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Abstract

Effects of prenatal DHA supplementation and maternal and offspring F4DS polymorphisms in
relation to cardiometabolic health of Mexican children

By Sonia Tandon Wimalasena

Risk factors for cardiometabolic disease are emerging earlier in the life course, including
among children and adolescents. Polyunsaturated fatty acids (PUFAs) have a cardioprotective role
as precursors to the n-3 and n-6 long-chain PUFAs (LC-PUFAs), which modulate inflammation.
However, gaps remain in our understanding of the role of LC-PUFAs for cardiometabolic health
(CMH) during critical periods of growth and development, such as gestation and early
adolescence. Currently, the long-term effects of prenatal n-3 docosahexaenoic acid (DHA)
supplementation are unclear, which may be partially attributable to population heterogeneity in
variants of the fatty acid desaturase (FADS) genes that regulate LC-PUFA metabolism. The
objective of this dissertation was to examine the relationship between prenatal DHA
supplementation, maternal and offspring FADS polymorphisms, and cardiometabolic health in a
population of Mexican children. To accomplish this, we used data from a double-blind randomized
controlled trial of prenatal DHA supplementation (POSGRAD) in Mexico, in which the offspring
have been followed from birth (n=973) through age 11 years (n = 566).

First, we examined clustering of cardiometabolic markers in 413 children and compared a
metabolic syndrome (MetS) score to an exploratory CMH score, which additionally included
adipokines and inflammatory markers. We found that measures of adiposity and lipids explained
the most variation for both scores, and the MetS score captured nearly as much variation as the
exploratory CMH score. Next, we evaluated the effect of prenatal DHA supplementation on
offspring MetS scores and examined the role of variations in maternal FADS single nucleotide
polymorphisms (SNPs) in 314 children. There was no main effect of prenatal DHA
supplementation; however, we observed effect modification by variants of maternal SNP
rs174602. Offspring of maternal TT genotype who received prenatal DHA had lower MetS scores
relative to the placebo group, while offspring of maternal CC genotype who received DHA had
higher MetS scores relative to offspring whose mothers received placebo. Finally, we examined
the role of variants in both maternal and offspring FADS genes on MetS scores and assessed
interactions with prenatal DHA supplementation and offspring diet quality (n=203). Offspring
SNP rs174602 did not modify the association of prenatal DHA supplementation with MetS score.
Although associations between examined F4DS haplotypes and MetS score were null, there was
evidence of interaction between SNP rs174602 and current dietary PUFA intake; children with TT
or TC genotype and high dietary n-6:n-3 ratios had higher MetS scores relative to those with low
n-6:n-3 ratios, while children with CC genotype and high n-6:n-3 ratios had lower MetS scores
relative to those with low n-6:n-3 ratios.

The findings from this dissertation provide valuable insights by improving our
understanding of cardiometabolic risk early in the life course and demonstrating the importance of
examining gene-nutrient interactions, especially for interpreting results from nutrition
supplementation trials. While further research is needed to validate our findings in larger,
ethnically diverse populations, this work has the potential to guide and inform the development of
targeted nutrition recommendations early in the life course to improve CMH.
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Chapter 1 : Introduction

Cardiometabolic diseases, which include cardiovascular disease, stroke, and type II
diabetes mellitus, are the leading causes of mortality worldwide (1). By 2030, global costs
associated with cardiovascular disease alone will exceed $1 trillion (2). Risk factors, including
high blood pressure, insulin resistance, obesity, and adverse lipid profiles track from childhood to
adulthood and are becoming increasingly prevalent earlier in the life course (3, 4). While it is well
known that cardiometabolic risk factors cluster, there is no consensus on how to define
cardiometabolic risk in pediatric populations (5). Nutrition is a key modifiable determinant of
cardiometabolic health (CMH); therefore, understanding the optimal timing of nutrition
interventions to prevent disease development is a critical area of investigation (6-8).

Polyunsaturated fatty acids (PUFAs) are important for CMH because they are precursors
to the long-chain PUFAs (LC-PUFAs) n-6 arachidonic acid (AA), n-3 eicosapentaenoic acid
(EPA) and n-3 docosahexaenoic acid (DHA), which modulate inflammation (9, 10). Western diets
characterized by a high n-6:n-3 intake ratio (~16:1) have been previously associated with multiple
chronic diseases in adults, and supplementation with n-3 LC-PUFAs reduces inflammation, insulin
resistance, blood pressure, and lipid profiles (11, 12). Despite substantial evidence that nutritional
exposures as early as gestation can have permanent metabolic programming effects (13, 14), the
role of exposure to n-3 and n-6 LC-PUFAs during critical periods of growth and development,
such as gestation and early adolescence, for later CMH remains unclear. In animal models,
prenatal n-3 LC-PUFA supplementation reduces adiposity (15-17) and improves adult metabolic
profiles among the offspring (15, 17, 18). However, randomized controlled trials (RCTs) of
prenatal DHA supplementation report inconsistent findings for offspring CMH outcomes, which

may be attributable to heterogeneity across studies with respect to types of omega-3s (e.g. fish oil



vs. DHA only), dose, timing of supplementation, characteristics of mothers, variable length of
follow-up, and genetic variation (19-23). Systematic reviews call for additional follow-up of
completed trials to account for metabolic changes that may emerge later in childhood (20, 24).
Genetic variants of fatty acid desaturase (FADS) genes that regulate the conversion of both
n-3 and n-6 precursors into their LC-PUFA forms may explain the inconsistent results observed
across trials (25). Most studies incorporating genetic information have been conducted in European
populations; however, there is ethnic variation in the genotype distribution of F4DS variants (26,
27). While European populations predominantly have F4DS alleles associated with more rapid
conversion of precursor PUFAs (25), Native American and Mexican populations have a higher
frequency of alleles associated with slower conversion and may have increased n-3 LC-PUFA
dietary requirements (28). Additional research is needed across populations that vary in FADS

genotype and PUFA intake to guide development of targeted recommendations.

1.1 Objective & Specific Aims

The overall objective of this dissertation is to examine the relationship between prenatal DHA
supplementation, maternal and offspring FADS polymorphisms, and cardiometabolic health in a
population of Mexican children (Figure 1-1). To meet this objective, we used data from the
Prenatal Omega-3 Fatty Acid Supplementation and Child Growth and Development (POSGRAD)
randomized controlled trial conducted in Cuernavaca, Mexico from 2005-2007 to address the

following three research aims.



Data Source: POSGRAD Trial in Mexico
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Figure 1-1. Summary of Research Aims.

Aim 1 examines clustering of cardiometabolic markers at 11 years of age. Aim 2.1 tests the effect

of prenatal DHA supplementation on offspring CMH; Aim 2.2 tests effect modification by variants

in maternal FADS genes. Aim 3 assesses the role of selected variants in both maternal and

offspring FADS genes on CMH.

Abbreviations: POSGRAD, Prenatal Omega-3 Fatty Acid Supplementation and Child Growth and

Development; DHA, docosahexaenoic acid; CMH, cardiometabolic health; FADS, fatty acid

desaturase.

Specific Aim 1: To examine clustering of cardiometabolic markers in Mexican children at age 11

years and compare a metabolic syndrome (MetS) score to an exploratory CMH score.

We hypothesized that the exploratory CMH score would explain more variation in

children’s cardiometabolic health at age 11 years compared to the MetS score.



Specific Aim 2: Evaluate the effect of prenatal DHA supplementation on offspring CMH and

investigate effect modification by variants in maternal FADS genes.
We hypothesized that offspring born to women who are carriers of FADS alleles associated
with slower conversion of precursors and exposed to prenatal DHA supplementation would
have improved CMH profiles at age 11 y relative to the placebo group, with no differences

by treatment group among those born to non-carriers.

Specific Aim 3: Evaluate the role of selected variants in both maternal and offspring FADS genes

on CMH at age 11y and assess interactions of genotype with offspring diet quality and prenatal
DHA supplementation.

a. We hypothesized that children who carry FADS alleles associated with more rapid
conversion of precursors would have poorer CMH profiles relative to those with slower
conversion.

b. Secondarily, we hypothesized that maternal genotype would be more relevant than
offspring genotype for modifying the effect of the prenatal DHA intervention whereas

offspring genotype would be more relevant for modifying the effects of dietary intake.

Relevant literature on the pathophysiology of cardiometabolic diseases in pediatric
populations, possible cardioprotective benefits of LC-PUFAs, and interactions between LC-PUFA
intake and/or supplementation with F4DS genetic polymorphisms is reviewed in Chapter 2.
Chapter 3 provides additional detail on the data source for the studies, including study setting,
participants, design of the original trial and follow-up study, and an in-depth discussion of

statistical methods used. Details of the three original research studies based on each of the specific



aims (1-3) are provided in Chapters 4-6. Chapter 7 discusses key findings from this research,
strengths and limitations, clinical and public health implications, and recommendations for future
research. Through integration of genetic, clinical, and longitudinal data, this work seeks to address
important research gaps to ultimately guide the development of targeted dietary and

supplementation recommendations early in the life course to improve CMH.
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Chapter 2 : Literature Review

This chapter provides relevant background information on how and why cardiometabolic
diseases develop, how certain nutrients, such as LC-PUFAs, may improve cardiometabolic risk
factors, and how nutrients interact with genetic polymorphisms to influence cardiometabolic
disease risk. First, I discuss the epidemiology and etiology of cardiometabolic disease, with an
emphasis on Mexican children and adolescents. Next, [ overview the role of LC-PUFAs in human
health and discuss their potential cardioprotective benefits. Third, I review the evidence supporting
the role of prenatal DHA supplementation in offspring cardiometabolic health, drawing on
evidence from animal models, human observational studies, and human RCTs. Finally, I discuss
the role of gene-nutrient interactions in CMH, focusing on the FADS genetic polymorphisms

involved in LC-PUFA metabolism.
2.1 Cardiometabolic disease in pediatric populations

2.1.1 Health of school-age children, obesity epidemic, and tracking of risk factors across life
course

It is now well understood that early nutrition and lifestyle factors can have long-lasting
impacts on the lifelong risk of obesity and associated non-communicable diseases, including
cardiovascular disease (CVD), hypertension, and type II diabetes (1). Exposures as early as
gestation, such as maternal genetics, obesity, nutritional status, and environmental exposures, can
alter the fetal nutrient supply, growth, and development (2). In early postnatal life, infant feeding
practices including nutrient content of milk, duration of breastfeeding, and introduction of
complementary foods can all shape a child’s metabolism and microbiome (3). While the first 1,000
days (pregnancy and first two years of life) have received much attention in terms of early life

interventions to mitigate risk of chronic disease, the periods of childhood and adolescence
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represent an important bridge between this rapid period of growth and development and the
stability of adulthood. This is a dynamic time during which lifelong behaviors (e.g., dietary
patterns, development of taste and food preferences, eating behaviors, sedentary habits, changes
in sex hormones and pubertal status, and increases in psychological and social stressors) develop,
all of which can influence the development of adiposity and increase risk of chronic disease.
Childhood and adolescent overweight and obesity have emerged as one of the most
important public health problems worldwide (4). Obesity is defined as an excess accumulation of
adipose tissue, and its increase in prevalence during childhood has corresponded with the
emergence of serious co-morbidities including type II diabetes, hypertension, non-alcoholic fatty
liver disease, and dyslipidemia (4). The most common cause of obesity during childhood and
adolescence is an inequity in energy balance (i.e., energy intake exceeds energy expenditure). It is
well established that obesity and other risk factors for chronic disease can emerge early in life and
track from childhood to adulthood. Studies have shown that approximately 55% of children with
obesity go on to be obese as an adolescent, and 80% of adolescents with obesity go on to be obese
as an adult (5). Therefore, identifying effective prevention strategies early in the life course is

essential to mitigating overall disease burden (6).

2.1.2 Epidemiology of cardiometabolic disease: distribution and determinants

Cardiometabolic diseases, which include CVD, stroke, and type II diabetes, are leading
causes of death globally. An estimated 17.9 million people globally died from cardiovascular
disease alone in 2019, representing over 30% of all global deaths (7). Over three-quarters of CVD
related deaths take place in low- and middle-income countries (7). Overwhelming evidence

suggests that a substantial proportion of cases of cardiometabolic disease could be prevented via



13

lifestyle and behavioral changes such as a healthy diet, increasing physical activity, maintaining a
healthy weight, avoiding tobacco products, and minimizing alcohol consumption (8).

The prevalence of cardiometabolic disease varies worldwide. Geographic and ethnic
differences may be attributable to differences in genetic and environmental factors (e.g., diet,
socioeconomic status, and inequities in access to healthcare). The increasing burden of obesity and
non-communicable diseases in Mexico over the past thirty years have placed the country at the
forefront of global health efforts to reduce disease burden. This increase is largely due to the
nutrition transition, which is characterized by a shift from high infectious disease morbidity and
mortality to increased prevalence of non-communicable disease, changes in dietary patterns and
increased intake of processed foods high in fat and sugar, urbanization, and technological
advancements that have led to increased sedentary time for both work and leisure (9). Additionally,
the substantial increase in imports of food products from the United States has vastly re-shaped
the food environment in Mexico, making processed foods readily available. In Mexico, more than
70% of adults are overweight or obese (BMI > 25 kg/m?) (10). Of additional concern, younger
generations have higher cumulative exposure to an obesogenic environment shaped by processed
foods and low diet quality (11). A recent national survey in Mexico (ENSANUT MC 2016) found
that among school-age children (aged 5-18 years), 17.9% (95% CI: 15.2-21.1) were overweight
and 15.3% (95%CI: 12.5-18.6) were obese, with the highest prevalence among children aged 10-
11 years. The prevalence was higher among females compared to males and 5% higher in urban
versus rural populations (12). Studies indicate that, aside from obesity, low HDL and high
triglycerides are the most observed cardiometabolic risk factors present among Mexican children

and adolescents (13-15).

2.1.3 Physiology of metabolic syndrome and cardiometabolic disease
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Metabolic syndrome (MetS) is a cluster of conditions, which includes hypertension,
hyperglycemia, obesity, and dyslipidemia, that increases risk of heart disease, stroke, and type II
diabetes. The term MetS was coined from a framework (originally “syndrome X”’) used to describe
the mechanisms underlying insulin resistance and its effects on glucose and lipid metabolism,
blood pressure, and coronary artery disease risk (16). Obesity, insulin resistance, ectopic fat
deposition, and inflammation play a central role in the pathophysiology of MetS. Healthy adipose
tissue expansion is characterized by the formation of small new adipocytes that are vascularized
and have minimal inflammation, while unhealthy expansion is characterized by inadequate
angiogenesis, hypoxia, and storage of lipids in other tissues (e.g., liver, muscle) (3). The
accumulation of free fatty acids, inflammatory cytokines, and lipid intermediates in non-adipose
tissue (e.g., liver, muscles, and pancreas) leads to activation of inflammatory pathways (JNK, IKK,
PKCs) and alterations in normal insulin signaling.

Under normal conditions, insulin stimulates glucose uptake in skeletal muscles and
adipocytes, promotes glycogen synthesis in skeletal muscles, suppresses hepatic glucose
production, and inhibits lipolysis in adipocytes (17). In a state of insulin resistance, there is
impaired glycogen synthesis and protein catabolism in skeletal muscles and increased lipolysis in
the adipocytes, resulting in an increased release of free fatty acids and inflammatory cytokines into
the circulation. The excess release of free fatty acids and triglycerides into the circulation induces
ectopic adipose deposition and dyslipidemias (e.g., high plasma triglycerides, low high-density
lipoprotein (HDL) cholesterol, and increases in small, dense low-density lipoprotein (LDL)
cholesterol), which are atherogenic and are known to increase cardiovascular risk. Insulin
resistance also contributes to endothelial dysfunction by decreasing production of nitric oxide,

resulting in vasoconstriction and elevated blood pressure, platelet aggregation, and enhanced LDL
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oxidation. The buildup of oxidized LDL contributes to plaque formation, leading to atherosclerosis
and CVD.

It is also important to consider the role of low-grade inflammation in the pathophysiology
of cardiometabolic disease. C-reactive protein (CRP) is an established marker of systemic
inflammation; elevated serum levels have been shown to be elevated in individuals with MetS and
cardiovascular disease (18, 19). Excess adipose tissue is associated with increased levels of the
pro-inflammatory acute phase reactant C-reactive protein (CRP) in the blood. The majority of
adipokines released from adipose tissue, including leptin, resistin, interleukin-6 (IL-6), tumor
necrosis factor a, and plasminogen activator inhibitor-1, have detrimental effects on cardiovascular
health (20). With obesity, overexpansion of adipose tissue results in overproduction of these pro-
inflammatory molecules, promoting CVD pathogenesis (21). In contrast, adiponectin is one of the
few adipokines that is decreased in obesity, anti-inflammatory, and associated with increased
insulin sensitivity (22).

Although obesity is generally considered a key contributor in the pathophysiology of MetS,
it is important to consider that approximately one-third of individuals with obesity have
metabolically healthy obesity (23), meaning that they meet the clinical definition of obesity but
exhibit favorable cardiometabolic profiles (i.e., no dyslipidemia, hypertension, or hyperglycemia);
however, it remains unclear whether this is a fixed or transient phenotype and warrants additional
research (16, 20). Similarly, a subgroup of individuals with normal weight or underweight based
on BMI definitions may present with clustering of cardiometabolic risk factors (24). Thus, it is
important to consider the limitations of using measures of adiposity alone to classify
cardiometabolic risk. One of the key concerns of using BMI is that it does not differentiate between

lean and body fat mass; this can lead to misclassification among persons of muscular build or short
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stature (23). Methods including dual-energy X-ray absorptiometry (gold standard), bioelectrical
impedance analysis, and air displacement plethysmography provide more granular measures of
body composition via measurements of fat mass and fat-free mass (25).
2.1.4 Defining CM risk in pediatric populations

Despite the increases in cardiometabolic risk factors early in the life course, defining
cardiometabolic risk in pediatric populations remains a key challenge. In adult populations,
metabolic syndrome is diagnosed by the presence of at least three or more of the following risk
factors: central adiposity, hyperglycemia, hypertriglyceridemia, hypertension, and low HDL,
although definitions vary slightly (26). However, for children and adolescents, over 40 MetS
definitions including different risk factors have been proposed, and there is no consensus on which
definition should be used (Table 2-1) (27). Additionally, there is high heterogeneity in the
prevalence of MetS based on the diagnostic criteria used. One study used a sample of 508 Mexican
children aged 9-13 years to compare five definitions of MetS and found that the prevalence varied
from 2.4 — 45.4% based on the definition used (28). This clearly demonstrated the poor
performance of current criteria to diagnose MetS in Mexican children and adolescents. While the

overall prevalence of MetS is low, it is highly prevalent in overweight and obese children (20).
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Table 2-1. Comparison of Select Published MetS Definitions for Pediatric and Adult Populations.

Pediatric Definitions

Adult Definitions

Cook et al. De Ferranti et Zimmet et al. Albierti et al. Grundy et al.
al. (IDF definition = (IDF definition = (AHA/NHLBI)
for ages 10-16) = for Ages 16+)
Criterion > 3 criteria > 3 criteria Obesity and at Obesity and at > 3 criteria
least 2 of least 2 of
remaining 4 remaining 4
criteria criteria
Obesity WC > 90th WC > 75th WC > 90th WC=>94 cmfor WC=>102cmin
percentile (age | percentile percentile or white men and men and WC >
and sex adult cutoff if >80 cm for 88 cm in women
specific, lower white women
NHANES I1I)
Glucose Fasting glucose = Fasting glucose | Fasting glucose @ Fasting glucose = Fasting glucose
intolerance > 110 mg/dL > 110 mg/dL > 100 mg/dL or >100 mg/dL or = > 100 mg/dL or
known type 2 known type 2 drug treatment of
diabetes diabetes elevated glucose
mellitus mellitus
Triglycerides Triglycerides > | Triglycerides > | Triglycerides > = Triglycerides> = Triglycerides >
110 mg/dL 100 mg/dL 150 mg/dL 150 mg/dL (1.7 150 mg/dL (1.7
mmol/L) or mmol/L) or
treatment of treatment of
elevated elevated
triglycerides triglycerides
HDL-c HDL-C <40 HDL-C <50 HDL-C <40 HDL-C <40 HDL-C <40
mg/dL mg/dL mg/dL mg/dL in men mg/dL in men
and <50 mg/dL = and <50 mg/dL
in women or in women or on
specific drug treatment of
treatment of low = reduced HDL-C
HDL-c
High BP BP > 90th BP > 90th Systolic BP > Systolic BP > Systolic BP >
percentile (age, | percentile 130 mmHg or 130 mmHg or 130 mmHg or
sex, and height diastolic BP > diastolic BP > diastolic BP > 85
specific) 85 mmHg or 85 mmHg or mmHg or
treatment of treatment of treatment of
previously previously previously
diagnosed diagnosed diagnosed
hypertension hypertension hypertension

Source: The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor
Clustering (Magge et al, 2017) (16)

Beyond the challenges of identifying optimal diagnostic criteria, the clinical utility of
diagnostic criteria remains controversial. Using dichotomous thresholds to diagnose MetS likely
only captures severe outliers. Furthermore, they may inadequately characterize early risk
trajectories by ignoring the continuous nature of risk (29, 30). It is important to consider that

adolescence is a period of considerable metabolic and hormonal change, characterized by the onset
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of puberty, accumulation of lean and fat mass, and increases in sex hormones and insulin resistance
(31). Several epidemiologic studies have demonstrated an association between early onset of
puberty and increased future risk of obesity and cardiometabolic disease (32-34). Some evidence
additionally suggests that leptin and adiponectin, two adipokines that are correlated with obesity,
may influence the initiation of puberty via modulation of the hypothalamic-pituitary-adrenal and
hypothalamic-pituitary-gonadal axes (35-37). These substantial physiological changes may
contribute to instability in categorical diagnoses of MetS over time. As such, one study among
adolescents in the United States (baseline age range: 12.2-19.3 years) reported that metabolic risk
factor clustering is consistent over time, but there was instability in clinical categorization of MetS
between baseline and follow up three years later (38). The American Academy of Pediatrics now
recommends that, instead of focusing on a particular MetS definition or specific cut-off levels for
individual risk factors, pediatricians should identify children with clustering of multiple risk
components (39). Within the research setting, this has led to use of composite risk scores, which
are typically calculated as the sum or mean of age-, sex-, and race/ethnicity-standardized z-scores
for each risk component (40, 41). Typically, the most used score components include waist
circumference, mean arterial pressure, Homeostatic Model Assessment for Insulin Resistance
(HOMA-IR), HDL, and triglycerides. However, there is heterogeneity across studies with respect
to included components, and additionally, these scores assume that each component contributes
equally to cardiometabolic risk. These limitations justify the need to evaluate alternate methods,
such as principal component analysis (PCA), for deriving continuous MetS scores. Methodology

will be further discussed in Chapter 3.
2.2 Overview of LC-PUFAs

2.2.1 Structure, function, and metabolism of PUFAs and LC-PUFAs
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Essential fatty acids (EFAs) are polyunsaturated fatty acids (PUFAs) that are necessary for
human growth and function but cannot be produced by the body, as the human body can only
synthesize double bonds after the 9" carbon from the methyl end of a fatty acid (42). There are
two classes of essential fatty acids: omega-6 fatty acids, which have a double bond in the omega-
6 position of the hydrocarbon chain (includes linoleic acid (LA, 18:2n-6) and its derivatives), and
omega-3 fatty acids, which have a double bond in the omega-3 position (alpha-linolenic acid

(ALA, 18:3n-3) and its derivatives) (Figure 2-1).

S
CHs

Figure 2-1. Chemical structure of a) n-6 linoleic acid and b) n-3 alpha-linolenic acid.

Dietary PUFAs are converted in the body to long-chain PUFAs by elongase enzymes,
which add 2 carbons via acyl CoA, and desaturase enzymes, which add one double bond. With a
steady supply of linoleic acid, arachidonic acid is produced in sufficient amounts; however, DHA
and EPA can become conditionally essential due to a dietary deficiency or decreased enzyme
activity. Most of the biological functions of PUFAs are exerted by the long-chain active forms: n-
6 arachidonic acid (AA, 20:4n-6), n-3 eicosapentaenoic acid (EPA, 20:5n-3), and n-3
docosahexaenoic acid (DHA, 22:6n-3). While the dietary PUFAs n-6 LA and n-3 ALA are
primarily used for beta oxidation to provide energy, the LC-PUFAs are involved in production of
membrane phospholipids and membrane fluidity, cell differentiation, signal transduction,

regulation of genes involved in fatty acid synthesis and oxidation, and synthesis of lipid
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biomediators such as prostaglandins, leukotrienes, thromboxanes, and resolvins involved in

physiological processes including platelet aggregation, vasoconstriction, and inflammation (43).

2.2.2 Role of LC-PUFAs in inflammation

Although both classes of fatty acids are necessary for normal cell membrane structure and
function, cell signaling, and regulation of gene expression, they play opposing roles in modulating
inflammation. Although there are some exceptions, the n-6 LC-PUFA arachidonic acid generally
produces pro-inflammatory and more physiologically potent prostaglandins, leukotrienes, and
thromboxanes, while n-3 EPA produces anti-inflammatory eicosanoids and n-3 DHA produces
molecules that resolve inflammation (44). The anti-inflammatory effects of n-3 LC-PUFAs may
be attributable to altered cell membrane phospholipid fatty acid composition, disruption of lipid
rafts, reduced expression of inflammatory genes via inhibition of nuclear factor kappa B, and
activation of anti-inflammatory peroxisome proliferator activated receptor (PPAR) vy (45). Further,
n-3 LC-PUFAs are able to partly inhibit aspects of inflammation including production of
inflammatory cytokines, production of eicosanoids such as prostaglandins and leukotrienes, T cell
reactivity, adhesion molecule expression, and leucocyte chemotaxis (45). The n-3 LC-PUFAs
compete with the n-6 LC-PUFAs for the same enzymes (COX and LOX) to synthesize different
classes of eicosanoids. Thus, it is possible that excess intake of one class of fatty acids can lead to
a decrease in conversion of the other class (i.e., excess intake of n-6 LA can lead to decreased
formation of n-3 EPA and DHA). In the presence of large amounts of n-6 LC-PUFAs, conversion
of ALA to EPA has been shown to be as low as 0.2 to 6%, and conversion to DHA is 0.05% or
less (46). However, results from a mouse model showed that increasing dietary LA did not

influence AA concentrations (47). While seemingly intuitive from a biochemical perspective,
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research suggests that these pathways are more complex in the human body, especially because

nutrients are not consumed in isolation.

2.2.3 Role of LC-PUFAs in lipid and glucose metabolism

n-3 LC-PUFAs have regulatory effects on enzymes involved in lipid and glucose
metabolism (48). EPA and DHA are natural ligands for several nuclear receptors and
transcriptional factors, including PPARa and PPARy. PPARa is highly expressed in tissues with
high fatty acid requirements, such as the liver, heart, and kidney, while PPARY is highly expressed
in adipose tissue. Activation of PPARa leads to reduced energy storage and enhanced fatty acid
oxidation, resulting in reduced circulating triglyceride levels (49). PPARa activation may also
have beneficial implications for glucose homeostasis, as some reports suggest that PPARa agonists
may enhance insulin sensitivity in adipose tissue and muscles and preserve pancreatic B-cell
function (50). Activation of PPARY, meanwhile, leads to inhibition of nuclear factor kB (NF-«xB)
activity and inflammation (51). n-3 LC-PUFAs may also maintain glucose homeostasis via
decreased activation of c-Jun N-terminal kinase (JNK) pathways and reduced insulin receptor
substrate (IRS) phosphorylation. Additionally, n-3 LC-PUFAs have been shown to have anti-
thrombotic properties, improve endothelial function, lower plasma triglycerides and LDL

cholesterol, and inhibit cell growth factors (52).

2.2.4 Dietary sources and recommended dietary intakes

Unlike all other fatty acids, omega-3 and omega-6 fatty acids cannot be made by the body
and must be obtained through the diet to support normal function. Omega-6 fatty acids are found
in most seeds and vegetable oils, and the omega-6 LC-PUFA AA is abundant in the meat (e.g.,
chicken, beef) and eggs of animals fed grain diets high in omega-6 fatty acids. ALA is found in

walnuts, flax, chia seeds, leafy greens, and plant oils, such as canola, soybean, and flaxseed oils,
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and n-3 LC-PUFAs EPA and DHA are found in coldwater oily fish (e.g., salmon, sardines, and
herring), algae, fish oils, and krill oils. Fish do not synthesize n-3 LC-PUFAs but are an excellent
source of DHA + EPA because it accumulates in their flesh as they consume algae. While n-6 fatty
acids are highly abundant in the food supply in most seeds, vegetable oils, animal products, and
processed foods made using these products, omega-3s are found in far fewer sources (53).

The recommended dietary intakes of omega-3 and omega-6 fatty acids differ by age, sex,
and health status. There is no specific recommended dietary intake of omega-6 fatty acids, but it
is recommended that they make up between 5-10% of total daily calories (54). The Institute of
Medicine (IOM) has not established specific dietary reference intake recommendations for EPA,
DHA, or other n-3 LC-PUFAs, but adequate intakes (Als) for ALA have been established. For
children aged 9-13 years, recommended Als are 1200 mg per day for males and 1000 mg per day
for females (55). During pregnancy, the recommended Al is at least 1400 mg ALA. Consensus
recommendations by the World Association of Perinatal Medicine state that pregnant women
should aim to achieve average daily intakes of at least 200 mg DHA (56). The Dietary Guidelines
for Americans recommends that pregnant women eat 8 to 12 oz (2 to 3 servings) per week of fish
that are low in mercury. The American Heart Association recommends intakes of 1 g/day of
DHA+EPA for adults with coronary heart disease and 3-4 oz per week for unaffected people as
part of a heart-healthy diet (57). Some evidence suggests that the n-6/n-3 ratio may have important
implications for pathogenesis of cardiovascular disease and cancer, but the optimal intake ratio, if
any exists, has yet to be defined. While the focus of this dissertation is primarily on the potential
cardioprotective benefits of n-3 DHA, it is important to consider that n-6 linoleic acid may also be
beneficial for preventing cardiovascular disease (58). A study among nearly 900 healthy men and

women in the United States reported that n-6 fatty acids do not inhibit the anti-inflammatory
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actions of n-3 fatty acids, and a combination of both n-6 and n-3 fatty acids is associated with the
lowest levels of inflammation. This work suggested that absolute intakes of n-3 and n-6 are more
important than the ratio, but overall, examination of the relevance and clinical and public health
implications of the n-6:n-3 ratio warrants further research. To improve the ratio of omega-3 to
omega-6 in the body, it is currently recommended to consume more omega-3 fatty acids, not

reduce intake of omega-6 fatty acids.

2.2.5 Changes in the food supply

The rise in risk factors for chronic disease among both adults and children has been
paralleled by major changes in the food supply in the past 100 years. Advancements in agriculture
and food technology have led to widescale production of vegetable oils high in n-6 fatty acids,
changes in animal feed from grass to grain-based diets, and the widespread adoption of western
diets (59). These changes have led to major shifts in dietary fat composition, especially n-6 and n-
3 PUFAs, resulting in diets high in n-6 PUFAs. During paleolithic times, humans consumed a diet
with a balanced ratio of n-6 to n-3 (1:1) in their diet; however, modern western diets are reported
to have an n-6:n-3 ratio of approximately 16:1 (60). The simultaneous increase in inflammation-
related chronic disease and consumption of omega-6 fatty acids has occurred despite more recent

reductions in saturated fat and total fat intake.

2.3 Prenatal DHA supplementation and cardiometabolic health

The initial evidence supporting a potential cardioprotective role of n-3 LC-PUFAs came
from the discovery that Greenland Eskimos, who had a diet rich in fatty fish, had lower mortality
of coronary heart disease relative to Danish and American populations (61, 62). These initial
findings motivated a wave of observational, experimental, and intervention studies to further

understand this association and the underlying mechanisms.
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Several early randomized controlled trials conducted among non-pregnant adults suggested
beneficial effects of n-3 fatty acids on cardiovascular health in individuals with previous
cardiovascular events; they reported that increasing consumption of fatty fish or n-3 LC-PUFA
supplements led to reductions in CVD, coronary heart disease, myocardial infarction, stroke, and
related fatalities (52, 63-65). Other studies have shown that supplementation with n-3 LC-PUFAs
improves insulin resistance, blood pressure, and dyslipidemia via reduction of triglycerides (44,
60, 66-68). In contrast, numerous studies have reported no significant association with CVD or
diabetes outcomes (52). Overall, evidence remains inconsistent and may be attributable to varying
sources, doses, and type of n-3 PUFA, trial duration and follow-up time, population characteristics
(e.g., co-morbidities, concurrent prescription drug use), primary vs. secondary prevention, sample
size, and genetic variation (52).

2.3.1 Potential biological mechanisms

Due to their important roles in cell membrane synthesis, gene expression, and eicosanoid
production, omega-3 fatty acid intake may be critical in determining long-term cardiometabolic
health as early as gestation. Because the fetus primarily relies on the placental fatty acid supply,
maternal DHA typically accumulates during the second half of pregnancy to support optimal fetal
growth, development, and immune function (43). During this period of rapid growth and
development, AA and DHA are readily incorporated into membrane lipids of growing tissues,
including the liver, brain, and immune cells. The Developmental Origins of Health and Disease
(DOHaD) theory suggests that some exposures, including nutrient intakes, during gestation may
have permanent programming effects on offspring CMH (1, 2, 6, 69). Alterations in the prenatal
fatty acid supply can contribute to structural changes in cells and organ development, epigenetic

changes that regulate expression of genes involved in energy storage and oxidation, and disrupted
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development of appetite regulation signals that control long term food intake and energy balance
(2). Two mechanisms may mediate the benefits of prenatal n-3 LC-PUFAs for offspring CMH.
First, especially among overweight or obese women, prenatal supplementation may improve
maternal insulin sensitivity, circulating lipids, and placental inflammation, thereby reducing fetal
overnutrition and adiposity (70). Second, prenatal n-3 LC-PUFA supplementation may directly
affect fetal metabolic programming via altered cell and organ development, gene expression, and
development of neuroendocrine signals, increasing long-term cardiometabolic risk (2, 69, 71, 72).
2.3.2 Evidence from animal models

Several experimental studies have demonstrated a relationship between prenatal DHA
supplementation and offspring metabolic health. Evidence from animal models show that offspring
born to dams who were fed diets supplemented with n-3 LC-PUFAs (e.g., fish oil) had lower levels
of adiposity (73-76), insulin resistance (74-77), and dyslipidemia (74) compared to dams fed diets
low in n-3 fatty acids but rich in saturated or n-6 fatty acids. Of interest, Sardinha et al. showed
that fish oil intake during early pregnancy in rats reduced age-dependent insulin resistance and fat
accretion in males, but not female offspring, suggesting possible sex-dependent nutritional
programming (75).
2.3.3 Evidence from human populations

Some human observational studies report associations of higher maternal and/or cord n-3
LC-PUFA status with offspring measures of cardiometabolic health. One study performed in 4830
mother-child pairs participating in a population-based cohort in the Netherlands (The Generation
R Study) found that a high n-6 PUFA pattern (derived using PCA) was associated with higher
height, BMI, and fat-free mass index (FFMI) in offspring at age six years, while a high n-3 PUFA

pattern was associated with lower fat mass index (FMI), higher FFMI, high HDL, and lower
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triglycerides (78). Another study conducted in 4455 mother-child pairs enrolled in another
population-based prospective cohort study in the Netherlands showed that higher maternal plasma
n-3 PUFA and lower n-6 PUFA concentrations during pregnancy were associated with lower
systolic blood pressure, but not diastolic blood pressure, during childhood (median: 6.0 years) (79).
Another study of 1418 mother-child dyads in the Project Viva cohort in the United States showed
that higher cord plasma DHA levels were associated with lower offspring BMI z-score, waist
circumference, and leptin levels in early childhood (median age: 3.2 years), but not mid-childhood
(median age: 7.7 years). Associations were strongest in offspring of women with isolated
hyperglycemia (80). Another observational study in 388 participants of the German LISAplus
study reported age-dependent associations of cord blood LC-PUFA composition with child body
mass index (BMI) at 2 and 10 years, but not 6 years, highlighting the importance of age of outcome
assessment (81). Within a sample of 237 participants in the same study, results suggested that
nigher n-3 LC-PUFA concentrations and a lower n-6/n-3 ratio in cord blood was associated with
higher adiponectin concentrations at 10 years (82). However, overall, associations remain
inconsistent. A systematic review of 28 observational studies in total reported mixed associations
between PUFA intake during pregnancy or early childhood and obesity (19 studies), no association
with blood pressure (6 studies), and no association with lipid levels (9 studies) (72). Of the four
studies that investigated the associations between PUFA levels in cord blood or intake during
pregnancy and measures of insulin sensitivity, one study reported cord blood levels of n-6 GLA
were inversely associated with fasting insulin and HOMA-IR at 7 y, another reported that DGLA,
ALA, and DHA were inversely associated with proinsulin levels, and another study reported no

associations between n-3 intake during pregnancy and insulin, glucose, or HOMA-IR at 20 y (72).
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Although experimental studies consistently demonstrate a relationship between prenatal
DHA supplementation and offspring measures of CMH, systematic reviews of RCTs report
inconsistent effects of supplementation on offspring CMH outcomes (72, 83-86). A recent
systematic review and meta-analysis of 6 RCTs reported no effects of maternal n-3 LC-PUFA
supplementation in pregnancy or lactation on BMI in preschool (standardized mean difference
(SMD)=0.07, 95% confidence interval (CI)=-0.22, 0.36, P=0.65) and school-age children
(SMD=0.12, 95% CI=-0.06, 0.30, P=0.20) (83). A separate systematic review, which included 19
intervention trials, evaluated the effects of PUFA dietary intake and blood levels during pregnancy,
lactation, and early childhood on obesity, blood pressure, lipids, and insulin resistance. The authors
reported mixed effects of PUFA supplementation in early life on obesity (15 trials), cholesterol
and lipid levels (5 trials), blood pressure (7 trials), and insulin resistance (2 studies) (72). To our
knowledge, only one RCT has assessed the long-term effect of prenatal n-3 LC-PUFA
supplementation on offspring metabolic health at age 19 years; no significant differences in blood
pressure, insulin resistance, or lipids were observed, although the sample sizes were small (n =180
for blood pressure outcomes, n = 243 for adiposity-related outcomes) (87, 88). Within the
POSGRAD study in Mexico, supplementation modulated DNA methylation at IGF2/HI9
imprinted genes in overweight mothers (89) and increased DHA/ALA concentrations in breast
milk at 1 month (90). However, no differences between treatment groups were observed for
gestational age, birth weight (91), or non-fasting serum lipid and glucose concentrations at age 4
y (92).

Inconsistencies across studies may be attributed to heterogeneity in trial design with respect
to types of omega-3s (e.g. fish oil vs. DHA only), dose, timing of supplementation, characteristics

of mothers, variable length of follow-up, and variants in FADS genes. Mean follow-up time across
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studies is 4 years; however, long-term effects of prenatal supplementation on CMH may manifest
later in childhood or adolescence, particularly with the onset of puberty when cardiometabolic risk
factors typically emerge (81, 93). Systematic reviews call for further follow-up of completed trials

to assess longer-term outcomes and improve understanding of metabolic pathways involved (84).
2.4 Role of gene-nutrient interactions in CMH

2.4.1 Overview of gene-nutrient interactions

It is now well understood that individuals can respond differently to the same foods,
nutrients, and supplements consumed. These differences may be attributable to factors including
diversity in genetic makeup, metabolism, microbiota, prenatal nutrition, environmental exposures,
and lifestyle. The field of “precision nutrition” leverages human individuality to design nutrition
strategies to prevent, manage, and treat disease and optimize health, and “nutrigenetics” and
“nutrigenomics” specifically focus on the interaction between genes, nutrition, and outcomes.
Single nucleotide polymorphisms (SNPs) are variations in the genome at a single base pair that
affect the way in which individuals absorb, metabolize, utilize, and excrete nutrients. Studies of
human genomic variation show large global differences in allele frequencies of common SNPs
involved in metabolism of common nutrients, including folate, choline, and polyunsaturated fatty
acids (94). Additionally, evolutionary studies indicate genetic adaptations to ancestral diets and
local environments across populations (95). For example, in response to a diet high in fatty meat
and fish, ancestors of the Inuit people developed genetic adaptations associated with reduced
metabolism of n-3 fatty acids (96). Thus, genetic diversity across populations may influence the
bioavailability of certain nutrients and contribute to population-level differences in nutrient
requirements. Improved understanding of gene-nutrient interactions, therefore, has relevance for

the optimization of public health nutrition interventions worldwide.
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2.4.2 FADS variants and PUFA metabolism

Tissue LC-PUFA concentrations are determined by both dietary intake of preformed LC-
PUFAs and endogenous synthesis from their dietary precursors linoleic acid (LA; 18:2n-6) and a-
linolenic acid (ALA; 18:3n-3. Conversion of dietary precursors to LC-PUFAs occurs through a
series of consecutive desaturation and elongation steps, in which n-6 and n-3 fatty acids compete
for conversion. The rate-limiting desaturase steps are mediated by A5 and A6-desaturase enzymes
encoded in the FADS gene cluster (FADS1, FADS2, FADS3) located on human chromosome 11

in the region 11q12 — 11q13.1 (Figure 2-2).

Omega-6 pathway Omega-3 pathway
Linoleic Acid (LA) Alpha-Linolenic Acid (ALA)
18:2(n-6) 18:3(n-3)
A6-Desaturase
] * (FADS2) '
18:3(n-6) 18:4(n-3)
20:3(n-6) 20:4(n-3)
A5-Desaturase
| (FADS1) >
Arachidonic Acid (AA) Eicosapentanoic acid (EPA)
20:4(n-6) 20:5(n-3)
A6-Desaturase
, (FADS2) > l
— / Docosahexaenoic Acid (DHA)
Fatty acid 22:6(n-3)
desaturase

Figure 2-2. Long Chain Polyunsaturated Fatty Acid (LC-PUFA) Metabolism.
LA and ALA compete for conversion to LC-PUFAs by A6 and A5-desaturase enzymes encoded in

the FADS gene cluster.

SNPs in FADS genes have been previously associated with lower transcription levels
and/or diminished enzyme conversion rates, resulting in reduced conversion of precursors (43, 97).

In a population of 727 healthy Caucasian adults, participants carrying common alleles of FADS
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SNPs had higher blood levels of products of PUFA desaturation, whereas carriers of minor alleles
had higher blood levels of precursors (98). This study revealed that a five-locus F4DS haplotype
SNPs in FADS genes explained 27.2, 5.2, and 1.4% of variability in AA, EPA, and DHA
concentrations in serum phospholipids, respectively (98). This association has since been
replicated in several candidate gene and genome-wide association studies. While there is
preferential metabolism of n-3 fatty acids, excess intake of n-6 fatty acids drives the pathways and
outcompetes n-3 fatty acids. Thus, diets high in n-6 LA may interfere with synthesis or
accumulation of EPA/DHA in human tissues. As such, recent evidence suggests that the influence
of dietary PUFAs on CMH may differ by variations in fatty acid desaturase (FADS) genes across
populations (99, 100). FADS polymorphisms can therefore affect the balance between omega-3
and omega-6 fatty acid concentrations in the body, which may have implications for inflammation
and the immune response.

2.4.3 FADS variants and CMH: evidence in adult populations

Several genetic and genome-wide association studies in adults have explored the
relationship between FADS variants, plasma and tissue LC-PUFA concentrations, and risk of
cardiovascular disease, showing that F4DS polymorphisms influence lipid profiles and glucose
homeostasis (101-105). In European adults, FADS alleles that predict inactive PUFA conversion
are associated with lower inflammation, total cholesterol, LDL, HDL, and risk of coronary artery
disease (43). For example, Hester et al. showed that participants with the major allele for rs174537
had significantly higher levels of pro-inflammatory eicosanoids LTB4 and 5-HETE compared to
minor allele carriers (106). However, some studies have shown contradictory results, which may
be attributable to either differences in ethnicity or LC-PUFA content of diet. Recent work has

shown that diet composition can influence the relationship between FADS genotype and plasma
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fatty acid concentrations. Hellstrand et al. found that the minor allele for SNP rs174547 was
associated with lower LDL-C in the lowest tertile of LC n-3 PUFA intakes. They also observed
interaction between the SNP and ratio of ALA:LA on HDL-c (107). A 14-year follow up study
showed an inverse association between ALA:LA and CVD risk only among homozygous minor
allele carriers for SNP rs174547 (108). More recently, the influence of FADS genetic variants in
response to LC-PUFA supplementation has been explored, but evidence of genotype x supplement
interaction across studies is conflicting (99, 100, 109, 110). Ultimately, additional research is
needed to determine whether diet modifies the association between FADS genotype, fatty acid
concentrations, and CVD risk in adults.
2.4.4 FADS variants and CMH: evidence in pediatric populations

While there has been substantial work done exploring the association of FADS
polymorphisms with lipid levels in adult populations, a growing body of literature also supports
this association in pediatric populations. Studies show that multiple variants in F4DS genes are
associated with lower lipid profiles and inflammation in European children (111-113).
Specifically, one study showed that homozygous minor allele carriers had lower levels of total
cholesterol and LDL, and heterozygous carriers had higher triglycerides and lower HDL relative
to homozygous major allele carriers; however, no gene-diet interaction was observed (111).
Similarly, one study performed in a large sample of Mexican adolescents showed that FADS! SNP
rs174546 was a major contributor of plasma triglyceride and VLDL concentrations; however, no
significant interaction effects were detected between dietary intake and genotype, warranting
further research (114). Although a few observational studies show that maternal FADS genotype
influences child LC-PUFA status and lipid profiles, this relationship remains underexamined in

RCTs (115). One RCT in the United States showed that only among individuals with F¥4DS SNPs
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associated with lower conversion of precursors, prenatal DHA supplementation increased DHA
concentrations and reduced AA:DHA ratios at delivery, suggesting a selective beneficial impact
of supplementation among carriers of variants for some F4DS SNPs (116). A recent birth cohort
study in China also reported significant interaction between DHA supplementation and maternal
SNP rs174602 on DHA concentrations in colostrum (117). Within the POSGRAD study, it was
previously demonstrated that maternal SNP rs174602 modified the effect of prenatal DHA
supplementation on birth weight (118) and the 3-month metabolome (119). However, whether

these differences persist and influence long-term CMH remain unexplored.

2.4.5 Genetic variability in FADS SNPs across populations

Most studies assessing the role of maternal and offspring FADS genes in child health have
been conducted in European populations (120, 121). However, FADS genotype distributions
greatly vary across human populations. Ameur et al. showed that humans have two common but
distinct FADS haplotypes, defined by 28 closely linked SNPs across the FADSI and FADS?2
regions. The two haplotypes, derived (D) and ancestral (A), vastly differ in their ability to generate
LC-PUFAs. The more common haplotype D, seen in European and African populations, predicts
more rapid conversion of LCPUFA precursors and higher lipid levels compared to the less
common ancestral haplotype, observed in Native American and Mexican populations. The D
haplotype is thought to be a genetic adaptation to shifts in diets from a hunter gatherer lifestyle
high in EFAs to an agricultural diet high in LA but low in preformed LC-PUFAs such as AA and
EPA. In a recent review, Koletzko and colleagues expanded upon these population level
differences in FADS genotype, showing that there were substantially different frequencies of
alleles associated with rapid PUFA conversion across populations. In Indonesia and Mexico, these

alleles were prevalent in only a quarter of the population but two-thirds to three-fourths of the
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population in Europe and Australia (43). Ultimately, this demonstrates that it may not be possible
to extrapolate the effects of PUFAs in a specific population to populations with different genotype

distributions.

2.4.6 Relative contribution of maternal and offspring genotype

Although it was previously assumed that the fetus solely relies on the mother’s LC-PUFA
supply, results from several recent studies have demonstrated evidence of desaturase enzyme
activity in the liver of the developing fetus, suggesting that fetal synthesis of LC-PUFAs does
indeed contribute to overall LC-PUFA status. The Avon Longitudinal Study of Parents and
Children (ALSPAC) birth cohort study conducted in the United Kingdom explored the
contribution of maternal and fetal genotypes on cord blood fatty acids, which represent placental
transfer and fetal metabolism of PUFAs, in a subset of 2,035 mother-child pairs (122). After
adjusting for maternal and child genotype, both maternal and child FADS genotypes and
haplotypes influenced concentrations of cord plasma LC-PUFAs and fatty acid ratios. Most of the
maternal SNPs were associated with cord levels of precursor n-6 PUFAs, child genotypes were
mostly associated with products of n-6 desaturation, including AA, and both maternal and child
genotypes were associated with DHA status. Evidence largely indicates that child genotype for
several SNPs including rs174575, rs1535, rs174561, rs3834458, rs102275, and rs174448
influences cord n-6 PUFA concentrations (122-124). In another study conducted in the United
States, FADS2 rs174575 genotyping was performed on a subset of mothers and their 16-month-
old toddlers. Results showed that the effect of maternal genotype on declarative memory task
performance was above and beyond the child’s own genotype (125). While these studies
collectively indicate the importance of maternal genotype in predicting offspring phenotype, the

relative contribution of maternal and offspring genotype in determining cord LC-PUFA
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concentrations and later outcomes, particularly in non-European populations, merits further

examination.

2.5 Summary and Overall Significance

Despite extensive knowledge that cardiometabolic risk factors emerge early in the life
course and typically cluster, defining cardiometabolic risk in pediatric populations remains a key
challenge. Evidence for the long-term effects of prenatal DHA supplementation on offspring CMH
remains inconsistent. Results from RCTs are limited primarily by large between-study population
heterogeneity and variable timing of study follow-ups. Additionally, most studies have failed to
incorporate FADS genotype when assessing outcomes, and those that do were typically conducted
in European populations. Given the ethnic variation in FADS genotype distributions and PUFA
dietary intake, studies in distinct settings (i.e., limited migration, similar dietary quality), are
needed to improve understanding of gene-nutrient interactions. Finally, the respective
contributions of maternal and offspring FADS genetic profiles towards CMH are poorly
understood. Supplementation is not a one-size-fits-all approach; there is a need to identify which
individuals will benefit most from nutrition intervention strategies. This dissertation seeks to

address these research gaps in Chapters 4-6.
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Chapter 3 : Expanded Methods

This chapter provides details on the data source and statistical methods used for all analyses
included in this dissertation. Detail is provided on the study setting and participants, trial and
follow-up study design, and data collection methods. Additionally, this chapter includes an
extended discussion of statistical methods used that were beyond the scope of inclusion in a journal

publication.

3.1 Study setting and participants

This dissertation uses data that have been collected through the Prenatal Omega-3 Fatty
Acid Supplementation and Child Growth and Development (POSGRAD) study, a randomized,
double-blind, placebo-controlled trial that was originally designed to assess the effect of prenatal
DHA supplementation on offspring growth and development. This study is a collaboration
between Emory University and the Instituto Nacional de Salud Publica (INSP), located in
Cuernavaca, Mexico. Cuernavaca is in the state of Morelos, located in central Mexico
approximately 50 miles south of Mexico City. Study participants were recruited at the Mexican
Institute of Social Security (Instituto Mexicano del Seguro Social, IMSS) General Hospital I, a
large hospital, and three small healthcare clinics within the IMSS healthcare system. IMSS
provides employed persons access to medical care; the rural poor and self-employed do not have
access, and the wealthy generally choose private medical care (1). At the time of study enrollment
in 2005, IMSS provided healthcare to approximately 50% of the Mexican population. Women who
receive medical care from IMSS are predominantly medium-to-low socioeconomic class and either
they or their husbands, or both, are employed. Generally, the IMSS patient pays one-third of

healthcare costs, and the employer and federal government cover the remaining cost.
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3.2 Trial design

3.2.1 Recruitment and eligibility criteria

Between February 2005 to February 2007, pregnant women were approached by study
personnel during routine prenatal visits and were screened for eligibility if they were interested in
participating in the study. Women were considered for inclusion in the study if they were in
gestation weeks 18-22, were 18-35 years old, planned to deliver at the IMSS hospital,
predominantly breastfeed for at least 3 months, and continue living in the area for > 2 years
following delivery. Women were excluded if any of the following criteria were present: high-risk
pregnancy (history and prevalence of pregnancy complications, including abruptio placentae,
preeclampsia, pregnancy-induced hypertension, any serious bleeding episode in the current
pregnancy, and/or physician referral); lipid metabolism or absorption disorders; regular intake of
fish oil or DHA supplements; or chronic use of certain medications (e.g., medications for epilepsy).
3.2.2 Enrollment and randomization

Once eligibility was confirmed by the study physician, participants were contacted at home
and were provided with a thorough explanation of the study protocol. Written informed consent
was obtained from each participant, and dietary intake and socioeconomic status were assessed
using previously tested questionnaires (2). Women who agreed to participate were scheduled for
a hospital visit, during which they were assigned to receive either treatment or placebo and
received the first week’s supply of supplements. Block randomization was used to randomize study
participants into groups of equal sample size using a block size of eight. All study participants and
members of the study team were blinded to treatment allocations throughout the intervention

period of the study. Data were unblinded for the analytical study team after the last baby was born



56

and reached 6 mo. of age. The participants and fieldworkers remain blinded to the intervention, as
the study is still ongoing for follow-up.

The study was conducted according to the guidelines of the Declaration of Helsinki. The
Emory University Institutional Review Board and the INSP Biosafety and Ethics Committee
approved all procedures involving human subjects, including study protocols and informed
consent documents. An external Data and Safety Monitoring Committee reviewed study data
periodically. This is a registered clinical trial (registered at INSP in Mexico: #CI-011, and at
clinicaltrials.gov: NCT00646360).

3.2.3 Intervention

Of 1,762 eligible women, a total of 1,094 pregnant women were randomized, and 1,040
began treatment; 54 women who had agreed to participate and were randomized withdrew from
the study prior to beginning treatment. An additional 67 women withdrew from the study after
beginning treatment due to various reasons including lack of family support, moving away from
the area, and side effects of the supplement. The intervention consisted of either two capsules
containing either 200 mg algal DHA per capsule (treatment) or a corn/soy oil blend (placebo) daily
from mid-pregnancy through delivery. The fatty acid composition of the DHA supplement and
placebo (produced by Martek BioSciences) are shown below (Table 3-1). Following the
enrollment visit, the supplements were distributed by trained fieldworkers during weekly visits to
the participant’s home or workplace. Participants received 14 capsules at a time, and capsules
remaining from the prior visit were counted. Compliance was expressed as a percentage of total
number of capsules expected to be consumed. Data were analyzed according to the intent-to-treat

principle, meaning that all randomized participants were included in analyses, regardless of the
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treatment they actually received, protocol deviations, noncompliance, or withdrawal from the

study (3).

Table 3-1. Fatty acid profile of DHA and placebo capsules administered twice
daily to mothers enrolled in POSGRAD trial.

Fatty acid profile (weight percent) DHA! Placebo?
Caproic acid (6:0) <0.1 1.46
Caprylic acid (8:0) 1.48 0.57
Capric acid (10:0) 1.82 0.89
Undecylic acid (11:0) 0.28 <0.1
Lauric acid (12:0) 5.07 0.18
Myristic acid (14:0) 15.20 <0.1
Myristoleic acid (14:1) 0.13 <0.1
Palmitic acid (16:0) 12.82 10.42
Palmitoleic acid (16:1) 1.68 <0.1
Stearic acid (18:0) 0.62 3.07
Oleic acid (18:1n-9) 15.63 25.27
Vaccenic acid (18:1n-7) <0.1 1.15
Linoleic acid (18:2n-6) 0.83 50.59
Alpha-linolenic acid (18:3n-3) <0.1 3.44
Gamma-linolenic acid (18:3n-6) None 0.19
Arachidic acid (20:0) 0.11 0.39
Heneicosylic acid (21:0) None 0.44
Eicosenoic acid (20:1n-9) <0.1 0.39
Eicosapentaenoic acid (20:5n-3) <0.1 <0.1
Behenic acid (22:0) 0.17 0.24
Docosapentaenoic acid (22:5n-3) 0.22 <0.1
Docosahexaenoic acid (22:6n-3) 42.44 <0.1
Lignoceric acid (24:0) <0.1 0.15
Others 1.50 1.16

'NEUROMINS® capsules (500 mg) contained DHASCO® with flavoring. Each
capsule contained 196.2 mg docosahexaenoic acid; analysis provided by Martek
Biosciences Corporation and rounded to the nearest 0.1%.

ZPlacebo capsules (500 mg) contained corn/soy oil with orange

flavoring.

3.3 Follow-up study at age 11 years

The cross-sectional follow up study at age 11 years occurred from 2016-2018 as a
collaboration between INSP, IMSS General Hospital, Salvador Zubiran National Institute of
Medical Sciences and Nutrition, and Emory University. The main objective of this study was to

examine the relationship between feeding and growth patterns during the first 7 years of life and
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measures of adiposity, body composition, and cardiometabolic health of the children at age 11
years. All mothers of children in the birth cohort were invited to attend a clinic visit with their
child and participate in the study. During the visit, mothers provided written informed consent and
children provided written assent.

Of the 961 children contacted at age 11 years, 566 children completed a follow-up visit
(58% of birth cohort). Reasons for loss to follow-up included: declined to participate (n = 47),
missed visit (n = 12), or could not be located (n = 336). Cardiometabolic indicators were collected
in a sub-sample of the first 500 individuals enrolled, of whom 485 provided a venous blood sample.
Plasma and red blood cells were separated and stored in the laboratory of the Research Center for
Infectious Diseases at INSP at -70°C until analysis at the Salvador Zubiran National Institute of
Medical Sciences and Nutrition. All questionnaires were administered by trained personnel to the
mother in the presence of the child, with additional information provided by the child. Data
collection methods for adiposity, cardiometabolic indicators, diet, and covariates (e.g., household
socioeconomic status, infant feeding practices, sedentary time) are described in detail in the

methods sections of Chapters 4-6.

3.4 Statistical Methods

The main data analysis procedures performed for the three original research studies
included in this dissertation are described in Chapters 4 to 6. The analytical strategy and statistical
methods used in this dissertation, including evaluation of selection bias, handling of missing data,
principal component analysis, processing of genetic data, haplotype estimation, and adjustment for

energy intake are described in greater detail in this chapter.

3.4.1 Evaluation of selection bias



59

RCTs are considered the gold standard for assessing the effects of an intervention; their
design also offers a valuable opportunity to assess effects of the intervention long after the
intervention period has concluded. Block randomization helps ensure the balance of known and
unknown confounders between the comparison groups in clinical trials. The randomized design of
the POSGRAD study, along with extensive follow up of the children since birth, allows us the
opportunity to study the influence of the intervention on long-term outcomes.

The conceptual framework of potential covariates and effect modifiers that may influence
the relationship of prenatal DHA supplementation and offspring CMH is shown in Figure 3-1.
Several factors early in the life course may influence offspring CMH measures, including maternal
age, BMI, and breastmilk composition and offspring sex, birth weight, and infant feeding practices.
Time-varying characteristics over the life course include household SES, physical activity, and
dietary intake. Childhood and adolescence are a period of substantial change during which
different lifestyle behaviors develop; these lifestyle factors may be a consequence of the exposure
or modify the effect of the intervention but are not otherwise confounders.

We accounted for differences in fixed and time-varying characteristics over the follow-up
period by confirming that these characteristics were balanced by treatment group in the analytic
samples for each aim. For each analysis, we also determined the influence of selection bias by
checking whether any imbalances in maternal characteristics at study enrollment and offspring
characteristics at birth between children with data at 11 y and those lost to follow up altered effect
estimates by including them in statistical models using a stepwise approach. These methods are

outlined in greater detail for each research aim in Chapters 4-6.



60

Timepoint [ PREGNANCY | INFANCY | CHILDHOOD I ADOLESCENCE
1 ]
First 1000 days: critical period of growth and development

Maternal BMI Oepring grov g _77_*_**'4 Age at maturation

Offspring diet*
Household SES*

Offspring sex

Physical activity*
Offspring fatty acid
status (n-6/n-3
ratio)*

R

Infant feeding
practi

4  Gestational age

4 Birth weight

Breast milk
composition
DHA Cardiometabolic
pp tation health (CMH) at 11 y
Exposure and outcome variables
Effect Modifiers
Covariates of interest Maternal FADS » Offspring FADS
Confounder genotype genotype
== On causal path
*

Varies over time

Figure 3-1. Conceptual framework of covariates and effect modifiers influencing the association
of prenatal DHA supplementation with offspring CMH at 11 y.
Abbreviations: BMI, body mass index; DHA, docosahexaenoic acid; FADS, fatty acid
desaturase; SES, socioeconomic status.
3.4.2 Imputation of missing data

Missing data are a common occurrence in research, especially within studies with long-
term follow up. Missing data can be categorized as: 1) missing completely at random, meaning
that there are no systematic differences between missing and observed data; 2) missing at random,
meaning that there might be systematic differences between missing and observed data, but they
can be explained by other observed data; and 3) missing not at random, meaning that missingness
is dependent on unobserved values (4). Common approaches to address missing data include
complete case analysis (removing any subjects with missing data) and single value imputation

(e.g., mean-value imputation, last observation carried forward, and random imputation); however,
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these approaches are suboptimal. Restricting samples to complete cases can lead to exclusions of
a considerable proportion of the original sample, resulting in a substantial loss of precision and
power, while single value imputation can lead to biased results and artificial precision.

Statistical methods to address missing data include maximum likelihood estimation,
Bayesian estimation, and multiple imputation, all of which can be used assuming that data are
missing completely at random or missing at random (5). Of these approaches, multiple imputation
is relatively straightforward to apply using standard statistical software. Multiple imputation better
handles missing data by allowing for uncertainty regarding missing values by creating several
different plausible imputed data sets and combining the results (6). The process of multiple
imputation involves two stages: 1) generating imputed values for missing data using information
from other variables and repeating the procedure multiple times, resulting in many data sets with
slightly varied imputed values; and 2) analyzing the many imputed data sets and combining the
results (4). Statistical analyses are run separately on each imputed data set, and the parameter
estimates from all the imputed data sets are combined into a single estimate. Multiple imputation
by fully conditional specification specifies the multivariate imputation model on a variable-by-
variable basis (5). This allows a flexible approach for addressing missing data, especially in
complex data sets with both continuous and categorical variables. For the analyses included in this
dissertation, complete case analysis was applied for cardiometabolic indicators (primary outcomes
of interest) and multiple imputation techniques were applied for covariates (e.g., dietary intake,
sedentary time, sexual maturation, and breastfeeding type and duration). The R ‘mice’ package
was used to generate 20 imputed datasets using fully conditional specification with 50 iterations
(7). For each analysis, we conducted general linear models for each of the 20 models and pooled

the estimates.
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3.4.3 Principal component analysis
Principal component analysis (PCA) is an unsupervised learning method used to simplify

the complexity in high-dimensional data while preserving patterns in the data. This is
accomplished by transforming the input variables into a new set of uncorrelated variables called
principal components (PCs). Each PC (Ci, Ca, ... Cp) is a linear combination of the input variables
(X1, X2, ..., Xp) that explains the largest possible variance in the data (Figure 3-2). The coefficients
ail, a, ..., aip are the loadings of the first PC. These coefficients represent the correlation of the
input variables with the PC and are chosen to: 1) maximize the variance of Ci; 2) ensure that the
value of any two PCs are uncorrelated; and 3) ensure that, for any PC, the sum of squares of the
coefficients equals 1 (i.e., aii> + ai> + ... + aip>= 1). The second PC (C>) is a linear combination of
input variables that is uncorrelated with the first PC but accounts for the next highest possible
variance, and so on.

Cy = a1 X1 + aX; + - apX,

Cy = ay1 X1 + azX, + - azp Xy

Cp = ap1 Xy + apy Xy + - appXy
Figure 3-2. Equations to calculate principal components.
Principal components (Ci, C, ... Cp) are linear combinations of the input variables X, Xo, ...,
Xp, weighted by coefficients a1, a2, ..., aip.

Once the PCs and loadings are obtained, the PC scores for each observation (i.e.,

individual) can be calculated. The PC1 score for the first individual is calculated by plugging in
the observed values for an individual into the first PC linear combination. The process is then

repeated to obtain PC scores for the second PC for each individual, and so on.
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For the analyses included in this dissertation, PCA was used to derive continuous MetS
and CMH scores using the “FactoMineR” R package (8). We examined the distributions of input
variables and log-transformed variables with skewed distributions. To ensure that each variable
contributed equally to the analysis, we standardized the range of continuous variables by
subtracting the mean and dividing by the standard deviation for each value of each variable. We
used the inverse of cardiometabolic risk factors that are inversely associated with cardiometabolic
health (e.g., HDL, adiponectin, fat free mass index) as input for PCA, so a higher loading score
would have a similar interpretation to other measures in the model. Next, we examined the
correlation matrix to identify correlations between variables in the dataset. We then computed the
eigenvectors and eigenvalues of the covariance matrix. Eigenvectors are the direction of data that
explain a maximal amount of variance, and eigenvalues are the coefficients associated with the
eigenvectors, which measure the amount of variance explained by each PC. Eigenvectors are
ranked by their eigenvalues in descending order. The top PCs were identified visually using scree
plots and quantitatively using the Kaiser criterion (eigenvalue > 1) (Figure 3-3). Eigenvalues >1

indicate that PCs account for more variance than one of the input variables.

Scree plot

PC1
Triglycerides,
. HDL, BMI

Percentage of explained variances

Dimensions

Eigenvalue 1.76 1.05 0.92 0.69 0.57

Figure 3-3. PCA scree plot.
Abbreviations: PC, principal component; HDL, High Density Lipoprotein; BMI, Body Mass

Index.
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Two PCs were selected based on the Kaiser criterion, and MetS scores were calculated for
each individual as the sum of the top two PC scores, weighted by variance explained. The score
can be interpreted as a z-score, with higher scores representing increased cardiometabolic risk.

MetS Score = [% variance explained by PC 1(PC1)] + [% variance explained by PC 2(PC2)]

We used PCA to calculate a separate MetS score for each specific aim given differences in
sample size for each aim. Because there are established sex differences in cardiometabolic risk
factors, we derived sex-specific MetS scores by calculating MetS scores in males and females
separately. We then performed a sensitivity analysis to compare sex-specific and overall MetS
scores and found that their correlation was 0.98, so we elected to use the overall MetS score in all
subsequent analyses.

While PCA is a powerful dimensionality reduction tool, some limitations should also be
considered. PCA may miss nonlinear data patterns, nonorthogonal patterns may not be well
characterized, and the goal is to maximize variance and not necessarily identify clusters (9).
Furthermore, loading coefficients of individual cardiometabolic factors from PCA are only
applicable to the population from which they are derived. An alternate approach to PCA for
creating continuous MetS score is using composite risk scores, which are calculated as the sum or
mean of age-, sex-, and race/ethnicity-standardized z-scores for each risk component (10, 11).
However, the utility of these scores may be limited by assumptions that each component
contributes equally to cardiometabolic risk.

3.4.4 Processing of genetic data

An important consideration in genetic association analyses is proper use of quality control

procedures to avoid bias and false signals. PLINK version 1.9 was used to perform quality control

to filter out samples and SNPs with minor allele frequency (MAF<0.1), SNP call rate < 95%, and
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sample call rate < 90%. For this analysis, genetic data were subset to chromosome 11 (where the

FADSI, FADS?2, and FADS3 genes are located) and mapped to the human genome reference build

GRCh37/hgl9 for strand, id names, positions, alleles, and reference/alternative alleles assignment

(12). The data were subset to available SNPs in the FADS gene region (rs174545 to rs1000778),

resulting in 31 FADS variants for 626 children. Pairwise linkage disequilibrium (LD) among the

31 SNPs were calculated as both D’ and 1 using Haploview software, version 4.2 (13). D'

represents the difference between observed and expected frequencies of a given haplotype, while

12 represents the correlation between a pair of loci. If two loci are independent (i.e., in linkage

equilibrium), the D’ value will be 0. Ultimately, 5 SNPs that captured all 31 SNPs at > > 0.3

(rs174578, 1s2727271, rs174602, rs174605, rs174450) were selected via Tagger (Figure 3-4).

1) Initial QCIData Filtering (PLINK 1.9)

Build 37 (GRCh37)

654,027 variants
(entire genome)
648 people

. Subset to Chromosome 11 ', .

v

31,741 variants (chr 11)
648 people

16 people removed (--mind 0.1)
551 variants removed (-geno 0.05)
20333 variants removed (--maf 0.1)

QC Filtering ‘

Y

\

10,857 variants (chr 11)
632 people

2) Compare data to HRC Reference Panel

» Compare genetic data against HRC for
strand, id names, positions, alleles, ref/alt

4) Assess LD patterns and select tag
SNPs (Haploview 4.2)

5 FADS variants

assignment

3) Subset to FADS SNPs

8,278 variants (chr 11)
632 people

selected by
Haploview Tagger
626 individuals

QC Filtering

2 people removed (-mind 0.1)
4 people removed (twins)

3 variants removed (--maf 0.1)

’ 5SNPs in 5 tests captured 31 of 31
(100% of alleles at r2 >=0.3)

v
‘ 8,275 variants

(chr 11)
626 people

Subset to FADS SNPs
4‘ ~from rs174545 ~to rs1000778
] A .
31 FADS variants
626 people

1s174578
1s2727271
rs174450
rs174605
J rs174602

Figure 3-4. Summary of genetic data processing.

Abbreviations: QC, Quality Control; HRC, Haplotype Reference Consortium; FADS, Fatty Acid

Desaturase; chr,
Disequilibrium

3.4.5 Haplotype estimation

chromosome;

SNP, Single Nucleotide

Polymorphism; LD, Linkage
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When there is substantial linkage disequilibrium in a region, multiple SNPs within the
region may be associated with the disease phenotype; however, testing each SNP would introduce
multiple testing problems. Haplotypes are a combination of alleles on the same chromosome that
are inherited together as a unit (14). Examining associations between haplotypes and disease
phenotypes can provide additional power for mapping disease genes and understanding
dependencies between genetic markers beyond any single SNP analysis. When subjects are
unrelated, haplotypes can be directly observed when there is no more than one heterozygous site;
however, if there are k heterozygous sites, the number of pairs of possible haplotypes is 2! (15).
Thus, multilocus haplotypes often cannot be directly determined from genotype data in humans,
and statistical approaches are needed. We used the R “haplo.stats” package version 1.8.7

(https://cran.r-project.org/web/packages/haplo.stats/index.html) to estimate haplotype

frequencies. This package uses an expectation maximization (EM) algorithm to calculate
maximum likelihood estimates of probabilities of haplotype pairs for each participant (15).
Haplotypes with frequency <5% were grouped as rare haplotypes. We used the “haplo.glm”
function to assess the association of offspring 4 DS haplotype with offspring MetS score (adjusted
for sex), using the most common haplotype as the referent. The function tests the difference
between someone with 2 copies of the reference group haplotype and someone with 1 copy of the
other haplotypes. For example, having a single TTCGT is associated with 0.60 increase in MetS
Score compared to someone with 2 copies of the base haplotype ATCGG (reference).
3.4.6 Energy adjustment for dietary intake

One of the biggest challenges in nutritional epidemiology research is separating the effects
of an individual dietary component from the overall diet. Typically, those who consume more of

a nutrient will also consume more food in general and have a greater overall energy intake. Those


https://cran.r-project.org/web/packages/haplo.stats/index.html
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who consume more food tend to be different in other important ways, including body size and
composition (16). Ultimately, total energy intake is the best proxy for determinants of dietary
intake and body composition. Four models are typically used to adjust for energy intake in
nutritional epidemiology research: (1) the ‘standard model’ of energy adjustment, which adjusts
for total energy intake as an additional variable in the model; (2) the ‘energy partition model’,
which adjusts for remaining energy intake (i.e., total caloric intake excluding the nutrient of
interest); (3) the ‘nutrient density model’, which rescales the nutrient as a proportion of total
energy; and (4) the residual model, which indirectly adjusts for total energy by calculating a
residual (16). For the analyses included in this dissertation, we examined several approaches for
energy adjustment, including the standard model, residual model, and adjusting for omega-3 and
omega-6 intake alone. There were no significant differences in effect estimates using these

approaches; therefore, we elected to use the standard model of energy adjustment for all analyses.
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4.1 Abstract

Objective

To examine clustering of cardiometabolic markers in Mexican children at age 11 years and
compare a metabolic syndrome (MetS) score to an exploratory cardiometabolic health (CMH)
score.

Methods

We used data from children enrolled in the POSGRAD birth cohort with cardiometabolic data
available (n =413). We used principal component analysis (PCA) to derive a Metabolic Syndrome
(MetS) score and an exploratory cardiometabolic health (CMH) score, which additionally included
adipokines, lipids, inflammatory markers, and adiposity. We assessed reliability of individual
cardiometabolic risk as defined by MetS and CMH by calculating % agreement and Cohen’s kappa
statistic.

Results

At least one cardiometabolic risk factor was present in 42 % of study participants; the most
common risk factors were low High-Density Lipoprotein (HDL) cholesterol (31.9 %) and elevated
triglycerides (18.2 9%). Measures of adiposity and lipids explained the most variation in
cardiometabolic measures for both MetS and CMH scores. Two-thirds of individuals were
categorized in the same risk category by both MetS and CMH scores (k = 0.42).

Conclusions

MetS and CMH scores capture a similar amount of variation. Additional follow-up studies
comparing predictive abilities of MetS and CMH scores may enable improved identification of

children at risk for cardiometabolic disease.
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4.2 Introduction

Cardiometabolic diseases, which include cardiovascular disease, stroke, and type II
diabetes mellitus, are among the leading causes of death globally (1). Risk factors including
hypertension, insulin resistance, obesity, and abnormal lipid levels are emerging earlier in the life
course and track from childhood to adulthood (2, 3). Childhood obesity is a consistent predictor of
adulthood obesity and cardiometabolic disease (4, 5). However, not all individuals with the same
degree of obesity exhibit equivalent risk of disease.

Early and comprehensive characterization of cardiometabolic risk offers an important
opportunity to identify high-risk individuals, tailor clinical management strategies, and prevent
disease development. Metabolic syndrome (MetS), a cluster of conditions that predicts future risk
of cardiometabolic disease, is typically diagnosed in adult populations by the presence of at least
three or more of the following risk factors: central adiposity, hyperglycemia, hypertriglyceridemia,
hypertension, and low HDL, although definitions vary slightly (6). In pediatric populations,
different MetS definitions have been proposed; however, the clinical utility of diagnostic criteria
remains controversial, as using dichotomous thresholds to diagnose MetS likely only captures
severe outliers and may inadequately characterize early risk trajectories by ignoring the continuous
nature of risk (7, 8). The American Academy of Pediatrics now recommends that pediatricians
identify children with clustering of multiple risk components rather than focusing on specific cut-
off levels for individual risk factors or a particular MetS definition (9). This has led to use of
composite risk scores, which are typically calculated as the sum or mean of age-, sex-, and
race/ethnicity-standardized z-scores for each risk component (10, 11). However, the utility of these
scores is likely limited by assumptions that each component contributes equally to cardiometabolic

risk as well as heterogeneity across studies with respect to the included components.
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More recently, studies in pediatric populations have applied principal component analysis
(PCA), a dimensionality reduction technique used to minimize the number of variables that explain
correlations across observed measures, to derive a continuous MetS score (12-14). PCA-derived
MetS scores during childhood and early adolescence have been associated with increased risk of
cardiometabolic disease in adulthood; one study recently reported that a 1 SD increase in a
continuous MetS score during adolescence was associated with 30% increased risk of type Il
diabetes and 20% increased risk of high carotid intima-media thickness in adulthood (15).

Current MetS scores do not account for all factors that may play an important role in the
early pathogenesis of type II diabetes mellitus and CVD, such as insulin resistance and
inflammation. Excess visceral adipose tissue secretes large amounts of adipokines, including
cytokines and hormones, promoting a state of systemic low-grade inflammation, which contributes
to oxidative stress and subsequent endothelial and pancreatic beta-cell damage.(10, 16) High levels
of high-sensitivity c-reactive protein (hs-CRP) and low levels of adiponectin, in particular, have
previously been associated with systemic inflammation and insulin resistance, respectively;
evidence suggests that leptin, adiponectin, and hs-CRP may be used as predictors of
cardiometabolic risk in pediatric populations (17). Utilizing additional biomarkers to characterize
overall cardiometabolic risk may enable earlier and improved detection of cardiometabolic disease
development among pediatric populations.

Finally, it is important to consider ethnic and genetic variation in the etiology of
cardiometabolic disease. Some studies suggest that ethnic and genetic differences emerge early in
the life course, with populations of Hispanic origin at increased risk (18, 19). In Mexico, 33% of

school-age children are overweight or obese, with the highest prevalence among children aged 10-
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11 years (20). Therefore, detailed characterization of cardiometabolic risk in Mexican populations
at this age may better inform overall disease prevention strategies.

The objectives of this study are to describe the clustering of cardiometabolic markers in a
Mexican population at age 11 years and compare use of a MetS score to an exploratory CMH
score, which additionally includes markers of insulin resistance and inflammation, to assess

cardiometabolic profiles.

4.3 Methods
4.3.1 Study design and participants

We conducted a secondary analysis of data from children born to women who participated
in the Prenatal Omega-3 fatty acid Supplementation and Child Growth and Development
(POSGRAD) trial in Cuernavaca, Mexico. A detailed description of the trial design and protocol
has been published previously (21). Briefly, from 2005-2007, women were randomized at 18-22
weeks gestation to receive a daily dose of 400 mg of algal DHA or placebo during pregnancy;
children have been followed prospectively since birth. Of 961 children contacted at age 11 years,
566 (58%) completed a follow-up visit. Due to budgetary limitations, CMH indicators were
collected in a sub-sample of the first 500 individuals enrolled, of whom 485 provided a venous
blood sample. The analytic sample includes children with complete data on cardiometabolic
factors at age 11 (n =413) (Supplementary Figure 4-1).

The study was conducted according to the guidelines of the Declaration of Helsinki. The
Emory University Institutional Review Board and the Mexican National Public Health Institute
(INSP) ethics committee approved all procedures involving human subjects.

4.3.2 Anthropometry and Body Composition
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Body weight (kg) and height (cm) were collected from offspring in duplicate by trained
personnel using standardized procedures.(22) Children were weighed wearing light clothing with
a portable electronic pediatric scale (Tanita model 1582) with a precision of 100 g, which was
calibrated daily with a known reference weight. Height was measured using a stadiometer with a
precision of 0.1 cm. Abdominal circumference was measured with a fiberglass tape with a
precision of 0.1 cm. Average values of all measurements were calculated. The nutritional status of
children was classified according to age- and sex-specific cut-offs from the International Obesity
Task Force (IOTF) (23) and World Health Organization (WHO) reference standards; BMI-for-age
z-scores were calculated according to the 2007 WHO Growth Reference Standards using the
‘zscorer’ R package (24). Blood pressure (mmHg) was measured using a digital device (OMRON
model HEM-711ACINT) when the child was at rest (>5 minutes after the child arrived at the study
visit). In each arm, 4 measurements were made with 2-minute intervals; the average of the last
three readings was taken.

Body volume was measured by air displacement plethysmography (ADP) using BODPOD
® instrumentation (Bod Pod Express, COSMED USA Inc., Concord, CA, USA), which has been
shown to be highly correlated with measures derived from 4-component (4-C) models of body
composition in Mexican children and adolescents (25). Measurements were taken while the
children remained sitting and breathing normally; fat mass (kg) was calculated using the Siri
equation, and fat-free mass (kg) was calculated by subtracting fat-mass from body weight (26-28).
Fat mass index and fat-free mass index were calculated (kg/m?). The BODPOD was calibrated
before each measurement according to the manufacturer's recommendations.

4.3.3 Determination of Cardiometabolic Markers
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Serum was obtained after a 12-hour fasting period, divided into aliquots, frozen in liquid
nitrogen and stored at —80°C until further analysis at the National Institute of Medical Sciences
and Nutrition Salvador Zubirén in Mexico City, Mexico.

Cholesterol, triglyceride, and glucose concentrations (mg/dL) were assessed using the
Beckman Coulter SYNCHRON CX 5 Delta automated kit. Insulin concentrations (uM/mL) were
assessed using the ELISA kit (EZHI-14K/EZHI-14BK). Homeostasis model assessment (HOMA-
IR) was calculated as an estimate of insulin resistance: HOMA-IR = insulin (uU/ml) x glucose
(mg/dL)/405 (29). Data collection methods to determine high sensitivity C reactive protein (hs-
CRP), IL-6, leptin, and adiponectin concentrations have been previously published (30). The
adiponectin/leptin ratio was calculated in terms of ng/mL. Cardiometabolic risk factor thresholds
were defined as follows: triglycerides > 150 mg/dL, HDL < 40 mg/dL, Systolic Blood Pressure
(SBP) > 90th percentile for sex and height, and fasting glucose > 100 mg/dL (31, 32).
Metabolically Healthy Normal Weight (MHNW) was defined as BMI-for-age <1 SD above WHO
Growth Reference Median with 0 cardiometabolic risk factors, Metabolically Unhealthy Normal
Weight (MUNW) was defined as above but with 1 or more cardiometabolic risk factors,
Metabolically Healthy Overweight/obesity (MHO) was defined as BMI-for-age > 1 SD above the
WHO Growth Reference median (85" percentile) with 0 cardiometabolic risk factors, and
Metabolically Unhealthy Overweight/obesity (MUQO) was defined as above with 1 or more
cardiometabolic risk factors (33).

4.3.4 Covariates

Data on infant feeding practices were obtained by maternal interview at 3 mo of age and

used to categorize breastfeeding (BF) status at 3 mo of age as exclusive BF (EBF), predominantly

BF (PreBF), partial BF (PaBF), and non-BF (NBF) according to the WHO classification (34, 35).
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Dietary intake at 11 years was assessed via multiple-pass 24-hour dietary recall adapted for
Mexican populations (36). Trained personnel administered the diet recall tool to the child’s
primary caregiver (in presence of the child). Nutrient and energy estimations were obtained using
the 2012 and 2016 Mexican Food Databases, which are maintained by INSP (37). Sedentary time
was estimated using data that were collected through the administration of a self-reported physical
activity and inactivity questionnaire that was developed for and validated among children ages 10-
14 in Mexico (38). Sexual maturation was assessed by proxy using testosterone levels for males
and attainment of menarche for females that was ascertained by a self-reported questionnaire.
4.3.5 Statistical Analysis

Normality of data was assessed using histograms and quantile-quantile plots. Means and
standard deviations or medians and interquartile ranges (IQR) of variables were calculated and
presented by sex and body size phenotype, as appropriate. Differences between groups were
assessed using t-tests, ANOVA, and Wilcoxon rank-sum tests as appropriate; pairwise
comparisons were assessed using Tukey-Kramer tests.
4.3.6 MetS Score

We used PCA to calculate a MetS score using systolic blood pressure, HDL, triglycerides,
BMI-z, and glucose. We used BMI-z instead of waist circumference because it has more reliability
and has been used in other similar studies, which allows for better comparison across studies (12,
15). We log-transformed triglycerides and glucose and used the inverse of HDL when
standardizing, so a higher factor loading score would have a similar interpretation to other
measures in the model. The top principal components (PCs) were identified visually using scree
plots and quantitatively using the Kaiser criterion (eigenvalues > 1) (39). MetS was calculated as

the sum of the top two PCs, weighted by variance explained. The score can be interpreted as a z-
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score, with higher scores representing increased cardiometabolic risk. PCA was performed using
the ‘FactoMineR’ R package (40).
4.3.7 Exploratory CMH Score

We also used PCA to create an exploratory cardiometabolic health (CMH) score using 13
measures of cardiometabolic health: SBP, DBP, adiponectin, leptin, insulin, glucose, IL-6, CRP,
Low Density Lipoprotein (LDL) cholesterol, HDL cholesterol, triglycerides, fat mass index, and
fat-free mass index. The inverses of HDL, adiponectin, and fat-free mass index were used to ensure
that loadings would have similar interpretations to other variables. Analyses were performed using
the ‘FactoMineR’ and ‘missMDA’ R packages (40, 41). We estimated the number of dimensions
by K-fold cross validation and imputed missing values in the dataset with a PCA model
bootstrapped 1000 times. Only factors with <5% missing data were used as input for MIPCA
(missingness of cardiometabolic factors ranged from 0-4.8% (IL-6)). We performed a sensitivity
analysis of imputed values, in which we assessed the difference in CMH scores as computed from
the complete dataset and from the imputed dataset. Nearly 95% of individuals were classified
similarly using the imputed and complete case scores; thus, we retained the scores derived from
the imputed values to increase available sample size.
4.3.8 Reliability of MetS and CMH Scores

We used quintiles of MetS and CMH score distributions to categorize individuals in Q1 as
‘low’ risk, Q2-Q4 as ‘moderate’ risk, and Q5 as ‘high’ risk and compared risk categorizations of
individuals using both scores by calculating % agreement and Cohen’s kappa statistic (42). We
used ANOVA to compare adjusted mean MetS and CMH scores by body size phenotype using the
R ‘emmeans’ package and adjusted estimates for maternal (prenatal treatment group, SES, age,

and BMI at trial enrollment) and offspring (sex and age at examination) factors.
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4.3.9 Association of Continuous MetS Score with CMH Markers

We used multivariable generalized linear models to assess associations between the
continuous MetS score and markers of insulin resistance, inflammation, and energy homeostasis.
Given their skewed distributions, variables were log-transformed prior to analysis. Models were
adjusted for prenatal treatment group, maternal BMI at 18-22 weeks gestation, household
socioeconomic status close to the time of birth, child sex, birth weight, breastfeeding type and
duration, age at examination, diet (energy intake and total omega-3 fatty acid intake), and
sedentary time at age 11 years. Models were stratified by sex and additionally adjusted for sexual
maturation (defined in girls as attainment of menarche and in boys by testosterone concentrations).
We tested for interaction by including sex as an interaction term in the models. We used multiple
imputation to account for missing covariates (diet, sedentary time, sexual maturation, and
breastfeeding type and duration). The R ‘mice’ package was used to generate 20 imputed datasets
using fully conditional specification with 50 iterations (43). We conducted GLMs for each of the
20 models and pooled the estimates. All statistical analyses were performed using R version 4.0.4
(R Foundation for Statistical Computing, Vienna, Austria). Statistical significance was held at p <

0.05.

4.4 Results

Sample characteristics for the study population are shown in Table 4-1. Briefly, the mean
age at follow up was 11.1 years (SD=0.18), and 47% of the sample were female. The sample was
balanced by prenatal treatment group for the original trial design. Nearly 9% of children were born
preterm and 5% were born with low birth weight. At 3 months of age, 82% of children were
consuming breastmilk as part of their diets, but only 14% were exclusively breastfed. Only 34

females (17.6%) had attained menarche by the time of examination at 11 years. Compared to
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children missing cardiometabolic data, children included in the study tended to have mothers who
were older, less likely to be primiparous, breastfeed for longer durations, and have higher
household SES at study enrollment (Supplementary Table 4-1).
4.4.1 Clustering Patterns of Cardiometabolic Factors

When using International Diabetes Federation (IDF) criteria, 31.9% of participants had low
HDL, 18.2% had elevated triglycerides, 3.6% had elevated glucose, and no children had high blood
pressure. Prevalence and clustering of cardiometabolic factors, stratified by weight category, are
shown in Table 4-2. Nearly 45% and 35% of children had overweight or obesity, according to
WHO criteria and IOTF criteria, respectively. Over 40% of the population had at least one
cardiometabolic risk factor besides overweight/obesity. Among children with normal weight, 30%
had at least one cardiometabolic risk factor. The most common cardiometabolic risk factors were
low HDL, followed by high triglycerides and high fasting glucose. High triglycerides and low
HDL tended to cluster together most frequently among individuals with >2 cardiometabolic risk
factors. Nearly all cardiometabolic factors, aside from adiponectin and blood pressure, differed by
body size phenotype (Table 4-3). Relative to individuals with MHNW, MUNW, and MHO,
individuals with MUO had higher fasting glucose, insulin, HOMA-IR, triglycerides, fat mass
index, fat-free mass index, inflammatory markers (IL-6, hs-CRP), and leptin concentrations, along
with lower HDL (all p <0.01). Cardiometabolic factors stratified by sex are shown in
Supplementary Table 4-2. Most cardiometabolic factors did not differ across male and female
children, although fasting glucose was lower, and triglycerides and sum of skinfolds were
significantly higher among females compared to males.

4.4.2  Derivation of MetS Score
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Contributions of MetS components to the PCA-derived MetS score are shown in Figure
4-1a. The top two principal components (PCs) collectively explained 56.2% of the variance in the
measured data. Triglycerides, BMI-z, and HDL contributed to the first PC (35.2% variance
explained), while SBP and fasting glucose contributed to the second PC (21.0% variance
explained). Given the observed sex differences in triglycerides and fasting glucose, we performed
a sensitivity analysis comparing sex-specific and overall MetS scores; their correlation was 0.98
(Supplementary Figure 4-2); so we use the overall score in subsequent analyses. To improve
comparability between studies, we also assessed correlation between MetS scores derived using
PCA and a sum of z-scores (r = 0.99).

4.4.3 Associations of MetS Score with Markers of Inflammation and Insulin Resistance

The associations between the continuous MetS score and additional cardiometabolic
markers are shown in Table 4-4. HOMA-IR (B (95% CI) = 0.79 (0.59 - 0.99)) and hs-CRP (0.75
(0.52-0.98)) were significantly positively associated with continuous MetS scores among both
sexes (p<0.05), although interaction by sex was only significant for hs-CRP. Positive associations
with leptin and inverse associations with the adiponectin/leptin ratio were observed among males
only, while no association was observed for adiponectin or I1-6 for either sex.

4.4.4 Derivation of Exploratory CMH Score

Correlations among all variables included in the exploratory CMH score are shown in
Supplementary Figure 4-3. After applying the Kaiser criterion, five PCs were retained and
collectively explained 62.1% of variance in the measured data. Contributions of each
cardiometabolic factor to the PCA-derived CMH score are shown in Figure 4-1b and are
summarized as follows: fat mass index, hs-CRP, triglycerides, and HDL contributed to the first

PC (18.6%), SBP and DBP contributed to the second PC (13.7%), insulin, leptin, and IL-6
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contributed to the third PC (12.6%), LDL and fat-free mass index contributed to the fourth PC
(9.4%), and adiponectin and glucose contributed to the fifth PC (7.8%). The correlation between
overall and sex-specific CMH scores was 0.83 (Supplementary Figure 4-4).
4.4.5 Comparison of MetS and CMH Scores

There was a positive correlation between the MetS and CMH scores (r =0.75, p <0.0001).
Approximately 43% of individuals were categorized in the same quintile by both scores (k= 0.29),
while more than 67% of individuals were categorized in the same risk category (Q1: low, Q2 —
Q4: medium, Q5: high) by both MetS and CMH scores (k = 0.42). Mean MetS and CMH scores,
stratified by body size phenotype, are shown in Figure 4-1c. Children with MUNW, MHO, and
MUO had higher MetS scores (B =0.29, 95% CI: 0.27-0.33) and CMH scores ( =0.17, 95% CI:
0.14-0.20) relative to the MHNW group, although differences in the CMH score were less
pronounced. MetS and CMH scores were significantly higher in the MUO group relative to the
MHO group, but only MetS scores were significantly higher in the MUNW group relative to the
MHNW group. While there were significant differences in CMH scores between MUNW and

MHO groups (A = 0.25 (95% CI: 0.09, 0.39)), no significant differences were observed in MetS

scores between MUNW and MHO groups (A = 0.07 (-0.08, 0.22))

4.5 Discussion

In this study, we describe the clustering of cardiometabolic health markers among pre-
adolescent Mexican children and examine use of a MetS score and exploratory CMH score to
assess cardiometabolic profiles. We found that, across both the MetS and CMH scores, adiposity
and lipids explained most of the variance in cardiometabolic measures among the study population.
The MetS score captured similar variation in cardiometabolic measures as the CMH score, with

nearly 70% of the study population categorized in the same risk category using both scores.
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Children with overweight/obesity had worse MetS and CMH scores relative to children with
normal weight. Furthermore, a linear trend was observed by body size phenotype; children with
MUO, MHO, and MUNW had worse MetS and CMH scores relative to children with MHNW.
Among children with normal weight, having at least one cardiometabolic factor placed individuals
at nearly equivalent MetS risk as individuals with MHO. These findings suggest that even minor
perturbations in cardiometabolic profiles (i.e., developing overweight/obesity or one
cardiometabolic risk factor) place individuals on a poor trajectory that may ultimately contribute
to higher risk of future disease.

Derivation of the CMH score via PCA showed that fat mass index, hs-CRP, triglycerides,
and HDL had the highest contributions to variance observed across cardiometabolic measures.
Although no individuals in this sample had high blood pressure, measures of blood pressure (MetS
score: SBP only, CMH score: SBP and DBP) contributed substantially (> 75%) to the second PC
for both MetS and CMH scores. Insulin, leptin, and IL-6 tended to cluster together in the third PC,
and fat-free mass index, adiponectin, LDL, and glucose tended to cluster together across the fourth
and fifth PCs. Of interest, across both MetS and CMH scores, fasting glucose concentrations did
not account for substantial variance in cardiometabolic measures; the study population was likely
managing glucose well at the time of examination, as less than 5% of the study population had
high glucose levels.

While PCA has predominantly been used to derive MetS scores in most previous studies
(12), one study recently used PCA to examine the variance components of 13 cardiometabolic
factors among pre-adolescent children in New Zealand (14). Findings showed that 4 factors (blood
pressure, adiposity, lipids, and vascular, respectively) explained 60% of the variance in the

measured variables. Although clustering of factors was similar between our study and this study,
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blood pressure explained a majority of variance as compared to adiposity and lipids in our study.
Like our study, children with overweight or obesity had worse cardiometabolic risk scores relative
to children with normal weight. A key difference is the populations studied; most study participants
identified as New Zealand European whereas our study was conducted among children of Hispanic
origin. Multiple studies conducted in the United States indicate that ethnic differences in the
prevalence of cardiometabolic risk factors exist early in life (18, 19). Previous studies have shown
that low HDL and high triglycerides are the most commonly observed cardiometabolic risk factors
present among Mexican populations (44-46); our results align with these findings, as HDL and
triglycerides loaded onto the first PC for both MetS and CMH scores. Further examination of
ethnic and genetic differences may have implications for targeted prevention and treatment of
cardiometabolic disease.

Another recent study in Denmark evaluated the association between inflammatory markers
and a clustered z-score of CVD risk, which included TC/HDL-c¢, TGs, HOMA-IR, SBP, sum of 4
skinfold thickness (S4SF), and inverse of VOapeak; they reported that CVD risk was associated with
alterations in adiponectin, TNFa, hs-CRP, and IL-6 (10). Although components included in the
composite scores varied, our multivariable regression models showed that hs-CRP, a marker of
systemic inflammation, and HOMA-IR, a marker of insulin resistance, were significantly
positively associated with MetS scores. Of interest, positive associations with leptin and inverse
associations with the adiponectin/leptin ratio were observed among males only, which may be
attributable to sex differences in pubertal development trajectories. Leptin, a hormone secreted
from white adipose tissue, plays a key role in regulation of feeding behavior, metabolic rate, and
energy balance and is positively correlated with obesity, but some studies suggest that leptin may

also signal the initiation of puberty (47, 48). Among females, leptin concentrations typically
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increase throughout puberty, while among males, levels increase prior to the onset of puberty and
subsequently decrease as puberty progresses (47). Alterations in circulating leptin may partially
explain the associations between obesity, onset of puberty, and future cardiometabolic risk, but
additional research is warranted (49).

Several limitations should be considered when interpreting our findings. We used
secondary data from a previously conducted RCT. Thus, sample sizes were limited to individuals
who were not lost to follow-up over the 11-year period; selection bias may influence our findings.
Compared with individuals lost to follow-up, participants in our study sample tended to have
mothers who were older, less likely to be primiparous, breastfeed for longer durations, and have
higher household SES at study enrollment. To account for this, we adjusted for these factors in all
multivariable regression models. Additionally, while PCA is a powerful dimensionality-reduction
tool, loading coefficients of individual cardiometabolic factors from PCA are only applicable to
the population from which they are derived. Furthermore, results cannot be easily compared across
studies because a variety of input measures (e.g., sum of skinfolds, TC: HDL, mean blood pressure)
have been used (50). Finally, although we adjusted models for total sedentary time (including
screen time), we did not have access to a gold-standard measure of physical activity. Overall,
generalizability of results may be limited; this work should be replicated with consistent sets of
cardiometabolic measures in large, nationally representative datasets in Mexico, as well as
populations with diverse racial and ethnic backgrounds.

It is important to note that this study utilizes a cross-sectional sample of children at age 11
years. This age represents a dynamic time of growth development, either immediately prior to or
during the onset of puberty, which is characterized by complex physical, hormonal, and emotional

changes including weight gain and increases in insulin resistance (33). In our study, pubertal status
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was assessed by documenting attainment of menarche and testosterone concentrations among
males in a subset of the population, as opposed to more robust methods such as assessing Tanner
stages (51). Although the children are well-characterized early in the life course, due to the cross-
sectional study design, it is not possible to assess the risk of adult cardiometabolic disease or
determine the sequence of risk factor development over time. While multiple studies have shown
that PCA-derived MetS scores are associated with increased risks of CVD and type II diabetes in
adulthood, longitudinal studies with a comprehensive set of cardiometabolic factors measured
consistently across the life course are needed to establish the temporality of risk factor
development and disease progression.

Several strengths of this study should be acknowledged: most notably, the availability of
multiple measures of cardiometabolic health measured simultaneously, including traditional MetS
risk factors, adiposity, adipokines, and measures of inflammation and insulin resistance. We used
data from a large, well-characterized study with information on both mother and child. Children
have been followed since birth with a rich set of data characterizing their health and lifestyle across
the life course. Data collection and laboratory assays were standardized, validated, and conducted
by trained personnel within a clinical setting. Additionally, the age period of 11 years old offers a
stable time for lipid assessment in children prior to the onset of puberty for most of the study
population.

As more widely available resources enable less expensive testing of blood samples, it is
becoming increasingly feasible to collect more comprehensive data to better characterize CMH
risk and prevent future disease. Therefore, it is important to understand if, given additional cost
considerations, there is added value in collecting more biomarkers to better characterize

cardiometabolic health during this life stage, and additionally, whether there is added value in



87

collecting these data in low-resource environments. Our findings suggest that MetS scores capture
a similar amount of variation compared to CMH scores that incorporate additional biological
measures. Here, the more complex CMH score captured little additional variance relative to the
MetS score (62% variance explained by the top 5 PCs vs. 56% variance explained by the top 2
PCs, respectively). Across both scores, adiposity seems to account for most of the variation in
cardiometabolic health at this age. Particularly within resource-limited settings, it may be
sufficient to identify individuals with at least one cardiometabolic risk factor (obesity or other
MetS components) for more intensive disease prevention strategies.

In summary, our findings provide new insights into the clustering patterns of
cardiometabolic factors during a period of growth and development that currently lacks extensive
characterization but offers an important opportunity to intervene prior to the development of
cardiometabolic disease. A remaining question is whether CMH scores offer useful predictions of
adult cardiometabolic risk. Additional follow-up studies comparing predictive abilities of MetS
and CMH scores in diverse populations may enable early identification of children and adolescents

at risk for cardiometabolic disease.
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4.7 Tables and Figures

Table 4-1. Maternal and offspring characteristics (n = 413).

Maternal factors at enrollment into POSGRAD

Age, years 26.8 (4.81)
BMI, kg/m? 26.3 (4.36)
Height, cm 155 (5.61)
Primiparous (n, %) 135 (32.7)
SES Score 0.12 (0.97)
Schooling, y 12.2 (3.45)
Offspring factors
Female (n, %) 194 (47.0)
Early life characteristics
Birth weight, g 3221 (466)
Gestational age at birth, weeks 39.1 (1.78)
Breastfeeding status, 3 mo (n, %)
EBF 51(13.6)
PreBF 49 (13.1)
PaBF 207 (55.3)
NBF 67 (17.9)
Duration of BF, mo 9.41 (7.66)
At age 11 years
Cardiometabolic factors
BMI z-score 0.7 (1.3)
HDL, mg/dL 45.8 (9.9)
Triglycerides, mg/dL 108.3 (57.6)
SBP, mmHg 102.1 (8.1)
Glucose, mg/dL 88.3 (8.5)
MetS Score 0.0 (0.5)
CMH Score 0.0 (0.4)
Lifestyle factors
Sedentary time per day, min 287 (134)
Total fat intake, g 74.8 (34.1)
Total energy intake, kcal 1996 (674)
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Values presented are mean (SD) unless otherwise stated.

BMI, body mass index; SES, socioeconomic status score; EBF, Exclusive Breastfeeding;
PreBF, Predominantly Breastfeeding; PaBF, Partially Breastfeeding; NBF, No
Breastfeeding; HDL, High Density Lipoprotein Cholesterol; SBP, Systolic Blood
Pressure; MetS, Metabolic Syndrome; CMH, Cardiometabolic Health



Table 4-2. Prevalence and clustering of cardiometabolic risk factors among

POSGRAD children at 11 years of age.

Normal weight
n=231

Overweight/obese

n=182

Overall
n=413

Individual risk factors

Low HDL 53 (22.9%) 79 (43.4%) 132 (31.9%)
High Triglycerides 18 (7.8%) 57 (31.3%) 75 (18.2%)
High Glucose 7 (3.0%) 8 (4.4%) 15 (3.6%)
High BP 0 (0%) 0 (0%) 0 (0%)
Clustering of CM factors

0 CM factors 162 (70.1%) 77 (42.3%) 239 (57.9%)
1 CM factor 60 (26.0%) 68 (37.4%) 128 (31.0%)
2 CM factors 9 (3.9%) 35 (19.2%) 44 (10.7%)
3 CM factors 0 (0%) 2 (1.1%) 2 (0.5%)

Values presented are n (%).

CM, Cardiometabolic; HDL, High Density Lipoprotein Cholesterol; BP, Blood Pressure.

Overweight/obesity was defined as BMI-for-age > 1 SD above the WHO Growth Reference
median (85™ percentile) and cardiometabolic risk factors were defined as follows: low HDL (<40
mg/dL), high triglycerides (=150 mg/dL), high glucose (=100 mg/dL), and high BP (SBP >90™"

percentile for sex and height).
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Table 4-3. Cardiometabolic factors stratified by body size phenotype (n = 413).

98

Cardiometabolic factor

MHNW
N=162

MUNW
N=69

MHO
N=77

MUO
N=105

Glucose Homeostasis

Insulin (uM/mL)
Glucose (mg/dL)
HOMA-IR

Lipids

Non-HDL (mg/dL)
HDL (mg/dL)
Triglycerides (mg/dL)
LDL (mg/dL)
Inflammation

IL-6 (pg/mL)

hs-CRP (mg/L)
Adipokines
Adiponectin (ng/mL)*
Leptin (ng/mL)
Adiponectin:Leptin Ratio
Blood Pressure

SBP (mmHg)*

DBP (mmHg)*
Adiposity

BMI (kg/m?)

FMI (kg/m?)

FFMI (kg/m?)

Sum of skinfolds (mm)
Abdominal Circumference
(cm)

4.13 (2.58, 15.5)
87.0 (82.2,91.0)
0.89 (0.55, 3.40)

108 (94.0, 125)
50.0 (46.0, 57.0)
76.5 (54.5, 95.0)
94.5 (80.0, 107)

0.41 (0.22, 0.87)
0.38 (0.22, 0.82)

13.9 (11.7, 17.4)
5.74 (272, 10.5)
2.42(1.15, 5.42)

102 (96.2, 108)
61.5 (56.8, 65.0)

17.0 (15.5, 18.1)
4.15 (3.26, 5.29)
12.4(11.7, 13.4)
35.0 (28.5, 43.5)

66.1 (62.3, 69.5)

7.10 (3.36, 14.9)
88.0 (84.0, 92.0)
1.51 (0.73, 3.48)

107 (91.0, 120)
38.0 (35.0, 40.0)

105 (83.0, 150)
84.5 (68.5, 98.0)

0.50 (0.24, 0.90)
0.54 (0.25, 0.98)
14.6 (12.4, 17.8)

5.67 (2.61,11.4)
2.74(1.35, 5.48)

101 (95.8, 105)
60.4 (58.0, 63.2)

17.4 (15.9, 18.5)
424 (3.42,5.22)
12.6 (11.9, 13.5)
36.8 (29.0, 43.5)

66.0 (63.2, 70.2)

11.6 (3.87, 21.9)
88.0 (84.0,91.0)
2.55(0.78, 4.81)

117 (101, 131)
47.0 (44.0, 53.0)
93.0 (70.0, 120)
99.0 (87.0, 116)

0.61 (0.22, 1.37)
1.54 (0.66, 3.16)

14.6 (11.7, 18.8)
6.71 (2.65, 14.7)
2.31 (1.19, 4.90)

102 (98.2, 105)
61.2 (58.2, 65.8)

21.7 (20.7, 23.8)
8.03 (7.02, 10.1)
14.0 (13.1, 14.9)
68.0 (59.2, 81.5)

78.9 (76.9, 83.6)

15.7 (4.80, 34.2)
90.0 (86.0, 95.0)
3.74 (1.10, 7.66)

125 (106, 144)
38.0 (34.0, 40.0)

153 (105, 197)
93.0 (77.2, 109)

0.68 (0.30, 1.60)
1.75 (0.51, 3.51)
14.6 (11.5, 18.2)

10.0 (4.02, 16.2)
1.71 (0.77, 3.42)

103 (97.6, 108)
62.3 (58.5, 65.6)

23.1 (20.9, 25.5)
8.89 (7.21, 10.8)
14.3 (13.3, 15.4)
75.0 (62.8, 89.5)

83.7 (78.2, 88.8)

Values presented for cardiometabolic factors are median (IQR). Differences in cardiometabolic factors were assessed using
Wilcoxon rank-sum tests and corrected for pairwise comparisons.
HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; Non-HDL, Non-High-Density Lipoprotein (Non-HDL =
TC — HDL); HDL, High Density Lipoprotein; LDL, Low Density Lipoprotein; IL-6, Interleukin 6; hs-CRP, high sensitivity
C-reactive protein; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; BMI, Body Mass Index; FMI, Fat Mass
Index; FFMI, Fat-free Mass Index; MetS, Metabolic Syndrome; MHNW, Metabolically Healthy Normal Weight; MUNW,
Metabolically Unhealthy Normal Weight; MHO, Metabolically Healthy Overweight/Obesity; MUO, Metabolically Unhealthy

Overweight/Obesity.

2 Cardiometabolic factors did not significantly differ by body size phenotype (p > 0.05).
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Figure 4-1. Contribution of cardiometabolic factors to PCA-derived continuous MetS score and
CMH score and differences by body size phenotype.

Principal components analysis (PCA) was used to calculate the a) MetS score using five
components used to diagnose MetS in pediatric populations and b) exploratory CMH score using
13 cardiometabolic factors. Top PCs were identified visually using scree plots and quantitatively
using eigenvalues > 1. Both scores were calculated as the sum of the top components, weighted
by variance explained. The x axes represent the top PCs used to create the MetS score and
percentage of variance in the data explained by each PC via PCA. The diameter of each bubble
represents the magnitude of contributions (%) of individual MetS components to each PC.
Cardiometabolic factors with the highest contributions represent the most important variables
within each PC. The highest contributing components in the first PC contribute most to the derived
scores. C) adjusted mean differences (95% CI) in MetS and CMH scores, stratified by body size
phenotype.

Abbreviations: CMH, Cardiometabolic Health; MetS, Metabolic Syndrome; MHNW,
Metabolically Healthy Normal Weight; MUNW, Metabolically Unhealthy Normal Weight; MHO,
Metabolically Healthy Overweight/Obesity; MUO, Metabolically Unhealthy Overweight/Obesity;
PC, Principal Component
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Table 4-4. Association of MetS score with markers of inflammation and insulin resistance.

Overall Males Females

N =413 N=219 N=1%
Biomarker (log-transformed) B (95% CI) B (95% CI) B (95% CI)
Leptin* 0.19 (-0.02,0.41)  0.39 (0.08, 0.69) 0.03 (-0.29, 0.35)
Adiponectin -0.003 (-0.08, -0.04 (-0.01, 0.07)  0.04 (-0.09, 0.17)

0.08)
Adiponectin/Leptin ratio* -0.18 (-0.41, 0.04)  -0.41 (-0.73,-0.08)  0.006 (-0.33, 0.34)
IL-6 0.14 (-0.09,0.37)  0.22 (-0.08, 0.53) 0.08 (-0.29, 0.44)
Hs-CRP * 0.75 (0.52, 0.98) 0.93 (0.62, 1.24) 0.56 (0.20, 0.92)
HOMA-IR 0.79 (0.59, 0.99) 0.60 (0.34, 0.86) 0.99 (0.68, 1.30)

Values represent B (95% CI) from generalized linear models testing the association between the PCA-derived
MetS score and biomarkers of inflammation and insulin resistance. Biomarkers with skewed distributions were
log-transformed prior to analysis. Models were adjusted for prenatal treatment group, maternal age, BMI at 18-
22 weeks gestation, household socioeconomic status close to the time of birth, child sex, birth weight, type of
breastfeeding at age 3 months and total duration, age at measurement, diet (energy intake and total omega-3
fatty acid intake), and sedentary time at age 11 years. Models were stratified by sex and additionally adjusted
for sexual maturation (defined in girls as attainment of menarche and in boys by testosterone concentrations).
We used multiple imputation to account for missing covariates (diet, screen time, sexual maturation, and
breastfeeding type and duration).

Interaction by sex was tested by including an interaction term in the overall model. The asterisk denotes
significant interaction by sex (p < 0.05).

IL-6, Interleukin 6; hs-CRP, high-sensitivity C-reactive protein; HOMA-IR, Homeostatic Model Assessment
for Insulin Resistance; MetS, Metabolic Syndrome.



4.8 Supplementary Tables and Figures

Randomized at 18-22 weeks
Parent Study gestation
(n=1,094 women)

Y

] Live births
Cohort at birth (n=973) Loss to follow up (n = 408)
« Declined to participate (n = 47)
_| +Missed visit (n = 12)
7| «Could not be located (n = 336)
Children :l:lilh blood No blood sample collected (n = 103)
Follow up at 11 collected at age 11
years (n = 485)
Missing data on at least one
»| component of Metabolic Syndrome
v (n=72)

Children with complete
MetS data at age 11
(n=413)

Supplementary Figure 4-1. Flow of study sample selection.
Abbreviations: MetS, Metabolic Syndrome
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Supplementary Table 4-1. Comparison of maternal factors at POSGRAD study enrollment and
offspring characteristics at birth in analytic and missing samples.

Analytic sample Missing sample p-value
N=413 N=560
Maternal factors at enrollment into POSGRAD
Age, years 26.8 (4.81) 25.9 (4.60) 0.003
BMI, kg/m? 26.3 (4.36) 25.9 (4.13) 0.136
Height, cm 155 (5.61) 155 (5.78) 0.934
Primiparous (n, %) 135 (32.7%) 235 (42.0%) 0.004
SES Score 0.12 (0.97) -0.03 (1.01) 0.02
Schooling, y 12.2 (3.45) 11.8 (3.59) 0.153
Received prenatal DHA intervention 212 (51.3%) 275 (49.1%) 0.535
Offspring factors
Female (n, %) 194 (47.0%) 270 (48.2%) 0.537
Birth weight, g 3221 (466) 3193 (457) 0.353
Gestational age at birth, weeks 39.1 (1.78) 39.1 (1.79) 0.901
Breastfeeding status, 3 mo (n, %) 0.439
EBF 51(13.6) 53(11.4)
PreBF 49 (13.1) 50 (10.8)
PaBF 207 (55.3) 280 (60.5)
NBF 67 (17.9) 80 (17.3)
Duration of BF, mo 9.41 (7.66) 8.05 (7.67) 0.007

Values presented are mean (SD) unless otherwise stated.
BMI, body mass index; SES, socioeconomic status score; DHA, Docosahexaenoic Acid; EBF, Exclusive Breastfeeding;
PreBF, Predominantly Breastfeeding; PaBF, Partially Breastfeeding; NBF, No Breastfeeding
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Supplementary Table 4-2. Cardiometabolic factors stratified by sex.

Cardiometabolic factor

Overall
N=413

Males
N=219

Females
N=194

Glucose Homeostasis
Insulin (uM/mL)
Glucose (mg/dL)*
HOMA-IR

Lipids

Non-HDL (mg/dL)
HDL (mg/dL)
Triglycerides (mg/dL)*
LDL (mg/dL)
Inflammation

IL-6 (pg/mL)

Hs-CRP (mg/L)
Adipokines
Adiponectin (ng/mL)
Leptin (ng/mL)
Adiponectin:Leptin Ratio
Blood Pressure

SBP (mmHg)

DBP (mmHg)
Adiposity

BMI (kg/m?)

FMI (kg/m?)

FFMI (kg/m?)

Sum of skinfolds (mm)*

Abdominal Circumference (cm)

8.25 (3.06, 21.6)
88.0 (84.0, 92.0)
1.83 (0.65, 4.79)

113 (97.0, 132)
45.0 (39.0, 52.0)
94.0 (69.0, 131)
93.0 (78.0, 107)

0.51 (0.24, 1.10)
0.72 (0.32, 2.13)

14.4 (11.8, 17.9)
6.64 (2.76, 13.0)
2.27 (1.08, 5.08)

102 (96.6, 107)
61.6 (57.6, 65.0)

18.9 (16.8, 22.0)
5.89 (3.99, 8.12)
13.2 (12.2, 14.5)
49.2 (34.0, 70.0)
72.5 (65.0, 80.5)

7.25 (3.05, 20.4)
89.0 (85.5, 94.0)
1.59 (0.67, 4.53)

112 (96.0, 131)
45.0 (39.0, 52.0)
88.0 (64.0, 123)
93.5 (78.8, 109)

0.55 (0.25, 1.09)
0.78 (0.33, 2.35)

14.3 (11.7, 17.5)
6.59 (2.92, 14.7)
2.25(1.02, 5.19)

102 (96.5, 106)
61.6 (57.8, 64.6)

18.9 (16.7,22.2)
5.72 (3.79, 8.57)
13.2 (12.2, 14.3)
43.5 (31.8, 67.9)
71.9 (64.8, 81.3)

11.3 (3.12, 24.3)
87.0 (83.0, 91.0)
2.44(0.62, 5.12)

113 (99.0, 133)
45.0 (39.0, 51.0)
100 (76.0, 141)
93.0 (78.0, 104)

0.50 (0.24, 1.12)
0.62 (0.28, 1.67)

14.6 (12.1, 18.2)
6.86 (2.62, 12.1)
2.32(1.13, 4.85)

103 (96.8, 108)
61.6 (57.6, 65.6)

19.1 (17.1, 21.6)
5.97 (4.12,7.70)
13.2 (12.0, 14.7)
52.5(36.9, 71.5)
72.9 (66.0, 79.0)

Cardiometabolic Risk
MetS Score -0.04 (-0.33,0.36) -0.04 (-0.34, 0.38) -0.04 (-0.33, 0.36)
CMH Score -0.05 (-0.27,0.26) -0.06 (-0.33, 0.23) -0.04 (-0.25, 0.30)

Values presented are median (IQR).

BMI, body mass index; SES, socioeconomic status score; DHA, Docosahexaenoic Acid; EBF, Exclusive Breastfeeding;
PreBF, Predominantly Breastfeeding; PaBF, Partially Breastfeeding; NBF, No Breastfeeding; HDL, High Density
Lipoprotein Cholesterol; SBP, Systolic Blood Pressure; MetS, Metabolic Syndrome; CMH, Cardiometabolic Health
*Significantly differs by sex (p < 0.05)



a Sex
MetS Component

Fasting Glucose

Triglycerides

HDL

SBP

BMI z-score

Eigenvalue

% variance explained

Males
PC1 PC2
9.17 17.85
30.75 54
27.33 8.24
4.05 68.43
28.71 0.08
1.76 1.01
35.2 20.2

Females
PC1 PC2
7.23 17.7
33.75 2.08
28.04 7.98
3.83 67.5
27.15 4.74
1.88 1.05
376 21.0

Contributions of variables to each PC (%)

Sex-specific MetS score

R=0.98,p<22e-16

eQ
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Overall MelS Score

Supplementary Figure 4-2. Contribution of cardiometabolic factors to PCA-derived sex-
specific continuous MetS score.
Principal components analysis (PCA) was used to calculate the continuous MetS risk score using
five components used to define metabolic syndrome in pediatric populations among a) males and
females. Top principal components (PCs) were identified visually using scree plots and
quantitatively using eigenvalues > 1. Both scores were calculated as the sum of the top
components, weighted by variance explained. The x axes represent the top principal components
(PCs) used to create the MetS score and percentage of variance in the data explained by each PC
via PCA. The diameter and color of each bubble represent the magnitude of contributions (%) of
individual MetS components to each PC. Cardiometabolic factors with the highest contributions
represent the most important variables within each PC. The highest contributing components in
the first PC contribute most to the derived scores. b) Pearson correlation between the overall MetS
score and sex-specific MetS score.



105

-
2
é -
£ % @ =
g = = 3 S
o @
x 28 § g £ <5 3
© S I z2gLeaL S22 8 L g
2 PP EF9 T B3 0023y F 2
hs-CRP . . 008 019 014|022 002 004 002 006 015 0 028
Fat mass index @ .-u.z& 06 019 025 008 041 01 028 015 -0.04 0.16 0.8
Fat-free mass index -0.0@ -ﬂ.zu. 02 01 -019 001 O -008-019 01 014 O 0.6
Triglycerides 04% 036 -02 .ma 084 003 009 0.08 03 | 0 |-0.02 0.01 0.4
LDL 014 019 01 |013 .-D.zi 004 01 -0.01 006 002 001 005
HDL o022 025 -0.19) 0.34 -0.21 .-a.ﬂs -0.03 0.13 0.05 0.04 -0.08 0.1 0.2
SBP 0.02 | 0.08 001 003 0.04 -D.ﬂﬂ-.. 0.03 002 007 002 008 0
DBP o004 041 0 (009 01 -0.03 .. 0 001003 0 -001 | 0.2
Glucose 0.02 0.1 -0.08 008 -0.01 013 003 O . 0.14 008 0.05 -0.09
Insulin 006 028 -0.49 0.31 -0.06 0.05 0.02 0.01 0.14 .-0.22 -0.06 -0.21 .
Leptin 015 045 04| © 009 004 007 0.03 0.06 -ﬂ.zz.mc:s 0,31 -06
Adiponectin 0 |-004 D44 002 -0.01 -0.09 -002 O 005 -0.06 -{].Dﬁ.-{]_12 -0.8
IL-6 028 048 O 001 0.05| 04 0.06 -0.01 -0.09 -0.21 0.31 4)12.

Supplementary Figure 4-3. Spearman correlations between cardiometabolic factors included in
CMH score.

hs-CRP, high-sensitivity C-reactive protein; LDL, Low Density Lipoprotein Cholesterol;
HDL, High Density Lipoprotein Cholesterol; SBP, Systolic Blood Pressure; DBP, Diastolic
Blood Pressure; IL-6, Interleukin-6.
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Supplementary Figure 4-4. Contribution of cardiometabolic factors to PCA-derived sex-
specific continuous CMH score.

Principal components analysis (PCA) was used to calculate the CMH score among a) males and
females. Top principal components (PCs) were identified visually using scree plots and
quantitatively using eigenvalues > 1. The CMH score was calculated as the sum of the top
components, weighted by variance explained. The x axes represent the top principal components
(PCs) used to create the CMH score and percentage of variance in the data explained by each PC
via PCA. The diameter and color of each bubble represent the magnitude of contributions (%) of
individual cardiometabolic components to each PC. Cardiometabolic factors with the highest
contributions represent the most important variables within each PC. The highest contributing
components in the first PC contribute most to the derived scores. b) Pearson correlation between
the overall CMH score and sex-specific CMH score.
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5.1 Abstract

Background: There is limited evidence regarding long-term effects of prenatal docosahexaenoic
acid (DHA) supplementation on offspring cardiometabolic health (CMH). Inconsistent results
may be attributable to variants of fatty acid desaturase (F4DS) genes.

Objective: We evaluated the effect of prenatal DHA supplementation on offspring CMH and
investigated effect modification by maternal FADS?2 single nucleotide polymorphism (SNP)
rs174602.

Methods: We used follow-up data from a double-blind randomized controlled trial in Mexico in
which pregnant females received 400 mg/d of algal DHA or placebo from mid-gestation until
delivery. The study sample included 314 offspring who had data at age 11 years and maternal
FADS genetic data (DHA: n = 160; Placebo: n = 154). We derived a Metabolic Syndrome
(MetS) score from body mass index, HDL, triglycerides, systolic blood pressure, and fasting
glucose. Generalized linear models were used to evaluate the effect of the intervention on
offspring MetS score and test interactions between treatment group and genotype, adjusting for
maternal, offspring, and household factors.

Results: Offspring MetS score did not differ significantly by treatment group. We observed
evidence of effect modification by maternal SNP rs174602 (p = 0.001); offspring of maternal TT
genotype who received DHA had lower MetS score relative to the placebo group (DHA (mean +
standard error of the mean (SEM)): -0.21 £ 0.11, n = 21; Placebo: 0.05 £ 0.11, n=23; A=-0.26
(95% CI: -0.55, 0.04), p = 0.09); among CC maternal genotype carriers, offspring of mothers
who received DHA had higher MetS score (0.18 = 0.06, n = 62) relative to the placebo group(-

0.05 + 0.06, n = 65, A=0.24 (0.06, 0.41), p < 0.01).
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Conclusion: The effect of prenatal DHA supplementation on offspring MetS score differed by
maternal £4DS SNP rs174602. These findings further support the need to incorporate genetic

analysis of F4DS polymorphisms in DHA supplementation trials.
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5.2 Introduction

Nutritional exposures may have long-term implications for offspring metabolic health,
including risk of cardiovascular disease and type II diabetes (1-4). Docosahexaenoic Acid (DHA)
is an n-3 long-chain polyunsaturated fatty acid (LC-PUFA) that typically accumulates during the
second half of pregnancy to support optimal fetal DHA tissue deposition, development, and
immune function (5). Animal models and epidemiological studies suggest that alterations in the
prenatal DHA supply may also influence long-term offspring cardiometabolic risk via altered cell
and organ development, gene expression, and development of neuroendocrine signals (1, 4, 6, 7).
For example, studies in rat and mouse models have shown that prenatal n-3 LC-PUFA
supplementation results in lower adiposity, insulin resistance, and dyslipidemia among offspring
(8-11).

In humans, observational studies report associations of higher maternal n-3 LC-PUFA
status during pregnancy with lower adiposity, dyslipidemia, and leptin concentrations among
offspring in early and mid-childhood (12, 13). Additional evidence suggests that especially among
females with overweight or obesity, mother-offspring dyads may benefit from prenatal DHA
supplementation via improvements in maternal insulin sensitivity, circulating lipids, and placental
inflammation, thus reducing fetal overnutrition and adiposity (14). However, systematic reviews
of results from randomized controlled trials (RCT) report inconsistent effects of prenatal DHA
supplementation on offspring cardiometabolic health (CMH) outcomes (6, 15-18). While these
inconsistencies may be attributable to differences in the dose, type, and timing of supplementation
during pregnancy (19, 20), variants of fatty acid desaturase (FADS) genes that modulate the

conversion of n—3 and n—6 fatty acids into LC-PUFAs may also contribute to this heterogeneity

(5).
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Tissue LC-PUFA concentrations are determined by both dietary intake of n-6 and n-3 LC-
PUFAs and endogenous formation from dietary PUFA precursors, which occurs through a series
of consecutive desaturation and elongation steps. The rate-limiting desaturase steps are mediated
by A-6 and A-5 desaturase enzymes encoded in the FADS gene cluster (FADSI, FADS2, FADS3)
(5). Multiple variants in FADS genes have been associated with lower LC-PUFA concentrations,
indicating reduced conversion of dietary precursors (5, 21). Although a few observational studies
suggest that maternal FADS genotype influences offspring LC-PUFA status and lipid profiles, to
our knowledge, this association has not been investigated in the context of an intervention trial
(22).

To address these research gaps, we leveraged data from a large prenatal DHA
supplementation RCT in Mexico, in which pregnant females received either 400 mg algal DHA
(treatment) or placebo daily from mid-pregnancy through delivery. We previously reported that
maternal FADS2 SNP rs174602 modified the effect of prenatal DHA supplementation on offspring
birth weight (23), metabolome at age 3 months (24), and cognition at age 5 years (25). The
objective of this study is to evaluate the effect of prenatal DHA supplementation on offspring

CMH at age 11 years and assess whether it differed by variations in maternal FADS SNP rs174602.

5.3 Methods
5.3.1 Participants and Study Design

This study included children of pregnant females who participated in the Prenatal Omega-
3 fatty acid Supplementation and Child Growth and Development (POSGRAD) trial in
Cuernavaca, Mexico (NCT00646360). A detailed description of the trial design and protocol has
been published previously (26). Briefly, pregnant females were recruited at 18-22 weeks gestation

at the Mexican Social Security Institute (IMSS) and were eligible for inclusion if they were 18-35
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years old, planned to deliver at the IMSS hospital, breastfeed for at least 3 months, and continue
living in the area for > 2 years following delivery. Exclusion criteria included high-risk
pregnancies, lipid metabolism or absorption disorders, regular intake of fish oil or DHA
supplements, or chronic use of certain medications. Once eligibility was confirmed, participants
were contacted and provided with a thorough explanation of the study protocol, and written
informed consent was obtained. Of 1,762 eligible pregnant females, 1,094 were randomized to
receive 2 capsules containing either 200 mg algal DHA per capsule (treatment) or a corn/soy oil
blend (placebo) daily through delivery; the fatty acid composition of the supplements has been
previously published (24). Block randomization was used to randomize study participants into
groups of equal sample size using a block size of eight. Assignment codes were placed in sealed
envelopes at the beginning of the study and were held in a sealed location by a faculty member at
Emory University who was not involved with the study. Enrollment took place from February
2005 to March 2007, and the last child was born in July 2007. All study participants and members
of the study team were blinded to treatment allocations throughout the intervention period of the
study. Data were unblinded for the analytical study team after the last baby was born and reached
6 mo. of age. The participants and fieldworkers remain blinded to the intervention, as the study is
still ongoing for follow up. Due to budgetary limitations, venous blood samples were collected in
a sub-sample of 485 children who were contacted and agreed to participate in the 11-year follow-
up study from 2016-2018.

The study was conducted according to the guidelines of the Declaration of Helsinki. The
Emory University Institutional Review Board and the Mexican National Public Health Institute

(INSP) ethics committee approved all procedures involving human subjects. Informed consent was
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obtained from all pregnant females at study enrollment. At the 11-year follow up visit, mothers
provided written informed consent and children provided written assent.
5.3.2 Maternal Genotype Data

Fasting venous blood samples were obtained from all pregnant females at recruitment.
Plasma, buffy coat, and red blood cells were separated and stored at INSP laboratories at —80-C
until buffy coats were transported to the Hemholtz Center, Munich, Germany. The genetic analysis
was carried out during 20122013 for those who provided consent to genotyping (n=720), using
methods that have been previously described (23). The resulting data sets containing information
on 15 FADSI, FADS2, and FADS3 SNPs, selected based on biological evidence of an effect on
LC-PUFA metabolism (27-31), were sent to Emory University via encrypted files. Key SNPs were
selected on basis of previous associations with cardiometabolic health in the literature (rs174548,
rs174556, rs174570, rs174575, rs174576, rs174579, rs174602) (27, 28, 30, 31). Maternal FADS?2
SNP rs174602 was selected as the focus of this study based on previous evidence of effect
modification on offspring birth weight, metabolome at 3 months, and cognition at 5y within the
POSGRAD trial (23-25). Allele frequencies were calculated, and Hardy Weinberg Equilibrium
(HWE) was tested with Fisher’s exact test using the R ‘genetics’ package.
5.3.3 Follow-up study of children at 11 years

At age 11 years, body weight (kg) and height (cm) were collected in triplicate by trained
personnel following standard procedures (32). Children were weighed wearing light clothing with
a portable electronic pediatric scale (Tanita model 1582) with a precision of 100 g, which was
calibrated daily with a known reference weight. Height was measured using a stadiometer with a
precision of 0.1 cm. Average values of all three measurements were calculated. We calculated

BMI-for-age z-scores according to the 2007 World Health Organization (WHO) Growth Reference
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Standards using the ‘zscorer’ R package (33). Blood pressure (mmHg) was measured using a
digital device (OMRON model HEM-711ACINT), which has been validated for use in children
and adolescents. Blood pressure was taken when the child was at rest (> 5 minutes after the child
arrived at the study visit). In each arm, four measurements were made with 2-minute intervals; the
first measurement was discarded and the subsequent three were averaged (34).
5.3.4 Outcome Assessment: Cardiometabolic Markers

Venous blood samples were obtained from children after a 12-hour fasting period (verified
by documenting the approximate time that food was last consumed) and centrifuged. Aliquots of
serum were frozen in liquid nitrogen and stored at —80°C until further analysis at the National
Institute of Medical Sciences and Nutrition Salvador Zubiran in Mexico. HDL cholesterol,
triglyceride, and glucose concentrations were assessed using the Beckman Coulter SYNCHRON
CX 5 Delta automated kit and expressed in mg/dL. Cardiometabolic risk factor thresholds were
defined as follows: triglycerides > 150 mg/dL, HDL < 40 mg/dL, Systolic Blood Pressure (SBP)
> 90" percentile for sex and height, and fasting glucose > 100 mg/dL (35, 36).
5.3.5 Derivation of Continuous MetS Score

To operationalize cardiometabolic health and reduce multiple testing, we used principal
components analysis (PCA) to calculate a continuous MetS score (primary outcome) using systolic
blood pressure, HDL, triglycerides, BMI-z, and glucose (37). We used BMI-z instead of waist
circumference because it has greater reliability and has been used in other similar studies (38, 39).
We log-transformed triglycerides and glucose and used the inverse of HDL when standardizing,
so a higher factor loading score would have a similar interpretation to other measures in the model.
Top principal components (PCs) were identified visually using scree plots and quantitatively using

the Kaiser criterion (eigenvalues > 1). Subsequently, the score was calculated as the sum of the
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top two components, weighted by variance explained. The score can be interpreted as a z-score,
with higher scores representing increased cardiometabolic risk. PCA was performed using the
‘FactoMineR’ R package (40). Given the observed sex differences in cardiometabolic health
measures, we performed a sensitivity analysis comparing sex-specific and overall MetS scores;
their correlation coefficient was 0.97; so we use the overall score in subsequent analyses.
5.3.6 Covariates

Data on maternal, offspring, and household factors were available to further characterize
the study population. Household SES at enrollment was calculated with the use of PCA on a list
of assets collected through interview (26). Maternal BMI at enrollment was assessed based on
weight and height measurements that were obtained using standard procedures. Maternal dietary
intake at study enrollment was also assessed using a 110-item food-frequency questionnaire that
was specifically designed to include important PUFA sources (41). Data on infant feeding
practices at 3 months of age were obtained by maternal interview and used to categorize infant
feeding practices according to the WHO classification (42, 43). Dietary intake of children at 11
years was assessed via multiple-pass 24-hour dietary recall developed for Mexican populations
(44). Trained personnel administered the diet recall tool to the child’s primary caregiver (in
presence of the child). Nutrient and energy estimations were obtained using the 2012 and 2016
Mexican Food Database (BAM in Spanish): Compilation of the Frequently Consumed Foods in
the Country, which are maintained by INSP (45). Sedentary time was estimated using a self-
reported physical activity and inactivity questionnaire that was developed for and validated among
children ages 10-14 years in Mexico (46). Sexual maturation was assessed by proxy using
testosterone concentrations for males and age at attainment of menarche for females via self-

reported questionnaire.
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5.3.7 Statistical Analysis

Normality of data was assessed using histograms and quantile-quantile plots, and residual
plots were used to check model assumptions. We calculated means and standard deviations for
maternal and offspring characteristics at trial enrollment and birth and assessed differences by
treatment group and maternal genotype using t-tests, ANOVA, and Wilcoxon rank-sum tests as
appropriate. We compared these characteristics between those included in the analytic sample and
the rest of the birth cohort, and variables that differed were considered for inclusion in models as
covariates.

We used multivariable generalized linear models to assess the effect of prenatal DHA
supplementation on offspring MetS scores and test interactions between maternal treatment group
and genotype using five different models: 1) unadjusted model; 2) adjusted for household SES
score, maternal age (years), parity (number of live births), BMI (kg/m?), and offspring sex and age
at measurement (days); 3) model 2 additionally adjusted for birth weight (g) and gestational age
at birth (weeks); 4) model 3 additionally adjusted for energy intake (kcal/day) and omega-3 fatty
acid intake (g/day); and 5) model 4 additionally adjusted for monounsaturated fat (MUFA) (g/day)
and saturated fat intake (g/day). We used multiple imputation to account for missing values of
covariates (diet (n = 85, 27.1%), sedentary time (n = 26, 8.3%), sexual maturation (testosterone
concentrations in males: n = 101, 58.4%; attainment of menarche in females: n = 1, 0.7%), and
infant feeding practices (n = 30, 9.6%) and duration (n =2, 0.6%)). We used the R ‘mice’ package
to generate 20 imputed datasets using fully conditional specification with 50 iterations, conducted
GLMs for each of the 20 models, and pooled the estimates (47). Inclusion of covariates specified
in models 3, 4, and 5 did not alter estimates; therefore, we report all findings adjusted for the

covariates specified in model 2. All statistical analyses were performed using R version 4.0.4 (R
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Foundation for Statistical Computing, Vienna, Austria). Statistical significance was held at p <
0.05. We tested six different outcomes (MetS score and five components included in MetS score)

and used the Bonferroni correction to adjust for multiple testing (p < 0.008).

5.4 Results

The analytic sample included all children with complete data on maternal genotype and
cardiometabolic risk factors (BMI-z, HDL, triglycerides, glucose, and SBP) at age 11 years (n =
314) (Figure 5-1). Maternal and offspring characteristics at trial enrollment and birth were
balanced by treatment group and maternal genotype (Table 5-1). Mean maternal age and BMI at
enrollment were 26.2 + 4.7 years and 26.0 + 4.2 kg/m?, respectively. Median maternal dietary
intake of DHA was very low (median (IQR): 56 (40-105) mg/d), combined with a dietary n-6:n-3
ratio of 12:1. Mothers of children in the analytic sample tended to be older, have a higher BMI,
and higher SES score at trial enrollment relative to those lost to follow up or missing data
(Supplementary Table 5-1). Lifestyle factors of children at age 11 years by treatment group and
maternal genotype are presented in Table 5-2; children whose mothers received prenatal DHA
tended to have higher intakes of polyunsaturated fatty acids, including total omega-3 and omega-
6 intake, relative to children whose mothers received placebo (p < 0.05). Maternal and offspring
characteristics at study enrollment and birth, and offspring lifestyle factors at age 11 years were
similar when stratified by both prenatal treatment group and maternal genotype (Supplementary
Table 5-2).
5.4.1 Genotype distribution of maternal SNP rs174602

Within this sample, the minor allele frequency for maternal SNP rs174602 was 0.37; 44
mothers (14%) were homozygous carriers of the minor T allele, 143 (46%) were heterozygous

carriers (TC), and 127 (40%) were homozygous carriers of the major C allele. There were no
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significant differences in genotype distribution by treatment group, and there were no HWE
violations observed (p = 0.72).
5.4.2 Cardiometabolic health of children at age 11 years

At age 11 years, 42% of the children had BMI z-score > 1 SD, and 39% had > 1
cardiometabolic risk factor (HDL < 40 mg/dL, triglycerides > 150 mg/dl, fasting glucose > 100
mg/dL, SBP > 90" percentile). The most frequently observed cardiometabolic risk factor was low
HDL (30%), followed by high triglycerides (16%). Derivation of the MetS score via PCA showed
that the top two PCs collectively explained 56% of the variance in the measured data
(Supplementary Figure 5-1a). Triglycerides, BMI-z, and HDL contributed to the first PC (35.0%
variance explained), while SBP and fasting glucose contributed to the second PC (20.7% variance
explained). The distribution of the MetS score in the study population is shown in Supplementary
Figure 5-1b.
5.4.3 Impact of prenatal DHA supplementation on offspring MetS score

Differences in MetS components and offspring MetS score by prenatal treatment group
and maternal genotype are shown in Table 5-3. Intent to treat analysis showed no differences by
treatment group for the MetS components (all p > 0.05) or MetS score at 11 years (A =0.02, 95%
CI: -0.09, 0.13). We observed evidence of effect modification by maternal SNP rs174602 (p =
0.001) (Figure 5-2). Offspring of homozygous minor T allele carriers who received prenatal DHA
had lower MetS score relative to the placebo group (DHA (mean £ SEM): -0.21 £ 0.11, n=21;
Placebo: 0.05 £ 0.11; A=-0.26 (95% CI: -0.55, 0.04), n =23, p=0.09). Among homozygous major
C allele carriers, offspring of mothers who received prenatal DHA had higher MetS score (0.18 +
0.06, n=62) relative to offspring whose mothers received placebo (-0.05 + 0.06, n = 65, A=0.24

(0.06, 0.41), p < 0.01). Individual cardiometabolic risk factors, stratified by both maternal
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genotype and treatment group, are shown in Supplementary Table 5-3. While we observed
similar trends with individual MetS components, the results were not statistically significant after
adjustment for multiple testing (Figure 5-3). Finally, we evaluated three-way a priori interactions
with maternal BMI at study enrollment and offspring sex but did not find any evidence of further

effect modification (GxBMI interaction p-value = 0.24, Gxsex interaction p-value = 0.28).

5.5 Discussion

In this follow-up study of mother-offspring dyads from Mexico, we found no main effect of
prenatal DHA supplementation on offspring cardiometabolic health at age 11 years, but there were
differences by variants of maternal FADS2 SNP rs174602. Offspring of homozygous minor allele
(TT) carriers who received prenatal DHA had lower MetS scores relative to the placebo group,
while offspring of homozygous major allele (CC) carriers who received DHA had higher MetS
scores relative to offspring whose mothers received placebo. These exploratory findings suggest
that prenatal DHA supplementation may have differential effects on a child’s long-term
cardiometabolic risk based on their mother’s genotype.

The lack of main effects of the intervention are similar to the findings from the few studies that
have evaluated the long-term effect of prenatal n-3 LC-PUFA supplementation on offspring
metabolic health; Rytter et al. found no significant differences by treatment group in blood pressure
or lipids in a Danish population at age 19 years, but the sample sizes were small (n = 180 for blood
pressure outcomes, n = 243 for adiposity-related outcomes) (48, 49). When the analysis was
restricted to mothers with low fish intake, however, children born to mothers who received fish oil
trended towards better lipid profiles. A prenatal DHA RCT that was conducted in the US among
171 mothers and their offspring also did not find evidence of a main intervention effect but

observed statistically significant interaction between prenatal DHA supplementation and child
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weight status for SBP and DBP from 4 to 6 years of age and higher fat free mass at age 5 years
(50). A previous study within the POSGRAD cohort also did not find any differences by treatment
group in non-fasting serum lipid and glucose concentrations at age 4 years (51). Some evidence
suggests that differences in cardiometabolic risk because of metabolic programming may become
more apparent later in childhood, near the onset of puberty. One observational study reported
associations of cord blood LC-PUFA composition with child BMI at 2 and 10 years, but not 6
years, highlighting the importance of age of outcome assessment (19). However, within our study,
results were still null at age 11 years.

Our results provide additional support that the differences in the genetic makeup of individuals
may partially explain null results observed across prenatal DHA supplementation RCTs. Here, we
showed that the effect of the intervention on the offspring MetS score at 11 years differed by
maternal FADS2 SNP rs174602, located at an intron/exon boundary of the FADS2 gene.. FADS?2
encodes for the A-5 desaturase enzyme that regulates the conversion of 20:3n-6 to 20:4n-6
(Arachidonic acid (AA)) and 20:4n-3 to 20:5n-3 (Eicosapentaenoic acid). Pregnancy is a complex
period characterized by necessary metabolic adaptations, including alterations in lipid and glucose
metabolism, to ensure an adequate supply of nutrients including DHA to the mother and growing
fetus (52). During this critical period with heightened nutrient requirements, individuals with
genotypes associated with lower endogenous conversion to DHA may be at greater risk for DHA
deficiency and subsequently benefit more from supplementation with preformed DHA. One RCT
in the United States showed that only among individuals with FADS SNPs associated with lower
conversion of precursors (i.e., had minor alleles for FADS SNPs), prenatal DHA supplementation
increased DHA concentrations and reduced AA:DHA ratios at delivery. These findings suggested

a selective benefit of supplementation among carriers of variants for some FADS SNPs (53). A
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recent birth cohort study in China also reported significant interaction between DHA
supplementation and maternal SNP rs174602 on DHA concentrations in colostrum (54).
Additionally, previous studies in European populations have shown that the CC genotype for SNP
rs174602 is associated with lower A-5 desaturase activity (55).

We have also previously reported from the POSGRAD study that children born to TT carriers
who received prenatal DHA had higher birthweight relative to those who received placebo, while
no differences were observed among CC carriers (23). The fatty acid analysis performed in a subset
of the study population (n = 140) showed that the minor T allele for SNP rs174602 was inversely
associated with maternal plasma DHA concentrations at study enrollment. This suggests that these
individuals were at greater risk of DHA deficiency, especially within the context of a diet high in
n-6 fatty acids (23). To add further context to these differences in findings, it is important to
consider ancestral variations in the distribution of FADS genotypes. Most studies assessing the
role of maternal and offspring F4DS genes in child health have been conducted in European
populations (56, 57). However, Native American and Mexican populations have a greater
proportion of carriers of alleles associated with slower conversion of precursors, along with diets
high in n-6 PUFAs and low in n-3 LC-PUFAs (5, 58). Targeting provision of preformed LC-
PUFAs to these populations may be particularly important. Overall, our findings reinforce the
potential need for targeted interventions and inclusion of genotype information in the design and
interpretation of supplementation trials to optimize benefit-risk ratios, particularly in the clinical
nutrition setting. However, additional research is needed to reproduce these findings, confirm
whether mother-offspring dyads with specific maternal genetic profiles and/or nutritional statuses
benefit more from prenatal DHA supplementation, and determine whether it will ever be feasible

to utilize genetic information in the design of public health interventions.
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Several limitations should be acknowledged when interpreting our findings. First, selection
bias may influence the generalizability of our results. The offspring in our study sample (32% of
the birth cohort) tended to have mothers who were older and had higher BMI and household SES
at study enrollment relative to those lost to follow up, but these values did not differ by prenatal
treatment group or maternal genotype. Given the high loss to follow up, sample sizes were limited,
which may have contributed to the non-significant findings in the TT group. Additionally,
cardiometabolic health can be influenced by many factors over the life course, starting with
prenatal and early life factors (e.g., maternal BMI during pregnancy, birth weight, infant feeding
practices). However, lifestyle factors over childhood, including diet, physical activity, and
maturation may be equally important in determining an individual’s cardiometabolic risk (59).
Although there were no differences in maternal characteristics at baseline and offspring
characteristics at birth by treatment group or genotype, we did observe differences in diet at age
11 years. Total PUFA intake differed by treatment group, and MUFA and saturated fat intake
differed by genotype. However, when interaction between treatment and genotype was considered,
no differences in diet were observed. While these differences may be due to chance, we performed
a sensitivity analysis additionally adjusting for PUFAs, MUFAs, and saturated fat, but effect
estimates were not attenuated. There is potential bias related to the focus of this analysis on a SNP
we have previously shown to be associated with birth weight; however, our findings remained
significant even after adjusting for birth weight (i.e., the differences observed were not mediated
by the effects of the interaction on birth weight).

Although PCA is a powerful dimensionality-reduction tool that allowed us to maximize power
by reducing the number of tested outcomes, loading coefficients of individual cardiometabolic

factors from PCA are only applicable to the population from which they are derived. Dietary data
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were collected via single 24-hour recall and may be subject to recall bias. As the trial was not
originally designed to assess offspring cardiometabolic health, sample sizes are small and there
may be limited statistical power to detect differences by treatment group or genotype. Additionally,
although plasma fatty acid concentrations were available in a small subset of the original birth
cohort (n = 75), they were not included in the current manuscript due to small sample sizes. Future
work should focus on identifying reliable markers of fatty acid status, which can potentially be
used as a proxy for genotype. It is unclear whether the strong interaction observed with maternal
genotype of SNP rs174602 is due to its high minor allele frequency in this sample (0.37), or
because it is a functional SNP. To our knowledge, no biological function has been established for
this SNP; it is therefore likely just a marker, not the causal variant. Further work is needed across
larger, diverse datasets to reproduce these findings and investigate underlying biological
mechanisms. Finally, while we show the possible importance of maternal FADS genotype in
directing supplementation strategies, the role of offspring genotype remains unclear. Future work
in adequately powered studies should incorporate offspring genotype information to elucidate this
complex relationship.

Strengths of this study include the double-blind RCT design, high compliance to the prenatal
intervention, extensive characterization of mothers and children throughout the trial and follow-
up period, and availability of genetic information. Furthermore, our study participants were
representative of a population with low dietary intakes of preformed DHA, high dietary intakes of
n-6 fatty acids, and a high prevalence of alleles associated with lower conversion of precursor
PUFAs into LC-PUFAs. Data collection and laboratory assays were standardized, validated, and

conducted by trained personnel. The age at follow-up offers a stable time for lipid assessment, as
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current guidelines promote universal screening of lipids in children aged 9-11 years to establish
baseline cardiometabolic risk.

In summary, we showed that the effect of prenatal DHA supplementation on offspring
MetS score at age 11 years differed by maternal F4DS2 SNP rs174602. Population differences in
FADS genotypes and diet may partially explain mixed results observed across prenatal DHA
supplementation trials. However, given the large variation in genotype distributions across
populations, this work should be reproduced in larger, independent cohorts. These findings further
support the need to incorporate genetic analysis of FADS polymorphisms in DHA supplementation
trials and may ultimately help guide the development of targeted supplementation

recommendations early in the life course to improve cardiometabolic health in the clinical setting.
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Figure 5-1. Procedures of study sample selection.
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desaturase
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Table 5-1. Maternal baseline characteristics and offspring characteristics at birth, stratified by treatment group and maternal
genotype of SNP rs174602.

Treatment group® Maternal Genotype of SNP rs174602°
Placebo DHA CC TC TT
N=154 N=160 N=127 N=143 N=44
Maternal factors, enrollment
Age, years 26.6 (4.61) 27.4 (5.18) 27.0 (4.81) 27.2 (5.01) 26.8 (5.02)
BMI, kg/m? 26.3 (4.10) 26.6 (4.13) 26.3 (4.12) 26.4 (3.92) 27.1 (4.65)
Height, cm 156 (5.54) 155 (5.57) 155 (5.66) 155 (5.46) 157 (5.54)
First pregnancy, % 53 (34.4%) 45 (28.1%) 37 (29.1%) 50 (35.0%) 11 (25.0%)
SES Score® 0.13 (1.05) 0.13 (0.89) 0.01 (1.03) 0.13 (0.94) 0.46 (0.81)
Schooling, years 12.3 (3.39) 11.9 (3.45) 11.6 (3.56) 12.3 (3.40) 12.6 (2.96)
Dietary intake at enrollment, g/day
ALA 1.76 (1.00) 1.79 (1.08) 1.76 (1.04) 1.80 (1.00) 1.73 (1.18)
DHA 0.08 (0.07) 0.08 (0.08) 0.08 (0.08) 0.08 (0.06) 0.10 (0.11)
LA 19.3 (7.76) 19.7 (8.64) 19.4 (7.78) 19.7 (7.79) 19.2 (10.6)
EPA 0.03 (0.04) 0.03 (0.04) 0.03 (0.04) 0.03 (0.03) 0.04 (0.06)
AA 0.15(0.07) 0.16 (0.09) 0.15 (0.06) 0.16 (0.09) 0.15 (0.06)
Compliance to intervention, % 95.0 (5.00) 95.7 (4.99) 95.1 (5.55) 95.8 (4.53) 94.6 (4.76)
Offspring factors, birth
Sex
Male 81 (52.6%) 93 (58.1%) 69 (54.3%) 80 (55.9%) 25 (56.8%)
Female 73 (47.4%) 67 (41.9%) 58 (45.7%) 63 (44.1%) 19 (43.2%)
Birth weight, g 3220 (490) 3230 (449) 3229 (532) 3220 (440) 3231 (367)
Gestational age, weeks 39.0 (1.66) 39.1 (1.91) 38.8(1.97) 39.1 (1.70) 39.4 (1.44)
Breastfeeding status, 3 mo, %
Exclusively fed human milk 23 (16.2%) 17 (12.0%) 18 (15.8%) 15 (11.6%) 7 (17.1%)
Predominantly fed human milk 20 (14.1%) 15 (10.6%) 11 (9.65%) 17 (13.2%) 7 (17.1%)
Partially fed human milk 75 (52.8%) 80 (56.3%) 59 (51.8%) 78 (60.5%) 18 (43.9%)
Not fed human milk 24 (16.9%) 30 (21.1%) 26 (22.8%) 19 (14.7%) 9 (22.0%)
Duration of human milk feeding, mo  9.71 (7.96) 8.84 (7.65) 8.15 (6.86) 10.3 (8.56) 9.21 (7.53)

2 Chi-square tests, t-tests, and ANOVA were used to test differences between groups. No differences by treatment

group were observed. Values presented are mean (SD) unless otherwise stated.

b Differs by maternal genotype (p < 0.05)

Abbreviations: BMI, body mass index; SES, socioeconomic status score; ALA, Alpha-Linolenic Acid; DHA,
Docosahexaenoic Acid; LA, Linoleic Acid; EPA, Eicosapentaenoic Acid; AA, Arachidonic Acid; mo, month.
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Table 5-2. Offspring characteristics at 11 years follow up, stratified by treatment group and maternal genotype of SNP

rs174602.

Prenatal treatment group®

Maternal Genotype of SNP rs174602°

Placebo DHA CC TC TT
Dietary intake®
Energy intake (kcal/d) 1904 (595) 2064 (746) 1999 (709) 2216 (660) 2216 (660)
Cholesterol (g/d) 246 (183) 300 (219) 276 (201) 328 (235) 328 (2395)
Lipids (g/d) 70.2 (33.8) 78.3 (35.7) 75.3(35.0) 85.2(42.0) 85.2(42.0)
Saturated fat (g/d)* 27.5(14.2) 30.6 (17.7) 28.8 (15.3) 35.8(18.4) 35.8(18.4)
Monounsaturated fat (g/d)® 23.3(12.8) 26.1 (12.9) 24.8 (12.7) 30.0(16.9) 30.0(16.9)
Polyunsaturated fat (g/d)¢ 13.6 (8.21) 16.2 (9.55) 14.9 (9.06) 16.3(9.03) 16.3(9.03)
Total omega-3 intake (g/day)¢ 0.71 (0.65) 1.09 (1.39) 0.88 (1.08) 0.80(0.67) 0.80(0.67)
Total omega-6 intake (g/day)¢ 5.32 (4.67) 7.34 (7.73) 6.71(7.49) 6.12(4.33) 6.12(4.33)
Total sedentary time, hours/day 4.82(2.21) 4.75 (2.06) 4.83 (2.05) 5.03(2.31) 5.03(2.31)
Maturation
Females: attained menarche, n (%) 13 (8.5%) 11 (6.9%) 12 (8.39%) 3 (6.82%) 3 (6.82%)
Testosterone concentrations (pg/mL) 1.55 (0.84) 1.55(0.72) 1.44(0.77) 1.38(0.65) 1.38(0.65)
Age at examination, years 11.12 (0.20) 11.12 (0.17) 11.13 (0.18) 11.14(0.16) 11.14 (0.16)

2 Chi-square tests, t-tests, and ANOVA were used to test differences between groups. Values presented are mean

(SD) unless otherwise stated.

® Dietary data only available for 229 individuals at age 11 years
¢ Differs by maternal genotype (p < 0.05)

4 Differs by maternal prenatal treatment group (p < 0.05)
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Table 5-3. MetS components by treatment allocation and maternal genotype of SNP rs174602 (n=314).

Treatment group

Maternal genotype

Placebo DHA CcC TC TT
N=154 N=160 N=127 N =143 N =44

88.2 87.3 86.6 88.3 89.0

Glucose (mg/dL) (86.9, 89.5) (86.0, 88.6) (85.1, 88.1) (87.0, 89.6) (86.6,91.4)
46.9 46.0 45.8 46.5 48.4

HDL (mg/dL) (45.1, 48.6) (44.3,47.8) (43.8,47.7) (44.7,48.2) (45.2,51.6)
104 111 113 104 103

Triglycerides (mg/dL) (94.3,113) (101.7, 120) (102.7, 123) (94.2,113) (85.5, 120)
103 102 103 102 102

SBP (mmHg) (101, 104) (101, 104) (101.6, 105) (100.5, 103) (99.1, 104)
0.64 0.69 0.88 0.55 0.48

BMI z-score (0.43, 0.85) (0.49,0.91) (0.65, 1.12) (0.22, 0.76) (0.08, 0.87)
-0.01 0.01 0.06 -0.04 -0.07

MetS Score (-0.10, 0.07) (-0.08, 0.09) (-0.03, 0.16) (-0.12, 0.05) (-0.22, 0.08)

Values presented are adjusted means (95% CI).

Abbreviations: HDL, high-density lipoprotein cholesterol; SBP, systolic blood pressure; BMI, body mass index;

MetS, metabolic syndrome.
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Figure 5-2. Effect modification by maternal SNP rs174602 on offspring MetS Score.

Values are contrast-specific mean differences (95% CI) between DHA and placebo groups from
generalized linear models testing the interaction between F4DS?2 single nucleotide polymorphism
rs174602 and supplementation group on MetS score adjusted for child sex and age at measurement,
maternal SES, BMI, parity and age at trial enrollment (p-interaction = 0.001).

Abbreviations: DHA, docosahexaenoic acid; MetS, metabolic syndrome; NS, not significant; SNP,
single nucleotide polymorphism
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Figure 5-3. Effect modification by maternal SNP rs174602 on the impact of DHA
supplementation on offspring MetS components.

Plots include a) HDL (p-interaction = 0.10); b) BMI z-score (p-interaction = 0.14); c) triglycerides
(p-interaction = 0.03); d) systolic blood pressure (p-interaction = 0.01); and e) glucose (p-
interaction = 0.43). Values are contrast-specific mean differences (95% CI) between DHA and
placebo groups from generalized linear models testing the interaction between FADS?2 single
nucleotide polymorphism rs174602 and supplementation group on MetS components adjusted for
child sex and age at measurement, maternal SES, BMI, parity, and age at trial enrollment.
Abbreviations: SNP, single nucleotide polymorphism; HDL, High Density Lipoprotein
cholesterol; BMI, body mass index; TGs, triglycerides; SBP, systolic blood pressure.
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5.8 Supplementary Tables and Figures

Supplementary Table 5-1. Comparison of maternal characteristics at study enrollment and
offspring characteristics in early life in analytic and excluded samples.

Excluded sample Analytic sample
N=659 N=314

Maternal factors at trial enrollment
Age, year® 25.9 (4.57) 27.0 (4.91)
BMI, kg/m? 25.8 (4.27) 26.4 (4.11)
Height, cm 155 (5.76) 155 (5.57)
Parity 1.95 (1.05) 2.08 (1.00)
SES® -0.02 (1.00) 0.13 (0.97)
Schooling, year 11.9 (3.59) 12.1 (3.42)
Dietary intake at enrollment (g/day)
ALA 1.66 (0.95) 1.77 (1.04)
DHA 0.08 (0.09) 0.08 (0.08)
LA 19.0 (9.54) 19.5 (8.21)
EPA 0.03 (0.05) 0.03 (0.04)
AA 0.15 (0.09) 0.15 (0.08)
Received intervention 327 (49.6%) 160 (51.0%)
Compliance to intervention (%) 94.9 (5.95) 95.3 (5.00)

Offspring factors in early life

Sex

Male 339 (51.4%) 174 (55.4%)
Female 320 (48.6%) 140 (44.6%)
Birth weight, g 3195 (456) 3225 (469)
Gestational age at birth, weeks 39.1 (1.78) 39.1 (1.79)
Breastfeeding status, 3 months

Exclusively fed human milk 64 (11.6%) 40 (14.1%)
Predominantly fed human milk 64 (11.6%) 35 (12.3%)
Partially fed human milk 332 (60.0%) 155 (54.6%)
Not fed human milk 93 (16.8%) 54 (19.0%)
Duration of BF, months 8.34 (7.62) 9.26 (7.81)

Values presented are mean (SD) unless otherwise stated.

?Values differ between analytic and excluded samples, as assessed by chi-square tests, t-
tests, and/or ANOVA.

Abbreviations: BMI, body mass index; SES, socioeconomic status score; ALA, Alpha-
Linolenic Acid; DHA, Docosahexaenoic Acid; LA, Linoleic Acid; EPA, Eicosapentaenoic
Acid; AA, Arachidonic Acid; EBF, Exclusive Breastfeeding; PreBF, Predominantly
Breastfeeding; PaBF, Partially Breastfeeding; NBF, No Breastfeeding
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Supplementary Table 5-2. Maternal baseline characteristics and offspring characteristics at birth, stratified by treatment group and
maternal genotype of SNP rs174602.

CC TC TT
Placebo DHA Placebo DHA Placebo DHA
N=65 N=62 N=66 N=77 N=23 N=21
Maternal factors, enrollment
Age, year 26.6 (4.51) 27.4 (5.11) 26.8 (4.65) 27.4 (5.31) 26.1 (4.91) 27.6 (5.15)
BMI, kg/m? 26.4 (4.30) 26.2 (3.96) 26.0 (3.49) 26.7 (4.26) 27.0 (5.11) 27.3 (4.20)
Height, cm 155 (4.96) 154 (6.32) 155 (5.67) 155 (5.30) 158 (6.17) 155 (4.19)
First pregnancy, % 19 (29.2%) 18 (29.0%) 28 (42.4%) 22 (28.6%) 6 (26.1%) 5(23.8%)
SES Score ® 0.00 (1.09) 0.02 (0.98) 0.14 (1.06) 0.13 (0.84) 0.50 (0.86) 0.42 (0.77)
Schooling, year 12.1 (3.40) 11.1 (3.67) 12.2 (3.60) 12.4 (3.24) 12.9 (2.75) 12.4 (3.22)
Dietary intake at enrollment, g/day
ALA 1.79 (0.94) 1.73 (1.15) 1.70 (0.92) 1.88 (1.07) 1.85 (1.39) 1.61 (0.92)
DHA 0.08 (0.06) 0.08 (0.10) 0.08 (0.06) 0.08 (0.06) 0.09 (0.13) 0.10 (0.09)
LA 19.3 (6.71) 19.4 (8.83) 18.9 (6.84) 20.3 (8.51) 20.1 (12.2) 18.1 (8.75)
EPA 0.03 (0.03) 0.03 (0.05) 0.03 (0.03) 0.03 (0.03) 0.04 (0.07) 0.05 (0.05)
AA 0.16 (0.07) 0.15 (0.06) 0.15(0.07) 0.16 (0.11) 0.16 (0.07) 0.15 (0.06)
Compliance to intervention, % 95.1 (4.86) 95.1(6.25) 95.6 (4.89) 95.9 (4.23) 92.9 (5.42) 96.4 (3.11)
Offspring factors, birth
Females 32 (49.2%) 26 (41.9%) 30 (45.5%) 33 (42.9%) 11 (47.8%) 8 (38.1%)
Birth weight, g 3309 (562) 3144 (489) 3159 (453) 3273 (424) 3145 (328) 3326 (392)
Gestational age, weeks 39.0 (1.74) 38.7 (2.19) 38.9 (1.71) 39.3 (1.69) 39.3 (1.28) 39.5(1.62)
Breastfeeding status, 3 mo, %
Exclusively fed human milk 12 (20.7%) 6 (10.7%) 8 (12.9%) 7 (10.4%) 3 (13.6%) 4 (21.1%)
Predominantly fed human milk 5 (8.62%) 6 (10.7%) 10 (16.1%) 7 (10.4%) 5(22.7%) 2 (10.5%)
Partially fed human milk 31 (53.4%) 28 (50.0%) 34 (54.8%) 44 (65.7%) 10 (45.5%) 8 (42.1%)
Not fed human milk 10 (17.2%) 16 (28.6%) 10 (16.1%) 9 (13.4%) 4 (18.2%) 5(26.3%)
Duration of BF, mo 8.56 (7.30) 7.73 (6.40) 10.9 (8.77) 9.74 (8.40) 9.63 (7.20) 8.75 (8.03)
Offspring factors, 11 years
Dietary intake®
Energy intake (kcal/d) 1809 (553) 1969 (720) 1945 (581) 2041 (796) 2031 (721) 2425 (530)
Cholesterol (g/d) 232 (155) 275 (226) 257 (200) 291 (202) 256 (210) 410 (241)
Lipids (g/d) 65.8 (30.3) 73.3(32.3) 71.7 (30.1) 77.9 (38.3) 77.0 (48.5) 94.5(32.2)
Saturated fat (g/d) 26.0 (14.1) 28.1(17.5) 28.0(13.3) 29.4 (16.8) 30.0 (16.6) 42.5(18.4)
Monounsaturated fat (g/d) 21.0 (10.1) 24.3 (11.6) 23.6 (11.0) 25.7 (13.8) 27.8 (20.6) 32.5(1L.5)
Polyunsaturated fat (g/d) 12.8 (7.44) 16.1 (10.1) 13.7 (7.81) 15.8 (9.88) 15.0 (10.9) 17.8 (6.39)
Total omega-3 intake (g/day) 0.74 (0.69) 1.24 (1.66) 0.69 (0.62) 1.03 (1.32) 0.70 (0.69) 0.91 (0.65)
Total omega-6 intake (g/day) 4.89 (4.70) 7.32(7.04) 5.53 (4.90) 7.60 (8.92) 5.84 (4.16) 6.44 (4.64)
Total sedentary time, hrs/day 4.74 (2.47) 4.56 (1.83) 4.88 (1.90) 4.80 (2.19) 4.90 (2.32) 5.19 (2.35)
Maturation
Attained menarche (F), n (%) 4 (6.25%) 5 (8.06%) 7 (10.6%) 5(6.49%) 2 (8.70%) 1 (4.76%)
Testosterone (M) (pg/mL) 1.76 (0.87) 1.68 (0.77) 1.44 (0.83) 1.43 (0.70) 1.28 (0.68) 1.51 (0.62)
Age at examination, years 11.12 (0.21) 11.08 (0.18) 11.12 (0.20) 11.14 (0.15) 11.11 (0.15) 11.18 (0.18)

Values presented are mean (SD) unless otherwise stated.

*Dietary data only available for 229 individuals at age 11 years

Abbreviations: BMI, body mass index; SES, socioeconomic status score; ALA, Alpha-Linolenic Acid; DHA, Docosahexaenoic Acid,
LA, Linoleic Acid; EPA, Eicosapentaenoic Acid; AA, Arachidonic Acid; EBF, Exclusive Breastfeeding; PreBF, Predominantly
Breastfeeding; PaBF, Partially Breastfeeding; NBF, No Breastfeeding
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Supplementary Figure 5-1. Contribution of cardiometabolic factors to PCA-derived continuous

MetS score.

a) Principal components analysis (PCA) was used to calculate the MetS score using five
components used to define metabolic syndrome in pediatric populations. Top PCs were identified
visually using scree plots and quantitatively using eigenvalues > 1. Scores were calculated as the
sum of the top components, weighted by variance explained. The x axes represent the top PCs used
to create the MetS score and percentage of variance in the data explained by each PC via PCA.
The diameter of each bubble represents the magnitude of contributions (%) of individual MetS
components to each PC. Cardiometabolic factors with the highest contributions represent the most
important variables within each PC. The highest contributing components in the first PC contribute
most to the derived scores, b) equation used to calculate MetS scores for participants in the study
population, and c¢) distribution of continuous MetS score in study population
MetS, metabolic syndrome; PC, Principal Component
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Supplementary Table 5-3. Offspring cardiometabolic health at 11 years follow up, stratified by treatment
group and maternal genotype of SNP rs174602.

CC TC TT
Placebo DHA Placebo DHA Placebo DHA
N=65 N=62 N=66 N=77 N=23 N=21
Cardiometabolic risk factors

BMI z-score 0.69 (1.26) 0.98(1.18)  0.52(1.46) 0.51(1.28) 0.65(1.58)  0.40(1.52)
Triglycerides 101 (45.3) 122 (74.1) 101 (53.8) 102 (55.2) 112 (51.8) 92.5 (47.0)
HDL 473 (10.0) 439(11.5) 46.1(9.78) 46.7(10.4) 47.3(10.1) 48.7(11.4)
SBP 102 (7.32) 104 (8.94) 103 (7.55) 101 (8.63) 104 (10.3) 99.8 (7.25)
Glucose 86.9(6.12) 87.2(10.0) 89.3(8.63) 88.0(8.41) 90.3(5.15) 88.9(6.07)
MetS Score -0.05(0.44) 0.17(0.54) -0.01(0.55) -0.07(0.53) 0.09(0.38) -0.17(0.43)

Values presented are unadjusted means (SD).
BMI, Body Mass Index; DHA, Docosahexaenoic Acid; HDL, High Density Lipoprotein cholesterol; SBP,

Systolic Blood Pressure; MetS, Metabolic Syndrome
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6.1 Abstract

Objective: We evaluated the role of selected variants in maternal and offspring fatty acid
desaturase (FADS) genes on offspring cardiometabolic health (CMH) at age 11y and assessed
interactions of genotype with diet quality and prenatal docosahexaenoic acid (DHA)
supplementation.

Methods: We used data from offspring (n=203) born to women who participated in a randomized
controlled trial of prenatal DHA supplementation (400 mg/d) from mid-gestation through delivery
in Mexico. We generated a continuous metabolic syndrome (MetS) score from body mass index,
HDL cholesterol, triglycerides, systolic blood pressure, and fasting glucose measured at age 11 y
and identified six distinct haplotypes from five offspring FADS SNPs (rs174578, rs2727271,
15174602, rs174605, rs174550). Dietary n-6:n-3 fatty acid ratios were derived from single 24-hour
recalls (n=141). We used generalized linear models to test associations of offspring diet and FADS
haplotypes with MetS score. We examined interactions of maternal and offspring F4DS SNP
rs174602 with prenatal treatment group and with dietary n-6:n-3 ratio on MetS score.

Results: Associations between all examined FADS haplotypes and MetS score were null.
Offspring SNP rs174602 did not modify the association of prenatal DHA supplementation with
MetS score. Among children with TT or TC genotype for SNP rs174602 (n = 88), those in the
highest n-6:n-3 ratio tertile (> 8.61) had higher MetS score relative to those in the lowest tertile (<
6.67) (A= 0.36; 95% CI: 0.03, 0.69). Among children with CC genotype (n = 53), those in the
highest n-6:n-3 ratio tertile had lower MetS score relative to those in the lowest tertile (A= -0.23;
95% CI: -0.61, 0.16).

Conclusions: In this population of Mexican children, there was evidence of interaction of

offspring FADS SNP rs174602 with current dietary PUFA intake, but not with prenatal DHA
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supplementation, on MetS score. Further studies are needed to validate these findings in other
settings to determine the utility of targeted supplementation strategies and dietary

recommendations based on genetic profile.

6.2 Introduction

Cardiometabolic diseases, which include cardiovascular disease, stroke, and type II diabetes
mellitus, are the leading causes of mortality worldwide (1). Increasing evidence suggests that
cardiometabolic risk factors emerge in childhood and persist through adulthood, highlighting the
need to identify early and effective disease prevention strategies (2, 3). While cardiometabolic
diseases have complex etiologies including genetic, behavioral, and environmental factors,
nutritional status during critical periods of growth and development, such as gestation and early
adolescence, may be a key modifiable determinant (4).

Dietary polyunsaturated fatty acids (PUFAs), which include n-6 linoleic acid (LA) and n-3
alpha-linolenic Acid (ALA), are important for cardiometabolic health (CMH) because they are
precursors to the long-chain PUFAs (LC-PUFAs) n-6 arachidonic acid (AA), n-3
eicosapentaenoic acid (EPA) and n-3 docosahexaenoic acid (DHA), which have opposing
roles in modulating inflammation (5). LC-PUFAs also contribute to cell membrane synthesis, gene
expression, and appetite signaling, and have regulatory effects on enzymes involved in lipid and
glucose metabolism (6). While much research has focused on the cardioprotective benefits of n-3
LC-PUFAs via improvements in insulin resistance, blood pressure, and triglycerides (7, 8), the
relationship between n-6 fatty acids and cardiovascular health is less clear. In adults, some
evidence suggests that high dietary n-6:n-3 ratios (~16:1) are associated with the pathogenesis of
cardiovascular disease, diabetes, cancer, and inflammatory diseases (9, 10); however, other studies

report that a combination of both n-6 and n-3 fatty acids is associated with lower inflammation,
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and circulating concentrations of n-6 fatty acids are inversely associated with LDL cholesterol and
cardiovascular risk (11-13). Overall, the role of both n-3 and n-6 LC-PUFAs in pediatric
cardiometabolic health remains poorly characterized (14, 15).

Additionally, the influence of dietary PUFAs on CMH may differ by variations in fatty acid
desaturase (FADS) genes (16, 17). Conversion of n-6 LA and n-3 ALA to their LC-PUFA forms
is regulated by A5 and A6-desaturase enzymes encoded in the FADS gene cluster (FADS1, FADS?2,
FADS3) located in chromosome 11. Genome wide association studies (GWAS) have identified
multiple variants in FADS genes that are associated with lower LC-PUFA concentrations,
indicating reduced conversion of dietary precursors, along with alterations in lipid profiles and
glucose homeostasis (18, 19). Studies show that multiple variants in F4ADS genes are associated
with lower lipid profiles and inflammation in European children (20-22), but there is evidence of
ancestral variation in the frequency of alleles associated with reduced conversion of PUFAs across
populations. Compared to European populations, Mexican populations have a greater proportion
of carriers of alleles associated with slower conversion of precursors, as well as diets high in n-6
and low in n-3 LC-PUFAs (18). Additional studies are needed across populations that vary in both
genotype and diet quality to determine the utility of targeted dietary or supplementation
recommendations based on genetic profile.

To our knowledge, no prior studies have characterized children spanning from the prenatal
period through early adolescence with FADS genetic information for both the mother and child. In
the present study, we address these gaps by using follow-up data from a large prenatal DHA
supplementation randomized controlled trial (RCT) in Mexico, in which children have been
followed prospectively since birth. We previously reported that maternal SNP rs174602 modified

the effect of prenatal DHA supplementation on offspring birth weight (23), the infant metabolome
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at 3 months (24), and offspring MetS scores at age 11 years (unpublished). However, the respective
contributions of maternal and offspring FADS genetic profile towards CMH remain unclear. The
objective of this study is to evaluate the role of selected variants in both maternal and offspring
fatty acid desaturase (FADS) genes on CMH at age 11 years and assess interactions with 1) prenatal
docosahexaenoic acid (DHA) supplementation and 2) offspring diet quality at age 11 years. We
hypothesized that children who carry FADS alleles associated with more rapid conversion of
precursors would have poorer CMH profiles relative to those with slower conversion. Secondarily,
we hypothesized that maternal genotype would be more relevant than offspring genotype for
modifying the effect of the prenatal DHA intervention whereas offspring genotype would be more

relevant for modifying the effects of dietary intake on CMH.

6.3 Methods
6.3.1 Study Design and Participants

This study includes data from the Prenatal Omega-3 fatty acid Supplementation and Child
Growth and Development (POSGRAD) trial in Cuernavaca, Mexico (NCT00646360). The
original trial design, protocol, and inclusion/exclusion criteria has been published elsewhere (25).
Briefly, from 2005-2007, 1,094 pregnant women were recruited at 18-22 weeks gestation at the
Mexican Social Security Institute (IMSS) and randomized to receive either 400 mg algal DHA
(treatment) or a corn/soy oil blend (placebo) daily through delivery. The fatty acid composition of
the supplements has been previously published (24). Intervention compliance was measured as the
percentage of capsules consumed. The 968 women who completed the study delivered 963
singleton live births and 5 pairs of twins (excluded from the present analysis). Children have been

followed prospectively since birth and were most recently followed up at 11 years (2016-2018).
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Of the 566 children who were successfully contacted and agreed to participate in the follow-up
study, venous blood samples were collected in a sub-sample of 485 children.

The Emory University Institutional Review Board and the Ethics Board of the Mexican
National Institute of Public Health (INSP) reviewed and approved all procedures involving human
subjects. The study was conducted according to the guidelines of the Declaration of Helsinki.
Written informed consent was obtained from mothers at trial enrollment. At the 11-year follow up
visit, mothers provided written informed consent and children provided written assent.

6.3.2 Maternal Genotyping

Fasting venous blood samples were collected from all women at recruitment, and genomic
information was extracted from the buffy coat using standard techniques. Buffy coat was separated
and stored at INSP laboratories at —80°C until transport to the Helmholtz Center, Munich,
Germany. The genetic analysis was carried out in 2012-13 for samples from women who provided
consent to genotyping (n = 720) using methods that have been previously described (23, 26). The
resulting dataset containing 15 SNPs across the FADS gene cluster was transferred to Emory
University via encrypted files (23). For the purposes of this analysis, we only used data for
maternal SNP rs174602.

6.3.3 Offspring Genotyping

Stored blood samples obtained from offspring at age 4 y were transported to LMU
University of Munich and Helmholtz Center Munich for genotyping via Illumina microarray
technology. DNA was extracted from stored buffy coat with the use of a High Pure PCR Template
Preparation Kit (Roche). A total of 5 mL DNA was subjected to polymerase chain reaction

amplification followed by the genotyping procedure with the use of the MassARRAY system and
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1IPLEX chemistry as suggested by the manufacturer (Sequenom) and previously described in detail
(26).

Data quality was assessed using GenomeStudio version 2.0.4 and samples with call rate
<99% were tested for potential contamination; data were cleaned locally and shared with Emory
University. Quality control assessments were performed in PLINK version 1.9 to filter out samples
and SNPs with minor allele frequency (MAF<0.1), SNP call rate < 95%, and sample call rate <
90%. Genetic data were subset to chromosome 11 and mapped to the human genome reference
build GRCh37/hgl9 for strand, id names, positions, alleles, and reference/alternative alleles
assignment (27). The data were subset to available SNPs in the FADS gene region (rs174545 to
rs1000778), resulting in 31 FADS variants for 626 children. Pairwise linkage disequilibrium (LD)
among the 31 SNPs were calculated as both D’ and r? using Haploview software, version 4.2 (28).
Subsequently, 5 SNPs that captured all 31 SNPs at 1> > 0.3 (rs174578, rs2727271, 15174602,
rs174605, rs174450) were selected via Tagger for further analysis (Supplementary Figure 6-1).
6.3.4 Anthropometry and blood pressure measurements at age 11 y

Body weight (kg) and height (cm) were collected in triplicate by trained personnel using
standard procedures, and the average of the three measurements was used (29). Children wore light
clothing and were weighed using a portable electronic pediatric scale (Tanita model 1582) with a
precision of 100 g, which was calibrated daily with a known reference weight. Height was
measured with a stadiometer (precision of 0.1 cm). We used the ‘zscorer’ R package to calculate
BMI-for-age z-scores according to the 2007 WHO Growth Reference Standards (30). Blood
pressure (mmHg) was measured when the child was at rest using a digital device (OMRON model

HEM-711ACINT), which has been validated for use in children and adolescents. In each arm, four
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measurements were taken with 2-minute intervals; the first measurement was discarded and the
last three were averaged (31).
6.3.5 Assessment of cardiometabolic markers and derivation of continuous MetS score

Venous blood samples were obtained from children at 11y after a 12-hour fasting period
(verified by noting the approximate time that food/drink was last consumed) and centrifuged.
Aliquots of serum were frozen in liquid nitrogen and stored at —80°C at the National Institute of
Medical Sciences and Nutrition Salvador Zubirdn in Mexico. HDL cholesterol, triglyceride, and
glucose concentrations were assessed using the Beckman Coulter SYNCHRON CX 5 Delta
automated kit and expressed in mg/dL. While there is heterogeneity in metabolic syndrome criteria
in pediatric populations, cardiometabolic risk factor thresholds were defined according to criteria
from the International Diabetes Federation for children ages 10-16 y as follows: triglycerides >
150 mg/dL, HDL <40 mg/dL, and fasting glucose > 100 mg/dL, while high systolic blood pressure
(SBP) was defined as > 90" percentile for sex and height (32, 33).

We used principal components analysis (PCA) to derive a continuous MetS score using
systolic blood pressure, HDL, triglycerides, BMI z-score, and glucose. The methods have been
described previously elsewhere (34). Briefly, principal components (PCs) were identified visually
using scree plots and quantitatively using eigenvalues > 1, and the score was calculated as the sum
of the first two components, weighted by variance explained. The score can be interpreted as a z-
score, with higher scores representing increased cardiometabolic risk. PCA was performed using
the ‘FactoMineR’ R package (35). The top two PCs collectively explained 56% of the variance in
the measured data (Supplementary Figure 6-2a). Triglycerides, BMI-z, and HDL contributed to

the first PC (34.8% variance explained), while SBP and fasting glucose contributed to the second
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PC (20.9% variance explained). The distribution of the MetS score in the study population is
shown in Supplementary Figure 6-2b.
6.3.6 Diet assessment and dietary n-6:n-3 ratio

A single multiple-pass 24-hour dietary recall developed for Mexican populations was used
to assess dietary intake of the children at age 11 y (36). Trained personnel administered the diet
recall tool to the child’s primary caregiver in presence of the child. Energy and nutrient values
were determined using the new fatty acid content update for Mexican Food Database (BAM,
Spanish acronym) (37). The dietary n-6:n-3 ratio was calculated by dividing total daily n-6 (sum
of 18:2 n-6 (LA), 18:3 n-6, 20:2 n-6, 20:3 n-6, 20:4 n-6 (AA), and 22:4 n-6) intake by total daily
n-3 (sum of 18:3 n-3 (ALA), 20:5 n-3 (EPA), 22:5 n-3 (DPA), and 22:6 n-3 (DHA)) intake. Dietary
n-6:n-3 ratios were classified into tertiles according to the distribution of the study population (low:
<6.67, medium: 6.67-8.61, and high: > 8.61).
6.3.7 Statistical Analysis

We assessed normality of data using histograms and quantile-quantile plots. We calculated
means and standard deviations for maternal and offspring characteristics at trial enrollment, birth,
and 11 years and examined differences by offspring genotype and dietary n-6:n-3 ratio using
Student’s t tests, ANOVA, and chi-square tests, as appropriate. Baseline characteristics of the
included subsample were compared with those of the rest of the birth cohort (participants lost to
follow up or missing key data).

Allele frequencies were calculated, and Hardy Weinberg Equilibrium (HWE) was tested
with Fisher’s exact test using the R “genetic” package for both maternal and offspring genetic data.
Offspring haplotype frequencies were estimated using the R “haplo.stats” package version 1.8.7

(https://cran.r-project.org/web/packages/haplo.stats/index.html), which uses an expectation
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maximization (EM) algorithm to calculate maximum likelihood estimates of probabilities of
haplotype pairs for each participant (38). Haplotypes with frequency <5% were grouped as rare
haplotypes. We used the “haplo.glm” function to assess the association of offspring FADS
haplotype with offspring MetS score (adjusted for sex), using the most common haplotype as the
referent.

We used multivariable generalized linear models to test interaction between genotype for
maternal and offspring SNP rs174602 and prenatal treatment group, adjusting for maternal SES,
BMLI, parity, and age at trial enrollment and offspring sex and age at examination. Due to the strong
association between maternal and offspring genotype, we examined the associations separately for
maternal and offspring genotype and adjusted one for the other. Finally, we used multivariable
generalized linear models to a) examine the association of dietary n-6:n-3 ratio with MetS score
and b) test interaction (specified a priori) between offspring genotype for SNP rs174602 and
dietary n-6:n-3 ratio on MetS score. We assessed genotype-diet interaction using both an additive
and dominant genetic model. Both approaches yielded similar conclusions, but we report the
results for the dominant genetic model (i.e., carriers vs. non-carriers of the minor T allele for SNP
rs174602) to conserve study power. Models were adjusted for sex, age at examination, and total
energy intake. All statistical analyses were performed using R version 4.0.4 (R Foundation for
Statistical Computing, Vienna, Austria). Power calculations performed using the ‘genpwr’ R
package showed that we had >80% power to detect a genetic association of R?>=0.038 with a type

I error rate of 0.05. P values < 0.05 were considered significant.

6.4 Results
The analytic sample included 203 children who had the complete set of CMH indicators

and maternal and own genetic data (Supplementary Figure 6-3). Characteristics of mothers and
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children in the study population are presented in Table 6-1. At study enrollment, mean maternal
age and BMI were 27.1 + 4.9 years and 26.3 + 3.8 kg/m?, respectively. Less than 30% of women
were primiparous, and mothers breastfed their children for 9.7 + 7.9 months. The intervention and
placebo groups were balanced on maternal characteristics at enrollment and offspring birth
characteristics (Supplementary Table 6-1). Children in the analytic sample were born to women
who were older, had higher parity, and longer duration of breastfeeding relative to children lost to
follow up or missing data (n=770) (Supplementary Table 6-2). Maternal characteristics at
enrollment and offspring lifestyle characteristics at 11 y by offspring genotype and dietary n-6:n-
3 ratio are presented in Supplementary Table 6-3.

At age 11 y, 85 children (42%) were overweight or obese, 65 (32%) had low HDL
cholesterol, 35 (17.2%) had high triglycerides, and 9 (4%) had high fasting glucose concentrations.
Glucose concentrations were significantly higher among males (90.1 £ 9.1 mg/dL) when compared
to females (86.9 £ 6.5 mg/dL). The median dietary n-6:n-3 ratio among offspring at age 11 y was
7.4 (IQR: 5.8 —10.3). Intakes of n-3 PUFAs were low (ALA: 528.2 (IQR: 231.2 - 1017.0) mg/day;
DHA: 18.4 (IQR: 2.7 — 49.7) mg/day; EPA: 10.9 (IQR: 6.6 — 20.8) mg/day), along with high
intakes of n-6 PUFAs (LA: 4,647 (IQR: 2,436 — 8,374) mg/day; AA: 16.8 (IQR: 8.3-31.0) mg/day).
ALA contributed 87% of total n-3 PUFA intake and LA contributed 94% of total n-6 PUFA intake;
therefore, the n-6:n-3 ratio in this study population primarily reflects the LA/ALA ratio (i.e., intake
of dietary precursors, not LC-PUFAs).

Distribution of FADS SNPs in study population and association with MetS score

Within this sample, the minor allele (T) frequency for maternal SNP rs174602 was 0.37,

29 mothers (14%) were homozygous carriers of the minor T allele, 93 (46%) were heterozygous

carriers (TC), and 81 (40%) were homozygous carriers of the major C allele. Genotype and allele
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frequencies for the five selected offspring FADS SNPs are shown in Table 6-2. Minor allele
frequencies ranged from 0.13 to 0.41, and there was no evidence of departure from HWE (p >
0.05). Haplotype frequencies are shown in Supplementary Table 6-4; 83% (n=167) of children
were captured by the 6 identified haplotypes. In the single SNP analysis, there was no evidence of
an association between offspring genotype for SNP rs174602 and MetS score [3=0.05 (95% CI: -
0.13, 0.23)]. We also did not observe any association between FADS haplotypes and MetS score
at 11 years relative to the reference haplotype [AATGT:  =-0.17 (95% CI: -0.63, 0.28); ATTGG:
B=0.38 (-0.24, 1.00); TTCGG: B =0.05 (-0.33, 0.42); TTCGT: B =0.60 (-0.07, 1.27); TTTTG: B
=0.16 (-0.43, 0.75)].
Contributions of maternal and offspring genotype to MetS score

For SNP rs174602, 57% of the mothers and offspring had the same genotype; among
mothers who carried a minor T allele, 77% of offspring also carried a minor allele. We found that
maternal genotype for SNP rs174602 modified the effect of the prenatal DHA supplementation on
offspring MetS score (p-interaction = 0.02); among homozygous major C allele carriers (n = 81),
offspring of mothers who received prenatal DHA had higher MetS score (0.19 £ 0.08) relative to
offspring whose mothers received placebo (-0.05 £ 0.08, A= 0.23 (0.01, 0.45), p = 0.04) (Figure
6-1a). However, offspring genotype for SNP rs174602 did not modify the association of prenatal
DHA supplementation with MetS score (p-interaction = 0.11) (Figure 6-1b). The results for
examining the effects of maternal genotype for SNP rs174602 stratified by offspring genotype for
SNP rs174602 showed that mean differences in MetS scores between DHA and placebo groups
were larger when maternal and offspring genotypes were matched relative to a mismatch (Table
6-3).

Interaction between offspring genotype for SNP rs174602 and dietary n-6:n-3 ratio
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The results of the exploratory analysis examining the influence of gene-nutrient
interactions on MetS scores at age 11 showed no overall association between the dietary n-6:n-3
ratio and MetS score (8 = 0.003, 95% CI: -0.01, 0.02); however, there was heterogeneity in the
association of SNP rs174602 and MetS score across tertiles of the dietary n-6:n-3 ratio (p = 0.05)
(Figure 6-2). Among children with TT or TC genotype (n = 88), those in the highest n-6:n-3 ratio
tertile (> 8.61) had higher MetS score relative to those in the lowest tertile (< 6.67) (A= 0.36; 95%
CI: 0.03, 0.69); among children with CC genotype (n = 53), those in the highest n-6:n-3 ratio tertile
had lower MetS score relative to those in the lowest tertile (A= -0.23; 95% CI: -0.61, 0.16). Mean
MetS scores and individual MetS components stratified by offspring genotype and n-6:n-3 diet
ratio are shown in Supplementary Table 6-4. Similar trends were observed with individual MetS
components, although interaction was not statistically significant. We also found a positive
association between n-6:n-3 ratio and MetS score among offspring of TT/TC genotype (B (95%
CI)=0.02 (-0.004, 0.04)), while there was an inverse association among offspring of CC genotype

(-0.013 (-0.04, 0.01); p = 0.05 for interaction).

6.5 Discussion

In our earlier report, we identified an interaction between maternal genotype for SNP
rs174602 and prenatal DHA supplementation on offspring MetS score at age 11 years, such that
offspring of TT carriers who received prenatal DHA had lower MetS scores relative to the placebo
group, and offspring of CC carriers who received DHA had higher MetS scores relative to the
placebo group (unpublished). These findings suggested that prenatal DHA supplementation may
have differential effects on offspring phenotypes based on maternal genotype. Given that maternal
and offspring genetics are tightly linked, in this study, we first sought to 1) determine if this

interaction also existed with offspring genotype and 2) examine whether offspring or maternal
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genotype determines offspring phenotype to a greater extent. We found that, while effect estimates
of offspring SNP-prenatal DHA supplementation interaction did align with results observed for
maternal SNP-prenatal DHA supplementation interaction, after adjusting for maternal genotype,
offspring genotype did not significantly modify the effect of the intervention on MetS score,
although this may be partially attributable to limited study power.

Few studies have examined the role of maternal and offspring genetics in understanding
effects of LC-PUFAs on offspring measures of health. Findings from the Avon Longitudinal
Study, conducted in the United Kingdom, showed that both maternal and child F4DS genotypes
and haplotypes influenced cord plasma LC-PUFA concentrations (39). In contrast, in another study
conducted in the United States, FADS2 rs174575 genotyping was performed on a subset of mothers
and their 16-month-old toddlers, and they found that the effect of maternal genotype on declarative
memory task performance was larger than the child’s own genotype (40). Although the examined
SNPs and outcomes differ across these studies and ours, they collectively indicate the importance
of maternal genotype in predicting offspring phenotypes.

Beyond the prenatal intervention, we also examined the independent contribution of
offspring genetics towards cardiometabolic health measures using a haplotype-based approach to
leverage additional genetic information and reduce multiple testing. All SNPs of interest were in
the FADS2 gene, and the MAF of the 5 included SNPs in this population aligned with allele
frequencies for matching genetic ancestry documented in HapMap and the 1000 Genomes Browser
(41). We did not observe evidence of an association between examined offspring F4DS haplotypes
and MetS score. Similarly, no evidence of an association was observed in the single SNP analysis
using SNP rs174602. However, exploratory analyses revealed significant interaction between

dietary n-6:n-3 ratio and offspring genotype for SNP rs174602 on MetS score. Individuals with
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TT or TC genotype and high dietary n-6:n-3 ratios had higher MetS scores relative to those with
low n-6:n-3 ratios, while individuals with CC genotype and high n-6:n-3 ratio ratios had lower
MetS score relative to those in the lowest tertile. SNP rs174602 is located at an intron/exon
boundary of the F4DS2 gene, which encodes for the A-6 desaturase enzyme that regulates the
conversion of n-3 Eicosapentaenoic Acid (EPA) to DHA. Previous studies in European
populations have shown that the CC genotype for SNP rs174602 is associated with lower A-5
desaturase activity, reflecting reduced conversion of dietary precursors, while TT and TC are
associated with increased conversion of precursors (21). Although we were unable to assess A-5
desaturase activity in this study population, our results align with these previous findings,
indicating that children who carried TT or TC alleles (i.e., higher conversion of PUFAs to LC-
PUFAs) and had high n-6/n-3 intake had poorer cardiometabolic health, as defined by higher MetS
scores. We also observed that children who carried CC alleles (i.e., lower conversion of PUFAs to
LC-PUFAs) and higher n-6/n-3 ratios had lower MetS scores, although these results were not
statistically significant (perhaps due to sample size). These findings contrast with an independent
study in a large sample of Mexican adolescents, which showed that F4DS1 SNP rs174546 was a
major contributor of plasma TG and VLDL concentrations; however, no significant interaction
effects were detected between dietary intake and genotype (42). Another study in a population of
816 Taiwanese adults, however, reported significant interaction between ALA/LA ratio and
rs2072114 and marginally significant interaction between ALA/LA ratios and rs174602 on LDL-
¢ concentrations, although these SNPs are independent of each other (43). It is possible that n-3
LC-PUFA status may be more dependent on dietary intake than n-6 fatty acids, which rely more
on endogenous synthesis (44). Overall, our findings suggest that based on their genotype, some

individuals may have increased dietary requirements for omega-3 fatty acids, and offspring
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genetics may only matter over and above maternal genotype in the context of poor diets (i.e.,
imbalance in n-6: n-3 ratio). However, this requires confirmation in independent and diverse
populations.

To expand upon the clinical relevance of our results, we also explored the interaction of
offspring genotype for SNP rs174602 and dietary n-6:n-3 ratio on individual MetS components.
While we observed similar trends for each of the individual MetS components, interaction was
most clearly demonstrated for HDL, BMI, and SBP, which aligns with the high prevalence of low
HDL and high BMI in this study population. Studies have shown that PCA-derived MetS scores
during early adolescence are associated with increased risk of adult cardiometabolic disease, with
one study reporting that a 1 SD increase in a continuous MetS score during adolescence was
associated with 30% increased risk of type II diabetes and 20% increased risk of high carotid
intima-media thickness in adulthood (45). Whether these associations exist for this population will
require follow-up through adulthood to see if differences in MetS scores at this time point have
lasting implications for adult cardiometabolic health.

Strengths of this study include the double-blind RCT design of the original trial, high
compliance to the prenatal intervention, extensive characterization of mothers and children from
pregnancy through adolescence, and availability of F4DS genetic information for both mothers
and offspring. All data collection and laboratory assays were standardized, validated, and
conducted by trained personnel. However, a few limitations of this study may influence the
interpretability and generalizability of these findings, such as selection bias. The offspring in our
study sample tended to have mothers who were older at study enrollment, had higher parity, and
longer breastfeeding durations relative to those lost to follow up, although these values did not

differ by treatment group or maternal/offspring genotype. Additionally, offspring diet at 11 y was
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assessed using a single 24-hour recall and may be subject to recall bias. As the POSGRAD trial
was not originally designed to explore this association, the analytic sample with complete genotype
and phenotype information is small, and there may be limited statistical power to detect genetic
associations. Further work is needed across larger, diverse datasets to reproduce these findings and
investigate underlying biological mechanisms.

In summary, in this population of Mexican children, there was evidence of interaction
between FADS SNP rs174602 and current dietary PUFA intake on MetS score, but not with
prenatal DHA supplementation. A remaining question is whether the dose and type of
supplementation matters (e.g., fish oil vs. DHA only). Future work could include a feeding trial
among school-age children to examine further examine interaction between selected F4DS genetic
variants and dietary LC-PUFA intake. Replication of findings is critical for ensuring validity in
genetic association studies. Analyses should be reproduced using similar study designs and study
populations to help determine the utility of targeted supplementation strategies based on genetic

profile.
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Table 6-1. Characteristics of mothers and children in study

population (n = 203).

Maternal factors at enrollment into POSGRAD

Age, years 27.1 (4.9)
BMI, kg/m? 26.3 (3.8)
Height, cm 155.0(5.2)
Primiparous (n, %) 59 (29.1%)
Schooling, years 12.1 (3.4)

Received prenatal DHA intervention
Offspring factors

103 (50.7%)

Female (n, %) 96 (47.3%)

Early life characteristics
Birth weight, g 3260 (475)
Gestational age at birth, weeks 39.2 (1.8)
Duration of BF, mo. 9.7 (7.9)

At age 11 years

Dietary intake
Energy intake (kcal/day) 2052 (707)
Lipids (g/day) 76.2 (36.4)
Saturated fat (g/day) 30.3 (16.9)
Monounsaturated fat (g/day) 25.2(13.6)
Polyunsaturated fat (g/day) 15.0 (8.8)
Cholesterol (g/day) 265 (184)
Omega-3 fatty acid intake (g/day) 0.9 (1.1)
Omega-6 fatty acid intake (g/day) 6.5(7.1)
n-6:n-3 fatty acid ratio 8.9 (5.7)

Sedentary time per day, min 4.9 (2.1)

Cardiometabolic factors
BMI, kg/m? 19.2 (3.6)
HDL-c, mg/dL 46.5 (10.7)
Glucose, mg/dL 88.6 (8.1)
TG, mg/dL 108.0 (60.4)
TC, mg/dL 162.0 (27.8)
LDL-c, mg/dL 95.3(23.4)
MetS Score 0.0 (0.5)

Values presented are mean (SD) unless otherwise stated.

BMI, body mass index; SES, socioeconomic status score; EBF,
Exclusive Breastfeeding; PreBF, Predominantly Breastfeeding; PaBF,
Partially Breastfeeding; NBF, No Breastfeeding; HDL, High Density
Lipoprotein Cholesterol; TG, Triglycerides; TC, Total Cholesterol; LDL-
¢, Low Density Lipoprotein Cholesterol; SBP, Systolic Blood Pressure;
MetS, Metabolic Syndrome; CMH, Cardiometabolic Health



Table 6-2. Genotype and allele frequencies of maternal and offspring FADS2 SNPs.
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Position M/m MAF MM Mm Mm HWE p-

(base pair) genotype  genotype  genotype value
Maternal
rs174602 61624414 C/T 0.37 81 (40) 93 (46) 29 (14) 1
Offspring
rs174578 61605499 T/A 0.2 130 (65) 59 (30) 10 (5) 1
1s2727271 61603358 A/T 0.41 71 (35) 98 (49) 33 (16) 0.57
rs174602 61624414 C/T 0.37 78 (38) 101 (50) 24 (12) 1
rs174605 61626921 G/T 0.13 150 (75) 48 (24) 3(1) 0.45
rs174450 61641542 G/T 0.24 116 (57) 78 (38) 9(4) 0.96

Data are n (%). M/m, major/minor alleles; MAF, minor allele frequency; HWE, Hardy-Weinberg equilibrium
Genetic data were subset to chromosome 11 and mapped to the human genome reference build GRCh37/hg19.
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Figure 6-1. Differences in MetS scores attributable to prenatal DHA supplementation (DHA —
placebo) by maternal and offspring genotype for SNP rs174602.
Graphs depict differences in MetS scores by category of a) maternal genotype for SNP rs174602
(p-interaction = 0.02) and b) offspring genotype for SNP rs174602 (p-interaction = 0.11) on
offspring MetS Score. Values are contrast-specific mean differences (95% CI) between DHA and
placebo groups from generalized linear models testing the interaction between FADS?2 single
nucleotide polymorphism rs174602 and supplementation group on MetS score adjusted for child
sex and age at measurement, maternal SES, BMI, parity and age at trial enrollment.
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Table 6-3. Mean differences in MetS Scores attributable to DHA supplementation (DHA —
placebo), by category of maternal and offspring genotype of SNP rs174602 (n = 203).

Offspring CC Carriers Offspring TC Carriers  Offspring TT Carriers

N=78 N=101 N =24
Maternal CC 0.34 (0.07, 0.62) -0.01 (-0.38, 0.35) _
Carriers N=51 N =30
Maternal TC -0.28 (-0.72, 0.15) -0.1 (-0.40, 0.21) -0.27 (-0.88, 0.34)
Carriers N =27 N=53 N=13
Maternal TT -0.06 (-0.44, 0.32) -0.6 (-1.1, -0.1)
Carriers - N=18 N=11

Values are contrast-specific mean differences (95% CI) between DHA and placebo groups from generalized linear
models testing the interaction between F4DS2 single nucleotide polymorphism rs174602 and supplementation group
on MetS score adjusted for child sex and age at measurement, maternal SES, BMI, parity and age at trial enrollment.
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Figure 6-2. Scatter plot of Mean MetS scores and dietary n-6:n-3 ratio, by categories of offspring

genotype for SNP rs174602.
Fitted lines represent linear regression estimates and shaded areas are 95% confidence bounds.

Abbreviations: C, Carriers of minor T allele (TT, TC), n=88; NC, Non-carriers of minor allele
(CC), n=53.
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Supplementary Figure 6-2. Contribution of cardiometabolic factors to PCA-derived continuous

MetS score.

a) Principal components analysis (PCA) was used to calculate the MetS score using five
components used to define metabolic syndrome in pediatric populations. Top PCs were identified
visually using scree plots and quantitatively using eigenvalues > 1. Scores were calculated as the
sum of the top components, weighted by variance explained. The x axes represent the top PCs used
to create the MetS score and percentage of variance in the data explained by each PC via PCA.
The diameter of each bubble represents the magnitude of contributions (%) of individual MetS
components to each PC. Cardiometabolic factors with the highest contributions represent the most
important variables within each PC. The highest contributing components in the first PC contribute
most to the derived scores and b) distribution of continuous MetS score in study population.
Abbreviations: MetS, metabolic syndrome; PC, Principal Component.
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Supplementary Table 6-1. Maternal baseline characteristics and
offspring characteristics at birth, stratified by treatment group.

Treatment group?

Placebo DHA
N=100 N=103
Maternal factors, enrollment
Age, years 26.9 (4.62) 27.3 (5.11)
BMI, kg/m? 26.2 (3.74) 26.4 (3.89)
Height, cm 156 (5.00) 155 (5.31)
First pregnancy, % 29 (29.0%) 30 (29.1%)
SES Score 0.12 (1.05) 0.16 (0.86)
Schooling, years 12.3 (3.51) 11.8 (3.37)
Dietary intake at enrollment, g/day
ALA 1.80 (1.05) 1.80 (1.11)
DHA 0.08 (0.06) 0.09 (0.09)
LA 19.6 (8.08) 20.1 (9.48)
EPA 0.03 (0.03) 0.04 (0.05)
AA 0.15 (0.07) 0.16 (0.10)
Compliance to intervention, % 94.9 (5.05) 95.9 (4.67)

Offspring factors, birth
Sex
Male
Female
Birth weight, g
Gestational age, weeks

Breastfeeding status, 3 mo, %
EBF

47 (47.0%)
53 (53.0%)
3245 (512)
39.1 (1.65)

16 (17.4%)

60 (58.3%)
43 (41.7%)
3274 (437)
39.3(1.87)

11 (11.8%)

PreBF 18 (19.6%) 11 (11.8%)
PaBF 44 (47.8%) 50 (53.8%)
NBF 14 (15.2%) 21 (22.6%)
Duration of BF, mo 10.7 (8.24) 8.65 (7.41)

2 Chi-square tests, t-tests, and ANOVA were used to test differences between
groups. No differences by treatment group were observed. Values presented
are mean (SD) unless otherwise stated.

BMI, body mass index; SES, socioeconomic status score; ALA, Alpha-
Linolenic Acid; DHA, Docosahexaenoic Acid; LA, Linoleic Acid; EPA,
Eicosapentaenoic Acid; AA, Arachidonic Acid; EBF, Exclusive
Breastfeeding; PreBF, Predominantly Breastfeeding; PaBF, Partially

Breastfeeding; NBF, No Breastfeeding; mo, month.
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Supplementary Table 6-2. Characteristics of mothers at study enrollment and
POSGRAD offspring at 11 years of age in analytic and excluded samples (n = 973).

Analytic sample

Excluded sample

n=203 n=770

Maternal factors
Age, years® 27.1 (4.9) 26.0 (4.6)
BMI, kg/m? 26.3 (3.8) 26.0 (4.3)
Height, cm 155(5.2) 155 (5.8)
Primiparous® 59 (29.1%) 311 (40.4%)
SES Score 0.00 (1.00) 0.00 (1.01)
Schooling, years 11.9 (3.6) 11.9 (3.6)
Dietary intake at enrollment

ALA, mg/d 1.80 (1.08) 1.67 (0.96)

DHA, mg/day 0.08 (0.07) 0.08 (0.08)

LA, mg/day 19.8 (8.80) 19.0 (9.21)

EPA, mg/day 0.03 (0.04) 0.03 (0.05)

AA, mg/day 0.16 (0.09) 0.15 (0.09)
E‘:gfvigig;enml DHA 103 (50.7%) 384 (49.9%)
Compliance to intervention, % 95.4 (4.9) 94.9 (5.9)
Offspring factors
Females 96 (47.3%) 364 (47.3%)
Birth weight, g 3260 (475) 3190 (456)
Gestational age at birth, weeks 39.2 (1.8) 39.1(1.8)

Breastfeeding status, 3 mo
EBF
PreBF
PaBF
NBF

Breastfeeding duration, mo?*

27 (14.6%)
29 (15.7%)
94 (50.8%)
35 (18.9%)
9.67 (7.9)

77 (11.8%)
70 (10.7%)
393 (60.3%)
112 (17.2%)
8.36 (7.6)

Values presented are mean (SD) unless otherwise stated.
2 Values differ between analytic and excluded samples, as assessed by chi-square tests,

t-tests, and/or ANOVA.

BMI, body mass index; SES, socioeconomic status score; ALA, Alpha-Linolenic Acid;
DHA, Docosahexaenoic Acid; LA, Linoleic Acid; EPA, Eicosapentaenoic Acid; AA,
Arachidonic Acid; EBF, Exclusive Breastfeeding; PreBF, Predominantly Breastfeeding;
PaBF, Partially Breastfeeding; NBF, No Breastfeeding
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Supplementary Table 6-3. Maternal and offspring characteristics at study enrollment, birth, and 11 years follow up, stratified by offspring genotype
of SNP rs174602 and dietary n-6:n-3 ratio.

Offspring FADS2 SNP 15174602 Offspring n-6:n-3 fatty acid ratio
Low Medium High
cC CT TT (<6.67) (6.67-8.61) (>8.61)
N =203 N=78 N=101 N=24 N=50 N=49 N=49
Maternal factors
Age, years 27.1 (4.9) 26.7 (4.5) 27.7(5.0) 26.1(5.24) 28.0 (4.3) 26.8 (5.1) 26.6 (4.4)
BM]I, kg/m? 26.3 (3.8) 259 (3.4) 26.6 (4.1) 26.5(3.7) 26.9 (3.4) 26.0 (3.8) 26.1 (3.4)
Height, cm 155(5.2) 155 (5.8) 156 (4.9) 156 (3.7) 155 (6.1) 155 (4.6) 156 (4.6)
First pregnancy, % 59(29.1%) 23 (29.5%) 28 (27.7%) 8(33.3%) 9 (18.0%) 14 (28.6%) 15 (30.6%)
SES Score 0.14 (0.96) 0.03 (0.98) 0.14 (0.93) 0.54(0.93) 0.00 (0.95) 0.36 (1.01) 0.12 (0.93)
Schooling, years 12.1(3.4) 11.6 (3.7) 12.2(3.3) 13.0 (2.9) 12.3 (3.6) 123 (3.2) 12.1 (3.5)
Dietary intake at enrollment, g/day
ALA 1.80 (1.08) 1.82(1.01) 1.76 (1.13) 1.92 (1.08) 1.73 (0.98) 1.68 (1.03) 1.82 (1.10)
DHA 0.08 (0.07) 0.09 (0.09) 0.08 (0.06) 0.08 (0.07) 0.08 (0.06) 0.09 (0.07) 0.07 (0.05)
LA 19.8 (8.80) 20.3 (7.69) 19.2 (9.14) 20.7 (10.7) 19.9 (9.44) 19.4 (9.06) 19.8 (9.00)
EPA 0.03 (0.04) 0.03 (0.05) 0.03 (0.04) 0.03 (0.03) 0.03 (0.04) 0.03 (0.04) 0.03 (0.03)
AA 0.16 (0.09) 0.17 (0.08) 0.15 (0.06) 0.18 (0.16) 0.15 (0.05) 0.18 (0.12) 0.15 (0.07)
Received prenatal DHA intervention, % 103 (50.7%) 42 (53.8%) 49 (48.5%) 12 (50.0%) 28 (56.0%) 30 (61.2%) 23 (46.9%)
Compliance to intervention, % 95.4 (4.9) 95.2(5.5) 95.4 (4.3) 95.8 (5.0) 94.6 (5.8) 96.0 (4.9) 96.5 (3.6)
Offspring factors
Sex
Male 107 (52.7%) 41 (52.6%) 54 (53.5%) 12 (50.0%) 25 (50.0%) 30 (61.2%) 23 (46.9%)
Female 96 (47.3%) 37 (47.4%) 47 (46.5%) 12 (50.0%) 25 (50.0%) 19 (38.8%) 26 (53.1%)
Birth weight, g 3259 (475) 3248 (563) 3254 (425) 3320 (356) 3204 (440) 3266 (502) 3274 (460)
Gestational age at birth, weeks 39.2(1.8) 39.2(1.9) 39.1 (1.70) 39.4 (1.36) 39.1(1.91) 39.1(2.02) 39.0 (1.71)
Duration of BF, mo. 9.7 (7.9) 9.2(7.5) 10.3 (8.3) 8.6 (7.5) 9.5 (7.00) 9.9 (8.8) 8.7(7.7)
Total sedentary time at age 11 years,
hrs/day 491(2.10)  4.66(2.18) 5.05 (2.15) 5.10 (1.74) 4.78 (2.64) 5.32(1.80) 4.88 (2.00)
Dietary intake at age 11 years®
Energy intake (kcal/day) 2052 (707) 2032 (734) 2073 (671) 2030 (789) 2135 (715) 2048 (717) 1970 (695)
Lipids (g/day) 76.2 (36.4) 73.9 (36.7) 78.8 (31.6) 73.5 (50.0) 78.3 (35.8) 753 (33.4) 74.9 (40.2)
Saturated fat (g/day) 30.3 (16.9) 29.8 (18.9) 31.5(15.3) 27.1(17.3) 34.1 (18.8) 26.7 (13.5) 29.8 (17.5)
Monounsaturated fat (g/day) 25.2(13.6) 24.9 (13.5) 259 (11.7) 24.0 (19.5) 26.7 (12.9) 23.8(10.6) 25.1(16.7)
Polyunsaturated fat (g/day)® 15.0 (8.8) 14.2 (7.6) 15.7 (8.1) 14.9 (13.1) 14.8 (7.6) 17.7 (10.4) 12.5(7.4)
Cholesterol (g/day) 265 (184) 265 (197) 268 (179) 255 (176) 294 (200) 236 (136) 266 (207)
Omega-3 fatty acid intake® 0.90 (1.07) 0.82(0.82) 0.96 (0.92) 0.94 (1.88) 1.01 (0.98) 1.25(1.43) 0.45(0.37)
Omega-6 fatty acid intake® 6.52 (7.15) 5.54 (4.76) 6.85(5.93) 7.92 (13.6) 4.39(4.43) 9.31(10.3) 5.89 (4.11)
N-6:n-3 fatty acid ratio® 8.94 (5.74) 8.97 (6.56) 8.43 (4.99) 10.6 (5.79) 441 (1.74) 7.52 (0.53) 15.0 (6.06)

Values presented are mean (SD) unless otherwise stated.

* Dietary data only available for 141 individuals at age 11 years

®Values differ by offspring dietary n-6:n-3 ratio (p < 0.05) as assessed by chi-square tests, t-tests, or ANOVA.

Abbreviations: BMI, body mass index; SES, socioeconomic status score; ALA, Alpha-Linolenic Acid; DHA, Docosahexaenoic Acid; LA, Linoleic Acid; EPA,
Eicosapentaenoic Acid; AA, Arachidonic Acid; BF, Breastfeeding; mo, month.



Supplementary Table 6-4. Frequencies of offspring FADS haplotypes in study population (n =203).
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rs174578 rs2727271 rs174602 rs174605 rs174450 Frequency
Haplotype 1 A A T G T 0.13
Haplotype 2 A T T G G 0.07
Haplotype 3 T T C G G 0.25
Haplotype 4 T T C G T 0.05
Haplotype 5 T T T T G 0.06
Haplotype 6 A T C G G 0.26
Rare haplotype * * * * * 0.17

Rare haplotypes defined as any haplotypes with frequency <5%.
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Supplementary Table 6-5. Mean (95% CI) of MetS components and MetS score stratified by
offspring genotype for SNP rs174602 and n-6:n-3 diet ratio.

CC
N=53

TT or TC
N =288

BMI-z

Low n-6:n-3 ratio (<6.67)
Medium n-6:n-3 ratio (6.67-8.61)
High n-6:n-3 ratio (>8.61)

0.96 (0.38, 1.53)
1.02 (0.26, 1.77)
0.27 (-0.33, 0.87)

0.18 (-0.33, 0.69)
0.58 (0.11, 1.04)
0.72 (0.23, 1.21)

HDL

Low n-6:n-3 ratio (<6.67)
Medium n-6:n-3 ratio (6.67-8.61)
High n-6:n-3 ratio (>8.61)

43.5 (38.5, 48.4)
44.1 (37.6, 50.6)
50.5 (45.3, 55.7)

49.4 (45.0, 53.7)
46.1 (42.1,50.1)
45.5 (41.3,49.8)

Triglycerides

Low n-6:n-3 ratio (<6.67)
Medium n-6:n-3 ratio (6.67-8.61)
High n-6:n-3 ratio (>8.61)

130.1 (101.8, 159)
115.9 (78.5, 153)
116.2 (86.3, 146)

96.4 (71.2, 122)
105.4 (82.3, 129)
124.5 (100.2, 149)

Systolic Blood Pressure

Low n-6:n-3 ratio (<6.67)
Medium n-6:n-3 ratio (6.67-8.61)
High n-6:n-3 ratio (>8.61)

102.0 (98.5, 105)
105.8 (101.2, 110)
99.7 (96.0, 103)

99.9 (96.8, 103)
102.6 (99.8, 105)
104.8 (101.8, 108)

Glucose

Low n-6:n-3 ratio (<6.67)
Medium n-6:n-3 ratio (6.67-8.61)
High n-6:n-3 ratio (>8.61)

86.4 (83.2, 89.7)
91.9 (87.7, 96.2)
87.3(83.9, 90.7)

88.5 (85.6,91.3)
87.9 (85.3, 90.6)
88.6 (85.8, 91.4)

MetS Score

Low n-6:n-3 ratio (<6.67)
Medium n-6:n-3 ratio (6.67-8.61)
High n-6:n-3 ratio (>8.61)

0.08 (-0.15, 0.30)
0.31 (0.02, 0.61)
-0.15 (-0.39, 0.09)

-0.19 (-0.39, 0.007)
0.02 (-0.16, 0.21)
0.17 (-0.03, 0.36)

Data are expressed as mean MetS scores adjusted for sex, age, and energy intake
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Chapter 7 : Discussion and Conclusions

Since the first documentation of the potential cardioprotective benefits of n-3 LC-PUFAs
among Inuit populations in the 1970s, there has been substantial progress made investigating the
relationship between dietary LC-PUFAs and cardiometabolic health (1, 2). However, important
research gaps remain, especially during important periods of growth and development such as
gestation and early adolescence. First, additional research is needed to better characterize
cardiometabolic risk during childhood and adolescence and examine how risk factors cluster (3,
4). Second, evidence for the long-term effects of prenatal DHA supplementation on offspring
CMH are inconsistent and limited by heterogeneity across studies with respect to population
characteristics, supplement dose and duration, follow-up of offspring, and variations in FADS
genes (5-8). Additionally, most studies incorporating genetic information have typically been
conducted in European populations (9). Third, the respective contributions of maternal and
offspring FADS genetic profiles towards CMH are poorly understood. This dissertation addressed
these key gaps in the literature by examining the relationship between prenatal DHA
supplementation, maternal and offspring FADS polymorphisms, and cardiometabolic health in a
population of Mexican children. This discussion will first provide an overview of the key findings
from each of the three original research studies. Next, I will outline the strengths and limitations
of the methodological approaches used. Third, I will discuss the clinical and public health
implications of this work. Finally, I will offer recommendations for future research needed to
improve understanding of gene-nutrient interactions and ultimately guide the development of

targeted dietary and supplementation recommendations for mothers and children.

7.1 Key Findings
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In our first study, we examined clustering of cardiometabolic markers in a population of
Mexican children at age 11 years and compared a MetS score to an exploratory CMH score, which
additionally included adipokines, lipids, inflammatory markers, and adiposity, to assess
cardiometabolic profiles and better define cardiometabolic risk. We found that measures of
adiposity and lipids explained the most variation for both MetS and CMH scores, and the MetS
score captured nearly as much variation across measures of CMH as the exploratory CMH score.
Furthermore, children with overweight or obesity had higher MetS and CMH scores relative to
children with normal weight, reflecting increased risk. Our results aligned with previous research
reporting that low HDL and high triglycerides, along with increased BMI, are the most observed
cardiometabolic risk factors among Mexican populations (10-12). Additionally, this work
informed our decision to use the MetS score as the primary outcome for specific aims 2 and 3.

Next, we investigated the interactions between maternal and offspring FADS
polymorphisms, dietary LC-PUFA intake, and prenatal DHA supplementation in relation to
offspring measures of CMH at age 11 years. In our second study, we examined the effect of
prenatal DHA supplementation on offspring MetS scores and investigated effect modification by
variations in maternal FADS2 SNP rs174602. We focused on this SNP because, within the
POSGRAD study, we previously observed that this SNP modified the effect of the prenatal
intervention on offspring birth weight (13), metabolome at 3 mo. (14), and cognition at age 5 years
(15). Consistent with prior research, we did not find a main effect of prenatal DHA
supplementation on offspring MetS scores at 11 y (16-18); however, we observed evidence of
effect modification by variants of maternal SNP rs174602. Offspring of homozygous minor allele
(TT) carriers who received prenatal DHA had lower MetS scores relative to the placebo group,

while offspring of homozygous major allele (CC) carriers who received DHA had higher MetS
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scores relative to offspring whose mothers received placebo. These findings remained significant
even after adjusting for birth weight (i.e., the differences observed were not mediated by the effects
of the interaction on birth weight). Overall, our results suggested that prenatal DHA
supplementation may have differential effects on a child’s long-term cardiometabolic risk based
on their mother’s genotype.

Although maternal and offspring genetics are tightly linked, there is limited information
available on the relative contributions of offspring genotype towards CMH. To improve
understanding of the relationship between offspring FADS genetic profiles and CMH, in our third
study, we examined the role of selected variants in both maternal and offspring fatty acid
desaturase (FADS) genes on CMH at age 11 years and assessed interactions with prenatal
docosahexaenoic acid (DHA) supplementation and offspring diet quality at age 11 years. First, to
leverage the wealth of genetic information we had available for offspring and to reduce multiple
testing, we derived six F4DS haplotypes from five offspring SNPs. We examined the association
of offspring FADS haplotypes with MetS score and did not find any significant associations
relative to the reference haplotype. Next, we tested interaction between maternal treatment group
and maternal and offspring genotypes for SNP rs174602 on the offspring MetS score. While
offspring genotype did not independently modify the effect of the intervention on MetS score,
when we examined the effects of maternal genotype for SNP rs174602 stratified by offspring
genotype for SNP rs174602, mean differences in MetS scores between DHA and placebo groups
were larger when maternal and offspring genotypes were matched relative to a mismatch.
Additionally, we found evidence of interaction of offspring FADS SNP rs174602 with current
dietary PUFA intake. Individuals with TT or TC genotype and high dietary n-6:n-3 ratios had

higher MetS scores relative to those with low n-6:n-3 ratios, while individuals with CC genotype
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and high n-6:n-3 ratio ratios had lower MetS score relative to those in the lowest tertile. As we
hypothesized, these findings suggested that maternal genotype was more relevant than offspring
genotype for modifying the effect of the prenatal DHA intervention whereas offspring genotype
was more relevant for modifying the effects of dietary intake. However, contrary to our hypothesis,
among non-carriers, higher n-6:n-3 ratios were associated with lower MetS scores. These findings
align with recent research suggesting that n-6 fatty acids may be beneficial for cardiovascular
health (19, 20). Our aim 2 and 3 findings corroborate this, suggesting that based on genotype,
different diets may be advantageous for subsets of the population; however, further research is

needed to confirm these findings.

7.2 Strengths and Limitations

There are several important strengths to this dissertation, including the randomized design
of the original trial, standardized data collection methods, and the application of innovative
statistical methods to address the research aims. First, this dissertation leverages data from a large,
double-blind, placebo-controlled randomized controlled trial of prenatal DHA supplementation
during pregnancy. The intervention included a dose of 400 mg/day of algal DHA; use of DHA
alone instead of fish oil (DHA + EPA) enabled these analyses to isolate the effect of a sole nutrient
on the specified outcomes. Compliance to the prenatal intervention, measured as the percentage of
distributed treatment capsules consumed, was monitored weekly by fieldworkers and was high in
our study (> 90%).

Following the intervention, offspring born to POSGRAD mothers have been followed
since birth. The randomized design of the trial, along with extensive characterization of these
children over the life course, is one of the key strengths of this study. Block randomization at study

enrollment helps maintain the balance of known and unknown confounders between the
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comparison groups, offering a valuable opportunity to assess the effects of the intervention on
long-term outcomes. To our knowledge, no prior studies have characterized children spanning
from the prenatal period through early adolescence with FADS genetic information for mother-
child pairs within the context of a prenatal DHA supplementation trial. At age 11 years, multiple
measures of cardiometabolic health were measured simultaneously, including traditional MetS risk
factors, adiposity, adipokines, and measures of inflammation and insulin resistance. Additionally,
the age period of 11 years old offers a stable time for lipid assessment in children prior to the onset
of puberty for most of the study population. Furthermore, data collection and laboratory assays
were standardized, validated, and conducted by trained personnel within a clinical setting.
Another strength of our study was that it was conducted in Mexico, a region with
populations that typically have low dietary intakes of preformed DHA, high dietary intakes of n-6
fatty acids, and a high prevalence of alleles associated with lower conversion of precursor PUFAs
into LC-PUFAs. Most studies investigating the effects of n-3 DHA supplementation during
pregnancy, and especially those incorporating F'4DS genetic information, have been conducted in
populations of European descent (9); thus, this work is needed and timely to inform the
development of personalized dietary and supplement recommendations across diverse populations.
Along with these strengths, a few relevant limitations should be considered when
interpreting the findings from this dissertation. We used secondary data from a previously
conducted RCT that was originally designed to assess outcomes of child growth and development
early in the life course. Although the original size of the birth cohort was large (n=973 live births)
(21), loss to follow-up was high and the final analytical sample with data through age 11 years was
only 58% of the birth cohort; thus, selection bias may influence our findings. However, we

evaluated and addressed selection bias by adjusting for factors that differed between individuals
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in the cohort and those lost to follow-up in all multivariable regression models. While mothers of
children in our analytic samples tended to be older, have a higher BMI, and have a higher
socioeconomic status at trial enrollment relative to those lost to follow up, all maternal
characteristics were balanced by treatment group in both the analytic samples and missing samples,
and loss to follow up did not differ by treatment group. Additionally, there may be limited
statistical power to detect differences by treatment group or genotype. However, we maximized
power by leveraging linkage disequilibrium between genetic variants to estimate haplotypes and
reducing the number of tested CMH outcomes by deriving a continuous MetS score via PCA.
Although PCA is a powerful dimensionality-reduction tool, it should be noted that loading
coefficients of individual cardiometabolic factors from PCA are only applicable to the population
from which they are derived. Maternal dietary intake at study enrollment was assessed using a
food-frequency questionnaire that was specifically designed to include important PUFA sources
(22); however, LC-PUFA status of mothers was only available in a subset of the population.
Offspring dietary data at age 11 y were collected via single 24-hour recall and may be subject to
recall bias. Pubertal status was assessed by documenting attainment of menarche in females and
testosterone concentrations among a subset of males, as compared to more robust methods such as
assessing Tanner stages (23). Finally, although we were able to account for total sedentary time
(including screen time), we did not have access to a gold-standard measure of physical activity.
Overall, generalizability of results may be limited; this work should be reproduced using large,
nationally representative datasets in Mexico with consistent sets of cardiometabolic measures, as

well as across populations with diverse ethnic backgrounds.
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7.3 Clinical and Public Health Implications

Findings from this dissertation have several relevant implications for improving
characterization of cardiometabolic risk in pediatric populations and the development of targeted
dietary and supplementation recommendations for mothers and children. First, as it becomes less
expensive to collect and test blood samples, it is becoming increasingly feasible to collect more
comprehensive cardiometabolic data. However, it is important to understand if there is added value
in utilizing additional biomarkers to characterize overall cardiometabolic health during this life
stage, especially in low-resource environments. Results from our first study showed that MetS
scores capture a similar amount of variation compared to CMH scores that incorporated additional
biological measures, and across both scores, adiposity accounted for most of the variation in CMH
at age 11 years. These results suggested that, particularly within resource-limited settings, it may
be most efficient and cost-effective to screen individuals at elevated risk (those with at least one
cardiometabolic risk factor, including overweight/obesity) for more intense disease prevention
strategies, which may include additional testing of cardiometabolic markers.

Results from our second and third studies have important implications for the design and
interpretation of supplementation trials. We showed that diet quality and/or supplementation may
have differential effects on cardiometabolic risk based on maternal or offspring genotype.
Although additional research is needed to confirm these findings, this work suggests that, in the
future, it may be beneficial to account for a mother’s F4DS genetic profile when providing prenatal
supplementation recommendations, while offspring FADS genetic profile can be used to inform
diet quality and, if needed, use of supplements during childhood and adolescence. Overall, our
findings reinforce the need for inclusion of genotype information in nutrition supplementation

randomized controlled trials. This also has relevance beyond the observed interaction between LC-
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PUFAs and FADS genes; several other nutrient-gene interactions have been identified, such as
interactions between the MTHFR gene and folate intake and the PEMT gene and choline (24, 25).

Our findings also provide further support that some women may benefit more from n-3
LC-PUFA supplementation based on baseline LC-PUFA status, habitual diet, and genetic
variation. We performed this study in a population of Mexican women with low dietary intakes of
DHA, along with diets high in n-6 fatty acids (22). While there are currently no dietary reference
intake recommendations for LC-PUFAs established by the Institute of Medicine, several groups
recommend that women of reproductive age consume at least 200 mg DHA per day, which is
attainable by consuming two servings of fish per week (26). For example, one 3 oz serving of
Atlantic salmon provides 1.22 g of DHA; two servings per week would provide nearly 2.5 g
DHA/week, or 350 mg/day. Therefore, the dose of DHA used in this intervention trial and
associated findings align with an amount of DHA that can be obtained through diet alone.
Additionally, demonstrating these effects on CMH using an algal form of DHA has important
implications, especially as vegetarian and vegan diets become increasingly popular due to
religious, ethical, and other reasons, such as reducing greenhouse gas emissions due to animal
agriculture. Using an algal form of DHA in this trial further adds to the evidence base, especially
for those who do not consume fish oil or seafood. Currently, the Dietary Guidelines for Americans
recommend that pregnant women suggest eating two servings of seafood per week, rather than
emphasizing the importance of nutrients (e.g., folate, iron). It will be important to engage with
healthcare providers and improve knowledge translation in the healthcare setting by better
connecting food to nutrients. This will help ensure that patients are able to easily practice dietary

recommendations once established, no matter their personal diet.

7.4 Recommendations for Future Research
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This dissertation utilized data from a randomized controlled trial of DHA supplementation,
in which children have been followed since birth. The current study focused on cardiometabolic
health of the children at age 11 years; however, there are several important research questions,
among others, that can be answered using the POSGRAD study framework. It will be useful to
continue to follow the POSGRAD children through adulthood to: 1) consistently collect a
comprehensive set of cardiometabolic factors at multiple time points during adolescence and early
adulthood to determine the temporality of risk factor development and disease progression; 2)
compare MetS and CMH scores at multiple time points and determine which of these scores offer
more useful predictions of adult cardiometabolic risk; and 3) determine if differences in MetS
scores at age 11 years have lasting implications for adult cardiometabolic health.

In the current study, we assessed dietary intake of children using a single 24-hour recall.
However, future observational research should consider more accurate methods of assessing
dietary intake, such as collecting repeated measures of diet, along with objective biomarkers of
PUFA and LC-PUFA status. For example, plasma phospholipid DHA, erythrocyte DHA, and
platelet DHA have all been identified as effective and robust markers of DHA status (27). By
quantifying fatty acid concentrations, A5 and A6-desaturase activity can be calculated (by dividing
parent PUFA by LC-PUFA concentrations for the n-6 and n-3 series, respectively) and correlated
with FADS SNPs. Additionally, the utility of dietary n-6:n-3 ratios remains controversial, with
some evidence suggesting that absolute intake of n-6 and n-3 PUFAs is more relevant than the n-
6:n-3 ratio, but this merits further examination. Within the POSGRAD study, a dietary intervention
trial could be conducted to further examine interaction between selected FADS genetic variants
and dietary LC-PUFA intake to assess whether an optimal n-6:n-3 ratio for cardiometabolic health

exists.
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Historically, randomized controlled trials have been designed with a focus on
generalizability (i.e., understanding whether supplementing the general population with a nutrient
will yield a health benefit). However, for most nutrients, a one-size-fits-all approach is suboptimal.
It is now known that individuals can respond differently to the same foods, nutrients, and
supplements consumed due to a variety of factors including, but not limited to diet, environmental
exposures, microbiome, intrauterine exposures, and genetics. As the world moves towards using
personalized approaches to solve nutrition challenges, trials should be designed such that they
better capture background exposures, including dietary intake, supplement use, baseline nutrient
status, and genetic information. For example, a multi-center, double-blind, randomized, superiority
trial recently showed that women with low baseline DHA status benefit more from a high-dose
DHA supplement (1000 mg) during pregnancy relative to a low dose supplement (200 mg) to
prevent preterm birth (28). Likewise, future work could investigate whether women with low
baseline DHA status and certain FADS genotypes benefit more from high dose DHA
supplementation during pregnancy. In a similar vein, it is also important to consider systems
biology approaches for assessing effects of nutrition supplementation. As high-dimensional data
and advanced analytic methods to probe gene-environment interactions become increasingly
available, it is becoming more apparent that nutrients do not work in isolation on one organ system.
Future work should focus on understanding how the entire biological system responds to DHA
supplementation using various “omics” technologies (i.e., genomics, transcriptomics, proteomics,
metabolomics) to better guide the development of personalized dietary recommendations (29).

Overall, this work emphasizes the value of a life course approach towards studying
prevention of cardiometabolic disease. While the DOHaD theory generally reflects the importance

of maternal nutritional status for long-term offspring health, there is increasing recognition of the



192

paternal role as well; newly designed studies and trials should also consider including paternal
nutritional exposures and genetic information (30). Finally, replication of findings is critical for
ensuring validity, especially in studies incorporating genetic information. Given the large variation
in habitual diet, LC-PUFA status, and genotype distributions across populations, this work should

be reproduced in larger, independent cohorts.
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