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Abstract 
 

DNA Methylation Association with Chronic Inflammation: A Twin Study 

By Jie Yin 

 

 

       Inflammation plays a very important role in chronic diseases including 

cardiovascular disease (CVD). DNA methylation (DNAm) is a basic mechanism 

regulating gene expression and can be affected and modified by chronic inflammation. 

To understand the influence of chronic inflammation on DNA methylation, we 

conducted an epigenome-wide association study using a twin-specific model to 

investigate the epigenetic associations with eight CVD-associated inflammatory 

biomarkers, by measuring 409,968 DNAm sites of peripheral blood leukocytes from 

217 Caucasian male twins. By conducting linear mixed models, no methylome-wide 

significant association was found corrected for multiple testing across all the eight 

inflammatory biomarkers, adjusted for age, body max index, smoking status, and cell 

type proportions of peripheral leukocytes. However, 45 DNAm cites reached a 

threshold for suggestive significance (p-value <10-5), among which 66.7% were 

hypermethylated with lower levels of inflammatory biomarkers. The most Gene 

Ontology terms enriched among these suggestive genes were “intracellular” and 

“binding”. In addition, four DNAm cites were associated with at least two inflammatory 

biomarkers. DNAm sites cg03359731 (OCIAD1) and cg14557787 (AP2A1) were 

related to the serum levels of both CRP and IL-6; cg17598713 (RGL2) was associated 

with ICAM-1 and VCAM-1; cg00459119 (SNX29) was associated with ICAM-1 and 

P-selectin. Although further replication and validation are needed, our results may 

provide evidence to investigate the mechanism of the process of inflammation affects 

CVDs through epigenetic modifications. 
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LITERATURE REVIEW 

Cardiovascular disease (CVD) is one of the main causes of morbidity as well as 

mortality worldwide [1]. In the United States, CVD is the leading cause of death, with 

the rate of eight million deaths every year, corresponding to one of every three deaths 

per year [2]. CVD is a general term classifying many pathological conditions such as 

hypertension, stroke, congestive heart failure, coronary artery disease (CAD), aortic 

stenosis, cardiomyopathy, and arrhythmias that affect the heart, blood and vasculature 

of the body [3]. It is believed that the main causes of the development of CVD are 

inflammation, impairment in endothelium, and oxidative stress [4]. Inflammation plays 

a very important role in CVD such as atherosclerosis and hypertension, functioning as 

one of the mechanisms promoting endothelial dysfunction [5]. Recent studies on 

atherosclerosis have focused on inflammation, giving new insights into the etiology of 

CVD. Atherosclerosis is characterized by a chronic disorder of inflammatory function 

and the innate immune response, involving biomarkers such as C-reactive protein 

(CRP), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and some cell 

adhesion molecules which are related to the onset of stroke and myocardial infarction 

in both healthy populations and patients with coronary disease [6]. Inflammatory 

biomarkers have been under interest for the ability to predicting cardiovascular disease 

risk, due to the involvement of inflammation in atherosclerosis. CRP is one of the most 

validated biomarker, as well as soluble CD40 ligand, IL-18, and matrix 

metalloproteinase 9 (MMP-9), contributing to cardiovascular risk prediction [5]. 
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CRP, a member of the pentraxin family, is a plasma protein produced in the liver and 

secreted in the plasma and plays an important role in inflammatory reaction and 

immune response [7]. CRP is not only a biomarker in infection, inflammation and tissue 

injury, but also is now a disease biomarker of CVDs used as a screening tool[8]. IL-6 

is a pro-inflammatory cytokine released from pericardial fat tissue, believed to be a 

contribution to coronary vessel inflammation [9]. As a key mediator in inflammatory 

responses, IL-6 mediates the production of some acute phase proteins such as CRP and 

fibrinogen [10]. It was suggested that vascular cell adhesion molecule-1 (VCAM-1) 

and intracellular adhesion molecule-1 (ICAM-1), the inflammatory and endothelial 

biomarkers, have been used as independent predictors of CVD in many human 

prospective studies [11]. Some studies have suggested that matrix metalloproteinases 

(MMPs) had association with the risk of cardiovascular or atherosclerotic events, 

especially for MMP-9, the most promising MMP, is found to be associated with 

atherosclerosis, and is efficient to predict some adverse cardiovascular events [12]. P-

selectin, also a cellular adhesion molecule, has been demonstrated to play a very 

important role in the development of atherosclerosis, as well as the tumor necrosis 

factor-alpha (TGF-β) [13, 14]. 

Epigenetics is defined as mitotically or meiotically heritable changes in gene expression 

without the changes in DNA sequence [15]. The molecular mechanisms of epigenetic 

processes include methylation of DNA, modifications of histone, positioning of histone 

variants, and gene regulation by non-coding RNAs [16]. A research conducted by 
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Duygu et al. has found that, in the mammalian genome, the most common epigenetic 

basis is DNA methylation (DNAm) [17]. When DNA is methylated, it is covalently 

modified by adding a methyl group to nucleotide cytosines followed by guanines (CpG) 

that forms 5-methylcytosines. DNA methylation can modulate the gene expression by 

modifying the process of transcriptional regulation of DNA [18]. Animal studies have 

provided the evidence that DNA methylation plays a very important role in the 

development of cardiovascular diseases by inducing hyperproliferation and the 

dysfunction of cell types active in inflammatory and immune responses [19]. Although 

more studies are needed to identify the causal relation between DNA methylation and 

CVD, previous studies have suggested that the status of DNA methylation may be a 

novel biomarker of CVD [20]. 

DNA methylation plays an essential role in the regulation of transcription and normal 

development, and it has been demonstrated that the aberrant DNA methylation are 

associated with diverse inflammation related diseases and conditions. However, it is 

suggested that the modification of DNA methylation occurs not only early in life, but 

also in fully differentiated cells. Thus, DNA methylation patterns are dependent not 

only on early maternal influence but also on many environmental factors such as 

smoking status and environment toxicants [21]. Several studies have investigated the 

connection between chronic inflammation and DNA methylation. Stoyanov et al found 

that chronic liver inflammation may modify DNA methylation by inducing 

hypermethylation in specific CpG islands [22]. In Stenvinkel’s study exploring the 
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impact of inflammation on DNA methylation among patients with chronic kidney 

disease, the researchers have found significant DNA hypermethylation among 

participants with high levels of hsCRP (high sensitive CRP), while the inverse 

association was observed between the pattern of DNAm and the level of IL-6 [23]. 

Given these evidence of epigenetic associations, we hypothesized that the patterns of 

DNA methylation are associated with the serum levels of CVD-associated 

inflammatory biomarkers.  

Genetic epidemiology is a field that aims to understand the distribution of genomic 

variation in human population, and investigate the associations with disease risks and 

prognosis. Since the start of the Human Genome Project (HGP), the development of 

study design and statistical analysis for genome-wide association studies (GWAS) has 

made a great contribution to understanding the genetic architecture of human diseases 

and traits [24]. As GWAS derived from and serve for the field of genetic epidemiology, 

epigenome-wide association studies (EWAS) grew from and serve for the field of 

epigenetic epidemiology. Although the term “epigenome” also involves histone 

modifications and non-coding RNA regulation in addition to DNA methylation, EWAS 

is now more widely used to studyDNA methylation using genomic DNA extracted from 

peripheral blood and other specimens [25]. It has been proposed in a review that in 

contrast to GWAS, an EWAS is a technique of great value to identify molecular 

mechanisms linking environmental exposures and diseases, and identify biomarkers 

with potential predictive value [26].  
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To date, many studies have suggested that genomic functions can be influenced by 

environmental factors through epigenetic modifications [27-30]. Most of the 

phenotypes also result from the effect of interaction between environment factors and 

genomic variation and epigenetics may also play a very important role. Although 

current technologies have provided us accurate and integrated profiling of epigenome-

wide patterns, understanding the epigenetic patterns under genetic and environmental 

influences is still a challenge to traditional methodologies of epidemiology [31]. A 

study has applied the twin method to identify global DNA methylation in MZ and DZ 

twins, and found that epigenetic regulation was significantly influenced by both 

environmental and genetic factors [32]. Thus, discordant twin design has unique values 

in epigenetic research by controlling for their genetic similarity and shared growth 

environment. This design ensures that the epigenetic association is adjusted for 

confounder such as age, genetic background and shared familial factors and guarantees 

that the identified epigenetic associations are influenced by environmental factors. 

In this study, we conducted an EWAS using a twin-specific model to investigate the 

epigenetic associations with eight CVD-associated inflammatory biomarkers, by 

measuring 409,968 DNAm sites from 217 male twins.      
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METHODS 

Study Population 

The data of DNA methylation and phenotype were extracted from 218 Caucasian male 

twins from the Emory Twin Study (ETS) of cardiovascular disease [33]. The ETS 

included 307 middle-aged male monozygotic (MZ) and dizygotic (DZ) twin pairs born 

between 1946 and 1956 from the Vietnam Era Twin (VET) Registry, which is one of 

the largest twin registries in the United States [34]. All twins were treated in pairs and 

examined at the Emory University General Clinical Research Center between 2002 and 

2010. The protocol of ETS was approved by the Emory University Institutional Review 

Board, and all participants completed an informed consent form. 

Phenotypic Measurements 

All the twins were provided the same diet the night before the multiple measurements, 

and were instructed to forbear from smoking. All assessments were performed in the 

morning after an overnight fast, and both participants of twin pairs were tested at the 

same time. All medications were suspended for about 24 hours prior to the assessments. 

The biochemical assays for each twin pair were processed in the same analytical run. 

Weight and height were measured and body mass index (BMI) were calculated with 

weight and height. Cigarette smoking status was categorized into current smoker 

(regardless the number of cigarettes per day) versus never or past smoker. Plasma and 

peripheral blood leukocytes (PBLs) samples were drawn from venous blood and stored 

at -80°C until the biomedical assay.  
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The inflammatory biomarkers selected for investigation were IL-6, CRP, TGF-β, P-

selectin, MMP-2, MMP-9, VCAM-1 and ICAM-1. IL-6, TGF-β, P-selectin, VCAM-1, 

and ICAM-1 were measured using commercially available ELISA (enzyme-linked 

immunosorbent assay) kits from R and D Systems. The level of high-sensitivity CRP 

(hsCRP) was measured with the Beckman Coulter High Sensitivity assay. MMP-2 and 

MMP-9 concentrations were assessed using a commercially available EIA (enzyme 

immunoassay). 

DNA methylation methods 

DNA was extracted from PBLs and then 0.5 µg of genomic DNA per sample was 

bisulfite-converted using the EZ DNA Methylation Kit (Zymo Research, Orange 

CA). The bisulfite-converted DNA samples were fragmented enzymatically and whole-

genome amplified with high purity. The Illumina HumanMethylation450 BeadChip 

containing locus-specific DNA oligomers was then used to hybridize the DNA samples 

in batches of 12. The main measures were the fluorescence intensities at each bead site 

from the arrays, which were fluorescently stained, scanned, and assessed. 

The fluorescent signals were measured from the site-specific methlyated (M) and 

unmethylated (U) beads at each methylation site. The data pre-processing for use were 

beta (β) values generated by GenomeStudio software, which were continuous variables 

ranging from 0 to 1 representing the ratio of fluorescence intensity of the methylated 

and unmethylated sites. We analyzed the quantile-normalized β-values, which were 

used to adjust for the known technical shift between methylation signals across multiple 
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categories of probe. The samples with missing rate above 5% would be excluded by 

using the detection p-value threshold of 0.001. Fortunately, no sample was detected by 

the method of control probe values greater than 4 standard deviations from their mean 

values. The methylation sites overlapping with SNPs or not uniquely mapped to the 

reference genome were excluded from later analyses [35]. The final dataset used for 

methylome-wide association analyses was 409,786 CpG sites from 217 twin 

participants. 

Epigenetic Association Analysis 

 

To identify the DNAm sites related to inflammation, we used twin-specific linear mixed 

models with the β values of CpG sites as the dependent variable. The primary 

independent variables were the between-pair effect and within-pair effect, respectively. 

The between-pair coefficient represents the expected change in CpG site β value for a 

one-unit change in the twin-pair mean value of the inflammatory markers, holding the 

difference between the individual and the twin-pair mean value constant. The within-

pair coefficient represents the change in CpG site β value for a one-unit change in the 

individual deviation from the twin-pair mean value of the inflammatory markers, 

holding all others constant [36]. Thus, the primary results summarize between-twin 

effect and within-twin effect. Each inflammatory marker (predictor variable) was 

analyzed separately, thus, we performed eight EWAS for eight inflammatory markers. 

Covariates adjusted in the EWAS analyses were age, smoking status (current vs. non-

current smokers), BMI and the proportions of leukocyte types (i.e., CD8+T cell, 
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CD4+T cell, natural killer (NK) cell, B cell, Mononucleosis cell and Granulocyte). Age 

and BMI were treated as continuous variables, with the units of years and kg/m2, 

respectively. Smoking status was defined as a dichotomous variable, where 1 (i.e., 

current smoker) represented “had smoked within the past year” and 0 represented who 

did not. The proportions were computed using an algorithm according to cell-type 

specific DNAm sites [37]. Random effects were modeled to adjust for the chip effects 

and twin relationships. 

The level of hsCRP was logarithmic transformed due to skewed distribution of long 

tail, while the levels of the other seven biomarkers remained in the original scales. 

Outliers - the observations in abnormal distance from other values were detected and 

deleted for each biomarker specific analysis based on extreme values of the biomarker 

serum level that are three standard deviations away from the mean, as well as the 

missing values. Singletons were thus generated by removing outliers and missing 

values. The level of biomarkers for each singleton was treated as the mean value of the 

twin pair. After removing outliers and missing values, the number of participants left 

for analyses were 213, 207, 215, 214, 213, 212, 211 and 213 for CRP, IL-6, TGF-β, P-

selectin, MMP-2, MMP-9, ICAM-1 and VCAM-1, respectively.  

All statistical analyses were performed using the R statistical environment version 3.1.2 

(http://www.r-project.org/). R package “nlme” was used to conduct the linear mixed 

effect model. In addition, functional annotation analysis was conducted for a list of 

suggestive inflammation-associated genes identified by multivariate analyses. An 
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online bioinformatics tool – the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) v6.7 was used to identify the enrichment Gene Ontology (GO) 

terms among these genes [38]. In DAVID, the p-values for gene enrichment analysis 

were measured by Fisher Exact test and the p-value threshold was set as 0.05 for over-

represented annotation terms. 
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RESULTS 

The demographic information was summarized in Table 1. Due to the different numbers 

of outliers and missing values, the sample sizes for each inflammatory biomarker 

ranged from 211 to 215. The average age of the 217 participants was 55.55 years old, 

with a standard deviation of 3.28. The mean of BMI was 29.31 (SD=4.57) kg/m2. 64 

(29.49%) out of the 217 participants were current smokers. The distribution of serum 

CRP level was skewed with the median of 1.56 (Q1=0.61, Q3=3.14) mg/L. The average 

serum IL-6 level was 1.89pg/mL (SD=1.43pg/mL). The average serum levels of MMP-

2, MMP-9, ICAM-1, VCAM-1, P-Selectin and TGF-β were 166.27±28.80, 

325.22±155.77, 314.75±91.74, 630±219.71, 99.85±30.30 and 28.31±8.19 ng/mL, 

respectively. 

After stringent Bonferroni correction for multiple testing in the epigenetic association 

analyses of the inflammatory biomarkers using the linear mixed models, no DNAm 

sites with significant methylome-wide association was found across all the eight 

inflammatory biomarkers. Table 2 presents 45 suggestive DNAm sites with a p-value 

< 10-5 for either within-twin effect or between-twin effect. One site with p-value <10-5 

was found for log CRP, two sites for IL-6, three sites for MMP-2, six sites for MMP-9, 

and five, ten, five and thirteen for ICAM-1, VCAM-1, P-selectin and TGF-β, 

respectively. Among these most significant associations, 30 out of 45 (66.7%) DNAm 

sites showed negative correlations that hypermethylation is associated with lower level 

of inflammatory biomarkers. The p-values distributions ranged from moderately 
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deflated to moderately inflated with the inflation factor ranging from 0.81 to 1.19 across 

the eight biomarkers (Table 1). Figure 1A-B displays two quantile-quantile (Q-Q) plots 

with the lowest and highest inflation factors as example, respectively. Manhattan plots 

of the –log P-value for all 409,786 CpG sites, for both within-twin and between-twin 

effects across all the eight biomarkers are presented in Figure 2-9.  

There were 31 genes annotated to 45 suggestive inflammation-associated DNAm sites 

and were mapped to GO database of human to determine the enrichment. Through the 

analysis, we found 5 “biological process” GO terms, 3 “cellular component” GO terms, 

and 1 “molecular function” GO term over-represented among these suggestive genes 

(Table 3). Moreover, “intracellular” and “binding” were identified as the major 

functional base that these inflammation-associated genes are involved, with 21 and 26 

genes, respectively.  

To identify the DNAm sites significant across the eight inflammatory biomarkers, top 

30 significant DNAm sites for both within-twin and between-twin effects were 

examined, and four sites were associated with at least two biomarkers. The CpG site 

cg03359731 (OCIAD1), located on chromosome 4, and cg14557787 (AP2A1), located 

on chromosome 19 were related to the serum levels of both CRP and IL-6; cg17598713 

(RGL2) was associated with ICAM-1 and VCAM-1; cg00459119 (SNX29) was 

associated with ICAM-1 and P-selectin (Table 4).  
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DISCUSSION 

In this twin specific EWAS on a sample of 217 Caucasian male twins from the ETS, no 

DNAm sites were found that had significant methlyome-wide association with the eight 

inflammatory biomarkers. However, based on top 30 significant CpG sites for each 

biomarker, 4 sites were found to be associated with at least two inflammatory 

biomarkers (Table 4).  

In table 4, the first DNA methylation site cg03359731, located on chromosome 4 in 

Ovarian Carcinoma Immunoreactive Antigen domain containing 1 (OCIAD1) gene, 

was suggestively associated with both CRP and IL-6. To date, very limited studies had 

revealed the biological function of OCIAD1. Based on a limited number of studies, 

OCIAD1 has been demonstrated to be functionally associated with the cytoskeleton-

integrin-extracellular matrix interaction and to enhance cell adhesion to extracellular 

matrix in metastatic ovarian carcinoma induced by lysophosphatidic acid (LPA) – a 

stimulator in the progress of ovarian cancer [39-41]. 

The second DNAm site cg17598713, which is located on chromosome 6 in Ral Guanine 

Nucleotide Dissociation Stimulator-Like 2 (RGL2) gene, was suggestively related to 

serum level of ICAM-1 and VCAM-1. RGL2 encodes the protein RGL2, a member of 

the family of candidate Ral guanine nucleotide exchange factors (GEFs), which activate 

Ras by stimulating the exchange of GDP to GTP. In addition, the domain of RGL2 

binding with Ras can also block the signaling and transformation of oncogenic Ras. 
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Ras is a signaling molecule that plays an important role in cell growth and cell 

differentialtion [42]. Rap is a kind of protein functioning as a Ras antagonist [43]. 

RGL2 interaction with Rap is also suggested to contribute to the antagonism of Ras 

function. Thus, RGL2 is identified as a candidate effector for both Ras and Rap [44]. 

DNAm site cg00459119, which is located on chromosome 16 in Sorting Nexin 29 

(SNX29) gene, suggestively related to ICAM-1 and P-selectin. SNX29 belongs to the 

sorting nexin family, which includes a huge group of cellular trafficking proteins 

localized in the cytoplasm, sharing the same domain – the PX domain, a phospholipid-

binding motif. These proteins usually bind to specific phospholipids and then form 

protein complexes, which have the function of membrane trafficking, especially protein 

sorting [45]. 

Another DNAm site suggestively correlated with CRP and IL-6 is cg14557787, located 

on chromosome 19 in the Adaptor-related Protein complex 2 alpha 1 (AP2A1) gene. 

AP2A1 gene encodes the subunit alpha 1 adaptin of the adaptor-related protein complex 

2 (AP-2 complex), which contributes to the formation of clathrin coated vesicles at 

plasma membrane. The AP-2 complex also has the ability to regulate brassinosteroid 

receptor (BR) endocytosis and mediated BR signaling by blocking the internalization 

of brassinosteroid insensitive 1 [46]. In addition, a study showed that AP2A1 is 

involved in the regulation of human immunodeficiency virus type 1 (HIV-1) replication, 

by promoting the transport of viral genome [47]. 
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Several limitations of this study need to be addressed in future studies. Ideally, the 

significant EWAS findings would be replicated in a separate and independent sample 

to decrease false positive results. However, we were unable to directly replicate the 

identified epigenetic associations, because of the unique twin design and the availability 

of inflammatory biomarkers. Without further replication studies in independent 

populations, the suggestive and significant epigenetic associations with inflammatory 

biomarkers may not be generalizable to other populations. In addition, the sample size 

of this study is relatively small, which may make it statistically challenging to identify 

potential associations with smaller effects.  

Epigenomic profiles are cell type-specific [48]. DNAm profiles are commonly studied 

in PBLs. Since PBLs involve diverse types of leukocytes, the identified inflammation-

related DNAm changes may only have an impact on a subtype of PBLs. We were 

unable to investigate the DNA methylation profiles in all of the cell types in this study, 

thus we treated PBLs as an aggregated summary of multiple subtypes and also treated 

the cell type proportions as confounders in the model. 

In conclusion, this study on Caucasian male twins presents some suggestive results 

offering candidate genes that contain multiple inflammation-related CpG sites. The 

results highlight the genes with the functions of intracellular and molecular binding 

involved in the regulation of chronic inflammation. Although we found suggestive 

DNAm association with several inflammatory biomarkers, in terms of DNAm 

modification and inflammation, the causal directionality is still questionable. Thus, 
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further researches are needed to confirm the association between inflammation and 

DNA methylation, and to investigate the exact mechanisms underlying the causal 

directionality between them. By confirming this, future studies may provide more 

evidence to investigate the predicting value of inflammation-related DNAm sites to 

cardiovascular diseases. 
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TABLES 

 

 

Table 1. Summary of demographic information for each inflammatory biomarkers 

under analysis  

 Mean (SD) / N(%) N for final analysis Inflation Factor 

Age (yr.) 55.55 (3.28) 217  

BMI (kg/m2) 29.31 (4.57) 217  

Current smoker  217  

  Yes 64 (29.49%)   

CRP (mg/L) * 2.40 (2.64) 213  

lnCRP (mg/L) 0.37(1.10) 213 0.864 

IL-6 (pg/mL) 1.89 (1.43) 207 0.978 

MMP-2 (ng/mL) 166.27 (28.80) 213 0.814 

MMP-9 (ng/mL) 325.22 (155.77) 212 0.903 

ICAM-1 (ng/mL) 314.75 (91.74) 211 0.951 

VCAM-1 (ng/mL) 630.15 (219.71) 213 0.916 

P-selectin (ng/mL) 99.85 (30.20) 214 1.130 

TGF-β (ng/mL) 28.31 (8.19) 215 1.190 

*The distribution of CRP is skewed. (median=1.56, Q1=0.61, Q3=3.14) 
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Table 2. Top significant DNAm cites for all eight inflammatory biomarkers 

DNAm Gene Name Chr.a MAPINFOb Within-βc Between-βd Within-Pe Between-Pf 

log CRP        

cg20335008 SRBD1 2 45838293 -0.0045 -0.0099 0.0636 3.49E-06 

IL-6        

cg12371169 RAP1GDS1 4 99182555 -0.0021 0.0005 8.80E-07 0.1719 

cg06652011  16 83968316 0.0033 -0.0324 0.2152 5.78E-06 

MMP-2        

cg14782672 TWIST1 7 19157634 -0.0002 -9.84E-06 1.42E-06 0.7675 

cg15213081  19 523300 0.0012 -0.0001 2.34E-06 0.6913 

cg02627352 SRGAP3 3 9267381 5.93E-05 -0.0001 0.1648 3.78E-06 

MMP-9        

cg15151929 KIAA1751 1 1896429 4.75E-05 -1.42E-05 4.30E-07 0.1902 

cg24450312 RASSF5 1 206681158 -0.0001 1.27E-05 1.19E-06 0.5622 

cg05133398 ZNF311 6 28969259 -4.40E-05 -3.52E-06 5.71E-06 0.7539 

cg15783800 ALPK2 18 56246997 3.09E-05 -3.10E-06 7.68E-06 0.6276 

cg25253705 SLAIN1 13 78314465 -0.0001 -4.71E-05 8.04E-06 0.1632 

cg08951271 DDR1 6 30850543 -2.26E-05 -6.75E-05 0.1756 9.52E-06 

ICAM-1        

cg19642505  6 30224156 -0.0002 -1.76E-05 1.01E-06 0.5964 

cg17598713 RGL2 6 33265534 -3.13E-05 -8.12E-05 0.1183 4.53E-07 

cg04648382 RAD52 12 1022780 -4.79E-06 0.0001 0.8818 3.84E-06 

cg01098656 IDI1 10 1095069 -9.43E-06 -8.71E-05 0.6692 5.26E-06 

cg03005124 OBSL1 2 220426848 -8.61E-06 -0.0003 0.7003 7.62E-06 

VCAM-1        

cg13148921 ARNT2 15 80853140 -0.0002 2.13E-05 2.07E-07 0.7717 

cg24968869  10 85321586 -0.0001 -1.46E-05 5.98E-07 0.7024 

cg13838276  6 118158769 0.0002 -0.0002 3.13E-06 0.0137 

cg23633700 HUS1 7 48016735 0.0001 -3.61E-05 5.55E-06 0.3622 

cg09357589  6 31148552 0.0002 -5.20E-05 6.49E-06 0.2631 

cg13854012  2 162103682 -0.0001 4.18E-05 7.08E-06 0.3453 

cg04015962  1 10949192 -0.0001 -1.13E-05 8.04E-06 0.7725 

cg14855931  3 138631456 -0.0001 -7.98E-05 8.26E-06 0.0100 

cg12805491 PAQR7 1 26198721 7.33E-05 -0.0001 8.41E-05 2.09E-06 

cg08638044  15 27819924 6.68E-06 8.72E-05 0.7455 8.93E-06 

P-selectin        

cg19347782 MICAL2 11 12159762 -0.0013 0.0001 8.94E-07 0.7858 

cg00456395 ELK3 12 96641089 0.0002 1.57E-05 2.48E-06 0.6012 

cg15103180 GLRA1 5 151296785 -0.0003 0.0002 6.19E-06 0.1803 

cg01938825  7 1563708 0.0004 0.0001 7.74E-06 0.2244 

cg14005217 PKMYT1 16 3029753 -6.93E-05 0.0005 0.6575 7.71E-06 

TGF-β        
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cg21911021 ZIK1 19 58095011 -2.21E-06 9.17E-07 4.11E-07 0.1711 

cg03630736 SRP68 17 74069290 -2.83E-06 9.48E-07 6.65E-07 0.1779 

cg25854303 SYNPR 3 63264142 -8.64E-07 1.18E-07 1.21E-06 0.5723 

cg08253296  5 74907592 -7.90E-07 1.89E-08 1.83E-06 0.9178 

cg07201717  1 25031947 -1.03E-06 1.34E-08 3.25E-06 0.9553 

cg05348982 
MIR618;LI

N7A 
12 81331012 -6.01E-07 2.82E-07 5.86E-06 0.0856 

cg14407437 FABP3 1 31845923 -1.25E-06 -2.70E-07 6.24E-06 0.3986 

cg10803098  10 130064137 -1.36E-06 5.43E-07 6.28E-06 0.2842 

cg06618097 PNMAL2 19 46999444 -1.58E-06 8.40E-07 8.89E-06 0.0469 

cg06496344  19 23253834 -2.04E-07 1.34E-06 0.4271 5.10E-06 

cg26225694 LHX4 1 180205253 -5.31E-07 1.16E-06 0.0769 5.49E-06 

cg22193726 PTPN11 12 112857626 -3.39E-09 1.10E-06 0.9889 6.51E-06 

cg10573018 RSPO1 1 38100837 -8.89E-07 2.11E-06 0.0275 8.63E-06 

a. Chromosome number; b. Chromosomal location is based on NCBI build 36.1; c. 

Coefficient-β for within-twin effect; d. Coefficient-β for between-twin effect; e. P-value 

for within-twin effect; f. P-value for between-twin effect. 
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Table 3. GO terms for inflammation-associated genes (p-value threshold=0.05) 

GO Term ID GO Term Name 
GO 

Domain* 

Number 

of Genes 

P- 

Value 

GO:0048523 negative regulation of cellular process BP 9 0.0062 

GO:0048519 negative regulation of biological process BP 9 0.0104 

GO:0006468 protein amino acid phosphorylation BP 5 0.0283 

GO:0000725 recombinational repair BP 2 0.0331 

GO:0000724 double-strand break repair via homologous recombination BP 2 0.0331 

GO:0030054 cell junction CC 4 0.0375 

GO:0005622 intracellular CC 21 0.0448 

GO:0044456 synapse part CC 3 0.0487 

GO:0005488 binding MF 26 0.0466 

* BP: Biological Process; CC: Cellular Component; MF: Molecular Function  
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Table 4. Common significant DNAm cites across all eight inflammatory biomarkers 

Biomarker DNAm Gene  CHR MAPINFO Within_Beta Between_Beta Within_P Between_P 

hsCRP cg03359731 OCIAD1 4 48833388 -0.0047 -0.0013 0.0001 0.1852 

IL-6 cg03359731 OCIAD1 4 48833388 -0.0042 0.0007 1.08E-05 0.3458 

ICAM-1 cg17598713 RGL2 6 33265534 -3.13E-05 -8.12E-05 0.1183 4.53E-07 

VCAM-1 cg17598713 RGL2 6 33265534 -1.43E-05 -2.40E-05 0.0557 0.0002 

ICAM-1 cg00459119 SNX29 16 12172834 0.0001 4.89E-05 7.60E-05 0.1623 

P-selectin cg00459119 SNX29 16 12172834 0.0004 3.89E-05 1.65E-05 0.6867 

hsCRP cg14557787 AP2A1 19 50305342 -0.0038 0.0006 8.50E-05 0.5101 

IL-6 cg14557787 AP2A1 19 50305342 -0.0030 -0.0007 4.27E-05 0.3583 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

FIGURES 

 

 

 
 

Figure 1. Quantile-quantiel plots of DNAm association with inflammatory 

biomarkers adjusted for age, BMI, cigarette smoking and cell type proportions of 

peripheral leukocytes. 

Panel A presents the QQ plot for the phenotype, MMP-2 for between-twin efffect. Panel 

B presents the QQ plot for the phenotype, TGF-β for between-twin efffect. 
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Figure 2. Manhattan plots of methylome-wide association for log CRP, adjusted 

for age, BMI, cigarette smoking and cell type proportions of peripheral 

leukocytes. 

Panel A presents the Manhattan plot for log CRP, for within-twin effect. 

Panel B presents the Manhattan plot for log CRP, for between-twin effect. 
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Figure 3. Manhattan plots of methylome-wide association for IL-6, adjusted for 

age, BMI, cigarette smoking and cell type proportions of peripheral leukocytes. 

Panel A presents the Manhattan plot for IL-6, for within-twin effect. 

Panel B presents the Manhattan plot for IL-6, for between-twin effect. 
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Figure 4. Manhattan plots of methylome-wide association for MMP-2, adjusted 

for age, BMI, cigarette smoking and cell type proportions of peripheral 

leukocytes. 

Panel A presents the Manhattan plot for MMP-2, for within-twin effect. 

Panel B presents the Manhattan plot for MMP-2, for between-twin effect. 
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Figure 5. Manhattan plots of methylome-wide association for MMP-9, adjusted 

for age, BMI, cigarette smoking and cell type proportions of peripheral 

leukocytes. 

Panel A presents the Manhattan plot for MMP-9, for within-twin effect. 

Panel B presents the Manhattan plot for MMP-9, for between-twin effect. 
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Figure 6. Manhattan plots of methylome-wide association for ICAM-1, adjusted 

for age, BMI, cigarette smoking and cell type proportions of peripheral 

leukocytes. 

Panel A presents the Manhattan plot for ICAM-1, for within-twin effect. 

Panel B presents the Manhattan plot for ICAM-1, for between-twin effect. 
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Figure 7. Manhattan plots of methylome-wide association for VCAM-1, adjusted 

for age, BMI, cigarette smoking and cell type proportions of peripheral 

leukocytes. 

Panel A presents the Manhattan plot for VCAM-1, for within-twin effect. 

Panel B presents the Manhattan plot for VCAM-1, for between-twin effect. 
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Figure 8. Manhattan plots of methylome-wide association for P-selectin, adjusted 

for age, BMI, cigarette smoking and cell type proportions of peripheral 

leukocytes. 

Panel A presents the Manhattan plot for P-selectin, for within-twin effect. 

Panel B presents the Manhattan plot for P-selectin, for between-twin effect. 
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Figure 9. Manhattan plots of methylome-wide association for TGF-β, adjusted 

for age, BMI, cigarette smoking and cell type proportions of peripheral 

leukocytes. 

Panel A presents the Manhattan plot for TGF-β, for within-twin effect. 

Panel B presents the Manhattan plot for TGF-β, for between-twin effect. 

 

 

 


