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Abstract

Using Deep Recurrent Neural Networks to Estimate Influenza Prevalence from Mobile

Phone Records

By Congzheng Song

Early detection of Influenza would save millions of people from suffering and death,

however the detection itself still remains challenging. Previous influenza surveillance

systems require the clinical data of infected individuals or search queries about In-

fluenza which depend heavily on Internet usage. On the other hand, another data re-

source, mobile phone data, remains popular globally. The hypothesis in our project is

that we can use mobile phone data to model the individual behavioral change and ap-

ply them to a larger population with unknown prevalence to accurately detect new dis-

eases or epidemics in their early stages. In this thesis, we will focus on a more specific

question towards validating the hypothesis. That is, can we detect human behavioral

changes using mobile phone data and to use them to build an appropriate individual

sickness prediction model?

To answer this question, we first define several metrics that can be extracted from

mobile phone data and show that they exhibit the behavioral changes when people are

sick. Next, we setup a supervised learning task where we want to predict when a mobile

phone user will be sick given the set of metrics we define. We further develop a novel

deep learning model for this task and show that our model outperform other machine

learning models.
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Chapter 1

Introduction

1.1 Background

Seasonal epidemics causes between three and five million cases of severe illness and be-

tween 250,000 and 500,000 deaths every year around the world [42]. In 2009, the H1N1

pandemic affected millions of people in the world and resulted in large number of fa-

talities. Early detection of Influenza would save millions of people from suffering and

death, however the detection itself still remains challenging. Influenza has tradition-

ally required symptomatic individuals to seek treatment or advice [21] and syndromic

surveillance system [15] depends majorly on accurate both virologic and clinical data,

including the number of physician visits, where there might be a lag of couple of days

or even a week from onset of illness until affected people visiting doctor.

More recently, surveillance system comprising search queries [25] and social medias

[48, 44] are proposed. These systems have enormous data that are already collected

and thus are passive and non-invasive since they do not require additional individual

medical records or interviews. However, these surveillance systems is that they rely on

Internet usage. This limits their applicability in areas regularly prone to infectious dis-

ease outbreaks such as Africa. Globally, 3.2 billion people are using the Internet by end

2015, while 4 billion people from developing countries remain offline, representing 2/3

of the population residing in developing countries [10].
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1.2 Motivation

On the other hand, another data source remains popular and pervasive globally: mobile

phone data. Mobile phone users have increased from 700 million in 2000 to 7 billion by

the end of 2014, covering more than 96% of the world’s population, almost the twice

of Internet coverage. Mobile phone providers maintain Call Data Records (CDR) for all

calls involving to their subscribers for billing purposes. Each record contains various

attributes of the call, such as time, duration, completion status, source number, and

destination number, which we will describe the data in details in Chapter 3.

The hypothesis in our project is that we can use CDR data to model the individual

behavioral change and apply them to a larger population with unknown prevalence to

accurately detect new diseases or epidemics in their early stages. Building automatic

real-time system for Influenza surveillance using CDR data would be our ultimate goal.

In this thesis, we will focus on a more specific question towards validating the hypothe-

sis. That is, can we detect human behavioral changes using CDR data and to use them

to build an appropriate individual sickness prediction model?

1.3 Outline

In this thesis, We first review previos literature on modeling human behavior and con-

ducting various predictions task using mobile phone data in Chapter 2. Then we de-

scribe in detail our CDR dataset as well as the labeled patients’ data in Chapter 3. Fol-

lowing that in Chapter 4, we provide a number of metrics that are extracted from CDR

data and are helpful in describing human behaviors as well as the changes in behavior

during people are sick. We will provide a deep learning model that utilizes the behavior

metrics to predict individual sickness in Chapter 5. In the end, we show our experiments

methods and current results for sickness prediction in Chapter 6.
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Figure 1.1: Components of architectural pipeline, and how they are described in this

thesis
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Chapter 2

Related Work

In this chapter, we will review studies on using mobile phone data to understand hu-

man behavior and perform various prediction task. Also, we will review latest trends in

applying deep learning to healthcare problem.

2.1 Human Behavior Study

Many studies have tried to model human behavior from mobile phone data. Gonzalez

et al. [27] showed that human trajectories exhibit a high degree of temporal and spatial

regularity. Farrahi and Gatica-Perez [18, 19] successfully discovered various types of hu-

man daily routines using probabilistic topic modeling [5]. Cho et al. [14] demonstrated

that humans experience a combination of periodic movement that is geographically

limited. By measuring the entropy of each individual’s trajectory, Song et al. [49] find a

93% potential predictability in user mobility across the whole user base, regardless of

the significant differences in the travel patterns. All these researches have discovered

the regularity of human behavior pattern to some extent and showed the feasibility of

using mobile phone data to quantify these pattern.
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2.2 Classification Using CDR data

Other researches showed the potential that human behavior can be quantified using

mobile phone data and used for further classification task. Frias-Martinez et al. [22]

used mobile phone data for characterizing and automatically identifying the gender of

a cell phone user in a developing economy based on behavioral, social and mobility

variables. de Montjoye et al. [17] showed that personality can be reliably predicted from

standard mobile phone logs by using a set of novel psychology-informed indicators that

can be computed from mobile phone data. Bogomolov et al. [6] applied metrics ex-

tracted from mobile phone and demographic data to predicting crime in a geographic

space. We will adapt some of the metrics developed in these works and analyzing them

to see if these metrics are able to exhibit the deviation of behaviors from regular patterns

during people are sick.

2.3 Differences in Our Work

Most of these previous works on CDR data are using models like SVM [16] or decision

tree [8]. Deep learning, one of the latest trend in machine learning, has been proved

to be successful in many different areas [38]. Thought there are some attempts to use

deep learning at health-care [39] or CDR data [20], we have not seen any work on the

combination of both, which is to use deep learning to prediction sickness using CDR

data. Thus, we would like to build a deep learning model based on our knowledge of

human behavior and test that if deep learning captures the changes in behavior better

than other model in terms of prediction accuracy.
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Chapter 3

Dataset Description

In this chapter, we will provide a detailed description of our dataset, including CDR data

and data for onset dates of mobile phone users during 2009 H1N1 Influenza. We then

joint these two dataset and give some basic statistics of our data.

3.1 Icelandic CDR Data

Use mobile phone data from Iceland to analyze behavior changes during Influenza have

several advantages. First, Iceland has near perfect mobile phone usage, and the pop-

ulation are homogeneous from which we can expect the behavior patterns would be

similar. Also, Iceland is an island and thus there would be less migration in population.

However, since Iceland is a small country with many unique qualities, the generalization

of our analysis on other country is yet to be tested.

We are fortunate to have access to fully anonymized CDR data for cell phone use

in Iceland from October 2008 to 2012 by the Icelandic telecom provider Siminn, whose

subscribers covers 30% to 50% population in Iceland. The data are stored in three tables.

We show some examples of records from the data.

Call Data

Each row of the table is a call detailed record (CDR). The first two columns are user ids

that are involved in this record. If entry type is 11, then a called b. If entry type is 31,
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ID a ID b Time Tarif Entry Type Tower Tarif Type Duration

113604** 113735** 2009-08-25 10:45:2* GGSM 11 274010001004E PREP 432

49815** 108928** 2009-08-25 20:32:3* GGSM 11 27401001F03AB PREP 93

52223** 107910** 2009-08-25 16:47:4* GGSM2 11 27401000B029D PREP 395

109492** 108117** 2009-08-25 19:39:0* GGSM7 11 27401012D0C4C POST 7

Table 3.1: Call Data Table Example

then b called a. If entry type is 1, then a texted b. If entry type is 0, then b texted a.

Tower ID is the hex id for the cell phone tower in tower table, we will use it to get the

GPS coordinates of that tower. Column Tarif or Tarif Type are information for the phone

account type, which are of not our interest in this project. Duration is the call duration

and it would be zero if the row is a record for text.

GPRS Data

ID Time Tower Prepay Upload Volume Download Volume Total Volume

113675** 2009-02-01 08:12:3* 439 0 4370 7724 12094

108265** 2009-02-01 09:26:0* 3046 0 107697 937039 1044736

113624** 2009-02-01 07:04:2* 460 0 9215 12632 21847

108265** 2009-02-01 08:16:0* 3046 0 160495 884349 1044844

Table 3.2: GPRS Data Table Example

For each row, GPRS data table has user id and corresponding tower id and usage of

data, where the total volume is the same as the sum of upload volume and download

volume. Prepay column remain largely static throughout the data.

Cell Tower

Every tower table row contains tower id and hex tower id, which are corresponding to

the tower id in Call Data table and GPRS Data table respectively. Also, we have their GPS

coordinate in latitude and longitude. Loc column describe the region where the tower

is located. Notice that the first three rows share the same GPS coordinate yet they are

marked as different tower by Tower ID and Cell columns. This is because GSM cell tower
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Tower ID hex Tower ID Loc Cell Lat Lon

0001 2740100010001 Öskjuhlíð OSKJUHN 64.127** -21.905**

0002 2740100010002 Öskjuhlíð OSKJUHA 64.127** -21.905**

0003 2740100010003 Öskjuhlíð OSKJUHV 64.127** -21.905**

0004 2740100010004 Kristkirkja KRISTKN 64.147** -21.948**

Table 3.3: Tower Data Table Example

has three different angles, each covering 120 degrees and thus in total the three directed

antennas on the tower can cover 360 degrees.

Figure 3.1: Cell Tower Distribution in Iceland

Here in Figure 3.1 we plot the geographical distribution of cell towers in Iceland using

the GPS coordinates in tower table. As we can see, most towers are in the coastline and

there the density of towers in , Reykjavík ,the capital is the highest since that is where

most people live.

3.2 Onset Data

Through collaboration with the Icelandic Centre for Health Security and Communicable

Disease Control at the Directorate of Health (CHSCDC), we have been given access to a

subset of anonymous individual electronic medical records from 2009 H1N1 Influenza.
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Figure 3.2: Number of Onset Cases Over Time

Of all diagnosed cases, it is possible to match 4,294 individuals to traces in the CDR,

comprising a total of over 6.5 million mobile data records.

3.3 Privacy and Approvals

Individual anonymity and respecting privacywas preserved while generating this dataset.

Phone numbers were encrypted using industry standard software by collaborators at

Siminn. These anonymous IDs were then made available to the CHSCDC along with

the standard Icelandic national identification number (‘Kennitala’) of each of the end

users. CHSCDC used these to match the encrypted phone numbers to health records,

generating a fully anonymous dataset that was then released to us.

Since all of the data has been anonymized and does not contain personally identifi-

able information, the Iceland Data Protection Authority (Persónuvernd) has stated that

it requires no approval to conduct the proposed research.

3.4 Grouping Data

To utilize all the data we have for the set of patient, we decide to merge the call data and

GPRS data for each patient. Since both call data and GPRS data provide time stamp and

GPS coordinate, grouping them together will give us a higher resolution about when the

user has been where. We then for each user, group their data by day since human be-

havior tend to be regular on daily basis. We plot some distributions of the raw grouped
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Figure 3.3: Raw Distributions for Grouped Data. Number of calls, texts and GPRS are

scaled by log function with base 10. Though most of the days have little texts or GPRS

records, we have a set of users who have calls regularly, providing enough data for fur-

ther analysis.

data in Figure 3.3.

Our time period of interest is days around 2009 H1N1 outbreak in Iceland. Thus,

we only collect data from February 2009 to March 2010 for further analysis. Within this

period, we have 3,931 users who have received Influenza-like illness diagnosis. These

user have total 868,033 days active in aggregation during this period.
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Chapter 4

Human Behavior Metrics

Significant effort[17, 27] has been made to quantify human behavior given CDR data.

Here we show our set of metrics that we believe are useful to describe human behavioral

changes when they are sick. Given a user u and a time period T (e.g. each consecutive

three hours or a day) and all the mobile phone records r1, r2, ..., rn that u made in T ,

we want to extract metrics from the records. These records can be used to describe the

behavior of the user. Once we have a thorough understanding of the behavior through

these metrics, we can use them in various prediction tasks. In our case, it would be to

predict the user’s sickness given metrics for some time periods. A summary of all metrics

is showed in Table 4.1.

4.1 Notation

We reduce each mobile phone record into the following notation: for record ri, we have

the time stamp ti, the GPS location `i in a 2-tuple (φi, λi) with latitude φi and longitude

λi, the call duration τi, and correspondent’s id ci. For all records in T , let C be the set of

all unique contacts with whom u has interacted and L be the set of all unique locations

that u visited. We define the function of counting as f : E 7→ N, where E is the set of

entities C ∪ L in which we are interested in. For example, f(ci) would be the number of

times that u has calls or texts with user ci. We also define another function g : C 7→ N

and g(ci) is the call duration
∑
τ between u and ci during T .
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Figure 4.1: Work Flow for Extract Top Information: For each week i in u, group previous

eight weeks records for i and rank the location visited by count, contact by call duration

and count. Save the top k information for week i for later metrics extraction.

4.2 Past Top Information

Some basic top information that can be extracted from all the records from time periods

Tp which precede T within some limit (e.g. see example for past 8 weeks in Figure 4.1).

The reason why we extract top information is that we want some measurement of the

regularity of human behavior. For example, given a week of interest, we extract the most

frequently visited location ` from its previous 8 weeks, and measure how many time the

user stay at ` for this week. This captures regularity in the user’s whereabouts.

Top Locations We define Lk = {`top1
, `top2

, . . . , `topk
} as the set of top k most frequently

visited locations by u in Tp.

Top Contacts Similar to top locations, we also define two sets of top contacts ranked

by call duration Cd
k = {cdtop1

, cdtop2
, . . . , cdtopk

} and ranked by frequency of calls and texts

Cf
k = {cftop1

, cftop2
, . . . , cftopk

} in Tp.
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Figure 4.2: Percent Information Covered by Top Entities for All Past 8 Weeks for ran-

domly sampled 100 users. The horizontal axis is the rank for the entity, e.g 1 means top

1 contact for Call Duration plot.

Choosing k An important parameter here we have to choose is how many (k as de-

fined above) top entities we want to extract for each user. We want a k to be small since

most people tend to talk most to one or two friends rather than everyone in their social

network and they tend to stay at one or two locations more often then others. Thus, it is

meaningless for us to have a large k since most of them would be rare cases.

To illustrate our point, we here plot percent of records covered by top information

with k up to 10 in Figure 4.2. We can see that top one and two locations can cover 60% of

the records, indicating most people tends to spend majority of time at few locations. On

the other hand, user’s contacts are more diverse. Thus, it is not very helpful to include

top three contact and beyond by observing that they do not cover much records.

4.3 Call Pattern Metrics

We make an assumption that unhealthy people would make longer phone interactions

during they are sick because they tend to make calls to their close friends or family mem-

bers to tell about their conditions. However, we also expect that they would make less

number of interactions and interact with fewer people since they might free from work-

ing and thus make less work calls.



14

4.3.1 Basic Phone Usage

These set of metrics provide some very basic description of user’s phone usage behavior,

which could effectively show the deviation of behavior during sick from normal.

Incoming/Outing Calls and Texts For all records in T , we first count the number of

all incoming and outgoing calls and texts separately. Then, for calls, we sum up the

incoming and outgoing call duration as well. When we have the duration and count

for calls, we further calculate the average duration per incoming and outgoing call as

another metric.

Call to Interaction Ratio We also want to determine if a user makes more calls or texts

in T . Thus, we calculate ratio of the number of calls to number of all interactions (calls

and texts).

Inter-Event Time For two consecutive records ri−1, ri and their time stamps ti−1, ti, we

calculate the time elapsed in seconds ∆ti−1 = ti−ti−1 as inter-event time. For all records

in T , we thus get a sequence of inter-event time [∆t1,∆t2, . . . ,∆tn−1]. We then compute

the mean and standard deviation from the sequence as our metrics.

4.3.2 Social Behavior

As mentioned above, we deem that user would have less contacts but also interact more

with their intimates. We find a set of metrics that can quantify these behaviors.

Unique Contact Interacted For correspondents in all records in T , we find the unique

set of contact C that user called or texts and use |C| as our metric.

Contact Entropy For each unique contact ci in C, we find the corresponding frequency

f(ci) of visiting ci in T . Let Fc =
∑

i f(ci), we then calculate the Shannon entropy Hc of

location by:

Hc = −
∑
i

f(ci) log
f(ci)

Fc
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We also do the same entropy calculation for unique incoming contacts and outgoing

contacts.

Interaction with Top Contacts As we defined in 4.2, we have two sets of top contacts

that we are interested in knowing how u interact with them. We first calculate f(cftopi)

and g(cdtopi
) for i = 1 to k as metrics. Since the raw count of frequency and call duration

might vary between users and time, we also calculate the percentage of interacting with

top contacts. That is, we find the sum of frequency Fc and call duration Dc (=
∑
g(c)) of

communicating all contacts c ∈ C. And then we use
f(ctopi

)

Fc

and
g(ctopi

)

Dc

for i = 1 to k as

another set of metrics.

Contact to Interactions Ratio This metric measured by
|C|∑

c∈C f(c)
,would help us to

determine how diverse the set of contacts of u is in T . We assume people would call

fewer contacts but longer time during they are sick, since they would make much more

phone call to strangers when working.

Percent Initiated Interactions Another metric that might help describing the behav-

ior during sickness is the percent of people initiating the interactions, since people

might call or text more to tell their friends and family they are sick. We calculate the

percent initiated calls, texts and all interaction using outgoing interaction divided by all

interaction.

4.4 Mobility Metrics

Movement pattern is another important set of behaviors that we are interested in. Dur-

ing people are sick, we assume that people would travel less and tend to stay at home

due to the fact that they might feel uncomfortable and take day-off from work.

4.4.1 Traveling Diversity

We here define a set of location diversity measurements for users and we expect that the

location diversity would decrease during people are sick.
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Unique Locations Visited For locations in all records in T , we find the unique set of

locations L that user visited and use |L| as our metric.

Location Entropy For each unique location `i in L, we find the corresponding fre-

quency f(`i) of visiting `i in T and apply the same method in Section 4.3.2 for calculating

location entropy. If a user stay at only one place for entire time period, then the entropy

would be zero. On the contrary, the location entropy would be high if the user visited a

lot places.

Visits of Top Locations Similar to interacting with top contact, here we define the

count and percent of visiting top towers. This could effectively tell us if user stay at

places like home more than other places more during sickness.

Number of Transitions We define transition as a movement between different loca-

tion. For example, at time stamp ti−1 and ti, u moved from `i−1 to `i. Then, if `i−1 6= `i,

the tuple (`i−1, `i) count as a transition. We find the total amount of transitions in T as a

metric to describe u’s movement.

4.4.2 Movement Behavior

Apart from diversity, we also provide metrics that could directly quantify movement be-

havior, where the higher the metrics the more the user traveled. We believe that these

measurements would drop during users’ sickness.

Distance Traveled Given two consecutive records ri−1, ri and their GPS coordinates

(φi−1, λi−1), (φi, λi), we can calculate the great circle distance di−1 in kilometer between

them using Haversine formula, given r = 6371 km:

di−1 = 2r arcsin

√
sin2(

φi−1 − φi

360π
) + cos

φi−1

180π
· cos

φi

180π
· sin2(

λi−1 − λi
360π

)

Thus, given a sequence of n records in T , we can extract a sequence of distances

[d1, d2, . . . , dn−1] between each two consecutive records. We further develop two metrics

using the distance sequence. First, we consider the total distance traveled in T , which is
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∑n−1
i=1 di. Also, we add

n−1
max
i=1

di as another metric, which is the maximum distance between

two locations that the user visited.

Mean and Variance of Speed From the sequences of distances we get above and the

sequence of inter-event time we get from Section 4.3.1, we are able to calculate the

speed vi =
di

∆ti
during traveling each distance di for i = 1 to n − 1 and thus we get a

sequence of speed [v1, v2, . . . , vn−1] in T .

Radius of Gyration We follow the same procedure of calculating radius of gyration

proposed in [27]. That is, given the set of unique locations L and their corresponding

visiting frequency in T , we measure the radius smallest circle that cover all these loca-

tions.

4.5 GPRS Data Usage

Though we do not find a clear relationship between sickness and GPRS data usage, in-

cluding these records can help us increase = users’ temporal and geographical resolu-

tion. Also, we consider the number of GPRS records the total upload volume and the

total download volume in T as metrics to describe how u use GPRS data.

4.6 Categorical Variables

Apart from the sets of numerical variables we described above, we also define a set of

categorical variables that applicable to all users.

Modal Location We first extract `mode = arg max
`∈L

f(`) and if `mode ∈ Lk, we label mode

location as k for `mode = `topk
, otherwise we label it as−1.

Modal Contact Similar to mode location, we find two different mode contacts cfmode =

arg max
c∈C

f(c) and cdmode = arg max
c∈C

g(c) and label them accordingly with Cf
k and Cd

k
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Modal Transition For all possible transitions (as we defined in Section 4.4.1) in T , we

find the most frequent one, and label the two GPS coordinates with the same methods

of labeling mode location. For example, (1, 2) would mean the that u travel mostly from

u’s first top location to second top location.

Modal Location-Contact Pair For each CDR records ri, we pair the location `i and cor-

respondent ci as a tuple (`i, ci) and we find the most frequent pair. We also label the pair

using the same labeling methods above. Notice that we would have two categorical vari-

ables for location-contact pair, since the contact can be labeled by Cf
k and Cd

k and they

have different meaning.

4.7 Analysis of Metrics

4.7.1 Box-Plots

To examine if these metrics extracted from CDR data could correctly show our assump-

tion about what behavior would change during people are sick, we plot these metrics

for the sick population with respect to the days within two weeks of their onset date. For

each day in these two week range, we find all users who are active on that day and cal-

culate the numerical behavior metrics accordingly and then generate the box-plot for

each day.

On each day of interest, apart from statistics measured by box-plot, we also plot the

Kolmogorov–Smirnov (K-S) distance between distribution of each metric on that day

the the distribution of each metric for all users over all time period. Given two empirical

distribution function F (x) with m samples and G(x) with n samples, K-S distance Dm,n

is calculated byDm,n = max
x
|F (x)−G(x)|. This distance is indicated by the color of each

box, where the greener the color indicate the larger the distance.

4.7.2 Observations

There are 58 of these time series box-plots, and we show them in Appendix A. From

observations out of these plot, we can answer some of our assumptions below.
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Do People Call More? Another set of behaviors that exhibit the deviation from normal

during onset is call patterns and social behaviors. We can observe that people tend to

talk longer on phone during they sick by looking at plots for average duration per call.

However, number of calls is dropping slightly except for the day of onset, possibly due

to people calling doctors. We could not observe clear changes in metrics related to text

pattern.

Changes in Social Behavior? We have several metrics to describe user’s social behav-

ior, and from these we can observe that patients are interacting with fewer people except

for the day on onset. Sick users also call their best friend longer in terms of raw dura-

tion, however, the percentage of calling best friend does not show significant difference.

We deem this is due to their call duration also increases so that the percentage does not

change much. Additionally, interaction with strangers increase drastically for the date

of onset, which again might be attribute to interactions with doctors.

Do People Move Less? From plots for distance traveled, radius of gyration, location

entropy, unique location so on, it is not hard to find out that these signals start to drop

when close to onset date and achieve the lowest point at onset or the day after onset.

Also, the K-S distance are larger during days close to onset than other days. It is very

likely that during patients were sick, they were either told by the doctor that they should

not travel much or they feel too uncomfortable to move around.

Changes in Daily Schedule? We are also be able to see that people spending more time

at their top location and much less time at strange location. It is possibly due to the fact

that the top location indicates home and thus many patients were taking sick-day off

and spent more time at home.

On top of box-plots, we plot two heat-maps in Figure 4.3 and 4.4, where the x-axis is

the days to onset and y-axis is hour and the color shows the percentage of staying at top

locations. It is not hard to see that people spending more time at their top location in

the day time during their sickness.
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Figure 4.3: Mean percent of visits that are users’ most frequently visited tower (possibly

home location) during past 8 weeks.

Figure 4.4: Mean percent of visits that are users’ second most frequently visited tower

(possibly work location) during past 8 weeks.
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Table 4.1: Summary of Metrics

Type Name Unit

Mobility

Distance Traveled (Total, Max) km

Radius of Gyration km

Mean of Speed km/sec

Variance Speed km2/sec2

Unique Locations count

Location Entropy N/A

Percent at Top Locations percent

Call Pattern

In/Out Calls, Texts count

In/Out Calls Duration (Total, Mean) sec

Contact Entropy (In, Out, All) N/A

Unique Contacts count

Contacts to Interaction Ratio count/count

Call to Interaction Ratio (In, Out, All) count/count

Percent Interact with Top Contacts percent

Mean of Inter-Event Time (Call, Text, All) sec

Variance of Inter-Event Time (Call, Text, All) sec2

GPRS
Number of GPRS Records count

Upload/Download Volume bytes

Categorical

Mode Location N/A

Mode Contact N/A

Mode Location-Contact Pair N/A

Mode Transition N/A
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Chapter 5

Model

In this chapter, we first provide background knowledge for sequential modeling using

deep learning. We then formalize our task as a supervised sequence classification prob-

lem and design a deep learning model that can be applied to our problem.

5.1 Preliminaries

In this section, we will briefly review the problem setup for supervised learning and

some machine learning algorithms for classification and sequence modeling.

5.1.1 Supervised Learning

Consider a dataset S with m data points D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, where each

(xi, yi) is called a training example and xi is a feature vector and yi is the ground truth

label (i.e, class). Supervised learning algorithm wants to learn a function (hypothesis)

f : X 7→ Y , where xi is drawn from input space X and yi is drawn from the output space

Y . In other words, the function is trying to predict yi, given the input feature vector xi.

To measure how well the function predicts the true values, we need a loss function

determine the performance of the hypothesis, L : Y × Y 7→ R. For training example

(xi, yi), the loss is calculated by L(yi, h(xi)). During the training process, we will feed

the input feature vectors into the hypothesis function and get a loss for each training

example. Ideally, we want to minimize the loss over the whole data distribution D over
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Figure 5.1: Supervised Learning Work Flow

X × Y .

Another important concept in supervised learning is called generalization error, which

measures the performance of the learned hypothesis on data that are not involved in the

training process. If the generalization error is high for the hypothesis, then our model

is not very useful for unseen data or new data and thus would have little usage in real

world application.

A typical work flow in supervised learning setting is shown in Fig 5.1 . We will parti-

tion the datasets into training set, validation set and testing set. We train our model on

training set and tune the parameters of the model based on the performance of valida-

tion set. Once we believe there are no more improvement can be made on validation

set, we evaluate the generalization error on testing set.

Logistic Regression

Consider a binary classification problem, where Y = {0, 1}. Suppose we have a bi-

nary classification training example (x, y). In logistic regression, the hypothesis function

f(x; θ) = σ(W Tx+ b), where σ is known as sigmoid function or logistic function:

σ(z) =
1

1 + e−z

The range of sigmoid function is a real value between 0 and 1. Then we make the follow-

ing assumptions in logistic regression: P (y = 1|x) = f(x; θ) and P (y = 0|x) = 1− f(x; θ).

Thus, we would predict y = 1 whenever P (y = 1|x) > P (y = 0|x) and y = 0 otherwise.
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Figure 5.2: Graphical Representation for Logistic Regression(Left) and one hidden layer

Multi-layer Perceptron(Right). Notice that the only difference between MLP and Logis-

tic Regression is that MLP has an extra hidden layer in between input x and y.

Multi-Layer Perceptron

Multi-layer Perceptron (MLP) or Artificial Neural Network (ANN) can be represented

graphically as in Fig 5.2.

The connection between hidden layer and y is the same as logistic regression. How-

ever, there is an extract step that transforms input x ∈ Rn to hidden layer h ∈ Rk by a

mapping function g : Rn 7→ Rk. Usually h = g(x) = a(W T
1 x + b1), where Wh ∈ Rn×k

and bh ∈ Rk and a is known as activation function. Typical choice for a are hyperbolic

tangent, sigmoid function and more recently different kinds of rectifiers [26, 32]. After

we obtain hidden layer h, we use it as an input to logistic regression to perform classifi-

cation. The final output of f(x; θ) = σ(W T
2 a(W T

1 x + b1) + b2) where W2 ∈ Rk b2 ∈ R and

θ = {W1,W2, b1, b2} are the set of parameters we learn from training.

The assumption in MLP is that it maps the input x to hidden layer through an nonlin-

ear transformation which projects input data into a linear separable space where logistic

regression can achieve better results.

5.1.2 Sequence Classification

Consider the input is now a sequence x = [x1, x2, . . . , xs], where each xt ∈ Rn, and we

still have y ∈ {0, 1}.Recurrent neural networks (RNN) are designed to model sequential

data by taking each input vector at a time.
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Figure 5.3: Vanilla Recurrent Neural Networks for sequence of three feature vectors. The

different color of the line indicates different weight matrices. The current hidden layer

and current input vector share the same weight matrixW while the current hidden layer

and previous hidden layer share another weight matrix U .

Vanilla Recurrent Neural Networks

At time step (sequence index) t, the vanilla RNN will map the input vector to the hidden

layer ht ∈ Rk by a function ht = a(W Txt+U
Tht−1+b), where ht−1 is the hidden layer from

previous time step,W ∈ Rn×k, U ∈ Rk×k and b ∈ Rk. We essentially obtain a hidden layer

sequence h = [h1, h2, . . . , hs] after feeding the input sequence to RNN. Then, we use the

last hidden layer, hs, as the input to logistic regression to perform classification for the

whole sequence.

Long Short-term Memory

LSTM [33] with forget gate [24] is proposed to capture long term dependency in the in-

put sequence. Instead of storing information in hidden layer as vanilla RNN does, LSTM

adds an additional memory cell that controls what information should be read, write

and forget. The information flow are determined by three gates: input gate, output gate,

forget, where the values are between 0 and 1 and parameters for the gates are learned

through training.
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Mathematically, LSTM can be represented by:

it = σ(W T
inxt + UT

inht−1 + bin) (5.1)

ot = σ(W T
outxt + UT

outht−1 + bout) (5.2)

ft = σ(W T
f xt + UT

f ht−1 + bf ) (5.3)

gt = tanh(W T
c xt + UT

c ht−1 + bc) (5.4)

ct = it � gt + ft � ct−1 (5.5)

ht = ot � tanh(ct) (5.6)

where � denotes element-wise multiplication of two vectors, it, ot, ft ∈ Rk are the gates

values, gt ∈ Rk is the transformed incoming memory cell value, and ct ∈ Rk is the final

memory cell value determined by previous memory cell and incoming information flow,

ht is the hidden layer value calculated from output gate of memory cell. Same as vanilla

RNN, we add a classifier which takes last hidden layer as input.

Bidirectional LSTM

Bidirectional LSTM [28] is first proposed for speech recognition. Instead of training

one LSTM for sequence x = [x1, x2, . . . , xs], we can flip the input sequence as xback =

[xs, xs−1, . . . , x1] and train two LSTMs for both x and xback. Then at each time stamp t,

we have two hidden representation ht and hbackt . By concatenating them, we can get a

representation contains both past and future information.

5.1.3 Gradient Based Learning

The loss function for probabilistic binary classification is typically cross entropy:

L(y, h(x; θ)) = −(y log(h(x; θ)) + (1− y) log(1− h(x; θ))) (5.7)

for training example (x, y). Suppose there are m training examples, we then want to

minimize:

L(θ) = − 1

m

m∑
i=1

(yi log(h(xi; θ)) + (1− yi) log(1− h(xi; θ)))

This optimization problem can be solved using gradient descent algorithm [12] which

will be further covered in Section 6.2.2.
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Back-Propagation

In neural network model, though we will still using gradient descent algorithm, the gra-

dient of the parameters from input to hidden layer cannot be calculated directly from

the loss function. Instead, we will use back-propagation algorithm [46] to calculate the

gradient of the loss with respect to the parameters W h and bh.

Optimization in RNN

Vanilla RNN is not widely used due to the problem during loss minimization. Back-

propagation through time (BPTT) [51] is the common algorithm for RNN to perform

gradient descent. During BPTT, the gradient signal is multiplied by the weight matrix

associated with the connections between the hidden layers at different time stamps.

Thus for Vanilla RNN, derivatives are susceptible to vanishing if the weights are small,

or exploding if weights are large [3].

Though LSTM has solved gradient vanishing problem by gating the information flow

in memory cell so that activation of memory cell does not overwrite by inputs [30]. It

still has the gradient exploding problem. To solve this problem, gradient clipping [43] is

usually applied during training RNN.

5.2 Problem Formalization

Before applying the deep learning models to our dataset, we need to first define our

problem in machine learning settings.

5.2.1 Sick Days Classification

Since we know the exact dates of the unhealthy mobile phone users went to doctor, it is

very natural for us to create a supervised learning problem using the labeled days infor-

mation. In the simplest setting, we can extract feature vector using the mobile phone

record for each day for each unhealthy user, and then feed the feature vector into a bi-

nary classifier which predicts if the user goes to hospital or not on that day.
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However, simply predicting if a user goes to hospital on certain day might not be a

very appropriate target, since we want to capture the human behaviors that are related

to sickness rather than the fact of going to hospital. Even though one is sick on a certain

day, one might not go to doctor for many reasons. Also, if we only label the day of onset

as positive class and all other days as negative class, we will end up having extremely

imbalanced classes, which would hurt the performance of machine learning models.

Thus, we want to predict if the user is sick or not on a certain day given the user’s

previous mobile records. The problem now is to label the days that users are sick given

their onset dates.

5.2.2 Labeling Sick Days

Many efforts have been made to study the changes in symptom severity of Influenza

around the onset day [11, 34, 37]. In general, these studies showed that the total symp-

toms scores are high from 0 to 3 days after onset. Given the results in these studies, we

choose to label the days that are 0 to 4 days after the onset day as sick days, and all the

other days as healthy days.

5.2.3 Binning Records

After we have grouped data by user and by days, we decide to bin all the records in

each day into segments of hours. The reason of doing it is that we think people tend to

have a schedule on each day and they would behave differently in theses segments. For

example, people are more likely to stay at home during 3 a.m. to 6 a.m. than 9 a.m to 12

p.m. Also, people tend to travel more during daytime than nighttime.

If we simply extract features for each day using all records in that day and ignore

the time stamp, we would lose the periodicity of human behavior on each day. Thus,

in order to capture the different behavior habit at different time, we bin the records for

each day intoNbin evenly δ-hour segments, whereNbin×δ = 24. Then, we extract features

for each of the δ-hour segments given the records.
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Figure 5.4: Sequential Data Representation: Each blue box is a feature vectors for each

δ-hour bin, each orange box contains Nbin blue boxes and each green box contains Nday

orange boxes. The red box is the true label for the last day and also the whole sequence.

5.2.4 Sequential Data

The features for each δ-hour bin are extracted as the metrics we defined in Chapter 4.

Thus, we have a feature vector with Nf dimensions for each δ-hour. Then, for each day,

we will have Nbin of these feature vectors.

In many time series models or sequential models, it is a common scene that they will

make use of the features in previous time period as part of the features for current time.

In our case, we include the features from previous Nday − 1 days for each day, resulting

in a Nday days sequence. The label of the sequence is the label of the last day in the

sequence.

5.3 Proposed Methods

As we have setup the classification problem mentioned in previous section, we here pro-

pose a deep recurrent neural network architecture that can model our input sequential

data and perform sick days classification.

5.3.1 Hierarchical LSTM

Since our data point is a sequence, we could choose to use normal LSTM to perform

classifications. This can be done by flatten our Nday-days sequence into a sequence of
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Figure 5.5: Hierarchical LSTM

Nday ×Nbin δ-hour bins. However, this way, we are treating all δ-hour segments in a long

linear chain, ignoring the periodicity of day.

To address the periodicity of daily schedule, we propose a new topology for LSTM

called hierarchical LSTM, as showed in Fig 5.5. This is a two stage LSTM process, but

is different from stacked LSTM. Our input sequence x ∈ RNday×Nbin×Nf is a three-way

tensor: 
x11 x12 x13 . . . x1Nbin

x21 x22 x23 . . . x2Nbin

...
...

...
...

...

xNday1 xNday2 xNday3 . . . xNdayNbin


where each xij ∈ RNf represents the feature vector for a δ-hour segments, i is the day

index and j is the δ-hour bin index. Thus, ith RNbin×Nf slice represents the sequence of

δ-hour bin vectors for the ith day.

In the first stage of hierarchical LSTM, we build an bottom layer LSTM B for each

RNbin×Nf slice ri in x. That is, we pass ri = [xi1, xi2, . . . , xiNbin
] to B to get a representation

for the ith day. After B processed ri, we end up having a hidden representation hBi =

[hBi1, h
B
i2, . . . , h

B
iNbin

]. Since hidden layer of LSTM contains long-term memory, we use the
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last element in hBi , hBiNbin
as a representation for day i so that it memorizes all the infor-

mation for all δ-hour segments on that day. Thus, after pass all i ∈ {1, 2, . . . , Nday}, we

have a sequence s of representation for each day, where s = [hB1Nbin
, hB2Nbin

, . . . hBNdayNbin
].

Next, we create a higher layer LSTM H, which takes the sequence s as input. Similar

to B, H generates a hidden layer representation hH = [hH1 , h
H
2 , . . . , h

H
Nday

] after processing

s. Again, to represent the sequence s, we use the last element of hH, which has mem-

orized long-term information for the whole sequence. Thus, for sequence s, we get its

final representation hHNday
after two-stage passing of hierarchical LSTM.

Finally, we add a classifier C (Logistic Regression or MLP) on top of H and conduct

classification given input hHNday
. During back-propagation, C passes its error to H, and

H uses BPTT to calculate its gradients and error and pass it to B. B then also uses BPTT

to calculate the gradients and perform updates of weights.

5.3.2 Attention Mechanism

Recently, attention-based model has been developed and applied to vision [41, 31, 52],

natural language processing [1] and so on. The basic idea is to create a “context vector"

to tell the model where to look at, and thus the model knows when to pay attention to

particular part of the input.

In our model, since we have a two LSTM (B and H), we can employ attention mecha-

nism by telling H where to look at for the hidden representation obtained by B. Instead

of passing only the last hidden layer of B to H, we also construct a context vector by tak-

ing the weighted sum of all hidden layers in B. We hypothesis that through attention,

the model can better understanding the behavior importance in each δ-hour in deter-

mining sickness for each day. Graphic representation of context vector can be seen in

Fig 5.6.

Mathematically, we add a another neural network to learn the weights for context in

H. Suppose we are at time step t when processing through H and have input as hBt =

[hBt1, h
B
t2, . . . , h

B
tNbin

] instead of only hBtNbin
. Then, the context vector κt for this time step is
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Figure 5.6: LSTM with Attention

calculated by:

κt =

Nbin∑
j=1

ajh
B
tj (5.8)

aj =
ej∑Nbin

i=1 ei
(5.9)

ej = vTa tanh(W T
a h

B
tNbin

+ UT
a h

B
tj) (5.10)

where va ∈ Rk, and Wa, Ua ∈ Rk×k, and we get raw weight value for each hBtj as a scalar

ej . Then we normalize ej through softmax process showed in Equation 5.9 and get the

final weights aj , and we take the weighted sum of hB as the context vector.

In order to include context vector into computation of H, we need to modify Equa-

tions 5.1 to 5.4 to the following:

it = σ(W T
inxt + UT

inht−1 +DT
inκt + bin)

ot = σ(W T
outxt + UT

outht−1 +DT
outκt + bout)

ft = σ(W T
f xt + UT

f ht−1 +DT
f κt + bf )

gt = tanh(W T
c xt + UT

c ht−1 +DT
c κt + bc)

where Din, Dout, Df , Dc ∈ Rk×k and are parameters learned during training.
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Chapter 6

Experiments

In this chapter, we will setup empirical experiments and provide analysis on models

described in the previous chapter. More specifically, we will describe steps for prepro-

cessing data for learning predictive model. We then will explain in details about the

configuration of our model as well as comparison baseline model. We finally evaluate

our model in different setting and analysis the results.

6.1 Preprocessing Steps

6.1.1 Data Imputation

Missing data is a major issue in our dataset. Many users do not have records in every

binned hour segments. For each user, we thus replace the missing value with the me-

dian value of all previous values in the same bin for numerical metrics, and the most

frequent value for categorical metrics.

6.1.2 One-Hot Encoding

For the categorical variables that we defined in Section 4.6, we use One-Hot encoding to

transform the categories to numerical values. For example, the mode location variable

could be [1, 2, -1] where 1 means top one location, 1 means top two location and -1

means all other location. Thus, we represent these three discrete value as [1, 0, 0], [0, 1,
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0] and [0, 0, 1] separately instead of using 1, 2, -1.

6.1.3 Data Normalization

Each feature in each bin might have different meaning for different user. Thus, we de-

cide to use a user-based normalization where for each user on each day, we normalize

the features for all bins on that day with respect to the features for the same bins on

previous days up to some limit (e.g previous 30 days). For a feature value xijk in bin j on

day i indicating feature k, we find xmin
ijk =

30

min
d=0

xi−d,jk and xmax
ijk =

30
max
d=0

xi−d,jk, then we do

the transformation as following:

xijk =
xijk − xmin

ijk

xmax
ijk − xmin

ijk

6.1.4 Data Filtering

To make our dataset better for analysis, we apply several rules for filtering data. First,

we require each δ-hour bin to have some minimum amount of records since many of

the metrics would be meaningless if there is only one record. Second, we require each

day to have some minimum amount of bins. Third, for each Nday sequence, there need

to some minimum amount of days. Additionally, due to our normalization step require

previous data, we remove days which lacks enough data to scale.

Since there are much more healthy sequences then sick sequences, we only choose

the sequences that are with 15 days of onset dates to train the model. After we have

done the preprocessing and filtering, we obtain our final dataset with size showed in

Table 6.1.

6.2 Model Configuration

6.2.1 Classifier

As we mentioned in 5.3.1, we need to add a classifier on top of the last hidden state

of our HLSTM model so we can perform classification. We choose MLP over logistic
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Table 6.1: Dataset size with respect to different bins and filtering rules. Min records is

the minimum number of records required for each bin and min bins is the minimum

number of bins required for each day.

δ min records min bins # o f users # of sequences # of sick days

3 2 2 1,909 31,785 3,943

4 2 2 1,925 31,804 3,945

6 3 1 2,165 41,647 5,299

8 4 1 2,038 36,293 4,563

12 5 1 1,940 33,412 4,108

24 1 1 2,465 60,972 7,834

regression for the reason that MLP has another transformation of input layer to hidden

layer which could extract latent features from its input.

6.2.2 Optimization

Mini-Batch Gradient Descent

Given the dataset D = {(xi, yi)}mi=1, in traditional batch learning, we pass the all training

examples in D to perform parameters (θ) update given the gradient of loss L(θ) with

respect to θ. On the other hand, stochastic gradient descent perform update after seen

one training example. Here, we take an approach that is in between this two methods,

where we update after seen b number of examples, where b can be any number between

1 and m. Given the learning rate is α and number of batches is n =
m

b
, an algorithm

description of mini-batch gradient descent is showed in Algorithm 1 below.

Algorithm 1 Mini-Batch Gradient Descent
while L does not converge do

for i = 0 to n− 1 do loop over all mini-batches
L(θ) = −1

b

∑(i+1)∗b
j=i∗b CrossEntropy(xj, yj, h) using5.7

θ ← θ − α∂L
∂θ

perform update
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Adam

Optimizing with vanilla stochastic gradient descent can be slow to converge and trapped

in local minimal. Instead, we choose to optimize our objective function using Adam

[36], which is based on adaptive estimates of lower-order moments and appropriate for

non-stationary objectives and problems with very noisy and/or sparse gradients. We

set the hyper-parameters in Adam to default values as introduced in the original paper

without further tuning.

6.2.3 Regularization

Deep neural networks are easily over-fitted with training data. Here we describe two

popular methods in regularizing recurrent neural networks.

Weight Noise Adding a small Gaussian noise to weights of RNN is introduced in [29]

to combat over-fitting problem. For each parameter in our HLSTM model, we add a

Gaussian noise with a standard deviation of our choice during training, while we fixed

the weights during validating and testing.

Dropout The idea for dropout [50] is simply to set some hidden units in the hidden

layer of a neural network to zero by binomial distribution during each training iteration.

By doing so, we are essentially training the model by sampling the features for hidden

layer. Though dropout is originally applied to neural network, there are also attempts to

apply dropout in RNN[53, 23]. We decide to apply the dropout techniques introduced

in [23], where we apply dropout with the same binomial distribution at different time

steps for both input feature vector and previous hidden layer.

6.2.4 Model Parameters

Complexity

The most complex model we use is Attention Hierarchical LSTM model, where the LSTM

layers are all bidirectional. Thus, there are in total 4 different LSTM layers. Suppose the
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hidden layer size for each LSTM is k. We will have 4 matrices with Nf × k parameters

and 4 matrices with k2 parameters and 4 bias vector with k parameters for each LSTM.

For LSTM with attention, we have 6 more weight matrices with k2 parameters and one

vector with k parameters. For MLP binary classifier, suppose the hidden layer size is

also k, then we have a weight matrix with 2k× k parameters, another weight vector with

k parameters and two bias with k and 1 parameters. In total, we will have number of

parameters Np as:

Np =2(4Nfk + 4k2 + 4k) + 2(4Nfk + 4k2 + 6k2 + 5k) + 2k2 + 2k + 1

=1 + (20 + 16Nf )k + 30k2

Hyper-Parameters

Here we summarize all the hyper-parameters that we define rather than learned from
training.

• Hidden layer size for LSTM (75) and MLP classifier (75)

• Number of layers for LSTM (1) and MLP classifier (1)

• Dropout rate for LSTM (0.2) and MLP classifier (0.1)

• Size of mini-batches (200)

• Initial learning rate (0.001)

• Standard deviation for weight noise (0.025)

• Number of epochs looping the training dataset (90)

6.3 Models for Comparison

For comparison purpose, we will evaluate our sequential data on several baseline mod-

els (including sequential and non-sequential) and our Attention Hierarchical LSTM model.

After pre-processing and transforming the metrics, we end up with Nf = 93 features for

each δ-hour bin.
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6.3.1 Non-Sequential Models

We provide a list of non-sequential model which takes a single feature vector as input.

Since our data is a sequence, we flatten the sequence into a feature vector with Nday ×

Nbin ×Nf dimensions.

Logistic Regression and MLP We follow the description in Section 5.1.1 for these two

models. Both are implemented with Theano [4, 2] and trained with Adam. For MLP, we

use one hidden layer with 500 neurons, and use leaky-ReLU [40] as activation function.

We also apply dropout with probability of 0.5 for regularization.

Random Forest Random forest [7] is a ensemble method where it drops multiple boot-

strapped sample from the training data and train a decision tree on each sample. We

use the implementation provided by scikit-learn [45, 9] and set the number of trees to

be 1000.

Support Vector Machine Support vector machine (SVM) [16] is a powerful linear clas-

sification algorithm. Along with kernel tricks [47], we can also determine a non-linear

decision boundary. We use the implementation from scikit-learn and LIBSVM [13], and

use a RBF kernel defined as K(x, x′) = exp(−γ||x− x′||) with γ =
1

Nday ×Nbin ×Nf

.

6.3.2 Sequential Models

All sequential models are taking a sequence as input, and are implemented by Theano

and optimized using Adam.

Long Short-Term Memory To use plain LSTM, we need to transform our sequence of

days of sequence of bins into long sequence ofNday×Nbin bin vectors. We apply dropout

described in 6.2.3 with probability of 0.2.

Attention Hierarchical LSTM Hierarchical LSTM model can take a three-way tensor

as input and we also compare the results for models with/without attention mecha-

nism. The hyper-parameters are as described in 6.2.4.
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6.4 Results and Analysis

6.4.1 Receiver Operating Characteristic

Since our models all output probabilities and then use threshold to determine which

class the input should be, it is natural for us to evaluate our model using Receiver Op-

erating Characteristic (ROC) Curve. ROC curve is created by plotting the true positive

rate (TPR) against the false positive rate (FPR) at various threshold settings, in our case,

various values in [0, 1].

ROC curves has true positive rate on the Y-axis and false positive rate on the X-axis.

This means that the top left corner of the plot is the “ideal” point - a false positive rate

of zero, and a true positive rate of one. It also indicates that larger area under the curve

(AUC) is usually better, while a random classifier would give have a AUC score of 0.5.

6.4.2 Analysis and Discussion

We first compare our Attention HLSTM model to other models using data binned in 8-

hour. For the reason that this is still an ongoing research, we only report the evaluation

on validation set. We plot the ROC curve for all models in Figure 6.1.

As we can see from the ROC curve and the table, Attention HLSTM model achieves

the best AUC score. Without attention mechanism, HLSTM still outperforms other mod-

els. Sequential models such as Bidirectional LSTM and LSTM also get higher AUC scores

than non-sequential model such as SVM, MLP and logistic regression. Random forest

has similar performance to LSTM, which we believe bootstrapping helped random for-

est to remove variance in the data. SVM, as a non-linear model, outperforms MLP and

logistic regression.

For the models trained with gradient descent, we can observe that Attention HLSTM

model converges fastest compare to others, while also achieves the highest AUC score.

On the other hand, logistic regression converges slowest, and its performance is nearly

random even after many epochs of training.
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Figure 6.1: Training Cost v.s. Epoch(left), AUC Score v.s. Epoch (middle) and ROC

Curve(right) for all models trained and evaluated with data binned in 8-hours. AHLSTM

stands for Attention Hierarchical LSTM model, BILSTM stands for Bidirectional LSTM

model, LOG is logistic regression, RF is random forest and SVC is support vector ma-

chine.

Model AHLSTM HLSTM BILSTM LSTM MLP LOG RF SVC

AUC 0.871 0.859 0.723 0.685 0.561 0.527 0.676 0.623

Table 6.2: AUC scores for above ROC curves

Does Different δ Help?

We also examine the performance of our Attention HLSTM model on data binned in

different δ-hour segments. We plot the ROC curve as well as the training cost and AUC

score over epochs in Figure 6.2. Since we have different filtering rules for different bins,

theses datasets are different as well and thus directly comparing the score might be mis-

leading. However, from the ROC curves and convergence of training cost, we do not

observe much difference in applying different bins.

Notice that δ = 24 is a special case for applying Attention HLSTM model since there is

not recurrent relation between bins, thus the input is first transformed as a normal feed-

forward neural network and then passed to the higher level LSTM. Also, the training

cost for 24-hour bin is much higher while the AUC score on validation set is reasonably

good. This might be due to the size of training data is larger, which is generally good for

training a deep and complex neural network.
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Figure 6.2: Training Cost v.s. Epoch(left), AUC Score v.s. Epoch (middle) and ROC

Curve(right) with Attention HLSTM model on validation set using different δ value.

δ 3 4 6 8 12 24

AUC 0.858 0.852 0.857 0.871 0.854 0.868

Table 6.3: AUC scores for above ROC curves

Generalization on New User?

So far we gather the sequential data for all users and then split them into training, vali-

dation and testing set. However, this might cause an over-fitting issue and low general-

izability of our model, since for the same user there are data in both training and evalu-

ation phase. Thus, we also apply a user-level splitting rule, where we split the users into

training users, validation users and testing users. We use the data binned with 24-hour

in this set of experiment for computational efficiency purpose. After splitting, we have

1,479 users for training, 493 users for validation and 493 users for testing. Similar to pre-

vious experiments, we plot the ROC curve training cost and validation AUC score over

epoch, showed in Figure 6.3.

As showed in these plots, none of these models give comparable results to previ-

ous splitting rules. We no longer see that sequential models outperform non-sequential

ones. Also, simple model such as logistical regression can achieve same results as our

Attention HLSTM model, indicating an issue either in preprocessing steps or over-fitting

problem using previous splitting rules.

In addition, we can see from the training cost plot that the training cost using At-
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Figure 6.3: Training Cost v.s. Epoch(left), AUC Score v.s. Epoch (middle) and ROC

Curve(right) with all models trained and evaluated on data binned with 24-hour

Model AHLSTM BILSTM LSTM MLP LOG RF SVC

AUC 0.596 0.567 0.566 0.581 0.596 0.584 0.544

Table 6.4: AUC scores for above ROC curves

tention HLSTM model is converging, however the validation AUC score almost remains

unchanged the whole time. Solving this pitfall in generalization on new users would be

our next research focus.
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Chapter 7

Conclusion

7.1 Summary of Work

In this work, we present an framework of applying deep learning on CDR data to predict

users’ sickness. We first show number of metrics extracted from CDR data that could

effectively describe the changes in patients’ behavior during they are sick. We visualize

these metrics and utilize them for prediction. We build a specific deep recurrent neural

network model to predict if a user is sick or not given a sequence of CDR data. We show

that our model outperform other machine learning algorithms.

However, there are many limitations in this work. First, the hyper-parameters for

our deep learning models are found by random search, which might not give the best

results. Second, deep learning suffers from interpretability and so does our model. We

could not tell what features are helpful and what happens in the network. Third, our

model has low generalizability on new users’ data, so does other less complex machine

learning models. This might indicate that we need extract work on feature extraction

and data pre-processing steps. Finally, we only train and evaluate our model a set of

patients, ignoring the larger amount of data from healthy population.
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7.2 Future Directions

In the next steps, we hope to fix the issue of our model’s generalization on new users’

data. There are works on understanding and visualizing RNN [35], we will focus on ex-

plaining the results we are getting from our deep learning model. We might also try

to build new models that are not individual-level. Also, instead of using only patients’

data, we will try to include data from healthy population either as new features or train-

ing data. Finally, we wish to evaluate our model on whole population over other time

period which has a disease outbreak and to see if our model has the ability to detect the

outbreak given unseen data.
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Appendix A

We plot the behavior metrics according to the description in Section 4.7.1. All the plots

have the same x-axes, which is the days to onset. Y-axes are different and their units are

showed in 4.1.

Figure A.1: Plots for variances of inter-event (call, text, all) time and speeds



52

Figure A.2: Plots for average duration per call, call to interaction ratio, contact entropy,

contact to interaction ratio, distance traveled and download volume
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Figure A.3: Plots for number of GPRS records, total incoming call duration, incoming

call to interaction ratio, number of incoming calls, incoming contact entropy and num-

ber of incoming texts
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Figure A.4: Plots for location entropy, longest distance traveled, average incoming call

duration, average inter-event(call, text, all) time
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Figure A.5: Plots for average speed, average outgoing call duration, total outgoing call

duration, outgoing call to interaction ratio, number of outgoing call and outgoing con-

tact entropy



56

Figure A.6: Plot for number of outgoing text, percent duration talked to strangers(-1),

percent duration talked to top contact(0), percent duration talked to second top con-

tact(1), percent interacted with strangers(-1), percent interacted with top contact(0)
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Figure A.7: Plots for percent interacted with second top contact(1), percent of initiated

events(call, call duration, text, all), percent visiting strange location (-1)
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Figure A.8: Plots for percent visiting top location (0), percent visiting second top location

(1), radius of gyration, total count of interactions with stranger(-1), top contact(0) and

second top contact(1)
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Figure A.9: Plots for total duration talked to strangers(-1), top contact(0), second top

contact(1), total visits of strange location(0), top location(0) and second top location(1)
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Figure A.10: Plots for number of transitions, number of unique contacts (incoming, out-

going, all), number of unique location visited and upload volume
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