 Background

The percolation transition marks the point in which a system begins to facilitate long

range connectivity, and can be used to detect correlated activity as an alternative

to critical distributions. As a brief introduction, percolation is another simple yet

seminal model in statistical physics which is often physically likened of the flow of fluid
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through porous membrane since the late 1950s, due to Broadbent and Hammersly

[Broadbent1957]. It is always formally introduced through a lattice with sites that

are marked as either occupied or non-occupied, governed by an occupation probability

(p). Adjacent sites that are also occupied are said to maintain a ”connection” that

would facilitate some flow of information between then. Obviously, small p values

indicate a sparsely connected system, but when p = pc, the probability of there

being a path from one end of the lattice to the opposite (i.e also referred to as a

spanning cluster) is 1; the end-to-end connection is why this is made analogous to

liquid permeating from top to bottom. It is this transition through pc that makes

percolation one of the simplest models to exhibit a phase transition, since the system

has abruptly gone from locally to globally linked, just from a slight tuning in p. Just

from this simple example, it may be easy to see why this is a tool to understand a wide

breadth of phenomena that are united by their dependence on forming linkages or

transport between components. That said, in addition to lattice models, percolation

tools are used to understand conductivity in networks with mixtures of resisting and

conducting materials [127, 128], the self-assembly, or gelation of polymer chains into

cooperative macromolecules [129], and other various types of information flow from

phone networks to disease networks [130]. Since spanning clusters are not always

meaningful (like for example, if a percolating path emerged at pc ⇡ 1), extensive

studies have been done previously to identify percolation thresholds that indicate

randomly connected paths, rather than paths created through meaningful ”cross-

talk” between systems’ components. Therefore, for our null model, we use the random

cubic lattice site percolation studied in [131], where the percolation threshold pc is

reported to be ⇡ 0.311.
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(A) (B) (C)

(D)

c (dH)

Figure 4.4: The top panel illustratons the algorithm used to identify whether or
not a cluster has percolated. At first, all the spins which have flipped are recorded,
and are placed into clusters based on a common nucleation site (each color in (B)
represents a separate cluster). A path from one boundary to another is identified
using a breadth-first search algorithm. On the bottom panel, each grid represents
a di↵erent system size N , and marks the probability of a percolating cluster as a
function of both the constant ramping rate c, and the occupation probability (p),
which is equivalent to the fraction of spins which have flipped at least once during
an avalanche. Note that each value of c produces a range of occupation probabilities,
mostly because the distribution of spin flips changes for EA along the hysteresis loop.
Based on these statistics, the threshold at which there is an onset of percolation
emerges around c ⇡ 0.30, at a critical occupation probability of ⇡ 0.24.
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4.5.2 Computational Methods

The ramping rates we use, dH = c does not correspond to a fixed occupation prob-

ability. To identify a percolation transition in this model, we identify pc by using

driving mode (3) in the range .05  c  .85. For every value of c, we examine

each avalanche by defining the occupation probability to be p = n0/N , where n0 is

the number of spins which have flipped at least once, which di↵ers from n since a

single spin can flip repeatedly during an avalanche. Once p is calculated, we identify

clusters of spins that have a common nucleation site. The candidate spanning clus-

ters are then identified by filtering based on whether there are opposing boundary

points, and whether cluster sizes exceed N1/3. It is easiest to recast the candidate

clusters in a tree graph structures, where each spin is treated as a node connected to

other nodes, which represent neighboring flipped spins. Child nodes, or descending

branches, would represent higher order connections (neighbors of neighbors). Using

this structure, the breadth-first search algorithm, which starts at the original node,

and visits each branching node until the end, is used to identify whether there are

spanning clusters. For each c, we mark whether or not there is a percolating cluster

with a 1 or a 0 at encountered values of p, for each trial. Over 5000 trials, we average

over P given p, to identify pc.

In Fig. 4.4, we show that for every value of c there is a range of occupation

probabilities that varies only weakly with c. This is consistent with the fact that we

see avalanches of di↵erent sizes along the hysteresis loop. Clearly, avalanches remain

localized for small values c and percolating events occur with finite probability for

most of the larger values. When translated into the occupation probability p, we

notice that spanning events arise quite close to the well-known threshold of pc ⇡

0.31160 . . . for ordinary site-percolation on a cubic lattice [131]. The indication of a

threshold for spanning in this hysteretic avalanching process that is smaller than pc is

a measure of how correlated frustration is among separated spins. As this threshold



76

of ⇡ 0.24 appears to be just below pc, and to approach it further for larger values of

N and c in Fig. 4.4, correlations exist, but they remain rather weak even in this last

mode of driving.

4.6 Conclusion

In this paper, the hysteresis protocol was made more stochastic through fixing the

ramping rate dH of the external magnetic field at a constant value c to induce long

range “correlations” and also be more representative of experimental reality. Driving

methods which only target the weakest spin only ever create subextensive activity for

sparse systems like the Edwards Anderson model, but having various spins destabilize

together creates more frustration, which can potentially lead to more coordinated

activity. It is ultimately shown that SK remains critical throughout all modes up to

a dh threshold, but EA has exponentially distributed avalanches until the external

field is changed as a large enough rate.

To reiterate, a significant and underlying theme in this work is marginal stabil-

ity. The three di↵erent hysteretic driving modes that were central to this paper

stemmed from the notion that dislodging a certain fraction of marginally stable spins

will change how the correlation builds throughout the hysteretic loop, consequently

a↵ecting the size of the avalanches. Indeed, figures 4.1 indicated this to be true since

the distribution of the avalanches did show c dependence both for SK and EA. For

EA, there is also N-dependence, which is not surprising, since it never becomes crit-

ical. To confirm that there is no strong correlation in EA during certain occupation

probabilities (which is di↵erent from c), we also find that the percolation transition

is close enough to the random bond threshold on a cubic lattice. On the other hand,

SK is always critical until c becomes so large, that the marginal stable spins no longer

retain the mutual frustration they need to, in order to trigger critical avalanches. In
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fact, at this point, we see that SK starts to behave much like EA.

One application of this could be in optimization problems. For example, the

critical behavior in SK model resulting from hysteretic ramping inspired Ref [67]

to liken thermal noise to Barkhausen noise as both create new spin configurations

that can help overcome energetic barriers. This resulted in an algorithm alternative

to simulated annealing (SA), called hysteretic optimization (HO) which consists of

demagnetizing disordered models to arrive at, or towards, their ground state. How-

ever, while this hysteretic optimization heuristic (HO) proved successful for SK, it

was found to fail to produce the prerequisite critical avalanches in sparse networks of

spins, such as for the Edwards-Anderson model (EA), i.e., the Ising spin glass on a

lattice. If there is a way to induce long range correlations in a sparse system that do

help explore lower energy configurations, then this would provide an avenue to under-

stand information how to learn global landscapes, from local and sparse information.

Although the percolation transition indicates that the correlation build up is weak,

we do a comparison of hysteretic optimization using di↵erent ramp rates in the next

chapter.
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Chapter 5

Connections to optimization

5.1 Introduction

This section describes work that was inspired by the previous sections along with

literature that has been encountered about statistical physics, criticality and combi-

natorial optimization. It is exploratory in that it connects di↵erent ideas to merely

brush on how those ideas can be used to modify optimization heuristics. However,

surely, there needs to be feedback mechanisms that make the heuristic e↵ective (i.e

one needs to understand the ”cross-talk” that is happening, and how such coordina-

tion between spins (or other parameters) e↵ects the learning of the global landscape

from local information). So far, our attempts to understand the feedback mechanisms

have been inconclusive. This is a possibility for future direction of study.

5.1.1 Background

The studies of out of equilibrium disordered systems have many parallels to algorith-

mic processes for optimization in NP hard problems, where the energy landscape,

called a ”cost” function in this case, require clever local search heuristics to navigate

[132, 133]. The parallels are rather clear; past the glass transition for thermal sys-
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tems or well into the jamming transition for athermal systems, the energy landscape

is evidently hierarchical [40, 7]; its complexity and ruggedness “traps” the glass into

metastable states that for long time scales which further slows down the ability of the

disordered system to recover to its “ground” state – i.e the state which minimizes the

level of frustration. Spin glasses are therefore the archetypal optimization problem,

where a number of constraints must be satisfied in order to reduce the overall frus-

tration, and inspiration from this has been salient as simulated annealing, which uses

variations in temperature to explore echelons of the landscapes, as a benchmark that

newer heuristics are often compared to. However, in developing algorithms for access-

ing low energy states, the di�culty is often that di↵erent heuristics can only access

specific kinds of configurations, so they would not work for all class of problems [132].

For example, adiabatic simulated bifurcation has more recently been considered to be

a high performance optimization algorithm which recasts the problem into coupled

oscillators and relies on bifurcation phenomena to identify the final minimum energy

and while it works for the SK and MAX-CUT problems, it fails for sparse systems,

similarly to hysteretic optimization (HO) [123, 134, 135]. Additionally, at the heart

of both algorithms is to bring the system to a critical state, where small change in a

parameter creates large fluctuations in the states the system evolves through, conse-

quently allowing the system to explore a wider range of configurations. While there

is a plethora of literature about the e↵ectiveness of algorithms for di↵erent kinds of

problems, we stick to the criticality-based HO algorithm as a starting point to explore

the relationship between critical avalanches, long-range correlations and optimization

and base our work on the case-study with the SK model. As mentioned before, our

work in the previous section can be useful in this regard because if we know what

kind of driving mechanism will facilitate long-range correlations, and maybe more

global ordering of the system, then this can potentially help design or modify existing

heuristics.
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5.2 Problem formulation

As a proof of concept, we look at two di↵erent modifications of the HO (hysteretic

optimiziation) heuristic, for which the steps will be discussed below in greater detail.

We reiterate the problems with HO: 1) The first reason has already been discussed

in the previous section 4.2.1 which is that hysteretic driving is unable to produce

critical avalanches in sparse models like the Edwards Anderson spin glass, and cannot

find ground states as a result.To address this part, we use our method (3) to modify

HO on the Edwards Anderson spin glass, since the percolation transition does indicate

weak correlations.

Our solution to (1) is intertwined with our percolation results in 4.4. Clearly, the

results indicate weak to no correlations, but what this implies in terms of learning

the landscape can be made more clear by modifying the traditional HO algorithm

(that is rooted in adiabatic driving) to the version that is based on changing the field

in fixed increments of dH. When we test this modified version on the cubic Edwards

Anderson spin glass, we notice that barely any improvement, as the average minimum

energy reached is around ⇡ -1.6 when the ”true” minimum is ⇡ -1.8 [136].

We test this modified version on the cubic Edwards-Anderson spin glass of sizes

N = {103, 123, 143, 163}, with c values from dH = [.05, .85] in increments of .05

5.3 Methods

5.3.1 HO with constant dH = c

We test this modified version on the cubic Edwards-Anderson spin glass of sizes

N = {103, 123, 143, 163}, with c values from dH = [.05, .85] in increments of .05. The

hysteresis loop starts at Hn = Hmax where Hmax = max (hi), and use Hn+1 = ��Hn

for every sweep until Hn < Hmin where Hmin is the minimum external field needed
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in order to flip any spin at all. � is ultimately what determines the number of loops

the algorithm uses to shrink to H ⇡ 0. Because it is possible for smaller c values

to perform better simply due to more exposure through the landscape (smaller c

indicates more increments along the loop where more configurations can be explored),

we decide the number of loops based on the c value in order to make sure the number

of steps (⌘) are conserved. Here, we keep ⌘ = 1000. To ensure this, we calculate �

based on the geometric sequence � = 1 - 2Hmax
⌘c

with ⌘ in being the total number of

steps during the shrinking procedure.

For the actual simulation, for every realization µ, we first start at hmi = 1 and ensure

that all the spins are stable through a gradient descent. Then we ramp the field in

increments of c up until Hn, and keep repeating with every newly calculated Hn, until

the looping terminates, based on the termination condition given above. Throughout

the procedure, the energy value after every avalanche is stored, but once the loop

ends, we only retain the minimum energy Eµ

min seen so far. For every realization, we

perform 100 runs, and ultimately calculate hEminµi = Eµ. This is then repeated for

50 realizations, per c value, and for system sizes, N = 1000, 1728, 2744, 4096.

5.4 Results

The results of this algorithm over many bond realizations and a range of c values, is

shown in Figure 5.1. A comparison with Figure 4.4 implies that there is a superior

balance between preserving the right correlations, and erasing the wrong ones exactly

at c values that correspond to the onset of the percolation transition (c ⇡ .25).

As expected, the di↵erence is not large as the correlations during the percolation

analysis happened to be weak. It is very clear that immediately after the percolation

transition, the quality of the local minimum deteriorates, since there spin flips start to

become random and retains no information regarding the landscape. Thus, despite
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Figure 5.1: Modified HO performed on the EA cubic spin glass. (A) depicts the
optimization procedure where the hysteretic loop is iteratively shrunk, and (B) shows
the average minimum ground state as a function of c. For each instance (µ), we
perform 100 runs for each c value, which returns the lowest energy value seen Eµ

min

at that c. Then, for each c value, we average over all Eµ

min
values over all the runs

per instance < Eµ

min
>= Eµ, and then average over all instances < Eµ >. There

is an alignment between where the lowest < Eµ >, and where there is an onset of
percolation. At extremely high c values, where percolation is frequent, the system
refreshes all the helpful correlation that would have facilitated cooperative behavior.
If the c value is too low, the system is more or less myopic and randomly chooses
landscape exploration, whereas a balanced c values ensures that the ”right” spins are
mutually frustrated so that flipping them will encourage the most exploration.

our various ways of trying to create a correlation structure in EA, it seems that

hysteretic driving is simply not e↵ective on its own.

5.5 Conclusion and outlook

Hysteretic optimization works by running consequent hysteresis loops but shrinking

them progressively, so that external magnetic field is oscillated in smaller amplitudes,

as shown in Figure 5.1 The “physical” scenario is then similar to a pinball machine

- the magnitude and direction of the external magnetic field directly determines how

the landscape is ”tilted”; one can imagine that a configuration which is trapped in

a local minimum can be aided in its escape by slightly changing the angle of the

landscape, allowing the system to “slide out” of a crevice and explore another region.

There are, however, two issues here. The first issue is that by adding an external
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magnetic field to the Hamiltonian, this process ultimately ends up changing the land-

scape. While it makes sense to use the Barkhausen noise to ”activate” the system

into reconfiguring and avoid being trapped in a minima, this method also introduces

a bias towards spins of a certain orientation. The second concern is that the proto-

col requires looping through hysteretic curves [122], without any guarantee that the

solution should necessarily improve and is therefore not necessarily computationally

e�cient. Therefore, our secondary goal is to see if the history can be ”redesigned”.

One way this can potentially be resolved is through an alternative method called EO,

where spins are not coupled to the external field. By not creating a field bias, there

is no tilt in the landscape, but rather the landscape folds onto itself and by doing

so, a↵ects spins of both orientations equally. On top of this, one can potentially use

a constant dH = c, just like in our previous work, to destabilize spins and correct

them , thus “vectorizing” EO (VEO). Our preliminary studies have shown that once

again, mutual frustrations play a crucial role — a problem which has been mentioned

in the late 90s in a similar parallel procedure [137]. We do find the culprit – Given a

large enough c, all mutually frustrated spins will be flipped simultaneously according

to V EO rules, but this creates an infinite loop of same group of spins flipping so

a stipulation must be introduced such that only a fraction of spins flip, so that the

other previous unstable spins become stable in the same orientation they are in – but

there are still many questions, as to how one would choose the optimal fraction, and

why. Our work on this is still in progress.
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Chapter 6

Summary

6.1 Meaning of results

In terms of what was concretely shown, I first address the relationship between aging

behavior and landscape morphology. As an alternative to mean field approaches of

studying aging, I heavily utilize an approach that is based on purely record events

(avalanches or quakes). These are a series of irreversible records that arise from ran-

dom fluctuations in the aging process, which allow a system to overcome ever higher

barrier of metastables states within the energy landscape. These are pivotal because

only the activation over such barriers allows the system to relax while tumbling into

the next meta-basin that is marginally more stable. Within this picture of RD, I show

that a clear distinction can be drawn between the coarsening dynamics of an Ising

ferromagnet and the aging of the spin glass, which are often put in the same cate-

gory. I parameterize a class of Ising spin models using the admixture value in order

to explore a range of magnetic states from the glassy to ferromagnetic regime. The

accumulation of record events grows logarithmically with time in the glassy regime,

with a sharp transition at a specific admixture in the ferromagnetic regime where

such activations saturate quickly. The implications are rather fundamental, because
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the avalanches scaling with barrier height indicates that the dynamics enforce a feed-

back loop in order to move from metastable states, whereas the invariance of barrier

heights points to a di↵erent landscape structure, that is smooth.

I also show that the RD picture can be used to understand some of the puz-

zling behavior of aging disordered systems when they are subjected to temperature

shifts, such as rejuvenation and memory. When these e↵ects are realized in mean field

glasses, they are attributed to the hierarchical structure of their complex energy land-

scape, which is seen as a consequence of replica symmetry breaking. The appearance

of rejuvenation and memory e↵ects in finite dimensional/structural glasses is then

also seen as an indication of replica symmetry breaking, and the use of replica theory

is consequently deemed appropriate. Chapter ?? provides a counterexample through

the cluster model, which is governed by RD and encapsulates temporal and spatial

heterogeneity, but does not have replica symmetry breaking. Numerical simulations

of the cluster model show that even with the absence of RSB, the coarse-grained dy-

namics of the clusters are able to reproduce memory and rejuvenation e↵ects, when

put under the same temperature protocol provided that the measurements are taken

within a time window where the system falls into a marginally stable state. The

model is marginally stable in that clusters are typically large, so majority of the par-

ticles are frozen in place except that there is typically one or two small clusters that

are on the verge of collapsing. It is only during this time frame where self-similar

activities are observed within di↵erent time scales. However, this is comparable to

previous studies where marginal stability is a necessary condition to measure rejuve-

nation. Therefore, timescales of the rare events as a reflection of the topology of the

hierarchical landscape.

Understanding the relationship between marginally stable states and avalanches

led us to earlier work where driven disorder was studied through hysteresis. In many

ways, SK can be considered as a ”case study” for the dynamics that is capable with
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marginal stability physics. Traditional forms of hysteretic driving, considered adia-

batic, show that for all-to-all connected models, such as the SK spin glass, hysteretic

driving creates a Barkhausen e↵ect, where power law distributed avalanches ensue.

This is attributed to the mutual frustration among the marginal stable spins, which

create a cascade of spin flips once perturbed. Due to the connectedness of SK, dis-

lodging as few as ⇠ 1/
p
N spins will cause the system to be critical. However, such

correlations do not emerge in sparse systems. Chapter 4 is based on the premise that

perhaps the number of spins which are perturbed account for the lack of avalanche

activity in sparse systems. In this chapter, the driving methods I use are inspired

by the emergence of mutual frustration among marginally stable spins. Each driv-

ing method introduces the same level of stochasticity in both EA and SK, to make

an equal comparison between the two. In two of the system size dependent modes,

where the ramp rate changes by 1/
p
N and 1/N , SK avalanches are unchanged as

expected where EA avalanches become slightly broader. It is only when the ramping

rate changes by a constant that there are significant changes to the avalanche distri-

bution in EA. However, here we discern between critical avalanches and avalanches

that occur as a result of more spins being destabilized. While it is su�ce to say that

EA never becomes critical despite broader avalanches, we are able to detect weak cor-

relation through finding a percolation transition that is slightly below the percolation

transition in a random cubic lattice. To understand how these weakly correlated spins

manifest, we try to find the ground state of a cubic EA lattice using a wide range of

dH into a heuristic that shrinks the HO loop, which has been shown to fail in using

traditional hysteretic optimization. While our method does not perform significantly

better, there is a clear dip in the average energy almost exactly at a ramping rate

where the percolation starts. In order for this to be possible, there must be a feedback

loop that is able to create better coordination among frustrated spins.

While we conclude that the number of spins that get dislodged (c) are related to
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correlation structure that emerges dynamically, even in the EA model, the mechanism

of feedback is rather challenging to study. For starters, why is it that information

transmission is optimal at the onset of percolation? While we are able to verify some

intuitive hypothesis, the dynamical process has yet to be discovered. One can also

look at the intrinsic structure of the bond configurations – what are the characteristics

of bond matrices that are more conducive to achieving better minima vs. those that

lead to very few coherent feedback mechanisms? Is there fractal structure?

6.2 Broad scientific context

My work has more or less exploited the somewhat polemical nature of glassy and

non-equilibrium research; there has always been much controversy in this field –

because analytical work is rather limited, there are many debates as to how much

the limited analytical conclusions can be extended to di↵erent systems. While it is

ideal to establish the physics of aging and have it be applied for design materials,

there is also the hyperbolic joke that David Weitz once made about there being more

theories of glass than the theorists who propose them [138] – we are still unfortunately

in a stage where we are learning what kind of parameters “matter”, and what the

interplay of existing parameters actually looks like and how this translates to coherent

length scales. The contribution of this work was mostly to revisit central paradigms

in statistical physics and analyze what happens when the assumptions are slightly

changed. The first debate here concerns the mean field – if we look at extreme rather

than averaged events (which may obscure the rare events), are we able to capture all

the main characteristics of the system? Here, we tell the story that gets lost in the

field and shed light on the fact that “ordering” is not always a continuous process

towards detailed balance, but in fact it is a punctuated process in which a feedback

loop is pivotal. The convenience of mean field theory makes it enticing to use for
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other systems, so there are ample works that are centered around investigating the

validity of mean field to finite dimensional systems, with remarkable results on several

occasions. However, while we do not deny that mean field tools are valid for finite

dimensional systems, we ask whether such tools need to be necessary if real spaced

models based on activated process can reproduce the same dynamics.

Finally, marginal stability seems to play a rather large role in the low temperature

physics that is of interest in this work, because these states are conductive to collective

excitations given the smallest perturbation. It turns out that only some glasses can

have certain kinds of marginally stable states, selected for by their dynamics rather

than the Edwards hypothesis – so our work tests if the conditions of one marginal

stability state can be artificially created in another state through a parameter that

changes disorder and stochasticity. Though a marginally stable state with similar

characteristics to that of SK could not extensively be created, it is worth further

trying to develop a relationship between the number of perturbed marginally stable

spins and structure of feedback loops triggered by the perturbation. While there is

no guarantee that this will help optimization, it would help contribute to the general

progress in furnishing algorithmic complexity/optimization with soft matter concepts

and language.
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