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Abstract 

The Analysis of 2x2 Crossover Design with Repeated Baseline 

Measurement within Period 

By Yixuan Zhao 
Background: Neuroimaging study suggests precuneus is related to visuospatial imagery. 
Evidence suggests, the precuneus of Neanderthal is less developed than the ancestor of 
modern man and Neanderthal is not able to hunt prey by throwing from long distance away; 
while the ancestor of modern man has a more developed precuneus, and is known for 
throwing long-distance weapon in hunting. Thus, it is hypothesized that, the developed 
precuneus, provided the ancestor of modern man with the improved visuospatial skills needed 
in hunting prey with projectiles from a distance. 
 
Objective: Identify that precuneus is statistical significant related to visuospatial ability, 
which is reflected by throw accuracy. Then the result of this study serves as evidence for the 
proposed hypothesis. 
 
Methods: 2x2 crossover design was applied. Precuneus’s function was oppressed by TMS 
treatment, while Sham treatment serves as a placebo. Throw score was chose as outcome to 
reflect visuospatial skill. Baseline measurement was implemented at each period before 
delivery of treatment. In analysis, four methods of handling baseline, modeling mean score or 
individual score, and various covariance structures were applied to the data. Analysis was 
done by applying linear mixed model. 
 
Result: The model which handling baseline with “change from baseline” method, modeling 
individual change score, and assuming equal variance, cross-visit correlation is zero and 
within visit correlation is ρ, was chosen. The estimated difference among the effect of Sham 
and the effect of TMS on throw score is 0.1715, p=0.3548. After investigation into subject 
characteristics and experiment characteristics, temperature was adjusted in model, the 
estimated difference is -0.0258, p=0.8899. There is no statistical significant difference among 
the effects of TMS and Sham. 
 
Conclusion: This study did not prove that precuneus function is related to visuospatial ability 
of human. Future study design may consider the following: 1. Indoor experiment controlling 
for temperature; 2. Apply randomized parallel design instead of crossover design; 3. May 
consider uniform MRI intensity in treatments, rather than subject specific MRI intensity.  
 
Keywords: Crossover design, Baseline, Repeated measurement within period 
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Introduction 

Crossover design is characterized by assigning subjects several treatments and randomizing 

subjects to receive the assigned treatments in different sequences. This design allows effects of 

different treatments to be compared on the same subject during different treatment periods1. Its 

key difference from parallel design is the effects of treatments are compared primarily based 

on within subject information. A 2x2 crossover design is the simplest one among this class of 

designs. 

 

The basic concepts in crossover design are “treatment”, “sequence” and “period”. In a 2x2 

crossover design, where the 2x2 represents two treatments and two periods. Annotating the two 

treatments to be compared as “treatment A” and “treatment B”. Subjects are randomized in 1:1 

ratio to receive treatments either in arrangement AB or arrangement BA, and thus there are two 

sequences of receiving treatments, sequence AB (treatment A applied first then treatment B) 

and sequence BA (treatment B applied first then treatment A)2. As each treatment is applied 

only once, the subject will undergo two treatment periods. “Period” can be regarded as cycle of 

receiving the treatment and measuring the outcome. 

  

Other key issues in crossover design are “carryover effect”, “wash out period”, and 

“baseline”. Carryover (or residual effect) is defined as the effect of the treatment from the 

previous time period on the response at the current time period. Carryover effect biases the 
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estimation of treatment effects, which makes it a major drawback of crossover designs3. 

Washout period is defined as the time between treatment periods. Washout period aims to 

diminish or eliminate the impact of carryover effects, and to allow the subjects to return to 

initial status. Baseline is the measurement of the interested outcome prior to the delivery of 

the treatment, and is often referred to as pre-treatment measures1. 

  

The implementation of baseline in crossover design is widely discussed, but opinions toward 

its role are different. It serves a method to deal with the issues regards to carryover and/or 

treatment by period interaction4. Devan V. Mehrotra2 summarized 10 methods to handle 

baseline in 2x2 crossover design with one baseline and one post-treatment assessment per 

period, while those 10 methods can be traced back to the 4 methods summarized by Kenward 

et al.5. “Yuanyuan Liang and Keumhee Chough Carriere 2010”6 argue baseline, either as 

covariate or model the changes in crossover design can achieve a better efficiency in estimation 

of treatment effects. However, “Yan et al. 2013”7 favors ignore baseline and argues the 

implement of baseline as covariate may be harmful. Stephen Senn11 favors “adjust baseline as 

covariate” over change from baseline, and is against joint modeling, insisting that baselines 

shouldn’t be modeled as dependent variable. 

 

The data for this thesis is a 2x2 crossover design with 20 baseline assessments and 20 post-

treatment assessments per period, “Functional Basis for Precuneus Expansion”. This type of 

design is rare and among the 33 real-data analysis of 2x2 crossover design with baseline 
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published in 2014-2019, none has multiple baseline measures per period. The analysis of 

similar data is mentioned in “ Xun Chen, Zhaoling Meng and Ji Zhang 2012”7, in which joint 

modeling is recommended from simulation result. Xun Chen refers to crossover design which 

measure baseline multiple times within each period as “crossover design with repeated 

baseline measurement within period”, which is adapted in this thesis.  

 

Thus, to reach a better efficiency and accuracy in estimating the difference between treatment 

effects in the study “Functional Basis for Precuneus Expansion”, where the existence of 

carryover effect is not sure and confounding may exist. Four methods summarized by Kenward 

in 20105 are discussed: joint modeling, ignore baseline, change from baseline, and adjust 

baseline as covariate. The result of averaging the data to bring it back to simple case or not will 

also be compared. From the results of the four methods, this thesis will make a recommendation 

for the preferred method to use in the study, “Functional Basis for Precuneus Expansion”. 

Material and Method 

1. Study Design 

The data to be analyzed is from the study “Functional Basis for Precuneus Expansion,” which 

is a 2x2 crossover design. For the study, subjects went through two interventions, transcranial 

magnetic stimulation (TMS) and Sham TMS, at two visits. The subjects were randomized to 

receive the two treatments in different sequences. During each visit the patient received one 
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treatment and throw scores were measured before and after treatment; for this study, each visit 

is a “period.” The aim of the study is to prove precuneus is related to visuospatial ability, 

reflected by throw accuracy. Then it serves as evidence to support the hypothesis that the 

developed precuneus, provided the ancestor of modern man with the improved visuospatial 

skills needed in hunting prey with projectiles from a distance. When the subjects underwent 

TMS, their precuneus function was oppressed. Sham serves as a placebo.  

 

The original protocol plan was to enroll 30 subjects, but only 25 were actually enrolled. 25 

right-handed male subjects aged between 18-40, who had baseball experience at the high school 

level or higher were randomized to receive treatments either in sequence TMS-SHAM or 

SHAM-TMS. 10 were randomized to the first sequence and 15 to the other. The subjects paid 

two visits to the experiment site in total. The planed washout was 1 week, but in fact the subjects 

did not return after a uniform schedule. The target for measuring throw accuracy was 10m away 

from the subjects. At the beginning of each visit, 10 warm-up throws were conducted. Then the 

subjects conducted 20 baseline throws. After the baseline throws, the assigned treatment was 

delivered and the subjects completed 20 post-treatment throws during the window period of the 

treatment. The experiment procedure is shown as: 
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Experiment procedure 

 Visit 1  Visit 2 

Sequence 

1 

Warm 

up  

 

 

20 

baseline 

throws 

Deliver 

TMS 

Window 

period 

20 post-

treatment 

throws 

Wash 

out 

Warm 

up  

 

 

20 

baseline 

throws 

Deliver 

Sham 

Window 

Period 

20 

Post-

treatment 

throws 

Sequence 

2 

Warm  

up 

 

 

20 

baseline 

throws  

Deliver 

Sham 

Window 

Period 

20 

Post-

treatment 

throws 

Wash 

out 

Warm  

up 

20 

baseline 

throws  

Deliver 

TMS 

Window 

Period 

20 

Post-

treatment 

throws 

 

2. Data Collection: 

(1) Throw score:  

The throws were scored between 0 and 10, with 0.5 as smallest interval.  Warm-up throws at 

the beginning of each visit were not recorded. 

(2) Subject characteristics: 

The characteristics of the subject collected by the investigators were height, weight, age, 

baseball level, race, and the year since the last time the subject played baseball. Based on the 

year since the subject last played baseball, the subjects were grouped as experienced or not. 

(3) Experimental characteristics: 

The experimental characteristics collected by the investigator for each treatment period were 

temperature, stimulation intensity, the time from receiving treatment to completing the last 

throwing, and whether all the post-treatment throws were completed within the window period 

of the treatment. 

  



6 

 

 

 

For stimulation intensity, TMS intervention had a stimulation intensity 90% of the subject’s 

own resting motor threshold and the Sham intervention had a stimulation intensity 65% of the 

subject’s own resting motor threshold. The stimulation intensity received by each subject at 

each treatment were recorded. 

3. Statistical Aim 

Statistically, the study compares the effect on throwing score of the two treatments, TMS, 

(referred as TMS) and Sham TMS (referred as Sham). Sham can be regarded as a placebo. The 

negative effect of TMS on throwing accuracy is expected to be stronger than the negative effect 

of Sham, thus, it is expected that the difference of the two treatment effects, (SHAM-TMS), is 

positive. 

4. Statistical Method 

4.1 Notation 

There were 80 individual throws per subject, which included 20 baseline throws for visit 1, 20 

post-treatment throws for visit 1, 20 baseline throws for visit 2 and 20 post-treatment throws 

for visit 2. Taking the average of the corresponding throws, for each subject, 4 means are 

calculated, the mean throw score for baseline throws visit 1, the mean throw score for post-

treatment throws visit 1, the mean throw score for baseline throws visit 2, and the mean throw 

score of post-treatment throws visit 2. 

 

For subject i (i=1 to 25), the 20 baseline throws of visit 1 are denoted by Xi1m (m=1 to 20), 
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[Xi1]20×1   is the matrix of those 20 throws, and their mean value is be 𝑋𝑋𝑖𝑖1 ; the 20 post-

treatment throws of visit 1 are denoted by Yi1m (m=1 to 20), [Yi1]20×1  is the matrix of those 

20 throws, and their mean value is be 𝑌𝑌𝑖𝑖1; the 20 baseline throws of visit 2 are denoted by 

Xi2m (m=1 to 20), [Xi2]20×1  is the matrix of those 20 throws, and their mean value is 𝑋𝑋𝑖𝑖2; 

the 20 post-treatment throws of visit 2 are denoted by Yi2m (m=1 to 20), [Yi2]20×1  is the 

matrix of those 20 throws, and their mean value is 𝑌𝑌𝑖𝑖2. 

 
4.2 Assumptions 
Assume: 

(1) the randomization successfully balanced subject characteristics among the two sequences. 

(2) no carryover effect. 

(3) no treatment-by-period interaction, which in this study, is no treatment-by-visit interaction.  

In the material and method part, the models presented assume these three assumptions all hold 

and there is no sequence effect, while in statistical analysis, factor “sequence” is added in the 

models for test of those assumptions. In general, the significance of variable “sequence” can be 

caused by either one or more of the assumptions failing8, or there is a true sequence effect.  

 

4.3 Methods of Handling Baseline Measurements 

The methods for handling baseline considered in the analysis are: 

method 1: joint modeling of baseline and post-treatment response;  

method 2: ignore baseline; 

method 3: change from baseline; 

method 4: adjust baseline as covariate; 
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Modeling mean scores and individual scores will all be considered. Different covariance 

structures will be applied. In total, 24 models will be fit, as shown: 

 

Summary of Models 
 Method Covariance structure 
Model 1a Joint modeling mean scores UN 
Model 1b Joint modeling mean scores V1 
Model 1c Joint modeling mean score V2 
Model 1d Joint modeling mean score CS 
Model 1e Joint modeling individual score V3 
Model 1f Joint modeling individual score V2 
Model 1g Joint modeling individual score CS 
Model 1h Alternative joint modeling individual score V3 
Model 1i Alternative joint modeling individual score V2 
Model 1j Alternative joint modeling individual score CS 
Model 2a Ignore baseline mean score CS 
Model 2b Ignore baseline individual score V4 
Model 2c Ignore baseline individual score V2 
Model 2d Ignore baseline individual score CS 
Model 3a Mean change CS 
Model 3b Mean change VC 
Model 3c Individual change V4 
Model 3d Individual change V2 
Model 3e Individual change CS 
Model 3f Individual change V5 
Model 4a Post mean scores | baseline of same period CS 
Model 4b Post individual scores | baseline of same period V4 
Model 4c Post individual scores | baseline of same period V2 
Model 4d Post individual scores | baseline of same period CS 

 

UN refers to “unstructured”, CS refers to “compound symmetry”, and VC refers to “variance 

components”. The other covariance structures will be defined in detail under the section of each 

methods. 
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4.3.1 Joint Modeling 

Under this method, baseline measurements are treated as outcome without accompany any 

treatment effects, and compose the dependent variable together with post-treatment 

measurements5. The advantage of this method is that it uses all information of all the data 

collected in the experiment, and if we assume baseline outcome and post-treatment outcome 

homoscedasticity, this method will lead to the most precise estimation of  σ2. When with-in 

period correlation is stronger than between-visit correlation, joint modeling of baselines and 

post-treatment responses will gain efficiency7 in the estimation of the difference between effects 

of treatments, under the model composition proposed by Kenward.  

 

4.2.1.1 Modeling Mean Throw Scores 
When modeling, 𝑋𝑋𝑖𝑖1,𝑌𝑌𝑖𝑖1,𝑋𝑋𝑖𝑖2,𝑌𝑌𝑖𝑖2, assume that: 

⎣
⎢
⎢
⎢
⎡𝑋𝑋𝑖𝑖1
𝑋𝑋𝑖𝑖2
𝑌𝑌𝑖𝑖1
𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎥
⎤

~𝑁𝑁�

⎣
⎢
⎢
⎡
𝑢𝑢𝑋𝑋𝑖𝑖1
𝑢𝑢𝑋𝑋𝑖𝑖2
𝑢𝑢𝑌𝑌𝑖𝑖1
𝑢𝑢𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎤
 ,𝑉𝑉� ,𝑉𝑉 = �

Σ𝑋𝑋𝑋𝑋 Σ𝑋𝑋𝑌𝑌
Σ𝑋𝑋𝑌𝑌𝑇𝑇 Σ𝑌𝑌𝑌𝑌

� , where 

⎣
⎢
⎢
⎡
𝑢𝑢𝑋𝑋𝑖𝑖1
𝑢𝑢𝑋𝑋𝑖𝑖2
𝑢𝑢𝑌𝑌𝑖𝑖1
𝑢𝑢𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎤
 is the matrix of expectations. 

 

Covariance Structures 

In the sections illustrating covariance structure, 𝐼𝐼𝑛𝑛  indicates identity matrix with n ×

n dimension, and 𝐽𝐽𝑛𝑛 indicates a matrix of ones with n × n dimension. 

 

(1) The first covariance structure applied is V ~ UN, and the model is referred as model 1a. 

 

(2) The second covariance structure applied is V ~ V1, where V1 is defined as Kenward5 

suggested, and the model is referred as model 1b. 
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Σ𝑋𝑋𝑋𝑋 = 𝜎𝜎𝑋𝑋𝑋𝑋 ⊗ 𝐼𝐼2 + 𝜂𝜂𝑋𝑋𝑋𝑋 ⊗ 𝐽𝐽2 

Σ𝑌𝑌𝑌𝑌 = 𝜎𝜎𝑌𝑌𝑌𝑌 ⊗ 𝐼𝐼2 + 𝜂𝜂𝑌𝑌𝑌𝑌 ⊗ 𝐽𝐽2 

Σ𝑋𝑋𝑌𝑌 = 𝜎𝜎𝑋𝑋𝑌𝑌 ⊗ 𝐼𝐼2 + 𝜂𝜂𝑋𝑋𝑌𝑌 ⊗ 𝐽𝐽2 

That is: 

𝑣𝑣𝑣𝑣𝑣𝑣�𝑋𝑋𝑖𝑖1� = 𝑣𝑣𝑣𝑣𝑣𝑣�𝑋𝑋𝑖𝑖2� = 𝜎𝜎𝑋𝑋𝑋𝑋 + 𝜂𝜂𝑋𝑋𝑋𝑋, 

 𝑣𝑣𝑣𝑣𝑣𝑣�𝑌𝑌𝑖𝑖1� =  𝑣𝑣𝑣𝑣𝑣𝑣�𝑌𝑌𝑖𝑖2� = 𝜎𝜎𝑌𝑌𝑌𝑌 + 𝜂𝜂𝑌𝑌𝑌𝑌,  

𝑐𝑐𝑐𝑐𝑣𝑣�𝑋𝑋𝑖𝑖1,𝑌𝑌𝑖𝑖1� = 𝑐𝑐𝑐𝑐𝑣𝑣�𝑋𝑋𝑖𝑖2,𝑌𝑌𝑖𝑖2� = 𝜎𝜎𝑋𝑋𝑌𝑌 + 𝜂𝜂𝑋𝑋𝑌𝑌 

𝑐𝑐𝑐𝑐𝑣𝑣�𝑋𝑋𝑖𝑖1,𝑌𝑌𝑖𝑖2� = 𝑐𝑐𝑐𝑐𝑣𝑣�𝑋𝑋𝑖𝑖2,𝑌𝑌𝑖𝑖1� = 𝜂𝜂𝑋𝑋𝑌𝑌 

 

(3) The third covariance structure applied is V ~ V2, where V2 assumes homoscedasticity, 

within-visit correlation = ρ + γ and between visit correlation = ρ, and the model is referred 

as model 1c. V2 is the covariance structure proposed and investigated by Xun Chen et al7. In 

this case, under V2, the covariance structure is shown as: 

𝑉𝑉(

⎣
⎢
⎢
⎢
⎡𝑋𝑋𝑖𝑖1
𝑋𝑋𝑖𝑖2
𝑌𝑌𝑖𝑖1
𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎥
⎤

 )~ �

1
𝜌𝜌

𝜌𝜌 + 𝛾𝛾
𝜌𝜌

 

𝜌𝜌
1
𝜌𝜌

𝜌𝜌 + 𝛾𝛾
 

𝜌𝜌 + 𝛾𝛾
𝜌𝜌
1
𝜌𝜌

 

𝜌𝜌
𝜌𝜌 + 𝛾𝛾
𝜌𝜌
1

� 𝜎𝜎2 

Or, for better illustration, re-arrange it：  

𝑉𝑉(

⎣
⎢
⎢
⎢
⎡𝑋𝑋𝑖𝑖1
𝑌𝑌𝑖𝑖1
𝑋𝑋𝑖𝑖2
𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎥
⎤

 )~

⎣
⎢
⎢
⎡

1
𝜌𝜌 + 𝛾𝛾
𝜌𝜌
𝜌𝜌

      

  

𝜌𝜌 + 𝛾𝛾
1
𝜌𝜌
𝜌𝜌

     

𝜌𝜌
𝜌𝜌
1

𝜌𝜌 + 𝛾𝛾
        

𝜌𝜌
𝜌𝜌

𝜌𝜌 + 𝛾𝛾
1

  

⎦
⎥
⎥
⎤
𝜎𝜎2 

 

(4) The forth covariance structure applied is V ~CS，and the model is referred as model 1d. 
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V(

⎣
⎢
⎢
⎢
⎡𝑋𝑋𝑖𝑖1
𝑌𝑌𝑖𝑖1
𝑋𝑋𝑖𝑖2
𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎥
⎤

) ~ �

1 𝜌𝜌
𝜌𝜌 1   

𝜌𝜌 𝜌𝜌
𝜌𝜌 𝜌𝜌

𝜌𝜌 𝜌𝜌
𝜌𝜌 𝜌𝜌   1 𝜌𝜌

𝜌𝜌 1

� 𝜎𝜎2 

 

Statistical Modeling 

The expectations of  𝑋𝑋𝑖𝑖1,𝑌𝑌𝑖𝑖1,𝑋𝑋𝑖𝑖2,𝑌𝑌𝑖𝑖2  are shown in Table 1a. Treat the baseline time as 

undergoing treatment “none”, so treatment has three levels: “Sham”, “TMS” and “none”. The 

expectations shown in model 3a are based on Kenward et al. 2010 suggested5. To better 

illustrate his model, define according to timeline: visit 1 baseline time as interval 1, visit 1 post-

treatment time as interval 2, visit 2 baseline time as interval 3 and visit 2 baseline time as 

interval 4. As Kenward does not constrain the effects associated to visits to be the same at 

baseline measurements and post-treatment measurements, so I convert the fixed effects 

associated to visit 1 and visit 2 on baseline throw scores and post-treatment throw scores into 

corresponding fixed effects associated to intervals. 

 

Table 1a. Expectation of Mean Throw Score—Joint Modeling 
   Annotation Sequence 1 Sequence 2 
Visit 1 Baseline Interval 1 𝑢𝑢𝑋𝑋𝑖𝑖1 μ + π1′ + 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 μ + π1′ + 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
 Post-

treatment 
Interval 2 𝑢𝑢𝑌𝑌 𝑖𝑖1 μ + π1 + 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 μ + 𝜋𝜋1 + 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 

Visit 2 Baseline Interval 3 𝑢𝑢𝑋𝑋𝑖𝑖2 μ + π2′ + 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 μ + π2′ + 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
 Post-

treatment 
Interval 4 𝑢𝑢𝑌𝑌𝑖𝑖2 μ + π2 + 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 μ + π2 + 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 

 

Where the terms are: 

µ, an intercept, the mean of the average of 20 throw scores. 
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π1′ ,𝜋𝜋1,𝜋𝜋2′ ,𝜋𝜋2 are the fixed effects associated to interval 1, interval 2, interval 3 and interval 4. 

Note that, they are actually the fixed effect associated to visit 1 on baseline throws, the fixed 

effect associated to visit 1 on post-treatment throws, the fixed effect associated to visit 2 on 

baseline throws, and the fixed effect associated to visit 2 on post-treatment throws. 

𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇  is the effect associated with TMS and 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 is the effect associated with Sham, 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

is a term associated with baseline, no actual treatment is received. 

 

Set interval 4 and treatment TMS as reference, the model for modeling 4 means per subject can 

be write as: 

𝑐𝑐𝑢𝑢𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝐼𝐼(𝐼𝐼𝐼𝐼𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼 = 1) + 𝛽𝛽2 ∗ 𝐼𝐼(𝐼𝐼𝐼𝐼𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼 = 2) + 𝛽𝛽3 ∗ 𝐼𝐼(𝑖𝑖𝐼𝐼𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼 = 3)

+ 𝛽𝛽4 ∗ 𝐼𝐼(𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = Sham) + 𝜖𝜖𝑖𝑖𝑖𝑖 , 𝜖𝜖𝑖𝑖𝑖𝑖~[𝑉𝑉]. 

 𝑖𝑖 𝑖𝑖𝐼𝐼𝑖𝑖𝑖𝑖𝑐𝑐𝑣𝑣𝑜𝑜𝑜𝑜𝑖𝑖 𝑖𝑖𝑢𝑢𝑠𝑠𝑠𝑠𝑜𝑜𝑐𝑐𝑜𝑜(1 𝑜𝑜𝑐𝑐 25), 𝑠𝑠 𝑖𝑖𝐼𝐼𝑖𝑖𝑖𝑖𝑐𝑐𝑣𝑣𝑜𝑜𝑜𝑜𝑖𝑖 𝑖𝑖𝐼𝐼𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼(1 𝑜𝑜𝑐𝑐 4) 

Illustration for the composition 𝑐𝑐𝑢𝑢𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 of subject i 
𝑐𝑐𝑢𝑢𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖1 𝑋𝑋𝑖𝑖1  
𝑐𝑐𝑢𝑢𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖2 𝑌𝑌𝑖𝑖1 
𝑐𝑐𝑢𝑢𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖3 𝑋𝑋𝑖𝑖2 
𝑐𝑐𝑢𝑢𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖4 𝑌𝑌𝑖𝑖2 

 

Where, β0 is the expectation of averaging 20 throw scores at interval 4 with treatment TMS, 

𝛽𝛽1 = 𝜋𝜋1′ − 𝜋𝜋2,𝛽𝛽2 = 𝜋𝜋1 − 𝜋𝜋2,𝛽𝛽3 = 𝜋𝜋2′ − 𝜋𝜋2,𝛽𝛽4 = 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 − 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡.  𝛽𝛽1 , 𝛽𝛽2,  and 𝛽𝛽3  belong to 

factor “interval” and estimates the fluctuation of mean throw score. 𝛽𝛽4  belongs to factor 

“treatment” and estimates the difference between the effect of Sham treatment and the effect of 

TMS treatment. 
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To justify this method, use interval 4 and treatment TMS as reference, let: 

X1 = �1 𝑖𝑖𝐼𝐼𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼 = 1
0                 𝑜𝑜𝐼𝐼𝑖𝑖𝑜𝑜  

X2 = �1 𝑖𝑖𝐼𝐼𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼 = 2
0                 𝑜𝑜𝐼𝐼𝑖𝑖𝑜𝑜   

X3 = �1 𝑖𝑖𝐼𝐼𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼 = 3
0                 𝑜𝑜𝐼𝐼𝑖𝑖𝑜𝑜  

X4 = �1 𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = "𝑆𝑆ℎ𝑣𝑣𝑜𝑜"
0                                   𝑜𝑜𝐼𝐼𝑖𝑖𝑜𝑜 

X5 = �1 𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = "𝐼𝐼𝑐𝑐𝐼𝐼𝑜𝑜"
0                                 𝑜𝑜𝐼𝐼𝑖𝑖𝑜𝑜 

 

Aside from β0, the design matrix of a subject from sequence 1, will be: 

 

X1 X2 X3 X4 X5 
1 0 0 0 1 
0 1 0 0 0 
0 0 1 0 1 
0 0 0 1 0 

Col(X5)=Col(X1)+Col(X3) 

Then the design matrix of a subject from sequence 2, will be: 

X1 X2 X3 X4 X5 
1 0 0 0 1 
0 1 0 1 0 
0 0 1 0 1 
0 0 0 0 0 

Col(X5)=Col(X1)+Col(X3) 

So, the beta coefficient stands for (𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡) has no degree of freedom, the three-level 

factor “treatment” has only 1 degree of freedom in test of type III SS and the beta coefficient is 

estimating (𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 − 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡), the difference between the effect of Sham and the effect of TMS. 
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4.3.1.2 Modeling Individual Throw Scores 

When modeling 80 throw scores per subject, 

Assume 

�

𝑋𝑋𝑖𝑖1
𝑌𝑌𝑖𝑖1
𝑋𝑋𝑖𝑖2
𝑌𝑌𝑖𝑖2

�

80×1

~𝑁𝑁��

𝜇𝜇𝑋𝑋𝑖𝑖1
𝜇𝜇𝑌𝑌𝑖𝑖2
𝜇𝜇𝑋𝑋𝑖𝑖2
𝜇𝜇𝑌𝑌𝑖𝑖2

� ,𝑉𝑉� ,𝑉𝑉 =

⎣
⎢
⎢
⎢
⎡
Σ𝑋𝑋1𝑋𝑋1
ΣT𝑋𝑋1𝑌𝑌1
ΣT𝑋𝑋1𝑋𝑋2
ΣT𝑋𝑋1𝑌𝑌2

    

Σ𝑋𝑋1𝑌𝑌1
Σ𝑌𝑌1𝑌𝑌1
ΣT𝑋𝑋2𝑌𝑌1
ΣT𝑌𝑌1𝑌𝑌2

     

Σ𝑋𝑋1𝑋𝑋2
Σ𝑋𝑋2𝑌𝑌1
Σ𝑋𝑋2𝑋𝑋2
ΣT𝑋𝑋2𝑌𝑌2

    

Σ𝑋𝑋1𝑌𝑌2
Σ𝑌𝑌1𝑌𝑌2
Σ𝑋𝑋2𝑌𝑌2
Σ𝑌𝑌2𝑌𝑌2⎦

⎥
⎥
⎥
⎤
, where �

𝜇𝜇𝑋𝑋𝑖𝑖1
𝜇𝜇𝑌𝑌𝑖𝑖1
𝜇𝜇𝑋𝑋𝑖𝑖2
𝜇𝜇𝑌𝑌𝑖𝑖2

� is the 

matrix of expectations. 

 

Covariance Structures 

(1) The first covariance structure to be applied is V3, and the model is referred as model 1e. 

In V3, it is assumed that： 

Σ𝑋𝑋1𝑋𝑋1 = Σ𝑌𝑌1𝑌𝑌1=Σ𝑋𝑋2𝑋𝑋2 = Σ𝑌𝑌2𝑌𝑌2 =  (η + σ) ⊗ 𝐽𝐽20 + TOEP20 

Σ𝑋𝑋1𝑌𝑌1 = ΣT𝑋𝑋1𝑌𝑌1=ΣT𝑋𝑋1𝑌𝑌1=Σ𝑋𝑋2𝑌𝑌2=(η + σ) ⊗ 𝐽𝐽20 

�Σ𝑋𝑋1𝑋𝑋2 Σ𝑋𝑋1𝑌𝑌2
Σ𝑋𝑋2𝑌𝑌1 Σ𝑌𝑌1𝑌𝑌2

�=�Σ
T𝑋𝑋1𝑋𝑋2 ΣT𝑋𝑋1𝑌𝑌2
ΣT𝑋𝑋2𝑌𝑌1 ΣT𝑌𝑌1𝑌𝑌2

� = η⊗ 𝐽𝐽40 

The structure constrains homoscedasticity of all throw scores, and the covariance among throw 

scores between visit is η; the covariance among throw scores within visit but between interval 

is (η + σ), σ>0; For throws within visit and within interval, their covariance equal to (η + σ) 

plus the term from TOEPLITZ structure. 

This covariance structure is proposed basing on the following reasons: 

a. The correlation among throws may not be uniform, so TOEP structure is considered, in this 

structure, the covariance between m1
th throw and m2

th throw depends on |m1-m2|, so covariance 

changes over time. 
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b. However, directly assume V80~TOEP has problem as: the correlation between 40th and 39th 

or 41th throw will be constrained to be the same, as |40-39|=1 and |40-41|=1 too. However it 

may not hold as the 39th and 40th are from visit 1, the 41th is from visit 2.  

c. Assume the 40 throws from same visit ~ TOEP has a similar problem, the correlations 

between 20th and 19th or 21th are constrained to be the same, which may not hold as 19th 20th are 

baseline 21th is after treatment. 

d. Within-visit correlation may be stronger than between-visit correlation. 

To accommodate those concerns, V3 is proposed, which incorporates TOEP but is more flexible 

to accommodate the study data. 

 

(2) The second covariance structure to be applied is V2, which assumes homoscedasticity, 

within-visit correlation = ρ + γ and between visit correlation = ρ.The model is referred as 

model 1f.  

�
Σ𝑋𝑋1𝑋𝑋1 Σ𝑋𝑋1𝑌𝑌1
ΣT𝑋𝑋1𝑌𝑌1 Σ𝑌𝑌1𝑌𝑌1

� = �
Σ𝑋𝑋2𝑋𝑋2 Σ𝑋𝑋2𝑌𝑌2
ΣT𝑋𝑋2𝑌𝑌2 Σ𝑌𝑌2𝑌𝑌2

� = (ρ + γ) ∗ σ2 ⊗ 𝐽𝐽40 + (1 − 𝜌𝜌 − 𝛾𝛾) ∗ 𝜎𝜎2 ⊗ 𝐼𝐼40 

�Σ𝑋𝑋1𝑋𝑋2 Σ𝑋𝑋1𝑌𝑌2
Σ𝑋𝑋2𝑌𝑌1 Σ𝑌𝑌1𝑌𝑌2

�=�Σ
T𝑋𝑋1𝑋𝑋2 ΣT𝑋𝑋1𝑌𝑌2
ΣT𝑋𝑋2𝑌𝑌1 ΣT𝑌𝑌1𝑌𝑌2

� = ρ ∗ σ2 ⊗ 𝐽𝐽40 

 

(3) The third covariance structure to be applied is V~CS, and the model is referred as model 1g.  

⎣
⎢
⎢
⎢
⎡
Σ𝑋𝑋1𝑋𝑋1
ΣT𝑋𝑋1𝑌𝑌1
ΣT𝑋𝑋1𝑋𝑋2
ΣT𝑋𝑋1𝑌𝑌2

    

Σ𝑋𝑋1𝑌𝑌1
Σ𝑌𝑌1𝑌𝑌1
ΣT𝑋𝑋2𝑌𝑌1
ΣT𝑌𝑌1𝑌𝑌2

     

Σ𝑋𝑋1𝑋𝑋2
Σ𝑋𝑋2𝑌𝑌1
Σ𝑋𝑋2𝑋𝑋2
ΣT𝑋𝑋2𝑌𝑌2

    

Σ𝑋𝑋1𝑌𝑌2
Σ𝑌𝑌1𝑌𝑌2
Σ𝑋𝑋2𝑌𝑌2
Σ𝑌𝑌2𝑌𝑌2⎦

⎥
⎥
⎥
⎤

= ρ ∗ σ2 ⊗ 𝐽𝐽40 + (1 − 𝜌𝜌) ∗ 𝜎𝜎2 ⊗ 𝐼𝐼40 
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Statistical Model 

The expected value of individual throw, shown in Table 1b.  

Table 1b. Expectation of Individual Throw Score 
   Annotation Sequence 1 Sequence 2 
Visit 1 Baseline Interval 1 𝜇𝜇𝑋𝑋𝑖𝑖1 μ + π1′ + 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 μ + π1′ + 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
 Post-

treatment 
Interval 2 𝜇𝜇𝑌𝑌𝑖𝑖1 μ + π1 + 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 μ + 𝜋𝜋1 + 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 

Visit 2 Baseline Interval 3 𝜇𝜇𝑋𝑋𝑖𝑖2 μ + π2′ + 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 μ + π2′ + 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
 Post-

treatment 
Interval 4 𝜇𝜇𝑌𝑌𝑖𝑖2 μ + π2 + 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 μ + π2 + 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 

Where the terms are: 

µ, an intercept, the mean of a throw score. 

π1′ ,𝜋𝜋1,𝜋𝜋2′ ,𝜋𝜋2 are the fixed effects associated to interval 1, interval 2, interval 3 and interval 4. 

Note that, they are actually the fixed effect associated to visit 1 on baseline throws, the fixed 

effect associated to visit 1 on post-treatment throws, the fixed effect associated to visit 2 on 

baseline throws, and the fixed effect associated to visit 2 on post-treatment throws. 

𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇  is the effect associated with TMS and 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 is the effect associated with Sham, 𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

is a term associated with baseline. 

 

The model incorporating 80 individual throws per subject can be write as: 

outcomeijm = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝐼𝐼(𝐼𝐼𝐼𝐼𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼 = 1) + 𝛽𝛽2 ∗ 𝐼𝐼(𝐼𝐼𝐼𝐼𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼 = 2) + 𝛽𝛽3 ∗ 𝐼𝐼(𝑖𝑖𝐼𝐼𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼 = 3) 

+𝛽𝛽4 ∗ 𝐼𝐼(𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = Sham) + 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡, 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡~[𝑉𝑉]. 𝑖𝑖 𝑖𝑖𝐼𝐼𝑖𝑖𝑖𝑖𝑐𝑐𝑣𝑣𝑜𝑜𝑜𝑜𝑖𝑖 𝑖𝑖𝑢𝑢𝑠𝑠𝑠𝑠𝑜𝑜𝑐𝑐𝑜𝑜(1 𝑜𝑜𝑐𝑐 25),  

𝑠𝑠 𝑖𝑖𝐼𝐼𝑖𝑖𝑖𝑖𝑐𝑐𝑣𝑣𝑜𝑜𝑜𝑜𝑖𝑖 𝑖𝑖𝐼𝐼𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼(1 𝑜𝑜𝑐𝑐 4),𝑜𝑜 𝑖𝑖𝐼𝐼𝑖𝑖𝑖𝑖𝑐𝑐𝑣𝑣𝑜𝑜𝑜𝑜𝑖𝑖 𝑜𝑜ℎ𝑣𝑣𝑐𝑐𝑟𝑟𝑖𝑖 (1 𝑜𝑜𝑐𝑐 20).  

Illustration for the composition of outcomeijm of subject i 
outcomei1m(m=1 to 20) 𝑋𝑋i1m(m=1 to 20) 
outcomei2m(m=1 to 20) 𝑌𝑌i1m(m=1 to 20) 
outcomei3m(m=1 to 20) 𝑋𝑋i2m(m=1 to 20) 
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outcomei4m(m=1 to 20) 𝑌𝑌i2m(m=1 to 20) 

 

Then, β0 is the expectation of an individual throw score at interval 4 with treatment TMS, 𝛽𝛽1 =

𝜋𝜋1′ − 𝜋𝜋2,𝛽𝛽2 = 𝜋𝜋1 − 𝜋𝜋2,𝛽𝛽3 = 𝜋𝜋2′ − 𝜋𝜋2,𝛽𝛽4 = 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 − 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡.  𝛽𝛽1 , 𝛽𝛽2,  and 𝛽𝛽3  belong to factor 

“interval” and estimate the fluctuation of throw score. 𝛽𝛽4 belongs to factor “treatment” and 

estimates the difference between the effect of Sham treatment and the effect of TMS treatment. 

As justified in section 4.3.1.1, beta coefficient stands for (𝜏𝜏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇)   has no degree of 

freedom. 

 

4.3.1.3 Alternative Method of Joint Modeling 

In joint modeling, there is another way to compose the model, suggested by Dr. Christina Mehta. 

The terms in model are: visit, treatment, type and type*treatment. Where type=0 suggests 

baseline, and type=1 suggests post-treatment. For baseline and post-treatment throws, variable 

“treatment” will all be the treatment assigned to the subject. This alternative modeling method 

will be illustrated by modeling individual throws.  

Covariance Structures 

Similar as section 4.3.1.2, in the alternative method of joint modeling, apply covariance 

structure V3, the model is referred as 1h; apply covariance structure V2, the model is referred 

as 1i; apply covariance structure CS, the model is referred as 1j; 
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Statistical Model 

𝑐𝑐𝑢𝑢𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝐼𝐼(𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 = 1) + 𝛽𝛽2 ∗ 𝐼𝐼(𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = 𝑆𝑆ℎ𝑣𝑣𝑜𝑜) + 𝛽𝛽3 ∗ 𝐼𝐼(𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜 = 1)

+ 𝛽𝛽4 ∗ 𝐼𝐼(𝑜𝑜𝑡𝑡𝑡𝑡𝑜𝑜 = 1 𝑣𝑣𝐼𝐼𝑖𝑖 𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = 𝑖𝑖ℎ𝑣𝑣𝑜𝑜) + 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡, 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡~𝑉𝑉 

Expectation of Throw Score 
  Sequence 1 Sequence 2 
Visit 1 Baseline  β0 + 𝛽𝛽1 β0 + 𝛽𝛽1 + 𝛽𝛽2 
 Post-treatment β0 + 𝛽𝛽1 + 𝛽𝛽3 β0 + 𝛽𝛽1 + 𝛽𝛽2 + 𝛽𝛽3 + 𝛽𝛽4 
Visit 2 Baseline  β0 + 𝛽𝛽2 β0 
 Post-treatment  

(interval 4) 
β0 + 𝛽𝛽2 + 𝛽𝛽3 + 𝛽𝛽4 β0 + 𝛽𝛽3 

 

𝛽𝛽0 estimates the mean of throw score at visit 2 with TMS treatment being assigned. 𝛽𝛽1estimates 

the fluctuation of throw score. 𝛽𝛽2 estimates the effect associated with treatment Sham assigned. 

𝛽𝛽3  estimates the effect of treatment on post-treatment throw scores. 𝛽𝛽4  estimates the 

difference between the effect of Sham treatment and TMS treatment on post-treatment throw 

scores. Thus, in this model, the terms related to the effects of treatments are 𝛽𝛽3 and 𝛽𝛽4, rather 

than 𝛽𝛽2. 

 

This method of modeling assumes main effect associated with treatment, which applies to both 

baseline throw scores where the subjects hasn’t receive treatments yet, and post-treatment 

throw scores. And it also constrains the effects associated with visit are the same for baseline 

and post-treatment time.To be specific, illustrate the baselines only: 

Expectation of Baseline Throw Score 
 Sequence 1 Sequence 2 
Visit 1 Baseline  β0 + 𝛽𝛽1 β0 + 𝛽𝛽1 + 𝛽𝛽2 
Visit 2 Baseline  
 

β0 + 𝛽𝛽2 β0 
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This model to assumes the baseline throw scores are associated with the treatment the subject 

receiving, which may not be the case in practice. However, the estimation of the difference 

between the effect of Sham and effect of TMS in this model, is not influenced by the terms 

related to main effect of treatments, which in this study is the term 𝛽𝛽2 . The result of this 

alternative methods will also be presented. 

 

4.3.2 Ignore Baseline: 

Ignore baseline means discard all the baselines and analysis the post-treatment throws. The 

main reason to including this method is: it serves as a standard reference. Yan et al. 2012 shows 

from simulation that when most information of treatment effects is based on with-in subject 

information, then this method has similar efficacy as the methods adjusting for baseline5.  

 

4.3.2.1 Modeling Mean Throw Scores 

Covariance Structures 

When modeling �𝑌𝑌𝑖𝑖1
𝑌𝑌𝑖𝑖2

�, assume 

�𝑌𝑌𝑖𝑖1
𝑌𝑌𝑖𝑖2

�~𝑁𝑁��
𝑢𝑢𝑌𝑌𝑖𝑖1
𝑢𝑢𝑌𝑌𝑖𝑖2

�  ,𝑉𝑉�  where �
𝑢𝑢𝑌𝑌𝑖𝑖1
𝑢𝑢𝑌𝑌𝑖𝑖2

�  the matrix of expectations, V=�1 𝜌𝜌
𝜌𝜌 1� σ

2 , CS structure. 

The model will be referred as model 2a. 

 

Statistical Model 

Table 2a. Expectation of Mean Throw Score—Ignore Baseline 
   Annotation Sequence 1 Sequence 2 
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Visit 1 Post-treatment 𝑢𝑢𝑌𝑌 𝑖𝑖1 μ + π1 + 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 μ + 𝜋𝜋1 + 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 
Visit 2 Post-treatment 𝑢𝑢𝑌𝑌𝑖𝑖2 μ + π2 + 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 μ + π2 + 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 

Where the terms are: 

µ, an intercept, the mean of the average of 20 throw scores; 

 𝜋𝜋1 ,𝜋𝜋2 are the fixed effect associated with visit 1 and visit 2. 

𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇  is the effect associated with TMS and 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 is the effect associated with Sham. 

 

The model is: 

𝑌𝑌ij = β0 + 𝛽𝛽1 ∗ 𝐼𝐼(𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 = 1) + 𝛽𝛽2 ∗ 𝐼𝐼(𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = "Sham")

+ 𝜖𝜖𝑖𝑖𝑖𝑖 , 𝜖𝜖𝑖𝑖𝑖𝑖~𝑉𝑉 where i indicates subject, j indicates visit 

 

Then, β0 is the expectation of averaging 20 throw scores at visit 2 with treatment TMS. 

 𝛽𝛽1 = 𝜋𝜋1 − 𝜋𝜋2 , 𝛽𝛽2 = 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 − 𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇 . 𝛽𝛽1  estimates the fluctuation of post-treatment mean 

score across visits, 𝛽𝛽2 estimates the difference between the effect of Sham and the effect of 

TMS. 

  

4.3.2.2 Modeling Individual Throw Scores, 

When modeling �𝑌𝑌𝑖𝑖1𝑌𝑌𝑖𝑖2
�, 

Assume:  

�𝑌𝑌𝑖𝑖1𝑌𝑌𝑖𝑖2
�
40×1

~𝑁𝑁��
𝜇𝜇𝑖𝑖1
𝜇𝜇𝑖𝑖2� ,𝑉𝑉�, where �

𝜇𝜇𝑖𝑖1
𝜇𝜇𝑖𝑖2� is the matrix of expectation and  

 

V=�
Σ𝑌𝑌1𝑌𝑌1 Σ𝑌𝑌1𝑌𝑌2
Σ𝑇𝑇𝑌𝑌1𝑌𝑌2 Σ𝑌𝑌2𝑌𝑌2

� 
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Covariance Structures 

Three covariance structures will be assumed. 

(1) Similar to V3, in V4, assume the post-treatment throws follow homoscedasticity, and the 

covariance between post-treatment throw scores between-visit is 𝜂𝜂; for post-treatment throws 

scores within visit, their covariance equal to 𝜂𝜂 plus the term from TOEP structure. This is 

equal to assume the between visit correlation is uniform, but within visit correlation is not and 

changes according to time gap. This model will be referred as model 2b. 

Σ𝑌𝑌1𝑌𝑌1 = Σ𝑌𝑌2𝑌𝑌2 = 𝜂𝜂 ⊗ 𝐽𝐽20 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, Σ𝑌𝑌1𝑌𝑌2 = Σ𝑇𝑇𝑌𝑌1𝑌𝑌2 = 𝜂𝜂 ⊗ 𝐽𝐽20 
 

(2) Apply structure V2, which assumes homoscedasticity, within-visit correlation = ρ + γ and 

between visit correlation = ρ.The model is referred as model 2c. 

Σ𝑌𝑌1𝑌𝑌1 = Σ𝑌𝑌2𝑌𝑌2 = (𝜌𝜌 + 𝛾𝛾) ∗ 𝜎𝜎2 ⊗ 𝐽𝐽20 + (1 − 𝜌𝜌 − 𝛾𝛾) ∗ 𝜎𝜎2 ⊗ 𝐼𝐼20 

Σ𝑌𝑌1𝑌𝑌2 = Σ𝑇𝑇𝑌𝑌1𝑌𝑌2 = 𝜌𝜌 ∗ 𝜎𝜎2 ⊗ 𝐽𝐽20 
 

(3) Apply CS structure. The model is referred as model 2d. 

V=�
Σ𝑌𝑌1𝑌𝑌1 Σ𝑌𝑌1𝑌𝑌2
Σ𝑇𝑇𝑌𝑌1𝑌𝑌2 Σ𝑌𝑌2𝑌𝑌2

�= 𝜌𝜌 ∗ 𝜎𝜎2 ⊗ 𝐽𝐽40+(1 − 𝜌𝜌) ∗ 𝜎𝜎2 ⊗ 𝐼𝐼40 

 

Statistical Model 

The expectation of throw score is: 

Table 2b. Expectation of individual throw score—Ignore Baseline 
  annotation Sequence 1 Sequence 2 
Visit 1 Post-

treatment 
𝜇𝜇𝑌𝑌𝑖𝑖1𝑡𝑡 μ + π1 + 𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇 μ + 𝜋𝜋1 + 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 

Visit 2 Post-
treatment 

𝜇𝜇𝑌𝑌𝑖𝑖2𝑡𝑡 μ + π2 + 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 μ + π2 + 𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇 

Where the terms are: 

µ, an intercept, the mean of a throw score; 
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 𝜋𝜋1 ,𝜋𝜋2 are the fixed effect associated with visit 1 and visit 2. 

𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇  is the effect associated with TMS and 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 is the effect associated with Sham. 

 

The model is 

Yijm = 𝛽𝛽0 + Β1 ∗ 𝐼𝐼(𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 = 1) + 𝛽𝛽2 ∗ 𝐼𝐼(𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = Sham) + 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡, 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡~𝑉𝑉  

Where 𝛽𝛽0 is the expectation of a single throw score at visit 2 with treatment TMS, β1 = 𝜋𝜋1 −

𝜋𝜋2,𝛽𝛽2 = 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 − 𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇 . 𝛽𝛽1  estimates the fluctuation of post-treatment mean score across 

visits, 𝛽𝛽2 estimates the difference between the effect of Sham and the effect of TMS. 

 

4.3.3 Change from Baseline 

This method is widely used in practice, and, the most advantage is the increased power of 

detecting carryover effect compared to other methods9. If assume carryover effect from the 

previous period remains the same at baseline time and post-treatment time of the following 

period, then carryover effect is eliminated10. The drawback is, under most covariance structures, 

the estimator of this method has greater theorical variance compare to “ignore baseline” and 

“Joint Modeling”2,5.  

 

Define change score and mean change score, 𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡 = 𝑌𝑌𝑖𝑖𝑖𝑖𝑡𝑡 −   𝑋𝑋𝑖𝑖𝑖𝑖    , 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡 = 𝑌𝑌𝑖𝑖𝑖𝑖 −

  𝑋𝑋𝑖𝑖𝑖𝑖   .   [Di1]20×1  the matrix for 𝐷𝐷𝑖𝑖1𝑡𝑡(m = 1 to 20) , [Di2]20×1  the matrix for 𝐷𝐷𝑖𝑖2𝑡𝑡(m =

1 to 20). 

 



23 

 

 

 

Illustration for the composition of change score 𝐷𝐷ijm of subject i 
𝐷𝐷i1m(m=1 to 20) 𝑌𝑌i1m(m=1 to 20) - 𝑋𝑋𝑖𝑖1  
𝐷𝐷i2m(m=1 to 20) 𝑌𝑌i2m(m=1 to 20) - 𝑋𝑋𝑖𝑖2 

  

Illustration for the composition of mean change score 𝐷𝐷𝑖𝑖𝑖𝑖 of subject i 

𝐷𝐷𝑖𝑖1 𝑌𝑌𝑖𝑖1 − 𝑋𝑋𝑖𝑖1 
𝐷𝐷𝑖𝑖2 𝑌𝑌𝑖𝑖2 − 𝑋𝑋𝑖𝑖2 

 

4.3.3.1 Modeling Mean Changes 

Assume �𝐷𝐷𝑖𝑖1
𝐷𝐷𝑖𝑖2

�~𝑁𝑁��
𝜇𝜇𝐷𝐷1
𝜇𝜇𝐷𝐷2

� ,𝑉𝑉�, where �
𝜇𝜇𝐷𝐷1
𝜇𝜇𝐷𝐷2

� is the matrix of expectations 

 

Covariance Structures 

(1) Assume V~CS. The model is referred as model 3a; 

(2) Assume V~VC, correlation between 𝐷𝐷𝑖𝑖1 and 𝐷𝐷𝑖𝑖2 𝑖𝑖𝑖𝑖 0. The model is referred as model 3b; 

The reason why this structure is proposed: 

When  

𝑉𝑉(

⎣
⎢
⎢
⎢
⎡𝑋𝑋𝑖𝑖1
𝑌𝑌𝑖𝑖1
𝑋𝑋𝑖𝑖2
𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎥
⎤

 )~

⎣
⎢
⎢
⎡

1
𝜌𝜌 + 𝛾𝛾
𝜌𝜌
𝜌𝜌

      

  

𝜌𝜌 + 𝛾𝛾
1
𝜌𝜌
𝜌𝜌

     

𝜌𝜌
𝜌𝜌
1

𝜌𝜌 + 𝛾𝛾
        

𝜌𝜌
𝜌𝜌

𝜌𝜌 + 𝛾𝛾
1

  

⎦
⎥
⎥
⎤
𝜎𝜎2, or 

V(

⎣
⎢
⎢
⎢
⎡𝑋𝑋𝑖𝑖1
𝑌𝑌𝑖𝑖1
𝑋𝑋𝑖𝑖2
𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎥
⎤

) ~ �

1 𝜌𝜌
𝜌𝜌 1   

𝜌𝜌 𝜌𝜌
𝜌𝜌 𝜌𝜌

𝜌𝜌 𝜌𝜌
𝜌𝜌 𝜌𝜌   1 𝜌𝜌

𝜌𝜌 1

� 𝜎𝜎2, then: 

𝑉𝑉 ��𝑌𝑌𝑖𝑖1 − 𝑋𝑋𝑖𝑖1
𝑌𝑌𝑖𝑖2 − 𝑋𝑋𝑖𝑖2

�� = �−1 1
0 0   0 0

−1 1� ⊗ 𝑉𝑉

⎝

⎜
⎛

⎣
⎢
⎢
⎢
⎡𝑋𝑋𝑖𝑖1
𝑌𝑌𝑖𝑖1
𝑋𝑋𝑖𝑖2
𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎥
⎤

 

⎠

⎟
⎞
⊗ �−1 1

0 0   0 0
−1 1�

𝑇𝑇
= �1 0

0 1� 𝜎𝜎
∗2 
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Statistical Modeling 

The expectation of mean change score is: 

Table 3a. Expectation of Mean Change Score (Post-Pre) 
 Annotation Sequence 1 Sequence 2 
Visit 1 𝜇𝜇𝐷𝐷1 𝜋𝜋1 + 𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇 𝜋𝜋1 + 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 
Visit 2 𝜇𝜇𝐷𝐷2 𝜋𝜋2 + 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 𝜋𝜋2 + 𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇 

 

Where the terms are: 

𝜋𝜋1 ,𝜋𝜋2 are the fixed effect associated with visit 1 and visit 2 on mean change score. 

𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇  is the effect associated with TMS and 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 is the effect associated with Sham. 

 

The model is: 

𝐷𝐷ij = β0 + 𝛽𝛽1 ∗ 𝐼𝐼(𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 = 1) + 𝛽𝛽2 ∗ 𝐼𝐼(𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = "Sham")

+ 𝜖𝜖𝑖𝑖𝑖𝑖 , 𝜖𝜖𝑖𝑖𝑖𝑖~𝑉𝑉,𝑟𝑟ℎ𝑜𝑜𝑣𝑣𝑜𝑜 𝑖𝑖 𝑖𝑖𝐼𝐼𝑖𝑖𝑖𝑖𝑐𝑐𝑣𝑣𝑜𝑜𝑜𝑜𝑖𝑖 𝑖𝑖𝑢𝑢𝑠𝑠𝑠𝑠𝑜𝑜𝑐𝑐𝑜𝑜, 𝑠𝑠 𝑖𝑖𝐼𝐼𝑖𝑖𝑖𝑖𝑐𝑐𝑣𝑣𝑜𝑜𝑜𝑜𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 

 

Where β0  is the expectation of mean change at visit 2 with TMS treatment,  β1 = 𝜋𝜋1 −

𝜋𝜋2,𝛽𝛽2 = 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 − 𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇. 𝛽𝛽1 estimates the fluctuation of mean change score across visit. 𝛽𝛽2 

estimates the difference between the effect of Sham and the effect of TMS. 

 

4.3.3.2 Model Individual Change Score 

Assume �𝐷𝐷𝑖𝑖1𝐷𝐷𝑖𝑖2
�
40×1

~𝑁𝑁��
𝜇𝜇𝐷𝐷1
𝜇𝜇𝐷𝐷2

� ,𝑉𝑉�, where �
𝜇𝜇𝐷𝐷1
𝜇𝜇𝐷𝐷2

�  is the matrix of expectations 

 

𝑉𝑉 = 𝑉𝑉 ��𝐷𝐷𝑖𝑖1𝐷𝐷𝑖𝑖2
�
1×40

� = �
Σ𝐷𝐷1𝐷𝐷1 Σ𝐷𝐷1𝐷𝐷2
ΣT𝐷𝐷1𝐷𝐷2 Σ𝐷𝐷2𝐷𝐷2

� 
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Covariance Structures 

(1) Apply V4, the model is referred as model 6a. Assume homoscedasticity of mean change 

score, between visit covariance is 𝜂𝜂, and within visit covariance is 𝜂𝜂 plus the term from TOEP 

structure. This is equal to assume the between visit correlation is uniform, but within visit 

correlation is not and changes according to time gap. This model will be referred as model 3c. 

Σ𝐷𝐷1𝐷𝐷1 = Σ𝐷𝐷2𝐷𝐷2 =  𝜂𝜂 ⊗ 𝐽𝐽20 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇20 
Σ𝐷𝐷1𝐷𝐷2=ΣT𝐷𝐷1𝐷𝐷2 = 𝜂𝜂 ⊗ 𝐽𝐽20 

 

(2) Apply V2, the model is referred as model 3d.  

 Σ𝐷𝐷1𝐷𝐷1 = Σ𝐷𝐷2𝐷𝐷2 = (𝜌𝜌 + 𝛾𝛾) ∗ 𝜎𝜎2 ⊗ 𝐽𝐽20 + (1 − 𝜌𝜌 − 𝛾𝛾) ∗ 𝜎𝜎2 ⊗ 𝐼𝐼20 

 ΣT𝐷𝐷1𝐷𝐷2 = Σ𝐷𝐷1𝐷𝐷2 =  𝜌𝜌 ∗ 𝜎𝜎2 ⊗ 𝐽𝐽20 

Note that, if estimated 𝛾𝛾 = 0, then this structure collapse as CS; and if estimated  

𝜌𝜌 = 0, then this structure collapse as V5. 

 

(3) Apply CS structure, the model is referred as model 3e. 

�
Σ𝐷𝐷1𝐷𝐷1 Σ𝐷𝐷1𝐷𝐷2
ΣT𝐷𝐷1𝐷𝐷2 Σ𝐷𝐷2𝐷𝐷2

� = 𝜌𝜌 ∗ 𝜎𝜎2 ⊗ 𝐽𝐽40 + (1 − 𝜌𝜌) ∗ 𝜎𝜎2 ⊗ 𝐼𝐼40 

 

(4) Apply V5, which assumes only changes from the same visit is uniformly correlated, cross-

visit correlation is 0. The model is referred as model 3f. 

Σ𝐷𝐷1𝐷𝐷1 = Σ𝐷𝐷2𝐷𝐷2 = 𝜌𝜌 ∗ 𝜎𝜎2 ⊗ 𝐽𝐽20 + (1 − 𝜌𝜌) ∗ 𝜎𝜎2 ⊗ 𝐼𝐼20 

Σ𝐷𝐷1𝐷𝐷2 = ΣT𝐷𝐷1𝐷𝐷2 = 0 ∗ 𝐽𝐽20 

The reason why this structure is proposed: 
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When 𝑉𝑉��

𝑋𝑋𝑖𝑖1
𝑌𝑌𝑖𝑖1
𝑋𝑋𝑖𝑖2
𝑌𝑌𝑖𝑖2

��~𝑉𝑉2 𝑐𝑐𝑣𝑣 𝐶𝐶𝑆𝑆,  

The covariance of changes from different visit, 𝑐𝑐𝑐𝑐𝑣𝑣(𝐷𝐷𝑖𝑖1𝑘𝑘,𝐷𝐷𝑖𝑖2𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑣𝑣 �𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 −

1
20
∑ 𝑋𝑋𝑖𝑖1𝑡𝑡20
𝑡𝑡=1 ,𝑌𝑌𝑖𝑖2𝑡𝑡 − 1

20
∑ 𝑋𝑋𝑖𝑖2𝑡𝑡20
𝑡𝑡=1 � = [𝐴𝐴 𝐵𝐵𝐶𝐶𝐷𝐷]⊗𝑉𝑉⊗ [𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸]′,𝑟𝑟ℎ𝑜𝑜𝑣𝑣𝑜𝑜 [𝐶𝐶] = [𝐷𝐷] =

[𝑇𝑇] = [𝐸𝐸] = [0]1×20 , [𝐴𝐴] = [𝐸𝐸] = �− 1
20
�
1×20

, [B] and [H] are 1 × 20 matrix, with only kth or 

mth elements=1,else elements=0. 

For V~ V2: 

[𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷] ⊗ V ⊗ [𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸]′ = �𝐴𝐴𝐵𝐵 0�0�� ⊗ 𝑉𝑉⊗ �0�0�𝐸𝐸𝐸𝐸�′ =[MN 0�0�  ] ⊗ �0�0�𝐸𝐸𝐸𝐸�′ = 0，[M] =

�𝜌𝜌+𝛾𝛾−1
20

�
1x20

 [𝑁𝑁]1×20:𝑘𝑘𝑜𝑜ℎ 𝑐𝑐𝑐𝑐𝐼𝐼 = 1 − 𝜌𝜌 − 𝛾𝛾, 𝑜𝑜𝐼𝐼𝑖𝑖𝑜𝑜 = 0.  

For V~CS: 

[𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷] ⊗𝑉𝑉1 ⊗ [𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸]′ = �𝐴𝐴𝐵𝐵 0�0�� ⊗ 𝑉𝑉1 ⊗ �0�0�𝐶𝐶𝐷𝐷�′ =[MN 0�0�  ] ⊗ �0�0�𝐶𝐶𝐷𝐷�′ =

0 ,𝑟𝑟ℎ𝑜𝑜𝑣𝑣𝑜𝑜 [𝑀𝑀] = �𝜌𝜌−1
20
�
1x20

 [𝑁𝑁]1×20:𝑘𝑘𝑜𝑜ℎ 𝑐𝑐𝑐𝑐𝐼𝐼 = 1 − 𝜌𝜌, 𝑜𝑜𝐼𝐼𝑖𝑖𝑜𝑜 = 0. 

 

Statistical Model 

Table 3b. Expectation of Change Score 
 Annotation Sequence 1 Sequence 2 
Visit 1 𝜇𝜇𝐷𝐷1 𝜋𝜋1 + 𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇 𝜋𝜋1 + 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 
Visit 2 𝜇𝜇𝐷𝐷2 𝜋𝜋2 + 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 𝜋𝜋2 + 𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇 

Where the terms are: 

𝜋𝜋1 ,𝜋𝜋2 are the fixed effect associated with visit 1 and visit 2. 

𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇  is the effect associated with TMS and 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 is the effect associated with Sham. 

 

The model is: 
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Dijm = β0 + 𝛽𝛽1 ∗ 𝐼𝐼(𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 = 1) + 𝛽𝛽2 ∗ 𝐼𝐼(𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = "Sham") + 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡, 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡~𝑉𝑉 

 

Where β0  is the mean of change score at visit 2 with TMS treatment, β1 = 𝜋𝜋1 − 𝜋𝜋2,𝛽𝛽2 =

𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 − 𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇 . 𝛽𝛽1  estimates the fluctuation of change score across visit. 𝛽𝛽2  estimates the 

difference between the effect of Sham and the effect of TMS. 

 

4.3.4 Baseline as Covariate 

Similar as change from baseline study, this is another conventional way to adjust for baseline5. 

As in this study, each visit is regarded as a period, when modeling post-treatment throw scores, 

the baseline from the same visit is adjusted as covariate. 

 

A critique of this method, proposed by Kenward et al5., illustrated by assuming the distribution 

of 

⎣
⎢
⎢
⎢
⎡𝑋𝑋𝑖𝑖1
𝑌𝑌𝑖𝑖1
𝑋𝑋𝑖𝑖2
𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎥
⎤

, is that: 

When assuming  

⎣
⎢
⎢
⎢
⎡𝑋𝑋𝑖𝑖1
𝑋𝑋𝑖𝑖2
𝑌𝑌𝑖𝑖1
𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎥
⎤

~𝑁𝑁�

⎣
⎢
⎢
⎡
𝑢𝑢𝑋𝑋𝑖𝑖1
𝑢𝑢𝑋𝑋𝑖𝑖2
𝑢𝑢𝑌𝑌𝑖𝑖1
𝑢𝑢𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎤
 ,𝑉𝑉� , then deriving the distribution of 

�𝑌𝑌i1,𝑌𝑌𝑖𝑖2�𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2�: �𝑌𝑌i1,𝑌𝑌𝑖𝑖2�𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2�~𝑁𝑁(�
𝑢𝑢𝑌𝑌𝑖𝑖1
𝑢𝑢𝑌𝑌𝑖𝑖2

� − Σ𝑇𝑇𝑋𝑋𝑌𝑌 ⊗ Σ−1𝑋𝑋𝑋𝑋⊗ ��
𝑢𝑢𝑋𝑋𝑖𝑖1
𝑢𝑢𝑋𝑋𝑖𝑖2

� −

�𝑋𝑋𝑖𝑖1
𝑋𝑋𝑖𝑖2

�� ,𝑉𝑉∗ = Σ𝑌𝑌𝑌𝑌 − Σ𝑇𝑇𝑋𝑋𝑌𝑌 ⊗ Σ−1𝑋𝑋𝑋𝑋⊗ Σ𝑋𝑋𝑌𝑌)  Under most covariance structure 

V, E�𝑌𝑌𝑖𝑖1�𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2� or E�𝑌𝑌𝑖𝑖2�𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2� depends on both 𝑋𝑋𝑖𝑖1 and 𝑋𝑋𝑖𝑖2. Thus, argues the method 

of adjusting only the baseline from same visit is inappropriate. In a word, if 
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⎣
⎢
⎢
⎢
⎡𝑋𝑋𝑖𝑖1
𝑋𝑋𝑖𝑖2
𝑌𝑌𝑖𝑖1
𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎥
⎤

~𝑁𝑁�

⎣
⎢
⎢
⎡
𝑢𝑢𝑋𝑋𝑖𝑖1
𝑢𝑢𝑋𝑋𝑖𝑖2
𝑢𝑢𝑌𝑌𝑖𝑖1
𝑢𝑢𝑌𝑌𝑖𝑖2⎦

⎥
⎥
⎤
 ,𝑉𝑉�, which is the assumption made in method 1 joint modeling, then under 

most situation of V, �
(𝑌𝑌𝑖𝑖1|𝑋𝑋𝑖𝑖1)
(𝑌𝑌𝑖𝑖2|𝑋𝑋𝑖𝑖2)

�~MVN does not hold. 

 

To avoid this issue, in this study, directly assuming the distribution of �
(𝑌𝑌𝑖𝑖1|𝑋𝑋𝑖𝑖1)
(𝑌𝑌𝑖𝑖2|𝑋𝑋𝑖𝑖2)

�  or 

�(𝑌𝑌𝑖𝑖1|𝑋𝑋𝑖𝑖1)
(𝑌𝑌𝑖𝑖2|𝑋𝑋𝑖𝑖2)

� follows normal distribution.  

 

Another special concern to this method is, it strictly depends on the assumption of no carryover 

effect. The contamination of carryover effect makes baselines inappropriate as covariate9. 

Variable “sequence” is still added in analysis to test assumption of no treatment by period 

interaction and successful randomization. 

 

4.3.4.1 Modeling Mean Throw Scores 

Like in method 2, the dependent variable is composed by 𝑌𝑌𝑖𝑖1and 𝑌𝑌𝑖𝑖2. 

Assume: 

�𝑌𝑌𝑖𝑖1
𝑌𝑌𝑖𝑖2

�~𝑁𝑁��
𝑢𝑢𝑌𝑌 𝑖𝑖1
𝑢𝑢𝑌𝑌 𝑖𝑖2

�  ,𝑉𝑉� where �
𝑢𝑢𝑌𝑌 𝑖𝑖1
𝑢𝑢𝑌𝑌 𝑖𝑖2

� the matrix of expectations. As latter on it is illustrated 

that 𝑢𝑢𝑌𝑌 𝑖𝑖1  denpends on 𝑋𝑋𝑖𝑖1  and 𝑢𝑢𝑌𝑌 𝑖𝑖2  denpends on 𝑋𝑋𝑖𝑖2 , it is equivalent to assuming 

�𝑌𝑌𝑖𝑖1|𝑋𝑋𝑖𝑖1
𝑌𝑌𝑖𝑖2|𝑋𝑋𝑖𝑖2

�~𝑀𝑀𝑉𝑉𝑁𝑁. 
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Covariance Structure: 

(1) V=�1 𝜌𝜌
𝜌𝜌 1� σ

2, CS structure. The model is referred as model 4a. 

 

Statistical Model 

 Table 4a. Expectation of post treatment mean score  

 Annotation Sequence 1 Sequence 2 
Visit 1 𝑢𝑢𝑌𝑌𝑖𝑖1 μ + π1 + 𝛽𝛽 ∗ 𝑋𝑋𝑖𝑖1 + 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 μ + 𝜋𝜋1 + 𝛽𝛽 ∗ 𝑋𝑋𝑖𝑖1 + 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 
Visit 2 𝑢𝑢𝑌𝑌𝑖𝑖2 

μ + π2 + 𝛽𝛽 ∗ 𝑋𝑋𝑖𝑖2 + 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 μ + π2 + 𝛽𝛽 ∗ 𝑋𝑋𝑖𝑖2 + 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 

 

Where the terms are: 

µ, an intercept, the mean of the average of 20 post-treatment throw scores after adjusting for 

baseline mean score from the same visit; 

 𝜋𝜋1 ,𝜋𝜋2 are the fixed effect associated with visit 1 and visit 2. 

 𝛽𝛽 is the change in the expectation of 𝑌𝑌𝑖𝑖𝑖𝑖 with 1 unit change in 𝑋𝑋𝑖𝑖𝑖𝑖 

𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇  is the effect associated with TMS and 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 is the effect associated with Sham. 

 

The model is: 

𝑌𝑌ij = β0 + 𝛽𝛽1 ∗ 𝐼𝐼(𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 = 1) + 𝛽𝛽2 ∗ 𝐼𝐼(𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = "Sham") + 𝛽𝛽3 ∗ 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 , 𝜖𝜖𝑖𝑖𝑖𝑖~𝑉𝑉 

Where β0 is the mean of averaging 20 throw scores at visit 2 treatment TMS, after adjusting 

for baseline mean throw score. 𝛽𝛽1 = 𝜋𝜋1 − 𝜋𝜋2 , 𝛽𝛽2 = 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 − 𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇.  𝛽𝛽1  estimates the 

fluctuation of post-treatment mean score. 𝛽𝛽2 estimates the difference between the effect of 

Sham and the effect of TMS. 𝛽𝛽3  estimates the change in expectation of  𝑌𝑌𝑖𝑖𝑖𝑖  with 1 unit 
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change in the baseline. 

 

4.3.4.2 Modeling Individual Throw Scores 

Similar to method 2, When modeling �𝑌𝑌𝑖𝑖1𝑌𝑌𝑖𝑖2
�, 

Assume:  

�𝑌𝑌𝑖𝑖1𝑌𝑌𝑖𝑖2
�
40×1

~𝑁𝑁��
𝜇𝜇𝑖𝑖1
𝜇𝜇𝑖𝑖2� ,𝑉𝑉�, where �

𝜇𝜇𝑖𝑖1
𝜇𝜇𝑖𝑖2� is the matrix of expectation and V=�

Σ𝑌𝑌1𝑌𝑌1 Σ𝑌𝑌1𝑌𝑌2
Σ𝑇𝑇𝑌𝑌1𝑌𝑌2 Σ𝑌𝑌2𝑌𝑌2

� σ2. 

As latter on it is illustrated that 𝜇𝜇𝑖𝑖1 depends on 𝑋𝑋𝑖𝑖1 and 𝑢𝑢𝑖𝑖2  depends on 𝑋𝑋𝑖𝑖2, it is equivalent 

to assuming �𝑌𝑌𝑖𝑖1|𝑋𝑋𝑖𝑖1
𝑌𝑌𝑖𝑖2|𝑋𝑋𝑖𝑖2

�~𝑀𝑀𝑉𝑉𝑁𝑁. 

 

Covariance Structures: 

Three covariance structure will be applied. 

(1) Apply V4, assume the post-treatment throws follow homoscedasticity, and the covariance 

between post-treatment throw scores between-visit is 𝜂𝜂; for post-treatment throw scores within 

visit, their covariance equal to 𝜂𝜂 plus the term from TOEP structure. This is equal to assume 

the between visit correlation is uniform, but within visit correlation is not and changes 

according to time gap. The model is referred as model 4b. 

Σ𝑌𝑌1𝑌𝑌1 = Σ𝑌𝑌2𝑌𝑌2 = 𝜂𝜂 ⊗ 𝐽𝐽20 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇20 
Σ𝑌𝑌1𝑌𝑌1 = Σ𝑌𝑌2𝑌𝑌2 = 𝜂𝜂 ⊗ 𝐽𝐽20 

 

(2) Apply V2, which assumes homoscedasticity, within-visit correlation = ρ + γ and between 

visit correlation = ρ.The model is referred as model 4c. 

Σ𝑌𝑌1𝑌𝑌1 = Σ𝑌𝑌2𝑌𝑌2 = (𝜌𝜌 + 𝛾𝛾) ∗ 𝜎𝜎2 ⊗ 𝐽𝐽20 + (1 − 𝜌𝜌 − 𝛾𝛾) ∗ 𝜎𝜎2 ⊗ 𝐼𝐼20 

Σ𝑌𝑌1𝑌𝑌2 = Σ𝑇𝑇𝑌𝑌1𝑌𝑌2 = 𝜌𝜌 ∗ 𝜎𝜎2 ⊗ 𝐽𝐽20 
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(3) Apply CS structure. The model is referred as model 4d. 

V=�
Σ𝑌𝑌1𝑌𝑌1 Σ𝑌𝑌1𝑌𝑌2
Σ𝑇𝑇𝑌𝑌1𝑌𝑌2 Σ𝑌𝑌2𝑌𝑌2

�= 𝜌𝜌 ∗ 𝜎𝜎2 ⊗ 𝐽𝐽40+(1 − 𝜌𝜌) ∗ 𝜎𝜎2 ⊗ 𝐼𝐼40 

 

Statistical Model 

The expectation of throw score is: 

Table 4b. Expectation of Post-treatment Throw Score  

 Annotation Sequence 1 Sequence 2 
Visit 1 𝑢𝑢𝑖𝑖1 μ + π1 + 𝛽𝛽 ∗ 𝑋𝑋𝑖𝑖1 + 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 μ + 𝜋𝜋1 + 𝛽𝛽 ∗ 𝑋𝑋𝑖𝑖1 + 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 
Visit 2 𝑢𝑢𝑖𝑖2 μ + π2 + 𝛽𝛽 ∗ 𝑋𝑋𝑖𝑖2 + 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 μ + π2 + 𝛽𝛽 ∗ 𝑋𝑋𝑖𝑖2 + 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 

Where the terms are: 

µ, an intercept, the mean of post-treatment throw score after adjusting for baseline mean score; 

 𝜋𝜋1 ,𝜋𝜋2 are the fixed effect associated with visit 1 and visit 2 

 𝛽𝛽 is the change in expectation of 𝑌𝑌𝑖𝑖𝑖𝑖𝑡𝑡 with 1 unit change in 𝑋𝑋𝑖𝑖𝑖𝑖 

𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇  is the effect associated with TMS and 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 is the effect associated with Sham. 

 

The model is: 

𝑌𝑌ijm = β0 + 𝛽𝛽1 ∗ 𝐼𝐼(𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 = 1) + 𝛽𝛽2 ∗ 𝐼𝐼(𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = "Sham") + 𝛽𝛽3 ∗ 𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡, 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡~𝑉𝑉 

Where β0 is the mean of a throw score at visit 2 treatment TMS, after adjusting for baseline 

mean throw score. 𝛽𝛽1 = 𝜋𝜋1 − 𝜋𝜋2, 𝛽𝛽2 = 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 − 𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇. 𝛽𝛽1 estimates the fluctuation of post-

treatment score. 𝛽𝛽2 estimates the difference between the effect of Sham and the effect of TMS. 

𝛽𝛽3 estimates the change in expectation of 𝑌𝑌𝑖𝑖𝑖𝑖𝑡𝑡 with 1 unit change in the baseline. 
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Result 

1. Descriptive Statistics 

Table 5 presents the comparison of subject characteristics by sequence and overall. Subject 

characteristics collected by study investigators are height, weight, age, race, baseball level and 

the year since last time played baseball. Based on the “year since last time played baseball”, 

subjects are divided into played within one year or longer than one year. The subjects’ mean 

height is 5.95 feet, weight 189.04 pounds, age 22.32 years. 12% of the subjects are Asian, 28% 

are African American, and 60% are Caucasian. 18% of the subjects’ baseball level are “high 

school”, 20% are “high school and club”. 52% are “college and/or above”. 32% of the subjects 

had played baseline within 1 year to the starting date of the study. The randomization 

successfully balanced those subject characteristics among the two sequences, all p 

values >0.196. 

 

Table 6 presents the summary statistics of experiment characteristics by treatment group. 

Experiment characteristics are time-dependent across visit, and varies across subjects. 

Temperature is the same within-visit at baseline throws and post-treatment throws, but different 

at the two visits. Temperature of this study was varying because subjects were tested on 

different dates outdoor. The temperatures in which subjects completed throws are significantly 

different between the visit to receive TMS treatment and the visit to receive Sham treatment, 

p=0.0008. Stimulation intensity is the MRI intensity delivered to the subject, for TMS it is 90% 
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of the subject’s specific threshold, for Sham it is 65%. The significant difference in stimulation 

intensity among the treatment groups is caused by the study design. “Minute” is the time from 

finished treatment to the complete of the last post-treatment throw. In window period indicates 

whether all 20 post-treatment throws were completed during the window period of the treatment 

When one or more post-treatment throws were not completed in window period, the subject 

was labeled “not in window period” for that treatment.  

 

Table 7 presents the summary statistic of mean throw score by visit, sequence and baseline or 

post-treatment. From mean values in Table 7, in Table 8 the crude estimations of δ = τSham −

τTMS  are calculated. Without adjusting for baseline, the crude estimation of δ  is 0.18 at 

sequence 1, 0.03 at sequence 2, 0.105 overall. When adjusting for baseline, the crude estimation 

of δ is 0.13 at sequence 1, 0.22 at sequence 2, 0.175 overall. The crude estimation of δ lies 

close to zero and thus does not suggest difference in effects of treatments. However, the crude 

estimation of δ  varies among adjusting baseline or not, and also varies among the two 

sequences. 
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Table 5: Subject Characteristics by Randomization 
Characteristic overall 

(N=25) 
Visit 1: TMS 
Visit 2: Sham 

(n=10) 

Visit 1: Sham 
Visit 2: TMS 

(n=15) 

P value 

Height(feet) 5.95(0.23) 5.97 (0.23) 5.93 (0.24) 0.912 
Weight(lbs) 189.04(34.05) 191.40 (32.78) 187.50 (35.92) 0.741 
Age(year) 22.32(4.13) 22.20 (4.00) 22.40 (4.36) 0.823 
     
Race     

African American 3(12) 1(10) 2(13) 0.999 
Asian 7(28) 3(30) 4(26) 
Caucasian 15(60) 6(60) 9(60) 

     
Baseball level     

1: HS 7(18) 5(50) 2(13) 0.196 
2: HS & club 5(20) 1(10) 4(26) 
3: College + 13(52) 4(40) 9(60) 

     
Experience     

Yes 8(32) 2(20) 6(40) 0.402 
No 17(68) 8(80) 9(60) 

∎For numeric characteristic, mean(sd) and p value from Wilcoxon rank-rum test are presented.  
∎For categorical characteristic, frequency(%) and p value from Fisher exact test are presented. 
∎Baseball level: 1：high school; 2: high school and club; 3: college or above. 
∎Experience: Yes: played baseball within a year; No: played baseball a year beyond. 
∎P value show that randomization successfully balanced subject characteristics. 
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 Table 6. Experiment Characteristics 
 TMS visit  Sham visit P value 
 mean sd minimum median maximum  mean sd minimum median maximum  
Temperature 65.68 9.01 50.00 63.00 83.00  59.32 11.79 39.00 58.00 84.00 0.008 
Stimulation Intensity 48.96 8.07 35.10 50.40 69.30  35.36 5.83 25.35 36.40 50.05 <0.001 
Minute 8.52 3.54 3.00 8.00 17.00  7.64 2.41 3.00 7.00 12.00 0.094 
             
In window period             

Yes 
No 

  23(92)      23(92)   0.999 
  2(8)      2(8)   

∎Mean, sd, min, median, and max are presented for continuous characteristics, frequency(%) is presented for categorical characteristics 
∎Temperature, stimulation intensity and minute are tested by paired t-test 
∎In window period is tested by Fisher’s exact test. 
∎Minute: time from finishing treatment to complete last post-treatment throw 
∎In window period: Yes: all post-treatment throws were completed in window period of treatment. No: at least one post-treatment throw was not completed 
in window period. The subjects not in window period of TMS treatment are not the same as the subjects not in window period of Sham treatment 
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Table 7. Summary Statistics of Mean Throw Scores 
Type visit sequence annotation mean sd min median max 

baseline 1 1 𝑋𝑋𝑖𝑖1 3.06 1.13 0.85 3.10 4.38 
baseline 1 2 3.21 0.94 1.65 2.85 4.80 

 
baseline 2 1 𝑋𝑋𝑖𝑖2 3.11 1.20 0.58 3.24 4.53 
baseline 2 2 3.40 0.89 1.63 3.38 4.53 

 
post-

treatment 
1 1 𝑌𝑌𝑖𝑖1 2.80 1.35 0.03 3.16 4.08 

post-
treatment 

1 2 3.19 0.83 2.08 3.40 4.53 
 
 

post-
treatment 

2 1 𝑌𝑌𝑖𝑖2 2.98 1.18 0.18 3.08 4.43 

post-
treatment 

2 2 3.16 0.71 1.73 3.25 4.20 
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Table 8. Crude Estimation of 𝜹𝜹 = 𝝉𝝉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 − 𝝉𝝉𝒕𝒕𝒔𝒔𝒔𝒔  
  Denotation Sequence 1 Sequence 2 Overall 

   treatment mean treatment mean  
Visit 1 Baseline 𝑋𝑋i1 --- 3.06 --- 3.21 3.135 

 
 Post-

treatment 
𝑌𝑌i1 TMS 2.8 Sham 3.19 2.995 

 
 

 Mean 
change 

𝐷𝐷i1 TMS -0.26 Sham -0.02 -0.14 
 
 

Visit 2 Baseline 𝑋𝑋i2 --- 3.11 --- 3.40 3.255 
 

 Post- 
treatment 

𝑌𝑌i2 Sham 2.98 TMS 3.16 3.07 
 
 

 Mean 
change 

𝐷𝐷i2 Sham -0.13 TMS -0.24 -0.185 

     
𝛿𝛿 0.18  0.03 0.105 
𝛿𝛿 (baseline adjust) 0.13  0.22 0.175 

∎ δ� = mean(𝑌𝑌i2)− mean(𝑌𝑌i1)  for sequence 1, mean(𝑌𝑌i1) − mean�𝑌𝑌i2�  for 

sequence 2. 

∎δ�(baseline adjust) = (mean�𝑌𝑌i2� −mean�𝑋𝑋i2�)− (mean�𝑌𝑌i1� −

mean(𝑋𝑋i1))for sequence 1. 

 (mean�𝑌𝑌i1� −mean�𝑋𝑋i1�)− (mean�𝑌𝑌i2� − mean(𝑋𝑋i2))for sequence 2. 

∎ “Overall” shows the unweighted mean among the two sequences.  

∎ Mean of 𝐷𝐷ij can be regarded crude estimation of the effect of Sham or the 

effect of TMS 
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2. Model Result 

In modeling, variable “sequence” is added in to test whether the assumptions required for 

crossover design all hold. 

 

Table 9a is the result of method 1 joint modeling, with mean throw score as dependent variable, 

using the model recommended by Kenward. The factors in model are “sequence”, “interval” 

and “treatment”. Factor “sequence” tests whether the assumptions for crossover design, 

mentioned in section 4.2 hold. Factor interval estimates whether mean throw score fluctuates 

across intervals. Factor “treatment” estimates the difference among effect of Sham and effect 

of TMS. For model 1b with the covariance structure recommended by Kenward5，which 

assumes heteroscedasticity for baseline and post-treatment measures and within-visit 

covariance is stronger than between -visit association, SAS warns G matrix is not positive 

definite. The models shown in this table are consistent that: the non-significant of factor 

“sequence” indicates the assumptions hold; the mean score does not statistical significantly 

fluctuate across interval; there is no statistical significant difference among the effect of Sham 

and the effect of TMS. 

 

Table 9b is the result of method 1 joint modeling, with individual throw score as dependent 

variable, using the model Kenward recommended. Factors in model are the same as those in 

Table 9a.  For model 1e with covariance structure V3, which assumes between visit covariance 

is 𝜂𝜂, within-visit yet not within interval covariance is 𝜂𝜂 + 𝜎𝜎, and within interval covariance is 
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𝜂𝜂 + 𝜎𝜎  plus the terms from TOEP structure, SAS stops and warns too much likelihood 

evaluations. The models shown in this table are consistent that: the non-significant of factor 

“sequence” indicates the assumptions hold; the throw score does not statistical significantly 

fluctuate across interval; there is no statistical significant difference among the effect of Sham 

and the effect of TMS. 

 

Table 9c is the result of method 1 joint modeling, with individual throw score as dependent 

variable, and apply the alternative model. The terms in model are different from the model 

presented in Table 9a and Table 9b. The factors in model are “sequence”, “interval”, “treatment”, 

“type” and “type by treatment interaction”. Factor “sequence” test whether the assumptions for 

crossover design, factor “visit” estimates whether throw score fluctuates across visits, factor 

“type” tests whether post-treatment score is different from baseline score, and “type by 

treatment interaction” estimates the difference on the effect of receiving treatment between 

Sham and TMS. For model 1h with covariance structure V3, SAS stops and warns too much 

likelihood evaluations. The models shown in this table are consistent that: the non-significant 

of factor “sequence” indicates the assumptions hold; the non-significant of type by treatment 

interaction suggests there is no statistical significant difference among the effect of Sham and 

the effect of TMS. 

 

Table 10 is the result of method 2 ignore baseline, with dependent variable as mean post-

treatment scores or individual post-treatment scores. The factors in model are “sequence”, “visit” 
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and “treatment”. Factor “sequence” test whether the assumptions for crossover design all holds. 

Factor “visit” estimates whether throw score or mean throw score fluctuates across visits. Factor 

“treatment” estimates the difference among effect of Sham and effect of TMS. The models 

shown in this table are consistent that: the non-significant of factor “sequence” indicates the 

assumptions hold; the throw score or mean score does not statistical significantly fluctuate 

across visits; there is no statistical significant difference among the effect of Sham and the effect 

of TMS. 

 

Table 11 is the result of method 3 change from baseline, with dependent variable as mean 

change score or change score. Factors in model are the same as those in Table 10. Model 3a 

which assumes CS structure of the mean changes collapses into model 3b, as the estimated 

correlation between 𝐷𝐷𝑖𝑖1 and 𝐷𝐷𝑖𝑖2 is 0. Model 3c, which assume the covariance between-visit 

is 𝜂𝜂, and within-visit covariance is 𝜂𝜂 plus the terms from TOEP structure, estimated 𝜂𝜂 = 0 

and SAS warns G matrix is not positive definite. Model 3d, which assume between visit 

correlation is 𝜌𝜌 and within visit correlation is 𝜌𝜌 + 𝛾𝛾 collapses into model 3f, as estimated 

𝜌𝜌 = 0 . The estimated covariance structures uniformly suggest, for this study, when 

incorporating change score as dependent variable, between-visit covariance or correlation is 0. 

The models shown in this table are consistent that: the non-significant of factor “sequence” 

indicates the assumptions hold; the change score or mean change score does not statistical 

significantly fluctuate across visits; there is no statistical significant difference among the effect 

of Sham and the effect of TMS. 
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Table 12 is the result of method 4 visit specific baseline as covariate, with dependent variable 

as mean post-treatment scores or individual post-treatment scores. Besides the factors which 

are the same as Table 10, variable “baseline” is added in model. The beta coefficient of baseline 

estimates the change in expectation of throw score or mean throw score with 1 unit change in 

baseline mean score from the same visit. The models shown in this table are consistent that: the 

non-significant of factor “sequence” indicates assumption (1) and (3) hold; the throw score or 

mean throw score does not statistical significantly fluctuate across visits; there is no statistical 

significant difference among the effect of Sham and the effect of TMS. Post-treatment mean 

throw score or throw score are significantly correlated to baseline mean score from the same 

visit.
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Table 9a. Statistical Result for Method 1—Joint Modeling 
 Model 1a Model 1b Model 1c Model 1d 
Dependent variable 

�𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖1   𝑋𝑋𝑖𝑖2 𝑌𝑌𝑖𝑖2�1×4
𝑇𝑇 �𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖1   𝑋𝑋𝑖𝑖2 𝑌𝑌𝑖𝑖2�1×4

𝑇𝑇 �𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖1   𝑋𝑋𝑖𝑖2 𝑌𝑌𝑖𝑖2�1×4
𝑇𝑇 �𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖1   𝑋𝑋𝑖𝑖2 𝑌𝑌𝑖𝑖2�1×4

𝑇𝑇 

Covariance Structure UN V1 V2 CS 
AIC 210.3 205.6 202.0 200.3 
P value of variables in model     

Sequence 0.5309 0.5355 0.5106 0.5106 
Interval 0.4580 0.4736 0.4211 0.4534 
Treatment 0.4078 0.4303 0.4497 0.4301 

Estimated least square means      
Sham(SE) 3.0820(0.1996) 3.0808(0.2033) 3.0824(0.2050) 3.0853(0.2051) 
TMS(SE) 2.9907(0.2052) 2.9903(0.2033) 2.9883(0.2050) 2.9853(0.2051) 

Estimated δ     
    𝛿𝛿(𝑆𝑆𝑇𝑇) 0.0913(0.1083) 0.0905(0.1239) 0.0942(0.1239) 0.1000(0.1260) 

P value 0.4078 0.4303 0.4497 0.4301 
∎ The composition of dependent variable on one subject is illustrated. 
∎ Sequence: 1: receive TMS in first visit, Sham in second visit; 2: receive Sham in first visit, TMS in second visit. 
∎ Interval: 1: visit 1 baseline; 2: visit 1 post-treatment; 3: visit 2 baseline; 4: visit 2 post-treatment. 
∎ Treatment: 0: baseline, no actual treatment received; 1: TMS received; 2: Sham received. 
∎ Model 1b’s estimated G matrix is not positive definite, which suggests the covariance structure proposed does not fit the data. 
∎ In Model 1c, estimated within-visit correlation is 0.8017, between-visit correlation is 0.8167. 
∎ In Model 1d, estimated correlation is 0.8116. 
∎  Least square means for Sham is estimated by contrast: intercept 1 sequence 0.5 0.5 interval 0 0.5 0 0.5 treatment 0 1 0; 
Least square means for Sham is estimated by contrast: intercept 1 sequence 0.5 0.5 interval 0 0.5 0 0.5  treatment 0 0 1; 
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Table 9b. Statistical Result for Method 1—Joint Modeling 
  Model 1e Model 1f Model 1g 

Dependent variable  [𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖1   𝑋𝑋𝑖𝑖2 𝑌𝑌𝑖𝑖2]1×80
𝑇𝑇 [𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖1   𝑋𝑋𝑖𝑖2 𝑌𝑌𝑖𝑖2]1×80

𝑇𝑇 [𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖1   𝑋𝑋𝑖𝑖2 𝑌𝑌𝑖𝑖2]1×80
𝑇𝑇 

Covariance Structure  V3 V2 CS 
AIC  \ 8287.0 8285.0 
P value of variables in model     

Sequence  \ 0.5086 0.5086 
Interval  \ 0.4106 0.4222 
Treatment  \ 0.4120 0.4100 

Estimated least square means     
Sham(SE)  \ 3.0847(0.2039) 3.0853(0.2041) 
TMS(SE)  \ 2.9860(0.2039) 2.9853(0.2041) 

Estimated δ     
    𝛿𝛿(𝑆𝑆𝑇𝑇)  \ 0.0987(0.1202) 0.1000(0.1213) 

P value  \ 0.4120 0.4100 
∎ The composition of dependent variable on one subject is illustrated. 
∎ Sequence: 1: receive TMS in first visit, Sham in second visit; 2: receive Sham in first visit, TMS in second visit. 
∎ Interval: 1: visit 1 baseline; 2: visit 1 post-treatment; 3: visit 2 baseline; 4: visit 2 post-treatment. 
∎ Treatment: 0: baseline, no actual treatment received; 1: TMS received; 2: Sham received. 
∎ Model 1e: SAS stopped because of too many likelihood evaluations. 
∎ In Model 1f, estimated within-visit correlation is 0.1888, between-visit correlation is 0.1895.  
∎ In Model 1g, estimated correlation is 0.1892. 
∎  Least square means for Sham is estimated by contrast: intercept 1 sequence 0.5 0.5 interval 0 0.5 0 0.5 treatment 0 1 0; 
Least square means for Sham is estimated by contrast: intercept 1 sequence 0.5 0.5 interval 0 0.5 0 0.5  treatment 0 0 1; 
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Table 9c. Statistical Result for Method 1—Joint Modeling 
  Model 1h Model 1i Model 1j 

Dependent variable  
[𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖1   𝑋𝑋𝑖𝑖2 𝑌𝑌𝑖𝑖2]1×80

𝑇𝑇 [𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖1   𝑋𝑋𝑖𝑖2 𝑌𝑌𝑖𝑖2]1×80
𝑇𝑇 [𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖1   𝑋𝑋𝑖𝑖2 𝑌𝑌𝑖𝑖2]1×80

𝑇𝑇 

Covariance Structure  V3 V2 CS 
AIC  \ 8287.0 8285.0 
P value of variables in model     

Sequence  \ 0.5086 0.5086 
Visit  \ 0.2421 0.2475 
Treatment  \ 0.8666 0.8681 
Type  \ 0.0664 0.0664 
Type*Treatment  \ 0.1682 0.2813 

Estimated least square 
means 

    

Sham baseline(SE)  \ 3.1516(0.2038) 3.1516(0.2039) 
Sham post-treatment(SE)  \ 3.0878(0.2038) 3.0878(0.2039) 
TMS baseline(SE)  \ 3.2279(0.2038) 3.2279(0.2039) 
TMS post-treatment(SE)  \ 2.9829(0.2038) 2.9829(0.2039) 

Estimated δ     
    𝛿𝛿(𝑆𝑆𝑇𝑇)  \ 0.1812(0.1682) 0.1812(0.1681) 

P value  \ 0.2813 0.2813 
∎ The composition of dependent variable on one subject is illustrated. 
∎ Sequence: 1: receive TMS in first visit, Sham in second visit; 2: receive Sham in first visit, TMS in second visit. 
∎ Visit: 1: visit 1; 2: visit 2. 
∎ Treatment: 1: TMS; 2: Sham. 
∎ Type: 0: baseline; 1: post-treatment. 



45 

 

 

 

∎ Model 1h: SAS stopped because of too many likelihood evaluations. 
∎ In Model 1i, estimated within-visit correlation is 0.1890, between-visit correlation is 0.1894.  
∎ In Model 1j, estimated correlation is 0.1892. 
∎ δ is estimated by contrast: type*treatment -1 1 1 -1. 
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Table 10. Statistical Result for Method 2—Ignore Baseline 
 Model 2a Model 2b Model 2c Model 2d 
Dependent variable 

�   𝑌𝑌𝑖𝑖1 𝑌𝑌𝑖𝑖2�1×2
𝑇𝑇 

[   𝑌𝑌𝑖𝑖1 𝑌𝑌𝑖𝑖2]1×40
𝑇𝑇 [   𝑌𝑌𝑖𝑖1 𝑌𝑌𝑖𝑖2]1×40

𝑇𝑇 [   𝑌𝑌𝑖𝑖1 𝑌𝑌𝑖𝑖2]1×40
𝑇𝑇 

Covariance Structure CS V4 V2 CS 
AIC 115.6 4190.6 4162.2 4160.6 
P value of variables in model     

Sequence 0.4746 0.4481 0.4674 0.4674 
Visit 0.5026 0.4907 0.4960 0.5357 
Treatment 0.3732 0.3621 0.3640 0.4090 

Estimated least square means     
Sham(SE) 3.0821(0.2030) 3.0615(0.2020) 3.0821(0.2030) 3.0821(0.2046) 
TMS(SE) 2.9821(0.2030) 2.9598(0.2020) 2.9821(0.2030) 2.9821(0.2046) 

Estimated δ     
    𝛿𝛿(𝑖𝑖𝑖𝑖) 0.1000(0.1101) 0.1017(0.1116) 0.1000(0.1101) 0.1000(0.1211) 

P value 0.3732 0.3621 0.3640 0.4090 
∎ The composition of dependent variable on one subject is illustrated. 
∎ Sequence: 1: receive TMS in first visit, Sham in second visit; 2: receive Sham in first visit, TMS in second visit. 
∎ Visit: 1: visit 1; 2: visit 2. 
∎ Treatment: 1: TMS received; 2: Sham received. 
∎ In Model 2a, estimated correlation is 0.8529. 
∎ In Model 2c, estimated within-visit correlation is 0.1871, between-visit correlation is 0.1942. 
∎ In Model 2d, estimated correlation is 0.1907. 
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 Table 11. Statistical Result for Method 3—Change from Baseline  
 Model 3a Model 3b Model 3c Model 3d Model 3e Model 3f 
Dependent 
variable �   𝐷𝐷𝑖𝑖1 𝐷𝐷𝑖𝑖2�1×2

𝑇𝑇 �   𝐷𝐷𝑖𝑖1 𝐷𝐷𝑖𝑖2�1×2
𝑇𝑇 

[   𝐷𝐷𝑖𝑖1 𝐷𝐷𝑖𝑖2]1×40
𝑇𝑇 [   𝐷𝐷𝑖𝑖1 𝐷𝐷𝑖𝑖2]1×40

𝑇𝑇 [   𝐷𝐷𝑖𝑖1 𝐷𝐷𝑖𝑖2]1×40
𝑇𝑇 [   𝐷𝐷𝑖𝑖1 𝐷𝐷𝑖𝑖2]1×40

𝑇𝑇 

Covariance 
Structure 

CS VC V4 V2 CS V5 

AIC \ 103.1 4177.4 \ 4165.4 4149.8 
P value of 
variables in 
model 

      

Sequence \ 0.7266 0.6874 \ 0.6963 0.7251 
Visit \ 0.7947 0.8067 \ 0.6954 0.7935 
Treatment \ 0.3594 0.3555 \ 0.1664 0.3548 

Estimated 
least square 
mean 
change 

      

Sham(SE) \ -0.0752(0.1310) -0.0969(0.1304)  -0.0752(0.1039) -0.0752(0.1310) 
TMS(SE) \ -0.2467(0.1310) -0.2673(0.1304)  -0.2467(0.1039) -0.2467(0.1310) 

Estimated δ \      
    𝛿𝛿(𝑖𝑖𝑖𝑖) \ 0.1715(0.1853) 0.1704(0.1844) \ 0.1715(0.1238) 0.1715(0.1852) 

P value \ 0.3594 0.3555 \ 0.1664 0.3548 
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∎ The composition of dependent variable on one subject is illustrated. 
∎ Sequence: 1: receive TMS in first visit, Sham in second visit; 2: receive Sham in first visit, TMS in second visit. 
∎ Visit: 1: visit 1; 2: visit 2. 
∎ Treatment: 1: TMS received; 2: Sham received. 
∎ In Model 3a, estimated correlation is 0, so the model collapse as Model 3b. 
∎ In Model 3c, estimated G matrix is not positive definite, which suggests the covariance structure proposed does not fit the data. 
∎ In Model 3d, estimated within-visit correlation is 0.0624, between-visit correlation is 0, so the model collapse as Model 3f. 
∎ In Model 3e, estimated correlation is 0.0200. 
∎ In Model 3f, estimated within-visit correlation is 0.0624. 
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Table 12. Statistical Result for Method 4—Period Specific Baseline as Covariate 
 Model 4a Model 4b Model 4c Model 4d 
Dependent variable 

�   𝑌𝑌𝑖𝑖1 𝑌𝑌𝑖𝑖2�1×2
𝑇𝑇 

[   𝑌𝑌𝑖𝑖1 𝑌𝑌𝑖𝑖2]1×40
𝑇𝑇 [   𝑌𝑌𝑖𝑖1 𝑌𝑌𝑖𝑖2]1×40

𝑇𝑇 [   𝑌𝑌𝑖𝑖1 𝑌𝑌𝑖𝑖2]1×40
𝑇𝑇 

Covariance Structure CS V4 V2 CS 
AIC 102.0 4176.0 4148.7 4151.9 
P value of variables in model     

Sequence 0.5250 0.4746 0.5185 0.4630 
Visit 0.9059 0.9268 0.9048 0.9916 
Treatment 0.3842 0.3683 0.3748 0.2441 
𝑋𝑋ij (Baseline) <.0001 <.0001 <.0001 <.0001 

Estimated least square means     
Sham(SE) 3.1269(0.1240) 3.1023(0.1231) 3.1269(0.1240) 3.1165(0.1207) 
TMS(SE) 2.9713(0.1239) 2.9474(0.1230) 2.9713(0.1239) 2.9738(0.1206) 

Estimated δ     
    �̂�𝛿(𝑖𝑖𝑖𝑖) 0.1556(0.1752) 0.1548(0.1721) 0.1556(0.1752) 0.1427(0.1224) 

P value 0.3842 0.3683 0.3748 0.2441 
∎ The composition of dependent variable on one subject is illustrated. 
∎ Sequence: 1: receive TMS in first visit, Sham in second visit; 2: receive Sham in first visit, TMS in second visit. 
∎ Visit: 1: visit 1; 2: visit 2. 
∎  𝑋𝑋ij the mean of baseline throws from the same visit. 
∎ Treatment: 1: TMS received; 2: Sham received. 
∎ In Model 4a, estimated correlation is 0.0014. 
∎ In Model 4c, estimated within-visit correlation is 0.0515, between-visit correlation is 0.0001. 
∎ In Model 4d, estimated correlation is 0.0453. 
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Discussion 

1. The Recommended Model 

From the result tables, although in table 8 the crude estimations of δ varies among sequences, 

which suggests carryover effect and/or visit by treatment interaction, it is uniform that the test 

of assumptions of crossover design is not significant and does not suggest those assumptions 

are violated. Across all the models, it also suggests that there is no significant difference among 

the effect of Sham treatment and TMS treatment.  

 

1.1 Model Mean Outcome or Model Individual Outcome 

According to the residual diagnostic plots at the appendix, for this study, on general, for each 

method of handling baseline, the normality and homoscedasticity is better when modeling 

individual outcome than modeling mean outcome, so models modeling individual throw score 

or change score are preferred. 

 

In each method of handling baseline, the model modeling individual outcome with smallest 

AIC is chosen. Those models are model 1g for method 1 Kenward model, model 1j for method 

1 alternative model, model 2d for method 2, model 3f for method 3 and model 4c for method 

4. One of those models will be recommended. Model 1g and model 1j apply CS structure on 

the 80 throw scores from the same subject. Model 2d applies CS structure to the 40 post-
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treatment throw scores from the same subject. Model 3f applies the covariance structure on the 

40 change scores from the same subject with V5, while V5 can be derived when assuming the 

80 throw scores following CS. Those four models all suggests that CS structure is the best fit 

covariance structure of the 80 throw scores from the same subject.  

 

1.2 The Chosen of Method of Handling Baseline 

1.2.1 Ability of Test Carryover Effect 

In method 4, an extra risk is faced that, unlike in other methods where the existence of carryover 

effect can be tested in model with variable “sequence”, this method shouldn’t be applied at all 

when there is carryover effect, because carryover effect contaminates the baseline of second 

visit (𝑋𝑋𝑖𝑖2) and makes it unsuitable to be adjusted as covariate9. When there is carryover effect, 

the estimation of beta coefficient, 𝛽𝛽 ∗ 𝑋𝑋𝑖𝑖𝑖𝑖 is wrong because half of 𝑋𝑋𝑖𝑖𝑖𝑖 is contaminated by 

carryover effect, and after adjusting for baseline under the wrong beta coefficient, variable 

“sequence” in the model cannot serve as test for carryover effect. That is, applying this method 

strictly requires it is sure there is no carryover effect because the opportunity of test for it in 

modeling is lost. In Table 8 “crude estimation of δ ”, no matter adjust baseline or not, the 

estimation among the two sequence varies, which cannot rule out carryover effect. As a result, 

model 4c with method 4 is not considered to be the best fit for this study. 

 

1.2.2 Interpretative of the Model 

The alternative method of joint-modeling, model 1j, estimates δ in a similar manner to method 

3 change from baseline, and the estimated δ is 0.1812, which is in consistent with the weighted 
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mean of the crude estimation of δ  among the two sequences, adjusting for baseline, 

2
5

× 0.13 + 3
5

× 0.22 = 0.184. The drawback of this joint model method, is the term “treatment” 

stands for main effect of treatment which applies to both baseline throw where the treatments 

hadn’t been given to the subjects and post-treatment throw, thus this term cannot be aliased to 

true effects existing in practice. Other methods will not have issue in interpretation the terms in 

model. Considering this drawback, this alternative method of joint modeling is not chosen. 

 

1.2.3 Consistency with the Crude Estimation 

Presenting the result of model 1g, model 2d and model 3f:  

In model 1g, the result is: 

Result—Model 1g 
Treatment  P value=0.4100 
 Sham 3.0853 (0.2041) 
 TMS 2.9853(0.2041) 
 (Sham-TMS)=0.1000, SE=0.1211 
  
Interval  P value=0.4222 
 1 3.1208(0.2037) 
 2 2.9978(0.2041) 
 3 3.2586(0.2037) 
 4 3.0728(0.2041) 
  
Sequence  P value=0.5086 
 1 2.9867(0.2947) 
 2 3.2383(0.2407) 
∎ P value for each factor in model is presented.  
∎ Mean(SE) of least squares mean at each factor level is presented. 
∎ For “treatment”, difference (Sham-TMS) of least squares mean and SE are presented. 
∎  The p value of “sequence” does not suggest the assumptions of crossover design are 
violated. 
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The relative part in Table 8: 

Relevant Part in Table 8. Crude Estimation of 𝛿𝛿 = 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 − 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 
  Denotation Sequence 1 Sequence 2 Overall 

   treatment mean treatment mean  
Visit 1 Interval 1 𝑋𝑋i1 --- 3.06 --- 3.21 3.135 

 
 Interval 2 𝑌𝑌i1 TMS 2.8 Sham 3.19 2.995 
Visit 2 Interval 3 𝑋𝑋i2 --- 3.11 --- 3.40 3.255 
 Interval 4 𝑌𝑌i2 Sham 2.98 TMS 3.16 3.07 
𝛿𝛿 0.18  0.03 0.105 
∎ unweighted mean after TMS is 1/2*(2.8+3.16)=2.98 
∎ unweighted mean after Sham is 1/2*(2.98+3.19)=3.085 
∎ unweighted mean at sequence 1 is 1/4*(3.06+2.80+3.11+3.98)=2.988 
∎ unweighted mean at sequence 2 is 1/4*(3.21+3.19+3.40+3.16)=3.24 

 

The result is in consistent with the part in Table 8 related to this model, the estimation of model 

1g is in consistent with the crude estimation. Least square means are consistent to the 

unweighted means too.  

 

In model 2d, the result is:  

Result—Model 2d 
Treatment P value=0.4090 
 Sham 3.0821 (0.2046) TMS 2.9821 (0.2046) 
 (Sham-TMS)=0.1000, SE=0.1211 
  
Visit P value=0.5357 
 1 2.9946(0.2046) 2 3.0696(0.2046) 
  
Sequence P value=0.4674 
 1 2.8900(0.3028) 2 3.1742(0.2472) 
  
∎ P value for each factor in model is presented.  
∎ Mean(SE) of least squares mean at each factor level is presented. 
∎ For “treatment”, difference (Sham-TMS) of least squares mean and SE are presented. 
∎ The p value of “sequence” does not suggest the assumptions of crossover design are violated. 
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The relevant part in Table 8: 

Relevant Part in Table 8. Crude Estimation of 𝛿𝛿 = 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 − 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 
  Denotation Sequence 1 Sequence 2 Overall 

   treatment mean treatment mean  
Visit 1 Post-

treatment 
𝑌𝑌i1 TMS 2.8 Sham 3.19 2.995 

Visit 2 Post- 
treatment 

𝑌𝑌i2 Sham 2.98 TMS 3.16 3.07 

     
�̂�𝛿 0.18  0.03 0.105 
     
∎ δ� = mean(𝑌𝑌i2) − mean(𝑌𝑌i1) for sequence 1, mean(𝑌𝑌i1) − mean�𝑌𝑌i2� for sequence 
2. 
∎ mean of 𝑌𝑌ij after TMS is 1/2*(2.8+3.16)=2.98 
∎ mean of 𝑌𝑌ij after Sham is 1/2*(2.98+3.19)=3.085 
∎ mean of 𝑌𝑌ij at sequence 1 is 1/2*(2.98+2.80)=2.89 
∎ mean of 𝑌𝑌ij at sequence 2 is 1/2*(3.19+3.16)=3.175 

 

 

The result is in consistent with the part in Table 8 related to this model, the estimation of model 

2d is in consistent with the crude estimation. Least squares means are consistent to the 

unweighted means too.  

 

In model 3f, the result is: 

Result Model 3f 
Treatment P value=0.3548 
 Sham -0.0752 (0.1310) TMS -0.2467 (0.1310) 
 (Sham-TMS)=0.1715, SE=0.1853 
  
Visit P value=0.7947 
 1 -0.1367(0.1310) 2 -0.1852(0.1310) 
  
Sequence P value=0.7251 
 1 -0.1935(0.1435) 2 -0.1283(0.1172) 
  
∎ P value for each factor in model is presented.  
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∎ Mean(SE) of least squares mean at each factor level is presented. 
∎ For “treatment”, difference (Sham-TMS) of least squares mean and SE are presented. 
∎ The p value of “sequence” does not suggest the assumptions of crossover design are violated. 

 

The relevant part in Table 8: 

Relevant Part in Table 8. Crude Estimation of 𝛿𝛿 = 𝜏𝜏𝑡𝑡ℎ𝑎𝑎𝑡𝑡 − 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡 
  Denotation Sequence 1 Sequence 2 Overall 

   treatment mean treatment mean  
Visit 1 Post-

treatment 
𝐷𝐷i1 TMS -0.26 Sham -0.02 -0.14 

Visit 2 Post- 
treatment 

𝐷𝐷i2 Sham -0.13 TMS -0.24 -0.185 

     
�̂�𝛿 0.13  0.22 0.175 
     
∎ δ� = mean(𝐷𝐷i2) − mean(𝐷𝐷i1) for sequence 1, mean(𝐷𝐷i1) − mean�𝐷𝐷i2� for sequence 
2. 
∎ mean of 𝐷𝐷ij after TMS is 1/2*(-0.26-0.24)= -0.25 
∎ mean of 𝐷𝐷ij after Sham is 1/2*(-0.02-0.13)= -0.075 
∎ mean of 𝐷𝐷ij at sequence 1 is 1/2*(-0.26-0.13)= -0.195 
∎ mean of 𝐷𝐷ij at sequence 2 is 1/2*(-0.02+-0.24)= -0.13 

 

 

The result is in consistent the part in Table 8 related to this model, the estimation of model 4c 

is in consistent with the crude estimation. Least squares means are consistent to the un-weighted 

means too.  

 

Model 1g, model 2d and model 3f are all in consistent with the crude estimations shown in 

Table 8.  

 

1.2.4 Residual Diagnostic 

The residual diagnostics for model 1g are in Figure 5 series, for model 2d are in Figure 9 series, 
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and for model 3f are in Figure 13 series. Model 1g and model 2d applies CS structure, so this 

is equivalent to add in a random intercept of “subject” in model. Their conditional residual does 

not suggest any violation on normality or homoscedasticity. Model 3f’s residual diagnostics 

does not suggest violation on normality or homoscedasticity. Diagnostic result of all these three 

models does not suggest evidence against them in terms of homoscedasticity and normality. 

 

1.2.5 Final Recommended Model: 3f 

The model recommended for joint modeling, model 1g assumes the throws scores follow CS 

structure, and between-visit correlation is the same as within-in visit correlation. It does not 

satisfy the criteria proved by Xun Chen et al. -- when within-visit correlation is stronger than 

cross-visit correlation, joint modeling is more efficient in estimation of δ, so model 1g is not 

recommended as the best fit model. Between model 2d and model 3f, model 3f is recommended 

as method 2 mainly serves as a reference and it is not appropriate to totally discard the baseline 

measures when there is no evidence against them. 

Recommendation of Model 
Model Rank 

1g 2 
2d 3 
3f 1 
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 Summary of Models  
Model Outcome Method AIC Reason why it is not recommended 

     
Model 1a Mean 1 210.3 Diagnostic plots (Figure 1 series) suggest normality assumption may be violated. 
Model 1b Mean 1 205.6 G matrix is not positive definite. 
Model 1c Mean 1 202.2 Not the smallest AIC among comparable models, and the covariance structure estimated is actually close to 

Model 1d 
Model 1d Mean 1 200.3 No evidence directly against this model, but under CS structure, literature does not recommend joint 

modeling over other methods, and modeling individual outcome is preferred. 
Model 1e Individual 1 \ SAS stops because too many likelihood estimations. 
Model 1f Individual  1 8287.0 Not the smallest AIC among comparable models, and the covariance structure estimated is actually close to 

Model 1g 
Model 1g Individual 1 8285.0 Recommended rank 2, rank 2 because under CS structure, literature does not recommend joint modeling over 

other methods. 
Model 1h Individual 1 \ SAS stops because too many likelihood estimation, and interpretability of terms in model is not as clear as 

other methods. 
Model 1i Individual 1 8287.0 Interpretability of terms in model is not as clear as other methods. 
Model 1j Individual 1 8285.0 Interpretability of terms in model is not as clear as other methods. 
Model 2a Mean 2 115.6 Diagnostic plots (Figure 6 series) suggest normality assumption may be violated. 
Model 2b Individual 2 4190.6 Not the smallest AIC among comparable models. 
Model 2c Individual 2 4162.2 Not the smallest AIC among comparable models, and the covariance structure estimated is actually close to 

Model 2d. 
Model 2d Individual 2 4160.6 Recommended rank 3. Rank 3 because in study design with baseline implemented in each period, ignore 

baseline serves as a reference only. 
Model 3a Mean 3 \ Collapse into model 3b 
Model 3b Mean 3 103.1 Diagnostic plots (Figure 10 series) suggest normality assumption may be violated. 
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Model 3c Individual 3 4177.4 G matrix is not positive definite. 
Model 3d Individual 3 \ Collapse into model 3f 
Model 3e Individual 3 4165.4 Not the smallest AIC among comparable models, and model 3d collapse into model 3f rather than model 3e. 
Model 3f Individual 3 4149.8 Recommended rank 1. 
Model 4a Mean 4 102.0 Unable to test for carryover effect, and diagnostic plots (Figure 13 series) suggest homoscedasticity 

assumption may be violated. 
Model 4b Individual 4 4176.0 Unable to test for carryover effect. 
Model 4c Individual 4 4147.7 Unable to test for carryover effect. 
Model 4d Individual 4 4151.9 Unable to test for carryover effect. 
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2. Covariate Adjustment 

The next step is to figure out whether it is necessary to consider adjusting any subject level 

characteristics or experiment characteristics in modeling. 

 

Regarding to the estimation of δ, as the study is a crossover design completed without missing, 

δ  is estimated mainly basing on within-subject information, so subject level characteristics 

which associate with the outcome, yet do not interact with effects associated with treatments, 

do not have to be adjusted in model9. A subject level characteristic should be adjusted if it 

interacts with the effects associated with treatments9. As this design incorporates baseline 

measure in each period, crude estimations of τTMS, 𝜏𝜏𝑇𝑇𝑆𝑆𝑎𝑎𝑡𝑡  and δ are available on each subject. 

Table 13 presents the correlation or association between subject level characteristics and crude 

estimations of τTMS, 𝜏𝜏𝑇𝑇𝑆𝑆𝑎𝑎𝑡𝑡  and δ . No subject level characteristic statistical significantly 

associated with any of the crude estimations. Then, it is not necessary to adjust them in model. 

 

Few reference can be found regarding to time dependent variables in crossover design. This is 

partially due to the fact that crossover designs are experimental study so that ideally time 

dependent characteristics are controlled. Moreover, for crossover design which does not 

measure baseline at each period, those time depended characteristics which varies across time 

and subjects are unable to investigate into when considering between subject variability. This 

design incorporates baseline measurement in each period, thus makes it possible to investigate 
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into time-dependent characteristics through descriptive statistics. As on subject level, time-

dependent characteristics can associate to the outcome, or influence the effects associated to 

treatments, thus can bias or interacts with the estimation of δ. In this study, three of four time 

dependent experiment characteristics, stimulation intensity of the treatment, window period and 

time from receiving treatment to complete the last post-treatment throw, are characteristics of 

the treatment which are only possible to influence the effects associated with treatments. 

Temperature is repeated only twice on each subject, the data is in sufficient to distinguish on 

subject level that whether it associates with throw score. As a result, it is hypothesized that 

temperature may interact with effects associated with treatments. Table 14 presents the 

correlation or association between experiment characteristics and crude estimation of τTMS 

and 𝜏𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡. Temperature is significantly correlated with the crude estimation of τTMS. 

 

From the result of correlation and association, it is hypothesized that temperature interacts with 

effects associated with treatments, and it shall be adjusted in modeling. To better understand its 

role, adjust temperature in all the three models 1g, 2d, and 3f rather than only model 3f. 

Temperature and its interaction with treatment are added in model. If the interaction term is not 

significant while main effect is significant, then it is more likely that temperature is actually 

associated with throw score rather than interacts with treatments. That is, temperature biases 

the estimation of δ, rather than interacts with it. Result is shown in Table 15a. 

 

In the models except joint modeling, the insignificant of the interaction between temperature 
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and treatments suggests temperature do not interacts with effects associates with treatment. 

Investigates into the parameters from joint modeling, model 1g in Table 15a in detail: 

temperature is only significantly correlated to baseline scores, and after receiving treatments, 

temperature no longer correlates with throw score. The result of model 1h is actually in 

consistent with model 2d and model 3f. 

Estimated Effect of Temperature from Model 1g 
Temperature Baseline Throws Throws after TMS Throws after Sham 

Estimated effect(p) 0.01789 (0.0275) -0.00769(0.5375) 
 

-0.00989(0.3410) 

 

From the result shown in Table 15a and the beta estimated from model 1g. There is an 

interaction between temperature and baseline or post-treatment. Temperature influences 

baseline throw scores yet not post-treatment throw scores. This also can explain why 

temperature is associated the crude estimation in Table 14, and why in Table 8 the crude 

estimation of δ for varies among adjusting baseline or not. Table 15b presents the result of 

deleting the interaction term in model 2d and model 3f. 

 

As suggested, temperature may influence baseline throw score yet not post-treatment throw 

score, then, it shall be adjusted in the model picked up previously, model 3f. However, at each 

temperature point, there is actually few subjects, so the estimation of the effect of temperature 

on change score will be unprecise. Another way to deal with this problem, is to use model 2d 

from method 2 ignore baseline, as there is evidence that baselines may be contaminated by 

temperature, but post-treatment throws are not.  
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Re-check if any subject characteristic is associated to the crude estimation of 𝛿𝛿  without 

adjusting the baseline. Table 16 shows no subjects level characteristic is associated with the 

crude estimation of δ  without adjusting for baseline. From the result of Table 16, it is 

reasonable to use model 2d shown in Table 10 for the analysis of this data, without adjusting 

for any other covariates. 
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Table 13. Correlation or Association between Subject Characteristics and Mean Change in Throw Score 
Correlation(r) 𝝉𝝉�𝑻𝑻𝑻𝑻𝑻𝑻 

𝒓𝒓(𝒑𝒑 𝒗𝒗𝒔𝒔𝒗𝒗𝒗𝒗𝒗𝒗) 
𝝉𝝉�𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔  

𝒓𝒓(𝒑𝒑 𝒗𝒗𝒔𝒔𝒗𝒗𝒗𝒗𝒗𝒗) 
𝜹𝜹�  

𝒓𝒓(𝒑𝒑 𝒗𝒗𝒔𝒔𝒗𝒗𝒗𝒗𝒗𝒗) 
Height -0.328(0.110) -0.037(0.864) 0.256(0.219) 
Weight -0.161(0.444) -0.256(0.216) 0.017(0.936) 
Age 0.051(0.812) 0.073(0.730) 0.075(0.723) 
  𝝉𝝉�𝑻𝑻𝑻𝑻𝑻𝑻 𝝉𝝉�𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔  𝜹𝜹�  
Association  mean(sd) p value mean(sd) p value mean(sd) p value 
Race(n)       

African American(3) 0.050(0.28) 0.258 -0.383(0.58) 0.626 -0.425(0.86) 0.345 
Asian(7) -0.586(0.57)  -0.043(0.60)  0.543(0.93)  
Caucasian(15) -0.145(0.72)  -0.010(0.61)  0.135(1.00)  

Baseball level(n)       
High School(7) -0.054(0.87) 0.653 -0.182(0.70) 0.825 -0.129(1.04) 0.598 
High School+club(5) -0.400(0.95)  0.021(0.48)  0.421(1.26)  
College/above(13) -0.288(0.41)  -0.033(0.61)  0.256(0.85)  

Experience(n)       
No(17) -0.199(0.77) 0.620 -0.069(0.64) 0.952 0.130(1.06) 0.707 
Yes(8) -0.344(0.37)  -0.053(0.54)  0.291(0.79)  

∎ Spearman correlation is presented for continuous characteristics as r(p value).  

∎ The mean and sd of 𝝉𝝉�𝑻𝑻𝑻𝑻𝑻𝑻, 𝝉𝝉�𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔  and 𝜹𝜹�  in each level of categorical characteristics is presented, p value for association is acquired from 

one-way ANOVA. 
∎Experience: yes: played baseball within a year; no: played baseball a year beyond. 
∎Notation: 
�̂�𝜏𝑇𝑇𝑇𝑇𝑇𝑇: (𝑌𝑌i1 − 𝑋𝑋i1) for subjects in sequence 1; (𝑌𝑌i2 − 𝑋𝑋i2) for subjects in sequence 2. 
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�̂�𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡: (𝑌𝑌i2 − 𝑋𝑋i2) for subjects in sequence 1; �𝑌𝑌i1 − 𝑋𝑋i1�for subjects in sequence 2. 

𝛿𝛿 ∶ (�̂�𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡 − �̂�𝜏𝑇𝑇𝑇𝑇𝑇𝑇 ). 

Where, for subject i, 𝑋𝑋i1 is the mean of baseline throw scores of visit 1; 𝑌𝑌i1 is the mean of post-treatment throw scores of visit 1; 𝑋𝑋i2 is the 
mean of baseline throw scores of visit 2; 𝑌𝑌i2 is the mean of post-treatment throw scores of visit 2. 
∎Conclusion: No significant association between mean change of throw score with subject characteristics.  No significant association between 
difference in mean change of throw score (Sham-TMS) with subject characteristics. 
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Table 14. Correlation or Association between Experiment Characteristics and Mean Change of Throw Score 
Correlation(r) 𝝉𝝉�𝐓𝐓𝐓𝐓𝐓𝐓 𝝉𝝉�𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔  

𝒓𝒓(𝒑𝒑 𝒗𝒗𝒔𝒔𝒗𝒗𝒗𝒗𝒗𝒗) 𝒓𝒓(𝒑𝒑 𝒗𝒗𝒔𝒔𝒗𝒗𝒗𝒗𝒗𝒗)  
Temperature -0.606(0.001) -0.339(0.097)  
Stimulation Intensity -0.002(0.994) 0.101(0.636)  
Minute  -0.211(0.316) -0.119(0.576)  
        
  𝝉𝝉�𝐓𝐓𝐓𝐓𝐓𝐓   𝝉𝝉�𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔   
Association n mean(sd) P value n mean(sd) p value  
In window period        
Yes 23 -0.29(0.67) 0.268 23 -0.08(0.62) 0.693  
No 2 0.26(0.27)  2 0.10(0.07)   
∎Spearman correlation is presented for continuous characteristics as r(p value).  
∎The mean and sd of �̂�𝜏𝑇𝑇𝑇𝑇𝑇𝑇, �̂�𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡  in each level of categorical characteristics is presented, p value for association is acquired from one-way 
ANOVA. 
∎Minute: time from finishing treatment to complete last post-treatment throw. 
∎In window period: yes: all post-treatment throws were completed in window period of treatment; no: at least one post-treatment throw was 
not completed in window period. 
∎Notation: 
�̂�𝜏𝑇𝑇𝑇𝑇𝑇𝑇: (𝑌𝑌i1 − 𝑋𝑋i1) for subjects in sequence 1; (𝑌𝑌i2 − 𝑋𝑋i2) for subjects in sequence 2. 

�̂�𝜏𝑇𝑇ℎ𝑎𝑎𝑡𝑡: (𝑌𝑌i2 − 𝑋𝑋i2) for subjects in sequence 1; �𝑌𝑌i1 − 𝑋𝑋i1�for subjects in sequence 2. 

Where, for subject i, 𝑋𝑋i1 is the mean of baseline throw scores of visit 1; 𝑌𝑌i1 is the mean of post-treatment throw scores of visit 1; 𝑋𝑋i2 is the 
mean of baseline throw scores of visit 2; 𝑌𝑌i2 is the mean of post-treatment throw scores of visit 2. 
∎Conclusion: Temperature is significantly associated with mean change of throw score in TMS treatment.  
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Table 15a. Statistical Result for Adjusting Temperature 
 Model 1g Model 2d Model 3f 
Dependent variable [  𝑋𝑋𝑖𝑖1  𝑌𝑌𝑖𝑖1 𝑋𝑋𝑖𝑖2   𝑌𝑌𝑖𝑖2]1×40

𝑇𝑇 [   𝑌𝑌𝑖𝑖1 𝑌𝑌𝑖𝑖2]1×40
𝑇𝑇 [   𝐷𝐷𝑖𝑖1 𝐷𝐷𝑖𝑖2]1×40

𝑇𝑇 
Covariance structure CS CS V5 
AIC 8295.7 4171.6 4148.7 
P value of variables in model    

Sequence 0.4436 0.7767 0.1471 
Visit or Interval 0.6479 0.2566 0.9122 
Treatment 0.8444 0.5650 0.4115 
Temperature 0.9889 0.1634 0.0004 
Temperature*Treatment 0.0041 0.5666 0.4188 

Estimated δ    
    𝛿𝛿(𝑖𝑖𝑖𝑖) 0.1891(0.9635) 0.6110(1.0616) -0.9892(1.1929) 

P value 0.8444 0.5650 0.4188 
∎ The composition of dependent variable on one subject is illustrated. 
∎ Sequence: 1: receive TMS in first visit, Sham in second visit; 2: receive Sham in first visit, TMS in second visit. 
∎ Visit: 1: visit 1; 2: visit 2. 
∎ Interval: 1: visit 1 baseline; 2: visit 1 post-treatment; 3: visit 2 baseline; 4: visit 2 post-treatment. 
∎ Treatment: 
In Model 2c: 0: baseline, no actual treatment -received; 1: TMS received; 2: Sham received. Treatment=”TMS” is set to be reference. 
In other models: 1: TMS received; 2: Sham received. 
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Table 15b. Statistical Result for Adjusting Temperature 
 Model 1g Model 2d Model 3f  
Dependent variable [  𝑋𝑋𝑖𝑖1  𝑌𝑌𝑖𝑖1 𝑋𝑋𝑖𝑖2   𝑌𝑌𝑖𝑖2]1×40

𝑇𝑇 [   𝑌𝑌𝑖𝑖1 𝑌𝑌𝑖𝑖2]1×40
𝑇𝑇 [   𝐷𝐷𝑖𝑖1 𝐷𝐷𝑖𝑖2]1×40

𝑇𝑇  
Covariance structure CS CS V5  
AIC 8295.7 4171.6 4144.7  
P value of variables in 
model 

    

Sequence 0.4436 0.7722 0.1322  
Visit or Interval 0.6479 0.3267 0.7550  
Treatment 0.8444 0.9561 0.8809  
Temperature 0.9889 0.1291 0.0005  
Temperature*Treatment 0.0041 - -  

Estimated δ     
    �̂�𝛿(𝑖𝑖𝑖𝑖) 0.1891(0.9635) 0.0075(0.1354) -0.0258(0.1714)  

P value 0.8444 0.9561 0.8809  
∎ The composition of dependent variable on one subject is illustrated. 
∎ Sequence: 1: receive TMS in first visit, Sham in second visit; 2: receive Sham in first visit, TMS 
in second visit. 
∎ Visit: 1: visit 1; 2: visit 2. 
∎ Interval: 1: visit 1 baseline; 2: visit 1 post-treatment; 3: visit 2 baseline; 4: visit 2 post-treatment. 
∎ Treatment: 
In Model 2c: 0: baseline, no actual treatment -received; 1: TMS received; 2: Sham received. 
Treatment= “TMS” is set to be reference. 
In other models: 1: TMS received; 2: Sham received. 
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Table 16. Correlation or Association between Subject Characteristics and 
Crude Estimation of 𝛅𝛅 without Adjusting Baseline 

 𝒓𝒓(𝒑𝒑 𝒗𝒗𝒔𝒔𝒗𝒗𝒗𝒗𝒗𝒗) 
Correlation  
Height 0.273(0.188) 
Weight -0.100(0.639) 
Age 0.341(0.096) 
  
Association mean(sd) P value 
Race(n)   

African American(3) -0.033(0.38) 0.648 
Asian(7) 0.246(0.25) 
Caucasian(15) 0.033(0.65) 

Baseball level(n)   
High School(7) -0.150(0.65) 0.316 
High School+club(5) 0.320(0.73) 
College/above(13) 0.121(0.35) 

Experience(n)   
No(17) 0.131(0.61) 0.542 
Yes(8) -0.013(0.33) 

∎ 𝛿𝛿 = 𝑌𝑌i2 − 𝑌𝑌𝑖𝑖1 for subjects in sequence 1, 𝑌𝑌i1 − 𝑌𝑌𝑖𝑖2 for subjects in sequence 2. 
∎ Spearman correlation is presented for continuous characteristics as 𝒓𝒓(𝒑𝒑 𝒗𝒗𝒔𝒔𝒗𝒗𝒗𝒗𝒗𝒗) 
∎ Mean(sd) of 𝛿𝛿 is presented for each level of categorical characteristics, and p value is 
acquired from one-way ANOVA 
∎ No significant correlation or association between subject characteristics and crude 
estimation of δ 

 

Conclusion 

For this study, considering that temperature contaminates baseline yet not post-treatment throws, 

there is two way to deal with it. The first one is to use model 3f with temperature adjusted, the 

other is to use model 2d that baseline is discard and therefore no need to adjust for temperature. 

This study by design, incorporates baseline measurements, thus it is inappropriate to not utilize 

baseline. Model 3f with adjustment of temperature is recommended, though risk that the 
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estimation of temperature’s effect may be unprecise. In analysis, the final model is written as: 

Dijm = β0 + 𝛽𝛽1 ∗ 𝐼𝐼(𝑖𝑖𝑜𝑜𝑠𝑠𝑢𝑢𝑜𝑜𝐼𝐼𝑐𝑐𝑜𝑜 = 1) + 𝛽𝛽2 ∗ 𝐼𝐼(𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 = 1) + 𝛽𝛽3 ∗ 𝐼𝐼(𝑜𝑜𝑣𝑣𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑜𝑜 = "Sham")

+ 𝛽𝛽4 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑣𝑣𝑣𝑣𝑜𝑜𝑢𝑢𝑣𝑣𝑜𝑜 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡, 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡~𝑉𝑉5 

Result of final model 
Beta coefficient Estimation SE P value 
𝛽𝛽1(sequence) 0.2884 0.1881 0.1322 
𝛽𝛽2(visit) -0.0530 0.1654 0.7500 

𝛽𝛽3(treatment) -0.0258 0.1714 0.8809 
𝛽𝛽4(temperature) -0.0342 0.0009 0.0005 

Least square mean 
change 

   

Sham -0.1385 0.1166 - 
TMS -0.1126 0.1207 - 

Estimated 𝛅𝛅 -0.0258 0.1714 0.8899 

 

The insignificant of “sequence” suggests the assumptions all hold, p=0.1322; Change score 

does not significantly fluctuates across visit, p=0.7500; there is no statistical significant 

difference among the effect of Sham and the effect of TMS, and the estimated difference -

0.0342, close to zero, p=0.8809; temperature is significantly associated to change score, the 

expectation of change score decreases -0.0342 with 1 ℉ increase in temperature, p=0.0005. 

 

Future Study 

Basing on this study, there are some recommendations to future study investigate on the effects 

of TMS and Sham on throw accuracy: 

1. Clinical meaningful difference among effects of Sham and TMS on throw score shall be 
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defined prior to data collection, that is a δ on throw score that is large enough to be clinical 

meaningful before data collection.  

2. Exclusion criteria requires to be defined before data collection, in this study, one subject had 

a proportion of score 0 much more higher than other subjects, but he is not excluded from 

analysis as the no exclusion criteria is pre-defined. 

3. The outcome of this study, throw score, is conscious physical performance of human, so 

psychological factor, which can cause carryover and/or period*treatment interaction but cannot 

be eliminated by washout period, can play a role. Although in this analysis, there is no statistical 

evidence suggesting carryover effect, but in the final model, after adjusting for temperature, the 

p=0.1322 for “sequence” rises cautious. Recommended by Kenward9, the test for carryover-

effect and/or period by treatment interaction is at significance level 0.10. If possible, 

randomized parallel design may be more suitable than crossover design. 

4. If possible, the experiment can be done indoor and control for temperature and other factors 

that may relate to throw accuracy, like light condition.  

5. Although the investigation shown in table 14 does not suggest stimulation intensity plays any 

role, in this study, stimulation intensity of the two treatments are based on the subject’s own 

Resting Motor Threshold. Give subject-specific stimulation intensity, implies that, take TMS 

for example, those different subject-specific stimulation intensities will result in a uniform, or 

relatively uniform treatment effect on the subjects. If there is doubt in this implication, then at 

design stage, under each treatment, given a uniform stimulation intensity on all subjects may 

be favorable if it can result in treatment effects more uniform subjects than subject-specific 
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stimulation intensity.  
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For covariance structure which equivalent to involving a random effect of subjects, diagnostic 
plots for residual and conditional residual are presented. For covariance structure does not 
involve random effect of subjects, diagnostic plots for residual is presented. For model which 
collapses into other model or SAS gives warning, its diagnostic plots are not presented. The 
residual plots for alternative joint modeling method (model 1h, 1i and 1j) are not presented. 
The diagnostic plots are presented for 16 of 24 models, model 1a, 1c, 1d, 1f, 1g, 2a, 2b, 2c, 2d, 
3b, 3e, 3f, 4a,4b, 4c, 4d. 

General Advantage and Drawback 
criteria When carryover 

exist, can it be tested  
in model? 

How is the power of 
the method to detect 
carryover effect? 

The variance of the 
estimator of 𝛿𝛿 

Methods    
1. Joint Modeling yes Did not find material 

in this topic, but 
personal opinion it is 
similar to method 2. 

Can be smaller when 
within visit 
correlation is strong, 
other situation, 
similar 

2. Ignore baseline yes reference reference 
3. Change from 

baseline 
yes Powerful than 

method 2 
In practice, almost 
always much more 
larger 

4. Baseline as 
covariate 

no --- Can be smaller when 
within visit 
correlation is strong, 
other situation, 
similar 
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Figure 1a. “Residual by Predicted” Plot for Model 1a  

 
Figure 1b. “Distribution of Residual” Plot for Model 1a  
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Figure 1c. “Q-Q Plot of Residual” Plot for Model 1a  

 
Figure 2a. “Residual by Predicted” Plot for Model 1c  
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Figure 2b. “Distribution of Residual” Plot for Model 1c  

 
Figure 2c. “Q-Q Plot of Residual” Plot for Model 1c  
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Figure 2d. “Conditional Residual by Predicted” Plot for Model 1c  

 
Figure 2e. “Distribution of Conditional Residual ” Plot for Model 1c  
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Figure 2f. “Q-Q Plot of Conditional Residual ” Plot for Model 1c  

 
Figure 3a. “Residual by Predicted” Plot for Model 1d  
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Figure 3b. “Distribution of Residual” Plot for Model 1d  

 
Figure 3c. “Q-Q Plot of Residual” Plot for Model 1d  
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Figure 3d. “Conditional Residual by Predicted” Plot for Model 1d  

 

Figure 3e. “Distribution of Conditional Residual ” Plot for Model 1d  
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Figure 3f. “Q-Q Plot of Conditional Residual ” Plot for Model 1d  

 
Figure 4a. “Residual by Predicted” Plot for Model 1f  
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Figure 4b. “Distribution of Residual” Plot for Model 1f 

 
Figure 4c. “Q-Q Plot of Residual” Plot for Model 1f  
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Figure 4d. “ Conditional Residual by Predicted” Plot for Model 1f  

Figure 4e. “Distribution of Conditional Residual” Plot for Model 1f  



83 

 

 

 

 
Figure 4f. “Q-Q Plot of Conditional Residual” Plot for Model 1f  

 
Figure 5a. “Residual by Predicted” Plot for Model 1g  
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Figure 5b. “Distribution of Residual” Plot for Model 1g  

 
Figure 5c. “Q-Q Plot of Residual” Plot for Model 1g 



85 

 

 

 

 
Figure 5d. “Conditional Residual by Predicted” Plot for Model 1g  

 
Figure 5e. “Distribution of Conditional Residual” Plot for Model 1g  
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Figure 5f. “Q-Q Plot of Conditional Residual” Plot for Model 1g  

 
Figure 6a. “Residual by Predicted” Plot for Model 2a  
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Figure 6b. “Distribution of Residual” Plot for Model 2a  

 
Figure 6c. “Q-Q Plot of Residual” Plot for Model 2a  
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Figure 6d. “Conditional Residual by Predicted” Plot for Model 2a  

 
Figure 6e. “Distribution of Conditional Residual” Plot for Model 2a  
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Figure 6f. “Q-Q Plot of Conditional Residual” Plot for Model 2a  

 
Figure 7a. “Residual by Predicted” Plot for Model 2b  



90 

 

 

 

 
Figure 7b. “Distribution of Residual” Plot for Model 2b  

 
Figure 7c. “Q-Q Plot of Residual” Plot for Model 2b  
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Figure 7d. “Conditional Residual by Predicted” Plot for Model 2b  

 
Figure 7e. “Distribution of Conditional Residual” Plot for Model 2b  
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Figure 7f. “Q-Q Plot of Conditional Residual” Plot for Model 2b  

 
Figure 8a. “Residual by Predicted” Plot for Model 2c  
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Figure 8b. “Distribution of Residual” Plot for Model 2c  

 
Figure 8c. “Q-Q Plot of Residual” Plot for Model 2c  
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Figure 8d. “Conditional Residual by Predicted” Plot for Model 2c  

 
Figure 8e. “Distribution of Conditional Residual” Plot for Model 2c  
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Figure 8d. “Q-Q Plot of Conditional Residual” Plot for Model 2c  

 
Figure 9a. “Residual by Predicted” Plot for Model 2d  
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Figure 9b. “Distribution of Residual” Plot for Model 2d  

 
Figure 9c. “Q-Q Plot of Residual” Plot for Model 2d  
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Figure 9d. “Conditional Residual by Predicted” Plot for Model 2d  

 
Figure 9e. “Distribution of Conditional Residual” Plot for Model 2d  
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Figure 9f. “Q-Q Plot of Conditional Residual” Plot for Model 2d  

 
Figure 10a. “Residual by Predicted” Plot for Model 3b  
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Figure 10b. “Distribution of Residual” Plot for Model 3b  

 
Figure 10c. “Distribution of Residual” Plot for Model 3b  
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Figure 11a. “Residual by Predicted” Plot for Model 3e  

 
Figure 11b. “Distribution of Residual” Plot for Model 3e  
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Figure 11c. “Q-Q Plot of Residual” Plot for Model 3e  

 
Figure 11d. “Conditional Residual by Predicted” Plot for Model 3e  
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Figure 11e. “Distribution of Conditional Residual” Plot for Model 3e  

 
Figure 11f. “Q-Q Plot of Conditional Residual” Plot for Model 3e  
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Figure 12a. “Residual by Predicted” Plot for Model 3f  

 
Figure 12b. “Distribution of Residual” Plot for Model 3f  



104 

 

 

 

 
Figure 12b. “Q-Q Plot of Residual” Plot for Model 3f  

 
Figure 13a. “Residual by Predicted” Plot for Model 4a  



105 

 

 

 

 
Figure 13b. “Distribution of Residual” Plot for Model 4a  

 
Figure 13c. “Q-Q Plot of Residual” Plot for Model 4a  
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Figure 13d. “Conditional Residual by Predicted” Plot for Model 4a  

 
Figure 13e. “Distribution of Conditional Residual” Plot for Model 4a  
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Figure 13f. “Q-Q Plot of Conditional Residual” Plot for Model 4a  

 
Figure 14a. “Residual by Predicted” Plot for Model 4b  
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Figure 14b. “Distribution of Residual” Plot for Model 4b  

 
Figure 14c. “Q-Q Plot of Residual” Plot for Model 4b  
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Figure 14d. “Conditional Residual by Predicted” Plot for Model 4b  

 
Figure 14e. “Distribution of Conditional Residual” Plot for Model 4b  
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Figure 14f. “Q-Q Plot of Conditional Residual” Plot for Model 4b  
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Figure 15a. “Residual by Predicted” Plot for Model 4c  

Figure 15b. “Distribution of Residual” Plot for Model 4c  
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Figure 15c. “Q-Q Plot of Residual” Plot for Model 4c  

 
Figure 15d. “Conditional Residual by Predicted” Plot for Model 4c  
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Figure 15e “Distribution of Conditional Residual” Plot for Model 4c  

 
Figure 15f “Q-Q Plot of Conditional Residual” Plot for Model 4c  
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Figure 16a. “Residual by Predicted” Plot for Model 4d  

 
Figure 16b. “Distribution of Residual” Plot for Model 4d  
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Figure 16c. “Q-Q Plot of Residual” Plot for Model 4d  

 
Figure 16d. “Conditional Residual by Predicted” Plot for Model 4d  
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Figure 16e. “Distribution of Conditional Residual” Plot for Model 4d  

 
Figure 16f. “Q-Q Plot of Conditional Residual” Plot for Model 4d  
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