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Abstract  

Effects of prenatal DHA supplementation and maternal and offspring FADS polymorphisms in 
relation to cardiometabolic health of Mexican children 

 
By Sonia Tandon Wimalasena  

 
Risk factors for cardiometabolic disease are emerging earlier in the life course, including 

among children and adolescents. Polyunsaturated fatty acids (PUFAs) have a cardioprotective role 
as precursors to the n-3 and n-6 long-chain PUFAs (LC-PUFAs), which modulate inflammation. 
However, gaps remain in our understanding of the role of LC-PUFAs for cardiometabolic health 
(CMH) during critical periods of growth and development, such as gestation and early 
adolescence. Currently, the long-term effects of prenatal n-3 docosahexaenoic acid (DHA) 
supplementation are unclear, which may be partially attributable to population heterogeneity in 
variants of the fatty acid desaturase (FADS) genes that regulate LC-PUFA metabolism. The 
objective of this dissertation was to examine the relationship between prenatal DHA 
supplementation, maternal and offspring FADS polymorphisms, and cardiometabolic health in a 
population of Mexican children. To accomplish this, we used data from a double-blind randomized 
controlled trial of prenatal DHA supplementation (POSGRAD) in Mexico, in which the offspring 
have been followed from birth (n=973) through age 11 years (n = 566).  

First, we examined clustering of cardiometabolic markers in 413 children and compared a 
metabolic syndrome (MetS) score to an exploratory CMH score, which additionally included 
adipokines and inflammatory markers. We found that measures of adiposity and lipids explained 
the most variation for both scores, and the MetS score captured nearly as much variation as the 
exploratory CMH score. Next, we evaluated the effect of prenatal DHA supplementation on 
offspring MetS scores and examined the role of variations in maternal FADS single nucleotide 
polymorphisms (SNPs) in 314 children. There was no main effect of prenatal DHA 
supplementation; however, we observed effect modification by variants of maternal SNP 
rs174602. Offspring of maternal TT genotype who received prenatal DHA had lower MetS scores 
relative to the placebo group, while offspring of maternal CC genotype who received DHA had 
higher MetS scores relative to offspring whose mothers received placebo. Finally, we examined 
the role of variants in both maternal and offspring FADS genes on MetS scores and assessed 
interactions with prenatal DHA supplementation and offspring diet quality (n=203). Offspring 
SNP rs174602 did not modify the association of prenatal DHA supplementation with MetS score. 
Although associations between examined FADS haplotypes and MetS score were null, there was 
evidence of interaction between SNP rs174602 and current dietary PUFA intake; children with TT 
or TC genotype and high dietary n-6:n-3 ratios had higher MetS scores relative to those with low 
n-6:n-3 ratios, while children with CC genotype and high n-6:n-3 ratios had lower MetS scores 
relative to those with low n-6:n-3 ratios. 

The findings from this dissertation provide valuable insights by improving our 
understanding of cardiometabolic risk early in the life course and demonstrating the importance of 
examining gene-nutrient interactions, especially for interpreting results from nutrition 
supplementation trials. While further research is needed to validate our findings in larger, 
ethnically diverse populations, this work has the potential to guide and inform the development of 
targeted nutrition recommendations early in the life course to improve CMH. 
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Chapter 1 : Introduction 
 

Cardiometabolic diseases, which include cardiovascular disease, stroke, and type II 

diabetes mellitus, are the leading causes of mortality worldwide (1).  By 2030, global costs 

associated with cardiovascular disease alone will exceed $1 trillion (2). Risk factors, including 

high blood pressure, insulin resistance, obesity, and adverse lipid profiles track from childhood to 

adulthood and are becoming increasingly prevalent earlier in the life course (3, 4). While it is well 

known that cardiometabolic risk factors cluster, there is no consensus on how to define 

cardiometabolic risk in pediatric populations (5). Nutrition is a key modifiable determinant of 

cardiometabolic health (CMH); therefore, understanding the optimal timing of nutrition 

interventions to prevent disease development is a critical area of investigation (6-8). 

Polyunsaturated fatty acids (PUFAs) are important for CMH because they are precursors 

to the long-chain PUFAs (LC-PUFAs) n-6 arachidonic acid (AA), n-3 eicosapentaenoic acid 

(EPA) and n-3 docosahexaenoic acid (DHA), which modulate inflammation (9, 10). Western diets 

characterized by a high n-6:n-3 intake ratio (~16:1) have been previously associated with multiple 

chronic diseases in adults, and supplementation with n-3 LC-PUFAs reduces inflammation, insulin 

resistance, blood pressure, and lipid profiles (11, 12). Despite substantial evidence that nutritional 

exposures as early as gestation can have permanent metabolic programming effects (13, 14), the 

role of exposure to n-3 and n-6 LC-PUFAs during critical periods of growth and development, 

such as gestation and early adolescence, for later CMH remains unclear.  In animal models, 

prenatal n-3 LC-PUFA supplementation reduces adiposity (15-17) and improves adult metabolic 

profiles among the offspring (15, 17, 18). However, randomized controlled trials (RCTs) of 

prenatal DHA supplementation report inconsistent findings for offspring CMH outcomes, which 

may be attributable to heterogeneity across studies with respect to types of omega-3s (e.g. fish oil 



 

 

2 

vs. DHA only), dose, timing of supplementation, characteristics of mothers, variable length of 

follow-up, and genetic variation (19-23). Systematic reviews call for additional follow-up of 

completed trials to account for metabolic changes that may emerge later in childhood (20, 24). 

Genetic variants of fatty acid desaturase (FADS) genes that regulate the conversion of both 

n-3 and n-6 precursors into their LC-PUFA forms may explain the inconsistent results observed 

across trials (25). Most studies incorporating genetic information have been conducted in European 

populations; however, there is ethnic variation in the genotype distribution of FADS variants (26, 

27). While European populations predominantly have FADS alleles associated with more rapid 

conversion of precursor PUFAs (25), Native American and Mexican populations have a higher 

frequency of alleles associated with slower conversion and may have increased n-3 LC-PUFA 

dietary requirements (28). Additional research is needed across populations that vary in FADS 

genotype and PUFA intake to guide development of targeted recommendations. 

1.1 Objective & Specific Aims  
 
The overall objective of this dissertation is to examine the relationship between prenatal DHA 

supplementation, maternal and offspring FADS polymorphisms, and cardiometabolic health in a 

population of Mexican children (Figure 1-1). To meet this objective, we used data from the 

Prenatal Omega-3 Fatty Acid Supplementation and Child Growth and Development (POSGRAD) 

randomized controlled trial conducted in Cuernavaca, Mexico from 2005-2007 to address the 

following three research aims.  
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Figure 1-1. Summary of Research Aims. 

Aim 1 examines clustering of cardiometabolic markers at 11 years of age. Aim 2.1 tests the effect 

of prenatal DHA supplementation on offspring CMH; Aim 2.2 tests effect modification by variants 

in maternal FADS genes. Aim 3 assesses the role of selected variants in both maternal and 

offspring FADS genes on CMH.  

Abbreviations: POSGRAD, Prenatal Omega-3 Fatty Acid Supplementation and Child Growth and 

Development; DHA, docosahexaenoic acid; CMH, cardiometabolic health; FADS, fatty acid 

desaturase. 

 

Specific Aim 1: To examine clustering of cardiometabolic markers in Mexican children at age 11 

years and compare a metabolic syndrome (MetS) score to an exploratory CMH score. 

We hypothesized that the exploratory CMH score would explain more variation in 

children’s cardiometabolic health at age 11 years compared to the MetS score.  
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Specific Aim 2: Evaluate the effect of prenatal DHA supplementation on offspring CMH and 

investigate effect modification by variants in maternal FADS genes. 

We hypothesized that offspring born to women who are carriers of FADS alleles associated 

with slower conversion of precursors and exposed to prenatal DHA supplementation would 

have improved CMH profiles at age 11 y relative to the placebo group, with no differences 

by treatment group among those born to non-carriers. 

 

Specific Aim 3: Evaluate the role of selected variants in both maternal and offspring FADS genes 

on CMH at age 11y and assess interactions of genotype with offspring diet quality and prenatal 

DHA supplementation. 

a. We hypothesized that children who carry FADS alleles associated with more rapid 

conversion of precursors would have poorer CMH profiles relative to those with slower 

conversion.  

b. Secondarily, we hypothesized that maternal genotype would be more relevant than 

offspring genotype for modifying the effect of the prenatal DHA intervention whereas 

offspring genotype would be more relevant for modifying the effects of dietary intake.  

 

 Relevant literature on the pathophysiology of cardiometabolic diseases in pediatric 

populations, possible cardioprotective benefits of LC-PUFAs, and interactions between LC-PUFA 

intake and/or supplementation with FADS genetic polymorphisms is reviewed in Chapter 2. 

Chapter 3 provides additional detail on the data source for the studies, including study setting, 

participants, design of the original trial and follow-up study, and an in-depth discussion of 

statistical methods used. Details of the three original research studies based on each of the specific 



 

 

5 

aims (1-3) are provided in Chapters 4-6. Chapter 7 discusses key findings from this research, 

strengths and limitations, clinical and public health implications, and recommendations for future 

research. Through integration of genetic, clinical, and longitudinal data, this work seeks to address 

important research gaps to ultimately guide the development of targeted dietary and 

supplementation recommendations early in the life course to improve CMH. 
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Chapter 2 : Literature Review  
 

This chapter provides relevant background information on how and why cardiometabolic 

diseases develop, how certain nutrients, such as LC-PUFAs, may improve cardiometabolic risk 

factors, and how nutrients interact with genetic polymorphisms to influence cardiometabolic 

disease risk. First, I discuss the epidemiology and etiology of cardiometabolic disease, with an 

emphasis on Mexican children and adolescents. Next, I overview the role of LC-PUFAs in human 

health and discuss their potential cardioprotective benefits. Third, I review the evidence supporting 

the role of prenatal DHA supplementation in offspring cardiometabolic health, drawing on 

evidence from animal models, human observational studies, and human RCTs. Finally, I discuss 

the role of gene-nutrient interactions in CMH, focusing on the FADS genetic polymorphisms 

involved in LC-PUFA metabolism.  

2.1 Cardiometabolic disease in pediatric populations  
 
2.1.1 Health of school-age children, obesity epidemic, and tracking of risk factors across life 
course  
 

It is now well understood that early nutrition and lifestyle factors can have long-lasting 

impacts on the lifelong risk of obesity and associated non-communicable diseases, including 

cardiovascular disease (CVD), hypertension, and type II diabetes (1). Exposures as early as 

gestation, such as maternal genetics, obesity, nutritional status, and environmental exposures, can 

alter the fetal nutrient supply, growth, and development (2). In early postnatal life, infant feeding 

practices including nutrient content of milk, duration of breastfeeding, and introduction of 

complementary foods can all shape a child’s metabolism and microbiome (3). While the first 1,000 

days (pregnancy and first two years of life) have received much attention in terms of early life 

interventions to mitigate risk of chronic disease, the periods of childhood and adolescence 
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represent an important bridge between this rapid period of growth and development and the 

stability of adulthood. This is a dynamic time during which lifelong behaviors (e.g., dietary 

patterns, development of taste and food preferences, eating behaviors, sedentary habits, changes 

in sex hormones and pubertal status, and increases in psychological and social stressors) develop, 

all of which can influence the development of adiposity and increase risk of chronic disease.  

Childhood and adolescent overweight and obesity have emerged as one of the most 

important public health problems worldwide (4). Obesity is defined as an excess accumulation of 

adipose tissue, and its increase in prevalence during childhood has corresponded with the 

emergence of serious co-morbidities including type II diabetes, hypertension, non-alcoholic fatty 

liver disease, and dyslipidemia (4). The most common cause of obesity during childhood and 

adolescence is an inequity in energy balance (i.e., energy intake exceeds energy expenditure). It is 

well established that obesity and other risk factors for chronic disease can emerge early in life and 

track from childhood to adulthood. Studies have shown that approximately 55% of children with 

obesity go on to be obese as an adolescent, and 80% of adolescents with obesity go on to be obese 

as an adult (5). Therefore, identifying effective prevention strategies early in the life course is 

essential to mitigating overall disease burden (6).  

2.1.2 Epidemiology of cardiometabolic disease: distribution and determinants   
 

Cardiometabolic diseases, which include CVD, stroke, and type II diabetes, are leading 

causes of death globally. An estimated 17.9 million people globally died from cardiovascular 

disease alone in 2019, representing over 30% of all global deaths (7). Over three-quarters of CVD 

related deaths take place in low- and middle-income countries (7). Overwhelming evidence 

suggests that a substantial proportion of cases of cardiometabolic disease could be prevented via 
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lifestyle and behavioral changes such as a healthy diet, increasing physical activity, maintaining a 

healthy weight, avoiding tobacco products, and minimizing alcohol consumption (8).  

The prevalence of cardiometabolic disease varies worldwide. Geographic and ethnic 

differences may be attributable to differences in genetic and environmental factors (e.g., diet, 

socioeconomic status, and inequities in access to healthcare). The increasing burden of obesity and 

non-communicable diseases in Mexico over the past thirty years have placed the country at the 

forefront of global health efforts to reduce disease burden. This increase is largely due to the 

nutrition transition, which is characterized by a shift from high infectious disease morbidity and 

mortality to increased prevalence of non-communicable disease, changes in dietary patterns and 

increased intake of processed foods high in fat and sugar, urbanization, and technological 

advancements that have led to increased sedentary time for both work and leisure (9). Additionally, 

the substantial increase in imports of food products from the United States has vastly re-shaped 

the food environment in Mexico, making processed foods readily available. In Mexico, more than 

70% of adults are overweight or obese (BMI ≥ 25 kg/m2) (10). Of additional concern, younger 

generations have higher cumulative exposure to an obesogenic environment shaped by processed 

foods and low diet quality (11). A recent national survey in Mexico (ENSANUT MC 2016) found 

that among school-age children (aged 5-18 years), 17.9% (95% CI: 15.2-21.1) were overweight 

and 15.3% (95%CI: 12.5–18.6) were obese, with the highest prevalence among children aged 10-

11 years. The prevalence was higher among females compared to males and 5% higher in urban 

versus rural populations (12). Studies indicate that, aside from obesity, low HDL and high 

triglycerides are the most observed cardiometabolic risk factors present among Mexican children 

and adolescents (13-15).  

2.1.3 Physiology of metabolic syndrome and cardiometabolic disease  
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Metabolic syndrome (MetS) is a cluster of conditions, which includes hypertension, 

hyperglycemia, obesity, and dyslipidemia, that increases risk of heart disease, stroke, and type II 

diabetes. The term MetS was coined from a framework (originally “syndrome X”) used to describe 

the mechanisms underlying insulin resistance and its effects on glucose and lipid metabolism, 

blood pressure, and coronary artery disease risk (16). Obesity, insulin resistance, ectopic fat 

deposition, and inflammation play a central role in the pathophysiology of MetS. Healthy adipose 

tissue expansion is characterized by the formation of small new adipocytes that are vascularized 

and have minimal inflammation, while unhealthy expansion is characterized by inadequate 

angiogenesis, hypoxia, and storage of lipids in other tissues (e.g., liver, muscle) (3). The 

accumulation of free fatty acids, inflammatory cytokines, and lipid intermediates in non-adipose 

tissue (e.g., liver, muscles, and pancreas) leads to activation of inflammatory pathways (JNK, IKK, 

PKCs) and alterations in normal insulin signaling.  

Under normal conditions, insulin stimulates glucose uptake in skeletal muscles and 

adipocytes, promotes glycogen synthesis in skeletal muscles, suppresses hepatic glucose 

production, and inhibits lipolysis in adipocytes (17). In a state of insulin resistance, there is 

impaired glycogen synthesis and protein catabolism in skeletal muscles and increased lipolysis in 

the adipocytes, resulting in an increased release of free fatty acids and inflammatory cytokines into 

the circulation. The excess release of free fatty acids and triglycerides into the circulation induces 

ectopic adipose deposition and dyslipidemias (e.g., high plasma triglycerides, low high-density 

lipoprotein (HDL) cholesterol, and increases in small, dense low-density lipoprotein (LDL) 

cholesterol), which are atherogenic and are known to increase cardiovascular risk. Insulin 

resistance also contributes to endothelial dysfunction by decreasing production of nitric oxide, 

resulting in vasoconstriction and elevated blood pressure, platelet aggregation, and enhanced LDL 
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oxidation. The buildup of oxidized LDL contributes to plaque formation, leading to atherosclerosis 

and CVD. 

It is also important to consider the role of low-grade inflammation in the pathophysiology 

of cardiometabolic disease. C-reactive protein (CRP) is an established marker of systemic 

inflammation; elevated serum levels have been shown to be elevated in individuals with MetS and 

cardiovascular disease (18, 19). Excess adipose tissue is associated with increased levels of the 

pro-inflammatory acute phase reactant C-reactive protein (CRP) in the blood. The majority of 

adipokines released from adipose tissue, including leptin, resistin, interleukin-6 (IL-6), tumor 

necrosis factor α, and plasminogen activator inhibitor-1, have detrimental effects on cardiovascular 

health (20). With obesity, overexpansion of adipose tissue results in overproduction of these pro-

inflammatory molecules, promoting CVD pathogenesis (21). In contrast, adiponectin is one of the 

few adipokines that is decreased in obesity, anti-inflammatory, and associated with increased 

insulin sensitivity (22).  

Although obesity is generally considered a key contributor in the pathophysiology of MetS, 

it is important to consider that approximately one-third of individuals with obesity have 

metabolically healthy obesity (23), meaning that they meet the clinical definition of obesity but 

exhibit favorable cardiometabolic profiles (i.e., no dyslipidemia, hypertension, or hyperglycemia); 

however, it remains unclear whether this is a fixed or transient phenotype and warrants additional 

research (16, 20). Similarly, a subgroup of individuals with normal weight or underweight based 

on BMI definitions may present with clustering of cardiometabolic risk factors (24). Thus, it is 

important to consider the limitations of using measures of adiposity alone to classify 

cardiometabolic risk. One of the key concerns of using BMI is that it does not differentiate between 

lean and body fat mass; this can lead to misclassification among persons of muscular build or short 
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stature (23).  Methods including dual-energy X-ray absorptiometry (gold standard), bioelectrical 

impedance analysis, and air displacement plethysmography provide more granular measures of 

body composition via measurements of fat mass and fat-free mass (25).  

2.1.4 Defining CM risk in pediatric populations  
 

Despite the increases in cardiometabolic risk factors early in the life course, defining 

cardiometabolic risk in pediatric populations remains a key challenge. In adult populations, 

metabolic syndrome is diagnosed by the presence of at least three or more of the following risk 

factors: central adiposity, hyperglycemia, hypertriglyceridemia, hypertension, and low HDL, 

although definitions vary slightly (26). However, for children and adolescents, over 40 MetS 

definitions including different risk factors have been proposed, and there is no consensus on which 

definition should be used (Table 2-1) (27). Additionally, there is high heterogeneity in the 

prevalence of MetS based on the diagnostic criteria used. One study used a sample of 508 Mexican 

children aged 9-13 years to compare five definitions of MetS and found that the prevalence varied 

from 2.4 – 45.4% based on the definition used (28). This clearly demonstrated the poor 

performance of current criteria to diagnose MetS in Mexican children and adolescents. While the 

overall prevalence of MetS is low, it is highly prevalent in overweight and obese children (20).  
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Table 2-1. Comparison of Select Published MetS Definitions for Pediatric and Adult Populations. 

 Pediatric Definitions Adult Definitions 
 Cook et al. De Ferranti et 

al. 
Zimmet et al. 
(IDF definition 
for ages 10-16) 

Albierti et al. 
(IDF definition 
for Ages 16+) 

Grundy et al. 
(AHA/NHLBI) 

Criterion ≥ 3 criteria ≥ 3 criteria Obesity and at 
least 2 of 
remaining 4 
criteria 

Obesity and at 
least 2 of 
remaining 4 
criteria 

≥ 3 criteria 

Obesity WC ≥ 90th 
percentile (age 
and sex 
specific, 
NHANES III) 

WC > 75th 
percentile 

WC ≥ 90th 
percentile or 
adult cutoff if 
lower 

WC ≥ 94 cm for 
white men and 
≥80 cm for 
white women 

WC ≥ 102 cm in 
men and WC ≥ 
88 cm in women 

Glucose 
intolerance 

Fasting glucose 
≥ 110 mg/dL  

Fasting glucose 
≥ 110 mg/dL  

Fasting glucose 
≥ 100 mg/dL or 
known type 2 
diabetes 
mellitus 

Fasting glucose 
≥ 100 mg/dL or 
known type 2 
diabetes 
mellitus 

Fasting glucose 
≥ 100 mg/dL or 
drug treatment of 
elevated glucose 

Triglycerides Triglycerides ≥ 
110 mg/dL 

Triglycerides ≥ 
100 mg/dL 

Triglycerides ≥ 
150 mg/dL 

Triglycerides ≥ 
150 mg/dL (1.7 
mmol/L) or 
treatment of 
elevated 
triglycerides 

Triglycerides ≥ 
150 mg/dL (1.7 
mmol/L) or 
treatment of 
elevated 
triglycerides 

HDL-c HDL-C ≤ 40 
mg/dL  

HDL-C ≤ 50 
mg/dL 

HDL-C < 40 
mg/dL 

HDL-C < 40 
mg/dL in men 
and <50 mg/dL 
in women or 
specific 
treatment of low 
HDL-c 

HDL-C < 40 
mg/dL in men 
and < 50 mg/dL 
in women or on 
drug treatment of 
reduced HDL-C 

High BP BP ≥ 90th 
percentile (age, 
sex, and height 
specific) 

BP > 90th 
percentile 

Systolic BP ≥ 
130 mmHg or 
diastolic BP ≥ 
85 mmHg or 
treatment of 
previously 
diagnosed 
hypertension 

Systolic BP ≥ 
130 mmHg or 
diastolic BP ≥ 
85 mmHg or 
treatment of 
previously 
diagnosed 
hypertension 

Systolic BP ≥ 
130 mmHg or 
diastolic BP ≥ 85 
mmHg or 
treatment of 
previously 
diagnosed 
hypertension 

Source: The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor 
Clustering (Magge et al, 2017) (16) 
 

Beyond the challenges of identifying optimal diagnostic criteria, the clinical utility of 

diagnostic criteria remains controversial. Using dichotomous thresholds to diagnose MetS likely 

only captures severe outliers. Furthermore, they may inadequately characterize early risk 

trajectories by ignoring the continuous nature of risk (29, 30). It is important to consider that 

adolescence is a period of considerable metabolic and hormonal change, characterized by the onset 
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of puberty, accumulation of lean and fat mass, and increases in sex hormones and insulin resistance 

(31). Several epidemiologic studies have demonstrated an association between early onset of 

puberty and increased future risk of obesity and cardiometabolic disease (32-34). Some evidence 

additionally suggests that leptin and adiponectin, two adipokines that are correlated with obesity, 

may influence the initiation of puberty via modulation of the hypothalamic-pituitary-adrenal and 

hypothalamic-pituitary-gonadal axes (35-37). These substantial physiological changes may 

contribute to instability in categorical diagnoses of MetS over time. As such, one study among 

adolescents in the United States (baseline age range: 12.2-19.3 years) reported that metabolic risk 

factor clustering is consistent over time, but there was instability in clinical categorization of MetS 

between baseline and follow up three years later (38). The American Academy of Pediatrics now 

recommends that, instead of focusing on a particular MetS definition or specific cut-off levels for 

individual risk factors, pediatricians should identify children with clustering of multiple risk 

components (39). Within the research setting, this has led to use of composite risk scores, which 

are typically calculated as the sum or mean of age-, sex-, and race/ethnicity-standardized z-scores 

for each risk component (40, 41). Typically, the most used score components include waist 

circumference, mean arterial pressure, Homeostatic Model Assessment for Insulin Resistance 

(HOMA-IR), HDL, and triglycerides. However, there is heterogeneity across studies with respect 

to included components, and additionally, these scores assume that each component contributes 

equally to cardiometabolic risk. These limitations justify the need to evaluate alternate methods, 

such as principal component analysis (PCA), for deriving continuous MetS scores. Methodology 

will be further discussed in Chapter 3.  

2.2 Overview of LC-PUFAs  
 
2.2.1 Structure, function, and metabolism of PUFAs and LC-PUFAs 
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Essential fatty acids (EFAs) are polyunsaturated fatty acids (PUFAs) that are necessary for 

human growth and function but cannot be produced by the body, as the human body can only 

synthesize double bonds after the 9th carbon from the methyl end of a fatty acid (42). There are 

two classes of essential fatty acids: omega-6 fatty acids, which have a double bond in the omega-

6 position of the hydrocarbon chain (includes linoleic acid (LA, 18:2n-6) and its derivatives), and 

omega-3 fatty acids, which have a double bond in the omega-3 position (alpha-linolenic acid 

(ALA, 18:3n-3) and its derivatives) (Figure 2-1).  

 
Figure 2-1. Chemical structure of a) n-6 linoleic acid and b) n-3 alpha-linolenic acid. 

 
Dietary PUFAs are converted in the body to long-chain PUFAs by elongase enzymes, 

which add 2 carbons via acyl CoA, and desaturase enzymes, which add one double bond. With a 

steady supply of linoleic acid, arachidonic acid is produced in sufficient amounts; however, DHA 

and EPA can become conditionally essential due to a dietary deficiency or decreased enzyme 

activity.  Most of the biological functions of PUFAs are exerted by the long-chain active forms: n-

6 arachidonic acid (AA, 20:4n-6), n-3 eicosapentaenoic acid (EPA, 20:5n-3), and n-3 

docosahexaenoic acid (DHA, 22:6n-3). While the dietary PUFAs n-6 LA and n-3 ALA are 

primarily used for beta oxidation to provide energy, the LC-PUFAs are involved in production of 

membrane phospholipids and membrane fluidity, cell differentiation, signal transduction, 

regulation of genes involved in fatty acid synthesis and oxidation, and synthesis of lipid 
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biomediators such as prostaglandins, leukotrienes, thromboxanes, and resolvins involved in 

physiological processes including platelet aggregation, vasoconstriction, and inflammation (43).  

2.2.2 Role of LC-PUFAs in inflammation  
 

Although both classes of fatty acids are necessary for normal cell membrane structure and 

function, cell signaling, and regulation of gene expression, they play opposing roles in modulating 

inflammation. Although there are some exceptions, the n-6 LC-PUFA arachidonic acid generally 

produces pro-inflammatory and more physiologically potent prostaglandins, leukotrienes, and 

thromboxanes, while n-3 EPA produces anti-inflammatory eicosanoids and n-3 DHA produces 

molecules that resolve inflammation (44). The anti-inflammatory effects of n-3 LC-PUFAs may 

be attributable to altered cell membrane phospholipid fatty acid composition, disruption of lipid 

rafts, reduced expression of inflammatory genes via inhibition of nuclear factor kappa B, and 

activation of anti-inflammatory peroxisome proliferator activated receptor (PPAR) γ (45). Further, 

n-3 LC-PUFAs are able to partly inhibit aspects of inflammation including production of 

inflammatory cytokines, production of eicosanoids such as prostaglandins and leukotrienes, T cell 

reactivity, adhesion molecule expression, and leucocyte chemotaxis (45).  The n-3 LC-PUFAs 

compete with the n-6 LC-PUFAs for the same enzymes (COX and LOX) to synthesize different 

classes of eicosanoids. Thus, it is possible that excess intake of one class of fatty acids can lead to 

a decrease in conversion of the other class (i.e., excess intake of n-6 LA can lead to decreased 

formation of n-3 EPA and DHA). In the presence of large amounts of n-6 LC-PUFAs, conversion 

of ALA to EPA has been shown to be as low as 0.2 to 6%, and conversion to DHA is 0.05% or 

less (46). However, results from a mouse model showed that increasing dietary LA did not 

influence AA concentrations (47). While seemingly intuitive from a biochemical perspective, 
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research suggests that these pathways are more complex in the human body, especially because 

nutrients are not consumed in isolation.  

2.2.3 Role of LC-PUFAs in lipid and glucose metabolism  
 

n-3 LC-PUFAs have regulatory effects on enzymes involved in lipid and glucose 

metabolism (48). EPA and DHA are natural ligands for several nuclear receptors and 

transcriptional factors, including PPARα and PPARγ. PPARα is highly expressed in tissues with 

high fatty acid requirements, such as the liver, heart, and kidney, while PPARγ is highly expressed 

in adipose tissue. Activation of PPARα leads to reduced energy storage and enhanced fatty acid 

oxidation, resulting in reduced circulating triglyceride levels (49).  PPARα activation may also 

have beneficial implications for glucose homeostasis, as some reports suggest that PPARα agonists 

may enhance insulin sensitivity in adipose tissue and muscles and preserve pancreatic β-cell 

function (50). Activation of PPARγ, meanwhile, leads to inhibition of nuclear factor κB (NF-κB) 

activity and inflammation (51). n-3 LC-PUFAs may also maintain glucose homeostasis via 

decreased activation of c-Jun N-terminal kinase (JNK) pathways and reduced insulin receptor 

substrate (IRS) phosphorylation. Additionally, n-3 LC-PUFAs have been shown to have anti-

thrombotic properties, improve endothelial function, lower plasma triglycerides and LDL 

cholesterol, and inhibit cell growth factors (52). 

2.2.4 Dietary sources and recommended dietary intakes 
 

Unlike all other fatty acids, omega-3 and omega-6 fatty acids cannot be made by the body 

and must be obtained through the diet to support normal function. Omega-6 fatty acids are found 

in most seeds and vegetable oils, and the omega-6 LC-PUFA AA is abundant in the meat (e.g., 

chicken, beef) and eggs of animals fed grain diets high in omega-6 fatty acids. ALA is found in 

walnuts, flax, chia seeds, leafy greens, and plant oils, such as canola, soybean, and flaxseed oils, 
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and n-3 LC-PUFAs EPA and DHA are found in coldwater oily fish (e.g., salmon, sardines, and 

herring), algae, fish oils, and krill oils. Fish do not synthesize n-3 LC-PUFAs but are an excellent 

source of DHA + EPA because it accumulates in their flesh as they consume algae. While n-6 fatty 

acids are highly abundant in the food supply in most seeds, vegetable oils, animal products, and 

processed foods made using these products, omega-3s are found in far fewer sources (53). 

The recommended dietary intakes of omega-3 and omega-6 fatty acids differ by age, sex, 

and health status. There is no specific recommended dietary intake of omega-6 fatty acids, but it 

is recommended that they make up between 5-10% of total daily calories (54). The Institute of 

Medicine (IOM) has not established specific dietary reference intake recommendations for EPA, 

DHA, or other n-3 LC-PUFAs, but adequate intakes (AIs) for ALA have been established. For 

children aged 9-13 years, recommended AIs are 1200 mg per day for males and 1000 mg per day 

for females (55).  During pregnancy, the recommended AI is at least 1400 mg ALA. Consensus 

recommendations by the World Association of Perinatal Medicine state that pregnant women 

should aim to achieve average daily intakes of at least 200 mg DHA (56). The Dietary Guidelines 

for Americans recommends that pregnant women eat 8 to 12 oz (2 to 3 servings) per week of fish 

that are low in mercury. The American Heart Association recommends intakes of 1 g/day of 

DHA+EPA for adults with coronary heart disease and 3-4 oz per week for unaffected people as 

part of a heart-healthy diet (57). Some evidence suggests that the n-6/n-3 ratio may have important 

implications for pathogenesis of cardiovascular disease and cancer, but the optimal intake ratio, if 

any exists, has yet to be defined. While the focus of this dissertation is primarily on the potential 

cardioprotective benefits of n-3 DHA, it is important to consider that n-6 linoleic acid may also be 

beneficial for preventing cardiovascular disease (58). A study among nearly 900 healthy men and 

women in the United States reported that n-6 fatty acids do not inhibit the anti-inflammatory 
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actions of n-3 fatty acids, and a combination of both n-6 and n-3 fatty acids is associated with the 

lowest levels of inflammation. This work suggested that absolute intakes of n-3 and n-6 are more 

important than the ratio, but overall, examination of the relevance and clinical and public health 

implications of the n-6:n-3 ratio warrants further research. To improve the ratio of omega-3 to 

omega-6 in the body, it is currently recommended to consume more omega-3 fatty acids, not 

reduce intake of omega-6 fatty acids. 

2.2.5 Changes in the food supply  
 

The rise in risk factors for chronic disease among both adults and children has been 

paralleled by major changes in the food supply in the past 100 years. Advancements in agriculture 

and food technology have led to widescale production of vegetable oils high in n-6 fatty acids, 

changes in animal feed from grass to grain-based diets, and the widespread adoption of western 

diets (59). These changes have led to major shifts in dietary fat composition, especially n-6 and n-

3 PUFAs, resulting in diets high in n-6 PUFAs. During paleolithic times, humans consumed a diet 

with a balanced ratio of n-6 to n-3 (1:1) in their diet; however, modern western diets are reported 

to have an n-6:n-3 ratio of approximately 16:1 (60). The simultaneous increase in inflammation-

related chronic disease and consumption of omega-6 fatty acids has occurred despite more recent 

reductions in saturated fat and total fat intake.  

2.3 Prenatal DHA supplementation and cardiometabolic health 
 

The initial evidence supporting a potential cardioprotective role of n-3 LC-PUFAs came 

from the discovery that Greenland Eskimos, who had a diet rich in fatty fish, had lower mortality 

of coronary heart disease relative to Danish and American populations (61, 62). These initial 

findings motivated a wave of observational, experimental, and intervention studies to further 

understand this association and the underlying mechanisms.  
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Several early randomized controlled trials conducted among non-pregnant adults suggested 

beneficial effects of n-3 fatty acids on cardiovascular health in individuals with previous 

cardiovascular events; they reported that increasing consumption of fatty fish or n-3 LC-PUFA 

supplements led to reductions in CVD, coronary heart disease, myocardial infarction, stroke, and 

related fatalities (52, 63-65). Other studies have shown that supplementation with n-3 LC-PUFAs 

improves insulin resistance, blood pressure, and dyslipidemia via reduction of triglycerides (44, 

60, 66-68). In contrast, numerous studies have reported no significant association with CVD or 

diabetes outcomes (52). Overall, evidence remains inconsistent and may be attributable to varying 

sources, doses, and type of n-3 PUFA, trial duration and follow-up time, population characteristics 

(e.g., co-morbidities, concurrent prescription drug use), primary vs. secondary prevention, sample 

size, and genetic variation (52).  

2.3.1 Potential biological mechanisms 
 

Due to their important roles in cell membrane synthesis, gene expression, and eicosanoid 

production, omega-3 fatty acid intake may be critical in determining long-term cardiometabolic 

health as early as gestation. Because the fetus primarily relies on the placental fatty acid supply, 

maternal DHA typically accumulates during the second half of pregnancy to support optimal fetal 

growth, development, and immune function (43). During this period of rapid growth and 

development, AA and DHA are readily incorporated into membrane lipids of growing tissues, 

including the liver, brain, and immune cells. The Developmental Origins of Health and Disease 

(DOHaD) theory suggests that some exposures, including nutrient intakes, during gestation may 

have permanent programming effects on offspring CMH (1, 2, 6, 69). Alterations in the prenatal 

fatty acid supply can contribute to structural changes in cells and organ development, epigenetic 

changes that regulate expression of genes involved in energy storage and oxidation, and disrupted 
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development of appetite regulation signals that control long term food intake and energy balance 

(2). Two mechanisms may mediate the benefits of prenatal n-3 LC-PUFAs for offspring CMH. 

First, especially among overweight or obese women, prenatal supplementation may improve 

maternal insulin sensitivity, circulating lipids, and placental inflammation, thereby reducing fetal 

overnutrition and adiposity (70). Second, prenatal n-3 LC-PUFA supplementation may directly 

affect fetal metabolic programming via altered cell and organ development, gene expression, and 

development of neuroendocrine signals, increasing long-term cardiometabolic risk (2, 69, 71, 72). 

2.3.2 Evidence from animal models 
 

Several experimental studies have demonstrated a relationship between prenatal DHA 

supplementation and offspring metabolic health. Evidence from animal models show that offspring 

born to dams who were fed diets supplemented with n-3 LC-PUFAs (e.g., fish oil) had lower levels 

of adiposity (73-76), insulin resistance (74-77), and dyslipidemia (74) compared to dams fed diets 

low in n-3 fatty acids but rich in saturated or n-6 fatty acids. Of interest, Sardinha et al. showed 

that fish oil intake during early pregnancy in rats reduced age-dependent insulin resistance and fat 

accretion in males, but not female offspring, suggesting possible sex-dependent nutritional 

programming (75).  

2.3.3 Evidence from human populations  
 

Some human observational studies report associations of higher maternal and/or cord n-3 

LC-PUFA status with offspring measures of cardiometabolic health. One study performed in 4830 

mother-child pairs participating in a population-based cohort in the Netherlands (The Generation 

R Study) found that a high n-6 PUFA pattern (derived using PCA) was associated with higher 

height, BMI, and fat-free mass index (FFMI) in offspring at age six years, while a high n-3 PUFA 

pattern was associated with lower fat mass index (FMI), higher FFMI, high HDL, and lower 
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triglycerides (78). Another study conducted in 4455 mother-child pairs enrolled in another 

population-based prospective cohort study in the Netherlands showed that higher maternal plasma 

n-3 PUFA and lower n-6 PUFA concentrations during pregnancy were associated with lower 

systolic blood pressure, but not diastolic blood pressure, during childhood (median: 6.0 years) (79). 

Another study of 1418 mother-child dyads in the Project Viva cohort in the United States showed 

that higher cord plasma DHA levels were associated with lower offspring BMI z-score, waist 

circumference, and leptin levels in early childhood (median age: 3.2 years), but not mid-childhood 

(median age: 7.7 years). Associations were strongest in offspring of women with isolated 

hyperglycemia (80). Another observational study in 388 participants of the German LISAplus 

study reported age-dependent associations of cord blood LC-PUFA composition with child body 

mass index (BMI) at 2 and 10 years, but not 6 years, highlighting the importance of age of outcome 

assessment (81). Within a sample of 237 participants in the same study, results suggested that 

nigher n-3 LC-PUFA concentrations and a lower n-6/n-3 ratio in cord blood was associated with 

higher adiponectin concentrations at 10 years (82). However, overall, associations remain 

inconsistent. A systematic review of 28 observational studies in total reported mixed associations 

between PUFA intake during pregnancy or early childhood and obesity (19 studies), no association 

with blood pressure (6 studies), and no association with lipid levels (9 studies) (72). Of the four 

studies that investigated the associations between PUFA levels in cord blood or intake during 

pregnancy and measures of insulin sensitivity, one study reported cord blood levels of n-6 GLA 

were inversely associated with fasting insulin and HOMA-IR at 7 y, another reported that DGLA, 

ALA, and DHA were inversely associated with proinsulin levels, and another study reported no 

associations between n-3 intake during pregnancy and insulin, glucose, or HOMA-IR at 20 y (72).   
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Although experimental studies consistently demonstrate a relationship between prenatal 

DHA supplementation and offspring measures of CMH, systematic reviews of RCTs report 

inconsistent effects of supplementation on offspring CMH outcomes (72, 83-86). A recent 

systematic review and meta-analysis of 6 RCTs reported no effects of maternal n-3 LC-PUFA 

supplementation in pregnancy or lactation on BMI in preschool (standardized mean difference 

(SMD)=0.07, 95% confidence interval (CI)=-0.22, 0.36, P=0.65) and school-age children 

(SMD=0.12, 95% CI=-0.06, 0.30, P=0.20) (83). A separate systematic review, which included 19 

intervention trials, evaluated the effects of PUFA dietary intake and blood levels during pregnancy, 

lactation, and early childhood on obesity, blood pressure, lipids, and insulin resistance. The authors 

reported mixed effects of PUFA supplementation in early life on obesity (15 trials), cholesterol 

and lipid levels (5 trials), blood pressure (7 trials), and insulin resistance (2 studies) (72). To our 

knowledge, only one RCT has assessed the long-term effect of prenatal n-3 LC-PUFA 

supplementation on offspring metabolic health at age 19 years; no significant differences in blood 

pressure, insulin resistance, or lipids were observed, although the sample sizes were small (n = 180 

for blood pressure outcomes, n = 243 for adiposity-related outcomes) (87, 88). Within the 

POSGRAD study in Mexico, supplementation modulated DNA methylation at IGF2/H19 

imprinted genes in overweight mothers (89) and increased DHA/ALA concentrations in breast 

milk at 1 month (90). However, no differences between treatment groups were observed for 

gestational age, birth weight (91), or non-fasting serum lipid and glucose concentrations at age 4 

y (92). 

Inconsistencies across studies may be attributed to heterogeneity in trial design with respect 

to types of omega-3s (e.g. fish oil vs. DHA only), dose, timing of supplementation, characteristics 

of mothers, variable length of follow-up, and variants in FADS genes. Mean follow-up time across 



 

 

28 

studies is 4 years; however, long-term effects of prenatal supplementation on CMH may manifest 

later in childhood or adolescence, particularly with the onset of puberty when cardiometabolic risk 

factors typically emerge (81, 93). Systematic reviews call for further follow-up of completed trials 

to assess longer-term outcomes and improve understanding of metabolic pathways involved (84). 

2.4 Role of gene-nutrient interactions in CMH 
 
2.4.1 Overview of gene-nutrient interactions  
 

It is now well understood that individuals can respond differently to the same foods, 

nutrients, and supplements consumed. These differences may be attributable to factors including 

diversity in genetic makeup, metabolism, microbiota, prenatal nutrition, environmental exposures, 

and lifestyle. The field of “precision nutrition” leverages human individuality to design nutrition 

strategies to prevent, manage, and treat disease and optimize health, and “nutrigenetics” and 

“nutrigenomics” specifically focus on the interaction between genes, nutrition, and outcomes. 

Single nucleotide polymorphisms (SNPs) are variations in the genome at a single base pair that 

affect the way in which individuals absorb, metabolize, utilize, and excrete nutrients. Studies of 

human genomic variation show large global differences in allele frequencies of common SNPs 

involved in metabolism of common nutrients, including folate, choline, and polyunsaturated fatty 

acids (94). Additionally, evolutionary studies indicate genetic adaptations to ancestral diets and 

local environments across populations (95). For example, in response to a diet high in fatty meat 

and fish, ancestors of the Inuit people developed genetic adaptations associated with reduced 

metabolism of n-3 fatty acids (96). Thus, genetic diversity across populations may influence the 

bioavailability of certain nutrients and contribute to population-level differences in nutrient 

requirements. Improved understanding of gene-nutrient interactions, therefore, has relevance for 

the optimization of public health nutrition interventions worldwide. 
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2.4.2 FADS variants and PUFA metabolism  
 

Tissue LC-PUFA concentrations are determined by both dietary intake of preformed LC-

PUFAs and endogenous synthesis from their dietary precursors linoleic acid (LA; 18:2n-6) and α-

linolenic acid (ALA; 18:3n-3. Conversion of dietary precursors to LC-PUFAs occurs through a 

series of consecutive desaturation and elongation steps, in which n-6 and n-3 fatty acids compete 

for conversion. The rate-limiting desaturase steps are mediated by Δ5 and Δ6-desaturase enzymes 

encoded in the FADS gene cluster (FADS1, FADS2, FADS3) located on human chromosome 11 

in the region 11q12 – 11q13.1 (Figure 2-2).  

 

Figure 2-2. Long Chain Polyunsaturated Fatty Acid (LC-PUFA) Metabolism. 

LA and ALA compete for conversion to LC-PUFAs by Δ6 and Δ5-desaturase enzymes encoded in 

the FADS gene cluster.  

 
SNPs in FADS genes have been previously associated with lower transcription levels 

and/or diminished enzyme conversion rates, resulting in reduced conversion of precursors (43, 97). 

In a population of 727 healthy Caucasian adults, participants carrying common alleles of FADS 
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SNPs had higher blood levels of products of PUFA desaturation, whereas carriers of minor alleles 

had higher blood levels of precursors (98). This study revealed that a five-locus FADS haplotype 

SNPs in FADS genes explained 27.2, 5.2, and 1.4% of variability in AA, EPA, and DHA 

concentrations in serum phospholipids, respectively (98). This association has since been 

replicated in several candidate gene and genome-wide association studies. While there is 

preferential metabolism of n-3 fatty acids, excess intake of n-6 fatty acids drives the pathways and 

outcompetes n-3 fatty acids. Thus, diets high in n-6 LA may interfere with synthesis or 

accumulation of EPA/DHA in human tissues. As such, recent evidence suggests that the influence 

of dietary PUFAs on CMH may differ by variations in fatty acid desaturase (FADS) genes across 

populations (99, 100). FADS polymorphisms can therefore affect the balance between omega-3 

and omega-6 fatty acid concentrations in the body, which may have implications for inflammation 

and the immune response.  

2.4.3 FADS variants and CMH: evidence in adult populations  
 

Several genetic and genome-wide association studies in adults have explored the 

relationship between FADS variants, plasma and tissue LC-PUFA concentrations, and risk of 

cardiovascular disease, showing that FADS polymorphisms influence lipid profiles and glucose 

homeostasis (101-105). In European adults, FADS alleles that predict inactive PUFA conversion 

are associated with lower inflammation, total cholesterol, LDL, HDL, and risk of coronary artery 

disease (43). For example, Hester et al. showed that participants with the major allele for rs174537 

had significantly higher levels of pro-inflammatory eicosanoids LTB4 and 5-HETE compared to 

minor allele carriers (106). However, some studies have shown contradictory results, which may 

be attributable to either differences in ethnicity or LC-PUFA content of diet. Recent work has 

shown that diet composition can influence the relationship between FADS genotype and plasma 
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fatty acid concentrations. Hellstrand et al. found that the minor allele for SNP rs174547 was 

associated with lower LDL-C in the lowest tertile of LC n-3 PUFA intakes. They also observed 

interaction between the SNP and ratio of ALA:LA on HDL-c (107). A 14-year follow up study 

showed an inverse association between ALA:LA and CVD risk only among homozygous minor 

allele carriers for SNP rs174547 (108). More recently, the influence of FADS genetic variants in 

response to LC-PUFA supplementation has been explored, but evidence of genotype x supplement 

interaction across studies is conflicting (99, 100, 109, 110). Ultimately, additional research is 

needed to determine whether diet modifies the association between FADS genotype, fatty acid 

concentrations, and CVD risk in adults.  

2.4.4 FADS variants and CMH: evidence in pediatric populations  
 

While there has been substantial work done exploring the association of FADS 

polymorphisms with lipid levels in adult populations, a growing body of literature also supports 

this association in pediatric populations. Studies show that multiple variants in FADS genes are 

associated with lower lipid profiles and inflammation in European children (111-113). 

Specifically, one study showed that homozygous minor allele carriers had lower levels of total 

cholesterol and LDL, and heterozygous carriers had higher triglycerides and lower HDL relative 

to homozygous major allele carriers; however, no gene-diet interaction was observed (111). 

Similarly, one study performed in a large sample of Mexican adolescents showed that FADS1 SNP 

rs174546 was a major contributor of plasma triglyceride and VLDL concentrations; however, no 

significant interaction effects were detected between dietary intake and genotype, warranting 

further research (114). Although a few observational studies show that maternal FADS genotype 

influences child LC-PUFA status and lipid profiles, this relationship remains underexamined in 

RCTs (115). One RCT in the United States showed that only among individuals with FADS SNPs 
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associated with lower conversion of precursors, prenatal DHA supplementation increased DHA 

concentrations and reduced AA:DHA ratios at delivery, suggesting a selective beneficial impact 

of supplementation among carriers of variants for some FADS SNPs (116). A recent birth cohort 

study in China also reported significant interaction between DHA supplementation and maternal 

SNP rs174602 on DHA concentrations in colostrum (117). Within the POSGRAD study, it was 

previously demonstrated that maternal SNP rs174602 modified the effect of prenatal DHA 

supplementation on birth weight (118) and the 3-month metabolome (119). However, whether 

these differences persist and influence long-term CMH remain unexplored. 

2.4.5 Genetic variability in FADS SNPs across populations  
 

Most studies assessing the role of maternal and offspring FADS genes in child health have 

been conducted in European populations (120, 121). However, FADS genotype distributions 

greatly vary across human populations. Ameur et al. showed that humans have two common but 

distinct FADS haplotypes, defined by 28 closely linked SNPs across the FADS1 and FADS2 

regions. The two haplotypes, derived (D) and ancestral (A), vastly differ in their ability to generate 

LC-PUFAs. The more common haplotype D, seen in European and African populations, predicts 

more rapid conversion of LCPUFA precursors and higher lipid levels compared to the less 

common ancestral haplotype, observed in Native American and Mexican populations. The D 

haplotype is thought to be a genetic adaptation to shifts in diets from a hunter gatherer lifestyle 

high in EFAs to an agricultural diet high in LA but low in preformed LC-PUFAs such as AA and 

EPA. In a recent review, Koletzko and colleagues expanded upon these population level 

differences in FADS genotype, showing that there were substantially different frequencies of 

alleles associated with rapid PUFA conversion across populations. In Indonesia and Mexico, these 

alleles were prevalent in only a quarter of the population but two-thirds to three-fourths of the 
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population in Europe and Australia (43). Ultimately, this demonstrates that it may not be possible 

to extrapolate the effects of PUFAs in a specific population to populations with different genotype 

distributions. 

2.4.6 Relative contribution of maternal and offspring genotype  
 

Although it was previously assumed that the fetus solely relies on the mother’s LC-PUFA 

supply, results from several recent studies have demonstrated evidence of desaturase enzyme 

activity in the liver of the developing fetus, suggesting that fetal synthesis of LC-PUFAs does 

indeed contribute to overall LC-PUFA status. The Avon Longitudinal Study of Parents and 

Children (ALSPAC) birth cohort study conducted in the United Kingdom explored the 

contribution of maternal and fetal genotypes on cord blood fatty acids, which represent placental 

transfer and fetal metabolism of PUFAs, in a subset of 2,035 mother-child pairs (122). After 

adjusting for maternal and child genotype, both maternal and child FADS genotypes and 

haplotypes influenced concentrations of cord plasma LC-PUFAs and fatty acid ratios.  Most of the 

maternal SNPs were associated with cord levels of precursor n-6 PUFAs, child genotypes were 

mostly associated with products of n-6 desaturation, including AA, and both maternal and child 

genotypes were associated with DHA status. Evidence largely indicates that child genotype for 

several SNPs including rs174575, rs1535, rs174561, rs3834458, rs102275, and rs174448 

influences cord n-6 PUFA concentrations (122-124). In another study conducted in the United 

States, FADS2 rs174575 genotyping was performed on a subset of mothers and their 16-month-

old toddlers. Results showed that the effect of maternal genotype on declarative memory task 

performance was above and beyond the child’s own genotype (125). While these studies 

collectively indicate the importance of maternal genotype in predicting offspring phenotype, the 

relative contribution of maternal and offspring genotype in determining cord LC-PUFA 
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concentrations and later outcomes, particularly in non-European populations, merits further 

examination.  

2.5 Summary and Overall Significance  
 
Despite extensive knowledge that cardiometabolic risk factors emerge early in the life 

course and typically cluster, defining cardiometabolic risk in pediatric populations remains a key 

challenge. Evidence for the long-term effects of prenatal DHA supplementation on offspring CMH 

remains inconsistent. Results from RCTs are limited primarily by large between-study population 

heterogeneity and variable timing of study follow-ups. Additionally, most studies have failed to 

incorporate FADS genotype when assessing outcomes, and those that do were typically conducted 

in European populations. Given the ethnic variation in FADS genotype distributions and PUFA 

dietary intake, studies in distinct settings (i.e., limited migration, similar dietary quality), are 

needed to improve understanding of gene-nutrient interactions. Finally, the respective 

contributions of maternal and offspring FADS genetic profiles towards CMH are poorly 

understood. Supplementation is not a one-size-fits-all approach; there is a need to identify which 

individuals will benefit most from nutrition intervention strategies. This dissertation seeks to 

address these research gaps in Chapters 4-6.  
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Chapter 3 : Expanded Methods 
 

This chapter provides details on the data source and statistical methods used for all analyses 

included in this dissertation. Detail is provided on the study setting and participants, trial and 

follow-up study design, and data collection methods. Additionally, this chapter includes an 

extended discussion of statistical methods used that were beyond the scope of inclusion in a journal 

publication.  

3.1 Study setting and participants 
 

This dissertation uses data that have been collected through the Prenatal Omega-3 Fatty 

Acid Supplementation and Child Growth and Development (POSGRAD) study, a randomized, 

double-blind, placebo-controlled trial that was originally designed to assess the effect of prenatal 

DHA supplementation on offspring growth and development. This study is a collaboration 

between Emory University and the Instituto Nacional de Salud Pública (INSP), located in 

Cuernavaca, Mexico. Cuernavaca is in the state of Morelos, located in central Mexico 

approximately 50 miles south of Mexico City. Study participants were recruited at the Mexican 

Institute of Social Security (Instituto Mexicano del Seguro Social, IMSS) General Hospital I, a 

large hospital, and three small healthcare clinics within the IMSS healthcare system. IMSS 

provides employed persons access to medical care; the rural poor and self-employed do not have 

access, and the wealthy generally choose private medical care (1). At the time of study enrollment 

in 2005, IMSS provided healthcare to approximately 50% of the Mexican population. Women who 

receive medical care from IMSS are predominantly medium-to-low socioeconomic class and either 

they or their husbands, or both, are employed. Generally, the IMSS patient pays one-third of 

healthcare costs, and the employer and federal government cover the remaining cost.   
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3.2 Trial design  
 
3.2.1 Recruitment and eligibility criteria  
 

Between February 2005 to February 2007, pregnant women were approached by study 

personnel during routine prenatal visits and were screened for eligibility if they were interested in 

participating in the study. Women were considered for inclusion in the study if they were in 

gestation weeks 18-22, were 18-35 years old, planned to deliver at the IMSS hospital, 

predominantly breastfeed for at least 3 months, and continue living in the area for ≥ 2 years 

following delivery. Women were excluded if any of the following criteria were present: high-risk 

pregnancy (history and prevalence of pregnancy complications, including abruptio placentae, 

preeclampsia, pregnancy-induced hypertension, any serious bleeding episode in the current 

pregnancy, and/or physician referral); lipid metabolism or absorption disorders; regular intake of 

fish oil or DHA supplements; or chronic use of certain medications (e.g., medications for epilepsy).  

3.2.2 Enrollment and randomization  
 

Once eligibility was confirmed by the study physician, participants were contacted at home 

and were provided with a thorough explanation of the study protocol. Written informed consent 

was obtained from each participant, and dietary intake and socioeconomic status were assessed 

using previously tested questionnaires (2). Women who agreed to participate were scheduled for 

a hospital visit, during which they were assigned to receive either treatment or placebo and 

received the first week’s supply of supplements. Block randomization was used to randomize study 

participants into groups of equal sample size using a block size of eight. All study participants and 

members of the study team were blinded to treatment allocations throughout the intervention 

period of the study. Data were unblinded for the analytical study team after the last baby was born 
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and reached 6 mo. of age. The participants and fieldworkers remain blinded to the intervention, as 

the study is still ongoing for follow-up.  

The study was conducted according to the guidelines of the Declaration of Helsinki. The 

Emory University Institutional Review Board and the INSP Biosafety and Ethics Committee 

approved all procedures involving human subjects, including study protocols and informed 

consent documents. An external Data and Safety Monitoring Committee reviewed study data 

periodically. This is a registered clinical trial (registered at INSP in Mexico: #CI-011, and at 

clinicaltrials.gov: NCT00646360).  

3.2.3 Intervention 
 

Of 1,762 eligible women, a total of 1,094 pregnant women were randomized, and 1,040 

began treatment; 54 women who had agreed to participate and were randomized withdrew from 

the study prior to beginning treatment. An additional 67 women withdrew from the study after 

beginning treatment due to various reasons including lack of family support, moving away from 

the area, and side effects of the supplement. The intervention consisted of either two capsules 

containing either 200 mg algal DHA per capsule (treatment) or a corn/soy oil blend (placebo) daily 

from mid-pregnancy through delivery. The fatty acid composition of the DHA supplement and 

placebo (produced by Martek BioSciences) are shown below (Table 3-1). Following the 

enrollment visit, the supplements were distributed by trained fieldworkers during weekly visits to 

the participant’s home or workplace. Participants received 14 capsules at a time, and capsules 

remaining from the prior visit were counted. Compliance was expressed as a percentage of total 

number of capsules expected to be consumed. Data were analyzed according to the intent-to-treat 

principle, meaning that all randomized participants were included in analyses, regardless of the 
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treatment they actually received, protocol deviations, noncompliance, or withdrawal from the 

study (3).  

Table 3-1. Fatty acid profile of DHA and placebo capsules administered twice 
daily to mothers enrolled in POSGRAD trial. 

Fatty acid profile (weight percent) DHA1 Placebo2 

Caproic acid (6:0) < 0.1 1.46 
Caprylic acid (8:0) 1.48 0.57 
Capric acid (10:0) 1.82 0.89 
Undecylic acid (11:0) 0.28 < 0.1 
Lauric acid (12:0) 5.07 0.18 
Myristic acid (14:0) 15.20 < 0.1 
Myristoleic acid (14:1) 0.13 < 0.1 
Palmitic acid (16:0) 12.82 10.42 
Palmitoleic acid (16:1) 1.68 < 0.1 
Stearic acid (18:0) 0.62 3.07 
Oleic acid (18:1n-9) 15.63 25.27 
Vaccenic acid (18:1n-7) < 0.1 1.15 
Linoleic acid (18:2n-6) 0.83 50.59 
Alpha-linolenic acid (18:3n-3) < 0.1 3.44 
Gamma-linolenic acid (18:3n-6) None 0.19 
Arachidic acid (20:0) 0.11 0.39 
Heneicosylic acid (21:0) None 0.44 
Eicosenoic acid (20:1n-9) < 0.1 0.39 
Eicosapentaenoic acid (20:5n-3) < 0.1 < 0.1 
Behenic acid (22:0) 0.17 0.24 
Docosapentaenoic acid (22:5n-3) 0.22 < 0.1 
Docosahexaenoic acid (22:6n-3) 42.44 < 0.1 
Lignoceric acid (24:0) < 0.1 0.15 
Others 1.50 1.16 

1NEUROMINS® capsules (500 mg) contained DHASCO® with flavoring. Each 
capsule contained 196.2 mg docosahexaenoic acid; analysis provided by Martek 
Biosciences Corporation and rounded to the nearest 0.1%. 
2Placebo capsules (500 mg) contained corn/soy oil with orange 
flavoring. 

 
3.3 Follow-up study at age 11 years 
 

The cross-sectional follow up study at age 11 years occurred from 2016-2018 as a 

collaboration between INSP, IMSS General Hospital, Salvador Zubirán National Institute of 

Medical Sciences and Nutrition, and Emory University. The main objective of this study was to 

examine the relationship between feeding and growth patterns during the first 7 years of life and 
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measures of adiposity, body composition, and cardiometabolic health of the children at age 11 

years. All mothers of children in the birth cohort were invited to attend a clinic visit with their 

child and participate in the study. During the visit, mothers provided written informed consent and 

children provided written assent.  

Of the 961 children contacted at age 11 years, 566 children completed a follow-up visit 

(58% of birth cohort). Reasons for loss to follow-up included: declined to participate (n = 47), 

missed visit (n = 12), or could not be located (n = 336). Cardiometabolic indicators were collected 

in a sub-sample of the first 500 individuals enrolled, of whom 485 provided a venous blood sample. 

Plasma and red blood cells were separated and stored in the laboratory of the Research Center for 

Infectious Diseases at INSP at -70°C until analysis at the Salvador Zubirán National Institute of 

Medical Sciences and Nutrition. All questionnaires were administered by trained personnel to the 

mother in the presence of the child, with additional information provided by the child. Data 

collection methods for adiposity, cardiometabolic indicators, diet, and covariates (e.g., household 

socioeconomic status, infant feeding practices, sedentary time) are described in detail in the 

methods sections of Chapters 4-6.  

3.4 Statistical Methods  
 

The main data analysis procedures performed for the three original research studies 

included in this dissertation are described in Chapters 4 to 6. The analytical strategy and statistical 

methods used in this dissertation, including evaluation of selection bias, handling of missing data, 

principal component analysis, processing of genetic data, haplotype estimation, and adjustment for 

energy intake are described in greater detail in this chapter.  

3.4.1 Evaluation of selection bias 
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RCTs are considered the gold standard for assessing the effects of an intervention; their 

design also offers a valuable opportunity to assess effects of the intervention long after the 

intervention period has concluded. Block randomization helps ensure the balance of known and 

unknown confounders between the comparison groups in clinical trials. The randomized design of 

the POSGRAD study, along with extensive follow up of the children since birth, allows us the 

opportunity to study the influence of the intervention on long-term outcomes.  

The conceptual framework of potential covariates and effect modifiers that may influence 

the relationship of prenatal DHA supplementation and offspring CMH is shown in Figure 3-1. 

Several factors early in the life course may influence offspring CMH measures, including maternal 

age, BMI, and breastmilk composition and offspring sex, birth weight, and infant feeding practices. 

Time-varying characteristics over the life course include household SES, physical activity, and 

dietary intake. Childhood and adolescence are a period of substantial change during which 

different lifestyle behaviors develop; these lifestyle factors may be a consequence of the exposure 

or modify the effect of the intervention but are not otherwise confounders.  

We accounted for differences in fixed and time-varying characteristics over the follow-up 

period by confirming that these characteristics were balanced by treatment group in the analytic 

samples for each aim. For each analysis, we also determined the influence of selection bias by 

checking whether any imbalances in maternal characteristics at study enrollment and offspring 

characteristics at birth between children with data at 11 y and those lost to follow up altered effect 

estimates by including them in statistical models using a stepwise approach. These methods are 

outlined in greater detail for each research aim in Chapters 4-6.  
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Figure 3-1. Conceptual framework of covariates and effect modifiers influencing the association 

of prenatal DHA supplementation with offspring CMH at 11 y. 

Abbreviations: BMI, body mass index; DHA, docosahexaenoic acid; FADS, fatty acid 

desaturase; SES, socioeconomic status. 

3.4.2 Imputation of missing data 
 

Missing data are a common occurrence in research, especially within studies with long-

term follow up. Missing data can be categorized as: 1) missing completely at random, meaning 

that there are no systematic differences between missing and observed data; 2) missing at random, 

meaning that there might be systematic differences between missing and observed data, but they 

can be explained by other observed data; and 3) missing not at random, meaning that missingness 

is dependent on unobserved values (4). Common approaches to address missing data include 

complete case analysis (removing any subjects with missing data) and single value imputation 

(e.g., mean-value imputation, last observation carried forward, and random imputation); however, 
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these approaches are suboptimal. Restricting samples to complete cases can lead to exclusions of 

a considerable proportion of the original sample, resulting in a substantial loss of precision and 

power, while single value imputation can lead to biased results and artificial precision.  

Statistical methods to address missing data include maximum likelihood estimation, 

Bayesian estimation, and multiple imputation, all of which can be used assuming that data are 

missing completely at random or missing at random (5). Of these approaches, multiple imputation 

is relatively straightforward to apply using standard statistical software. Multiple imputation better 

handles missing data by allowing for uncertainty regarding missing values by creating several 

different plausible imputed data sets and combining the results (6). The process of multiple 

imputation involves two stages: 1) generating imputed values for missing data using information 

from other variables and repeating the procedure multiple times, resulting in many data sets with 

slightly varied imputed values; and 2) analyzing the many imputed data sets and combining the 

results (4). Statistical analyses are run separately on each imputed data set, and the parameter 

estimates from all the imputed data sets are combined into a single estimate. Multiple imputation 

by fully conditional specification specifies the multivariate imputation model on a variable-by-

variable basis (5). This allows a flexible approach for addressing missing data, especially in 

complex data sets with both continuous and categorical variables. For the analyses included in this 

dissertation, complete case analysis was applied for cardiometabolic indicators (primary outcomes 

of interest) and multiple imputation techniques were applied for covariates (e.g., dietary intake, 

sedentary time, sexual maturation, and breastfeeding type and duration). The R ‘mice’ package 

was used to generate 20 imputed datasets using fully conditional specification with 50 iterations 

(7). For each analysis, we conducted general linear models for each of the 20 models and pooled 

the estimates. 
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3.4.3 Principal component analysis  
 

Principal component analysis (PCA) is an unsupervised learning method used to simplify 

the complexity in high-dimensional data while preserving patterns in the data. This is 

accomplished by transforming the input variables into a new set of uncorrelated variables called 

principal components (PCs). Each PC (C1, C2, … Cp) is a linear combination of the input variables 

(X1, X2, …, Xp) that explains the largest possible variance in the data (Figure 3-2). The coefficients 

a11, a12, …, a1p are the loadings of the first PC. These coefficients represent the correlation of the 

input variables with the PC and are chosen to: 1) maximize the variance of C1; 2) ensure that the 

value of any two PCs are uncorrelated; and 3) ensure that, for any PC, the sum of squares of the 

coefficients equals 1 (i.e., ai1
2 + ai2

2 + … + aip
2 = 1). The second PC (C2) is a linear combination of 

input variables that is uncorrelated with the first PC but accounts for the next highest possible 

variance, and so on. 

𝐶𝐶1 = 𝑎𝑎11𝑋𝑋1 + 𝑎𝑎12𝑋𝑋2 + ⋯𝑎𝑎1𝑝𝑝𝑋𝑋𝑝𝑝 

𝐶𝐶2 = 𝑎𝑎21𝑋𝑋1 + 𝑎𝑎22𝑋𝑋2 + ⋯𝑎𝑎2𝑝𝑝𝑋𝑋𝑝𝑝 

𝐶𝐶𝑝𝑝 = 𝑎𝑎𝑝𝑝1𝑋𝑋1 + 𝑎𝑎𝑝𝑝2𝑋𝑋2 + ⋯𝑎𝑎𝑝𝑝𝑝𝑝𝑋𝑋𝑝𝑝 

Figure 3-2. Equations to calculate principal components. 

Principal components (C1, C2, … Cp) are linear combinations of the input variables X1, X2, …, 

Xp, weighted by coefficients a11, a12, …, a1p. 

Once the PCs and loadings are obtained, the PC scores for each observation (i.e., 

individual) can be calculated. The PC1 score for the first individual is calculated by plugging in 

the observed values for an individual into the first PC linear combination. The process is then 

repeated to obtain PC scores for the second PC for each individual, and so on. 
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For the analyses included in this dissertation, PCA was used to derive continuous MetS 

and CMH scores using the “FactoMineR” R package (8). We examined the distributions of input 

variables and log-transformed variables with skewed distributions. To ensure that each variable 

contributed equally to the analysis, we standardized the range of continuous variables by 

subtracting the mean and dividing by the standard deviation for each value of each variable. We 

used the inverse of cardiometabolic risk factors that are inversely associated with cardiometabolic 

health (e.g., HDL, adiponectin, fat free mass index) as input for PCA, so a higher loading score 

would have a similar interpretation to other measures in the model. Next, we examined the 

correlation matrix to identify correlations between variables in the dataset. We then computed the 

eigenvectors and eigenvalues of the covariance matrix. Eigenvectors are the direction of data that 

explain a maximal amount of variance, and eigenvalues are the coefficients associated with the 

eigenvectors, which measure the amount of variance explained by each PC. Eigenvectors are 

ranked by their eigenvalues in descending order. The top PCs were identified visually using scree 

plots and quantitatively using the Kaiser criterion (eigenvalue > 1) (Figure 3-3). Eigenvalues >1 

indicate that PCs account for more variance than one of the input variables.  

 

Figure 3-3. PCA scree plot. 

Abbreviations: PC, principal component; HDL, High Density Lipoprotein; BMI, Body Mass 

Index.  
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Two PCs were selected based on the Kaiser criterion, and MetS scores were calculated for 

each individual as the sum of the top two PC scores, weighted by variance explained. The score 

can be interpreted as a z-score, with higher scores representing increased cardiometabolic risk.  

MetS Score = [% variance explained by PC 1(PC1)] + [% variance explained by PC 2(PC2)] 

We used PCA to calculate a separate MetS score for each specific aim given differences in 

sample size for each aim. Because there are established sex differences in cardiometabolic risk 

factors, we derived sex-specific MetS scores by calculating MetS scores in males and females 

separately. We then performed a sensitivity analysis to compare sex-specific and overall MetS 

scores and found that their correlation was 0.98, so we elected to use the overall MetS score in all 

subsequent analyses.  

While PCA is a powerful dimensionality reduction tool, some limitations should also be 

considered. PCA may miss nonlinear data patterns, nonorthogonal patterns may not be well 

characterized, and the goal is to maximize variance and not necessarily identify clusters (9). 

Furthermore, loading coefficients of individual cardiometabolic factors from PCA are only 

applicable to the population from which they are derived. An alternate approach to PCA for 

creating continuous MetS score is using composite risk scores, which are calculated as the sum or 

mean of age-, sex-, and race/ethnicity-standardized z-scores for each risk component (10, 11). 

However, the utility of these scores may be limited by assumptions that each component 

contributes equally to cardiometabolic risk.  

3.4.4 Processing of genetic data  
 

An important consideration in genetic association analyses is proper use of quality control 

procedures to avoid bias and false signals. PLINK version 1.9 was used to perform quality control 

to filter out samples and SNPs with minor allele frequency (MAF<0.1), SNP call rate < 95%, and 
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sample call rate < 90%. For this analysis, genetic data were subset to chromosome 11 (where the 

FADS1, FADS2, and FADS3 genes are located) and mapped to the human genome reference build 

GRCh37/hg19 for strand, id names, positions, alleles, and reference/alternative alleles assignment 

(12). The data were subset to available SNPs in the FADS gene region (rs174545 to rs1000778), 

resulting in 31 FADS variants for 626 children. Pairwise linkage disequilibrium (LD) among the 

31 SNPs were calculated as both D’ and r2 using Haploview software, version 4.2 (13). D' 

represents the difference between observed and expected frequencies of a given haplotype, while 

r2 represents the correlation between a pair of loci. If two loci are independent (i.e., in linkage 

equilibrium), the D’ value will be 0. Ultimately, 5 SNPs that captured all 31 SNPs at r2 ≥ 0.3 

(rs174578, rs2727271, rs174602, rs174605, rs174450) were selected via Tagger (Figure 3-4). 

 

Figure 3-4. Summary of genetic data processing. 

Abbreviations: QC, Quality Control; HRC, Haplotype Reference Consortium; FADS, Fatty Acid 

Desaturase; chr, chromosome; SNP, Single Nucleotide Polymorphism; LD, Linkage 

Disequilibrium 

3.4.5 Haplotype estimation 
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When there is substantial linkage disequilibrium in a region, multiple SNPs within the 

region may be associated with the disease phenotype; however, testing each SNP would introduce 

multiple testing problems. Haplotypes are a combination of alleles on the same chromosome that 

are inherited together as a unit (14). Examining associations between haplotypes and disease 

phenotypes can provide additional power for mapping disease genes and understanding 

dependencies between genetic markers beyond any single SNP analysis. When subjects are 

unrelated, haplotypes can be directly observed when there is no more than one heterozygous site; 

however, if there are k heterozygous sites, the number of pairs of possible haplotypes is 2k-1 (15). 

Thus, multilocus haplotypes often cannot be directly determined from genotype data in humans, 

and statistical approaches are needed. We used the R “haplo.stats” package version 1.8.7 

(https://cran.r-project.org/web/packages/haplo.stats/index.html) to estimate haplotype 

frequencies. This package uses an expectation maximization (EM) algorithm to calculate 

maximum likelihood estimates of probabilities of haplotype pairs for each participant (15). 

Haplotypes with frequency <5% were grouped as rare haplotypes. We used the “haplo.glm” 

function to assess the association of offspring FADS haplotype with offspring MetS score (adjusted 

for sex), using the most common haplotype as the referent. The function tests the difference 

between someone with 2 copies of the reference group haplotype and someone with 1 copy of the 

other haplotypes. For example, having a single TTCGT is associated with 0.60 increase in MetS 

Score compared to someone with 2 copies of the base haplotype ATCGG (reference).  

3.4.6 Energy adjustment for dietary intake   
 

One of the biggest challenges in nutritional epidemiology research is separating the effects 

of an individual dietary component from the overall diet. Typically, those who consume more of 

a nutrient will also consume more food in general and have a greater overall energy intake. Those 

https://cran.r-project.org/web/packages/haplo.stats/index.html
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who consume more food tend to be different in other important ways, including body size and 

composition (16). Ultimately, total energy intake is the best proxy for determinants of dietary 

intake and body composition. Four models are typically used to adjust for energy intake in 

nutritional epidemiology research: (1) the ‘standard model’ of energy adjustment, which adjusts 

for total energy intake as an additional variable in the model; (2) the ‘energy partition model’, 

which adjusts for remaining energy intake (i.e., total caloric intake excluding the nutrient of 

interest); (3) the ‘nutrient density model’, which rescales the nutrient as a proportion of total 

energy; and (4) the residual model, which indirectly adjusts for total energy by calculating a 

residual (16). For the analyses included in this dissertation, we examined several approaches for 

energy adjustment, including the standard model, residual model, and adjusting for omega-3 and 

omega-6 intake alone. There were no significant differences in effect estimates using these 

approaches; therefore, we elected to use the standard model of energy adjustment for all analyses.  
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4.1 Abstract 
 
Objective 

To examine clustering of cardiometabolic markers in Mexican children at age 11 years and 

compare a metabolic syndrome (MetS) score to an exploratory cardiometabolic health (CMH) 

score. 

Methods 

We used data from children enrolled in the POSGRAD birth cohort with cardiometabolic data 

available (n = 413). We used principal component analysis (PCA) to derive a Metabolic Syndrome 

(MetS) score and an exploratory cardiometabolic health (CMH) score, which additionally included 

adipokines, lipids, inflammatory markers, and adiposity. We assessed reliability of individual 

cardiometabolic risk as defined by MetS and CMH by calculating % agreement and Cohen’s kappa 

statistic. 

Results 

At least one cardiometabolic risk factor was present in 42 % of study participants; the most 

common risk factors were low High-Density Lipoprotein (HDL) cholesterol (31.9 %) and elevated 

triglycerides (18.2 %). Measures of adiposity and lipids explained the most variation in 

cardiometabolic measures for both MetS and CMH scores. Two-thirds of individuals were 

categorized in the same risk category by both MetS and CMH scores (κ = 0.42). 

Conclusions 

MetS and CMH scores capture a similar amount of variation. Additional follow-up studies 

comparing predictive abilities of MetS and CMH scores may enable improved identification of 

children at risk for cardiometabolic disease. 
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4.2 Introduction 
 

Cardiometabolic diseases, which include cardiovascular disease, stroke, and type II 

diabetes mellitus, are among the leading causes of death globally (1). Risk factors including 

hypertension, insulin resistance, obesity, and abnormal lipid levels are emerging earlier in the life 

course and track from childhood to adulthood (2, 3). Childhood obesity is a consistent predictor of 

adulthood obesity and cardiometabolic disease (4, 5). However, not all individuals with the same 

degree of obesity exhibit equivalent risk of disease.  

Early and comprehensive characterization of cardiometabolic risk offers an important 

opportunity to identify high-risk individuals, tailor clinical management strategies, and prevent 

disease development. Metabolic syndrome (MetS), a cluster of conditions that predicts future risk 

of cardiometabolic disease, is typically diagnosed in adult populations by the presence of at least 

three or more of the following risk factors: central adiposity, hyperglycemia, hypertriglyceridemia, 

hypertension, and low HDL, although definitions vary slightly (6). In pediatric populations, 

different MetS definitions have been proposed; however, the clinical utility of diagnostic criteria 

remains controversial, as using dichotomous thresholds to diagnose MetS likely only captures 

severe outliers and may inadequately characterize early risk trajectories by ignoring the continuous 

nature of risk (7, 8). The American Academy of Pediatrics now recommends that pediatricians 

identify children with clustering of multiple risk components rather than focusing on specific cut-

off levels for individual risk factors or a particular MetS definition (9). This has led to use of 

composite risk scores, which are typically calculated as the sum or mean of age-, sex-, and 

race/ethnicity-standardized z-scores for each risk component (10, 11). However, the utility of these 

scores is likely limited by assumptions that each component contributes equally to cardiometabolic 

risk as well as heterogeneity across studies with respect to the included components.  
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More recently, studies in pediatric populations have applied principal component analysis 

(PCA), a dimensionality reduction technique used to minimize the number of variables that explain 

correlations across observed measures, to derive a continuous MetS score (12-14). PCA-derived 

MetS scores during childhood and early adolescence have been associated with increased risk of 

cardiometabolic disease in adulthood; one study recently reported that a 1 SD increase in a 

continuous MetS score during adolescence was associated with 30% increased risk of type II 

diabetes and 20% increased risk of high carotid intima-media thickness in adulthood (15).  

Current MetS scores do not account for all factors that may play an important role in the 

early pathogenesis of type II diabetes mellitus and CVD, such as insulin resistance and 

inflammation. Excess visceral adipose tissue secretes large amounts of adipokines, including 

cytokines and hormones, promoting a state of systemic low-grade inflammation, which contributes 

to oxidative stress and subsequent endothelial and pancreatic beta-cell damage.(10, 16) High levels 

of high-sensitivity c-reactive protein (hs-CRP) and low levels of adiponectin, in particular, have 

previously been associated with systemic inflammation and insulin resistance, respectively; 

evidence suggests that leptin, adiponectin, and hs-CRP may be used as predictors of 

cardiometabolic risk in pediatric populations (17). Utilizing additional biomarkers to characterize 

overall cardiometabolic risk may enable earlier and improved detection of cardiometabolic disease 

development among pediatric populations. 

Finally, it is important to consider ethnic and genetic variation in the etiology of 

cardiometabolic disease. Some studies suggest that ethnic and genetic differences emerge early in 

the life course, with populations of Hispanic origin at increased risk (18, 19). In Mexico, 33% of 

school-age children are overweight or obese, with the highest prevalence among children aged 10-
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11 years (20). Therefore, detailed characterization of cardiometabolic risk in Mexican populations 

at this age may better inform overall disease prevention strategies.  

The objectives of this study are to describe the clustering of cardiometabolic markers in a 

Mexican population at age 11 years and compare use of a MetS score to an exploratory CMH 

score, which additionally includes markers of insulin resistance and inflammation, to assess 

cardiometabolic profiles. 

4.3 Methods 
 
4.3.1 Study design and participants 

We conducted a secondary analysis of data from children born to women who participated 

in the Prenatal Omega-3 fatty acid Supplementation and Child Growth and Development 

(POSGRAD) trial in Cuernavaca, Mexico. A detailed description of the trial design and protocol 

has been published previously (21). Briefly, from 2005-2007, women were randomized at 18-22 

weeks gestation to receive a daily dose of 400 mg of algal DHA or placebo during pregnancy; 

children have been followed prospectively since birth. Of 961 children contacted at age 11 years, 

566 (58%) completed a follow-up visit. Due to budgetary limitations, CMH indicators were 

collected in a sub-sample of the first 500 individuals enrolled, of whom 485 provided a venous 

blood sample. The analytic sample includes children with complete data on cardiometabolic 

factors at age 11 (n = 413) (Supplementary Figure 4-1).  

The study was conducted according to the guidelines of the Declaration of Helsinki. The 

Emory University Institutional Review Board and the Mexican National Public Health Institute 

(INSP) ethics committee approved all procedures involving human subjects. 

4.3.2 Anthropometry and Body Composition  
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Body weight (kg) and height (cm) were collected from offspring in duplicate by trained 

personnel using standardized procedures.(22) Children were weighed wearing light clothing with 

a portable electronic pediatric scale (Tanita model 1582) with a precision of 100 g, which was 

calibrated daily with a known reference weight.  Height was measured using a stadiometer with a 

precision of 0.1 cm. Abdominal circumference was measured with a fiberglass tape with a 

precision of 0.1 cm. Average values of all measurements were calculated. The nutritional status of 

children was classified according to age- and sex-specific cut-offs from the International Obesity 

Task Force (IOTF) (23) and World Health Organization (WHO) reference standards; BMI-for-age 

z-scores were calculated according to the 2007 WHO Growth Reference Standards using the 

‘zscorer’ R package (24). Blood pressure (mmHg) was measured using a digital device (OMRON 

model HEM-711ACINT) when the child was at rest (>5 minutes after the child arrived at the study 

visit). In each arm, 4 measurements were made with 2-minute intervals; the average of the last 

three readings was taken. 

Body volume was measured by air displacement plethysmography (ADP) using BODPOD 

® instrumentation (Bod Pod Express, COSMED USA Inc., Concord, CA, USA), which has been 

shown to be highly correlated with measures derived from 4-component (4-C) models of body 

composition in Mexican children and adolescents (25). Measurements were taken while the 

children remained sitting and breathing normally; fat mass (kg) was calculated using the Siri 

equation, and fat-free mass (kg) was calculated by subtracting fat-mass from body weight (26-28).  

Fat mass index and fat-free mass index were calculated (kg/m2). The BODPOD was calibrated 

before each measurement according to the manufacturer's recommendations. 

4.3.3 Determination of Cardiometabolic Markers 
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Serum was obtained after a 12-hour fasting period, divided into aliquots, frozen in liquid 

nitrogen and stored at −80°C until further analysis at the National Institute of Medical Sciences 

and Nutrition Salvador Zubirán in Mexico City, Mexico.  

Cholesterol, triglyceride, and glucose concentrations (mg/dL) were assessed using the 

Beckman Coulter SYNCHRON CX 5 Delta automated kit. Insulin concentrations (𝝁𝝁M/mL) were 

assessed using the ELISA kit (EZHI-14K/EZHI-14BK). Homeostasis model assessment (HOMA-

IR) was calculated as an estimate of insulin resistance: HOMA-IR = insulin (µU/ml) x glucose 

(mg/dL)/405 (29). Data collection methods to determine high sensitivity C reactive protein (hs-

CRP), IL-6, leptin, and adiponectin concentrations have been previously published (30). The 

adiponectin/leptin ratio was calculated in terms of ng/mL. Cardiometabolic risk factor thresholds 

were defined as follows: triglycerides ≥ 150 mg/dL, HDL < 40 mg/dL, Systolic Blood Pressure 

(SBP) ≥ 90th percentile for sex and height, and fasting glucose ≥ 100 mg/dL (31, 32). 

Metabolically Healthy Normal Weight (MHNW) was defined as BMI-for-age < 1 SD above WHO 

Growth Reference Median with 0 cardiometabolic risk factors, Metabolically Unhealthy Normal 

Weight (MUNW) was defined as above but with 1 or more cardiometabolic risk factors, 

Metabolically Healthy Overweight/obesity (MHO) was defined as BMI-for-age > 1 SD above the 

WHO Growth Reference median (85th percentile) with 0 cardiometabolic risk factors, and 

Metabolically Unhealthy Overweight/obesity (MUO) was defined as above with 1 or more 

cardiometabolic risk factors (33).  

4.3.4 Covariates 

Data on infant feeding practices were obtained by maternal interview at 3 mo of age and 

used to categorize breastfeeding (BF) status at 3 mo of age as exclusive BF (EBF), predominantly 

BF (PreBF), partial BF (PaBF), and non-BF (NBF) according to the WHO classification (34, 35). 
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Dietary intake at 11 years was assessed via multiple-pass 24-hour dietary recall adapted for 

Mexican populations (36). Trained personnel administered the diet recall tool to the child’s 

primary caregiver (in presence of the child). Nutrient and energy estimations were obtained using 

the 2012 and 2016 Mexican Food Databases, which are maintained by INSP (37). Sedentary time 

was estimated using data that were collected through the administration of a self-reported physical 

activity and inactivity questionnaire that was developed for and validated among children ages 10-

14 in Mexico (38). Sexual maturation was assessed by proxy using testosterone levels for males 

and attainment of menarche for females that was ascertained by a self-reported questionnaire. 

4.3.5 Statistical Analysis  

Normality of data was assessed using histograms and quantile-quantile plots. Means and 

standard deviations or medians and interquartile ranges (IQR) of variables were calculated and 

presented by sex and body size phenotype, as appropriate. Differences between groups were 

assessed using t-tests, ANOVA, and Wilcoxon rank-sum tests as appropriate; pairwise 

comparisons were assessed using Tukey-Kramer tests. 

4.3.6 MetS Score 

We used PCA to calculate a MetS score using systolic blood pressure, HDL, triglycerides, 

BMI-z, and glucose. We used BMI-z instead of waist circumference because it has more reliability 

and has been used in other similar studies, which allows for better comparison across studies (12, 

15). We log-transformed triglycerides and glucose and used the inverse of HDL when 

standardizing, so a higher factor loading score would have a similar interpretation to other 

measures in the model. The top principal components (PCs) were identified visually using scree 

plots and quantitatively using the Kaiser criterion (eigenvalues > 1) (39). MetS was calculated as 

the sum of the top two PCs, weighted by variance explained. The score can be interpreted as a z-
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score, with higher scores representing increased cardiometabolic risk. PCA was performed using 

the ‘FactoMineR’ R package (40).  

4.3.7 Exploratory CMH Score 

We also used PCA to create an exploratory cardiometabolic health (CMH) score using 13 

measures of cardiometabolic health: SBP, DBP, adiponectin, leptin, insulin, glucose, IL-6, CRP, 

Low Density Lipoprotein (LDL) cholesterol, HDL cholesterol, triglycerides, fat mass index, and 

fat-free mass index. The inverses of HDL, adiponectin, and fat-free mass index were used to ensure 

that loadings would have similar interpretations to other variables. Analyses were performed using 

the ‘FactoMineR’ and ‘missMDA’ R packages (40, 41). We estimated the number of dimensions 

by K-fold cross validation and imputed missing values in the dataset with a PCA model 

bootstrapped 1000 times. Only factors with <5% missing data were used as input for MIPCA 

(missingness of cardiometabolic factors ranged from 0-4.8% (IL-6)). We performed a sensitivity 

analysis of imputed values, in which we assessed the difference in CMH scores as computed from 

the complete dataset and from the imputed dataset. Nearly 95% of individuals were classified 

similarly using the imputed and complete case scores; thus, we retained the scores derived from 

the imputed values to increase available sample size. 

4.3.8 Reliability of MetS and CMH Scores  

We used quintiles of MetS and CMH score distributions to categorize individuals in Q1 as 

‘low’ risk, Q2-Q4 as ‘moderate’ risk, and Q5 as ‘high’ risk and compared risk categorizations of 

individuals using both scores by calculating % agreement and Cohen’s kappa statistic (42). We 

used ANOVA to compare adjusted mean MetS and CMH scores by body size phenotype using the 

R ‘emmeans’ package and adjusted estimates for maternal (prenatal treatment group, SES, age, 

and BMI at trial enrollment) and offspring (sex and age at examination) factors. 
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4.3.9 Association of Continuous MetS Score with CMH Markers 

We used multivariable generalized linear models to assess associations between the 

continuous MetS score and markers of insulin resistance, inflammation, and energy homeostasis. 

Given their skewed distributions, variables were log-transformed prior to analysis. Models were 

adjusted for prenatal treatment group, maternal BMI at 18-22 weeks gestation, household 

socioeconomic status close to the time of birth, child sex, birth weight, breastfeeding type and 

duration, age at examination, diet (energy intake and total omega-3 fatty acid intake), and 

sedentary time at age 11 years. Models were stratified by sex and additionally adjusted for sexual 

maturation (defined in girls as attainment of menarche and in boys by testosterone concentrations). 

We tested for interaction by including sex as an interaction term in the models. We used multiple 

imputation to account for missing covariates (diet, sedentary time, sexual maturation, and 

breastfeeding type and duration). The R ‘mice’ package was used to generate 20 imputed datasets 

using fully conditional specification with 50 iterations (43). We conducted GLMs for each of the 

20 models and pooled the estimates. All statistical analyses were performed using R version 4.0.4 

(R Foundation for Statistical Computing, Vienna, Austria). Statistical significance was held at p < 

0.05.  

4.4 Results 
 

Sample characteristics for the study population are shown in Table 4-1. Briefly, the mean 

age at follow up was 11.1 years (SD=0.18), and 47% of the sample were female. The sample was 

balanced by prenatal treatment group for the original trial design. Nearly 9% of children were born 

preterm and 5% were born with low birth weight. At 3 months of age, 82% of children were 

consuming breastmilk as part of their diets, but only 14% were exclusively breastfed. Only 34 

females (17.6%) had attained menarche by the time of examination at 11 years. Compared to 
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children missing cardiometabolic data, children included in the study tended to have mothers who 

were older, less likely to be primiparous, breastfeed for longer durations, and have higher 

household SES at study enrollment (Supplementary Table 4-1). 

4.4.1 Clustering Patterns of Cardiometabolic Factors 

When using International Diabetes Federation (IDF) criteria, 31.9% of participants had low 

HDL, 18.2% had elevated triglycerides, 3.6% had elevated glucose, and no children had high blood 

pressure. Prevalence and clustering of cardiometabolic factors, stratified by weight category, are 

shown in Table 4-2. Nearly 45% and 35% of children had overweight or obesity, according to 

WHO criteria and IOTF criteria, respectively. Over 40% of the population had at least one 

cardiometabolic risk factor besides overweight/obesity. Among children with normal weight, 30% 

had at least one cardiometabolic risk factor. The most common cardiometabolic risk factors were 

low HDL, followed by high triglycerides and high fasting glucose. High triglycerides and low 

HDL tended to cluster together most frequently among individuals with ≥2 cardiometabolic risk 

factors. Nearly all cardiometabolic factors, aside from adiponectin and blood pressure, differed by 

body size phenotype (Table 4-3). Relative to individuals with MHNW, MUNW, and MHO, 

individuals with MUO had higher fasting glucose, insulin, HOMA-IR, triglycerides, fat mass 

index, fat-free mass index, inflammatory markers (IL-6, hs-CRP), and leptin concentrations, along 

with lower HDL (all p <0.01). Cardiometabolic factors stratified by sex are shown in 

Supplementary Table 4-2. Most cardiometabolic factors did not differ across male and female 

children, although fasting glucose was lower, and triglycerides and sum of skinfolds were 

significantly higher among females compared to males. 

4.4.2 Derivation of MetS Score 
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Contributions of MetS components to the PCA-derived MetS score are shown in Figure 

4-1a. The top two principal components (PCs) collectively explained 56.2% of the variance in the 

measured data. Triglycerides, BMI-z, and HDL contributed to the first PC (35.2% variance 

explained), while SBP and fasting glucose contributed to the second PC (21.0% variance 

explained). Given the observed sex differences in triglycerides and fasting glucose, we performed 

a sensitivity analysis comparing sex-specific and overall MetS scores; their correlation was 0.98 

(Supplementary Figure 4-2); so we use the overall score in subsequent analyses. To improve 

comparability between studies, we also assessed correlation between MetS scores derived using 

PCA and a sum of z-scores (r = 0.99).   

4.4.3 Associations of MetS Score with Markers of Inflammation and Insulin Resistance 

The associations between the continuous MetS score and additional cardiometabolic 

markers are shown in Table 4-4. HOMA-IR (β (95% CI) = 0.79 (0.59 - 0.99)) and hs-CRP (0.75 

(0.52-0.98)) were significantly positively associated with continuous MetS scores among both 

sexes (p<0.05), although interaction by sex was only significant for hs-CRP. Positive associations 

with leptin and inverse associations with the adiponectin/leptin ratio were observed among males 

only, while no association was observed for adiponectin or Il-6 for either sex.   

4.4.4 Derivation of Exploratory CMH Score  

Correlations among all variables included in the exploratory CMH score are shown in 

Supplementary Figure 4-3. After applying the Kaiser criterion, five PCs were retained and 

collectively explained 62.1% of variance in the measured data. Contributions of each 

cardiometabolic factor to the PCA-derived CMH score are shown in Figure 4-1b and are 

summarized as follows: fat mass index, hs-CRP, triglycerides, and HDL contributed to the first 

PC (18.6%), SBP and DBP contributed to the second PC (13.7%), insulin, leptin, and IL-6 
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contributed to the third PC (12.6%), LDL and fat-free mass index contributed to the fourth PC 

(9.4%), and adiponectin and glucose contributed to the fifth PC (7.8%). The correlation between 

overall and sex-specific CMH scores was 0.83 (Supplementary Figure 4-4).  

4.4.5 Comparison of MetS and CMH Scores  

There was a positive correlation between the MetS and CMH scores (r = 0.75, p < 0.0001). 

Approximately 43% of individuals were categorized in the same quintile by both scores (κ = 0.29), 

while more than 67% of individuals were categorized in the same risk category (Q1: low, Q2 – 

Q4: medium, Q5: high) by both MetS and CMH scores (κ = 0.42). Mean MetS and CMH scores, 

stratified by body size phenotype, are shown in Figure 4-1c. Children with MUNW, MHO, and 

MUO had higher MetS scores (β = 0.29, 95% CI: 0.27-0.33) and CMH scores (β = 0.17, 95% CI: 

0.14-0.20) relative to the MHNW group, although differences in the CMH score were less 

pronounced. MetS and CMH scores were significantly higher in the MUO group relative to the 

MHO group, but only MetS scores were significantly higher in the MUNW group relative to the 

MHNW group. While there were significant differences in CMH scores between MUNW and 

MHO groups (∆ = 0.25 (95% CI: 0.09, 0.39)), no significant differences were observed in MetS 

scores between MUNW and MHO groups (∆ = 0.07 (-0.08, 0.22)) 

4.5 Discussion 
 

In this study, we describe the clustering of cardiometabolic health markers among pre-

adolescent Mexican children and examine use of a MetS score and exploratory CMH score to 

assess cardiometabolic profiles. We found that, across both the MetS and CMH scores, adiposity 

and lipids explained most of the variance in cardiometabolic measures among the study population. 

The MetS score captured similar variation in cardiometabolic measures as the CMH score, with 

nearly 70% of the study population categorized in the same risk category using both scores. 
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Children with overweight/obesity had worse MetS and CMH scores relative to children with 

normal weight. Furthermore, a linear trend was observed by body size phenotype; children with 

MUO, MHO, and MUNW had worse MetS and CMH scores relative to children with MHNW. 

Among children with normal weight, having at least one cardiometabolic factor placed individuals 

at nearly equivalent MetS risk as individuals with MHO. These findings suggest that even minor 

perturbations in cardiometabolic profiles (i.e., developing overweight/obesity or one 

cardiometabolic risk factor) place individuals on a poor trajectory that may ultimately contribute 

to higher risk of future disease.  

Derivation of the CMH score via PCA showed that fat mass index, hs-CRP, triglycerides, 

and HDL had the highest contributions to variance observed across cardiometabolic measures. 

Although no individuals in this sample had high blood pressure, measures of blood pressure (MetS 

score: SBP only, CMH score: SBP and DBP) contributed substantially (> 75%) to the second PC 

for both MetS and CMH scores. Insulin, leptin, and IL-6 tended to cluster together in the third PC, 

and fat-free mass index, adiponectin, LDL, and glucose tended to cluster together across the fourth 

and fifth PCs. Of interest, across both MetS and CMH scores, fasting glucose concentrations did 

not account for substantial variance in cardiometabolic measures; the study population was likely 

managing glucose well at the time of examination, as less than 5% of the study population had 

high glucose levels.  

While PCA has predominantly been used to derive MetS scores in most previous studies 

(12), one study recently used PCA to examine the variance components of 13 cardiometabolic 

factors among pre-adolescent children in New Zealand (14). Findings showed that 4 factors (blood 

pressure, adiposity, lipids, and vascular, respectively) explained 60% of the variance in the 

measured variables. Although clustering of factors was similar between our study and this study, 
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blood pressure explained a majority of variance as compared to adiposity and lipids in our study. 

Like our study, children with overweight or obesity had worse cardiometabolic risk scores relative 

to children with normal weight. A key difference is the populations studied; most study participants 

identified as New Zealand European whereas our study was conducted among children of Hispanic 

origin. Multiple studies conducted in the United States indicate that ethnic differences in the 

prevalence of cardiometabolic risk factors exist early in life (18, 19). Previous studies have shown 

that low HDL and high triglycerides are the most commonly observed cardiometabolic risk factors 

present among Mexican populations (44-46); our results align with these findings, as HDL and 

triglycerides loaded onto the first PC for both MetS and CMH scores. Further examination of 

ethnic and genetic differences may have implications for targeted prevention and treatment of 

cardiometabolic disease. 

Another recent study in Denmark evaluated the association between inflammatory markers 

and a clustered z-score of CVD risk, which included TC/HDL-c, TGs, HOMA-IR, SBP, sum of 4 

skinfold thickness (S4SF), and inverse of VO2peak; they reported that CVD risk was associated with 

alterations in adiponectin, TNFα, hs-CRP, and IL-6 (10). Although components included in the 

composite scores varied, our multivariable regression models showed that hs-CRP, a marker of 

systemic inflammation, and HOMA-IR, a marker of insulin resistance, were significantly 

positively associated with MetS scores. Of interest, positive associations with leptin and inverse 

associations with the adiponectin/leptin ratio were observed among males only, which may be 

attributable to sex differences in pubertal development trajectories. Leptin, a hormone secreted 

from white adipose tissue, plays a key role in regulation of feeding behavior, metabolic rate, and 

energy balance and is positively correlated with obesity, but some studies suggest that leptin may 

also signal the initiation of puberty (47, 48). Among females, leptin concentrations typically 
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increase throughout puberty, while among males, levels increase prior to the onset of puberty and 

subsequently decrease as puberty progresses (47). Alterations in circulating leptin may partially 

explain the associations between obesity, onset of puberty, and future cardiometabolic risk, but 

additional research is warranted (49).  

Several limitations should be considered when interpreting our findings. We used 

secondary data from a previously conducted RCT. Thus, sample sizes were limited to individuals 

who were not lost to follow-up over the 11-year period; selection bias may influence our findings. 

Compared with individuals lost to follow-up, participants in our study sample tended to have 

mothers who were older, less likely to be primiparous, breastfeed for longer durations, and have 

higher household SES at study enrollment. To account for this, we adjusted for these factors in all 

multivariable regression models. Additionally, while PCA is a powerful dimensionality-reduction 

tool, loading coefficients of individual cardiometabolic factors from PCA are only applicable to 

the population from which they are derived. Furthermore, results cannot be easily compared across 

studies because a variety of input measures (e.g., sum of skinfolds, TC: HDL, mean blood pressure) 

have been used (50). Finally, although we adjusted models for total sedentary time (including 

screen time), we did not have access to a gold-standard measure of physical activity.  Overall, 

generalizability of results may be limited; this work should be replicated with consistent sets of 

cardiometabolic measures in large, nationally representative datasets in Mexico, as well as 

populations with diverse racial and ethnic backgrounds. 

It is important to note that this study utilizes a cross-sectional sample of children at age 11 

years. This age represents a dynamic time of growth development, either immediately prior to or 

during the onset of puberty, which is characterized by complex physical, hormonal, and emotional 

changes including weight gain and increases in insulin resistance (33). In our study, pubertal status 
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was assessed by documenting attainment of menarche and testosterone concentrations among 

males in a subset of the population, as opposed to more robust methods such as assessing Tanner 

stages (51). Although the children are well-characterized early in the life course, due to the cross-

sectional study design, it is not possible to assess the risk of adult cardiometabolic disease or 

determine the sequence of risk factor development over time. While multiple studies have shown 

that PCA-derived MetS scores are associated with increased risks of CVD and type II diabetes in 

adulthood, longitudinal studies with a comprehensive set of cardiometabolic factors measured 

consistently across the life course are needed to establish the temporality of risk factor 

development and disease progression.  

Several strengths of this study should be acknowledged: most notably, the availability of 

multiple measures of cardiometabolic health measured simultaneously, including traditional MetS 

risk factors, adiposity, adipokines, and measures of inflammation and insulin resistance. We used 

data from a large, well-characterized study with information on both mother and child. Children 

have been followed since birth with a rich set of data characterizing their health and lifestyle across 

the life course. Data collection and laboratory assays were standardized, validated, and conducted 

by trained personnel within a clinical setting. Additionally, the age period of 11 years old offers a 

stable time for lipid assessment in children prior to the onset of puberty for most of the study 

population.  

As more widely available resources enable less expensive testing of blood samples, it is 

becoming increasingly feasible to collect more comprehensive data to better characterize CMH 

risk and prevent future disease. Therefore, it is important to understand if, given additional cost 

considerations, there is added value in collecting more biomarkers to better characterize 

cardiometabolic health during this life stage, and additionally, whether there is added value in 
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collecting these data in low-resource environments. Our findings suggest that MetS scores capture 

a similar amount of variation compared to CMH scores that incorporate additional biological 

measures. Here, the more complex CMH score captured little additional variance relative to the 

MetS score (62% variance explained by the top 5 PCs vs. 56% variance explained by the top 2 

PCs, respectively). Across both scores, adiposity seems to account for most of the variation in 

cardiometabolic health at this age. Particularly within resource-limited settings, it may be 

sufficient to identify individuals with at least one cardiometabolic risk factor (obesity or other 

MetS components) for more intensive disease prevention strategies

In summary, our findings provide new insights into the clustering patterns of 

cardiometabolic factors during a period of growth and development that currently lacks extensive 

characterization but offers an important opportunity to intervene prior to the development of 

cardiometabolic disease.  A remaining question is whether CMH scores offer useful predictions of 

adult cardiometabolic risk. Additional follow-up studies comparing predictive abilities of MetS 

and CMH scores in diverse populations may enable early identification of children and adolescents 

at risk for cardiometabolic disease. 
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4.7 Tables and Figures  
 
Table 4-1. Maternal and offspring characteristics (n = 413). 

Maternal factors at enrollment into POSGRAD 
Age, years 26.8 (4.81) 

BMI, kg/m2 26.3 (4.36) 
Height, cm 155 (5.61)  
Primiparous (n, %) 135 (32.7) 
SES Score 0.12 (0.97) 
Schooling, y 12.2 (3.45) 

Offspring factors 
Female (n, %) 194 (47.0) 
Early life characteristics   

Birth weight, g 3221 (466)  
Gestational age at birth, weeks 39.1 (1.78) 
Breastfeeding status, 3 mo (n, %)              

EBF 51 (13.6)  
PreBF 49 (13.1)  
PaBF 207 (55.3) 
NBF 67 (17.9)  

Duration of BF, mo 9.41 (7.66) 
At age 11 years   
Cardiometabolic factors  

BMI z-score 0.7 (1.3) 
HDL, mg/dL 45.8 (9.9) 
Triglycerides, mg/dL 108.3 (57.6) 
SBP, mmHg 102.1 (8.1) 
Glucose, mg/dL 88.3 (8.5) 

MetS Score 0.0 (0.5) 
CMH Score 0.0 (0.4) 
Lifestyle factors  

Sedentary time per day, min  287 (134)  
Total fat intake, g 74.8 (34.1) 
Total energy intake, kcal 1996 (674)  

Values presented are mean (SD) unless otherwise stated.  
BMI, body mass index; SES, socioeconomic status score; EBF, Exclusive Breastfeeding; 
PreBF, Predominantly Breastfeeding; PaBF, Partially Breastfeeding; NBF, No 
Breastfeeding; HDL, High Density Lipoprotein Cholesterol; SBP, Systolic Blood 
Pressure; MetS, Metabolic Syndrome; CMH, Cardiometabolic Health 
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Table 4-2. Prevalence and clustering of cardiometabolic risk factors among 
POSGRAD children at 11 years of age. 

  Normal weight Overweight/obese Overall 
  n = 231 n = 182 n = 413 
Individual risk factors     

Low HDL  53 (22.9%) 79 (43.4%) 132 (31.9%) 
High Triglycerides  18 (7.8%) 57 (31.3%) 75 (18.2%) 
High Glucose  7 (3.0%) 8 (4.4%) 15 (3.6%) 
High BP  0 (0%) 0 (0%) 0 (0%) 

Clustering of CM factors  
0 CM factors 162 (70.1%) 77 (42.3%) 239 (57.9%) 
1 CM factor 60 (26.0%) 68 (37.4%) 128 (31.0%) 
2 CM factors  9 (3.9%) 35 (19.2%) 44 (10.7%) 
3 CM factors 0 (0%) 2 (1.1%) 2 (0.5%) 

Values presented are n (%).  
CM, Cardiometabolic; HDL, High Density Lipoprotein Cholesterol; BP, Blood Pressure. 
Overweight/obesity was defined as BMI-for-age > 1 SD above the WHO Growth Reference 
median (85th percentile) and cardiometabolic risk factors were defined as follows: low HDL (<40 
mg/dL), high triglycerides (≥150 mg/dL), high glucose (≥100 mg/dL), and high BP (SBP ≥90th 
percentile for sex and height). 
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Table 4-3. Cardiometabolic factors stratified by body size phenotype (n = 413). 

  MHNW MUNW        MHO              MUO        
Cardiometabolic factor N =162 N = 69       N=77             N=105       
Glucose Homeostasis    

 
Insulin (𝝁𝝁M/mL)  4.13 (2.58, 15.5)    7.10 (3.36, 14.9)   11.6 (3.87, 21.9)  15.7 (4.80, 34.2) 
Glucose (mg/dL)  87.0 (82.2, 91.0)    88.0 (84.0, 92.0)   88.0 (84.0, 91.0)  90.0 (86.0, 95.0) 
HOMA-IR  0.89 (0.55, 3.40)    1.51 (0.73, 3.48)   2.55 (0.78, 4.81)  3.74 (1.10, 7.66) 
Lipids     
Non-HDL (mg/dL)   108 (94.0, 125)      107 (91.0, 120)      117 (101, 131)    125 (106, 144)   
HDL (mg/dL)  50.0 (46.0, 57.0)    38.0 (35.0, 40.0)   47.0 (44.0, 53.0)  38.0 (34.0, 40.0) 
Triglycerides (mg/dL)  76.5 (54.5, 95.0)     105 (83.0, 150)     93.0 (70.0, 120)   153 (105, 197)   
LDL (mg/dL)   94.5 (80.0, 107)    84.5 (68.5, 98.0)    99.0 (87.0, 116)  93.0 (77.2, 109)  
Inflammation     
IL-6 (pg/mL)  0.41 (0.22, 0.87)    0.50 (0.24, 0.90)   0.61 (0.22, 1.37)  0.68 (0.30, 1.60) 
hs-CRP (mg/L)  0.38 (0.22, 0.82)    0.54 (0.25, 0.98)   1.54 (0.66, 3.16)  1.75 (0.51, 3.51) 
Adipokines     
Adiponectin (ng/mL)a  13.9 (11.7, 17.4)    14.6 (12.4, 17.8)   14.6 (11.7, 18.8)  14.6 (11.5, 18.2) 
Leptin (ng/mL)  5.74 (2.72, 10.5)    5.67 (2.61, 11.4)   6.71 (2.65, 14.7)  10.0 (4.02, 16.2) 
Adiponectin:Leptin Ratio  2.42 (1.15, 5.42)    2.74 (1.35, 5.48)   2.31 (1.19, 4.90)  1.71 (0.77, 3.42) 
Blood Pressure     
SBP (mmHg)a   102 (96.2, 108)      101 (95.8, 105)     102 (98.2, 105)    103 (97.6, 108)  
DBP (mmHg)a  61.5 (56.8, 65.0)    60.4 (58.0, 63.2)   61.2 (58.2, 65.8)  62.3 (58.5, 65.6) 
Adiposity     
BMI (kg/m2)  17.0 (15.5, 18.1)    17.4 (15.9, 18.5)   21.7 (20.7, 23.8)  23.1 (20.9, 25.5) 
FMI (kg/m2)  4.15 (3.26, 5.29)    4.24 (3.42, 5.22)   8.03 (7.02, 10.1)  8.89 (7.21, 10.8) 
FFMI (kg/m2)  12.4 (11.7, 13.4)    12.6 (11.9, 13.5)   14.0 (13.1, 14.9)  14.3 (13.3, 15.4) 
Sum of skinfolds (mm)  35.0 (28.5, 43.5)    36.8 (29.0, 43.5)   68.0 (59.2, 81.5)  75.0 (62.8, 89.5) 
Abdominal Circumference 
(cm) 66.1 (62.3, 69.5) 66.0 (63.2, 70.2) 78.9 (76.9, 83.6) 83.7 (78.2, 88.8) 
Values presented for cardiometabolic factors are median (IQR). Differences in cardiometabolic factors were assessed using 
Wilcoxon rank-sum tests and corrected for pairwise comparisons.  
HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; Non-HDL, Non-High-Density Lipoprotein (Non-HDL = 
TC – HDL); HDL, High Density Lipoprotein; LDL, Low Density Lipoprotein; IL-6, Interleukin 6; hs-CRP, high sensitivity 
C-reactive protein; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; BMI, Body Mass Index; FMI, Fat Mass 
Index; FFMI, Fat-free Mass Index; MetS, Metabolic Syndrome; MHNW, Metabolically Healthy Normal Weight; MUNW, 
Metabolically Unhealthy Normal Weight; MHO, Metabolically Healthy Overweight/Obesity; MUO, Metabolically Unhealthy 
Overweight/Obesity. 
a Cardiometabolic factors did not significantly differ by body size phenotype (p > 0.05).  
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Figure 4-1. Contribution of cardiometabolic factors to PCA-derived continuous MetS score and 
CMH score and differences by body size phenotype. 
Principal components analysis (PCA) was used to calculate the a) MetS score using five 
components used to diagnose MetS in pediatric populations and b) exploratory CMH score using 
13 cardiometabolic factors. Top PCs were identified visually using scree plots and quantitatively 
using eigenvalues > 1. Both scores were calculated as the sum of the top components, weighted 
by variance explained. The x axes represent the top PCs used to create the MetS score and 
percentage of variance in the data explained by each PC via PCA. The diameter of each bubble 
represents the magnitude of contributions (%) of individual MetS components to each PC. 
Cardiometabolic factors with the highest contributions represent the most important variables 
within each PC. The highest contributing components in the first PC contribute most to the derived 
scores. C) adjusted mean differences (95% CI) in MetS and CMH scores, stratified by body size 
phenotype.  
Abbreviations: CMH, Cardiometabolic Health; MetS, Metabolic Syndrome; MHNW, 
Metabolically Healthy Normal Weight; MUNW, Metabolically Unhealthy Normal Weight; MHO, 
Metabolically Healthy Overweight/Obesity; MUO, Metabolically Unhealthy Overweight/Obesity; 
PC, Principal Component 
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Values represent 𝜷𝜷 (95% CI) from generalized linear models testing the association between the PCA-derived 
MetS score and biomarkers of inflammation and insulin resistance. Biomarkers with skewed distributions were 
log-transformed prior to analysis. Models were adjusted for prenatal treatment group, maternal age, BMI at 18-
22 weeks gestation, household socioeconomic status close to the time of birth, child sex, birth weight, type of 
breastfeeding at age 3 months and total duration, age at measurement, diet (energy intake and total omega-3 
fatty acid intake), and sedentary time at age 11 years. Models were stratified by sex and additionally adjusted 
for sexual maturation (defined in girls as attainment of menarche and in boys by testosterone concentrations). 
We used multiple imputation to account for missing covariates (diet, screen time, sexual maturation, and 
breastfeeding type and duration). 
Interaction by sex was tested by including an interaction term in the overall model. The asterisk denotes 
significant interaction by sex (p < 0.05).  
IL-6, Interleukin 6; hs-CRP, high-sensitivity C-reactive protein; HOMA-IR, Homeostatic Model Assessment 
for Insulin Resistance; MetS, Metabolic Syndrome. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4-4. Association of MetS score with markers of inflammation and insulin resistance. 

 
Overall 
N = 413 

Males 
N = 219 

Females 
N = 194 

Biomarker (log-transformed) 𝜷𝜷 (95% CI) 𝜷𝜷 (95% CI) 𝜷𝜷 (95% CI) 

Leptin* 0.19 (-0.02, 0.41) 0.39 (0.08, 0.69) 0.03 (-0.29, 0.35) 

Adiponectin -0.003 (-0.08, 
0.08) 

-0.04 (-0.01, 0.07) 0.04 (-0.09, 0.17) 

Adiponectin/Leptin ratio*  -0.18 (-0.41, 0.04) -0.41 (-0.73, -0.08) 0.006 (-0.33, 0.34) 

IL-6 0.14 (-0.09, 0.37) 0.22 (-0.08, 0.53) 0.08 (-0.29, 0.44) 

Hs-CRP * 0.75 (0.52, 0.98) 0.93 (0.62, 1.24) 0.56 (0.20, 0.92) 

HOMA-IR 0.79 (0.59, 0.99) 0.60 (0.34, 0.86) 0.99 (0.68, 1.30) 
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4.8 Supplementary Tables and Figures  
 
 

 
Supplementary Figure 4-1. Flow of study sample selection. 
Abbreviations: MetS, Metabolic Syndrome 
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Supplementary Table 4-1. Comparison of maternal factors at POSGRAD study enrollment and 
offspring characteristics at birth in analytic and missing samples. 

 Analytic sample Missing sample  p-value 
    N=413       N=560               

Maternal factors at enrollment into POSGRAD  
Age, years 26.8 (4.81) 25.9 (4.60)  0.003 
BMI, kg/m2 26.3 (4.36) 25.9 (4.13)  0.136 
Height, cm 155 (5.61)   155 (5.78)  0.934 
Primiparous (n, %) 135 (32.7%) 235 (42.0%)  0.004 
SES Score 0.12 (0.97) -0.03 (1.01) 0.02 
Schooling, y 12.2 (3.45) 11.8 (3.59)  0.153 

Received prenatal DHA intervention  212 (51.3%) 275 (49.1%)  0.535 
Offspring factors    

Female (n, %) 194 (47.0%) 270 (48.2%)  0.537 
Birth weight, g 3221 (466)   3193 (457)  0.353 
Gestational age at birth, weeks 39.1 (1.78) 39.1 (1.79)  0.901 
Breastfeeding status, 3 mo (n, %)                          0.439 

EBF 51 (13.6)   53 (11.4)            
PreBF 49 (13.1)   50 (10.8)            
PaBF 207 (55.3) 280 (60.5)            
NBF 67 (17.9)   80 (17.3)            

Duration of BF, mo 9.41 (7.66) 8.05 (7.67)  0.007 
Values presented are mean (SD) unless otherwise stated.  
BMI, body mass index; SES, socioeconomic status score; DHA, Docosahexaenoic Acid; EBF, Exclusive Breastfeeding; 
PreBF, Predominantly Breastfeeding; PaBF, Partially Breastfeeding; NBF, No Breastfeeding 
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Values presented are median (IQR). 
BMI, body mass index; SES, socioeconomic status score; DHA, Docosahexaenoic Acid; EBF, Exclusive Breastfeeding; 
PreBF, Predominantly Breastfeeding; PaBF, Partially Breastfeeding; NBF, No Breastfeeding; HDL, High Density 
Lipoprotein Cholesterol; SBP, Systolic Blood Pressure; MetS, Metabolic Syndrome; CMH, Cardiometabolic Health 
*Significantly differs by sex (p < 0.05) 
 
 
 
 
 
 
 
 

Supplementary Table 4-2. Cardiometabolic factors stratified by sex. 

 Overall Males Females 
Cardiometabolic factor N=413 N=219 N=194 
Glucose Homeostasis    
Insulin (𝝁𝝁M/mL) 8.25 (3.06, 21.6)  7.25 (3.05, 20.4)  11.3 (3.12, 24.3)  
Glucose (mg/dL)* 88.0 (84.0, 92.0)  89.0 (85.5, 94.0)  87.0 (83.0, 91.0)  
HOMA-IR 1.83 (0.65, 4.79)  1.59 (0.67, 4.53)  2.44 (0.62, 5.12)  
Lipids    
Non-HDL (mg/dL)  113 (97.0, 132)    112 (96.0, 131)    113 (99.0, 133)   
HDL (mg/dL) 45.0 (39.0, 52.0)  45.0 (39.0, 52.0)  45.0 (39.0, 51.0)  
Triglycerides (mg/dL)*  94.0 (69.0, 131)   88.0 (64.0, 123)   100 (76.0, 141)   
LDL (mg/dL)  93.0 (78.0, 107)   93.5 (78.8, 109)   93.0 (78.0, 104)  
Inflammation    
IL-6 (pg/mL) 0.51 (0.24, 1.10)  0.55 (0.25, 1.09)  0.50 (0.24, 1.12)  
Hs-CRP (mg/L) 0.72 (0.32, 2.13)  0.78 (0.33, 2.35)  0.62 (0.28, 1.67)  
Adipokines    
Adiponectin (ng/mL) 14.4 (11.8, 17.9)  14.3 (11.7, 17.5)  14.6 (12.1, 18.2)  
Leptin (ng/mL) 6.64 (2.76, 13.0)  6.59 (2.92, 14.7)  6.86 (2.62, 12.1)  
Adiponectin:Leptin Ratio 2.27 (1.08, 5.08)  2.25 (1.02, 5.19)  2.32 (1.13, 4.85)  
Blood Pressure    
SBP (mmHg)  102 (96.6, 107)    102 (96.5, 106)    103 (96.8, 108)   
DBP (mmHg) 61.6 (57.6, 65.0)  61.6 (57.8, 64.6)  61.6 (57.6, 65.6)  
Adiposity    
BMI (kg/m2) 18.9 (16.8, 22.0)  18.9 (16.7, 22.2)  19.1 (17.1, 21.6)  
FMI (kg/m2)  5.89 (3.99, 8.12) 5.72 (3.79, 8.57) 5.97 (4.12, 7.70) 
FFMI (kg/m2) 13.2 (12.2, 14.5) 13.2 (12.2, 14.3) 13.2 (12.0, 14.7) 
Sum of skinfolds (mm)* 49.2 (34.0, 70.0)  43.5 (31.8, 67.9)  52.5 (36.9, 71.5)  
Abdominal Circumference (cm) 72.5 (65.0, 80.5)  71.9 (64.8, 81.3)  72.9 (66.0, 79.0)  
Cardiometabolic Risk    
MetS Score  -0.04 (-0.33, 0.36) -0.04 (-0.34, 0.38) -0.04 (-0.33, 0.36) 
CMH Score -0.05 (-0.27, 0.26) -0.06 (-0.33, 0.23) -0.04 (-0.25, 0.30) 
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Supplementary Figure 4-2. Contribution of cardiometabolic factors to PCA-derived sex-
specific continuous MetS score. 
Principal components analysis (PCA) was used to calculate the continuous MetS risk score using 
five components used to define metabolic syndrome in pediatric populations among a) males and 
females. Top principal components (PCs) were identified visually using scree plots and 
quantitatively using eigenvalues > 1. Both scores were calculated as the sum of the top 
components, weighted by variance explained. The x axes represent the top principal components 
(PCs) used to create the MetS score and percentage of variance in the data explained by each PC 
via PCA. The diameter and color of each bubble represent the magnitude of contributions (%) of 
individual MetS components to each PC. Cardiometabolic factors with the highest contributions 
represent the most important variables within each PC. The highest contributing components in 
the first PC contribute most to the derived scores. b) Pearson correlation between the overall MetS 
score and sex-specific MetS score. 
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Supplementary Figure 4-3.  Spearman correlations between cardiometabolic factors included in 
CMH score. 
hs-CRP, high-sensitivity C-reactive protein; LDL, Low Density Lipoprotein Cholesterol; 
HDL, High Density Lipoprotein Cholesterol; SBP, Systolic Blood Pressure; DBP, Diastolic 
Blood Pressure; IL-6, Interleukin-6. 
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Supplementary Figure 4-4. Contribution of cardiometabolic factors to PCA-derived sex-
specific continuous CMH score. 
Principal components analysis (PCA) was used to calculate the CMH score among a) males and 
females. Top principal components (PCs) were identified visually using scree plots and 
quantitatively using eigenvalues > 1. The CMH score was calculated as the sum of the top 
components, weighted by variance explained. The x axes represent the top principal components 
(PCs) used to create the CMH score and percentage of variance in the data explained by each PC 
via PCA. The diameter and color of each bubble represent the magnitude of contributions (%) of 
individual cardiometabolic components to each PC. Cardiometabolic factors with the highest 
contributions represent the most important variables within each PC. The highest contributing 
components in the first PC contribute most to the derived scores. b) Pearson correlation between 
the overall CMH score and sex-specific CMH score. 
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5.1 Abstract 
 
Background: There is limited evidence regarding long-term effects of prenatal docosahexaenoic 

acid (DHA) supplementation on offspring cardiometabolic health (CMH). Inconsistent results 

may be attributable to variants of fatty acid desaturase (FADS) genes.  

Objective: We evaluated the effect of prenatal DHA supplementation on offspring CMH and 

investigated effect modification by maternal FADS2 single nucleotide polymorphism (SNP) 

rs174602. 

Methods: We used follow-up data from a double-blind randomized controlled trial in Mexico in 

which pregnant females received 400 mg/d of algal DHA or placebo from mid-gestation until 

delivery. The study sample included 314 offspring who had data at age 11 years and maternal 

FADS genetic data (DHA: n = 160; Placebo: n = 154). We derived a Metabolic Syndrome 

(MetS) score from body mass index, HDL, triglycerides, systolic blood pressure, and fasting 

glucose. Generalized linear models were used to evaluate the effect of the intervention on 

offspring MetS score and test interactions between treatment group and genotype, adjusting for 

maternal, offspring, and household factors. 

Results: Offspring MetS score did not differ significantly by treatment group. We observed 

evidence of effect modification by maternal SNP rs174602 (p = 0.001); offspring of maternal TT 

genotype who received DHA had lower MetS score relative to the placebo group (DHA (mean ± 

standard error of the mean (SEM)): -0.21 ± 0.11, n = 21; Placebo: 0.05 ± 0.11, n = 23; ∆= -0.26 

(95% CI: -0.55, 0.04), p = 0.09); among CC maternal genotype carriers, offspring of mothers 

who received DHA had higher MetS score (0.18 ± 0.06, n = 62) relative to the placebo group(-

0.05 ± 0.06, n = 65, ∆=0.24 (0.06, 0.41), p < 0.01).  



 
 

 

109 

Conclusion: The effect of prenatal DHA supplementation on offspring MetS score differed by 

maternal FADS SNP rs174602. These findings further support the need to incorporate genetic 

analysis of FADS polymorphisms in DHA supplementation trials. 
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5.2 Introduction 

Nutritional exposures may have long-term implications for offspring metabolic health, 

including risk of cardiovascular disease and type II diabetes (1-4). Docosahexaenoic Acid (DHA) 

is an n-3 long-chain polyunsaturated fatty acid (LC-PUFA) that typically accumulates during the 

second half of pregnancy to support optimal fetal DHA tissue deposition, development, and 

immune function (5). Animal models and epidemiological studies suggest that alterations in the 

prenatal DHA supply may also influence long-term offspring cardiometabolic risk via altered cell 

and organ development, gene expression, and development of neuroendocrine signals  (1, 4, 6, 7). 

For example, studies in rat and mouse models have shown that prenatal n-3 LC-PUFA 

supplementation results in lower adiposity, insulin resistance, and dyslipidemia among offspring 

(8-11).  

In humans, observational studies report associations of higher maternal n-3 LC-PUFA 

status during pregnancy with lower adiposity, dyslipidemia, and leptin concentrations among 

offspring in early and mid-childhood (12, 13). Additional evidence suggests that especially among 

females with overweight or obesity, mother-offspring dyads may benefit from prenatal DHA 

supplementation via improvements in maternal insulin sensitivity, circulating lipids, and placental 

inflammation, thus reducing fetal overnutrition and adiposity (14).  However, systematic reviews 

of results from randomized controlled trials (RCT) report inconsistent effects of prenatal DHA 

supplementation on offspring cardiometabolic health (CMH) outcomes (6, 15-18). While these 

inconsistencies may be attributable to differences in the dose, type, and timing of supplementation 

during pregnancy (19, 20), variants of fatty acid desaturase (FADS) genes that modulate the 

conversion of n–3 and n–6 fatty acids into LC-PUFAs may also contribute to this heterogeneity 

(5).  
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Tissue LC-PUFA concentrations are determined by both dietary intake of  n-6 and n-3 LC-

PUFAs and endogenous formation from dietary PUFA precursors, which occurs through a series 

of consecutive desaturation and elongation steps. The rate-limiting desaturase steps are mediated 

by ∆-6 and ∆-5 desaturase enzymes encoded in the FADS gene cluster (FADS1, FADS2, FADS3) 

(5).  Multiple variants in FADS genes have been associated with lower LC-PUFA concentrations, 

indicating reduced conversion of dietary precursors (5, 21). Although a few observational studies 

suggest that maternal FADS genotype influences offspring LC-PUFA status and lipid profiles, to 

our knowledge, this association has not been investigated in the context of an intervention trial 

(22).  

To address these research gaps, we leveraged data from a large prenatal DHA 

supplementation RCT in Mexico, in which pregnant females received either 400 mg algal DHA 

(treatment) or placebo daily from mid-pregnancy through delivery. We previously reported that 

maternal FADS2 SNP rs174602 modified the effect of prenatal DHA supplementation on offspring 

birth weight (23), metabolome at age 3 months (24), and cognition at age 5 years (25). The 

objective of this study is to evaluate the effect of prenatal DHA supplementation on offspring 

CMH at age 11 years and assess whether it differed by variations in maternal FADS SNP rs174602.  

5.3 Methods 
 
5.3.1 Participants and Study Design 

This study included children of pregnant females who participated in the Prenatal Omega-

3 fatty acid Supplementation and Child Growth and Development (POSGRAD) trial in 

Cuernavaca, Mexico (NCT00646360). A detailed description of the trial design and protocol has 

been published previously (26). Briefly, pregnant females were recruited at 18-22 weeks gestation 

at the Mexican Social Security Institute (IMSS) and were eligible for inclusion if they were 18-35 
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years old, planned to deliver at the IMSS hospital, breastfeed for at least 3 months, and continue 

living in the area for ≥ 2 years following delivery. Exclusion criteria included high-risk 

pregnancies, lipid metabolism or absorption disorders, regular intake of fish oil or DHA 

supplements, or chronic use of certain medications. Once eligibility was confirmed, participants 

were contacted and provided with a thorough explanation of the study protocol, and written 

informed consent was obtained. Of 1,762 eligible pregnant females, 1,094 were randomized to 

receive 2 capsules containing either 200 mg algal DHA per capsule (treatment) or a corn/soy oil 

blend (placebo) daily through delivery; the fatty acid composition of the supplements has been 

previously published (24). Block randomization was used to randomize study participants into 

groups of equal sample size using a block size of eight. Assignment codes were placed in sealed 

envelopes at the beginning of the study and were held in a sealed location by a faculty member at 

Emory University who was not involved with the study. Enrollment took place from February 

2005 to March 2007, and the last child was born in July 2007. All study participants and members 

of the study team were blinded to treatment allocations throughout the intervention period of the 

study. Data were unblinded for the analytical study team after the last baby was born and reached 

6 mo. of age. The participants and fieldworkers remain blinded to the intervention, as the study is 

still ongoing for follow up. Due to budgetary limitations, venous blood samples were collected in 

a sub-sample of 485 children who were contacted and agreed to participate in the 11-year follow-

up study from 2016-2018.  

The study was conducted according to the guidelines of the Declaration of Helsinki. The 

Emory University Institutional Review Board and the Mexican National Public Health Institute 

(INSP) ethics committee approved all procedures involving human subjects. Informed consent was 
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obtained from all pregnant females at study enrollment. At the 11-year follow up visit, mothers 

provided written informed consent and children provided written assent.  

5.3.2 Maternal Genotype Data  

Fasting venous blood samples were obtained from all pregnant females at recruitment. 

Plasma, buffy coat, and red blood cells were separated and stored at INSP laboratories at −80◦C 

until buffy coats were transported to the Hemholtz Center, Munich, Germany. The genetic analysis 

was carried out during 2012–2013 for those who provided consent to genotyping (n=720), using 

methods that have been previously described (23). The resulting data sets containing information 

on 15 FADS1, FADS2, and FADS3 SNPs, selected based on biological evidence of an effect on 

LC-PUFA metabolism (27-31), were sent to Emory University via encrypted files. Key SNPs were 

selected on basis of previous associations with cardiometabolic health in the literature (rs174548, 

rs174556, rs174570, rs174575, rs174576, rs174579, rs174602) (27, 28, 30, 31). Maternal FADS2 

SNP rs174602 was selected as the focus of this study based on previous evidence of effect 

modification on offspring birth weight, metabolome at 3 months, and cognition at 5y within the 

POSGRAD trial (23-25). Allele frequencies were calculated, and Hardy Weinberg Equilibrium 

(HWE) was tested with Fisher’s exact test using the R ‘genetics’ package.  

5.3.3 Follow-up study of children at 11 years  

At age 11 years, body weight (kg) and height (cm) were collected in triplicate by trained 

personnel following standard procedures (32). Children were weighed wearing light clothing with 

a portable electronic pediatric scale (Tanita model 1582) with a precision of 100 g, which was 

calibrated daily with a known reference weight. Height was measured using a stadiometer with a 

precision of 0.1 cm. Average values of all three measurements were calculated. We calculated 

BMI-for-age z-scores according to the 2007 World Health Organization (WHO) Growth Reference 
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Standards using the ‘zscorer’ R package (33). Blood pressure (mmHg) was measured using a 

digital device (OMRON model HEM-711ACINT), which has been validated for use in children 

and adolescents. Blood pressure was taken when the child was at rest (> 5 minutes after the child 

arrived at the study visit). In each arm, four measurements were made with 2-minute intervals; the 

first measurement was discarded and the subsequent three were averaged (34). 

5.3.4 Outcome Assessment: Cardiometabolic Markers  

Venous blood samples were obtained from children after a 12-hour fasting period (verified 

by documenting the approximate time that food was last consumed) and centrifuged. Aliquots of 

serum were frozen in liquid nitrogen and stored at −80°C until further analysis at the National 

Institute of Medical Sciences and Nutrition Salvador Zubirán in Mexico. HDL cholesterol, 

triglyceride, and glucose concentrations were assessed using the Beckman Coulter SYNCHRON 

CX 5 Delta automated kit and expressed in mg/dL. Cardiometabolic risk factor thresholds were 

defined as follows: triglycerides ≥ 150 mg/dL, HDL < 40 mg/dL, Systolic Blood Pressure (SBP) 

≥ 90th percentile for sex and height, and fasting glucose ≥ 100 mg/dL (35, 36). 

5.3.5 Derivation of Continuous MetS Score 

To operationalize cardiometabolic health and reduce multiple testing, we used principal 

components analysis (PCA) to calculate a continuous MetS score (primary outcome) using systolic 

blood pressure, HDL, triglycerides, BMI-z, and glucose (37). We used BMI-z instead of waist 

circumference because it has greater reliability and has been used in other similar studies (38, 39). 

We log-transformed triglycerides and glucose and used the inverse of HDL when standardizing, 

so a higher factor loading score would have a similar interpretation to other measures in the model. 

Top principal components (PCs) were identified visually using scree plots and quantitatively using 

the Kaiser criterion (eigenvalues > 1). Subsequently, the score was calculated as the sum of the 
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top two components, weighted by variance explained. The score can be interpreted as a z-score, 

with higher scores representing increased cardiometabolic risk. PCA was performed using the 

‘FactoMineR’ R package (40). Given the observed sex differences in cardiometabolic health 

measures, we performed a sensitivity analysis comparing sex-specific and overall MetS scores; 

their correlation coefficient was 0.97; so we use the overall score in subsequent analyses. 

5.3.6 Covariates 

Data on maternal, offspring, and household factors were available to further characterize 

the study population. Household SES at enrollment was calculated with the use of PCA on a list 

of assets collected through interview (26).  Maternal BMI at enrollment was assessed based on 

weight and height measurements that were obtained using standard procedures. Maternal dietary 

intake at study enrollment was also assessed using a 110-item food-frequency questionnaire that 

was specifically designed to include important PUFA sources (41). Data on infant feeding 

practices at 3 months of age were obtained by maternal interview and used to categorize infant 

feeding practices according to the WHO classification (42, 43). Dietary intake of children at 11 

years was assessed via multiple-pass 24-hour dietary recall developed for Mexican populations 

(44). Trained personnel administered the diet recall tool to the child’s primary caregiver (in 

presence of the child). Nutrient and energy estimations were obtained using the 2012 and 2016 

Mexican Food Database (BAM in Spanish): Compilation of the Frequently Consumed Foods in 

the Country, which are maintained by INSP (45). Sedentary time was estimated using a self-

reported physical activity and inactivity questionnaire that was developed for and validated among 

children ages 10-14 years in Mexico (46). Sexual maturation was assessed by proxy using 

testosterone concentrations for males and age at attainment of menarche for females via self-

reported questionnaire. 
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5.3.7 Statistical Analysis  

Normality of data was assessed using histograms and quantile-quantile plots, and residual 

plots were used to check model assumptions. We calculated means and standard deviations for 

maternal and offspring characteristics at trial enrollment and birth and assessed differences by 

treatment group and maternal genotype using t-tests, ANOVA, and Wilcoxon rank-sum tests as 

appropriate. We compared these characteristics between those included in the analytic sample and 

the rest of the birth cohort, and variables that differed were considered for inclusion in models as 

covariates. 

We used multivariable generalized linear models to assess the effect of prenatal DHA 

supplementation on offspring MetS scores and test interactions between maternal treatment group 

and genotype using five different models: 1) unadjusted model; 2) adjusted for household SES 

score, maternal age (years), parity (number of live births), BMI (kg/m2), and offspring sex and age 

at measurement (days); 3) model 2 additionally adjusted for birth weight (g) and gestational age 

at birth (weeks); 4) model 3 additionally adjusted for energy intake (kcal/day) and omega-3 fatty 

acid intake (g/day); and 5) model 4 additionally adjusted for monounsaturated fat (MUFA) (g/day) 

and saturated fat intake (g/day). We used multiple imputation to account for missing values of 

covariates (diet (n = 85, 27.1%), sedentary time (n = 26, 8.3%), sexual maturation (testosterone 

concentrations in males: n = 101, 58.4%; attainment of menarche in females: n = 1, 0.7%), and 

infant feeding practices (n = 30, 9.6%) and duration (n = 2, 0.6%)). We used the R ‘mice’ package 

to generate 20 imputed datasets using fully conditional specification with 50 iterations, conducted 

GLMs for each of the 20 models, and pooled the estimates (47). Inclusion of covariates specified 

in models 3, 4, and 5 did not alter estimates; therefore, we report all findings adjusted for the 

covariates specified in model 2. All statistical analyses were performed using R version 4.0.4 (R 
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Foundation for Statistical Computing, Vienna, Austria). Statistical significance was held at p < 

0.05. We tested six different outcomes (MetS score and five components included in MetS score) 

and used the Bonferroni correction to adjust for multiple testing (p < 0.008). 

5.4 Results 
 

The analytic sample included all children with complete data on maternal genotype and 

cardiometabolic risk factors (BMI-z, HDL, triglycerides, glucose, and SBP) at age 11 years (n = 

314) (Figure 5-1). Maternal and offspring characteristics at trial enrollment and birth were 

balanced by treatment group and maternal genotype (Table 5-1). Mean maternal age and BMI at 

enrollment were 26.2 ± 4.7 years and 26.0 ± 4.2 kg/m2, respectively. Median maternal dietary 

intake of DHA was very low (median (IQR): 56 (40-105) mg/d), combined with a dietary n-6:n-3 

ratio of 12:1. Mothers of children in the analytic sample tended to be older, have a higher BMI, 

and higher SES score at trial enrollment relative to those lost to follow up or missing data 

(Supplementary Table 5-1). Lifestyle factors of children at age 11 years by treatment group and 

maternal genotype are presented in Table 5-2; children whose mothers received prenatal DHA 

tended to have higher intakes of polyunsaturated fatty acids, including total omega-3 and omega-

6 intake, relative to children whose mothers received placebo (p < 0.05). Maternal and offspring 

characteristics at study enrollment and birth, and offspring lifestyle factors at age 11 years were 

similar when stratified by both prenatal treatment group and maternal genotype (Supplementary 

Table 5-2).  

5.4.1 Genotype distribution of maternal SNP rs174602  

Within this sample, the minor allele frequency for maternal SNP rs174602 was 0.37; 44 

mothers (14%) were homozygous carriers of the minor T allele, 143 (46%) were heterozygous 

carriers (TC), and 127 (40%) were homozygous carriers of the major C allele. There were no 
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significant differences in genotype distribution by treatment group, and there were no HWE 

violations observed (p = 0.72). 

5.4.2 Cardiometabolic health of children at age 11 years  

At age 11 years, 42% of the children had BMI z-score > 1 SD, and 39% had ≥ 1 

cardiometabolic risk factor (HDL ≤ 40 mg/dL, triglycerides ≥ 150 mg/dl, fasting glucose ≥ 100 

mg/dL, SBP ≥ 90th percentile). The most frequently observed cardiometabolic risk factor was low 

HDL (30%), followed by high triglycerides (16%). Derivation of the MetS score via PCA showed 

that the top two PCs collectively explained 56% of the variance in the measured data 

(Supplementary Figure 5-1a). Triglycerides, BMI-z, and HDL contributed to the first PC (35.0% 

variance explained), while SBP and fasting glucose contributed to the second PC (20.7% variance 

explained). The distribution of the MetS score in the study population is shown in Supplementary 

Figure 5-1b.  

5.4.3 Impact of prenatal DHA supplementation on offspring MetS score 

Differences in MetS components and offspring MetS score by prenatal treatment group 

and maternal genotype are shown in Table 5-3. Intent to treat analysis showed no differences by 

treatment group for the MetS components (all p > 0.05) or MetS score at 11 years (∆ = 0.02, 95% 

CI: -0.09, 0.13). We observed evidence of effect modification by maternal SNP rs174602 (p = 

0.001) (Figure 5-2). Offspring of homozygous minor T allele carriers who received prenatal DHA 

had lower MetS score relative to the placebo group (DHA (mean ± SEM): -0.21 ± 0.11, n=21; 

Placebo: 0.05 ± 0.11; ∆= -0.26 (95% CI: -0.55, 0.04), n = 23, p = 0.09). Among homozygous major 

C allele carriers, offspring of mothers who received prenatal DHA had higher MetS score (0.18 ± 

0.06, n=62) relative to offspring whose mothers received placebo (-0.05 ± 0.06, n = 65, ∆=0.24 

(0.06, 0.41), p < 0.01). Individual cardiometabolic risk factors, stratified by both maternal 
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genotype and treatment group, are shown in Supplementary Table 5-3. While we observed 

similar trends with individual MetS components, the results were not statistically significant after 

adjustment for multiple testing (Figure 5-3). Finally, we evaluated three-way a priori interactions 

with maternal BMI at study enrollment and offspring sex but did not find any evidence of further 

effect modification (G×BMI interaction p-value = 0.24, G×sex interaction p-value = 0.28). 

5.5 Discussion 
 

In this follow-up study of mother-offspring dyads from Mexico, we found no main effect of 

prenatal DHA supplementation on offspring cardiometabolic health at age 11 years, but there were 

differences by variants of maternal FADS2 SNP rs174602. Offspring of homozygous minor allele 

(TT) carriers who received prenatal DHA had lower MetS scores relative to the placebo group, 

while offspring of homozygous major allele (CC) carriers who received DHA had higher MetS 

scores relative to offspring whose mothers received placebo. These exploratory findings suggest 

that prenatal DHA supplementation may have differential effects on a child’s long-term 

cardiometabolic risk based on their mother’s genotype.  

The lack of main effects of the intervention are similar to the findings from the few studies that 

have evaluated the long-term effect of prenatal n-3 LC-PUFA supplementation on offspring 

metabolic health; Rytter et al. found no significant differences by treatment group in blood pressure 

or lipids in a Danish population at age 19 years, but the sample sizes were small (n = 180 for blood 

pressure outcomes, n = 243 for adiposity-related outcomes) (48, 49). When the analysis was 

restricted to mothers with low fish intake, however, children born to mothers who received fish oil 

trended towards better lipid profiles. A prenatal DHA RCT that was conducted in the US among 

171 mothers and their offspring also did not find evidence of a main intervention effect but 

observed statistically significant interaction between prenatal DHA supplementation and child 



 
 

 

120 

weight status for SBP and DBP from 4 to 6 years of age and higher fat free mass at age 5 years 

(50). A previous study within the POSGRAD cohort also did not find any differences by treatment 

group in non-fasting serum lipid and glucose concentrations at age 4 years (51). Some evidence 

suggests that differences in cardiometabolic risk because of metabolic programming may become 

more apparent later in childhood, near the onset of puberty. One observational study reported 

associations of cord blood LC-PUFA composition with child BMI at 2 and 10 years, but not 6 

years, highlighting the importance of age of outcome assessment (19). However, within our study, 

results were still null at age 11 years. 

Our results provide additional support that the differences in the genetic makeup of individuals 

may partially explain null results observed across prenatal DHA supplementation RCTs. Here, we 

showed that the effect of the intervention on the offspring MetS score at 11 years differed by 

maternal FADS2 SNP rs174602, located at an intron/exon boundary of the FADS2 gene.. FADS2 

encodes for the Δ-5 desaturase enzyme that regulates the conversion of 20:3n-6 to 20:4n-6 

(Arachidonic acid (AA)) and 20:4n-3 to 20:5n-3 (Eicosapentaenoic acid). Pregnancy is a complex 

period characterized by necessary metabolic adaptations, including alterations in lipid and glucose 

metabolism, to ensure an adequate supply of nutrients including DHA to the mother and growing 

fetus (52). During this critical period with heightened nutrient requirements, individuals with 

genotypes associated with lower endogenous conversion to DHA may be at greater risk for DHA 

deficiency and subsequently benefit more from supplementation with preformed DHA. One RCT 

in the United States showed that only among individuals with FADS SNPs associated with lower 

conversion of precursors (i.e., had minor alleles for FADS SNPs), prenatal DHA supplementation 

increased DHA concentrations and reduced AA:DHA ratios at delivery. These findings suggested 

a selective benefit of supplementation among carriers of variants for some FADS SNPs (53). A 
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recent birth cohort study in China also reported significant interaction between DHA 

supplementation and maternal SNP rs174602 on DHA concentrations in colostrum (54). 

Additionally, previous studies in European populations have shown that the CC genotype for SNP 

rs174602 is associated with lower Δ-5 desaturase activity (55).  

We have also previously reported from the POSGRAD study that children born to TT carriers 

who received prenatal DHA had higher birthweight relative to those who received placebo, while 

no differences were observed among CC carriers (23). The fatty acid analysis performed in a subset 

of the study population (n = 140) showed that the minor T allele for SNP rs174602 was inversely 

associated with maternal plasma DHA concentrations at study enrollment. This suggests that these 

individuals were at greater risk of DHA deficiency, especially within the context of a diet high in 

n-6 fatty acids (23). To add further context to these differences in findings, it is important to 

consider ancestral variations in the distribution of FADS genotypes. Most studies assessing the 

role of maternal and offspring FADS genes in child health have been conducted in European 

populations (56, 57). However, Native American and Mexican populations have a greater 

proportion of carriers of alleles associated with slower conversion of precursors, along with diets 

high in n-6 PUFAs and low in n-3 LC-PUFAs (5, 58). Targeting provision of preformed LC-

PUFAs to these populations may be particularly important. Overall, our findings reinforce the 

potential need for targeted interventions and inclusion of genotype information in the design and 

interpretation of supplementation trials to optimize benefit-risk ratios, particularly in the clinical 

nutrition setting. However, additional research is needed to reproduce these findings, confirm 

whether mother-offspring dyads with specific maternal genetic profiles and/or nutritional statuses 

benefit more from prenatal DHA supplementation, and determine whether it will ever be feasible 

to utilize genetic information in the design of public health interventions. 
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Several limitations should be acknowledged when interpreting our findings. First, selection 

bias may influence the generalizability of our results. The offspring in our study sample (32% of 

the birth cohort) tended to have mothers who were older and had higher BMI and household SES 

at study enrollment relative to those lost to follow up, but these values did not differ by prenatal 

treatment group or maternal genotype. Given the high loss to follow up, sample sizes were limited, 

which may have contributed to the non-significant findings in the TT group. Additionally, 

cardiometabolic health can be influenced by many factors over the life course, starting with 

prenatal and early life factors (e.g., maternal BMI during pregnancy, birth weight, infant feeding 

practices). However, lifestyle factors over childhood, including diet, physical activity, and 

maturation may be equally important in determining an individual’s cardiometabolic risk (59). 

Although there were no differences in maternal characteristics at baseline and offspring 

characteristics at birth by treatment group or genotype, we did observe differences in diet at age 

11 years. Total PUFA intake differed by treatment group, and MUFA and saturated fat intake 

differed by genotype. However, when interaction between treatment and genotype was considered, 

no differences in diet were observed. While these differences may be due to chance, we performed 

a sensitivity analysis additionally adjusting for PUFAs, MUFAs, and saturated fat, but effect 

estimates were not attenuated. There is potential bias related to the focus of this analysis on a SNP 

we have previously shown to be associated with birth weight; however, our findings remained 

significant even after adjusting for birth weight (i.e., the differences observed were not mediated 

by the effects of the interaction on birth weight). 

Although PCA is a powerful dimensionality-reduction tool that allowed us to maximize power 

by reducing the number of tested outcomes, loading coefficients of individual cardiometabolic 

factors from PCA are only applicable to the population from which they are derived. Dietary data 
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were collected via single 24-hour recall and may be subject to recall bias. As the trial was not 

originally designed to assess offspring cardiometabolic health, sample sizes are small and there 

may be limited statistical power to detect differences by treatment group or genotype. Additionally, 

although plasma fatty acid concentrations were available in a small subset of the original birth 

cohort (n = 75), they were not included in the current manuscript due to small sample sizes. Future 

work should focus on identifying reliable markers of fatty acid status, which can potentially be 

used as a proxy for genotype. It is unclear whether the strong interaction observed with maternal 

genotype of SNP rs174602 is due to its high minor allele frequency in this sample (0.37), or 

because it is a functional SNP. To our knowledge, no biological function has been established for 

this SNP; it is therefore likely just a marker, not the causal variant. Further work is needed across 

larger, diverse datasets to reproduce these findings and investigate underlying biological 

mechanisms. Finally, while we show the possible importance of maternal FADS genotype in 

directing supplementation strategies, the role of offspring genotype remains unclear. Future work 

in adequately powered studies should incorporate offspring genotype information to elucidate this 

complex relationship.  

Strengths of this study include the double-blind RCT design, high compliance to the prenatal 

intervention, extensive characterization of mothers and children throughout the trial and follow-

up period, and availability of genetic information. Furthermore, our study participants were 

representative of a population with low dietary intakes of preformed DHA, high dietary intakes of 

n-6 fatty acids, and a high prevalence of alleles associated with lower conversion of precursor 

PUFAs into LC-PUFAs. Data collection and laboratory assays were standardized, validated, and 

conducted by trained personnel. The age at follow-up offers a stable time for lipid assessment, as 
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current guidelines promote universal screening of lipids in children aged 9-11 years to establish 

baseline cardiometabolic risk.  

In summary, we showed that the effect of prenatal DHA supplementation on offspring 

MetS score at age 11 years differed by maternal FADS2 SNP rs174602. Population differences in 

FADS genotypes and diet may partially explain mixed results observed across prenatal DHA 

supplementation trials. However, given the large variation in genotype distributions across 

populations, this work should be reproduced in larger, independent cohorts. These findings further 

support the need to incorporate genetic analysis of FADS polymorphisms in DHA supplementation 

trials and may ultimately help guide the development of targeted supplementation 

recommendations early in the life course to improve cardiometabolic health in the clinical setting. 
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5.7 Tables and Figures  
 
 
 

 
Figure 5-1. Procedures of study sample selection. 
Abbreviations: DHA, Docosahexaenoic acid; MetS, Metabolic Syndrome; FADS, fatty acid 
desaturase 
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Table 5-1. Maternal baseline characteristics and offspring characteristics at birth, stratified by treatment group and maternal 
genotype of SNP rs174602. 

 Treatment groupa Maternal Genotype of SNP rs174602a 
 Placebo DHA CC TC TT 
 N=154 N=160 N=127 N=143 N=44 
Maternal factors, enrollment     

Age, years  26.6 (4.61) 27.4 (5.18) 27.0 (4.81) 27.2 (5.01) 26.8 (5.02) 
BMI, kg/m2  26.3 (4.10) 26.6 (4.13) 26.3 (4.12) 26.4 (3.92) 27.1 (4.65) 
Height, cm 156 (5.54) 155 (5.57) 155 (5.66) 155 (5.46) 157 (5.54) 
First pregnancy, % 53 (34.4%) 45 (28.1%) 37 (29.1%) 50 (35.0%) 11 (25.0%) 
SES Scoreb 0.13 (1.05) 0.13 (0.89) 0.01 (1.03) 0.13 (0.94) 0.46 (0.81) 
Schooling, years 12.3 (3.39) 11.9 (3.45) 11.6 (3.56) 12.3 (3.40) 12.6 (2.96) 

Dietary intake at enrollment, g/day     
ALA 1.76 (1.00) 1.79 (1.08) 1.76 (1.04) 1.80 (1.00) 1.73 (1.18) 
DHA 0.08 (0.07) 0.08 (0.08) 0.08 (0.08) 0.08 (0.06) 0.10 (0.11) 
LA 19.3 (7.76) 19.7 (8.64) 19.4 (7.78) 19.7 (7.79) 19.2 (10.6) 
EPA 0.03 (0.04) 0.03 (0.04) 0.03 (0.04) 0.03 (0.03) 0.04 (0.06) 
AA 0.15 (0.07) 0.16 (0.09) 0.15 (0.06) 0.16 (0.09) 0.15 (0.06) 

Compliance to intervention, % 95.0 (5.00) 95.7 (4.99) 95.1 (5.55) 95.8 (4.53) 94.6 (4.76) 
Offspring factors, birth                                        
Sex                                                              
Male 81 (52.6%) 93 (58.1%) 69 (54.3%) 80 (55.9%) 25 (56.8%) 
Female 73 (47.4%) 67 (41.9%) 58 (45.7%) 63 (44.1%) 19 (43.2%) 

Birth weight, g 3220 (490) 3230 (449) 3229 (532) 3220 (440) 3231 (367) 
Gestational age, weeks 39.0 (1.66) 39.1 (1.91) 38.8 (1.97) 39.1 (1.70) 39.4 (1.44) 
Breastfeeding status, 3 mo, %                                                              
Exclusively fed human milk 23 (16.2%) 17 (12.0%) 18 (15.8%) 15 (11.6%) 7 (17.1%) 
Predominantly fed human milk 20 (14.1%) 15 (10.6%) 11 (9.65%) 17 (13.2%) 7 (17.1%) 
Partially fed human milk 75 (52.8%) 80 (56.3%) 59 (51.8%) 78 (60.5%) 18 (43.9%) 
Not fed human milk 24 (16.9%) 30 (21.1%) 26 (22.8%) 19 (14.7%) 9 (22.0%) 

Duration of human milk feeding, mo 9.71 (7.96) 8.84 (7.65) 8.15 (6.86) 10.3 (8.56) 9.21 (7.53) 
a Chi-square tests, t-tests, and ANOVA were used to test differences between groups. No differences by treatment 
group were observed. Values presented are mean (SD) unless otherwise stated. 
b Differs by maternal genotype (p < 0.05) 
Abbreviations: BMI, body mass index; SES, socioeconomic status score; ALA, Alpha-Linolenic Acid; DHA, 
Docosahexaenoic Acid; LA, Linoleic Acid; EPA, Eicosapentaenoic Acid; AA, Arachidonic Acid; mo, month.  
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Table 5-2. Offspring characteristics at 11 years follow up, stratified by treatment group and maternal genotype of SNP 
rs174602. 

 
Prenatal treatment groupa 

 
Maternal Genotype of SNP rs174602a 

 Placebo DHA CC TC TT 
Dietary intakeb       

Energy intake (kcal/d) 1904 (595) 2064 (746) 1999 (709) 2216 (660) 2216 (660) 
Cholesterol (g/d) 246 (183) 300 (219) 276 (201) 328 (235) 328 (235) 
Lipids (g/d) 70.2 (33.8) 78.3 (35.7) 75.3 (35.0) 85.2 (42.0) 85.2 (42.0) 
Saturated fat (g/d)c 27.5 (14.2) 30.6 (17.7) 28.8 (15.3) 35.8 (18.4) 35.8 (18.4) 
Monounsaturated fat (g/d)c 23.3 (12.8) 26.1 (12.9) 24.8 (12.7) 30.0 (16.9) 30.0 (16.9) 
Polyunsaturated fat (g/d)d 13.6 (8.21) 16.2 (9.55) 14.9 (9.06) 16.3 (9.03) 16.3 (9.03) 
Total omega-3 intake (g/day)d 0.71 (0.65) 1.09 (1.39) 0.88 (1.08) 0.80 (0.67) 0.80 (0.67) 
Total omega-6 intake (g/day)d 5.32 (4.67) 7.34 (7.73) 6.71 (7.49) 6.12 (4.33) 6.12 (4.33) 

Total sedentary time, hours/day 4.82 (2.21) 4.75 (2.06) 4.83 (2.05) 5.03 (2.31) 5.03 (2.31) 
Maturation       

Females: attained menarche, n (%) 13 (8.5%) 11 (6.9%) 12 (8.39%) 3 (6.82%)  3 (6.82%)  
Testosterone concentrations (pg/mL) 1.55 (0.84) 1.55 (0.72) 1.44 (0.77) 1.38 (0.65) 1.38 (0.65) 

Age at examination, years 11.12 (0.20) 11.12 (0.17) 11.13 (0.18) 11.14 (0.16) 11.14 (0.16) 
a Chi-square tests, t-tests, and ANOVA were used to test differences between groups. Values presented are mean 
(SD) unless otherwise stated. 
b Dietary data only available for 229 individuals at age 11 years  
c Differs by maternal genotype (p < 0.05) 
d Differs by maternal prenatal treatment group (p < 0.05) 
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Table 5-3. MetS components by treatment allocation and maternal genotype of SNP rs174602 (n=314). 

 Treatment group Maternal genotype 
 Placebo DHA CC TC TT 
 N=154 N=160 N = 127 N = 143 N = 44 

Glucose (mg/dL) 
 88.2  

(86.9, 89.5)  
 87.3  

(86.0, 88.6)  
86.6  

(85.1, 88.1) 
88.3  

(87.0, 89.6) 
89.0 

(86.6, 91.4) 

HDL (mg/dL) 
 46.9  

(45.1, 48.6)  
 46.0  

(44.3, 47.8)  
45.8 

(43.8, 47.7) 
46.5 

(44.7, 48.2) 
48.4 

(45.2, 51.6) 

Triglycerides (mg/dL) 
 104  

(94.3, 113)   
 111  

(101.7, 120)   
113 

(102.7, 123) 
104 

(94.2, 113) 
103 

(85.5, 120) 

SBP (mmHg) 
  103  

(101, 104)   
  102 

 (101, 104)   
103 

(101.6, 105) 
102 

(100.5, 103) 
102 

(99.1, 104) 

BMI z-score 
0.64  

(0.43, 0.85)  
0.69  

(0.49, 0.91)  
0.88  

(0.65, 1.12) 
0.55 

(0.22, 0.76) 
0.48 

(0.08, 0.87) 

MetS Score 
-0.01  

(-0.10, 0.07) 
0.01  

(-0.08, 0.09) 
0.06  

(-0.03, 0.16) 
-0.04  

(-0.12, 0.05) 
-0.07  

(-0.22, 0.08) 
Values presented are adjusted means (95% CI).                                         
Abbreviations: HDL, high-density lipoprotein cholesterol; SBP, systolic blood pressure; BMI, body mass index; 
MetS, metabolic syndrome. 
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Figure 5-2. Effect modification by maternal SNP rs174602 on offspring MetS Score. 
Values are contrast-specific mean differences (95% CI) between DHA and placebo groups from 
generalized linear models testing the interaction between FADS2 single nucleotide polymorphism 
rs174602 and supplementation group on MetS score adjusted for child sex and age at measurement, 
maternal SES, BMI, parity and age at trial enrollment (p-interaction = 0.001). 
Abbreviations: DHA, docosahexaenoic acid; MetS, metabolic syndrome; NS, not significant; SNP, 
single nucleotide polymorphism 
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Figure 5-3. Effect modification by maternal SNP rs174602 on the impact of DHA 
supplementation on offspring MetS components. 
Plots include a) HDL (p-interaction = 0.10); b) BMI z-score (p-interaction = 0.14); c) triglycerides 
(p-interaction = 0.03); d) systolic blood pressure (p-interaction = 0.01); and e) glucose (p-
interaction = 0.43). Values are contrast-specific mean differences (95% CI) between DHA and 
placebo groups from generalized linear models testing the interaction between FADS2 single 
nucleotide polymorphism rs174602 and supplementation group on MetS components adjusted for 
child sex and age at measurement, maternal SES, BMI, parity, and age at trial enrollment. 
Abbreviations: SNP, single nucleotide polymorphism; HDL, High Density Lipoprotein 
cholesterol; BMI, body mass index; TGs, triglycerides; SBP, systolic blood pressure. 
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5.8 Supplementary Tables and Figures  
 

Supplementary Table 5-1. Comparison of maternal characteristics at study enrollment and 
offspring characteristics in early life in analytic and excluded samples. 

 Excluded sample Analytic sample 
     N=659        N=314    
Maternal factors at trial enrollment  
Age, yeara 25.9 (4.57)  27.0 (4.91) 
BMI, kg/m2a 25.8 (4.27)  26.4 (4.11) 
Height, cm  155 (5.76)  155 (5.57)  
Parity 1.95 (1.05)  2.08 (1.00) 
SESa -0.02 (1.00) 0.13 (0.97) 
Schooling, year 11.9 (3.59)  12.1 (3.42) 
Dietary intake at enrollment (g/day) 
ALA 1.66 (0.95)  1.77 (1.04) 
DHA 0.08 (0.09)  0.08 (0.08) 
LA 19.0 (9.54)  19.5 (8.21) 
EPA 0.03 (0.05)  0.03 (0.04) 
AA 0.15 (0.09)  0.15 (0.08) 
Received intervention  327 (49.6%)  160 (51.0%) 
Compliance to intervention (%) 94.9 (5.95)  95.3 (5.00) 
Offspring factors in early life  
Sex                          
Male 339 (51.4%)  174 (55.4%) 
Female 320 (48.6%)  140 (44.6%) 
Birth weight, g  3195 (456)  3225 (469)  
Gestational age at birth, weeks 39.1 (1.78)  39.1 (1.79) 
Breastfeeding status, 3 months                          
Exclusively fed human milk  64 (11.6%)  40 (14.1%)  
Predominantly fed human milk  64 (11.6%)  35 (12.3%)  
Partially fed human milk 332 (60.0%)  155 (54.6%) 
Not fed human milk  93 (16.8%)  54 (19.0%)  
Duration of BF, months 8.34 (7.62)  9.26 (7.81) 

Values presented are mean (SD) unless otherwise stated. 
a Values differ between analytic and excluded samples, as assessed by chi-square tests, t-
tests, and/or ANOVA. 
Abbreviations: BMI, body mass index; SES, socioeconomic status score; ALA, Alpha-
Linolenic Acid; DHA, Docosahexaenoic Acid; LA, Linoleic Acid; EPA, Eicosapentaenoic 
Acid; AA, Arachidonic Acid; EBF, Exclusive Breastfeeding; PreBF, Predominantly 
Breastfeeding; PaBF, Partially Breastfeeding; NBF, No Breastfeeding 
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Supplementary Table 5-2. Maternal baseline characteristics and offspring characteristics at birth, stratified by treatment group and 
maternal genotype of SNP rs174602. 

  CC TC TT 
 Placebo DHA Placebo DHA Placebo DHA 

     N=65        N=62        N=66        N=77        N=23        N=21     
Maternal factors, enrollment       

Age, year  26.6 (4.51) 27.4 (5.11) 26.8 (4.65) 27.4 (5.31) 26.1 (4.91) 27.6 (5.15) 
BMI, kg/m2  26.4 (4.30) 26.2 (3.96) 26.0 (3.49) 26.7 (4.26) 27.0 (5.11) 27.3 (4.20) 
Height, cm 155 (4.96)  154 (6.32)  155 (5.67)  155 (5.30)  158 (6.17)  155 (4.19)  
First pregnancy, % 19 (29.2%)  18 (29.0%)  28 (42.4%)  22 (28.6%)   6 (26.1%)   5 (23.8%)  
SES Score b 0.00 (1.09) 0.02 (0.98) 0.14 (1.06) 0.13 (0.84) 0.50 (0.86) 0.42 (0.77) 
Schooling, year 12.1 (3.40) 11.1 (3.67) 12.2 (3.60) 12.4 (3.24) 12.9 (2.75) 12.4 (3.22) 

Dietary intake at enrollment, g/day      
ALA 1.79 (0.94) 1.73 (1.15) 1.70 (0.92) 1.88 (1.07) 1.85 (1.39) 1.61 (0.92) 
DHA 0.08 (0.06) 0.08 (0.10) 0.08 (0.06) 0.08 (0.06) 0.09 (0.13) 0.10 (0.09) 
LA 19.3 (6.71) 19.4 (8.83) 18.9 (6.84) 20.3 (8.51) 20.1 (12.2) 18.1 (8.75) 
EPA 0.03 (0.03) 0.03 (0.05) 0.03 (0.03) 0.03 (0.03) 0.04 (0.07) 0.05 (0.05) 
AA 0.16 (0.07) 0.15 (0.06) 0.15 (0.07) 0.16 (0.11) 0.16 (0.07) 0.15 (0.06) 

Compliance to intervention, % 95.1 (4.86) 95.1 (6.25) 95.6 (4.89) 95.9 (4.23) 92.9 (5.42) 96.4 (3.11) 
Offspring factors, birth       
Females 32 (49.2%)  26 (41.9%)  30 (45.5%)  33 (42.9%)  11 (47.8%)   8 (38.1%)  
Birth weight, g 3309 (562)  3144 (489)  3159 (453)  3273 (424)  3145 (328)  3326 (392)  
Gestational age, weeks 39.0 (1.74) 38.7 (2.19) 38.9 (1.71) 39.3 (1.69) 39.3 (1.28) 39.5 (1.62) 
Breastfeeding status, 3 mo, %                                                                         

Exclusively fed human milk 12 (20.7%)   6 (10.7%)   8 (12.9%)   7 (10.4%)   3 (13.6%)   4 (21.1%)  
Predominantly fed human milk  5 (8.62%)   6 (10.7%)  10 (16.1%)   7 (10.4%)   5 (22.7%)   2 (10.5%)  
Partially fed human milk 31 (53.4%)  28 (50.0%)  34 (54.8%)  44 (65.7%)  10 (45.5%)   8 (42.1%)  
Not fed human milk 10 (17.2%)  16 (28.6%)  10 (16.1%)   9 (13.4%)   4 (18.2%)   5 (26.3%)  

Duration of BF, mo 8.56 (7.30) 7.73 (6.40) 10.9 (8.77) 9.74 (8.40) 9.63 (7.20) 8.75 (8.03) 
Offspring factors, 11 years       
Dietary intakea        

Energy intake (kcal/d) 1809 (553)  1969 (720)  1945 (581)  2041 (796)  2031 (721)  2425 (530)  
Cholesterol (g/d)  232 (155)   275 (226)   257 (200)   291 (202)   256 (210)   410 (241)  
Lipids (g/d) 65.8 (30.3) 73.3 (32.3) 71.7 (30.1) 77.9 (38.3) 77.0 (48.5) 94.5 (32.2) 
Saturated fat (g/d) 26.0 (14.1) 28.1 (17.5) 28.0 (13.3) 29.4 (16.8) 30.0 (16.6) 42.5 (18.4) 
Monounsaturated fat (g/d) 21.0 (10.1) 24.3 (11.6) 23.6 (11.0) 25.7 (13.8) 27.8 (20.6) 32.5 (11.5) 
Polyunsaturated fat (g/d) 12.8 (7.44) 16.1 (10.1) 13.7 (7.81) 15.8 (9.88) 15.0 (10.9) 17.8 (6.39) 
Total omega-3 intake (g/day) 0.74 (0.69) 1.24 (1.66) 0.69 (0.62) 1.03 (1.32) 0.70 (0.69) 0.91 (0.65) 
Total omega-6 intake (g/day) 4.89 (4.70) 7.32 (7.04) 5.53 (4.90) 7.60 (8.92) 5.84 (4.16) 6.44 (4.64) 

Total sedentary time, hrs/day  4.74 (2.47) 4.56 (1.83) 4.88 (1.90) 4.80 (2.19) 4.90 (2.32) 5.19 (2.35) 
Maturation        

Attained menarche (F), n (%)  4 (6.25%)   5 (8.06%)   7 (10.6%)   5 (6.49%)   2 (8.70%)   1 (4.76%)  
Testosterone (M) (pg/mL) 1.76 (0.87) 1.68 (0.77) 1.44 (0.83) 1.43 (0.70) 1.28 (0.68) 1.51 (0.62) 

Age at examination, years  11.12 (0.21) 11.08 (0.18) 11.12 (0.20) 11.14 (0.15) 11.11 (0.15) 11.18 (0.18) 
Values presented are mean (SD) unless otherwise stated. 
aDietary data only available for 229 individuals at age 11 years  
Abbreviations: BMI, body mass index; SES, socioeconomic status score; ALA, Alpha-Linolenic Acid; DHA, Docosahexaenoic Acid; 
LA, Linoleic Acid; EPA, Eicosapentaenoic Acid; AA, Arachidonic Acid; EBF, Exclusive Breastfeeding; PreBF, Predominantly 
Breastfeeding; PaBF, Partially Breastfeeding; NBF, No Breastfeeding 
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Supplementary Figure 5-1. Contribution of cardiometabolic factors to PCA-derived continuous 
MetS score. 
a) Principal components analysis (PCA) was used to calculate the MetS score using five 
components used to define metabolic syndrome in pediatric populations. Top PCs were identified 
visually using scree plots and quantitatively using eigenvalues > 1. Scores were calculated as the 
sum of the top components, weighted by variance explained. The x axes represent the top PCs used 
to create the MetS score and percentage of variance in the data explained by each PC via PCA. 
The diameter of each bubble represents the magnitude of contributions (%) of individual MetS 
components to each PC. Cardiometabolic factors with the highest contributions represent the most 
important variables within each PC. The highest contributing components in the first PC contribute 
most to the derived scores, b) equation used to calculate MetS scores for participants in the study 
population, and c) distribution of continuous MetS score in study population 
MetS, metabolic syndrome; PC, Principal Component
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Supplementary Table 5-3. Offspring cardiometabolic health at 11 years follow up, stratified by treatment 
group and maternal genotype of SNP rs174602. 

  CC  TC  TT  
 Placebo DHA Placebo DHA Placebo DHA 
  N=65 N=62 N=66 N=77 N=23 N=21 
Cardiometabolic risk factors        

BMI z-score 0.69 (1.26) 0.98 (1.18) 0.52 (1.46) 0.51 (1.28) 0.65 (1.58) 0.40 (1.52) 
Triglycerides 101 (45.3)  122 (74.1)  101 (53.8)  102 (55.2)  112 (51.8)  92.5 (47.0) 
HDL 47.3 (10.0) 43.9 (11.5) 46.1 (9.78) 46.7 (10.4) 47.3 (10.1) 48.7 (11.4) 
SBP 102 (7.32)  104 (8.94)  103 (7.55)  101 (8.63)  104 (10.3)  99.8 (7.25) 
Glucose 86.9 (6.12) 87.2 (10.0) 89.3 (8.63) 88.0 (8.41) 90.3 (5.15) 88.9 (6.07) 

MetS Score -0.05 (0.44) 0.17 (0.54) -0.01 (0.55) -0.07 (0.53) 0.09 (0.38) -0.17 (0.43) 
Values presented are unadjusted means (SD). 
BMI, Body Mass Index; DHA, Docosahexaenoic Acid; HDL, High Density Lipoprotein cholesterol; SBP, 
Systolic Blood Pressure; MetS, Metabolic Syndrome 
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6.1 Abstract 
 
Objective: We evaluated the role of selected variants in maternal and offspring fatty acid 

desaturase (FADS) genes on offspring cardiometabolic health (CMH) at age 11y and assessed 

interactions of genotype with diet quality and prenatal docosahexaenoic acid (DHA) 

supplementation.  

Methods: We used data from offspring (n=203) born to women who participated in a randomized 

controlled trial of prenatal DHA supplementation (400 mg/d) from mid-gestation through delivery 

in Mexico. We generated a continuous metabolic syndrome (MetS) score from body mass index, 

HDL cholesterol, triglycerides, systolic blood pressure, and fasting glucose measured at age 11 y 

and identified six distinct haplotypes from five offspring FADS SNPs (rs174578, rs2727271, 

rs174602, rs174605, rs174550). Dietary n-6:n-3 fatty acid ratios were derived from single 24-hour 

recalls (n=141). We used generalized linear models to test associations of offspring diet and FADS 

haplotypes with MetS score. We examined interactions of maternal and offspring FADS SNP 

rs174602 with prenatal treatment group and with dietary n-6:n-3 ratio on MetS score.  

Results: Associations between all examined FADS haplotypes and MetS score were null. 

Offspring SNP rs174602 did not modify the association of prenatal DHA supplementation with 

MetS score. Among children with TT or TC genotype for SNP rs174602 (n = 88), those in the 

highest n-6:n-3 ratio tertile (> 8.61) had higher MetS score relative to those in the lowest tertile (< 

6.67) (∆= 0.36; 95% CI: 0.03, 0.69). Among children with CC genotype (n = 53), those in the 

highest n-6:n-3 ratio tertile had lower MetS score relative to those in the lowest tertile (∆= -0.23; 

95% CI: -0.61, 0.16).  

Conclusions: In this population of Mexican children, there was evidence of interaction of 

offspring FADS SNP rs174602 with current dietary PUFA intake, but not with prenatal DHA 
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supplementation, on MetS score. Further studies are needed to validate these findings in other 

settings to determine the utility of targeted supplementation strategies and dietary 

recommendations based on genetic profile.   

6.2 Introduction 
 

Cardiometabolic diseases, which include cardiovascular disease, stroke, and type II diabetes 

mellitus, are the leading causes of mortality worldwide (1). Increasing evidence suggests that 

cardiometabolic risk factors emerge in childhood and persist through adulthood, highlighting the 

need to identify early and effective disease prevention strategies (2, 3). While cardiometabolic 

diseases have complex etiologies including genetic, behavioral, and environmental factors, 

nutritional status during critical periods of growth and development, such as gestation and early 

adolescence, may be a key modifiable determinant (4).  

Dietary polyunsaturated fatty acids (PUFAs), which include n-6 linoleic acid (LA) and n-3 

alpha-linolenic Acid (ALA), are important for cardiometabolic health (CMH) because they are 

precursors to the long-chain PUFAs (LC-PUFAs) n-6 arachidonic acid  (AA),  n-3   

eicosapentaenoic   acid   (EPA)   and   n-3 docosahexaenoic acid (DHA), which have opposing 

roles in modulating inflammation (5). LC-PUFAs also contribute to cell membrane synthesis, gene 

expression, and appetite signaling, and have regulatory effects on enzymes involved in lipid and 

glucose metabolism (6). While much research has focused on the cardioprotective benefits of n-3 

LC-PUFAs via improvements in insulin resistance, blood pressure, and triglycerides (7, 8), the 

relationship between n-6 fatty acids and cardiovascular health is less clear. In adults, some 

evidence suggests that high dietary n-6:n-3 ratios (~16:1) are associated with the pathogenesis of 

cardiovascular disease, diabetes, cancer, and inflammatory diseases (9, 10); however, other studies 

report that a combination of both n-6 and n-3 fatty acids is associated with lower inflammation, 
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and circulating concentrations of n-6 fatty acids are inversely associated with LDL cholesterol and 

cardiovascular risk (11-13). Overall, the role of both n-3 and n-6 LC-PUFAs in pediatric 

cardiometabolic health remains poorly characterized (14, 15).  

Additionally, the influence of dietary PUFAs on CMH may differ by variations in fatty acid 

desaturase (FADS) genes (16, 17). Conversion of n-6 LA and n-3 ALA to their LC-PUFA forms 

is regulated by Δ5 and Δ6-desaturase enzymes encoded in the FADS gene cluster (FADS1, FADS2, 

FADS3) located in chromosome 11. Genome wide association studies (GWAS) have identified 

multiple variants in FADS genes that are associated with lower LC-PUFA concentrations, 

indicating reduced conversion of dietary precursors, along with alterations in lipid profiles and 

glucose homeostasis (18, 19). Studies show that multiple variants in FADS genes are associated 

with lower lipid profiles and inflammation in European children (20-22), but there is evidence of 

ancestral variation in the frequency of alleles associated with reduced conversion of PUFAs across 

populations. Compared to European populations, Mexican populations have a greater proportion 

of carriers of alleles associated with slower conversion of precursors, as well as diets high in n-6 

and low in n-3 LC-PUFAs (18). Additional studies are needed across populations that vary in both 

genotype and diet quality to determine the utility of targeted dietary or supplementation 

recommendations based on genetic profile.  

To our knowledge, no prior studies have characterized children spanning from the prenatal 

period through early adolescence with FADS genetic information for both the mother and child. In 

the present study, we address these gaps by using follow-up data from a large prenatal DHA 

supplementation randomized controlled trial (RCT) in Mexico, in which children have been 

followed prospectively since birth. We previously reported that maternal SNP rs174602 modified 

the effect of prenatal DHA supplementation on offspring birth weight (23), the infant metabolome 
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at 3 months (24), and offspring MetS scores at age 11 years (unpublished). However, the respective 

contributions of maternal and offspring FADS genetic profile towards CMH remain unclear. The 

objective of this study is to evaluate the role of selected variants in both maternal and offspring 

fatty acid desaturase (FADS) genes on CMH at age 11 years and assess interactions with 1) prenatal 

docosahexaenoic acid (DHA) supplementation and 2) offspring diet quality at age 11 years.  We 

hypothesized that children who carry FADS alleles associated with more rapid conversion of 

precursors would have poorer CMH profiles relative to those with slower conversion. Secondarily, 

we hypothesized that maternal genotype would be more relevant than offspring genotype for 

modifying the effect of the prenatal DHA intervention whereas offspring genotype would be more 

relevant for modifying the effects of dietary intake on CMH. 

6.3 Methods 
 
6.3.1 Study Design and Participants  
 

This study includes data from the Prenatal Omega-3 fatty acid Supplementation and Child 

Growth and Development (POSGRAD) trial in Cuernavaca, Mexico (NCT00646360). The 

original trial design, protocol, and inclusion/exclusion criteria has been published elsewhere (25). 

Briefly, from 2005-2007, 1,094 pregnant women were recruited at 18-22 weeks gestation at the 

Mexican Social Security Institute (IMSS) and randomized to receive either 400 mg algal DHA 

(treatment) or a corn/soy oil blend (placebo) daily through delivery. The fatty acid composition of 

the supplements has been previously published (24). Intervention compliance was measured as the 

percentage of capsules consumed. The 968 women who completed the study delivered 963 

singleton live births and 5 pairs of twins (excluded from the present analysis). Children have been 

followed prospectively since birth and were most recently followed up at 11 years (2016-2018). 
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Of the 566 children who were successfully contacted and agreed to participate in the follow-up 

study, venous blood samples were collected in a sub-sample of 485 children. 

The Emory University Institutional Review Board and the Ethics Board of the Mexican 

National Institute of Public Health (INSP) reviewed and approved all procedures involving human 

subjects. The study was conducted according to the guidelines of the Declaration of Helsinki. 

Written informed consent was obtained from mothers at trial enrollment. At the 11-year follow up 

visit, mothers provided written informed consent and children provided written assent. 

6.3.2 Maternal Genotyping 
 

Fasting venous blood samples were collected from all women at recruitment, and genomic 

information was extracted from the buffy coat using standard techniques. Buffy coat was separated 

and stored at INSP laboratories at −80°C until transport to the Helmholtz Center, Munich, 

Germany. The genetic analysis was carried out in 2012-13 for samples from women who provided 

consent to genotyping (n = 720) using methods that have been previously described (23, 26). The 

resulting dataset containing 15 SNPs across the FADS gene cluster was transferred to Emory 

University via encrypted files (23). For the purposes of this analysis, we only used data for 

maternal SNP rs174602. 

6.3.3 Offspring Genotyping 

Stored blood samples obtained from offspring at age 4 y were transported to LMU 

University of Munich and Helmholtz Center Munich for genotyping via Illumina microarray 

technology. DNA was extracted from stored buffy coat with the use of a High Pure PCR Template 

Preparation Kit (Roche). A total of 5 mL DNA was subjected to polymerase chain reaction 

amplification followed by the genotyping procedure with the use of the MassARRAY system and 
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iPLEX chemistry as suggested by the manufacturer (Sequenom) and previously described in detail 

(26). 

Data quality was assessed using GenomeStudio version 2.0.4 and samples with call rate 

<99% were tested for potential contamination; data were cleaned locally and shared with Emory 

University. Quality control assessments were performed in PLINK version 1.9 to filter out samples 

and SNPs with minor allele frequency (MAF<0.1), SNP call rate < 95%, and sample call rate < 

90%. Genetic data were subset to chromosome 11 and mapped to the human genome reference 

build GRCh37/hg19 for strand, id names, positions, alleles, and reference/alternative alleles 

assignment (27). The data were subset to available SNPs in the FADS gene region (rs174545 to 

rs1000778), resulting in 31 FADS variants for 626 children. Pairwise linkage disequilibrium (LD) 

among the 31 SNPs were calculated as both D’ and r2 using Haploview software, version 4.2 (28). 

Subsequently, 5 SNPs that captured all 31 SNPs at r2 ≥ 0.3 (rs174578, rs2727271, rs174602, 

rs174605, rs174450) were selected via Tagger for further analysis (Supplementary Figure 6-1).  

6.3.4 Anthropometry and blood pressure measurements at age 11 y 
 

Body weight (kg) and height (cm) were collected in triplicate by trained personnel using 

standard procedures, and the average of the three measurements was used (29). Children wore light 

clothing and were weighed using a portable electronic pediatric scale (Tanita model 1582) with a 

precision of 100 g, which was calibrated daily with a known reference weight. Height was 

measured with a stadiometer (precision of 0.1 cm). We used the ‘zscorer’ R package to calculate 

BMI-for-age z-scores according to the 2007 WHO Growth Reference Standards (30). Blood 

pressure (mmHg) was measured when the child was at rest using a digital device (OMRON model 

HEM-711ACINT), which has been validated for use in children and adolescents. In each arm, four 
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measurements were taken with 2-minute intervals; the first measurement was discarded and the 

last three were averaged (31). 

6.3.5 Assessment of cardiometabolic markers and derivation of continuous MetS score    

Venous blood samples were obtained from children at 11y after a 12-hour fasting period 

(verified by noting the approximate time that food/drink was last consumed) and centrifuged. 

Aliquots of serum were frozen in liquid nitrogen and stored at −80°C at the National Institute of 

Medical Sciences and Nutrition Salvador Zubirán in Mexico. HDL cholesterol, triglyceride, and 

glucose concentrations were assessed using the Beckman Coulter SYNCHRON CX 5 Delta 

automated kit and expressed in mg/dL. While there is heterogeneity in metabolic syndrome criteria 

in pediatric populations, cardiometabolic risk factor thresholds were defined according to criteria 

from the International Diabetes Federation for children ages 10-16 y as follows: triglycerides ≥ 

150 mg/dL, HDL < 40 mg/dL, and fasting glucose ≥ 100 mg/dL, while high systolic blood pressure 

(SBP) was defined as ≥ 90th percentile for sex and height (32, 33).  

We used principal components analysis (PCA) to derive a continuous MetS score using 

systolic blood pressure, HDL, triglycerides, BMI z-score, and glucose. The methods have been 

described previously elsewhere (34). Briefly, principal components (PCs) were identified visually 

using scree plots and quantitatively using eigenvalues > 1, and the score was calculated as the sum 

of the first two components, weighted by variance explained. The score can be interpreted as a z-

score, with higher scores representing increased cardiometabolic risk. PCA was performed using 

the ‘FactoMineR’ R package (35). The top two PCs collectively explained 56% of the variance in 

the measured data (Supplementary Figure 6-2a). Triglycerides, BMI-z, and HDL contributed to 

the first PC (34.8% variance explained), while SBP and fasting glucose contributed to the second 
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PC (20.9% variance explained). The distribution of the MetS score in the study population is 

shown in Supplementary Figure 6-2b. 

6.3.6 Diet assessment and dietary n-6:n-3 ratio  

A single multiple-pass 24-hour dietary recall developed for Mexican populations was used 

to assess dietary intake of the children at age 11 y (36). Trained personnel administered the diet 

recall tool to the child’s primary caregiver in presence of the child. Energy and nutrient values 

were determined using the new fatty acid content update for Mexican Food Database (BAM, 

Spanish acronym) (37). The dietary n-6:n-3 ratio was calculated by dividing total daily n-6 (sum 

of 18:2 n-6 (LA), 18:3 n-6, 20:2 n-6, 20:3 n-6, 20:4 n-6 (AA), and 22:4 n-6) intake by total daily 

n-3 (sum of 18:3 n-3 (ALA), 20:5 n-3 (EPA), 22:5 n-3 (DPA), and 22:6 n-3 (DHA)) intake. Dietary 

n-6:n-3 ratios were classified into tertiles according to the distribution of the study population (low: 

<6.67, medium: 6.67-8.61, and high: > 8.61). 

6.3.7 Statistical Analysis  

We assessed normality of data using histograms and quantile-quantile plots. We calculated 

means and standard deviations for maternal and offspring characteristics at trial enrollment, birth, 

and 11 years and examined differences by offspring genotype and dietary n-6:n-3 ratio using 

Student’s t tests, ANOVA, and chi-square tests, as appropriate. Baseline characteristics of the 

included subsample were compared with those of the rest of the birth cohort (participants lost to 

follow up or missing key data). 

Allele frequencies were calculated, and Hardy Weinberg Equilibrium (HWE) was tested 

with Fisher’s exact test using the R “genetic” package for both maternal and offspring genetic data. 

Offspring haplotype frequencies were estimated using the  R “haplo.stats” package version 1.8.7 

(https://cran.r-project.org/web/packages/haplo.stats/index.html), which uses an expectation 
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maximization (EM) algorithm to calculate maximum likelihood estimates of probabilities of 

haplotype pairs for each participant (38). Haplotypes with frequency <5% were grouped as rare 

haplotypes. We used the “haplo.glm” function to assess the association of offspring FADS 

haplotype with offspring MetS score (adjusted for sex), using the most common haplotype as the 

referent.  

We used multivariable generalized linear models to test interaction between genotype for 

maternal and offspring SNP rs174602 and prenatal treatment group, adjusting for maternal SES, 

BMI, parity, and age at trial enrollment and offspring sex and age at examination. Due to the strong 

association between maternal and offspring genotype, we examined the associations separately for 

maternal and offspring genotype and adjusted one for the other. Finally, we used multivariable 

generalized linear models to a) examine the association of dietary n-6:n-3 ratio with MetS score 

and b) test interaction (specified a priori) between offspring genotype for SNP rs174602 and 

dietary n-6:n-3 ratio on MetS score. We assessed genotype-diet interaction using both an additive 

and dominant genetic model. Both approaches yielded similar conclusions, but we report the 

results for the dominant genetic model (i.e., carriers vs. non-carriers of the minor T allele for SNP 

rs174602) to conserve study power. Models were adjusted for sex, age at examination, and total 

energy intake. All statistical analyses were performed using R version 4.0.4 (R Foundation for 

Statistical Computing, Vienna, Austria). Power calculations performed using the ‘genpwr’ R 

package showed that we had ≥80% power to detect a genetic association of R2=0.038 with a type 

I error rate of 0.05. P values < 0.05 were considered significant.  

6.4 Results 
 

The analytic sample included 203 children who had the complete set of CMH indicators 

and maternal and own genetic data (Supplementary Figure 6-3). Characteristics of mothers and 
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children in the study population are presented in Table 6-1. At study enrollment, mean maternal 

age and BMI were 27.1 ± 4.9 years and 26.3 ± 3.8 kg/m2, respectively. Less than 30% of women 

were primiparous, and mothers breastfed their children for 9.7 ± 7.9 months. The intervention and 

placebo groups were balanced on maternal characteristics at enrollment and offspring birth 

characteristics (Supplementary Table 6-1). Children in the analytic sample were born to women 

who were older, had higher parity, and longer duration of breastfeeding relative to children lost to 

follow up or missing data (n=770) (Supplementary Table 6-2).  Maternal characteristics at 

enrollment and offspring lifestyle characteristics at 11 y by offspring genotype and dietary n-6:n-

3 ratio are presented in Supplementary Table 6-3. 

At age 11 y, 85 children (42%) were overweight or obese, 65 (32%) had low HDL 

cholesterol, 35 (17.2%) had high triglycerides, and 9 (4%) had high fasting glucose concentrations. 

Glucose concentrations were significantly higher among males (90.1 ± 9.1 mg/dL) when compared 

to females (86.9 ± 6.5 mg/dL). The median dietary n-6:n-3 ratio among offspring at age 11 y was 

7.4 (IQR: 5.8 – 10.3). Intakes of n-3 PUFAs were low (ALA: 528.2 (IQR: 231.2 – 1017.0) mg/day; 

DHA: 18.4 (IQR: 2.7 – 49.7) mg/day; EPA: 10.9 (IQR: 6.6 – 20.8) mg/day), along with high 

intakes of n-6 PUFAs (LA: 4,647 (IQR: 2,436 – 8,374) mg/day; AA: 16.8 (IQR: 8.3-31.0) mg/day). 

ALA contributed 87% of total n-3 PUFA intake and LA contributed 94% of total n-6 PUFA intake; 

therefore, the n-6:n-3 ratio in this study population primarily reflects the LA/ALA ratio (i.e., intake 

of dietary precursors, not LC-PUFAs).  

Distribution of FADS SNPs in study population and association with MetS score  

Within this sample, the minor allele (T) frequency for maternal SNP rs174602 was 0.37; 

29 mothers (14%) were homozygous carriers of the minor T allele, 93 (46%) were heterozygous 

carriers (TC), and 81 (40%) were homozygous carriers of the major C allele. Genotype and allele 



 
 

 

156 

frequencies for the five selected offspring FADS SNPs are shown in Table 6-2. Minor allele 

frequencies ranged from 0.13 to 0.41, and there was no evidence of departure from HWE (p > 

0.05). Haplotype frequencies are shown in Supplementary Table 6-4; 83% (n=167) of children 

were captured by the 6 identified haplotypes. In the single SNP analysis, there was no evidence of 

an association between offspring genotype for SNP rs174602 and MetS score [β=0.05 (95% CI: -

0.13, 0.23)]. We also did not observe any association between FADS haplotypes and MetS score 

at 11 years relative to the reference haplotype [AATGT: β =-0.17 (95% CI: -0.63, 0.28); ATTGG: 

β = 0.38 (-0.24, 1.00); TTCGG: β = 0.05 (-0.33, 0.42); TTCGT: β = 0.60 (-0.07, 1.27); TTTTG: β 

= 0.16 (-0.43, 0.75)].  

Contributions of maternal and offspring genotype to MetS score  

For SNP rs174602, 57% of the mothers and offspring had the same genotype; among 

mothers who carried a minor T allele, 77% of offspring also carried a minor allele. We found that 

maternal genotype for SNP rs174602 modified the effect of the prenatal DHA supplementation on 

offspring MetS score (p-interaction = 0.02); among homozygous major C allele carriers (n = 81), 

offspring of mothers who received prenatal DHA had higher MetS score (0.19 ± 0.08) relative to 

offspring whose mothers received placebo (-0.05 ± 0.08, ∆ = 0.23 (0.01, 0.45), p = 0.04) (Figure 

6-1a). However, offspring genotype for SNP rs174602 did not modify the association of prenatal 

DHA supplementation with MetS score (p-interaction = 0.11) (Figure 6-1b). The results for 

examining the effects of maternal genotype for SNP rs174602 stratified by offspring genotype for 

SNP rs174602 showed that mean differences in MetS scores between DHA and placebo groups 

were larger when maternal and offspring genotypes were matched relative to a mismatch (Table 

6-3).  

Interaction between offspring genotype for SNP rs174602 and dietary n-6:n-3 ratio 
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The results of the exploratory analysis examining the influence of gene-nutrient 

interactions on MetS scores at age 11 showed no overall association between the dietary n-6:n-3 

ratio and MetS score (𝞫𝞫 = 0.003,  95% CI: -0.01, 0.02); however, there was heterogeneity in the 

association of SNP rs174602 and MetS score across tertiles of the dietary n-6:n-3 ratio (p = 0.05) 

(Figure 6-2). Among children with TT or TC genotype (n = 88), those in the highest n-6:n-3 ratio 

tertile (> 8.61) had higher MetS score relative to those in the lowest tertile (< 6.67) (∆= 0.36; 95% 

CI: 0.03, 0.69); among children with CC genotype (n = 53), those in the highest n-6:n-3 ratio tertile 

had lower MetS score relative to those in the lowest tertile (∆= -0.23; 95% CI: -0.61, 0.16). Mean 

MetS scores and individual MetS components stratified by offspring genotype and n-6:n-3 diet 

ratio are shown in Supplementary Table 6-4. Similar trends were observed with individual MetS 

components, although interaction was not statistically significant. We also found a positive 

association between n-6:n-3 ratio and MetS score among offspring of TT/TC genotype (𝞫𝞫  (95% 

CI) = 0.02 (-0.004, 0.04)), while there was an inverse association among offspring of CC genotype  

(-0.013 (-0.04, 0.01); p = 0.05 for interaction). 

6.5 Discussion 
 

In our earlier report, we identified an interaction between maternal genotype for SNP 

rs174602 and prenatal DHA supplementation on offspring MetS score at age 11 years, such that 

offspring of TT carriers who received prenatal DHA had lower MetS scores relative to the placebo 

group, and offspring of CC carriers who received DHA had higher MetS scores relative to the 

placebo group (unpublished). These findings suggested that prenatal DHA supplementation may 

have differential effects on offspring phenotypes based on maternal genotype. Given that maternal 

and offspring genetics are tightly linked, in this study, we first sought to 1) determine if this 

interaction also existed with offspring genotype and 2) examine whether offspring or maternal 
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genotype determines offspring phenotype to a greater extent. We found that, while effect estimates 

of offspring SNP-prenatal DHA supplementation interaction did align with results observed for 

maternal SNP-prenatal DHA supplementation interaction, after adjusting for maternal genotype, 

offspring genotype did not significantly modify the effect of the intervention on MetS score, 

although this may be partially attributable to limited study power.  

Few studies have examined the role of maternal and offspring genetics in understanding 

effects of LC-PUFAs on offspring measures of health. Findings from the Avon Longitudinal 

Study, conducted in the United Kingdom, showed that both maternal and child FADS genotypes 

and haplotypes influenced cord plasma LC-PUFA concentrations (39). In contrast, in another study 

conducted in the United States, FADS2 rs174575 genotyping was performed on a subset of mothers 

and their 16-month-old toddlers, and they found that the effect of maternal genotype on declarative 

memory task performance was larger than the child’s own genotype (40). Although the examined 

SNPs and outcomes differ across these studies and ours, they collectively indicate the importance 

of maternal genotype in predicting offspring phenotypes. 

Beyond the prenatal intervention, we also examined the independent contribution of 

offspring genetics towards cardiometabolic health measures using a haplotype-based approach to 

leverage additional genetic information and reduce multiple testing. All SNPs of interest were in 

the FADS2 gene, and the MAF of the 5 included SNPs in this population aligned with allele 

frequencies for matching genetic ancestry documented in HapMap and the 1000 Genomes Browser 

(41). We did not observe evidence of an association between examined offspring FADS haplotypes 

and MetS score. Similarly, no evidence of an association was observed in the single SNP analysis 

using SNP rs174602. However, exploratory analyses revealed significant interaction between 

dietary n-6:n-3 ratio and offspring genotype for SNP rs174602 on MetS score. Individuals with 
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TT or TC genotype and high dietary n-6:n-3 ratios had higher MetS scores relative to those with 

low n-6:n-3 ratios, while individuals with CC genotype and high n-6:n-3 ratio ratios had lower 

MetS score relative to those in the lowest tertile. SNP rs174602 is located at an intron/exon 

boundary of the FADS2 gene, which encodes for the Δ-6 desaturase enzyme that regulates the 

conversion of n-3 Eicosapentaenoic Acid (EPA) to DHA. Previous studies in European 

populations have shown that the CC genotype for SNP rs174602 is associated with lower Δ-5 

desaturase activity, reflecting reduced conversion of dietary precursors, while TT and TC are 

associated with increased conversion of precursors (21). Although we were unable to assess Δ-5 

desaturase activity in this study population, our results align with these previous findings, 

indicating that children who carried TT or TC alleles (i.e., higher conversion of PUFAs to LC-

PUFAs) and had high n-6/n-3 intake had poorer cardiometabolic health, as defined by higher MetS 

scores. We also observed that children who carried CC alleles (i.e., lower conversion of PUFAs to 

LC-PUFAs) and higher n-6/n-3 ratios had lower MetS scores, although these results were not 

statistically significant (perhaps due to sample size). These findings contrast with an independent 

study in a large sample of Mexican adolescents, which showed that FADS1 SNP rs174546 was a 

major contributor of plasma TG and VLDL concentrations; however, no significant interaction 

effects were detected between dietary intake and genotype (42). Another study in a population of 

816 Taiwanese adults, however, reported significant interaction between ALA/LA ratio and 

rs2072114 and marginally significant interaction between ALA/LA ratios and rs174602 on LDL-

c concentrations, although these SNPs are independent of each other (43). It is possible that n-3 

LC-PUFA status may be more dependent on dietary intake than n-6 fatty acids, which rely more 

on endogenous synthesis (44). Overall, our findings suggest that based on their genotype, some 

individuals may have increased dietary requirements for omega-3 fatty acids, and offspring 
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genetics may only matter over and above maternal genotype in the context of poor diets (i.e., 

imbalance in n-6: n-3 ratio). However, this requires confirmation in independent and diverse 

populations.  

To expand upon the clinical relevance of our results, we also explored the interaction of 

offspring genotype for SNP rs174602 and dietary n-6:n-3 ratio on individual MetS components. 

While we observed similar trends for each of the individual MetS components, interaction was 

most clearly demonstrated for HDL, BMI, and SBP, which aligns with the high prevalence of low 

HDL and high BMI in this study population. Studies have shown that PCA-derived MetS scores 

during early adolescence are associated with increased risk of adult cardiometabolic disease, with 

one study reporting that a 1 SD increase in a continuous MetS score during adolescence was 

associated with 30% increased risk of type II diabetes and 20% increased risk of high carotid 

intima-media thickness in adulthood (45). Whether these associations exist for this population will 

require follow-up through adulthood to see if differences in MetS scores at this time point have 

lasting implications for adult cardiometabolic health. 

Strengths of this study include the double-blind RCT design of the original trial, high 

compliance to the prenatal intervention, extensive characterization of mothers and children from 

pregnancy through adolescence, and availability of FADS genetic information for both mothers 

and offspring. All data collection and laboratory assays were standardized, validated, and 

conducted by trained personnel. However, a few limitations of this study may influence the 

interpretability and generalizability of these findings, such as selection bias. The offspring in our 

study sample tended to have mothers who were older at study enrollment, had higher parity, and 

longer breastfeeding durations relative to those lost to follow up, although these values did not 

differ by treatment group or maternal/offspring genotype. Additionally, offspring diet at 11 y was 
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assessed using a single 24-hour recall and may be subject to recall bias. As the POSGRAD trial 

was not originally designed to explore this association, the analytic sample with complete genotype 

and phenotype information is small, and there may be limited statistical power to detect genetic 

associations. Further work is needed across larger, diverse datasets to reproduce these findings and 

investigate underlying biological mechanisms. 

In summary, in this population of Mexican children, there was evidence of interaction 

between FADS SNP rs174602 and current dietary PUFA intake on MetS score, but not with 

prenatal DHA supplementation. A remaining question is whether the dose and type of 

supplementation matters (e.g., fish oil vs. DHA only). Future work could include a feeding trial 

among school-age children to examine further examine interaction between selected FADS genetic 

variants and dietary LC-PUFA intake.  Replication of findings is critical for ensuring validity in 

genetic association studies. Analyses should be reproduced using similar study designs and study 

populations to help determine the utility of targeted supplementation strategies based on genetic 

profile.  
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6.7 Tables and Figures  
 
 

Table 6-1. Characteristics of mothers and children in study 
population (n = 203). 

Maternal factors at enrollment into POSGRAD 
Age, years 27.1 (4.9) 
BMI, kg/m2 26.3 (3.8) 
Height, cm 155.0 (5.2)  
Primiparous (n, %) 59 (29.1%)  
Schooling, years 12.1 (3.4) 
Received prenatal DHA intervention 103 (50.7%) 

Offspring factors   
Female (n, %) 96 (47.3%)  
Early life characteristics   

Birth weight, g 3260 (475)  
Gestational age at birth, weeks 39.2 (1.8) 
Duration of BF, mo. 9.7 (7.9) 

At age 11 years   
Dietary intake   

Energy intake (kcal/day)  2052 (707)  
Lipids (g/day)  76.2 (36.4) 
Saturated fat (g/day) 30.3 (16.9) 
Monounsaturated fat (g/day) 25.2 (13.6) 
Polyunsaturated fat (g/day) 15.0 (8.8) 
Cholesterol (g/day)   265 (184)  
Omega-3 fatty acid intake (g/day) 0.9 (1.1) 
Omega-6 fatty acid intake (g/day) 6.5 (7.1) 
n-6:n-3 fatty acid ratio 8.9 (5.7) 

Sedentary time per day, min 4.9 (2.1) 
Cardiometabolic factors   

BMI, kg/m2 19.2 (3.6) 
HDL-c, mg/dL 46.5 (10.7) 
Glucose, mg/dL 88.6 (8.1) 
TG, mg/dL 108.0 (60.4) 
TC, mg/dL 162.0 (27.8) 
LDL-c, mg/dL 95.3 (23.4) 
MetS Score  0.0 (0.5) 

Values presented are mean (SD) unless otherwise stated.  
BMI, body mass index; SES, socioeconomic status score; EBF, 
Exclusive Breastfeeding; PreBF, Predominantly Breastfeeding; PaBF, 
Partially Breastfeeding; NBF, No Breastfeeding; HDL, High Density 
Lipoprotein Cholesterol; TG, Triglycerides; TC, Total Cholesterol; LDL-
c, Low Density Lipoprotein Cholesterol; SBP, Systolic Blood Pressure; 
MetS, Metabolic Syndrome; CMH, Cardiometabolic Health 
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Table 6-2. Genotype and allele frequencies of maternal and offspring FADS2 SNPs. 

 
Position 

(base pair) 
M/m MAF MM 

genotype 
Mm 

genotype 
Mm 

genotype 
HWE p-

value 

Maternal        

rs174602 61624414 C/T 0.37 81 (40) 93 (46) 29 (14) 1 

Offspring        

rs174578 61605499 T/A 0.2 130 (65) 59 (30) 10 (5) 1 

rs2727271 61603358 A/T 0.41 71 (35) 98 (49) 33 (16) 0.57 

rs174602 61624414 C/T 0.37 78 (38) 101 (50) 24 (12) 1 

rs174605 61626921 G/T 0.13 150 (75) 48 (24) 3 (1) 0.45 

rs174450 61641542 G/T 0.24 116 (57) 78 (38) 9 (4) 0.96 
Data are n (%). M/m, major/minor alleles; MAF, minor allele frequency; HWE, Hardy-Weinberg equilibrium 
Genetic data were subset to chromosome 11 and mapped to the human genome reference build GRCh37/hg19. 
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Figure 6-1. Differences in MetS scores attributable to prenatal DHA supplementation (DHA – 
placebo) by maternal and offspring genotype for SNP rs174602. 
Graphs depict differences in MetS scores by category of a) maternal genotype for SNP rs174602 
(p-interaction = 0.02) and b) offspring genotype for SNP rs174602 (p-interaction = 0.11) on 
offspring MetS Score. Values are contrast-specific mean differences (95% CI) between DHA and 
placebo groups from generalized linear models testing the interaction between FADS2 single 
nucleotide polymorphism rs174602 and supplementation group on MetS score adjusted for child 
sex and age at measurement, maternal SES, BMI, parity and age at trial enrollment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

172 

Table 6-3. Mean differences in MetS Scores attributable to DHA supplementation (DHA – 
placebo), by category of maternal and offspring genotype of SNP rs174602 (n = 203). 

  
Offspring CC Carriers Offspring TC Carriers Offspring TT Carriers 

N = 78 N= 101 N = 24 

Maternal CC 
Carriers  

0.34 (0.07, 0.62) 
N = 51 

-0.01 (-0.38, 0.35) 
N = 30 -- 

Maternal TC 
Carriers 

-0.28 (-0.72, 0.15) 
N = 27 

-0.1 (-0.40, 0.21) 
N = 53 

-0.27 (-0.88, 0.34) 
N = 13 

Maternal TT 
Carriers  --  -0.06 (-0.44, 0.32) 

N = 18 
-0.6 (-1.1, -0.1) 

N = 11 
Values are contrast-specific mean differences (95% CI) between DHA and placebo groups from generalized linear 
models testing the interaction between FADS2 single nucleotide polymorphism rs174602 and supplementation group 
on MetS score adjusted for child sex and age at measurement, maternal SES, BMI, parity and age at trial enrollment. 
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Figure 6-2. Scatter plot of Mean MetS scores and dietary n-6:n-3 ratio, by categories of offspring 
genotype for SNP rs174602. 
Fitted lines represent linear regression estimates and shaded areas are 95% confidence bounds.  
Abbreviations: C, Carriers of minor T allele (TT, TC), n=88; NC, Non-carriers of minor allele 
(CC), n= 53. 
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6.8 Supplementary Tables and Figures  
 

 
 
Supplementary Figure 6-1. Linkage disequilibrium (LD) plot of single nucleotide 
polymorphisms (SNPs) the FADS region. 
LD calculations were based on the coefficient of LD (D’) between SNPs; pairwise D’ values are 
displayed as a percentage in each box. The red color scheme represents varying degrees of LD; 
darker shades indicate stronger LD. The SNPs outlined in black boxes were selected by Tagger in 
Haploview 4.2.  
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Supplementary Figure 6-2. Contribution of cardiometabolic factors to PCA-derived continuous 
MetS score. 
a) Principal components analysis (PCA) was used to calculate the MetS score using five 
components used to define metabolic syndrome in pediatric populations. Top PCs were identified 
visually using scree plots and quantitatively using eigenvalues > 1. Scores were calculated as the 
sum of the top components, weighted by variance explained. The x axes represent the top PCs used 
to create the MetS score and percentage of variance in the data explained by each PC via PCA. 
The diameter of each bubble represents the magnitude of contributions (%) of individual MetS 
components to each PC. Cardiometabolic factors with the highest contributions represent the most 
important variables within each PC. The highest contributing components in the first PC contribute 
most to the derived scores and b) distribution of continuous MetS score in study population. 
Abbreviations: MetS, metabolic syndrome; PC, Principal Component. 
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Supplementary Figure 6-3. Flowchart for the offspring FADS2 single nucleotide 
polymorphism effect modification analysis of the POSGRAD study. 
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Supplementary Table 6-1. Maternal baseline characteristics and 
offspring characteristics at birth, stratified by treatment group. 

 Treatment groupa 
 Placebo DHA 
 N=100 N=103 
Maternal factors, enrollment  

Age, years  26.9 (4.62) 27.3 (5.11) 
BMI, kg/m2  26.2 (3.74) 26.4 (3.89) 
Height, cm 156 (5.00) 155 (5.31) 
First pregnancy, % 29 (29.0%) 30 (29.1%) 
SES Score 0.12 (1.05) 0.16 (0.86) 
Schooling, years 12.3 (3.51) 11.8 (3.37) 

Dietary intake at enrollment, g/day  
ALA 1.80 (1.05)  1.80 (1.11)  
DHA 0.08 (0.06)  0.09 (0.09)  
LA 19.6 (8.08)  20.1 (9.48)  
EPA 0.03 (0.03)  0.04 (0.05)  
AA 0.15 (0.07)  0.16 (0.10)  

Compliance to intervention, % 94.9 (5.05)  95.9 (4.67)  
Offspring factors, birth   
Sex                         
Male  47 (47.0%)   60 (58.3%)  
Female  53 (53.0%)   43 (41.7%)  

Birth weight, g  3245 (512)   3274 (437)  
Gestational age, weeks 39.1 (1.65)  39.3 (1.87)  
Breastfeeding status, 3 mo, %                         
EBF  16 (17.4%)   11 (11.8%)  
PreBF  18 (19.6%)   11 (11.8%)  
PaBF  44 (47.8%)   50 (53.8%)  
NBF  14 (15.2%)   21 (22.6%)  

Duration of BF, mo 10.7 (8.24)  8.65 (7.41)  
a Chi-square tests, t-tests, and ANOVA were used to test differences between 
groups. No differences by treatment group were observed. Values presented 
are mean (SD) unless otherwise stated. 
BMI, body mass index; SES, socioeconomic status score; ALA, Alpha-
Linolenic Acid; DHA, Docosahexaenoic Acid; LA, Linoleic Acid; EPA, 
Eicosapentaenoic Acid; AA, Arachidonic Acid; EBF, Exclusive 
Breastfeeding; PreBF, Predominantly Breastfeeding; PaBF, Partially 
Breastfeeding; NBF, No Breastfeeding; mo, month. 
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Supplementary Table 6-2. Characteristics of mothers at study enrollment and 
POSGRAD offspring at 11 years of age in analytic and excluded samples (n = 973). 

  Analytic sample Excluded sample 

  n = 203 n = 770 

Maternal factors   
Age, yearsa 27.1 (4.9) 26.0 (4.6) 
BMI, kg/m2 26.3 (3.8) 26.0 (4.3) 
Height, cm  155 (5.2) 155 (5.8) 
Primiparousa    59 (29.1%) 311 (40.4%) 
SES Score 0.00 (1.00) 0.00 (1.01) 
Schooling, years 11.9 (3.6) 11.9 (3.6) 

Dietary intake at enrollment   
ALA, mg/d 1.80 (1.08) 1.67 (0.96)  
DHA, mg/day 0.08 (0.07) 0.08 (0.08)  
LA, mg/day 19.8 (8.80) 19.0 (9.21)  
EPA, mg/day 0.03 (0.04) 0.03 (0.05)  
AA, mg/day 0.16 (0.09) 0.15 (0.09)  

Received prenatal DHA 
intervention 103 (50.7%) 384 (49.9%) 

Compliance to intervention, % 95.4 (4.9) 94.9 (5.9) 
Offspring factors   
Females  96 (47.3%)  364 (47.3%) 
Birth weight, g  3260 (475)  3190 (456)  

Gestational age at birth, weeks 39.2 (1.8)  39.1 (1.8) 

Breastfeeding status, 3 mo             
EBF  27 (14.6%)  77 (11.8%)  
PreBF  29 (15.7%)  70 (10.7%)  
PaBF  94 (50.8%)  393 (60.3%) 
NBF  35 (18.9%)  112 (17.2%) 

Breastfeeding duration, moa 9.67 (7.9)  8.36 (7.6) 
Values presented are mean (SD) unless otherwise stated. 
a Values differ between analytic and excluded samples, as assessed by chi-square tests, 
t-tests, and/or ANOVA. 
BMI, body mass index; SES, socioeconomic status score; ALA, Alpha-Linolenic Acid; 
DHA, Docosahexaenoic Acid; LA, Linoleic Acid; EPA, Eicosapentaenoic Acid; AA, 
Arachidonic Acid; EBF, Exclusive Breastfeeding; PreBF, Predominantly Breastfeeding; 
PaBF, Partially Breastfeeding; NBF, No Breastfeeding 
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Supplementary Table 6-3. Maternal and offspring characteristics at study enrollment, birth, and 11 years follow up, stratified by offspring genotype 
of SNP rs174602 and dietary n-6:n-3 ratio. 

  Offspring FADS2 SNP rs174602 Offspring n-6:n-3 fatty acid ratio 

  CC CT TT 
Low 

 (<6.67) 
Medium  

(6.67-8.61) 
High 

 (>8.61) 

                     N = 203 N=78 N=101 N=24 N=50 N=49 N=49 

Maternal factors       
Age, years 27.1 (4.9) 26.7 (4.5) 27.7 (5.0) 26.1 (5.24) 28.0 (4.3) 26.8 (5.1) 26.6 (4.4) 
BMI, kg/m2 26.3 (3.8) 25.9 (3.4) 26.6 (4.1) 26.5 (3.7) 26.9 (3.4) 26.0 (3.8) 26.1 (3.4) 
Height, cm 155 (5.2) 155 (5.8) 156 (4.9) 156 (3.7) 155 (6.1) 155 (4.6) 156 (4.6) 
First pregnancy, % 59 (29.1%) 23 (29.5%) 28 (27.7%) 8 (33.3%) 9 (18.0%) 14 (28.6%) 15 (30.6%) 
SES Score 0.14 (0.96) 0.03 (0.98) 0.14 (0.93) 0.54 (0.93) 0.00 (0.95) 0.36 (1.01) 0.12 (0.93) 
Schooling, years 12.1 (3.4) 11.6 (3.7) 12.2 (3.3) 13.0 (2.9) 12.3 (3.6) 12.3 (3.2) 12.1 (3.5) 

Dietary intake at enrollment, g/day        
ALA 1.80 (1.08) 1.82 (1.01) 1.76 (1.13) 1.92 (1.08) 1.73 (0.98) 1.68 (1.03) 1.82 (1.10) 
DHA 0.08 (0.07) 0.09 (0.09) 0.08 (0.06) 0.08 (0.07) 0.08 (0.06) 0.09 (0.07) 0.07 (0.05) 
LA 19.8 (8.80) 20.3 (7.69) 19.2 (9.14) 20.7 (10.7) 19.9 (9.44) 19.4 (9.06) 19.8 (9.00) 
EPA 0.03 (0.04) 0.03 (0.05) 0.03 (0.04) 0.03 (0.03) 0.03 (0.04) 0.03 (0.04) 0.03 (0.03) 
AA 0.16 (0.09) 0.17 (0.08) 0.15 (0.06) 0.18 (0.16) 0.15 (0.05) 0.18 (0.12) 0.15 (0.07) 

Received prenatal DHA intervention, % 103 (50.7%) 42 (53.8%) 49 (48.5%) 12 (50.0%) 28 (56.0%) 30 (61.2%) 23 (46.9%) 
Compliance to intervention, % 95.4 (4.9) 95.2 (5.5) 95.4 (4.3) 95.8 (5.0) 94.6 (5.8) 96.0 (4.9) 96.5 (3.6) 
Offspring factors        
Sex        

Male 107 (52.7%) 41 (52.6%) 54 (53.5%) 12 (50.0%) 25 (50.0%) 30 (61.2%) 23 (46.9%) 
Female 96 (47.3%) 37 (47.4%) 47 (46.5%) 12 (50.0%) 25 (50.0%) 19 (38.8%) 26 (53.1%) 

Birth weight, g 3259 (475) 3248 (563) 3254 (425) 3320 (356) 3204 (440) 3266 (502) 3274 (460) 
Gestational age at birth, weeks 39.2 (1.8) 39.2 (1.9) 39.1 (1.70) 39.4 (1.36) 39.1 (1.91) 39.1 (2.02) 39.0 (1.71) 
Duration of BF, mo. 9.7 (7.9) 9.2 (7.5) 10.3 (8.3) 8.6 (7.5) 9.5 (7.00) 9.9 (8.8) 8.7 (7.7) 
Total sedentary time at age 11 years, 
hrs/day  4.91 (2.10) 4.66 (2.18) 5.05 (2.15) 5.10 (1.74) 4.78 (2.64) 5.32 (1.80) 4.88 (2.00) 
Dietary intake at age 11 yearsb        

Energy intake (kcal/day)  2052 (707) 2032 (734) 2073 (671) 2030 (789) 2135 (715) 2048 (717) 1970 (695) 
Lipids (g/day)  76.2 (36.4) 73.9 (36.7) 78.8 (31.6) 73.5 (50.0) 78.3 (35.8) 75.3 (33.4) 74.9 (40.2) 
Saturated fat (g/day) 30.3 (16.9) 29.8 (18.9) 31.5 (15.3) 27.1 (17.3) 34.1 (18.8) 26.7 (13.5) 29.8 (17.5) 
Monounsaturated fat (g/day) 25.2 (13.6) 24.9 (13.5) 25.9 (11.7) 24.0 (19.5) 26.7 (12.9) 23.8 (10.6) 25.1 (16.7) 
Polyunsaturated fat (g/day)b 15.0 (8.8) 14.2 (7.6) 15.7 (8.1) 14.9 (13.1) 14.8 (7.6) 17.7 (10.4) 12.5 (7.4) 
Cholesterol (g/day)  265 (184) 265 (197) 268 (179) 255 (176) 294 (200) 236 (136) 266 (207) 
Omega-3 fatty acid intakeb 0.90 (1.07) 0.82 (0.82) 0.96 (0.92) 0.94 (1.88) 1.01 (0.98) 1.25 (1.43) 0.45 (0.37) 
Omega-6 fatty acid intakeb 6.52 (7.15) 5.54 (4.76) 6.85 (5.93) 7.92 (13.6) 4.39 (4.43) 9.31 (10.3) 5.89 (4.11) 
N-6:n-3 fatty acid ratiob 8.94 (5.74) 8.97 (6.56) 8.43 (4.99) 10.6 (5.79) 4.41 (1.74) 7.52 (0.53) 15.0 (6.06) 

Values presented are mean (SD) unless otherwise stated. 
a Dietary data only available for 141 individuals at age 11 years  
b Values differ by offspring dietary n-6:n-3 ratio  (p < 0.05) as assessed by chi-square tests, t-tests, or ANOVA. 
Abbreviations: BMI, body mass index; SES, socioeconomic status score; ALA, Alpha-Linolenic Acid; DHA, Docosahexaenoic Acid; LA, Linoleic Acid; EPA, 
Eicosapentaenoic Acid; AA, Arachidonic Acid; BF, Breastfeeding; mo, month. 
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Supplementary Table 6-4. Frequencies of offspring FADS haplotypes in study population (n = 203). 

 rs174578 rs2727271 rs174602 rs174605 rs174450 Frequency 

Haplotype 1 A A T G T 0.13 

Haplotype 2 A T T G G 0.07 

Haplotype 3 T T C G G 0.25 

Haplotype 4 T T C G T 0.05 

Haplotype 5 T T T T G 0.06 

Haplotype 6 A T C G G 0.26 

Rare haplotype * * * * * 0.17 
Rare haplotypes defined as any haplotypes with frequency <5%.  
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Supplementary Table 6-5. Mean (95% CI) of MetS components and MetS score stratified by 
offspring genotype for SNP rs174602 and n-6:n-3 diet ratio. 

 
CC 

N = 53 
TT or TC 

N = 88  

BMI-z    

Low n-6:n-3 ratio (<6.67) 0.96 (0.38, 1.53) 0.18 (-0.33, 0.69) 

Medium n-6:n-3 ratio (6.67-8.61) 1.02 (0.26, 1.77) 0.58 (0.11, 1.04) 

High n-6:n-3 ratio (>8.61) 0.27 (-0.33, 0.87) 0.72 (0.23, 1.21) 

HDL    

Low n-6:n-3 ratio (<6.67) 43.5 (38.5, 48.4) 49.4 (45.0, 53.7) 

Medium n-6:n-3 ratio (6.67-8.61) 44.1 (37.6, 50.6) 46.1 (42.1, 50.1) 

High n-6:n-3 ratio (>8.61) 50.5 (45.3, 55.7) 45.5 (41.3, 49.8) 

Triglycerides    

Low n-6:n-3 ratio (<6.67) 130.1 (101.8, 159) 96.4 (71.2, 122) 

Medium n-6:n-3 ratio (6.67-8.61) 115.9 (78.5, 153) 105.4 (82.3, 129) 

High n-6:n-3 ratio (>8.61) 116.2 (86.3, 146) 124.5 (100.2, 149) 

Systolic Blood Pressure   

Low n-6:n-3 ratio (<6.67) 102.0 (98.5, 105) 99.9 (96.8, 103) 

Medium n-6:n-3 ratio (6.67-8.61) 105.8 (101.2, 110) 102.6 (99.8, 105) 

High n-6:n-3 ratio (>8.61) 99.7 (96.0, 103) 104.8 (101.8, 108) 

Glucose   

Low n-6:n-3 ratio (<6.67) 86.4 (83.2, 89.7) 88.5 (85.6, 91.3) 

Medium n-6:n-3 ratio (6.67-8.61) 91.9 (87.7, 96.2) 87.9 (85.3, 90.6) 

High n-6:n-3 ratio (>8.61) 87.3 (83.9, 90.7) 88.6 (85.8, 91.4) 

MetS Score    

Low n-6:n-3 ratio (<6.67) 0.08 (-0.15, 0.30) -0.19 (-0.39, 0.007) 

Medium n-6:n-3 ratio (6.67-8.61) 0.31 (0.02, 0.61) 0.02 (-0.16, 0.21) 

High n-6:n-3 ratio (>8.61) -0.15 (-0.39, 0.09) 0.17 (-0.03, 0.36) 
Data are expressed as mean MetS scores adjusted for sex, age, and energy intake 
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Chapter 7 : Discussion and Conclusions 
 

Since the first documentation of the potential cardioprotective benefits of n-3 LC-PUFAs 

among Inuit populations in the 1970s, there has been substantial progress made investigating the 

relationship between dietary LC-PUFAs and cardiometabolic health (1, 2). However, important 

research gaps remain, especially during important periods of growth and development such as 

gestation and early adolescence. First, additional research is needed to better characterize 

cardiometabolic risk during childhood and adolescence and examine how risk factors cluster (3, 

4). Second, evidence for the long-term effects of prenatal DHA supplementation on offspring 

CMH are inconsistent and limited by heterogeneity across studies with respect to population 

characteristics, supplement dose and duration, follow-up of offspring, and variations in FADS 

genes (5-8). Additionally, most studies incorporating genetic information have typically been 

conducted in European populations (9). Third, the respective contributions of maternal and 

offspring FADS genetic profiles towards CMH are poorly understood. This dissertation addressed 

these key gaps in the literature by examining the relationship between prenatal DHA 

supplementation, maternal and offspring FADS polymorphisms, and cardiometabolic health in a 

population of Mexican children. This discussion will first provide an overview of the key findings 

from each of the three original research studies. Next, I will outline the strengths and limitations 

of the methodological approaches used. Third, I will discuss the clinical and public health 

implications of this work. Finally, I will offer recommendations for future research needed to 

improve understanding of gene-nutrient interactions and ultimately guide the development of 

targeted dietary and supplementation recommendations for mothers and children. 

7.1 Key Findings 
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In our first study, we examined clustering of cardiometabolic markers in a population of 

Mexican children at age 11 years and compared a MetS score to an exploratory CMH score, which 

additionally included adipokines, lipids, inflammatory markers, and adiposity, to assess 

cardiometabolic profiles and better define cardiometabolic risk. We found that measures of 

adiposity and lipids explained the most variation for both MetS and CMH scores, and the MetS 

score captured nearly as much variation across measures of CMH as the exploratory CMH score. 

Furthermore, children with overweight or obesity had higher MetS and CMH scores relative to 

children with normal weight, reflecting increased risk. Our results aligned with previous research 

reporting that low HDL and high triglycerides, along with increased BMI, are the most observed 

cardiometabolic risk factors among Mexican populations (10-12). Additionally, this work 

informed our decision to use the MetS score as the primary outcome for specific aims 2 and 3.  

Next, we investigated the interactions between maternal and offspring FADS 

polymorphisms, dietary LC-PUFA intake, and prenatal DHA supplementation in relation to 

offspring measures of CMH at age 11 years. In our second study, we examined the effect of 

prenatal DHA supplementation on offspring MetS scores and investigated effect modification by 

variations in maternal FADS2 SNP rs174602. We focused on this SNP because, within the 

POSGRAD study, we previously observed that this SNP modified the effect of the prenatal 

intervention on offspring birth weight (13), metabolome at 3 mo. (14), and cognition at age 5 years 

(15). Consistent with prior research, we did not find a main effect of prenatal DHA 

supplementation on offspring MetS scores at 11 y (16-18); however, we observed evidence of 

effect modification by variants of maternal SNP rs174602. Offspring of homozygous minor allele 

(TT) carriers who received prenatal DHA had lower MetS scores relative to the placebo group, 

while offspring of homozygous major allele (CC) carriers who received DHA had higher MetS 
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scores relative to offspring whose mothers received placebo. These findings remained significant 

even after adjusting for birth weight (i.e., the differences observed were not mediated by the effects 

of the interaction on birth weight). Overall, our results suggested that prenatal DHA 

supplementation may have differential effects on a child’s long-term cardiometabolic risk based 

on their mother’s genotype.  

Although maternal and offspring genetics are tightly linked, there is limited information 

available on the relative contributions of offspring genotype towards CMH. To improve 

understanding of the relationship between offspring FADS genetic profiles and CMH, in our third 

study, we examined the role of selected variants in both maternal and offspring fatty acid 

desaturase (FADS) genes on CMH at age 11 years and assessed interactions with prenatal 

docosahexaenoic acid (DHA) supplementation and offspring diet quality at age 11 years. First, to 

leverage the wealth of genetic information we had available for offspring and to reduce multiple 

testing, we derived six FADS haplotypes from five offspring SNPs. We examined the association 

of offspring FADS haplotypes with MetS score and did not find any significant associations 

relative to the reference haplotype. Next, we tested interaction between maternal treatment group 

and maternal and offspring genotypes for SNP rs174602 on the offspring MetS score. While 

offspring genotype did not independently modify the effect of the intervention on MetS score, 

when we examined the effects of maternal genotype for SNP rs174602 stratified by offspring 

genotype for SNP rs174602, mean differences in MetS scores between DHA and placebo groups 

were larger when maternal and offspring genotypes were matched relative to a mismatch. 

Additionally, we found evidence of interaction of offspring FADS SNP rs174602 with current 

dietary PUFA intake. Individuals with TT or TC genotype and high dietary n-6:n-3 ratios had 

higher MetS scores relative to those with low n-6:n-3 ratios, while individuals with CC genotype 
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and high n-6:n-3 ratio ratios had lower MetS score relative to those in the lowest tertile. As we 

hypothesized, these findings suggested that maternal genotype was more relevant than offspring 

genotype for modifying the effect of the prenatal DHA intervention whereas offspring genotype 

was more relevant for modifying the effects of dietary intake. However, contrary to our hypothesis, 

among non-carriers, higher n-6:n-3 ratios were associated with lower MetS scores. These findings 

align with recent research suggesting that n-6 fatty acids may be beneficial for cardiovascular 

health (19, 20). Our aim 2 and 3 findings corroborate this, suggesting that based on genotype, 

different diets may be advantageous for subsets of the population; however, further research is 

needed to confirm these findings.  

7.2 Strengths and Limitations  
 

There are several important strengths to this dissertation, including the randomized design 

of the original trial, standardized data collection methods, and the application of innovative 

statistical methods to address the research aims. First, this dissertation leverages data from a large, 

double-blind, placebo-controlled randomized controlled trial of prenatal DHA supplementation 

during pregnancy. The intervention included a dose of 400 mg/day of algal DHA; use of DHA 

alone instead of fish oil (DHA + EPA) enabled these analyses to isolate the effect of a sole nutrient 

on the specified outcomes. Compliance to the prenatal intervention, measured as the percentage of 

distributed treatment capsules consumed, was monitored weekly by fieldworkers and was high in 

our study (> 90%).  

Following the intervention, offspring born to POSGRAD mothers have been followed 

since birth. The randomized design of the trial, along with extensive characterization of these 

children over the life course, is one of the key strengths of this study. Block randomization at study 

enrollment helps maintain the balance of known and unknown confounders between the 
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comparison groups, offering a valuable opportunity to assess the effects of the intervention on 

long-term outcomes. To our knowledge, no prior studies have characterized children spanning 

from the prenatal period through early adolescence with FADS genetic information for mother-

child pairs within the context of a prenatal DHA supplementation trial. At age 11 years, multiple 

measures of cardiometabolic health were measured simultaneously, including traditional MetS risk 

factors, adiposity, adipokines, and measures of inflammation and insulin resistance. Additionally, 

the age period of 11 years old offers a stable time for lipid assessment in children prior to the onset 

of puberty for most of the study population. Furthermore, data collection and laboratory assays 

were standardized, validated, and conducted by trained personnel within a clinical setting.  

Another strength of our study was that it was conducted in Mexico, a region with 

populations that typically have low dietary intakes of preformed DHA, high dietary intakes of n-6 

fatty acids, and a high prevalence of alleles associated with lower conversion of precursor PUFAs 

into LC-PUFAs. Most studies investigating the effects of n-3 DHA supplementation during 

pregnancy, and especially those incorporating FADS genetic information, have been conducted in 

populations of European descent (9); thus, this work is needed and timely to inform the 

development of personalized dietary and supplement recommendations across diverse populations.  

Along with these strengths, a few relevant limitations should be considered when 

interpreting the findings from this dissertation. We used secondary data from a previously 

conducted RCT that was originally designed to assess outcomes of child growth and development 

early in the life course. Although the original size of the birth cohort was large (n=973 live births) 

(21), loss to follow-up was high and the final analytical sample with data through age 11 years was 

only 58% of the birth cohort; thus, selection bias may influence our findings. However, we 

evaluated and addressed selection bias by adjusting for factors that differed between individuals 
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in the cohort and those lost to follow-up in all multivariable regression models. While mothers of 

children in our analytic samples tended to be older, have a higher BMI, and have a higher 

socioeconomic status at trial enrollment relative to those lost to follow up, all maternal 

characteristics were balanced by treatment group in both the analytic samples and missing samples, 

and loss to follow up did not differ by treatment group. Additionally, there may be limited 

statistical power to detect differences by treatment group or genotype. However, we maximized 

power by leveraging linkage disequilibrium between genetic variants to estimate haplotypes and 

reducing the number of tested CMH outcomes by deriving a continuous MetS score via PCA. 

Although PCA is a powerful dimensionality-reduction tool, it should be noted that loading 

coefficients of individual cardiometabolic factors from PCA are only applicable to the population 

from which they are derived. Maternal dietary intake at study enrollment was assessed using a 

food-frequency questionnaire that was specifically designed to include important PUFA sources 

(22); however, LC-PUFA status of mothers was only available in a subset of the population. 

Offspring dietary data at age 11 y were collected via single 24-hour recall and may be subject to 

recall bias. Pubertal status was assessed by documenting attainment of menarche in females and 

testosterone concentrations among a subset of males, as compared to more robust methods such as 

assessing Tanner stages (23). Finally, although we were able to account for total sedentary time 

(including screen time), we did not have access to a gold-standard measure of physical activity. 

Overall, generalizability of results may be limited; this work should be reproduced using large, 

nationally representative datasets in Mexico with consistent sets of cardiometabolic measures, as 

well as across populations with diverse ethnic backgrounds. 
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7.3 Clinical and Public Health Implications 
 

Findings from this dissertation have several relevant implications for improving 

characterization of cardiometabolic risk in pediatric populations and the development of targeted 

dietary and supplementation recommendations for mothers and children. First, as it becomes less 

expensive to collect and test blood samples, it is becoming increasingly feasible to collect more 

comprehensive cardiometabolic data. However, it is important to understand if there is added value 

in utilizing additional biomarkers to characterize overall cardiometabolic health during this life 

stage, especially in low-resource environments. Results from our first study showed that MetS 

scores capture a similar amount of variation compared to CMH scores that incorporated additional 

biological measures, and across both scores, adiposity accounted for most of the variation in CMH 

at age 11 years. These results suggested that, particularly within resource-limited settings, it may 

be most efficient and cost-effective to screen individuals at elevated risk (those with at least one 

cardiometabolic risk factor, including overweight/obesity) for more intense disease prevention 

strategies, which may include additional testing of cardiometabolic markers.  

 Results from our second and third studies have important implications for the design and 

interpretation of supplementation trials. We showed that diet quality and/or supplementation may 

have differential effects on cardiometabolic risk based on maternal or offspring genotype. 

Although additional research is needed to confirm these findings, this work suggests that, in the 

future, it may be beneficial to account for a mother’s FADS genetic profile when providing prenatal 

supplementation recommendations, while offspring FADS genetic profile can be used to inform 

diet quality and, if needed, use of supplements during childhood and adolescence. Overall, our 

findings reinforce the need for inclusion of genotype information in nutrition supplementation 

randomized controlled trials. This also has relevance beyond the observed interaction between LC-
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PUFAs and FADS genes; several other nutrient-gene interactions have been identified, such as 

interactions between the MTHFR gene and folate intake and the PEMT gene and choline (24, 25).  

Our findings also provide further support that some women may benefit more from n-3 

LC-PUFA supplementation based on baseline LC-PUFA status, habitual diet, and genetic 

variation. We performed this study in a population of Mexican women with low dietary intakes of 

DHA, along with diets high in n-6 fatty acids (22). While there are currently no dietary reference 

intake recommendations for LC-PUFAs established by the Institute of Medicine, several groups 

recommend that women of reproductive age consume at least 200 mg DHA per day, which is 

attainable by consuming two servings of fish per week (26). For example, one 3 oz serving of 

Atlantic salmon provides 1.22 g of DHA; two servings per week would provide nearly 2.5 g 

DHA/week, or 350 mg/day. Therefore, the dose of DHA used in this intervention trial and 

associated findings align with an amount of DHA that can be obtained through diet alone. 

Additionally, demonstrating these effects on CMH using an algal form of DHA has important 

implications, especially as vegetarian and vegan diets become increasingly popular due to 

religious, ethical, and other reasons, such as reducing greenhouse gas emissions due to animal 

agriculture. Using an algal form of DHA in this trial further adds to the evidence base, especially 

for those who do not consume fish oil or seafood. Currently, the Dietary Guidelines for Americans 

recommend that pregnant women suggest eating two servings of seafood per week, rather than 

emphasizing the importance of nutrients (e.g., folate, iron). It will be important to engage with 

healthcare providers and improve knowledge translation in the healthcare setting by better 

connecting food to nutrients. This will help ensure that patients are able to easily practice dietary 

recommendations once established, no matter their personal diet.  

7.4 Recommendations for Future Research  
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 This dissertation utilized data from a randomized controlled trial of DHA supplementation, 

in which children have been followed since birth. The current study focused on cardiometabolic 

health of the children at age 11 years; however, there are several important research questions, 

among others, that can be answered using the POSGRAD study framework. It will be useful to 

continue to follow the POSGRAD children through adulthood to: 1) consistently collect a 

comprehensive set of cardiometabolic factors at multiple time points during adolescence and early 

adulthood to determine the temporality of risk factor development and disease progression; 2) 

compare MetS and CMH scores at multiple time points and determine which of these scores offer 

more useful predictions of adult cardiometabolic risk; and 3) determine if differences in MetS 

scores at age 11 years have lasting implications for adult cardiometabolic health.  

In the current study, we assessed dietary intake of children using a single 24-hour recall. 

However, future observational research should consider more accurate methods of assessing 

dietary intake, such as collecting repeated measures of diet, along with objective biomarkers of 

PUFA and LC-PUFA status. For example, plasma phospholipid DHA, erythrocyte DHA, and 

platelet DHA have all been identified as effective and robust markers of DHA status (27). By 

quantifying fatty acid concentrations, Δ5 and Δ6-desaturase activity can be calculated (by dividing 

parent PUFA by LC-PUFA concentrations for the n-6 and n-3 series, respectively) and correlated 

with FADS SNPs. Additionally, the utility of dietary n-6:n-3 ratios remains controversial, with 

some evidence suggesting that absolute intake of n-6 and n-3 PUFAs is more relevant than the n-

6:n-3 ratio, but this merits further examination. Within the POSGRAD study, a dietary intervention 

trial could be conducted to further examine interaction between selected FADS genetic variants 

and dietary LC-PUFA intake to assess whether an optimal n-6:n-3 ratio for cardiometabolic health 

exists. 
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Historically, randomized controlled trials have been designed with a focus on 

generalizability (i.e., understanding whether supplementing the general population with a nutrient 

will yield a health benefit). However, for most nutrients, a one-size-fits-all approach is suboptimal. 

It is now known that individuals can respond differently to the same foods, nutrients, and 

supplements consumed due to a variety of factors including, but not limited to diet, environmental 

exposures, microbiome, intrauterine exposures, and genetics. As the world moves towards using 

personalized approaches to solve nutrition challenges, trials should be designed such that they 

better capture background exposures, including dietary intake, supplement use, baseline nutrient 

status, and genetic information. For example, a multi-center, double-blind, randomized, superiority 

trial recently showed that women with low baseline DHA status benefit more from a high-dose 

DHA supplement (1000 mg) during pregnancy relative to a low dose supplement (200 mg) to 

prevent preterm birth (28). Likewise, future work could investigate whether women with low 

baseline DHA status and certain FADS genotypes benefit more from high dose DHA 

supplementation during pregnancy. In a similar vein, it is also important to consider systems 

biology approaches for assessing effects of nutrition supplementation. As high-dimensional data 

and advanced analytic methods to probe gene-environment interactions become increasingly 

available, it is becoming more apparent that nutrients do not work in isolation on one organ system. 

Future work should focus on understanding how the entire biological system responds to DHA 

supplementation using various “omics” technologies (i.e., genomics, transcriptomics, proteomics, 

metabolomics) to better guide the development of personalized dietary recommendations (29).  

Overall, this work emphasizes the value of a life course approach towards studying 

prevention of cardiometabolic disease. While the DOHaD theory generally reflects the importance 

of maternal nutritional status for long-term offspring health, there is increasing recognition of the 
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paternal role as well; newly designed studies and trials should also consider including paternal 

nutritional exposures and genetic information (30). Finally, replication of findings is critical for 

ensuring validity, especially in studies incorporating genetic information. Given the large variation 

in habitual diet, LC-PUFA status, and genotype distributions across populations, this work should 

be reproduced in larger, independent cohorts. 
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