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Abstract

Let G be a Symmetric Group Sn, B be Sn−1 and H be a transitive
subgroup of G. If for ∀h ∈ H, there exist g ∈ G and b ∈ B s.t. ghg−1 = b,

then we can find a specific g ∈ G s.t. gHg−1 ⊆ B
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1 Introduction

When I was studying Galois representation of elliptic curves, I encountered
a very interesting Theorem. Consider the Galois group from Q to Q joint
with n-torsion points on elliptic curve, then

Gal(Q(E[n])/Q) ⊆ GL2(n)

Lets DenoteH(n) := Gal(Q(E[n])/Q), B to be the matrix group

(
1 ∗
0 ∗

)
If for any h ∈ H(n), ∃g ∈ GL2(n) ∃b ∈ B s.t.ghg−1 = b, then there exists
some g ∈ GL2(n) s.t. gHg−1 ⊆ B

I was wondering, forgetting about elliptic curves, does such group theoretical
relation in general holds: Let H,B be two subgroups of G. Suppose every
element of H is g-conjugate to an element of B, then is H itself g-conjugate
to a subgroup of B?

In this paper, I will mainly focus on symmetric groups, i.e. the cases where
G=Sn. I chose such concentration for the following two reasons:

Firstly, conjugation is easy to manipulate in symmetric groups, as I will
show in next section. Secondly, I believe understanding this question over
symmetric groups will contribute to the research in arithmetic dynamical
systems.

2 Local-to-global relation in Sn

Here is our main question: Let G be a Symmetric Group Sn. Let H,B be two
subgroups of G. Suppose every element of H is g-conjugate to an element of
B, then is H itself g-conjugate to a subgroup of B?

To make the language easier, lets say it is locally true if and only if for
every element h ∈ H, there exists some g ∈ G and b ∈ B s.t. ghg−1 = b. It
is globally true if and only if there exist some g ∈ G s.t. gHg−1 ≤ B

Thus, our question can be rephrased as the following

Do locally true automatically implies globally true?

Even by intuition, it is easy to realize this local-to-global relation will in
general fail. When it is locally true, different elements of H might conjugate
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to different elements of B through different elements of G. For example, it is
possible that g1h1g

−1
1 = b1 and g2h2g

−1
2 = b2. But to let the global condition

be true, we need to find a specific g ∈ G s.t. gHg−1 ≤ B. In other words,
let Gh = {g ∈ G | ∃b ∈ B s.t. ghg−1 = b}. H and B are globally true only if∪
h∈H

Gh ̸= ∅. Thus, the global is a much stronger condition than the local.

In fact, the converse of our question is obviously always true. If gHg−1 ≤ B,
then ∀h ∈ H, ghg−1 = b for some b ∈ B.

However, even the local-to-global relation fails in most cases, under some
special condition it can be true.

Case 1: if G is abelian, then H is just a subgroup of B.

Case 2: if H=<a>, a subgroup generated by one element, if gag−1 = b for
some b ∈ B, then gHg−1 = B

Lemma 2.1 If H=<(a1 a2), (a3 a4), ..., (a2n−1 a2n)>, a subgroup generated
by n disjoint two cycles, and B=<(b1 b2), (b3 b4), ..., (b2n−1 b2n)>is also a sub-
group generated by n disjoint two cycles. If a1, a2, ..., a2n, b1, b2, ..., b2n are
all distinct with each other, then locally true automatically implies globally
true.

Proof: Suppose exist g1, g2, ..., gn, f1, f2, ..., fn from G such that

g1(a1 a2)g
−1
1 = (b1 b2), g2(a3 a4)g

−1
2 = (b3 b4), ..., gn(a2n−1 a2n)g

−1
n = (b2n b2n−1).

Because a1, a2, ..., a2n, b1, b2, ..., b2n are all distinct with each other,

g1, g2, ..., gn, f1, f2, ..., fn are disjoint with all the generators of H except
the cycles they are directly conjugating. Thus, g1g2...gnHg−1

1 g−1
2 ...g−1

n =
B

On the other hands, it is easy to find finitely many counterexamples where
such local-to-global principle fails.

For example, let G=S100, H=S3, B=<(1 2), (3 4 5)>. Although every ele-
ment of H is g-conjugate to an element of B, B is abelian and H is not
abelian. Thus, it is always globally false.

Lemma 2.2 For σ, τ ∈ Sn, σ and τ are conjugated to each other, if and
only if they have the same cycle type.

Proof: suppose we have ρ ∈ G s.t. ρ = στσ−1. let ρ(i) = (j). Then
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ρ(τ(i)) = στσ−1τ(i) = τσ(i) = τ(j). This means when we conjugate an
element by τ , we just replace each entry a with τ(a). Thus, the cycle type
remains the same after conjugation.

Conversely, suppose ρ and σ have the same cycle type. WLOG, suppose
ρ and σ are both 4+2 cycles. Let σ = (1 2 3 4)(5 6) and ρ = (a b c d)(e f).
Then if we let τ = (1 a)(2 b)(3 c)(4 d)(5 e)(6 f), then ρ = τστ−1.

Corollary 2.2.1 Local is true if and only if B contains all the cycle types
that H contains.

This corollary is a direct result of Lemma 2.2 and gives us a useful way to
check whether two subgroups are locally true or not – by just checking their
cycle types.

Corollary 2.2.2 If G = Sn, B = An, then locally true automatically implies
globally true.

Proof: An is by definition the group which contains all the even permutations
of Sn. If H and B are locally true, then by Corollary 2.2.1, H can only
contains even permutations. Thus, H is just a subgroup of B.

3 Cases when B = Sn−1

Let G be a Symmetric Group Sn, B be Sn−1 and H be a subgroup of G.
Suppose every element of H is g-conjugate to an element of B, then is H
itself g-conjugate to a subgroup of B?

As we have showed in the previous section, the global is a much stronger
condition than the local. However, if we make B just a little bit smaller than
G, will local-to-global principle hold? For example, if we let B = Sn−1, and
G = Sn, will locally true implies globally true?

Unfortunately, I soon found a plenty of counterexamples:

Let H={(1 2)(3 4), (1 2)(5 6), (3 4)(5 6)}, B = S5 and G = S6. H and B are
locally true because the only cycle type of H is 2+2 and S5 obviously contains
such cycle type. It is globally false, however, because in S5, the point 6 is
fixed, whereas in H we cannot find any fixed point. Notice that H is not a
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transitive subgroup of B. We have three orbits for H ⊆ G: {1, 2},{3, 4} and
{5, 6}. I believe that it is the intransitivity of H that makes the local-to-
global principle fails here. By using the Cauchy’s Theorem, we can prove
the cases where n is a prime.

Lemma 3.1 Let p to be a prime integer. Let G be a Symmetric Group
Sp, B be Sp−1 and H be a transitive subgroup of G. Then Local-to-Global
Principle holds to be true.

Proof: First notice that B is not a transitive subgroup of G. Any subgroup
of B will not be transitive also. As H is transitive, the global will always
fail. If we can show that the local also always fails, we can contrapositively
prove that the local-to-global principle holds. H is transitive for the set

X = {1, 2, 3, . . . , p}. By Orbit-Stabilizer Theorem, |Orbit x| = | H |
| Hx |

= p,

where Hx is the stabilzer of x. (Hx = {h ∈ H | hx = x} ) By Lagrange’s
Theorem, p| | H |. By Cauchy’s Theorem, because p is a prime, H has an
element of order p. As the only type of element in G with order p is p-cycle,
H has a p-cycle. As we know that B cannot contain a p-cycle, the local
fails.

Actually, local-to-global principle holds even when p is not a prime. But
before we prove that, lets talk about alternating group An first.

Lemma 3.2 Any An is transitive through X = {1, 2, 3, . . . , n}

Proof: ∀i, j ∈ X, we can have (k i)(k j) = (j i k)

Lemma 3.3 For any n ∈ Z, An contains at least one element that fix no
point through X = {1, 2, 3, . . . , n}

Proof: if n is 0 mod 4, then we can have (1 2)(1 2) . . . ((n− 1)n) ∈ An, and
no point is fixed under this cycle.

if n is 1 or 3 mod 4, then we can have (1 2)(1 3) . . . (1n) = (n (n−1) . . . 2 1),
and no point is fixed under this cycle.

if n is 2 mod 4, we can have (1 2) . . . ((n/2 − 1)n/2) . . . ((n − 1)n). In this
way, we get 2 cycles with odd length, and we repeat the process when n is
1 or 3 mod 4.

Even this two lemma for alternating groups are proved by simple computa-
tions, they sort of told me that there should have some intrinsic relations
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between a subgroup’s transitivity and the fact that such group always con-
tains a fixed point free element. Why do we care whether a subgroup has a
fixed point free element or not? It is because of the following lemma.

Lemma 3.4 Local is false if and only if H contains a cycle that fixes no
point among {1, 2, 3, . . . , n}.

Proof: This is simply a result from the fact that B = Sn−1 contains a fixed
point.

Here comes my main theorem.

Theorem 3.5 Let G be a Symmetric Group Sn, B be Sn−1 and H be a
transitive subgroup of G. Then Local-to-Global Principle holds to be true.

Proof: Considering transitive group H, and set X = {1, 2, 3, . . . , n}, by
Burnside’s lemma, the number of orbits in H is equal to the average number
of points fixed by an element of H.

1 =| X/H |=

∑
h∈H

| Xh |

| H |

Xh denotes the set of element in X that are fixed by h. The left hand side
of this equation is 1, because H in transitive in G. Since the identity e ∈ h
fixes every element of X, | Xe |> 1. Then, at least one of the term in the
summation

∑
h∈H

| Xh | must be 0. That means there exists at least one

element h ∈ H s.t. h fixes no point. However, any element from B has to
fix at least one point. Thus, the local principle fails.

I also get a way to prove this Theorem without using Burnside’s lemma. I
personally like this prove because it talks about the relation between con-
jugation and stabilizers in symmetric groups. To start the prove, we need a
small lemma first.

Lemma 3.6 Let G be a finite group, H be any proper subgroup of G. Then
the union of all the conjugation of H never equals G.

Proof: let | H |= k, | G : H |= h. Then | G |= nk. As (gH)(gH)−1 =
gHg−1, the map from cosets to conjugates: gH → ghg−1 is well-defined
and surjective. Thus, we have at most | G : H | distinct conjugates. Notice
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that e is contained in every conjugate. Thus, the size of union is at most
1 + n(k − 1) < n as long as n > 1

Second proof for Theorem 3.5:consider the set X = {1, 2, 3, . . . , n} and
σ ∈ H. Suppose every element of H has a fixed point, then for ∀h ∈ H,
we have h(a) = a for some a ∈ X, i.e. h ∈ Ha. H is transitive, so for any
b ∈ x = {1, 2, 3, . . . , n}, we have g ∈ H s.t. gb=a. Then

h(gb) = ha = a

(g−1hg)b = g−1a = b

Then, g−1hg ∈ Hb ⇒ g−1Hag = Hb. Then
∪

g∈H
g−1Hag ⊇ H. By Lemma

3.6, this is not possible, so we proved the theorem by contradiction.

Corollary 3.6.1 Any transitive subgroup contains an element which fixes
no point.
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