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Abstract 

Investigating the Association between Air Pollution and Cognitive and Mental Health Outcomes 

Using Satellite-Driven Exposure Models 

By 

Qingyang Zhu 

 

Air pollution has been linked to various adverse health outcomes, affecting cardiovascular, 

respiratory, reproductive, and renal systems. According to the Global Burden of Disease (GBD) 

study, air pollution was the fourth leading contributor to global attributable deaths for both males 

and females in 2019. Nevertheless, existing epidemiological studies typically focus on a specific 

type of air pollutant due to the limited availability of large-scale exposure matrices. Recent 

advances in satellite remote sensing have provided a promising tool to evaluate the long-term 

spatiotemporal distribution of air pollution in a large domain.  

In this dissertation, we first established a high-performance O3 prediction model in China using 

the OMPROFOZ ozone profile. The model considered the two major pathways (i.e., the 

photochemical reactions between NOx and volatile organic compounds (VOCs) and the 

stratospheric intrusion) through which ground-level O3 pollution is produced. Our prediction 

model achieved a random CV R2 of 0.87 at a high spatial resolution of 0.05°. The model 

predictions also agreed well with the TOAR historical ozone monitoring data from 2005-2013.  

Combining our ozone model with other satellite-driven exposure datasets, aim 2 of this 

dissertation examined the association between long-term exposure to air pollution and cognitive 

impairment among the Chinese elderly population using data from the Chinese Longitudinal 

Healthy Longevity Survey (CLHLS). We found that annual average exposure to PM2.5 and NO2 

were both associated with an increased risk of cognitive impairment. Although the annual 

average of daily maximum 8-hour average (MDA8) O3 was not positively associated with 

cognitive impairment, warm-season (April-September) mean MDA8 O3 was identified as a 

significant risk factor.  

In addition to anthropogenic emissions, air pollution may also be produced by natural disasters, 

especially wildfires. Aim 3 of this dissertation evaluated the association between wildfire-related 

exposures and ED visits for anxiety disorders in the Western US using satellite-driven exposure 

data. Our results suggested that wildfires are associated with anxiety disorders through two 

different pathways, i.e., the inhalation of smoke PM2.5 and the direct psychological impact of 

smoke events and active fire points. Furthermore, women and the elderly population are more 

susceptible to the anxiety disorders associated with wildfires. 
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1. Introduction 

Exposure to ambient air pollution has been linked to a series of adverse health outcomes, 

impacting cardiovascular (Lee et al., 2014; Miller & Newby, 2020; Rajagopalan et al., 2018), 

respiratory (Laeremans et al., 2018; Losacco & Perillo, 2018), nervous (Genc et al., 2012; Kim et 

al., 2020), reproductive (Selevan et al., 2000; Wu et al., 2016), and renal systems (Afsar et al., 

2018; Shubham et al., 2022). According to the global burden of disease (GBD) study 2019, 

ambient air pollution was the fourth leading risk factor for attributable deaths among both males 

and females (Murray et al., 2020). An estimated total of 6.67 million deaths, including 2.92 

million females and 3.75 males, were attributable to ambient fine particulate matter (PM2.5) and 

O3 in 2019 (Murray et al., 2020). The global disability-adjusted life-years (DALYs) attributable 

to ambient PM2.5 experienced a significant increase from 3.5 million in 1990 to 4.2 million in 

2015 (Cohen et al., 2017). Additionally, O3 has emerged as a new leading contributor to the 

global burden of disease that accounted for an extra 254,000 deaths and 4.1 million DALYs from 

chronic obstructive pulmonary disease in 2015 (Cohen et al., 2017). 

The comprehensive health impact of air pollution highlighted the need to study the combined 

effect of multiple air pollutants. Nevertheless, existing studies typically focused on a specific 

type of air pollutant (e.g., PM2.5, NO2, or O3) while neglecting the others. A potential reason for 

this phenomenon is the limitation in the exposure matrices. There does not exist a ‘universal 

approach’ to measure multiple air pollutants simultaneously for large population-based studies. 

Although a well-established air quality monitoring network would benefit environmental 

epidemiological studies (Seltzer et al., 2018), its limited availability in developing countries also 

poses a great challenge to understanding the long-term health impact of air pollution, especially 

among the underrepresented population.  
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Satellite-driven technologies have long been used to promote the estimation of ambient air 

pollution worldwide. For example, the Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) aerosol optical depth (AOD) data has been used to establish high-resolution PM2.5 

models in China (Xiao et al., 2020), the United States (Di et al., 2016), and Europe (Schneider et 

al., 2020; Stafoggia et al., 2019). Unlike PM2.5, modeling studies on O3 are sparse due to the 

intricate chemical mechanism involved in the production and distribution of this chemical. 

Although a secondary pollutant per se, ozone naturally exists in multiple vertical layers of the 

atmosphere. The ozone layer in the stratosphere is known as ‘good ozone’ because it shields the 

earth from solar ultraviolet (UV) radiation. On the contrary, ‘bad ozone’ refers to ground-level 

ozone pollution that is hazardous to human health (Stenke, 2020). Due to the high abundance of 

ozone in the stratosphere, current satellite-driven UV-based ozone profiles typically have a 

higher sensitivity to the stratospheric ozone than to the tropospheric ozone (Huang et al., 2017; 

Huang et al., 2018). Accordingly, satellite-driven ozone profiles may not be used directly as a 

proxy of human exposure to ambient ozone pollution. Nevertheless, it may be utilized to 

establish a prediction model for the spatiotemporal distribution of this air pollutant. 

Understanding the mechanisms through which ambient O3 pollution is produced is vital to 

construct a high-performance prediction model. The overwhelming majority of surface-level O3 

pollution arises from a set of complex photochemical reactions between volatile organic 

compounds (VOCs) and nitrogen oxides (NOx) in the presence of heat and solar radiation (Li et 

al., 2020; Pu et al., 2017). In addition to the aforementioned O3 precursors, the NOx-to-VOCs 

ratio also influences the production dynamics of O3. Specifically, the VOC-limited regime occurs 

when the abundance of NOx exceeds the abundance of VOCs. Under such a circumstance, 

reducing the emissions of VOCs is more effective in controlling O3 pollution. On the contrary, in 
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the NOx-limited regime, where VOCs greatly exceed NOx, greater focus should be placed on 

reducing NOx emissions (Ren et al., 2022).  

Tropospheric ozone concentrations are primarily influenced by photochemical reactions 

(Lelieveld & Dentener, 2000; Monks, 2005). However, under certain conditions, stratospheric 

ozone-rich air can quickly penetrate the lower troposphere, leading to a significant rise in 

ground-level ozone pollution (Knowland et al., 2017). This phenomenon, known as stratospheric 

intrusions (SI), typically reaches its peak in the northern hemisphere during spring, particularly 

in high-altitude regions (Appenzeller et al., 1996; Itahashi et al., 2020; Lin et al., 2012; Lu et al., 

2019; Y. Wang et al., 2020). Both mechanisms need to be accounted for to establish a high-

performance prediction model for ambient O3 pollution. 

Cognitive impairment and dementia have been major threats to global health. It is estimated that 

40-50 million people were living with dementia in 2019 (Nichols et al., 2019). Previous studies 

have suggested the link between air pollution and cognitive impairment in China using the air 

pollution index (API) (Zhang et al., 2018). Nevertheless, API is a pooled index for ambient air 

quality and cannot be used to quantify the risk attributable to a specific air pollutant. A handful 

of studies have reported the association between PM2.5 and cognitive disorders. For example, Shi 

et al. reported that a five µg/m3 increase in annual PM2.5 concentrations was associated with first-

time hospital admission for Parkinson’s disease (HR = 1.13; 95% CI: 1.12-1.14) and 

Alzheimer’s disease (HR =1.13; 95% CI: 1.12-1.14) in the American Medicare population (L. 

Shi et al., 2020). Wang et al. found that per 10 µg/m3 increase in PM2.5 was associated with a 

5.1% increased risk of poor cognitive function in China (J. Wang et al., 2020). Similarly, 

previous literature has found that ambient nitrogen dioxide (NO2) is a potential risk factor for 
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vascular dementia (Li & Xin, 2013).  However, evidence on the association between O3 and 

cognitive disorders is still sparse and inconclusive (Zhao et al., 2018).  

In addition to anthropogenic air pollution, natural disasters, especially wildfires, are also 

significantly associated with worsened air quality (O’Dell et al., 2019). Over the past two 

decades, the consequences of climate change have substantially increased global wildfire 

potential (Ellis et al., 2022), leading to expanded burned areas and prolonged fire seasons (Jolly 

et al., 2015; Richardson et al., 2022). Due to the frequent occurrence of fire weather conditions, 

droughts, and the abundance of fuel resources, the Western US has been identified as a major 

fire-prone region (Gannon & Steinberg, 2021; Jones et al., 2022; Zhang et al., 2020). The 

widespread prevalence of wildfires in the Western US has prompted a marked increase in smoke 

emissions. It has been estimated that, in recent years, wildfire smoke accounted for around 40% 

of the total PM2.5 across the whole Western US and even 50% in the Northwestern region, 

escalated substantially from the 15-20% contribution in the early 2000s (Burke et al., 2021). 

Mental health disorders, including anxiety disorders, have been another growing threat to global 

public health in the past decades. According to the GBD study, anxiety disorders were the most 

prevalent mental health condition that affected 970.1 per million individuals in 2019 (GBD 

Collaborators, 2022). Regions with high socio-demographic indices, including Western Europe, 

Australia, and high-income North America, exhibited the highest age-standardized incidence 

rates of anxiety disorders (Yang et al., 2021). It has been estimated that living with anxiety is 

associated with a 2.17-fold increase in personal healthcare expenses, contributing to an average 

2.08% increase in healthcare costs at the population level (Konnopka & König, 2020). 

The high-prevalence of both wildfires and anxiety disorders in the Western US has highlighted 

the need to investigate the mental health impacts of wildfires. However, current studies typically 
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focus on the impact of a specific mega-fire event, such as the Fort McMurray wildfire in 2016, 

on a small group of nearby residents. The absence of evidence from large population studies has 

hindered the potential to establish the causal relationship between wildfires and anxiety 

disorders. Additionally, the mechanisms through which wildfires are associated with anxiety 

disorders are still unclear. Although previous studies have identified ambient PM2.5 as a potential 

risk factor for anxiety disorders in the US (Power et al., 2015; Pun et al., 2017), China (W. Shi et 

al., 2020; Zhao et al., 2022), and the UK (Hao et al., 2022), evidence about wildfire smoke 

exposure remains inconclusive (Eisenman & Galway, 2022). Furthermore, some case studies 

suggest that wildfires have a direct psychological impact on the nearby population (Agyapong et 

al., 2018), but the magnitude of this association remains unclear. There is an urgent need of large 

population studies to explore the association between wildfire-related exposures and anxiety 

disorders through all potential pathways. 

Accordingly, this study aimed to establish a high-resolution model to predict the long-term 

ground-level ozone concentrations in China and use the model predictions to investigate the 

long-term cognitive health impact of ozone with a multi-pollutant approach. Furthermore, we 

also examined whether wildfire-related exposures are associated with anxiety disorders in the 

Western United States. Specifically, 

Aim 1: Establish a high-resolution model to predict the long-term spatiotemporal distribution of 

ground-level ozone pollution in China. We used a satellite-driven ozone profile to provide direct 

information on surface-level ozone concentrations. Meteorological factors, land-use information, 

digital population, and elevation were also utilized to improve the model performance. The 

prediction model comprised two independent random forest models. Specifically, the first model 

aimed to impute the missing values of the ozone profile, and the second one was used to predict 
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the spatiotemporal distribution of ozone in China. The ozone model had a spatial resolution of 

0.05 ° and covered the period of 2005-2019. 

Aim 2: Investigate the association between long-term exposure to air pollution and cognitive 

impairment among the elderly population. We used the Chinese Longitudinal Healthy Longevity 

Survey (CLHLS) database to study the long-term health impact of air pollution on the Chinese 

elderly population. A localized Mini-Mental Statement Examination (MMSE) scale was used to 

measure cognitive function. PM2.5 and NO2 concentrations in China were obtained from previous 

satellite-driven models that cover the period of 2005-2018. 

Aim 3: Examine the association between wildfire-related exposures and ED visits for anxiety 

disorders in the Western United States. The exposures of interest included: 1) wildfire smoke 

PM2.5, wildfire smoke events (defined as wildfire smoke PM2.5 contributed to ≥ 25% of the total 

PM2.5), major wildfire smoke events (defined as wildfire smoke PM2.5 contributed to ≥ 75% of 

the total PM2.5), 4) the number of active wildfire points, and 5) the cumulative fire radiative 

power (FRP) of all the active wildfire points. We also explored whether the association between 

wildfire-related exposures varied across different sex, ethnicity, and age groups. 
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2. Satellite-based long-term spatiotemporal patterns of surface ozone concentrations in 

China: 2005-2019 

[Manuscript 1] 

Qingyang Zhu, Jianzhao Bi, Xiong Liu, Shenshen Li, Wenhao Wang, Yu Zhao, and Yang 

Liu 

2.1. Abstract 

Background: While short-term ozone exposure has been associated with a series of adverse 

health outcomes, research on the health effects of chronic ozone exposure is still limited, 

especially in developing countries due to the lack of long-term exposure estimates. 

Objectives: The present study aimed to estimate the spatiotemporal distribution of monthly 

mean daily maximum 8-hour average (MDA8) ozone concentrations in China from 2005-2019 at 

0.05° spatial resolution.  

Methods: We developed a machine learning model with satellite-derived boundary layer ozone 

column, ozone precursors, meteorological conditions, land-use information, and proxies of 

anthropogenic emissions as predictors.  

Results: The random, spatial, and temporal cross-validation R2 of our model were 0.87, 0.86, 

and 0.76, respectively. Model-predicted spatial distribution of ground-level ozone concentrations 

showed significant differences across seasons. The highest summer peak of ozone occurred in 

the North China Plain (NCP), while southern regions were the most polluted in winter. Most 

large urban centers showed elevated ozone levels, but their surrounding suburban areas may have 

even higher ozone concentrations due to NOx titration. The annual trend of ozone concentrations 

fluctuated over 2005-2013, but a significant nationwide increase was observed afterward.  
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Discussion:  The present model had enhanced performance in predicting ground-level ozone 

concentrations in China. This national dataset of ozone concentrations would facilitate 

epidemiological studies to investigate the long-term health effect of ozone in China. Our results 

also highlighted the importance of controlling ozone in China’s next round of the Air Pollution 

Prevention and Control Action Plan. 
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2.2. Introduction 

Numerous epidemiological studies have shown that short-term ozone exposure is associated with 

a series of adverse health outcomes, including all-cause non-accidental mortality (Yin et al. 

2017) and respiratory morbidity (Barry et al. 2019). In 2015, ozone pollution contributed to an 

estimated 9-23 million asthma emergency room visits globally (Anenberg et al. 2018). A handful 

of studies have also investigated the chronic health effects of ozone, but their conclusions 

differed, as reviewed by Nuvolone et al. (Nuvolone et al. 2018). For example, Turner et al. 

reported a positive association between long-term ozone exposure and all-cause mortality in a 

large prospective study in the US (Turner et al. 2016). However, a meta-analysis reported that 

this association only existed in the warm season rather than the whole year (Atkinson et al. 

2016). One potential reason for this inconsistency was the bias in the exposure matrices, 

especially in large long-term studies. Seltzer et al. highlighted the value of a dense monitoring 

network in measuring long-term ozone exposure (Seltzer et al. 2018), but such a network is 

unavailable in most developing countries. As the world’s most populous nation, China began to 

establish its national air quality monitoring network in 2013. To date, this network covers most 

Chinese cities, but the rural and suburban areas remain largely unmonitored (Xiao et al. 2020). 

The insufficient spatiotemporal coverage of ozone measurements presents a major hurdle to 

retrospective epidemiological studies in China, especially those established before the 2010s 

(Wang et al. 2017). 

Satellite remote sensing has become a promising tool to extend the records of ozone 

measurements in space and time. For example, the Ozone Monitoring Instrument (OMI) is a 

nadir-viewing ultraviolet-visible (270-550 nm) solar backscatter spectrometer aboard the NASA 

Aura satellite designed to measure total ozone column and other trace gases (Levelt et al. 2006). 



 
 

19 
 

Since its launch in July 2004, researchers have been exploring ways to estimate boundary layer 

ozone levels using OMI and other satellite data. Based on OMI’s measurements, Liu et al. 

developed an optimal estimation technique to retrieve the ozone profile from the surface to 

approximately 60 km to produce the OMPROFOZ product (Liu et al. 2010). It has been shown to 

capture enhancements of lower tropospheric ozone over China (Shen et al. 2019) and East Asia 

(Hayashida et al. 2015), but its performance varies in space and by season due to various factors 

affecting the horizontal and vertical distribution of tropospheric ozone (Huang et al. 2017). In 

China, the daily correlation between the OMPROFOZ tropospheric column and ground-level 

ozone measurements varies from less than 0.1 in high-latitude regions to over 0.6 in low-latitude 

regions (Shen et al. 2019).  

Surface-level ozone is formed by complex photochemical reactions between volatile organic 

compounds (VOCs) and nitrogen oxides (NOx) in the presence of heat and solar radiation (Li et 

al. 2020; Pu et al. 2017). In addition to the abundance of precursors, the production of surface 

ozone can be strongly influenced by meteorology. For example, high temperature boosts ozone 

chemistry by increasing the decomposition rate of Peroxyacytyl nitrate (PAN), thus preventing 

the sinkage of NOx and peroxyl radicals (Fischer et al. 2014; Lu et al. 2019a). Water vapor may 

affect surface ozone production by modulating the hydrogen oxide radicals (HOx) essential to 

ozone production from oxygen (Lu et al. 2016). Besides these persistent effects, lightning would 

result in a surge in NOx emission, thus significantly elevate short-term ground-level ozone 

(DeCaria et al. 2005; Kang et al. 2020).  

While photochemical reactions predominantly determine tropospheric ozone concentrations 

(Lelieveld and Dentener 2000; Monks 2005), in some circumstances, the stratospheric ozone-

rich air may penetrate rapidly into the lower troposphere and cause a sharp increase in ground-
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level ozone pollution (Knowland et al. 2017). The peak of this cross-tropopause mass transport 

known as stratospheric intrusions (SI) in the northern hemisphere usually occurs in springtime, 

especially in the high-altitude regions such as the Qinghai-Tibet plateau (Appenzeller et al. 1996; 

Itahashi et al. 2020; Lin et al. 2012; Lu et al. 2019b; Yiping Wang et al. 2020). Changes in large-

scale climate patterns such as El Niño are associated with increased SI and surface ozone 

concentrations (Shen and Mickley 2017; Xie et al. 2014). Additionally, vegetation has 

complicated effects on surface ozone. On the one hand, it can remove surface ozone through dry 

deposition (Clifton et al. 2020). On the other hand, plants may emit VOCs to the atmosphere and 

affect ozone pollution (Kigathi et al. 2019). Therefore, land cover types are also important in 

determining ambient ozone concentrations. 

In this study, we developed a national-scale machine learning model to estimate historical 

ambient ground-level ozone concentrations in China at a monthly level from 2005 to 2019 at 

0.05 ° spatial resolution. In addition to the OMPROFOZ ozone profile, we included 

meteorological factors, land-use information, ozone precursors, and indicators of anthropogenic 

emissions to account for the complicated formation and removal processes of surface ozone. We 

first present our model development strategy, then evaluate model performance using statistical 

techniques as well as ground measurements not included in model training. Finally, we 

investigate the spatiotemporal trend of ozone and discuss the drivers of these patterns. 
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2.3. Data and Methods 

2.3.1. Model Development 

We used a random forest framework to estimate monthly mean daily maximum 8-hour average 

(MDA8) ozone concentrations in China from 2005 to 2019. The overall study workflow is 

illustrated in figure S1-1. Briefly, we first extracted the fraction of the boundary layer ozone 

column from the OMPROFOZ ozone profile. The depth of this layer for each grid cell was 

determined dynamically by the tropopause pressure (Liu et al. 2010). Missing fraction values 

were imputed with daily random forest models incorporating the Modern-Era Retrospective 

Analysis for Research and Applications (MERRA-2) meteorological fields and surface flux. The 

gap-filled boundary-layer ozone fractions were then used to calculate the full coverage 

boundary-layer ozone column (in Dobson unit). The surface-level monthly average MDA8 ozone 

concentration was generated by a separate random forest model trained with the gap-filled 

boundary-layer ozone column, meteorological fields, land-use terms, elevation, and population 

density. The details of these predictors are described below.  

2.3.2. Ground ozone measurements 

Ground-level monitoring data from 2013 to 2019 were obtained from the China National 

Environmental Monitoring Centre (CNEMC, http://www.cnemc.cn/). China’s national air quality 

monitoring network measures hourly ozone concentration with either ultraviolet absorption (for 

point analyzers) or differential optical absorption spectroscopy (for open-path analyzers). MDA8 

ozone concentration was defined as the maximum eight-hour moving average ozone 

concentration (contains at least six valid hourly values) within a calendar day. We chose to use 
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MDA8 rather than MDA1 or 24-hr average because MDA8 has been widely used in ozone health 

effects research (Lu et al. 2020; Lyu et al. 2019).  

The quality assurance of the CNEMC data was conducted primarily based on its official standard 

(CNEMC 2012). Briefly, a valid 8-hour moving average ozone concentration must contain at 

least six hourly measurements. No regulatory standard has yet been set up for MDA8 ozone, but 

twenty hourly measurements were generally required for daily air pollutant concentrations. 

Therefore, we also removed all the observations during a given day from the stations with less 

than 15 hourly measurements to balance data abundance and data quality. A total of 2443 (3%) 

monthly MDA8 ozone concentrations were removed from the dataset. 

We further separated rural stations from urban stations to test our model performance in different 

settings. In compliance with China’s official regulations (NBS 2008), we define areas with a 

population density less than 1,500 per km2 (approximately 37,500 per grid cell) as rural. 

Consequently, 406 monitoring stations out of 1532 (27%) were identified as rural stations, 

contributing to a total of 24,405 (31%) data points. Note that population density is not the only 

determinant of rural/urban status listed in China’s official standards. We used population to 

identify rural/urban stations primarily because other economic and political determinants are less 

quantifiable in this modeling study. 

Ozone monitoring data before 2014 was obtained from the Tropospheric Ozone Assessment 

Report (TOAR) (Xu et al. 2020). This dataset contains MDA8 ozone concentrations from eight 

different stations, including Mt. Waliguan (WLG, locates at 36.30°N, 100.9°E); Shangdianzi 

(SDZ, locates at 40.39°N, 117.00°E); Lin’an (LAN, locates at 30.30°N, 119.73°E); 

Longfengshan (LFS, locates at 44.73°N, 127.60°E); Xianggelila (XGLL, locates at 28.01°N, 

99.68°E); Akedala (AKDL, locates at 47.10°N, 87.93°E); Gucheng (GCH, locates at 39.13°N, 

http://www.cnemc.cn/jcgf/dqhj/201711/W020181008687883046768.pdf
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115.67°E); and China Meteorological Administration (CMA, locates at 39.95°N, 116.32°E). The 

locations of the TOAR sites can be found in Fig. S1-2. The TOAR historical monitoring data was 

not used to train the final model but served as an independent external validation dataset. 

2.3.3. OMI data 

In this study, we used the OMI OMPROFOZ product developed at the Harvard Smithsonian 

Astrophysical Observatory (SAO), publicly available at NASA Aura Validation Data Center 

(AVDC). Ozone profile is retrieved at 24 layers (~2.5 km per layer) from the surface to ~65 km 

from the spectral range 270-330 nm using the optimal estimation approach. It is based on the 

initial retrieval algorithm (Liu et al. 2010) with modifications described in Kim et al. (Kim et al. 

2013). The layers between surface and the tropopause were defined on a daily basis. That is to 

say, the layers’ pressure boundaries were initially set at Pi = 2-i/2 atm for i = 0 to 23, and P24 = 0. 

For each individual day, the National Centers for Environmental Prediction (NCEP) tropopause 

pressure is used to replace the pressure level closest to it. The layers between surface and the 

tropopause are then re-assigned based on equal logarithmic pressure intervals (Liu et al. 2010). 

OMPROFOZ’s retrieval errors due to precision (instrument random-noise) and smoothing errors 

(insufficient vertical resolution) ranged from 1–6% in the stratosphere to 6–35% in the 

troposphere. The retrieval is performed at a spatial resolution of 52 x 48 km2 at nadir and gridded 

to 0.5° resolution for easy use. 

For more intuitive interpretations, we define OMPROFOZ’s boundary layer (from surface 

pressure to ~ 700 hPa) as Layer 24 (L24). Correspondingly, L23-L1 represents the second-lowest 

layer to the top layer. Our model initially used the boundary layer (L24) partial column ozone 

from the OMPROFOZ ozone profile. To better understand OMPROFOZ’s role in modeling 

long-term ozone pollution, we also tested if using additional tropospheric columns (i.e., the 
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summation of L22-L24) or replacing the retrievals with a priori ozone profile (both L24 and the 

summation of L22-L24) would influence the model performance. 

Tropospheric column NO2 concentration from 2005 to 2019 was extracted from the OMI global 

nitrogen dioxide product named OMNO2d (Krotkov et al. 2017). It provides global daily 

tropospheric column NO2 at 0.25° resolution. We extracted the tropospheric column NO2 

concentration with cloud screening (i.e., pixels with a cloud fraction higher than 30% were 

removed for quality assurance) as a measurement of ozone precursor in the present study. 

2.3.4. MERRA-2 assimilated data 

We used the MERRA-2 meteorological data in the present study. MERRA-2 provides the latest 

NASA atmospheric reanalysis data starting from 1980. It has a native resolution of 0.5 ° x 0.625 

° and 72 vertical layers (Gelaro et al. 2017). We extracted surface-level meteorological fields as 

well as those between surface and 150 hPa to account for the effects of stratospheric intrusion 

(Knowland et al. 2017). The detailed list of MERRA-2 meteorological and chemistry fields we 

used is provided in Table S1-1.  

2.3.5. Lightning flash density 

Previous studies have shown that lightning flash is an important enhancer of tropospheric ozone 

because of its considerable contribution to NOx (DeCaria et al. 2005; Finney et al. 2016), 

especially in springtime (Lu et al. 2019b). We obtained global monthly lightning flash density 

data from the Harvard-NASA Emissions Component (HEMCO) at 0.5° x 0.625° resolution, 

which adopted an optimal regional scaling algorithm to reduce the bias of satellite-driven 

tropical lightning data (Murray et al. 2012).  

2.3.6. South and Southeast Asia wildfire 
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The massive human-initiated biomass burning in South and Southeast Asia would greatly 

enhance springtime ozone pollution over China, especially in the southwest (Ni et al. 2018; 

Wang et al. 2011). To test if incorporating foreign wildfire data would increase model 

performance, we obtained the Moderate Resolution Imaging Spectrometer (MODIS) daily active 

fire data from 2005 to 2019 via the Fire Information for Resource Management System (FIRMS) 

data achieve (MODIS Collection 6). Fire points from ten South and Southeast Asian countries, 

namely Bangladesh, Bhutan, Cambodia, India, Laos, Myanmar, Nepal, Pakistan, Thailand, and 

Vietnam were selected to capture most fire points in China’s southern neighbors. Fire radiative 

power (FRP) was used as a quantitative proxy of fire-related emissions (F Li et al. 2019; 

Wooster et al. 2003). 

 

2.3.7. Land use, population, road length, and digital elevation 

Annual land cover maps were obtained from the European Space Agency (ESA) Climate Change 

Initiative (CCI) (ESA 2017) for 2005-2015 and the Copernicus Climate Change Service (C3S) 

Climate Data Store (CDS) for 2016-2019 (CDS 2021). The C3S land-use product used the same 

methodology as the ESA CCI land cover maps to guarantee long-term continuity, according to 

the product manual (C3S 2021). Both products provide 23 types of land cover at a spatial 

resolution of 300 m.  

LandScan global population data were obtained from the Oak Ridge National Laboratory 

(https://landscan.ornl.gov/). This dataset provides annual population density from 2005 to 2019 

at 1 km resolution. Road networks were obtained from the Global Roads Open Access Data 

Set (gROADs) (CIESIN and ITOS 2013). This dataset was compiled from sources before 2010 

https://firms.modaps.eosdis.nasa.gov/download/
https://www.esa-landcover-cci.org/
https://landscan.ornl.gov/
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(specific date unavailable). Total road length is included in our model as a proxy of traffic 

emissions. We also used 30 m elevation data from the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), version 3 

(NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team 2019). This 

latest version of ASTER GDEM has an increased accuracy compared to previous versions.  

2.3.8. Missing value imputation 

Eq. 2-1 Illustrates the relationship between the total column ozone and the boundary layer (L24) 

column ozone. 

𝑪𝑷𝑩𝑳 =  𝒇𝑷𝑩𝑳 × 𝑪𝒕𝒐𝒕𝒂𝒍                (Eq. 2-1) 

Where CPBL denotes the boundary layer column ozone (in Dobson unit); Ctotal is the total column 

ozone; fPBL is the boundary layer fraction of total column ozone. The OMPROFOZ product has a 

nonnegligible portion of missing values that will reduce the spatial coverage of fPBL and affect 

predicted ground-level ozone concentrations. We first filled the data gap of OMI fPBL, then 

multiplied it with MERRA-2 Ctotal to get the final CPBL. We chose this approach over directly 

imputing the OMPROFOZ product because OMI total ozone column and MLS stratospheric 

ozone profiles have been assimilated into MERRA-2 data after 2004 (Wargan et al. 2017). The 

correlation coefficient between MERRA-2 column ozone and OMI column ozone was 0.97 in 

the present study. The missing values of OMI fPBL were imputed with random forest models 

incorporating MERRA-2 meteorological fields and surface flux measurements. These models 

were trained on a daily basis at the native resolution of the OMPROFOZ product. 

Other OMI-derived partial column ozone amounts were processed similarly. To specify, missing 

values in other retrieved partial column ozone were imputed independently with the same 

https://terra.nasa.gov/about/terra-instruments/aster
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process to the boundary layer, but with different meteorological fields corresponding to their 

pressure levels (i.e., 500-700 hPa for L23, 350-500 hPa for L22). The a priori ozone profile (L22, 

L23, and L24) was processed independently but with the same methodology as the retrieved 

ozone profile. 

2.3.9. Data integration 

We created a 0.05° resolution modeling grid across China for data integration and model 

construction (Fig. 2-1). A 50 km buffer region was added to China’s national boundaries to 

ensure data sensitivity at the border area. The total number of grid cells was 399,513. Three 

megacity clusters were selected to study the regional patterns of ozone pollution, i.e., the North 

China Plain (NCP), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD). We used 

an inverse distance weighting (IDW) method to resample data at a spatial resolution coarser than 

0.05°, including all OMI-derived column ozone amounts, tropospheric column NO2, MERRA-2 

meteorological fields, and lightning flash density. In addition, we calculated the percentage 

coverage of different land-use categories, average elevation, total road length, and total 

population for each pixel. Daily data were then aggregated to the monthly level. Population and 

land use were processed at the annual level, while elevation and road length were fixed during 

the entire study period. After data integration, we selected grid cells that contain air quality 

monitoring stations to generate the training dataset. All valid ground-level MDA8 O3 

observations within each grid cell were averaged on a monthly basis to match with other model 

parameters. 

The foreign wildfire data was processed in a different way as our study domain did not extend to 

China’s neighboring countries other than the buffer area. We assumed that the foreign fire points 

have an additive and distance-dependent influence on China’s ozone concentrations. Therefore, 
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the contributions of the South and Southeast Asian countries were quantified with the equation 

below (Eq. 2-2). 

                                              𝐹𝐹𝐸𝑖𝑡 =  ∑ 𝐹𝑅𝑃𝑗𝑡 ∗ (𝑑𝑖𝑠𝑡𝑖𝑗)−2                     (Eq. 2-2) 

Where FFEit denotes the influence of foreign fire emissions on grid cell i at day t; FRPjt 

represents the FRP for fire point j at day t; distij is the distance between fire point j and grid cell i. 

 

2.3.10. Model training, validation, and parameter comparison 

We divided the study period into the training period (2014-2019) and the hindcast period (2005-

2013). The year 2013 was excluded from model training due to fewer numbers of ozone 

monitors and unstable data quality at the onset of the Chinese national monitoring network. We 

trained two separate random forest models with the same set of predictors for springtime (March-

April-May) and the rest of the year due to the significantly different pattern of springtime ozone 

in the northern hemisphere (Lin et al. 2012; Ni et al. 2018). To specify, the aforementioned ‘rest 

of the year’ includes summer (June-July-August), autumn (September-October-November), and 

winter (December-January-February). The detailed list of predictors included in our random 

forest models could be found in Table S1-1.  

Note that some parameters were not included in the initial model. To specify, our original model 

was established with the boundary layer (L24) column ozone from the OMPROFOZ retrieved 

ozone profile. The OMI L22-24 retrieval and the a priori partial columns were used separately to 

compare model performance with different OMI-derived ozone fields. In addition, MODIS FRP 

was not initially used because it was completely generated outside of the study domain. 
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Therefore, the original model hereafter represents the model with the retrieved ozone profile L24 

and without foreign fire emissions. 

All models were validated with 10-fold random cross-validation (CV), i.e., we randomly divided 

the original dataset into ten equal-sized subsets, used nine of them to train a model, and made 

predictions on the left-out subset. This process was repeated 10 times so that each monthly mean 

MDA8 measurement would have a corresponding predicted value. Model performance metrics 

including R2 and root-mean-square error (RMSE) were calculated using the measurement-

prediction pairs. Similarly, we conducted a 10-fold spatial CV to test whether our model can 

make reliable predictions at locations without ground monitors. In the spatial CV, the original 

dataset was randomly divided based on each data point’s location. Model predictions at a given 

location were generated by a model trained with data elsewhere. Finally, temporal CV was 

conducted where models trained for a given year would be validated with data from other years 

in the training period to test the reliability of model predictions in the hindcast period. 

Since each variable has a different contribution to the overall model performance, the predictors’ 

importance was evaluated with a permutation method (Altmann et al. 2010). Briefly, a variable’s 

importance represents the percentage increase in the model’s total mean squared error if this 

variable is replaced by its random permutation. 

We used R (version 3.6.3) to process data and perform statistical analyses. Package ranger was 

utilized for training the random forest models.  

2.3.11. Coupled trend evaluation between ozone and PM2.5 

To reduce severe air pollution, the State Council of China enacted the Air Pollution Prevention 

and Control Action Plan (APPCAP) in 2013. This policy has resulted in a substantial reduction 
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in ambient PM2.5, but the contemporary ozone concentrations increased unexpectedly (Huang et 

al. 2018; Yonghong Wang et al. 2020). We obtained model-estimated nationwide PM2.5 

concentrations at 1 km resolution (Liang et al. 2020; Xiao et al. 2021) to evaluate the nationwide 

long-term coupled change between ozone and PM2.5 under the APPCAP. The correlation 

between PM2.5 and ozone was examined with a partial correlation analysis controlling for 

temperature, relative humidity, and total precipitation from MERRA-2. 

2.4. Results 

2.4.1. Model performance and parameter comparison  

The performance of the original model is illustrated in Fig. 2-2. The predicted monthly average 

MDA8 ozone concentrations from the combined springtime and non-spring model were in good 

agreement with the ground-based observations, with a random CV R2 of 0.87 and an RMSE of 

13.03 μg/m3. The spatial CV had an almost identical performance with the random CV (R2 = 

0.86, RMSE = 13.56 μg/m3). The temporal CV had a slightly lower R2 of 0.76 and a higher 

RMSE of 17.71 μg/m3. The regression lines between the predicted and observed ozone 

concentrations were close to the 1:1 line for all three types of CV. 

As shown in Fig. S1-3, replacing OMI L24 retrieval with the summation of L22-24 retrievals 

would not substantially impact the model performance. The R2 and RMSE were almost identical 

with the original model for all three CV types. Similarly, using the a priori ozone profile (L24 or 

L22-L24) also had a minimum influence on the overall performance. Although using a priori 

L22-L24 would increase the temporal CV R2 by 0.6%, such an attempt also had a negative 

impact on the predicted spatial distribution of ozone. Fig. S1-4, panel A shows an example of the 

spatial artifact (horizontal gap in the predicted ozone concentrations) from the model with a 
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priori ozone profile L22-24. This kind of artifact was not seen in the original model (Figure S1-4, 

panel B). Given that using alternative partial column ozone amount would not improve the 

model performance, all results presented hereafter used the model with OMI L24 retrieval unless 

otherwise specified. 

The season-specific model performance showed that our model had a lower performance in 

spring than in other seasons (Fig. S1-5). To specify, the springtime R2 were 0.72, 0.71, and 0.53 

for random, spatial, and temporal CV, respectively. In addition, the RMSE for all types of CV in 

spring was around 3 μg/m3 higher than in autumn, but the overall ozone concentrations were 

comparable in these two seasons. 

In addition, our model had a better performance in urban regions than in rural regions (Fig. S1-

6). The random, spatial, and temporal CV R2 were 0.88, 0.87, 0.76 in urban regions and 0.83, 

0.81, 0.72 in rural regions. The prediction errors (RMSE) were also higher in rural regions than 

urban areas (1-2 μg/m3 for all CV types). 

Our predicted MDA8 ozone concentrations also agreed well with the TOAR historical data 

monitoring data before 2014 (overall R2 = 0.73, RMSE = 20.68 μg/m3), except for the XGLL 

station. Site-specific time series comparison (Fig. S1-7) showed that the predicted ozone trends 

were mostly identical with the observations at stations CMA, GCH, and LFS. Although our 

model may underestimate ozone concentrations at the stations LAN, SDZ, WLG, especially in 

springtime, it still captured most of the ozone’s temporal variation over these locations. The 

worst agreement was observed at XGLL, where our model almost had no sensitivity to the 

springtime peak ozone concentrations. The monitoring data was mostly incomplete at the AKDL 

station, but it may also indicate some springtime underestimations in that region. Incorporating 

the MODIS FRP data would neither significantly improve the springtime nor the overall 
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agreement with the TOAR historical data (Fig. S1-8). Therefore, we excluded MODIS FRP from 

the model since introducing data fields external to the study domain may incur unexpected 

uncertainty.  

Although the OMI L24 retrieval had a low raw correlation with the CNEMC data (R2 = 0.34, as 

presented in Fig. S1-9), removing this parameter would result in a slight decrease in the model 

performance compared to the original model (~1% decrease in R2 for all three types of CV, as 

shown in Figs. 2-2 and S1-10). Besides, the agreement between model predictions and the 

TOAR historical ozone monitoring data would also be worse if OMI L24 retrieval is removed 

from the model (overall R2 dropped from 0.73 to 0.70, RMSE increased from 20.68 μg/m3 to 

22.38 μg/m3), although the predicted temporal trends were generally similar (Figs. S1-7 and S1-

11). 

2.4.2. Predictor importance ranking 

Most of the top predictors in both the spring and non-spring models were meteorological factors, 

but their relative orders differed (Fig. S1-12). Non-meteorological variables were more important 

in the non-spring model. For example, the five most important non-meteorological variables in 

the spring-excluded model were OMI NO2; population; the proportion of rainfed cropland; 

irrigated or post-flooding cropland; and elevation. However, their importance ranking all 

dropped in spring. The gap-filled OMI boundary layer ozone was one of the most important 

variables in the spring model, and those that gained the most importance were associated with 

stratospheric intrusion (e.g., tropopause pressure and vertical wind columns) and lightning flash 

activity.  

2.4.3. Seasonality and spatial heterogeneity of ozone levels in China 
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As shown in Fig.2-3, the spatial distribution and severity of surface ozone pollution in China 

varied by season. The mean springtime MDA8 ozone concentrations over 2005-2019 were 

mostly around 80-90 μg/m3. Moderate ozone pollution (around 100 μg/m3) was observed in 

Central-East China, especially around the boundary region between the NCP and the YRD. 

Southwest China, including the Sichuan Basin and Yunnan Province, was also moderately 

polluted in this season. In summer, heavy ozone pollution was widespread in China, except for 

the southwest. The NCP had the worst ozone pollution with the highest 15-yr mean MDA8 

ozone concentrations around Beijing approaching the national level-2 air quality standard (160 

μg/m3). In autumn, the PRD region became the most polluted area after a sharp decrease in 

ozone concentrations in North China. Winter has the lowest ozone level, especially around the 

NCP region and only the low-latitude regions may have an ozone concentration approaching 100 

μg/m3.  

Different regions appeared to have different seasonal patterns (Fig. 2-4). For example, ozone 

concentrations in the NCP and nearby northern regions started to rise in spring and peaked in 

summer. After a sharp decrease in autumn, these regions would have the lowest ozone level in 

winter. In contrast, high ozone concentrations could persist from spring to autumn in southern 

China without a clear peak in summer. Sporadic ozone hot spots may even be found in winter 

(Fig. 2-3). The ozone concentration in the YRD is a mixture of the two patterns above, i.e., it had 

a flatter summer high and a winter low, but high ozone concentrations also persisted in spring 

and autumn. Most regions in China followed the aforementioned patterns with a few exceptions. 

For example, Yunnan province saw ozone levels peak in spring and then drop substantially in 

summer. Ozone concentrations on the Qinghai-Tibet plateau were relatively stable throughout 

the year, with only a mild peak occurring in summer.  
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Ozone’s spatial heterogeneity was not only observed nationwide but also at the city level. Fig. 2-

5 shows the model-estimated ozone concentrations in the YRD region in August 2019, while the 

right map shows population densities. Some population centers, such as the sub-regions A 

(Bengbu and Huainan City) and B (Nanjing Metropolitan Area), had lower ozone levels than 

their surrounding areas. On the contrary, the subregions C (Anqing City) and D (Quzhou and 

Jinhua City) were more polluted than their surrounding area. As shown in Fig. S1-13, the 

tropospheric column NO2 concentrations were higher in sub-regions A and B than in C and D. 

2.4.4. The long-term trend of ozone in China 

Fig. 2-6 showed the long-term trend of ozone concentrations in the ozone season (defined as 

March-November) in China. Before 2014, mean ozone concentrations during the ozone season 

fluctuated from year to year but generally stayed at the same level nationally at approximately 90 

μg/m3. Ozone levels in the NCP, YRD, and PRD regions were higher than the national average 

but were also stable around their respective long-term averages. A sharp decrease was observed 

in the YRD and PRD from 2014 to 2016. After 2016, ozone levels nationwide started to rise at 

various paces. For example, seasonal mean ozone concentrations were almost identical for the 

YRD and NCP before 2014, but the former experienced a sharper increase from 2015 to 2019 

due to the significant drop from 2014 to 2015. After 2018, the mean MDA8 ozone 

concentrations in the ozone season exceeded 100 μg/m3 in all these regions.  

The summertime (June-July-August) mean MDA8 ozone concentrations showed an overall 

increasing trend during 2005-2019 in the whole of China (0.27 µg/m3 * yr-1, p = 0.004), the NCP 

(1.10 µg/m3 * yr-1, p = 0.002), and the YRD (0.85 µg/m3 * yr-1, p = 0.010) (Fig. S1-14). 

However, similar to the ozone season averages, no significant trend was observed for 

summertime mean MDA8 ozone concentrations over 2005-2013 (0.04 µg/m3 * yr-1, p = 0.789; -
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0.00 µg/m3 * yr-1, p = 0.990; 0.15 µg/m3 * yr-1, p = 0.700; and 0.17 µg/m3 * yr-1, p = 0.711 for 

entire China, the NCP, the YRD, and the PRD, respectively) (Fig. S1-15). The NCP was the only 

region that had an overall increasing springtime ozone pollution over 2005-2019 (0.31 µg/m3 * 

yr-1, p = 0.047) (Fig. S1-16) while no significant trend was found for 2005-2013 across China (-

0.04 µg/m3 * yr-1, p = 0.772; -0.21 µg/m3 * yr-1, p = 0.400; -0.51 µg/m3 * yr-1, p = 0.354; and 

0.02 µg/m3 * yr-1, p = 0.967 for entire China, the NCP, the YRD, and the PRD, respectively) 

(Fig. S1-17). As shown in Table S1-2, the TOAR monitoring data also did not exhibit significant 

increasing trend in ozone pollution during 2005-2013, except for the summertime pollution at the 

station SDZ (5.79 µg/m3 * yr-1, p = 0.033). 

The predicted temporal trend was similar to the CNEMC observations over the grid cells with 

monitoring sites (Fig. S1-18). Though our model may slightly underestimate the overall ozone 

season MDA8 ozone concentrations in China, the predicted summer peak ozone was almost 

identical with the CNEMC observations in China as a whole as well as the NCP, YRD, and PRD 

(Fig. S1-19). Unlike our model predictions, the 2018-2019 increase in the ozone-season mean 

MDA8 ozone concentrations was not seen from the CNEMC data except for the PRD. However, 

there was a substantial increase in some sub-regions, including Central-East China and the 

Shandong Peninsula (locations listed on Fig. S1-20), as observed by both the CNEMC data and 

our predictions (Fig. 2-7). 

2.4.5. Couple trend between PM2.5 and ozone in China 

The temporal trends of population-weighted ozone and PM2.5 concentrations in China and three 

major regions are shown in Fig. 2-8. Despite the visible inverse correlation between PM2.5 and 

ozone levels, partial correlation analyses controlling for temperature, relative humidity, and 

precipitation indicated that their association varied by region. A statistically significant negative 
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correlation was observed in the YRD region (r = -0.31, p < 0.001), while in the PRD region, this 

correlation turned positive (r = 0.34, p < 0.001). No significant association was observed in 

China as a whole (r = 0.03, p = 0.385) and the NCP (r = -0.07, p = 0.358) after we controlled for 

temperature, relative humidity and precipitation. 

2.5. Discussion 

In the present study, we trained a random forest model to predict long-term ground-level MDA8 

ozone concentrations in China. To our best knowledge, our model's performance was the highest 

among similar studies in China. For example, the 0.1° model established in Liu et al. had a 

spatial CV R2 of 0.68 and a temporal CV R2 of 0.69 for monthly mean MDA8 ozone 

concentrations (Liu et al. 2020). Compared to their study, our model had a finer spatial resolution 

(0.05°) and higher spatial and temporal CV R2 values (0.86 and 0.76, respectively). Despite a 

coarser spatiotemporal resolution, our model generally had a comparable performance with those 

established in regions with sufficient historical ozone monitoring data. For instance, the R2 for 

daily MDA8 ozone in Di et al. ranged from 0.7-0.8 across the US over 2000-2012 (Di et al. 

2017); the land-use regression model in Adam-Poupart et al. had an R2 of 0.65 for daytime 8-

hour average ozone concentrations in Quebec, Canada (Adam-Poupart et al. 2014). One reason 

for the improved performance was the inclusion of the OMPROFOZ ozone profile instead of the 

total ozone column. The latter is a noisy proxy of surface-level ozone because approximately 

90% of the atmospheric ozone exists in the stratosphere (Fishman and Larsen 1987). Though the 

gap-filled boundary layer ozone column was not among the top predictors for the non-spring 

model, it was an important predictor in springtime when ground-level ozone pollution is greatly 

influenced by SI and foreign transport (Fig. S1-12). Another reason for the higher performance 

of our model is that the two primary sources of ground-level ozone (i.e., photochemical reactions 
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and SI) were both accounted for in our study, while previous studies typically focused on the 

impact of photochemical reactions on ozone patterns. 

 

With the improved spatial resolution, we were able to observe the complex relationship between 

human activities and ozone concentrations, as presented in Fig. 2-5. These regions have been 

reported to have a high NOx/VOC ratio so that the abundance of VOCs controls ambient ozone 

concentrations (X-H Liu et al. 2010). Under the VOC-limited regime, the excessive NOx 

concentrations would quench ozone molecules through NOx titration (Jhun et al. 2015). On the 

other hand, ozone concentration in regions C (Anqing City) and D (Quzhou and Jinhua City) 

with moderate NOx concentrations (Fig. S1-13) fall under the NOx-limited regime with a 

positive association between ozone and NOx concentrations.  

Our modeling results indicated that the seasonality of ozone concentrations in China varied 

across different regions and was more distinct in northern China than in the south (Fig.2-3 and 2-

4). This phenomenon could be explained by three reasons. First, the absolute and relative 

abundance of ozone precursors have a major impact on ozone concentration. The observed 

regional and national ozone hot spots occurred predominantly in the megacity clusters (NCP, 

YRD, PRD, and Sichuan Basin), which was partially attributed to the high anthropogenic 

emissions of NOx and VOCs (K Li et al. 2019).  Second, meteorological conditions such as 

temperature and solar radiation significantly affect surface ozone formation (Coates et al. 2016; 

Schnell et al. 2009), making summer the most polluted season in most regions. However, the 

active monsoon activities in summer, especially in the PRD, may increase cloud cover and 

weaken solar radiation. Ozone formation would be restrained under such a condition (Qu et al. 

2021). The heavy rainfall during the monsoon season may also lead to a reduction in surface 
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ozone pollution. This may help explain the absence of summer ozone peaks in the low-latitude 

areas, including the PRD. The stronger seasonal variation of solar radiation in high latitude 

regions may have contributed to a shorter but more distinct ozone season in the NCP. Finally, the 

intensity of the SI events varies by region. Deep SI events occur more frequently in the high-

altitude regions, with some even reaching the ground (Lin et al. 2012; Lin et al. 2016). 

Consequently, high ozone concentrations could be observed on the Qinghai-Tibetan plateau in 

spring despite lower levels of ozone precursors and relatively low temperatures.  

Although our model generally captured the seasonal variation of ozone in China, we still found a 

substantial underestimation of high springtime ozone concentrations, especially at the XGLL 

station (Fig. S1-7). A potential reason for this underestimation is that foreign ozone transport was 

not well accounted for in our model. According to Ni et al., foreign regions contribute 40%-60% 

to China’s springtime ozone below the height of 2 km (Ni et al. 2018). This enhancement is very 

prominent in Southwest China due to the massive biomass burning in South and Southeast Asia 

(Wang et al. 2011), which peaked in spring (Yin 2020). However, incorporating wildfire 

emissions from South and Southeast Asia by assuming a distance-dependent influence did not 

address this underestimation (Fig. S1-8). According to Wang et al., the prevailing westerly wind 

and active cyclonic activity in spring facilitate ozone transport from South Asia to China (Wang 

et al. 2011). Therefore, foreign wildfire’s impact on China’s ozone pollution is not determined 

by distance itself but follows a certain trajectory. We are unable to address this trajectory in the 

current model because the grid cells did not extend outside China’s boundary except for the 50 

km buffer. 

China experienced rapid economic growth over the past decades. Nevertheless, the contemporary 

increase in anthropogenic emissions also greatly exacerbated air pollution over the nation. 
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According to Lin et al., the 95th percentile summer (June-July-August) MDA8 ozone increased 

by 1-2 ppb per year in China over 1995-2014 and the springtime (March-April-May) median 

ozone increased by ~0.5 ppb/yr concurrently (Lin et al. 2017). We also observed an overall 

increasing trend in summertime ozone pollution during 2005-2019 in the whole of China, the 

NCP, and the YRD as well as an increase in springtime ozone pollution in the NCP (Figs. S1-14 

and S16). However, the increasing trend was not constant from year to year. As seen from our 

model predictions, neither the springtime nor the summer surface ozone concentrations in China 

exhibited a significant increasing trend over 2005-2013 (Figs. S1-15 and S1-17). These findings 

were mostly consistent with the TOAR monitoring data (Table S1-2). SDZ was the only TOAR 

station that observed an increasing trend in summertime ozone pollution over 2005-2013. The 

increasing trend at SDZ was primarily driven by an increase from 2005-2007 while no 

significant trend was observed for 2008-2013 (1.30 µg/m3 * yr-1, p = 0.735). Xu et al. also 

showed that both the annual highest MDA8 ozone and the annual 4th highest MDA8 ozone 

exhibited no significant long-term increasing trend for most TOAR stations, except for SDZ (Xu 

et al. 2020). Although historical monitoring data were lacking back to the early 2000s, it can be 

inferred that the overall increasing trend of China’s ozone pollution during 1995-2014 was 

primarily driven by an increase before 2005. Tang et al. also reported that the ozone 

concentrations in Beijing increased at a rate of 1.1 ppbv/yr during 2001-2006 (Tang et al. 2009). 

The differential trends of ozone pollution between 1995-2004 and 2005-2013 were possibly 

attributable to meteorological conditions. According to Sun and Wang., the surface temperature 

in Northern and Northeastern China increased during the 1990s but stabilized during 2005-2014 

(Sun and Wang, 2017).  
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A sharp decrease in ozone concentration was observed in China during 2014-2016, especially in 

the PRD region. This was not an isolated event in China as the US EPA also reported the second-

lowest ozone concentrations on record during the 2014-2016 average period (U.S. EPA 2017). 

The significant reduction in ozone concentration in the northern hemisphere was attributable to 

El Niño during this period. Olsen et al. reported that the anomalous cyclonic circulation induced 

by El Niño events coincided with decreased tropospheric ozone (Olsen et al. 2016). Shen et al. 

found a negative association between the El Niño-Southern Oscillation (ENSO) and summertime 

ozone air quality in the south-central states of the US (Shen and Mickley 2017). Although the 

effect of ENSO on ozone pollution in China has yet to be fully understood, indirect evidence 

supported the strong impact of climate factors between 2014 and 2016. Yang et al. reported that 

meteorological conditions contributed to a 10 µg/m3 decrease of surface ozone in 2016 and a 3-5 

µg/m3 decrease in 2014-2015 in the PRD region. (Yang et al. 2019).  

 

The ozone levels in China increased rapidly after 2016 (Fig. 2-6). This may have to do with both 

China’s emission control policies and meteorological conditions. The issuance of APPCAP in 

2013 resulted in a dramatic nationwide decrease in NOx emissions and PM2.5 levels near the end 

of this 5-yr plan (Zheng et al. 2018). However, ozone formation falls under the VOC-limited 

regime in most Chinese urban centers. Reducing NOx emissions became an enhancer of ozone 

formation in populous areas, which were then transported to other regions (Liu and Wang 2020). 

In addition, lower PM2.5 levels would modify ozone pollution because the photolysis rates were 

less attenuated by aerosol light scattering and absorption (Liu and Wang 2020). Decreased PM2.5 

concentrations could also slow down the sink of hydroperoxyl radicals (HO2), resulting in 

enhanced ozone production (K Li et al. 2019). Such complex interactions among ozone 
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formation, PM2.5 levels, and meteorological conditions are reflected in the spatially varying 

associations between ozone and PM2.5 concentrations revealed by our partial correlation analysis. 

The mild weather and year-round intensive human activities cause a long ozone season (March - 

November) in the YRD.  During this period, PM2.5 levels can vary from 25 µg/m3 to above 60 

µg/m3, allowing it to affect ozone production negatively. The PRD region was the cleanest 

affluent city cluster in China in terms of both PM2.5 and ozone. The effect of PM2.5 on ozone 

production was less notable, and PM2.5 and ozone concentrations were both positively correlated 

to the emissions of their precursors (Liu and Wang 2020). While PM2.5 levels in the NCP are 

high in winter, its cold winter strongly suppresses ozone formation, and no significant correlation 

was found between ozone and PM2.5 levels after controlling for meteorological conditions. The 

2018-2019 increase in surface ozone pollution in China was more likely to be driven by 

climatological factors, particularly the increased foehn wind frequency and the subsequent 

changes in temperature and relative humidity (Li et al. 2020). That explained why this round of 

increase was only seen in several regions by the CNEMC monitoring data (Fig. 2-7). Again, 

although ozone pollution in China is not consistently worsening from year to year due to the 

modulation of climatological factors, it generally exhibited a prominent long-term increasing 

trend (Lin et al. 2017; Xu et al. 2020). Controlling ozone pollution in China remains a 

challenging task that requires a better understanding of this air pollutant. 

 

Our study has a few limitations. First, the road network data was fixed over the study period. 

This may result in an underestimation of China’s road density, especially after 2010. Although 

there are alternative road length data, we prefer not to mix multiple datasets with different 

methodologies to avoid introducing systematic errors. Second, the ozone precursors included in 
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our model were limited to NOx. Satellite retrievals of VOCs are limited and often have weak 

signal-to-noise ratios in the boundary layer (Zhu et al. 2020). While our current model was able 

to identify regions under the VOC-limited regime of ozone production, we will continue to 

explore effective indicators of ground-level VOC to improve our ozone exposure model. Finally, 

the present study focused on domestic determinants of ambient ozone. The present model may 

underestimate ozone pollution attributable to foreign transport. Future users of our dataset should 

be cautious with the springtime underestimations, especially in Southwest China. The roles of 

long-range ozone transport from outside China warrants further investigation.  

2.6. Conclusions 

We used a data-driven modeling framework to estimate long-term, high-resolution ozone 

concentrations in China. Predictors that capture the influence of ozone photochemical reactions 

and SI were included in our model. This model produced reliable historical monthly mean 

MDA8 ozone concentrations for China at 0.05° resolution with little bias. This 15-yr long, full-

coverage national dataset of ambient ozone concentrations includes nine years before China’s 

regulatory air quality monitoring network existed. It could accelerate research on the long-term 

ozone health effects in China by enabling the use of large general population cohorts established 

in the 2000s, such as the Chinese Longitudinal Healthy Longevity Survey (Kuang et al. 2020) 

and the China Health and Retirement Longitudinal Study (Zhao et al. 2014). 
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2.9. Figures 

 

Fig. 2-1. The study domain and three major city clusters. The study domain covered China plus a 50 km buffer region that 

extends outside the national boundary. NCP: the North China Plain; YRD: the Yangtze River Delta region; PRD: the Pearl River 

Delta (PRD) region. The points are the location of the China National Environmental Monitoring Centre (CNEMC) monitoring 

sites. The color scale represents elevation (km). 
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Fig. 2-2. The integrated model performance of the original model with OMI L24 retrieval. Left panel: random CV; middle 

panel: spatial CV; right panel: temporal CV. The functions on the bottom-right corners are the regression functions between the 

predicted and observed monthly mean MDA8 ozone concentrations. Red dashed lines: the regression line between the predictions 

and observations; black solid lines: the x = y line; The color scale represents the density of the points. Abbreviations: CV, cross-

validation; MDA8, daily maximum 8-hour average; OMI, Ozone Monitoring Instrument. 
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Fig. 2-3. Spatial distribution of seasonal average MDA8 ozone concentrations during 2005-2019. The ozone concentrations 

were predicted by the original model with OMI L24 retrieval and averaged seasonally over 2005-2019. Spring: March-April-

May; summer: June-July-August; autumn: September- October- November; winter: December-January-February. Abbreviations: 

OMI, Ozone Monitoring Instrument; MDA8, daily maximum 8-hour average. 
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Fig. 2-4. Region-specific seasonal mean MDA8 ozone concentrations during 2005-2019. The ozone concentrations were 

predicted by the original model with OMI L24 retrievals. The bars and the corresponding numbers represent the season-specific 

regional mean MDA8 ozone concentrations (± standard deviation) over 2005-2019. Spring: March-April-May; summer: June-

July-August; autumn: September- October- November; winter: December-January-February. Abbreviations: OMI, Ozone 

Monitoring Instrument; MDA8, daily maximum 8-hour average. 
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Fig. 2-5. Summer ozone peak (left) and population (right) in the Yangtze River Delta (August 2019). The left panel shows 

the model predicted monthly mean MDA8 ozone concentrations in August 2019. The right panel shows the 1 km population data 

for 2019 from LandScan. The boxes represent some YRD cities and their surrounding area; A: Bengbu and Huainan City; B: 

Nanjing Metropolitan Area; C: Anqing City; D: Quzhou and Jinhua City. Abbreviations: MDA8, daily maximum 8-hour average. 
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Fig. 2-6. Annual trend of mean ozone season average MDA8 ozone concentrations from 2005 to 2019.  Ozone season is 

defined as March-November. The lines with different colors and marks represent the model-predicted mean MDA8 ozone 

concentrations in different regions. Grey line with round marks: China; red line with cross marks: the PRD; orange line with 

triangular marks: the NCP; blue line with square marks: the YRD. Abbreviations: MDA8, daily maximum 8-hour average; NCP: 

the North China Plain; PRD: the Pearl River Delta; YRD: the Yangtze River Delta. 

 

 

 

 

 

 



 
 

55 
 

 

Fig. 2-7. The comparison of the summertime (June-July-August) mean MDA8 ozone concentrations between our model 

predictions and the CNEMC monitoring data over 2014-2019 for selected regions. Upper panel: Central-East China; 

Lower panel: the Shandong Peninsula. The blue columns on the left represent the CNEMC observations; the orange column on 

the right represents our model predictions. The height of the columns and the error bars represent the mean MDA8 ozone 

concentrations and the standard error. Abbreviations: CNEMC, China National Environmental Monitoring Centre; MDA8, daily 

maximum 8-hour average; NCP: the North China Plain; PRD: the Pearl River Delta; YRD: the Yangtze River Delta. 
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Fig. 2-8. Time-series comparison for population-weighted ambient ozone and PM2.5 concentrations in China over 2005-

2018. First (from top to bottom) panel: China as a whole; second panel: the NCP; third panel: the YRD; last panel: the PRD; r 

denotes the partial correlation coefficient controlling for temperature, relative humidity, and total precipitation from MERRA-2. 

P-values were for the r statistics on the left. Blue lines: population-weighted monthly mean MDA8 ozone predicted by our model; 

orange lines: population-weighted monthly mean PM2.5 concentrations from (Xiao et al. 2021). Abbreviations: MDA8, daily 

maximum 8-hour average; NCP: the North China Plain; PRD: the Pearl River Delta; YRD: the Yangtze River Delta. 
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3. Air pollution and cognitive impairment among the Chinese elderly population: A 

Nationwide cohort study 

[Manuscript 2] 

Qingyang Zhu, Yuebin Lyu, Keyong Huang, Jinhui Zhou, Wenhao Wang, Kyle Steenland, 

Howard H. Chang, Stefanie Ebelt, Xiaoming Shi, and Yang Liu 

3.1. Abstract 

Background: Cognitive decline and dementia have long been recognized as growing public 

health threats, especially in an aging society. Studies have found that air pollution is a potential 

risk factor for dementia, but the association between air pollution and cognitive impairment has 

not been fully understood. 

Objectives: This study aimed to evaluate the association between three major air pollutants (i.e., 

PM2.5, O3, and NO2) and cognitive impairment among the Chinese elderly population. 

Methods: Study participants were selected from the Chinese Longitudinal Health Longevity 

Survey (CLHLS) after 2005. We define cognitive impairment as a Chinese Mini-Mental-State 

Exam (CMMSE) score lower than 24. Yearly mean exposure to PM2.5, NO2, and warm-season 

(April-September) average MDA8 O3 were evaluated by assigning three high-performance 

satellite remote sensing models to the participants’ residential addresses. The association 

between air pollution and cognitive impairment was evaluated with a logistic regression model 

adjusted for time since enrollment, sociodemographic characteristics as well as chronic 

conditions like high blood pressure, heart disease, and diabetes.  

Results: A total of 3,887 participants were enrolled in this study, and 931 (24%) developed 

cognitive impairment during follow-up visits. In single-pollutant models, we found that per IQR 

increase in warm-season O3 (OR per 20.98 µg/m3 = 1.011 [1.000, 1.022], p = 0.033), yearly 



 
 

58 
 

average PM2.5 (OR per 18.34 µg/m3 = 1.009 [1.001,1.016], p = 0.034), and NO2 (OR per 18.20 

µg/m3 = 1.019 [1.007, 1.031], p = 0.001) were positively associated with cognitive impairment. 

Only NO2 remained positively associated with cognitive impairment (OR per 10 µg/m3 = 1.018 

[1.002, 1.033], p = 0.033) in a multi-pollutant model with PM2.5 and O3. 

Conclusion: Our results suggested that cognitive impairment could be positively linked to PM2.5, 

O3, and NO2. O3 is possibly more hazardous in the warm season (April-September). 

Keywords: Air pollution, cognitive impairment, CLHLS, concentration-response relationship 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

59 
 

3.2. Introduction 

Cognitive decline and dementia have long been recognized as growing public health threats, 

especially in an aging society. The all-age mortality rates attributable to dementia had increased 

by 100.1% (95% CI: 89.1-117.5) from 1990 to 2019, making it the seventh leading risk factor of 

excessive deaths globally (Collaborators, 2021). In 2020, the prevalence of dementia among the 

Chinese population aged 60 and above reached 6.0% (Ren et al., 2022). Meanwhile, the global 

prevalence of dementia was projected to increase from 57.4 (95% CI: 50.4-65.1) million in 2019 

to 152.8 (95% CI: 130.8-175.9) million in 2050 (Nichols et al., 2022), posing a great challenge to 

the healthy aging of the elderly population.  

Air pollution has been identified as a potential risk factor for cognitive decline and dementia. For 

example, a handful of studies linked PM2.5 to poor cognitive performance (Lin et al., 2017), 

slower reaction time (Cullen et al., 2018), memory loss (Ailshire & Clarke, 2014; Ailshire & 

Crimmins, 2014), global cognitive decline (Weuve et al., 2012), and Alzheimer’s disease (AD) 

(Jung et al., 2015; Li et al., 2019). Gaseous pollutants, such as ozone (O3) and nitrogen dioxide 

(NO2), were also found to be associated with cognitive decline (Cleary et al., 2018), semantic 

fluency (Zare Sakhvidi et al., 2022), lower executive function, and impaired logic memory 

(Gatto et al., 2014). However, as reviewed by Delgado-Saborit et al., current study findings are 

inconsistent, especially regarding which pollutants have the strongest association with dementia 

(Delgado-Saborit et al., 2021). This inconsistency is possibly attributable to exposure 

measurement error, particularly when multiple air pollutants are investigated simultaneously. 

Recent advances in satellite remote sensing have offered an opportunity to establish high-

performance air pollution models for environmental epidemiological studies. However, satellite 

retrievals, such as aerosol optical depth (AOD), are typically not direct measurements of ground-
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level air pollution per se. A set of machine-learning approaches have been utilized to project the 

spatiotemporal distribution of multiple air pollutants from satellite-driven data. For example, 

Liang et al. established a 1-km ensemble learning model for PM2.5 in China from 2000-2018. The 

model had an overall R2 of 0.79 with a Root-mean-square error (RMSE) of 21 μg/m3 (Liang et 

al., 2020). In addition, we also established 0.05° (approximately 5 km) O3 (Zhu et al., 2022) and 

NO2 prediction models (in submission) covering 2005-2019 from Ozone Measurement 

Instrument (OMI) retrievals. Certain models not only expanded the spatial coverage of the 

ground-level monitoring network but also reliably hindcasted historical pollution status for ~10 

years before the onset of large-scale environmental monitoring in China (Zhu et al., 2022).  

The availability of such long-term air pollution data facilitates epidemiological investigations 

with large existing cohorts that were established decades ago. The Chinese Longitudinal Health 

Longevity Survey (CLHLS) is the world’s largest survey on centenarians with a compatible 

group of people aged 65 and above (Zeng et al., 2017). Participants of CLHLS were enrolled in 

22 different provinces in China over eight waves of survey data collection that occurred during 

1998-2018. Its database includes detailed information on the participants’ sociodemographic 

status as well as medical records. The CLHLS used a Chinese Mini-Mental State Exam 

(CMMSE, localized from the original MMSE) to evaluate the subjects’ cognitive function. To 

ensure the quality and consistency of the results throughout the whole nation, all the CMMSE 

tests were conducted face-to-face between trained interviewers and the participants. The 

CMMSE has proven to be effective for the Chinese elderly population (Ren et al., 2021). 

The present study investigated the association between air pollution and cognitive impairment 

with the CLHLS data. Exposure to PM2.5, O3, and NO2 was measured with three high-

performance satellite-driven machine learning models. The improvement in exposure matrices 
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could make better use of CLHLS’s long temporal coverage and thus benefit our mutual 

understanding of air pollution as a potential risk factor for dementia. 

3.3. Methods 

3.3.1. Study population 

The CLHLS is a nationwide survey on the healthy aging of the Chinese elderly population 

covering 22 out of the 31 provinces, namely Beijing, Tianjin, Chongqing, Shanghai, Anhui, 

Fujian, Guangdong, Guangxi, Hubei, Hunan, Henan, Hebei, Heilongjiang, Liaoning, Jiangxi, 

Jiangsu, Jilin, Shandong, Shaanxi, Shanxi, Sichuan, and Zhejiang. It comprises eight rounds of 

data collection that took place in 1998, 2000, 2002, 2005, 2008-2009, 2011-2012, 2014, and 

2018, respectively (Zeng et al., 2017). All participants were selected with a targeted random 

sampling approach to ensure representativeness. The details of CLHLS may also be found at 

https://cpha.duke.edu/research/chinese-longitudinal-healthy-longevity-survey-clhls. 

The present study selected CLHLS participants that were enrolled after 2005 to align with the 

temporal coverage of the available air pollution exposure dataset. The inclusion criteria covered: 

1) free of cognitive impairment (MMSE >= 24) at enrollment; 2) fully completed at least one 

CMMSE measurement or unable to complete the test only due to significant cognitive 

impairment; and 3) had clear residential address records. We only tracked participants until they 

developed a cognitive impairment, if any, assessed via the survey in this study. 

The study was approved by the Biomedical Ethics Committee of Peking University 

(IRB00001052-13074) and the Institutional Review Board of Emory University 

(STUDY00000950). Signed written consents were obtained from either the participants or their 

legal representatives for both the baseline and follow-up surveys. 
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3.3.2. Exposure assessment 

We used three satellite-driven machine learning models to estimate the level of exposure to 

ambient PM2.5, O3, and NO2. Specifically, the 1-km PM2.5 data were developed by Liang et al. 

using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol optical 

depth (AOD) product as the main predictor. This model first used a multiple imputation 

approach to gap-fill the missing AOD values and then a generalized additive model to synthesize 

prediction results from two tree-based learning algorithms (i.e., RF and XGBoost). Its final 

predictions agreed well with the ground-level observations, with a daily R2 value of 0.79 for 

2013-2017 and a monthly R2 of 0.76 for the hindcast period (2000-2013) (Liang et al., 2020). 

Surface-level O3 concentrations were generated with the Smithsonian Astrophysical Observatory 

(SAO) OMI Ozone Profile (OMPROFOZ) at a 0.05 ° resolution as the main predictor (Zhu et al., 

2022). The O3 model considered surface ozone pollution generated either from the 

photochemical reactions involving NO2 and volatile organic species (VOCs) or that came down 

from the stratosphere through the stratospheric intrusion process. Its monthly R2 reached 0.86 for 

2014-2019 and 0.73 for 2005-2013. The NO2 model was based on the OMI level-3 tropospheric 

NO2 vertical column densities (VCD). It also used an ensemble learning approach to account for 

the non-linear relationship between model predictors and ground-level NO2 concentrations. The 

final monthly NO2 predictions yielded a random CV R2 of 0.88. It also showed good 

performance in spatial (R2 = 0.73) and temporal (R2 = 0.82) cross validation (Huang, Zhu et al. 

2023).  

Annual average exposure to PM2.5, NO2 as well as annual and warm-season (April-September) 

average MDA8 (daily maximum 8-hour average) O3 prior to the cognitive test were assigned to 

the participants based on their geocoded address. To specify, we first matched all the 
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participants’ addresses to the model grid cells it completely falls into and then identified their 

exposure levels according to the date when the CMMSE was carried out. For participants whose 

addresses changed during two consecutive visits, we considered the midpoint of two visits as the 

date of moving.  

3.3.3. Measurement of cognitive impairment  

Participants’ cognitive function was measured with the CMMSE. This measure was modified 

from the original MMSE developed by Folstein et al. in 1975 (Folstein et al., 1975) to fit the 

socioeconomic status of the Chinese elderly population. Given that most participants of the 

CLHLS are illiterate, the CMMSE simplified questions regarding calculation and verbal skills 

(Zeng & Vaupel, 2002). The details of the CMMSE and a sample questionnaire can be found at 

(https://doi.org/10.18170/DVN/WBO7LK). We define cognitive impairment as an MMSE score 

<24 or unable to complete the test only due to poor cognitive function. Based on previous 

studies, we treated questions that were marked ‘unable to answer’ as wrong. Participants who 

were not able to complete the questionnaire for reasons other than cognitive impairment (e.g., 

physical disabilities) were removed from the current study.  

3.3.4. Covariates 

We considered a set of variables as potential confounders. For sociodemographic status, we 

included age (in years), sex, body mass index (BMI) (kg/m2), educational level (in years), ethnic 

group (Han, Zhuang, and others), and living in an urban/rural area. 

We also considered the subjects’ behavior patterns and chronic disease status as potential sources 

of confounding, including past or present smoking, drinking, and physical exercise, as well as 
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currently suffering from high blood pressure, diabetes, or heart disease. All covariates were 

updated at each round of survey. 

3.3.5. Statistical analysis 

Since all the surveys of CLHLS were conducted on a cross-sectional basis, we were not able to 

identify the specific date that a participant developed cognitive impairment. Thus, a typical 

survival analysis using Cox proportional hazards modeling may be inappropriate (Steenland et 

al., 2018). As such, we used a logistic regression model that included the follow-up time to 

analyze the association between air pollution and cognitive impairment. The detailed model is 

illustrated in Eq. 3-1. 

𝐿𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖𝑧)) = 𝛽0 + 𝛽1𝑡𝑖𝑚𝑒𝑖𝑧 +  ∑𝛽𝑗𝑎𝑖𝑟 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑖𝑗𝑧 +  ∑𝛽𝑘𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑖𝑘𝑧 (Eq. 3-1) 

Where 𝑌𝑖 denotes the cognitive impairment status for individual 𝑖 at 𝑧𝑡ℎ measurement; 𝑡𝑖𝑚𝑒𝑖𝑧 

denotes the time (in years) since enrollment for individual 𝑖; 𝑎𝑖𝑟 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑖𝑗𝑧 denotes the 

average concentration of air air pollutant 𝑗 for individual 𝑖 in the previous year of the 𝑧𝑡ℎ 

measurement; 𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑖𝑘𝑧 represents all the confounders that are listed in the previous 

section.  

We first ran single-pollutant models assessing associations of yearly average PM2.5, NO2, warm-

season MDA8 O3, and yearly average MDA8 O3, with cognitive impairment status. We then 

conducted a multipollutant model that included yearly average PM2.5, NO2, and warm-season O3 

based on the results of the single-pollutant models. Multiple air pollutants were included based 

on the temporal range, i.e., the effect of warm season O3 was adjusted for warm season PM2.5 

and NO2, while yearly average air pollutants were evaluated simultaneously in a separate model. 
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We further used a penalized spline function to study the concentration-response relationship 

between air pollution and cognitive impairment. The spline function was only applied to 

pollutants that showed a significant association in their single pollutant model. 

All the statistical analyses were conducted with R (v 4.0.5, R core team). A two-sided p-value < 

0.05 was considered statistically significant. 

3.4. Results 

As can be seen in Table 3-1, 3,887 participants at baseline were selected for the present study. 

Among them, 2,882 (74.1%), 1,362 (35.0%), and 521 (13.4%) completed one, two, and three 

rounds of the follow-up survey, respectively.  At baseline, the average age and BMI were 80.0 ± 

11.3 years and 22.0 ± 29.4 kg/m2. Slightly more than half of the participants (2,088, 53.7%) were 

male, while 3,480 (89.5%) of them belonged to the Han ethnic group. A total of 2,642 (68.0%) 

individuals lived in rural areas. The majority of the participants self-identified as never drinkers 

(2,563, 65.9%) and never smokers (2,401, 61.8%), while 490 (12.6%) and 605 (15.6%) 

participants identified themselves as former drinkers and former smokers. Thirty-five percent 

(1,419) of them exercised regularly. Around 10.3% (401), 24.5% (951), and 4.0% (154) of the 

participants had heart diseases, high blood pressure (HBP), and diabetes at baseline, respectively. 

At the first follow-up visit, 752 (26.1%) of the remaining participants developed cognitive 

impairment, while 129 (9.5%) and 50 (9.6%) people developed CI at the second and third 

follow-up visits. 

As illustrated in Table 3-2, a year increase in age was associated with a 0.7% increase in the risk 

of cognitive impairment (95% CI = [1.004,1.010], p < 0.001). Females (OR = 1.040 [1.004, 

1.075], p < 0.001), current smokers (OR = 1.026 [1.006,1.045], p = 0.008), and former drinkers 
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(OR = 1.024 [1.005,1.042], p = 0.012) were at a higher risk of cognitive impairment. On the 

contrary, per year increase in education (OR = 0.997 [0.995,0.999], p = 0.003), living in an urban 

area (OR = 0.980 [0.954,1.012], p = 0.018), and regular exercise (0.966 [0.952,0.980], p < 0.001) 

were protective factors for cognitive impairment. We did not observe significant association 

between cognitive impairment and ethnic groups, BMI, high blood pressure, diabetes, heart 

diseases, past smoking as well as current drinking status. 

The baseline annual average exposure levels to PM2.5, NO2, and MDA8 O3 were 62.5 ± 14.3 

µg/m3, 29.1 ± 11.7 µg/m3, and 89.2 ± 5.82 µg/m3, respectively (Table 3-3). Warm season 

average MDA8 O3 was significantly higher than the annual average and reached 106 ± 12.2 

µg/m3. The exposure levels for three follow-up visits were generally comparable to the baseline.  

In single-pollutant models (Table 3-4), we found that exposures to O3, PM2.5, and NO2 were all 

positively associated with cognitive impairment. Specifically, per IQR (18.34 µg/m3) increase in 

annual average PM2.5 was associated with a 1% increased odds of cognitive impairment (OR = 

1.009 [1.001-1.016], P = 0.034). The OR values per IRQ increase in annual average NO2 (18.20 

µg/m3) and warm season average O3 (20.98 µg/m3) were 1.019 ([1.007, 1.031], p = 0.001) and 

1.011 [1.000, 1.022], p = 0.033), respectively. Annual average O3 exposure was not significantly 

associated with cognitive impairment (OR per 8.54 µg/m3 = 1.001 [0.997,1.014], p = 0.192). 

In the multi-pollutant model, only annual average exposure to NO2 remained positively 

associated with cognitive impairment (OR = 1.018 [1.002, 1.033] per 18.20 µg/m3 increase, p = 

0.023). The OR values and 95% CIs per IQR increase in annual average PM2.5 and warm season 

O3 were 0.965 ([0.919,1.011], p = 0.721), 1.001 ([0.978,1.024], p = 0.452), respectively (Table 

3-4). 
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Fig. 3-1 shows the concentration-response relationship between air pollutants and cognitive 

impairment. Specifically, the OR of NO2 increased almost monotonously with higher 

concentrations (Fig. 3-1A). The lower bound of its 95% CI exceeded 1.00 for 42 µg/m3 and 

above. The concentration-response relationship between warm-season O3 and cognitive 

impairment showed a stage-wise increase (Fig. 3-1B). That is to say, the effect of warm season 

O3 was generally stable and even protective for the concentration range between 80-110 µg/m3. 

The OR of O3 increased sharply for 110-130 µg/m3 and then stabilized for concentrations higher 

than 130 µg/m3. The OR of PM2.5 were greater at both low (< 40 µg/m3) and high concentrations 

(> 100 µg/m3), but it was generally around 1.00 for the concentration range 40-100 µg/m3 (Fig. 

3-1C).     

3.5. Discussion 

 

Air pollution has long been considered a potential risk factor for dementia. In the present study, 

we found that exposure to annual average PM2.5 and warm-season O3 were associated with an 

increased risk of cognitive impairment in single-pollutant models, annual average NO2 was 

associated with cognitive impairment in both the single- and multi-pollutant models. Our 

findings are in good agreement with studies using the same data source. For example, Wang et 

al. reported that a 10 µg/m3 increase in ambient PM2.5 concentrations was associated with a 5.1% 

increased risk of poor cognitive function (defined as MMSE < 18, HR = 1.05 [1.02,1.08]) using 

the CLHLS data after 2002 (Wang et al., 2020). Yao et al. found that China’s clean air policy 

significantly decelerated the decline in MMSE score using a quasi-experimental design (Yao et 

al., 2022). Using CLHLS after 2008, Ma et al. examined the effect of two-year average exposure 

to PM2.5, O3, and NO2 on cognitive function. Their findings suggest that PM2.5 increased the risk 
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of cognitive impairment (threshold of MMSE varied from 18-24, HR = 1.10 [1.02,1.18] per 20 

µg/m3), while O3 and NO2 yielded elevated but statistically insignificant risks (Ma et al., 2022). 

Compared to the studies above, our study improved the assessment of air pollution exposure by 

using three high-performance satellite-driven air pollution models at fine resolutions. With this 

advantage, we identified significant positive associations between all three air pollutants and 

cognitive impairment even under a more sensitive definition (MMSE < 24). The striker 

definition of cognitive impairment also possibly explained why our magnitudes of association 

were relatively smaller than the studies mentioned above. 

Studies in other countries also examined the association between air pollution and cognitive 

impairment, but the consistency of results varied across different air pollutants. Specifically, 

studies in Sweden (Grande et al., 2021), South Korea (Lee et al., 2022), and the US (Grande et 

al., 2021) reported that PM2.5 would escalate the risk of cognitive decline measured by the 

MMSE. NO2 has also been positively linked to cognitive decline or dementia in the US (Shi et 

al., 2021), England (Carey et al., 2018), and Canada (Chen et al., 2017; Smargiassi et al., 2020). 

However, the findings were more controversial for ozone. For example, Cleary et al. reported 

that ozone is correlated with faster cognitive decline (Cleary et al., 2018) in the US. On the 

contrary, Chen et al. found no significant association between O3 and dementia in a Canadian 

cohort study. Park et al. even reported that O3 yielded protective effects for cognitive decline in 

Korea (Park et al., 2022).  

A possible reason for this controversy is the time window of ozone exposure. As a secondary 

pollutant, ground-level ozone is predominantly formed by the photochemical reactions between 

NOx and VOCs in the presence of heat and solar radiation (Li et al., 2020; Zhu et al., 2022). 

Consequently, ozone exhibits distinct seasonality in most Chinese regions, where elevated ozone 
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pollution usually occurs from late spring to early autumn (Zhu et al., 2022). In this study, O3 

posted null or even protective effects at low-medium concentrations (70 – 110 μg/m3), but its 

risk surged at concentrations higher than 110 μg/m3 (Fig. 3-1). Additionally, we found that 

warm-season exposure to ozone is positively associated with cognitive impairment, but annual 

averages yielded insignificant effects. This phenomenon has also been spotted for other health 

outcomes. As reviewed by Atkinson et al., studies that used warm-season exposure to ozone 

generally reported a positive association with mortality, while no evidence was shown for annual 

concentrations (Atkinson et al., 2016). These findings suggested that the health effect of ozone is 

possibly more prominent in the warm seasons with a high pollution level. 

The importance of NO2 needs to be highlighted since it is the only air pollutant that remained 

positively associated with cognitive impairment in the multi-pollutant model. Previous 

toxicological studies have also supported the link between NO2 and dementia. For example, Li 

and Xin found that NO2 inhalation could induce dose-dependent excitotoxicity and increase the 

risk of vascular dementia in healthy rats (Li & Xin, 2013). This finding also agreed with the 

monotonic increasing concentration-response relationship between NO2 and cognitive 

impairment in this study (Fig. 3-1). Furthermore, Li et al. also reported that exposure to NO2 may 

accelerate neural apoptosis and express neurotoxicity (Li et al., 2012). Nevertheless, current 

evidence is still controversial regarding which air pollutant is primarily associated with cognitive 

impairment (Delgado-Saborit et al., 2021), highlighting the need to study air pollution as a 

mixture rather than individual pollutants.  

A major strength of this study is the inclusion of three high-performance satellite-driven air 

pollution models. To date, China’s air quality monitoring network has covered most cities, but 

rural areas remain largely unmonitored. Given that most participants of the CLHLS lived in rural 
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areas, using satellite-driven exposure estimates could significantly improve the accuracy of 

exposure measurement. The extended temporal coverage of our exposure datasets also facilitates 

the investigations with historical cohort data, especially on chronic health outcomes like 

cognitive impairment and dementia. Another advantage is that the CLHLS used face-to-face 

interviews to measure cognitive function and collect other covariates. This process guaranteed 

the data quality and consistency across the whole nation. 

This study also has some limitations. First, we were unable to identify the specific time when a 

participant developed cognitive impairment, which may lead to exposure misalignment. 

Accounting for this, we adjusted for the follow-up in the logistic regression model since it could 

still be an informative predictor of cognitive impairment (Steenland et al., 2018). Second, we 

could not generate exposure data before 2005 due to the availability of OMI products. 

Consequently, only four out of the eight waves of the CLHLS were included in the study. Future 

studies may use a bigger sample size to study the impact of air pollution on healthy aging if the 

exposure dataset can be further generated to the late 1990s. 

3.6. Conclusions 

This study used satellite-driven datasets to study the association between air pollution and 

cognitive impairment among the Chinese elderly population. In the single pollutant models, we 

found that warm-season mean MDA8 O3, annual mean PM2.5, and NO2 were positively 

associated with cognitive impairment (MMSE < 24). Compared to warm-season O3, yearly 

average O3 yielded similar magnitude but non-significant effect estimates, suggesting that warm-

season O3 is a better exposure metric. Yearly average NO2 was the only air pollutant that 

remained a significant risk factor for cognitive impairment in the multi-pollutant model. The 
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concentration-response relationship showed that NO2 was associated with a monotonous 

increasing risk for cognitive impairment and dementia.  
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3.8. Tables and Figures 

 Table 3-1 Sociodemographic characteristics of the CLHLS participants 

 Baseline 

(N=3887) 

First follow-up 

(N=2882) 

Second follow-up 

(N=1362) 

Third follow-up 

(N=521) 

Age (years)     

Mean (SD) 80.0 ± 11.3 81.6 ± 10.9 79.7 ± 8.54 80.7 ± 6.63 

Gender     

Male 2088 (53.7%) 1464 (50.8%) 724 (53.2%) 276 (53.0%) 

Female 1799 (46.3%) 1418 (49.2%) 638 (46.8%) 245 (47.0%) 

BMI     

Mean (SD) 22.0 ± 29.4 22.3 ± 7.14 23.0 ± 12.4 23.1 ± 7.59 

Ethnic group     

Han 3480 (89.5%) 2539 (88.1%) 1200 (88.1%) 324 (62.2%) 

Zhuang 112 (2.9%) 94 (3.3%) 48 (3.5%) 12 (2.3%) 

Others 295 (7.6%) 249 (8.6%) 114 (8.4%) 185 (35.5%) 

Education (years)     

Mean (SD) 3.09 ± 3.88 3.13 ± 3.88 3.62 ± 4.02 2.90 ± 4.04 

Living area     

Rural 2642 (68.0%) 1802 (62.5%) 830 (60.9%) 336 (64.5%) 

Urban 1245 (32.0%) 1080 (37.5%) 532 (39.1%) 185 (35.5%) 

Cognitive impairment     

Normal cognitive function 3887 (100%) 2130 (73.9%) 1233 (90.5%) 471 (90.4%) 

Yes 0 (0%) 752 (26.1%) 129 (9.5%) 50 (9.6%) 

Alcohol drinking     

Current drinker 834 (21.5%) 556 (19.3%) 251 (18.4%) 103 (19.8%) 

Former drinker 490 (12.6%) 451 (15.6%) 176 (12.9%) 63 (12.1%) 

Never drinker 2563 (65.9%) 1875 (65.1%) 935 (68.6%) 355 (68.1%) 

Tobacco smoking     

Current smoker 881 (22.7%) 603 (20.9%) 298 (21.9%) 94 (18.0%) 

Former smoker 605 (15.6%) 521 (18.1%) 243 (17.8%) 94 (18.0%) 

Never smoker 2401 (61.8%) 1758 (61.0%) 821 (60.3%) 333 (63.9%) 

Exercise     

Yes 1419 (36.5%) 1254 (43.5%) 587 (43.1%) 232 (44.5%) 

No 2468 (63.5%) 1628 (56.5%) 775 (56.9%) 289 (55.5%) 
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 Baseline 

(N=3887) 

First follow-up 

(N=2882) 

Second follow-up 

(N=1362) 

Third follow-up 

(N=521) 

Heart diseases     

Yes 401 (10.3%) 392 (13.6%) 221 (16.2%) 105 (20.2%) 

No 3486 (89.7%) 2490 (86.4%) 1141 (83.8%) 416 (79.8%) 

High blood pressure     

Yes 951 (24.5%) 880 (30.5%) 532 (39.1%) 236 (45.3%) 

No 2936 (75.5%) 2002 (69.5%) 830 (60.9%) 285 (54.7%) 

Diabetes     

Yes 154 (4.0%) 185 (6.4%) 117 (8.6%) 55 (10.6%) 

No 3733 (96.0%) 2697 (93.6%) 1245 (91.4%) 466 (89.4%) 
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Table 3-2. The association between model covariates and cognitive impairment 

Covariates  OR (95% CI) P-value 

Age (yr) 1.007 (1.004, 1.010) <0.001* 

BMI (kg/m2) 1.000 (0.999, 1.000)   0.948 

Time since enrollment (yr) 1.010 (1.008,1.012) <0.001* 

Sex   

 Male -  - 

 Female 1.040 (1.004, 1.075) <0.001* 

Ethnic group   

 Han -  - 

 Zhuang 1.020 (0.982, 1.059)   0.339 

 Others 0.983 (0.954, 1.012)   0.145 

Living area   

 Rural - - 

 Urban 0.980 (0.963, 0.996)    0.018* 

Education (yr) 0.997 (0.995, 0.999)   0.003* 

Tobacco smoking   

 Never smoker - - 

 Former smoker 1.017 (0.997, 1.036)  0.104 

 Current smoker 1.026 (1.006, 1.045)  0.008* 

Alcohol drinking   

 Never drinker - - 

 Former drinker 1.024 (1.005, 1.042) 0.012* 

 Current drinker 1.006 (0.986, 1.026) 0.571 

Exercise   

 No - - 

 Yes 0.966 (0.952, 0.980) <0.001* 

Heart disease   

 No - - 

 Yes 1.010 (0.991, 1.030) 0.304 

High blood pressure   

 No - - 

 Yes 1.008 (0.993, 1.023) 0.252 

Diabetes   

 No - - 

 Yes 1.002 (0.975, 1.028) 0.924 

Notes: OR (95% CI) and P-value were from the multi-pollutant model. *: p < 0.05. 
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Table 3-3 Exposure levels to O3, PM2.5, and NO2 (µg/m3) 

 Baseline 

(N=3887) 

First follow-

up 

(N=2882) 

Second follow-

up 

(N=1362) 

Third 

follow-up 

(N=521) 

Overall 

(N=8652) 
P-value 

Warm season O3 
      

Mean (SD) 106 ± 12.2 107 ± 13.1 108 ± 14.7 113 ± 18.9 107 ± 13.5 <0.001* 

Annual average O3 
      

Mean (SD) 89.2 ± 5.82 89.0 ± 6.45 89.4 ± 7.53 93.2 ± 8.86 89.4 ± 6.61 <0.001* 

Annual average PM2.5 
      

Mean (SD) 62.5 ± 14.3 62.6 ± 16.0 61.1 ± 18.7 47.5 ± 11.1 61.4 ± 15.9 <0.001* 

Annual average NO2 
      

Mean (SD) 29.1 ± 11.7 32.2 ± 12.4 31.7 ± 12.8 28.5 ± 11.5 30.5 ± 12.2 <0.001* 

*: p < 0.05 
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Table 3-4. The association between air pollution and cognitive impairment 

Air pollutants IQR 

(µg/m3) 

OR (95% CI)1 P-value1 OR (95% CI)2 P-value2 

PM2.5 (yearly) 18.34 1.009 (1.001,1.016) 0.034* 1.001 (0.992,1.010) 0.721 

O3 (yearly)   8.54 1.006 (0.997,1.014) 0.192 1.000 (0.991,1.009) 0.889 

O3 (warm season) 20.98 1.011 (1.000,1.022) 0.033* 1.007 (0.989,1.024) 0.452 

NO2 (yearly) 18.20 1.019 (1.007,1.031) 0.001* 1.018 (1.002,1.033) 0.033* 

Notes: 1, OR (95% CI) and P-value from the single pollutant model; 2, OR (95% CI) and P-value from 

the multi-pollutant models. Multiple air pollutants were included based on the temporal range, i.e., the 

effect of warm season O3 was adjusted for warm season PM2.5 and NO2, while yearly average air 

pollutants were evaluated simultaneously in a separate model. The OR values are per IQR increase of the 

air pollutants. *: p < 0.05 
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Fig. 3-1. Concentration-response relationship between air pollutants and cognitive impairment. A: 

yearly average NO2; B: Warm-season (April-September) average O3; C: yearly average PM2.5. 
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4. The Association between Wildfire and Emergency Department (ED) Visits for Anxiety 

Disorders in the Western United States 

[Manuscript 3] 

Qingyang Zhu, Danlu Zhang, Wenhao Wang, Rohan Richard D’Souza, Haisu Zhang, Kyle 

Steenland, Noah Scovronick, Stefanie Ebelt, Howard H. Chang, and Yang Liu 

 

4.1. Abstract 

Background: Wildfires and anxiety are both growing threats to the global economy and public 

health. Nevertheless, the association between wildfire-related exposures and anxiety disorders 

remains largely unclear. 

Objectives:  We aimed to examine the association between wildfire-related exposures and 

emergency department (ED) visits for anxiety disorders in the Western United States. 

Methods: We used a case-crossover design for the present study. Records of ED visits were 

obtained from five different Western US states, including Arizona, California, Nevada, Oregon, 

and Utah. Anxiety disorders were defined as ICD-10 codes F40-F48 and their corresponding 

ICD-9 codes. Exposure to wildfire smoke PM2.5 and background PM2.5 was evaluated with an 

ensemble learning method. We used a conditional logistic regression to evaluate the association 

between wildfire smoke PM2.5 and ED visits for anxiety disorders.  

Results: A total of 1,897,865 cases from 2007-2018 were included in this study. We found that a 

10 ug/m3 increase in wildfire smoke PM2.5 was associated with a 0.6% (OR = 1.006 

[1.001,1.012], p = 0.029) increase in the risk of ED visits for anxiety disorders. Age- and sex-

stratified analysis showed that females (OR per 10 ug/m3 = 1.011 [1.002,1.021], p = 0.020) and 

the elderly population (OR per 10 ug/m3 = 1.035 [1.017, 1.054], p < 0.001) were more 
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vulnerable to wildfire smoke PM2.5 regarding anxiety disorders. Additionally, an extreme smoke 

event (defined as smoke PM2.5 contributed to >= 75% of the total PM2.5 in the past 48 hours) 

was also associated with an increase in the risk of ED visits for anxiety disorders (OR = 1.063 

[1.015, 1.113], p = 0.009). 

Conclusion: Our results suggest that wildfires are associated with an increased risk of ED visits 

for anxiety disorders. Females and the elderly are more vulnerable to the anxiety disorders 

associated with wildfire-related exposures. 
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4.2. Introduction 

Attributable to anthropogenic climate change repercussions, wildfire has become a growing 

threat to the global economy and public health (Ellis et al., 2022; Jones et al., 2022). Over the 

past 20 years, rising temperatures and shifting drying patterns have substantially escalated global 

fire potential (Ellis et al., 2022), resulting in expanded burned areas and prolonged fire seasons 

(Jolly et al., 2015; Richardson et al., 2022). The impact of wildfires, however, is not uniformly 

distributed across the globe, with variations stemming from differences in climatology and 

geographical conditions. The Western United States has long been identified as a major fire-

prone region, predominantly due to the recurrent presence of fire weather conditions, increasing 

droughts, and the abundance of fuel resources (Gannon & Steinberg, 2021; Jones et al., 2022; 

Zhang et al., 2020). The widespread occurrence of wildfires in the Western US has caused a 

surge in smoke emissions. In recent years, it was estimated that wildfire smoke accounted for 

around 40% of the total PM2.5 across the whole Western US and even 50% in the Northwestern 

region, exacerbated substantially from the 15-20% contribution in the early 2000s (Burke et al., 

2021). Previous epidemiological studies have linked wildfire smoke exposure to a variety of 

adverse health outcomes, particularly those affecting the respiratory system (Reid Colleen et al., 

2016).  

Mental health disorders, including anxiety disorders, have been another expanding threat to 

global public health in the past decades. According to the global burden of diseases (GBD) 

study, mental health disorders contributed to a total of 125.3 million (95% uncertainty interval 

(UI) = [93.0 – 163.2]) disability-adjusted life-years (DALYs) in 2019, increased substantially 

from 80.8 million (95% UI = [59.5 – 105.9]) in 1990. Anxiety disorders, in particular, were the 

most prevalent mental health condition that affected 970.1 (95% UI = [990.9 - 1044.4]) per 
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million individuals in 2019 (GBD Collaborators, 2022). The GBD 2019 revealed that anxiety 

disorders ranked among the top 25 leading contributors to the global DALYs for all populations 

and were among the top 10 contributors for females and adolescents (Murray et al., 2020). 

Regions with high socio-demographic indices, including Western Europe, Australia, and high-

income North America, exhibited the highest age-standardized incidence rates of anxiety 

disorders (Yang et al., 2021).  

The coupled increasing trend of wildfire activities and the prevalence of anxiety disorders has 

highlighted the need to investigate the mental health consequences associated with wildfires. 

Although a handful of studies have established the link between ambient PM2.5 and anxiety 

disorders in the US (Power et al., 2015; Pun et al., 2017), China (Shi et al., 2020; Zhao et al., 

2022), and the UK (Hao et al., 2022), evidence concerning wildfire smoke exposure remains 

inconclusive (Eisenman & Galway, 2022). For example, Mirabelli et al. reported that the 

prevalence of being unable to stop or control worrying more than half the time during the past 14 

days elevated by 30% (prevalence ratio = 1.30, 95% CI = [1.03 – 1.65]) among adults exposed to 

medium or heavy smoke for six weeks or more in the past year in Oregon, US (Mirabelli et al., 

2022). Similarly, Humphreys et al. found that wildfire smoke events were associated with 

heightened anxiety and depression in the rural Washington State community (Humphreys et al., 

2022). However, the absence of high-performance quantitative measurements of wildfire smoke 

PM2.5 has limited the potential for large-scale population studies that feature higher statistical 

power and validity. 

In addition to the inhalation of smoke PM2.5, wildfire itself may have adverse psychological 

effects that ultimately result in anxiety disorders. For example, a case study in Canada showed a 

positive association between to prevalence of generalized anxiety disorders and witnessing 
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homes being destroyed by the wildfire or living in a different home among survivors of the 2016 

Fort McMurray wildfire (Agyapong et al., 2018).  As reviewed by To et al., trauma-related 

factors, such as property loss or fearing the loss of loved ones, could increase the risk of anxiety 

disorders following wildfire events (To et al., 2021). However, those studies were limited in 

scope and did not quantify the magnitude of risk associated with wildfire exposure. Furthermore, 

it remains unclear whether certain population groups are more susceptible to anxiety disorders 

due to wildfire-related exposures since some individuals, such as women, are considerably more 

vulnerable to anxiety and stress-related disorders (Li & Graham, 2017; Yang et al., 2021).  

Therefore, the present study aimed to investigate the impact of wildfires on emergency 

department (ED) visits for anxiety disorders in the Western United States using a satellite-driven 

exposure dataset. The association between wildfires and anxiety disorders was explored through 

two potential pathways: 1) the inhalation of wildfire smoke PM2.5, and 2) the psychological 

effects of wildfire smoke events and visible fire points. Additionally, we also evaluated whether 

the association between wildfire and anxiety disorders differed among distinct sex, age, and 

ethnic groups. The findings of this study will enhance our mutual understanding of the mental 

health impact of wildfires and promote environmental justice by benefiting vulnerable 

populations. 

 

4.3. Methods 

4.3.1. ED visits for anxiety disorders 

We obtained ED visits data from five different Western US states, including Arizona (2010-

2018), California (2007-2018), Nevada (2009-2016), Oregon (2014-2018), and Utah (2007-
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2016). Anxiety disorders were defined as the International Classification of Disease, Tenth 

Revision (ICD-10) codes F40-F48 and the corresponding ICD-9 codes (300, 308, 309.0, 309.1, 

309.24, 309.28, 309.29, 309.3, 309.4, 309.8, and 309.9) were applied for records before Oct 1, 

2015. We only included patients whose primary reason for the ED visit was anxiety disorders. 

4.3.2. Exposure assessments 

Exposure to wildfire smoke PM2.5 was assessed with a one km satellite-driven model. In brief, 

we considered two different scenarios of PM2.5 pollution: total PM2.5 and background PM2.5 (non-

smoke PM2.5). The total PM2.5 model was trained with the data from regions that were affected 

by wildfire smoke. The background PM2.5 model was trained with data from the smoke-free 

regions (i.e., regions that were not affected by wildfire smoke). We then use both models to 

predict PM2.5 concentrations under different scenarios and subtract the background PM2.5 from 

the total PM2.5 to get wildfire smoke PM2.5. The detailed description of this model has been 

documented elsewhere (manuscript in preparation). We further aggregated wildfire smoke PM2.5 

and background PM2.5 to the zip-code level to match the ED visits data. We did a vaguer 

aggregation (aggregate by the first four digits of the zip codes) for all patients in Nevada, given 

that the full zip codes were not available for this state.  

Daily active wildfire points from 2007-2018 were obtained from the Fire Information for 

Resource Management System (FIRMS) data archive 

(https://firms.modaps.eosdis.nasa.gov/download/). We considered two proxies of exposure to 

wildfire: the number of active wildfire points within a given zip code and the cumulative fire 

radiative power (FRP) for all those fire points. The state of Nevada was excluded from this 

specific analysis, given that the complete zip code information was unavailable. 

https://firms.modaps.eosdis.nasa.gov/download/
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4.3.3. Meteorological data 

Daily maximum and minimum temperature in degrees Celsius and vapor pressure in pascals at 1 

km resolution from 2007-2018 were obtained from Daymet (https://daymet.ornl.gov/). We 

further calculated the daily mean temperature by averaging the daily maximum and minimum 

temperatures. Relative humidity was calculated using Magnus’ formula (Lawrence, 2005). 

Similar to wildfire smoke PM2.5, we also aggregated the Daymet meteorological data to the zip 

code level to align with ED visits records. 

4.3.4. Statistical analysis 

We used a case-crossover design to investigate the association between wildfire exposure and 

ED visits for anxiety disorders. Specifically, if an ED visit occurred on day X, we use all the 

other dates within the same month that fell on the same day of the week as day X to serve as self-

control days. The exposures of interest included: 1) two-day average wildfire smoke PM2.5  (the 

day of the ED visits and the previous day); 2) the occurrence of a wildfire smoke event (defined 

as wildfire smoke PM2.5 contributed to ≥ 25% of the total PM2.5 in the past two days); 3) the 

occurrence of a major wildfire smoke event (defined as wildfire smoke PM2.5 contributed to ≥ 

75% of the total PM2.5 in the past two days); 4) The total number of active wildfire points within 

a given zip code in the past two days; and 5) The cumulative FRP of all the wildfire points 

within a given zip code in the past two days. 

We employed a two-stage conditional logistic regression model to examine the association 

between the exposures of interest and ED visits for anxiety disorders. Stage one (model 1) 

considered only the effects of the exposures of interest, while stage two (model 2) controlled for 

background PM2.5. Common covariates for both models included federal holiday indicators and 

https://daymet.ornl.gov/
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natural splines for the day of year (DOY), mean temperature, and relative humidity (RH). The 

degrees of freedom were four for DOY and six for temperature and RH. The detailed model 

specification is shown as eq. 1 below. 

𝐿𝑜𝑔𝑖𝑡 𝑃(𝑌) =  𝛽0 +  𝛽1 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 +  𝛽2𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑃𝑀2.5 +  𝛽3ℎ𝑜𝑙𝑖𝑑𝑎𝑦𝑠 +

𝑛𝑠(𝐷𝑂𝑌) + 𝑛𝑠(𝑡𝑒𝑚𝑝) + 𝑛𝑠(𝑅𝐻)                                                                       (eq. 1) 

Where exposures of interest included 2-day average smoke PM2.5, smoke events, major smoke 

events, the total number of active fire points within a 2-day period, and their cumulative FRP, 

each exposure of interest was analyzed independently. Model 1 incorporated the exposures of 

interest and other covariates, while Model 2 further adjusted for background PM2.5 levels. 

Although an advantage of a case-crossover study is that the individual-level time-invariant 

variables (e.g., age, sex, race) are automatically controlled for in the design stage, we conducted 

multiple stratified analyses to determine if the association between wildfire-related exposures 

and ED visits for anxiety disorders varied across different population groups. Specifically, we 

evaluated whether the association varied across different sex (males/females), age groups 

(adolescents aged 5-17, adults aged 18-64, and the elderly aged 65 and above), races 

(white/black/Asian/others) as well as ethnicities (Hispanic/non-Hispanic).  

We also conducted some sensitivity analyses to see if the results were stable under different 

model settings. First, we explored various lagged effects of smoke PM2.5, ranging from the same-

day exposure of the ED visits (day 0) to the five-day moving average (day 0 plus four previous 

days). Second, we investigated the effects of different degrees of freedom for DOY (4-8), 

temperature (4-6), and RH (4-6).  
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All analyses were performed with R (version 4.0.5). Package survival was used to run the 

conditional logistic regression models. 

4.4. Results 

4.4.1. Study population 

This study analyzed 1,897,865 emergency department (ED) visits for anxiety disorders (Table 4-

1). The majority of cases (1,513,553, 79.8%) originated from California, while Arizona, Nevada, 

Oregon, and Utah contributed 184,772 (9.7%), 63,643 (3.4%), 67,953 (3.6%), and 67,944 (3.6%) 

cases, respectively. Among all participants, 60.5% (1,148,133) were female, with the percentage 

of females varying between 59.0% and 61.8% across different states. Adults accounted for 

83.0% (1,575,972) of the total ED visits, while children and adolescents made up 8.0% 

(152,465), and elderly individuals accounted for 8.9% (169,448). Out of all the participants, 

1,181,866 participants were non-Hispanic. The highest proportion of Hispanic participants was 

observed in California (580,410, 38.3%), while the lowest proportion was found in Oregon 

(8,264, 12.2%). A total of 1,228,284 (64.7%) participants were white, while black, Asian, and 

other racial groups accounted for 8.1% (154,493), 4.0% (76,312), and 23.1% (438,766), 

respectively. 

As illustrated in Table 4-2, the averaged 48-h exposure to smoke PM2.5 and background PM2.5 

was 0.93 ± 3.18 µg/m3 and 9.91 ± 4.42 µg/m3, respectively. A total of 629,622 smoke events 

occurred during the study period, including 142,436 that occurred on case days and 486,186 that 

occurred on control days. Additionally, we also identified 11,931 extreme wildfire smoke events, 

with 2,809 took place on case days and 9,122 on the control days. 
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A total of 4,264 cases occurred on days with active wildfire points in the same zip code (Nevada 

was excluded). On case days with active fire points, the mean fire count was 3.16 ± 8.34, with an 

average cumulative FRP of 415 ± 821. We also identified 14,574 control days with active fire 

points. The average fire count and cumulative FPR were 2.92 ± 7.48, and 211 ± 814, respectively 

(Table 4-2). 

4.4.2. The effects of wildfire smoke PM2.5 

We found that a 10 µg/m3 increase in 48-h exposure to smoke PM2.5 was associated with a 0.6% 

increase in the risk of ED visits for anxiety disorders (OR = 1.006 [1.000,1.012], p = 0.040) in 

model 1 (Table 4-3). The OR for smoke PM2.5 in the model adjusted for background PM2.5 was 

1.003 (95% CI = [0.998,1.010], p = 0.169).  

As illustrated in Fig. 4-1, a 10 µg/m3 increase in smoke PM2.5 was associated with a 1.8% 

increase in the risk of ED visits for anxiety disorders among females in model 1 (OR = 1.011, 

95% CI = [1.002, 1.021], p = 0.020). Smoke PM2.5 was also a significant risk factor for ED visits 

for anxiety disorders in elderly males (OR per 10 µg/m3 = 1.033 [1.011, 1.056], p = 0.003), 

elderly females (OR per 10 µg/m3 = 1.040 [1.006, 1.074], p = 0.027), and female adults (OR per 

10 µg/m3 = 1.012 [1.001,1.022], p = 0.027). No significant association between smoke PM2.5 and 

ED visits for anxiety disorders was observed for children and adolescents, regardless of sex. 

The race and ethnicity stratified analysis (supplemental Fig. S2-1) demonstrated that 48-h 

exposure to smoke PM2.5 was associated with the risk of ED visits for anxiety disorders in white 

females (OR = 1.012 [1.000, 1.024], p = 0.045). We also observed marginally significant 

associations in other females (OR = 1.021 [0.998, 1.044], p = 0.068) and Hispanic females (OR 

= 1.017 [0.997, 1.036], p = 0.073). 
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4.4.3. The effects of smoke events 

We found that a smoke event was not significantly associated with the risk of ED visits for 

anxiety disorders in the general population, regardless of the adjustment for background PM2.5 

(Table 4-3). Nevertheless, as demonstrated in Fig. 4-2, the age- and sex-stratified analysis 

revealed the association between smoke events in the past 48 hours and an elevated risk of ED 

visits for anxiety disorders among all females (OR = 1.013 [1.001, 1.025], p = 0.035), and female 

adults (OR = 1.015 [1.002, 1.029], p = 0.021). Both associations remained significant after 

adjusting for background PM2.5 (OR = 1.012 [1.000, 1.029], p = 0.044 for all females and OR = 

1.015 [1.002, 1.028], p = 0.026 for female adults). We found no significant association between 

smoke events and ED visits for anxiety disorders in males among all age groups. 

Furthermore, our results (Table 4-3) showed that a major smoke event was associated with an 

increased risk of ED visits for anxiety disorders in the general population (OR = 1.063 [1.015, 

1.113], p = 0.009), even adjusting for background PM2.5 (OR = 1.056 [1.009, 1.106], p = 0.019). 

While this association was not observed in females (Fig. 4-3), we found significant impacts of 

major smoke events on both adult males (OR = 1.082 [1.013, 1.158], p = 0.018) and elderly 

males (OR = 1.235 [1.052, 1.452], p = 0.010). However, we also found that major smoke events 

were negatively associated with ED visits for anxiety disorders in all female children and 

adolescents (OR = 0.812 [0.684,0.964], p = 0.008 and OR = 0.636 [0.474, 0.852], p = 0.002, 

respectively).   

4.4.4. The effects of active fire points and FRP 

As shown in Table 4-3, we found a marginally significant association between the number of 

visible fire points and ED visits for anxiety disorders in the general population (OR per fire point 
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= 1.002 [0.999, 1.005], p = 0.066). No association was observed for the cumulative FRP (OR per 

67.75 W = 1.000 [0.999, 1.001], p = 0.200). However, the age- and sex-stratified analysis (Fig. 

4-4) showed that an active fire point is associated with a 1.1% increase in the risk of ED visits 

for anxiety disorders among the elderlies (OR = 1.011 [1.000, 1.022], p = 0.042). Additionally, 

per IQR increase (67.75) in the cumulative fire radiative power is also associated with an 

increased risk of ED visits for anxiety disorders in all elderlies (OR = 1.003 [1.001, 1.005], p = 

0.008) and elderly males (OR = 1.003 [1.001, 1.006], p = 0.020) (supplemental Fig. S2-2). 

Adjusting for background PM2.5 did not change the associations for both fire counts and FRP. 

4.4.5. Sensitivity analyses 

As shown in supplemental Fig. S2-3, we found that the same day and 48-h average exposure to 

wildfire smoke PM2.5 were positively associated with ED visits for anxiety disorders. The ORs 

for same-day and 48-h average smoke PM2.5 were 1.006 (95% CI = [1.001,1.012], p = 0.030) and 

1.006 (95% CI = [1.000,1.012], p = 0.040), respectively. However, exposures with an extended 

temporal coverage showed no association with anxiety disorders. The different degrees of 

freedom for temperature and RH did not significantly alter the association between smoke PM2.5 

and ED visits for anxiety disorders (supplemental Figsf. S2-4 and S2-5) 

4.5. Discussion 

The present study investigated the association between wildfire-related exposures and ED visits 

for anxiety disorders in the Western US from 2007-2018. Our findings suggest that wildfire is 

associated with an increased risk of anxiety disorders through multiple pathways. First, we 

identified a positive link between wildfire smoke PM2.5 and ED visits for anxiety disorders. 

While previous epidemiological evidence is inconclusive on this specific association, the mental 

health impact of ambient PM2.5 has been widely documented. For example, Hao et al. found that 
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per 10 μg/m3 increase in PM2.5 was associated with an OR of 2.31 (95% CI = [2.15, 2.50]) for 

symptoms of nerves, anxiety, tension, or depression from UK Biobank data (Hao et al., 2022). 

Shi et al. further revealed that certain PM2.5 constituents, including organic carbon (OC) and 

elemental carbon (EC), were associated with anxiety and depression symptoms (Shi et al., 2020). 

The impact of ambient PM2.5 on the nervous system has also been supported by multiple 

toxicological studies (Chu et al., 2019; Ferreira et al., 2022). Wildfire smoke PM2.5 may also 

trigger neuroinflammation and thus exhibit neurotoxicity through a similar mechanism, given 

that the effect of wildfire smoke PM2.5 is not completely independent from ambient PM2.5 in this 

study (Fig. 4-1).  

In addition to the inhalation of smoke PM2.5, our findings also suggest that wildfire has a direct 

psychological impact that increases the risk of anxiety disorders. Specifically, we found that a 

major smoke event (in which smoke PM2.5 contributed to ≥ 75% of the total PM2.5) was 

associated with a 6.3% increase in the risk of ED visits for anxiety disorders in the general 

population (OR = 1.063 [1.015, 1.113], p = 0.009). During such major smoke events, the average 

wildfire smoke PM2.5 concentration was 53.56 ± 30.14 µg/m3. This concentration only 

corresponds to a cumulative OR of 1.030 [1.000, 1.061] if we assume a linear concentration-

response relationship for smoke PM2.5. The discrepancy between these two ORs suggests that 

major smoke events may be associated with ED visits not solely through the neurotoxicity of 

PM2.5. Additionally, adjusting for background PM2.5 slightly modified but did not change the 

significance of major smoke events, highlighting that the effect of major smoke events is 

partially independent of background PM2.5. Furthermore, we also identified that the number of 

active fire spots and FRP were associated with ED visits for anxiety disorders among the elderly, 

and these effects were completely independent of background PM2.5. Taken together, our 
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findings suggest that the direct psychological impact of wildfires also contributed to their 

association with anxiety disorders.  

Our stratified analyses further suggest that females are more susceptible to wildfire-related 

exposures with regard to anxiety disorders. Specifically, significant associations between smoke 

PM2.5 and anxiety disorders were only observed among female adults and all the elderly. Besides, 

a smoke event is positively associated with anxiety disorders in all females, while only major 

smoke events are linked to anxiety disorders among males. The sex disparity is possibly 

attributable to sex hormones, as previous literature reported that oestradiol and progesterone are 

associated with increased vulnerability to anxiety, trauma, and stress-related disorders in females 

(Andréen et al., 2009; Li & Graham, 2017). Such vulnerability not only results in an increased 

prevalence of anxiety disorders but also exacerbates the severity of anxiety symptoms and the 

overall burden of diseases in females (GBD Collaborators, 2022; Yang et al., 2021). The 

comprehensive impact of wildfires on females needs to be emphasized since they are also more 

susceptible to the respiratory outcomes associated with wildfires (Kondo et al., 2019),  

The elderly population is also disproportionately affected by wildfires, especially in the Western 

US. A study by Masri et al. reported that regions in California that experience significant 

wildfire effects tend to have a higher concentration of elderly residents (Masri et al., 2021). 

Factors such as household wealth, insurance coverage, and health conditions may hinder the 

ability of older individuals to adapt and recover from the adverse effects of wildfires 

(Wibbenmeyer & Robertson, 2022). Our findings indicate that, compared to other age groups, 

the elderly are more vulnerable to the anxiety disorders associated with wildfire-related 

exposures. Living with anxiety is associated with higher outpatient and inpatient costs among the 

elderly population. It is estimated that the excess annual adjusted healthcare costs of anxiety and 
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comorbid of anxiety and depression reached $80.0 and $119.8 million per 1 million elderly 

population in Canada (Vasiliadis et al., 2013). The total burden of disease attributable to 

wildfires is expected to grow among the elderly population, given the population aging and the 

continuous exacerbation of climate change in the US. 

Our study has several advantages. First, our study comprises 1,897,865 ED visits from five 

Western US states from 2007-2018. To our best knowledge, this is currently the largest and the 

most comprehensive research on the association between wildfire-related exposures and anxiety 

disorders, while previous studies typically focused on a small region with several hundred 

subjects. Second, we used high-performance satellite-driven exposure datasets to quantify 

wildfire-related exposures. With this advance, we were able to identify multiple pathways 

through which wildfires are associated with an increased risk of anxiety disorders. 

The present study also has some limitations. To begin with, all the ED visits data were at the zip 

code level. That might increase the risk of exposure misclassification due to the inability to 

ascertain precise residential addresses for all participants. Additionally, using active fire points 

within a certain zip code does not fully represent the visible fire points that might have 

psychological impacts on an individual since some fire points that fell out of this zip code may 

actually be closer to this individual’s living address. Moreover, our study used ED visits for 

anxiety disorders as the outcome of interest. Nevertheless, only a small portion of patients with 

anxiety symptoms will visit the emergency department. Under such a circumstance, we were not 

able to identify the association between wildfire-related exposures and milder anxiety symptoms. 

This may ultimately result in an underestimation of the mental health impact associated with 

wildfires. 

4.6. Conclusions 



 
 

96 
 

In this study, we used satellite-driven exposure datasets to examine the association between 

wildfire-related exposures and ED visits for anxiety disorders in the Western US from 2007-

2018. Our results suggest that wildfires are associated with an increased risk of anxiety disorders 

through two different pathways, including the inhalation of smoke PM2.5 and the direct 

psychological impact of smoke events and active fire points. The age- and sex-stratified analysis 

further revealed that females and the elderly population are more susceptible to anxiety disorders 

associated with wildfire-related exposures. Our findings highlight the need to protect vulnerable 

populations from the continuous exacerbation of global climate change. 
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Table 4-1. Study population  

 Arizona California Nevada Oregon Utah Overall 

N 184,772 1,513,553 63,643 67,953 67,944 1,897,865 

SEX       

Males 
75,710 

(41.0%) 

594,981 

(39.3%) 

25,697 

(40.4%) 

27,372 

(40.3%) 

25,972 

(38.2%) 

749,732 

(39.5%) 

Females 
109,062 

(59.0%) 

918,572 

(60.7%) 

37,946 

(59.6%) 

40,581 

(59.7%) 

41,972 

(61.8%) 

1,148,133 

(60.5%) 

Age 

groups 
      

5-17 
14,797 

(8.0%) 

120,235 

(7.9%) 

4,718 

(7.4%) 

6,232 

(9.2%) 

6,423 

(9.5%) 

152,405 

(8.0%) 

18-64 
152,477 

(82.5%) 

1,258,049 

(83.1%) 

53,879 

(84.7%) 

54,913 

(80.8%) 

56,654 

(83.4%) 

1,575,972 

(83.0%) 

65+ 
17,498 

(9.5%) 

135,269 

(8.9%) 

5,046 

(7.9%) 

6,808 

(10.0%) 

4,867 

(7.2%) 

169,488 

(8.9%) 

Ethnicity       

Non-

Hispanic 

132,933 

(71.9%) 

893,532 

(59.0%) 

51,800 

(81.4%) 

60,348 

(88.8%) 

43,253 

(63.7%) 

1,181,866 

(62.3%) 

Hispanic 
50,398 

(27.3%) 

580,410 

(38.3%) 

10,744 

(16.9%) 

6,371 

(9.4%) 

8,264 

(12.2%) 

656,187 

(34.6%) 

Missing 
1,441  

(0.8%) 

39,611 

(2.6%) 

1,099 

(1.7%) 

1,234 

(1.8%) 

16,427 

(24.2%) 

59,812 

(3.2%) 

Race       

White 
114,490 

(62.0%) 

959,218 

(63.4%) 

38,497 

(60.5%) 

56,605 

(83.3%) 

59,474 

(87.5%) 

1,228,284 

(64.7%) 

Black 
10,623 

(5.7%) 

132,832 

(8.8%) 

7,905 

(12.4%) 

2,089 

(3.1%) 

1,044 

(1.5%) 

154,493 

(8.1%) 

Asian 
2,110  

(1.1%) 

70,372 

(4.6%) 

1,823 

(2.9%) 

1,004 

(1.5%) 

1,003 

(1.5%) 

76,312 

(4.0%) 

Others 
57,549 

(31.1%) 

351,131 

(23.2%) 

15,418 

(24.2%) 

8,255 

(12.1%) 

6,423 

(9.5%) 

438,776 

(23.1%) 
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Table 4-2. Wildfire-related exposures 

 Control days 

(N = 6,452,523) 

Case days 

(N = 1,897,865) 

Overall 

(N = 8,350,546) 

Smoke PM2.5    

Mean (SD) 0.930 (3.17) 0.935 (3.20) 0.931 (3.18) 

Background PM2.5    

Mean (SD) 9.90 (4.42) 9.91 (4.41) 9.91 (4.42) 

Smoke events 486,186 142,436 629,622 

Major smoke events 9,122 2,809 11,931 

 
Control days  

(N = 14,574)  

Case days  

(N = 4,264) 

Overall 

(N = 18,838) 

Active fire points#    

Mean (SD) 2.92 (7.48) 3.16 (8.34) 2.97 (7.68) 

Cumulative FRP#    

Mean (SD) 211 (814) 415 (821) 362 (816) 

#: We only included days with active fire points for these statistics. Nevada was 

excluded from the analyses for fire points due to insufficient zip code 

information. 
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Table 4-3. The associations between wildfire-related exposures and ED visits for anxiety 

disorders 

Exposures Model 1 Model 2 

OR (95% CI) P-value OR (95% CI) P-value 

Smoke PM2.5
1 1.006 (1.000,1.012) 0.029* 1.003 (0.998,1.010) 0.169 

Smoke events 1.005 (0.998,1.013) 0.183 1.005 (0.997,1.012) 0.230 

Major smoke events 1.063 (1.015,1.113) 0.009* 1.056 (1.009,1.106) 0.019* 

Fire points 1.002 (0.999,1.005) 0.066 1.002 (0.999,1.005) 0.068 

Cumulative FRP2 1.000 (0.999,1.001) 0.200 1.000 (0.999,1.001) 0.205 

*: p < 0.05. Model 1 only included wildfire-related exposures and the covariates, while Model 2 also 

adjusted for background PM2.5. 1: The OR was for a 10 µg/m3 increase in 48-h smoke PM2.5. 2: The OR was 

for an IQR (67.75 W) increase in the cumulative FRP.  
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Fig. 4-1. The age- and sex-stratified analysis for 48-h smoke PM2.5. Model 1 only included 48-h smoke 

PM2.5 and the covariates. Model 2 also adjusted for background PM2.5. The ORs are for a 10 µg/m3 

increase in smoke PM2.5. 
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Fig. 4-2. The age- and sex-stratified analysis for smoke events. Model 1 only included smoke events 

and other covariates. Model 2 also adjusted for background PM2.5. 
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Fig. 4-3. The age- and sex-stratified analysis for major smoke events. Model 1 only included major 

smoke events and other covariates. Model 2 also adjusted for background PM2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

109 
 

 

Fig. 4-4. The age- and sex-stratified analysis for active fire points. Model 1 only included the total 

number of active fire points in the past 48h and other covariates. Model 2 also adjusted for background 

PM2.5.  
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5. Conclusions 

Aim 1 of this dissertation used satellite remote sensing to establish a high-performance model for 

ground-level O3 pollution from 2005-2018 in China. Our model considered two potential 

pathways through which surface-level O3 pollution can be produced. Compared to existing 

models, our model improved the spatial resolution to 0.05° and agreed well with the CNEMC 

monitoring data and the TOAR historical O3 concentrations. With this advance, we were able to 

identify the seasonal and spatial variation of O3 pollution in China, especially in the major city 

clusters like the NCP, the YRD, and the PRD. Our model would greatly benefit future 

epidemiological studies that aim to investigate the health impact of O3, especially the historical 

cohort studies established before 2013. Furthermore, our findings highlighted that ground-level 

O3 pollution is controlled by the concentrations of both NOx and VOCs. Under such a 

circumstance, only controlling for NOx is insufficient to mitigate O3 pollution in China. The next 

round of the APPCAP in China should prioritize VOCs control as well. 

Combining the O3 model with other satellite-driven exposure datasets. The aim 2 of this 

dissertation investigated the impact of ambient air pollution on the cognitive health among the 

Chinese elderly population using the CLHLS. The CLHLS comprises six rounds of survey that 

took place in 1998, 2000, 2002, 2005, 2008, 2014, and 2018, respectively. With the advance of 

the satellite-driven exposure model, we were able to use all the CLHLS data after 2005 to study 

the long-term impact of air pollution. Our results highlighted that annual mean PM2.5 and NO2 

concentrations were both positively associated with cognitive impairment in the single pollutant 

model. While the annual mean MDA8 O3 did not exhibit a positive correlation with cognitive 

impairment, our findings indicate that the average MDA8 O3 during the warm season (defined as 

April to September) significantly contributes to the risk of this adverse outcome, suggesting that 
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warm-season O3 is potentially a better exposure metric. Furthermore, the role of NO2 need to be 

emphasized since it was the only air pollutant that remained positively associated with cognitive 

impairment in the multi-pollutant model. 

In addition to anthropogenic air pollution, aim 3 of this dissertation investigated the mental 

health impact of air pollution and other related exposures caused by wildfires. Our study was the 

largest and most comprehensive investigation on the association between wildfire-related 

exposures and anxiety disorders. The findings of this study suggest that wildfires are associated 

with an increased risk of ED visits for anxiety disorders through two potential pathways, i.e., the 

inhalation of wildfire smoke PM2.5 and the direct psychological impacts of wildfire smoke events 

and active fire points. Furthermore, we found that women and the elderly population are more 

susceptible to the anxiety disorders associated with wildfire-related exposures. Our study was the 

first to quantify the magnitude of the association between wildfire-related exposures and ED 

visits for anxiety disorders. Given the continuous exacerbation of global climate change, the 

mental health consequences associated with wildfires warrant further investigation. 
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6. Appendix A. Supplemental materials for manuscript 1 
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Table S1-1. List of the input variables 

Abbreviation name Source 

DISPH Zero plane displacement height MERRA-2 

PBLH Planetary boundary layer height MERRA-2 

ALBEDO Surface albedo MERRA-2 

EFLUX Total latent energy flux MERRA-2 

T10M 10 meter air temperature MERRA-2 

USTAR Surface velocity scale MERRA-2 

PRECTOT Total precipitation MERRA-2 

SWGDN Surface incoming shortwave flux MERRA-2 

RH Relative humidity MERRA-2 

U Eastward wind MERRA-2 

V Northward wind MERRA-2 

PS Surface pressure MERRA-2 

QV Specific humidity MERRA-2 

T Air temperature MERRA-2 

OMEGA Vertical pressure velocity MERRA-2 

TROPPT Tropopause pressure based on thermal estimate MERRA-2 

RH_C Relative humidity MERRA-2 

U_C Eastward wind MERRA-2 

V_C Northward wind MERRA-2 

OMEGA_C Vertical pressure velocity MERRA-2 

PS_C Surface pressure MERRA-2 

QV_C Specific humidity MERRA-2 

T_C Air temperature MERRA-2 

PV_C Ertels potential vorticity MERRA-2 

Boundary-layer 

O3 Gap-filled boundary-layer column ozone OMPROFOZ 

Elevation Elevation 

ASTER 

GDEM 

LANDUSE_10 Cropland, rainfed ESA CCI 

LANDUSE_11 Herbaceous cover ESA CCI 

LANDUSE_12 Tree or shrub cover ESA CCI 

LANDUSE_20 Cropland, irrigated or post flooding ESA CCI 

LANDUSE_30 

Mosaic cropland (>50%) / natural vegetation (tree, 

shrub, herbaceous cover) (<50%) ESA CCI 

LANDUSE_40 

Mosaic natural vegetation (tree, shrub, herbaceous 

cover) (>50%) / cropland (<50%) ESA CCI 

LANDUSE_50 

Tree cover, broadleaved, evergreen, closed to open 

(>15%) ESA CCI 

LANDUSE_60 

Tree cover, broadleaved, deciduous, closed to open 

(>15%) ESA CCI 

LANDUSE_61 Tree cover, broadleaved, deciduous, closed (>40%) ESA CCI 

LANDUSE_62 Tree cover, broadleaved, deciduous, open (15•]40%) ESA CCI 
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LANDUSE_70 

Tree cover, needleleaved, evergreen, closed to open 

(>15%) ESA CCI 

LANDUSE_71 Tree cover, needleleaved, evergreen, closed (>40%) ESA CCI 

LANDUSE_72 Tree cover, needleleaved, evergreen, open (15•]40%) ESA CCI 

LANDUSE_80 

Tree cover, needleleaved, deciduous, closed to open 

(>15%) ESA CCI 

LANDUSE_81 Tree cover, needleleaved, deciduous, closed (>40%) ESA CCI 

LANDUSE_90 

Tree cover, mixed leaf type (broadleaved and 

needleleaved) ESA CCI 

LANDUSE_100 

Mosaic tree and shrub (>50%) / herbaceous cover 

(<50%) ESA CCI 

LANDUSE_110 

Mosaic herbaceous cover (>50%) / tree and shrub 

(<50%) ESA CCI 

LANDUSE_120 Shrubland ESA CCI 

LANDUSE_121 Evergreen shrubland ESA CCI 

LANDUSE_122 Deciduous shrubland ESA CCI 

LANDUSE_130 Grassland ESA CCI 

LANDUSE_140 Lichens and mosses ESA CCI 

LANDUSE_150 

Sparse vegetation (tree, shrub, herbaceous cover) 

(<15%) ESA CCI 

LANDUSE_152 Sparse shrub (<15%) ESA CCI 

LANDUSE_153 Sparse herbaceous cover (<15%) ESA CCI 

LANDUSE_160 Tree cover, flooded, fresh or brakish water ESA CCI 

LANDUSE_170 Tree cover, flooded, saline water ESA CCI 

LANDUSE_180 

Shrub or herbaceous cover, flooded, 

fresh/saline/brakish water ESA CCI 

LANDUSE_190 Urban areas ESA CCI 

LANDUSE_200 Bare areas ESA CCI 

LANDUSE_201 Consolidated bare areas ESA CCI 

LANDUSE_202 Unconsolidated bare areas ESA CCI 

LANDUSE_210 Water bodies ESA CCI 

LANDUSE_220 Permanent snow and ice ESA CCI 

ROAD_LENGTH Total road length gROADs 

NO2 OMI tropospheric column Nitrogen dioxide OMI 

Population Population Landscan 

FLASH Lightning activity GEOS-Chem 

FRP* Fire radiative power MODIS 

A priori L22_24 * Gap-filled a priori L22-L24 partial column ozone OMPROFOZ 

A priori L24 * Gap-filled a priori L24 partial column ozone OMPROFOZ 

OMI L22_L24* Gap-filled retrieved L22-L24 partial column ozone OMPROFOZ 
* Variables not included in the original model but used for parameter comparison. 
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Fig.S1-1. Study workflow Abbreviations: SAO, Smithsonian Astrophysical Observatory; OMI, Ozone 

Monitoring Instrument; MERRA-2, the Modern-Era Retrospective analysis for Research and 

Applications, Version 2. 
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Fig. S1-2. Distribution of the Tropospheric Ozone Assessment Report (TOAR) monitoring stations. 

Red circle dots with black outlines represent the location of TOAR monitoring stations. Abbreviations: 

WLG, Mt. Waliguan; SDZ, Shandianzi; LAN, Lin’an; LFS, Longfengshan; XGLL, Xianggelila; AKDL, 

Akedala; GCH, Gucheng, CMA. China Meteorological Administration; TOAR: Tropospheric Ozone 

Assessment Report.  
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Fig. S1-3. Comparison of model performance on the training dataset (2014-2019) with different 

OMI-derived partial column ozone (original model). Left column: random CV; middle column: spatial 

CV; right column: temporal CV. Top row: model with a priori ozone profile L22-L24; second row (from 

top to bottom): model with a priori ozone profile L24; third row: model with L22-L24 retrievals; bottom 

row: the original model with retrieved ozone profile L24. The functions on the bottom-right corners are 

the regression functions between the predicted and observed monthly mean MDA8 ozone concentrations. 

Red dashed lines: the regression line between the predictions and observations; black solid lines: the x = y 

line; The color scale represents the density of the points. Abbreviations: MDA8, daily maximum 8-hour 

average; OMI, Ozone Monitoring Instrument. 
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Fig. S1-4.  An example of the spatial artifacts in the predicted monthly mean MDA8 ozone 

concentrations in the YRD (April 2019). Panel A was generated from the model with a priori ozone 

profile L22-L24; panel B was generated from the original model with OMI L24 retrieval. The green box 

represents YRD, and the yellow dashed line encircles an example of the spatial artifacts (the hard 

horizontal gap in predicted ozone concentrations). Abbreviations: MDA8, daily maximum 8-hour 

average; OMI, Ozone Monitoring Instrument; YRD, Yangtze River Delta. 
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Fig.S1-5. Season-specific cross-validation results for the original model with OMI L24 retrieval. 

Left column: random CV; middle column: spatial CV; right column: temporal CV. Top row: spring 

(March-April-May); second row (from top to bottom): summer (June-July-August); third row: autumn 

(September, October, November); bottom row: winter (December-January-February). The functions on 

the bottom-right corners are the regression functions between the predicted and observed MDA8 ozone 

concentrations. Red dashed lines: the regression line between the predictions and observations; black 

solid lines: the x = y line; The color scale represents the density of the points. Abbreviations: MDA8, 

daily maximum 8-hour average; OMI, Ozone Monitoring Instrument. 
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Fig.S1-6. Comparison of model performance in rural/urban areas using OMI L24 retrieval. Left 

column: random CV; middle column: spatial CV; right column: temporal CV. Upper row: model 

performance at rural CNEMC sites; Lower row: model performance in urban CNEMC sites. The 

functions on the bottom-right corners are the regression functions between the predicted and observed 

MDA8 ozone concentrations. Red dashed lines: the regression line between the predictions and 

observations; black solid lines: the x = y line; The color scale represents the density of the points. 

Abbreviations: CNEMC, China National Environmental Monitoring Centre; MDA8, daily maximum 8-

hour average; OMI, Ozone Monitoring Instrument. 
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Fig.S1-7. Trend comparison between model predictions and the TOAR historical monitoring data 

(original model using OMI L24 retrieval). Each row represents a TOAR monitoring site. Blue lines: the 

observed monthly mean MDA8 ozone concentrations. Orange lines: the model predicted monthly MDA8 

ozone concentrations. Abbreviations: MDA8, daily maximum 8-hour average; OMI, Ozone Monitoring 

Instrument. TOAR, Tropospheric Ozone Assessment Report. 
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Fig.S1-8. Trend comparison between model predictions and the TOAR historical monitoring data 

(model trained with OMI L24 retrieval + MODIS FRP). Each row represents a TOAR monitoring site. 

Blue lines: the observed monthly mean MDA8 ozone concentrations. Orange lines: the model predicted 

monthly MDA8 ozone concentrations. Abbreviations: FRP, fire radiative power; MDA8, daily maximum 

8-hour average; MODIS, Moderate Resolution Imaging Spectrometer; OMI, Ozone Monitoring 

Instrument. TOAR, Tropospheric Ozone Assessment Report. 
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Fig.S1-9. Raw correlation between OMPROFOZ L24 partial column ozone and ground-level 

monitoring data. The function on the upper-right corner is the regression function between the 

OMPROFOZ L24 partial column ozone and the CNEMC surface MDA8 ozone concentrations. Red 

dashed line: the regression line as the regression function represents; black solid line: the x = y line; The 

color scale represents the density of the points. Abbreviations: CNEMC, China National Environmental 

Monitoring Centre; MDA8, daily maximum 8-hour average;  
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Fig.S1-10. model performance without the OMI L24 retrieval. Left panel: random CV; middle panel: 

spatial CV; right panel: temporal CV. The functions on the bottom-right corners are the regression 

functions between the predicted and observed monthly mean MDA8 ozone concentrations. Red dashed 

lines: the regression line between the predictions and observations; black solid lines: the x = y line; The 

color scale represents the density of the points. Abbreviations: CV, cross-validation; MDA8, daily 

maximum 8-hour average; 
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Fig.S1-11. Trend comparison between model predictions and the TOAR historical monitoring data 

(OMI-excluded model). Each row represents a TOAR monitoring site. Blue lines: the observed monthly 

mean MDA8 ozone concentrations. Orange lines: the model predicted monthly MDA8 ozone 

concentrations. Abbreviations: MDA8, daily maximum 8-hour average; OMI, Ozone Monitoring 

Instrument. TOAR, Tropospheric Ozone Assessment Report. 
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Fig. S1-12. The importance ranking of the input predictors. Orange bars in the left panel: the spring-

excluded (all months except for March-April-May) model; blue bars in the right panel: the spring (March-

April-May) model. The red downward arrows denoted that the relative ranking of the variable dropped in 

the spring model compared to other seasons; the blue upward arrows denoted that the relative ranking of a 

variable increased in spring. Variables’ importance was generated with a permutation method. 
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Fig.S1-13. The OMI tropospheric column NO2 concentrations in the Yangtze River Delta region 

(August 2019, the marked regions were consistent to Fig. 5) The boxes represent some YRD cities and 

their surrounding area; A: Bengbu and Huainan City; B: Nanjing Metropolitan Area; C: Anqing and 

Jinhua City; D: Quzhou City. Abbreviations: MDA8, daily maximum 8-hour average. 
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Fig. S1-14. The comparison of the mean ozone season (March-September) MDA8 ozone 

concentrations between our model predictions and the CNEMC monitoring data over 2014-2019. 

The blue columns on the left represent the CNEMC observations; the orange column on the right 

represents our model predictions. The height of the columns and the error bars represent the mean MDA8 

ozone concentrations and the standard error. Abbreviations: CNEMC, China National Environmental 

Monitoring Centre; MDA8, daily maximum 8-hour average; NCP: the North China Plain; PRD: the Pearl 

River Delta; YRD: the Yangtze River Delta. 
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Fig. S1-15. The comparison of the summertime (June-July-August) mean MDA8 ozone 

concentrations between our model predictions and the CNEMC monitoring data over 2014-2019. 

The blue columns on the left represent the CNEMC observations; the orange column on the right 

represents our model predictions. The height of the columns and the error bars represent the mean MDA8 

ozone concentrations and the standard error. Abbreviations: CNEMC, China National Environmental 

Monitoring Centre; MDA8, daily maximum 8-hour average; NCP: the North China Plain; PRD: the Pearl 

River Delta; YRD: the Yangtze River Delta. 
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Fig. S1-16 Locations of the Shandong Peninsula and Central East China. The solid line encircles the 

Shandong Peninsula, while the dashed line encircles the Central East China area. 
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Fig. S1-17. The comparison of the summertime (June-July-August) mean MDA8 ozone 

concentrations between our model predictions and the CNEMC monitoring data over 2014-2019 

for selected regions. Upper panel: Central-East China; Lower panel: the Shandong Peninsula. The 

blue columns on the left represent the CNEMC observations; the orange column on the right represents 

our model predictions. The height of the columns and the error bars represent the mean MDA8 ozone 

concentrations and the standard error. Abbreviations: CNEMC, China National Environmental 

Monitoring Centre; MDA8, daily maximum 8-hour average; NCP: the North China Plain; PRD: the Pearl 

River Delta; YRD: the Yangtze River Delta. 
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7. Appendix B. Supplemental materials for manuscript 3 

 

Fig. S2-1. The race- and ethnicity-stratified analysis for 48-h smoke PM2.5. Model 1 only included 48-

h smoke PM2.5 and the covariates. Model 2 also adjusted for background PM2.5. The ORs are for a 10 

µg/m3 increase in smoke PM2.5. 
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Fig. S2-2. The age- and sex-stratified analysis for cumulative FRP. Model 1 only included FRP and 

the covariates. Model 2 also adjusted for background PM2.5. The ORs are for a 67.75 W increase in the 

cumulative FRP. 
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Fig. S2-3. The sensitivity analyses for different exposure time windows. Model 1 only included 48-h 

smoke PM2.5 and the covariates. Model 2 also adjusted for background PM2.5. The ORs are for a 10 

µg/m3 increase in smoke PM2.5. 
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Fig. S2-4. The sensitivity analyses for different degrees of freedom of temperature. Model 1 only 

included 48-h smoke PM2.5 and the covariates. Model 2 also adjusted for background PM2.5. The ORs are 

for a 10 µg/m3 increase in smoke PM2.5. 
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Fig. S2-5. The sensitivity analyses for different degrees of freedom of RH. Model 1 only included 48-

h smoke PM2.5 and the covariates. Model 2 also adjusted for background PM2.5. The ORs are for a 10 

µg/m3 increase in smoke PM2.5. 

 

 

 


