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Abstract	
	

Investigating	Associations	between	Model-based	Reinforcement	Learning	and	Model-based	
Navigation	
By	Heejae	Choi	

	
Model-based	and	model-free	reinforcement	learning	and	boundary-based	and	landmark-

based	 learning	are	conceptually	similar	 in	that	model-based	and	boundary-based	systems	pay	
attention	 to	 the	 overall	 structure	 and	 environment,	 while	 model-free	 and	 landmark-based	
systems	 focus	 on	 a	 reward	 or	 landmark	when	making	 a	 decision.	 The	 brain	 regions	 that	 are	
activated	by	 the	 two	 reinforcement	 learning	 systems	are	also	 in	parallel	with	 the	 two	 spatial	
learning	systems.	Model-based	learnings	involves	prefrontal	cortices	and	hippocampi,	which	are	
also	 activated	 by	 boundary-based	 learning.	 Model-free	 learning	 induces	 activity	 in	 the	
dorsolateral	striatum,	ventral	striatal	projections	and	putamen	activities,	while	landmark-based	
learning	 induces	 activity	 in	 the	 dorsolateral	 striatum.	 In	 the	 current	 study,	we	 examined	 the	
behavioral	 correlation	 between	 model-based/model-free	 reinforcement	 learning	 and	
boundary/landmark	 based	 spatial	 learning,	 in	 order	 to	 investigate	whether	 or	 not	 there	 is	 a	
domain	general	cognitive	system	that	supports	both	model-based/boundary-based	learning	and	
model-free/landmark-based	learning.	Model-based	and	model-free	learning	was	assessed	with	
the	two-stage	decision	task,	and	boundary	and	landmark-based	learning	was	assessed	with	the	
boundary-landmark	task.	We	tested	26	participants,	and	no	 	significant	correlation	was	found	
between	 model-based	 decision-making	 characteristics	 and	 boundary-based	 spatial	 learning.	
There	was	 no	 significant	 correlation	 between	model-free	 decision-making	 characteristics	 and	
landmark-based	 spatial	 learning.	 However,	 model-free	 learning	 indicators	 showed	 negative	
correlation	with	 the	average	error	 rate	 in	 the	boundary-landmark	 task,	 and	 the	model-based	
indicator	 also	 showed	 a	 positive	 correlation	 with	 the	 average	 error	 rate	 in	 the	 boundary-
landmark	 task.	 This	 indicates	 that	 increased	 reliance	 on	 the	model-free	 decision	making	was	
associated	with	better	performance	on	the	spatial	learning	task.	

	
Keywords:	 	 Model-based	 learning,	 Model-free	 learning,	 Boundary-based	 learning,	

Landmark-based	learning
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Introduction 

A large body of research from cognitive science, neuroscience, and behavioral economics 

suggest that decision-making is primarily based on two systems: controlled and automatic 

processing (Daw, Niv & Dayan, 2005; Daw, Gershman, Seymour, Dayan & Dolan, 2011; 

Dickinson 1985; Kahneman & Frederick, 2002; Kahneman, 2003; Loewenstein & O’Donoghue, 

2004). In reinforcement learning, decision-making is based on the predictions of the value of an 

action, or the expected amount of reward that the action would bring. Consistent with controlled 

and automatic distinctions, reinforcement-learning theories distinguish between two algorithms 

of learning: model-based and model-free reinforcement learning (Daw et al., 2005). Model-based 

learning refers to having a cognitive map of the action-outcome contingencies in a given 

environment, while “model-free” denotes a more pavlovian form of learning in which one is only 

sensitive to recent history of rewards and punishments (Doll, Simon, & Daw, 2012; Huys et al., 

2012).  

Prior work has shown that these two systems are analogous to the psychological 

constructs of goal-directed vs habitual behavior. In reinforcement learning terms, ‘goal-directed’ 

is also called ‘model-based’, and the ‘habitual’ system is often compared to ‘model-free’ system. 

One of the key distinctions between habitual and goal-directed behavior is outcome devaluation 

(Daw et al., 2005). In habitual behavior, there is a strong association between an action and the 

situation that the action was performed in (Dickinson, 1985). Habitual behavior repeats actions 

that were rewarded. When the value of the outcome changes, the habitual system fails to adjust 

to the new value and thus favors the selection the previously realized value. Model-free system is 

similar to habitual system since both systems are very sensitive to reward availability, but it is 

different on the aspect that model-free system can learn that a previously rewarded option is not 
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rewarded anymore, and it leads to make a different choice to get rewards. This notion is based on 

the “law of effect,” which states that an action is more likely to be repeated in the future when it 

is rewarded. (Thorndike, 1911). 

Investigations into the neurobiological underpinnings of model-based and model-free 

systems has revealed that model-free learning involves activity of dopamine neurons and their 

ventral striatal projections (Schultz, Dayan, & Montague, 1997; Yin, Knowlton, & Balleine, 

2004; Yin, Ostlund, Knowlton, & Balleine, 2005). A lot of research suggest that the posterior 

lateral putamen is a key region that is involved in model-free learning, as putamen is part of 

dorsal striatum (Dayan & Dolan, 2012; Balleine & O’Doherty, 2010; Tricomi, Balleine, & 

O’Doherty, 2009; Wunderlich, Smittenaar, & Dolan, 2012). These findings follow the 

conventional idea that the dorsolateral striatum is associated with habitual or reflexive control 

(Packard & Knowlton, 2002).  

On the other hand, the goal-directed or model-based system is based on the instant 

revaluation of the new outcome and is able to adjust its choices (Doll et al., 2012). The model-

based system generates behavior based on an ‘internal map’ of actions and its outcomes 

(Culbreth, Westbrook, Daw, Botvinick, & Barch et al., 2016). Some studies suggest that animals 

can also make model-based choices, by having representations of the possible outcomes of their 

candidate actions (Dickinson & Balleine, 2002). Model-based learning primarily involves 

prefrontal cortex activity (Daw et al., 2005; Sutton & Barto, 1998). Research by McDannald, 

Lucantonio, Burke, Niv, and Schoenbaum (2011) showed that the ventromedial prefrontal cortex 

(vmPFC) and orbitofrontal cortex (OFC) plays a significant role in learning in response to the 

change of the value and learning driven by changes in reward identity, which is necessary for 

model-based learning. Some studies suggest that it is reliant on the lateral and dorsolateral 
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prefrontal cortex (dlPFC; Smittenaar, FitzGerald, Romei, Wright & Dolan, 2013), anterior 

caudate (Balleine & O’Doherty, 2010), and the ventral striatum (Daw et al., 2011).  

Some literatures suggested that model-based learning is affected by hippocampus 

activity. According to Corbit & Balleine (2000), rats with hippocampal lesions showed severely 

impaired performance in value-degrading and impaired ability to update the changed action-

outcome contingency. Research of Simon & Daw (2011) and Johnson and Redish (2007) 

suggested that hippocampus may be related to cognitive map and model-based learning.  

To evaluate habitual/goal-directed behaviors and to observe how they readjust the value 

of new outcomes, studies with rats were done by using outcome devaluation paradigms (Balleine 

& Dickinson, 1998; Balleine & O’Doherty, 2010; Yin et al., 2005). Outcome devaluation 

paradigms primarily use foods pellet as reinforcers, and most widely used one is lever-pressing 

task. One example is that experimenters train rats to press the lever when they are hungry, and 

then observe their behavior when they are full. If they are full, the value of lever-pressing should 

be degraded. If the rats revalue the lever-pressing, we would see it as a goal-directed behavior. If 

behavior of the rats are merely based on the previous reward, we would refer it as a habitual 

behavior (Doll et al., 2012). Human studies use similar tasks with fMRI scanning, or also involve 

more complex decision-making tasks associated with rewards. For example, in study by  

Gläscher, Daw, Dayan and O’Doherty (2010), participants were given with two choices and the 

reward availability according to their choices changed over time. However, in recent literatures, 

the most widely used task for model-free/ model-based behavior study is the two-stage task.  

The two-stage task is one of the most widely used decision making tasks that is used for 

investigating model-based or model-free reinforcement learning. The task was first used in Daw 

et al.’s study (2005) and has been validated by many other studies (Daw et al., 2011; Otto, 
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Gershman, Markman, & Daw., 2013; Wunderlich et al., 2012; Voon et al., 2015). Using this 

task, Daw and his colleagues studied the neural signatures of model-based and model-free based 

strategies (Daw et al., 2011). Before this study, the standard view was that model-based and 

model-free work separately and in parallel, supported by lesion studies with rat (Daw et al., 

2011; Killcross & Coutureau, 2003; Yin et al., 2004; Yin et al., 2005). However, Daw et al.,’s 

functional MRI study with humans (2011) suggested that people demonstrate both strategies in a 

mixed way, shown by overlapping neural signals, when they make a choice. Other computational 

modeling studies with the two-stage task also found that participants demonstrate a mixture of 

model-based and model-free strategies when performing the task (Daw et al., 2011; Gershman, 

Markman & Daw, 2013; Gillan, Otto, Phelps, & Daw, 2012; Otto et al., 2013).  

Otto and his colleagues combined the model-based and model-free decision making task 

(two-stage task) with working memory task to see whether working memory task affects the 

performance of the two-stage task (Otto et al., 2013). They showed that increased working 

memory load led participants to be more reliant on the model-free learning strategy and that 

participants could actively trade-off the cognitive demands of the environment with their choice 

strategies by trial by trial. When there was no working memory load, participants showed a 

mixture of the two strategies. These findings posit that decision makers exhibit both strategies 

when they make choices, and that implementation of model-based processes depends on the 

availability of working memory and executive functioning. They also showed that model-based 

and model-free system can be dissociated.  

Certain clinical populations show distinctive model-based or model-free reinforcement 

learning behaviors that may also be associated with differences in executive functioning. 

Population of obsessive-compulsive disorder (OCD) and disorders that involve both natural 
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(binge eating) and artificial (methamphetamine) rewards showed more of model-free learning in 

a decision task (Voon et al., 2015). Schizophrenia patients display reduced model-based decision 

making (Culbreth et al., 2016), and they show intact model-free reinforcement learning processes 

(Weickert et al., 2002) and implicit reinforcement learning (Heerey, Bell-Warren, & Gold, 

2008). It has been reported that schizophrenia patients also show reduced spatial working 

memory (Fleming et al., 1997; Glahn et al., 2003; Goldman-Rakic, 1994; Park & Holzman 

1992). Similarly, obsessive-compulsive disorder patients also exhibit spatial working memory 

deficits (Purcell, Maruff, Kyrios, & Pantelis, 1998; Van der Wee, Ramsey, Jansma, & Denys, 

2003), and spatial cognitive dysfunction (Nakao et al., 2009).  

In the current work, we compare performance in model-based and model-free decision-

making to spatial processing. Interestingly, some studies have shown that the brain regions that 

are involved in spatial cognition work in parallel with the regions that are involved in 

reinforcement learning in normal populations. Doeller and Burgess (2008) observed the 

increased activation of the right dorsal striatum when participants were learning of landmark-

related locations, whereas the right posterior hippocampus activation was associated with the 

learning of boundary-related locations. It is significant to note that striatal regions that are 

involved in model-free or habitual learning (dorsal striatum, posterior putamen) are also 

activated in landmark-based learning, and hippocampus was also related to model-based learning 

in previous literatures. Horne et al. also showed that rats with impaired hippocampi performed 

worse in boundary-based learning compared to control group, supporting that boundary-based 

learning is dependent on hippocampus (Horne, Iordanova & Pearce, 2010). 

The goal of the current work is to examine the relationship between spatial cognition 

(boundary-landmark learning) and model-based and model-free decision-making. To assess 
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model-based and model-free learning, we will utilize the two-stage task. To assess spatial 

learning we will use the boundary-landmark task. The Boundary-Landmark Task is an object-

location memory task which was first developed and used by Doeller and Burgess (2008). It has 

been used in several studies to examine spatial memory and incidental learning of location 

(Bullens et al., 2010; Doeller & Burgess, 2008). Doeller and Burgess used this task to investigate 

which brain regions are involved while people learn the locations of objects in relation to 

landmark or boundary. We chose to compare performance on these tasks to determine whether 

internal cognitive representations of reward environments are related to the ability to create 

cognitive representations of physical environments.  

If an internal cognitive representation of reward environment is similar to that of physical 

environment, similar systems will be activated by the two-stage task and the boundary-landmark 

task, and thus, the performance of two tasks will be correlated. We hypothesize that model-free 

learners in the two-stage task will demonstrate landmark-based spatial learning, indicated by 

fewer errors in landmark-based learning compared to boundary-based learning. If boundary-

based learning is related to model-based processing, we expect to see that individuals who show 

model-based learning in the two-stage task will show more of a boundary-based spatial learning. 

We will also examine the relationship between model-based and model-free learning and self-

report measures of personality. We expect that people who had higher score at BIS-reward and 

fun-seeking criteria would show more model-free behavior and significantly affected by reward 

experience in the two-stage task.  

This study is significant in that no study to date has directly compared the performance 

on these two tasks (the two-stage decision making task and the boundary-landmark task) to 

determine whether similar processes are involved decision-making and spatial learning. Through 
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this present study, we expect to see whether the internal representation of reward environment 

involve similar system of that of physical environment.  

Methods 

Participants 

The study sample was consisted of 26 subjects, ages 18-45 (Mage = 22.32, SD = 5.86), 

recruited through advertisements at the Emory University main campus. The sample was 

unequally distributed in terms of gender: 54% female and 46% male. Every subject has read and 

signed the informed consent before the experiment. Participants were told that they will be 

receiving the compensation based on their performances on the task, but everyone received $20 

for their participation after study completion and a post-evaluation, regardless of their 

performance. This study was approved by the Institutional Review Board at Emory University. 

Instructions for each task were verbally given to the participants in the beginnings of each 

tasks. The two-stage task had additional written instructions on the computer screen before they 

start the task. The experimenter stayed with the participant in the same room while they were 

reading the instructions and until the end of the practice trials.   

Behavioral Tasks 

Two-stage Task. The two-stage task was developed based on Markov decision task 

(Daw et al., 2011) where subjects are given with two sequential choices. Each choice image had 

a single Tibetan letter on a colored background. Different background colors indicated that they 

were in a different stage from the last set of choices; two choices at the same stage had the same 

background color, while different stage choices had different background colors (Figure 1). The 

task was consisted of 200 trials, and every subject had additional 10 practice trials to be familiar 

with the task before they start the main trials. There was no time limitation for choices.  
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In the first stage of a trial, two choices appeared side by side, and participants were asked 

to choose between two choices using a keyboard (stage-1 choice). After a choice was made, 

participants were moved to the second-stage where the image of their choice moved to the top of 

the screen, and another set of two choices appeared below the first choice. There were two 

possible set of choices in stage-2. Each choice in the first stage led to one set with 70% of 

probability and sometimes led to the other set with 30% of probability. The transition from the 

first stage to the second stage to one set with 70% of probability was called as ‘common 

transition’, and the transition to the other set with 30% of probability was called as ‘rare 

transition.’ After a choice at the second stage was made, either ‘+1’ or ‘+0’ was displayed, 

indicating that they were rewarded for the trial or not. The reward probabilities of each of the 

four stage-2 choices were all independent, ranging from 25% to 75%. They were manipulated 

with random walk; the probabilities started at a random value, but they were slowly changed 

over time with the addition of a random noise. This made sure that participants continue to 

sample the options, not getting to the same state and repeat their responses.  

Boundary-Landmark Task. Participants were placed in the virtual reality circular arena 

on a first-person perspective, and they were able to navigate the arena and move the viewpoint 

by pressing arrow buttons. The task began with the learning phase, where four objects (vase, gift, 

cake, and champagne) were placed in the arena one at a time. Then they were asked to move 

around the arena, find and learn the location of the object, and asked to collect the object by 

walking over the object. After the learning phase, one of four objects was presented on a white 

background for 2 seconds (the cue phase), and participants were asked to replace the object 

within the arena, on the location they thought the object was (the replace phase). After their 

response, the object was appeared in its correct location. To make sure participants were learning 
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from feedback, they were required to collect the object before proceeding to the next trial (the 

feedback phase).  

Each set had 16 trials with 3 blocks in total. The location of the landmark (traffic cone) 

was changed between blocks. The location of two objects were presented in relation to the 

boundary, whereas the other two objects were placed relative to the landmark. Participants were 

given with feedback every time they placed the object; participants would have learned the 

relationships between the object and landmark or boundary.  

Scene-Face Attention Task. To control for individual differences in attention during the 

tasks, subjects also completed a matching to sample task. The task was adapted from Weigelt et 

al.’s study (2013). It was originally designed to measure the discrimination threshold. This task 

is used as a controlled task; we hypothesized that we would see no correlation between 

participants’ performance on the other tasks and this task. On each trial, a fixation cross appeared 

on the center of the screen for one second. After that, a picture of face or scene (sample item) 

was presented on the center of the screen, and after one second, the picture disappeared and a test 

pair of either a face or scene were presented side-by-side. The test pair was consisted of the 

sample item and a distractor. Participants were asked to choose which item they had just seen. 

This task requires the ability to hold face or scene information in memory for a few hundred 

milliseconds.  

Self-Report Questionnaires  

After completing three tasks, all participants were asked to complete the demographic 

survey and two self-report questionnaires. They were informed that they could skip any 

questions they did not want to respond to.  
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BIS/BAS. Behavioral Inhibition, Behavioral Activation, and Affective Responses to 

Impending Reward and Punishment (Carver & White, 1994). This was designed based on the 

Gray’s reinforcement sensitivity theory in which he suggested that behavior and affect are based 

on mainly two systems: a behavioral inhibition system (BIS) and behavioral activation system 

(BAS; 1981,1982). Twenty-four questions were asked in total.  

TEPS. Temporal Experience of Pleasure Scales. (Gard, Gard, King, & John, 2005). It is 

designed to separately measure the individual differences in anticipatory pleasure which derives 

from the motivated approach to the goal and consummatory pleasure which comes from goal 

achievement. Anticipatory pleasure scale is related to reward responsiveness, and consummatory 

pleasure scale is related to appreciation of positive stimuli and receptiveness of diverse 

experiences (Gard et al., 2005).  It has 18 items in total: 10 items for anticipatory pleasure scale 

and 8 items for consummatory pleasure scale (Gard et al., 2005).  

Demographic Survey. Information on age, race, ethnicity, occupation, gender, education 

level, marital status, handedness, income level, and highest degree earned was collected.  

Procedures 

 All experiments took place in the Translational Research in Affective Disorders 

laboratory at Emory University (TReAD lab, PAIS room 450). Participants were informed about 

possible harms, estimated time, compensations and brief descriptions of tasks via informed 

consent. After the subject had read and signed the informed consent, he/she was given with the 

first task which was one of the three main tasks (Two-stage task, boundary-landmark Task, and 

Scene-Face attention Task) in a quasi-random order. The participants were told that the amount 

of compensation will be based on their performance on the task. After finishing three tasks, 

participants were asked to complete the demographic survey and two self-report questionnaires 



INVESTIGATING ASSOCIATIONS BETWEEN MODEL-BASED REINFORCEMENT 
LEARNING AND MODEL-BASED NAVIGATION 
 

11 

(BIS/BAS and TEPS). Then, participants were given with $20 and debriefed that everyone has 

got $20 as a compensation. All tasks and questionnaires were administered on an Apple desktop. 

The two-stage task was administered in Python 2.7 using Pygame 1.9. The boundary-landmark 

task was administered UnrealEngine2 Runtime software (Epic Games, NC) and the Scene-face 

attention task was administered using Matlab software (Mathworks, MA). Self-report measures 

were collected using Inquisit (Millisecond Software, WA).  

Results 

Demographics 

We analyzed the two-stage and the boundary-landmark tasks separately to determine 

whether the performances in these tasks showed effects of gender, age, or education. For the 

two-stage task, there was no significant effect of age, gender, and years of education on stay 

probabilities in each trial type. We also analyzed effects of gender, age, or education on self-

report questionnaires. BAS total score was significantly correlated with age [r(24) = -0.580, p = 

0.002]. Among BAS criteria, fun-seeking subscale score [r(24) = -0.421, p = 0.036] and reward 

subscale score [r(24) = -0.673, p < 0.001] were negatively correlated with age. For TEPS, 

anticipatory pleasure subscale score was significantly correlated with age [r(24) = -.0.513, p = 

0.009], but consummatory pleasure subscale score did not show any significant correlation with 

age. The self-report questionnaire responses did not differ by gender.  

Two-Stage Task 

In the two-stage task, participants encountered four different trial types: trials on which 

the transition from stage one to stage two was common (70%) and the trial was rewarded 

(Common-Rewarded; CR), trials on which the transition was common but the trial was not 

rewarded (Common-Unrewarded; CU), trials on which the transition was rare (30%) but the trial 
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was rewarded (Rare-Rewarded; RR), and trials on which the transition was rare and the trial was 

not rewarded (Rare-Unrewarded; RU). We calculated the stay probabilities for each of the four 

trial types. Stay probability is the percentage of trials, for each type, where the participant 

selected the same stage 1 choice that they selected on the previous trial. For example, if the 

participant selects option A in stage 1, experiences a common transition, and receives a reward, 

this would be a Common-Rewarded trial. If the participant then selected option A in stage 1 of 

the next trial, it would be considered a stay trial for the Common-Rewarded category. The mean 

stay probabilities for each trial type are displayed in Figure 2 and Table 1.  

There was no significant difference between the stay probability after the common 

transition and the stay probability after the rare transition [t(25) = 0.802, p = 0.430]. Participants 

showed significantly higher stay probability when they were previously rewarded on the choice 

[t(25) = 3.978, p = 0.001]. The mean probability of staying when rewarded in the previous trial 

was 0.6892, while mean probability of staying when not rewarded was 0.6102. 

Consistent with previous studies, we used mixed effect logistic regression to assess 

effects of model-based and model-free learning at the group level (Daw et al., 2011; Gillian et 

al., 2012; Otto et al., 2013; Smittenaar et al.,2013). We used the lme4 linear mixed effects 

package in the R statistical environment to conduct the analysis and to estimate the regression 

coefficients. The equation that we used for mixed effect logistic regression is shown below: 

log 𝑜𝑑𝑑𝑠 = 	𝛽0 + 𝛽1	 𝑟𝑒𝑤𝑎𝑟𝑑 + 𝛽2(𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) + 𝛽3(𝑟𝑒𝑤𝑎𝑟𝑑 ∗ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) 

The beta and p-value of the predictors are shown in Table 2. 

As previous literatures showed, we observed a significant effect of reward, which is the 

marker of model-free learning. Also, consistent with previous work, we did not observe a 

significant effect of transition. However, we did not observe a significant reward-by-transition 
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interaction, providing lack of evidence of model-based learning, which is inconsistent with 

previous findings. In other studies that used the two-stage task, participants demonstrated the 

mixture of model-free and model-based learning processes, showing both significant effect of 

reward and significant interaction between reward and transition (Daw et al., 2011; Gillan et al., 

2015; Otto et al., 2013). Since our sample showed significant effect of reward but no significant 

interaction between reward and transition, we can say that our sample population demonstrated 

more of a model-free reinforcement learning than a model-based reinforcement learning. Also 

consistent with previous work, we used the lme4 package to calculate individual beta values for 

each participant for reward, transition, and reward-by-transition to conduct to examine the 

indicators of model-free and model-based behaviors for each individuals (Bates et al., 2012; 

Culbreth et al., 2016; Daw et al., 2011; Gillan et al., 2015; Otto et al., 2013; Smittenaar et al., 

2013; Voon et al., 2015).  

In addition, we analyzed effects of gender, age, or education on the two-stage task. There 

were no significant effect of age, gender, and years of education on stay probabilities in each trial 

type. We also analyzed the correlation between self-report measures and the task. The beta value 

of reward-transition interaction was positively correlated with BIS scale [r(24) = 0.426, p = 

0.030]. Higher BIS score mean more responsiveness to uncertain, nonrewarding stimuli. 

However, there was no difference in BIS score between rewarded trials and unrewarded trials.  

For Temporal Experience of Pleasure Scale (TEPS), we did not observe a correlation 

between anticipatory pleasure and decision-making performance, but did observe a marginally 

significant correlation between consummatory pleasure subscale score and staying probability 

after unrewarded trials [r(24) = 0.332, p = 0.098]. Additionally, total TEPS score and its subscale 

consummatory pleasure score were positively correlated with the stay probability after Common-
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Unrewarded trials, although the significance was marginal [r(24) = 0.339, p = 0.090; r(24) = 

0.349, p = 0.081]. The other TEPS subscale - anticipatory pleasure scale – score was not 

correlated with stay probability after CU trials.  

Boundary-Landmark Task 

23 out of 26 participants completed 3 blocks of the task. Rest of the three participants 

completed only 2 blocks, but the statistical results including them were not significantly different 

from the results excluding them. Our statistical analysis results below also include the 

participants who completed only 2 blocks.  

 We first analyzed boundary errors and landmark errors by calculating the distance 

between the responses of participants and the actual object location. Boundary error was the 

distance between the participant’s response and the actual location of the object that was placed 

in relation to the landmark, and landmark error was the distance between a participant’s response 

and the actual location of the object that was placed in relation to the boundary. Then, using the 

individual’s error values, we also calculated the influence scores. Relative influence of boundary 

versus landmark was calculated by dividing the landmark errors by the sum of landmark errors 

and boundary errors using equation 1: 

[𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 = ?@ABCDAEF
?@ABCDAEFG	?HIJBCAEK

]. 

where 𝑑MNO?PNQR is a landmark error, and 𝑑STUO?NQV is a boundary error.  

The influence values ranged from 0 to 1. The value closer to 1 means that a participant 

was using the boundary more when they were learning the location of the object, while a value 

closer to 0 means that a participant used the landmark more for location learning. The overall 

performance of the boundary-landmark task is shown in Table 3. An influence score over 0.5 

indicates a greater influence of boundary-based learning relative to landmark-based learning. In 
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our sample, 11.538% of participants (3 out of 26) had influence scores greater than 0.5, 

indicating more boundary-based learning, while 88.462% (23 out of 26) had scores lower than 

0.5, indicating more landmark-based learning. In other words, our sample showed more of a 

landmark-based learning (Minfluence = 0.4141, SD = 0.0169).  

For the boundary-landmark task, boundary error and overall influence did not 

significantly differ in age, gender, and years of education. However, landmark error and age 

were positively correlated [r(24) = 0.577, p = 0.003]. Average error rate was not significantly 

differ by age, gender, and years of education, although age was positively correlated with 

marginal significance [r(24) = 0.348, p = 0.088]. The boundary-landmark task performances did 

not show any correlations with self-report responses.  

Between-Task Effects 

Correlation between stay probabilities after four trial conditions in the two-stage 

task & errors and influence in the boundary-landmark task. The average error value 

(average of boundary error and landmark error) was negatively correlated with stay probabilities 

after all trial conditions except Rare-Unrewarded condition [CR: r(24) = -0.559, p = 0.003, CU: 

r(24) = -0.400, p = 0.043, RR: r(24) = -0.390, p = 0.049]. We examined the correlation between 

CR stay probability and average error values in boundary-landmark task. CR stay probability is a 

general marker of performance in two stage task, since the best strategy at common-rewarded 

trial was to stay/repeat their first choice regardless of model-based strategy or model-free 

strategy. We found negative correlation between stay probabilities at CR trials and average error 

value in boundary-landmark task; people who performed better in two-stage task also performed 

better in boundary-landmark task, making less errors [r(24) = -0.559, p = 0.003].  
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In regards to transition without considering the effect of reward, people who chose to stay 

in their first choice after common transitions tend to make less errors in the boundary-landmark 

task [landmark error: r(24) = -0.387, p = 0.051, boundary error: r(24) = -0.518, p = 0.007, 

average error: r(24) = -0.514, p = 0.007]. Disregarding the effect of transition, people who had 

higher stay probability after rewarded trials tended to make less error in the boundary-landmark 

task [landmark error: r(24) = -0.406, p = 0.040, boundary error: r(24) = -0.529, p = 0.005, 

average error: r(24) = -0.529, p = 0.005]. Stay probability after rewarded trials was positively 

correlated to the influence value, even though its significance is marginal [r(24) = 0.351, p = 

0.079]. This would mean that people who were more sensitive to reward showed less error rate in 

the boundary-landmark task, and at the same time they showed more boundary-based learning 

behavior. 

Correlation between model-based characteristics in the two-stage task & errors and 

influence in the boundary-landmark task. According to previous literatures that used the two-

stage task, model-based learners show lower staying probability after RR trial condition 

compared to RC trial condition, and lower staying probability in UC trial condition than UR trial 

condition (Figure 2). This is because model-based learners would attribute a reward after a rare 

transition to the stage 1 choice that is most likely to lead to the rewarding stage 2 choice, the 

unchosen stage 1 option. Alternatively, a model-free learner would attribute the stage 2 reward 

following a rare transition to the stage 1 choice, despite the fact that repeating the choice is 

unlikely to lead the participant back to the rewarding state. Based on these two distinctive 

characteristics of model-based learning, we defined two new variables: Rewarded-difference (CR 

– RR) and Unrewarded-difference (RU – CU).  Rewarded-difference did not correlate with any 

of the variables in the boundary-landmark task. Unrewarded-difference was significantly 
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correlated with landmark error [r(24) =0 .402, p = 0.042] and correlated with average error with 

marginal significance [r(24) = 0.370, p = 0.063]. This means the bigger the difference between 

stay probability of unrewarded-rare and unrewarded-common, the higher the landmark error rate. 

However, Rewarded-difference did not show any correlations with the boundary-landmark task 

behavior, and the direction of correlation between Rewarded-difference and the boundary-

landmark task error values and the direction of correlation between Unrewarded-difference and 

the error values in the boundary-landmark task were different. Hence, the result was not 

supportive for our hypothesis. Moreover, both Rewarded-difference and Unrewarded-difference 

did not show any significant correlations with the influence value in the boundary-landmark task. 

This data does not support the hypothesis that increased model-based characteristics are 

correlated with increased reliance on boundary-based spatial learning.  

Furthermore, we analyzed the correlation between the influence value in the boundary-

landmark task and individual’s reward-by-transition interaction coefficient which is another 

variable that other studies have used as an indicator of model-based learning (Daw et al., 2011; 

Otto et al., 2013; Gillan et al., 2015). There was no significant correlation between individual’s 

reward-by-transition interaction coefficient and influence value. The reward-by-transition 

interaction coefficient was not correlated with any of the error values in the boundary-landmark 

task (landmark error, boundary error & average error). 

Correlation between model-free characteristics in the two-stage task & errors and 

influence in the boundary-landmark task. To examine correlations between model-free 

learning characteristics and landmark-based learning, we analyzed the correlation between the 

influence in the boundary-landmark task and individual’s effect of reward (beta) which is an 

indicator of model-free learning in the two-stage task. While there was no significant correlations 



INVESTIGATING ASSOCIATIONS BETWEEN MODEL-BASED REINFORCEMENT 
LEARNING AND MODEL-BASED NAVIGATION 
 

18 

between individual’s reward beta and the boundary-landmark task influence value, there was 

marginally significant negative correlation between the individual’s reward beta and landmark 

errors [r(24) = -0.340, p = 0.062], and also average error [r(24) = -0.363, p = 0.068].  

In addition, we already mentioned that people who stayed more after rewarded trials 

tended to make less errors in the boundary-landmark task. However, to eliminate the possibility 

of baseline effect and to see the effect of reward more directly, we created a new variable by 

subtracting the stay probability after unrewarded trials from stay probability after rewarded trials 

(Rewarded stay prob – Unrewarded stay prob). It did not show any significant correlation with 

the boundary-landmark influence value, but there was a marginal significance in correlation with 

average error in the boundary-landmark task [r(24) = -0.346, p = 0.084]. Overall, the statistical 

analyses could not support that model-free learning is correlated to landmark-based learning. 

Scene-face attention task analysis 

 24 out of 26 participants could complete the scene-face attention task. Two participants 

did not do the scene-face attention task due to time constraint and were excluded from the 

analysis. As we expected, the result was not correlated with any of the variables from the two-

stage task and the boundary-landmark task (all p values greater than 0.3). This lack of correlation 

suggests that general level of attention and engagement in laboratory tasks did not generate our 

observed effects between spatial navigation and decision making performances.  

Discussion 

We studied human choice behavior in sequential decision-making task and spatial 

learning task. More specifically, we aimed to see behavioral correlation between model-

free/model-based reinforcement learning assessed using the two-stage task and 

landmark/boundary-based incidental learning in the boundary-landmark task. The goal of this 
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project was to investigate whether there is a domain general cognitive system that supports both 

model-based/boundary-based learning vs. model-free/landmark-based learning. Our hypotheses 

were: 1) Model-free learning characteristics in the two-stage task will be correlated with 

landmark-based learning in the boundary-landmark task, 2) model-based learning characteristics 

in the two-stage task will be correlated with boundary-based learning in the boundary-landmark 

task.  

We found that several measures of reward sensitivity were correlated with reduced errors 

in the boundary-landmark task. Specifically, the correlation study showed that people who stayed 

after rewarded trials performed better in the boundary-landmark task, indicated by significant 

negative correlations with landmark error, boundary error, and average error. They also showed 

more boundary-based learning (positive correlation with the influence value), even though the 

significance was marginal. People who had higher reward beta value in regression analysis had 

smaller value of errors with marginal significance, but the beta value did not show any 

significant correlations with the influence value with the boundary-landmark task. In summary, 

there were insufficient evidence of relationship between model-free learning and landmark-based 

learning, even though reward-sensitive people performed better making less errors in the 

boundary-landmark task. We did not find any significant relationship between model-based 

decision-making characteristics and boundary-based spatial learning. Increased reliance on 

model-based strategies was not correlated with influence of boundary-based learning.  

It is possible that we failed to identify a relationship between model-based decision-

making and boundary-based spatial learning because of our specific sample. Many previous 

studies that used the two-stage task found both significant effect of reward and significant 

reward-by-transition interaction, suggesting that overall their participants demonstrated a mixture 
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of model-based and model-free learning. Inconsistent with previous work with the two-stage 

task, our sample showed significantly higher stay probability after rewarded trials and showed 

lack of transition-by-reward interaction, indicating that the sample was more prone to model-free 

reinforcement learning. Similarly, the boundary-landmark task performance of our group relied 

heavily on landmark-based learning. Thus, it is possible that our group lacked individuals with 

advanced model-based and boundary-based processing, and that a sample with more similarities 

to previously collected data would exhibit a stronger relationship between these processes. The 

lack of interaction between reward and transition in our sample suggests that our participants 

utilized more model-free strategies than other samples, potentially hindering our ability to 

distinguish any relationship between model-based processing and boundary-landmark influence.  

In this work, we also examined the relationships between task performance and self-

reported measures of mood and personality. We did not see significant correlation between 

anticipatory pleasure scale reward effect, but we did observe marginally significant correlations 

between consummatory pleasure scale and the two-stage task performances. The positive 

correlation between consummatory pleasure scale and staying probability after unrewarded trials 

would mean that people who had higher score in consummatory pleasure scale were more 

willing to stay even after no rewards. However, it was not correlated with any of the model-

based learning indicators. Also, in previous findings, women showed higher TEPS score than 

men (Gard et al., 2005), but our sample did not. 

Our result showed that people who showed more model-free behavior (people who are 

more sensitive to reward availability) performed better in boundary-landmark task by making 

less errors. This may be due to the structure of the boundary-landmark task. The boundary-

landmark task provided a feedback of correct answer after their responses for every trial. We had 
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16 trials by repeating each trials with four objects, four times. Regardless of boundary-based 

learning or landmark-based learning, it is plausible that people who are more susceptible to learn 

from feedbacks and to change their choices made less errors in the boundary-landmark task as 

the trials were proceeded. In the two-stage task, people who would change their choice easily 

depending on the result or outcome would be model-free learners. In this way of thinking, it can 

be one of explanations for our finding that people who are more reliant on model-free learning 

system performed better in the boundary-landmark task.  

Limitations 

As mentioned above, the design of the boundary-landmark task has a limitation in that it 

had feedbacks with the correct location of the object (either boundary-based or landmark-based) 

after each trial, and the object and its location (whether it is based on boundary or landmark) 

remained same and repeated four times in one block. However, the two-stage task provided 

reward based on probabilities with random walk, for each trial after participants made their 

sequential choices, and it did not show or directly told them what the best strategy to maximize 

their reward is. For future studies, we suggest to modify the structure of the boundary-landmark 

task in a way to be more parallel with the two-stage task, such as giving rewards based on their 

performance on each trial and not giving the correct answer feedback, or providing feedbacks for 

certain number of trials, not every trial.   

Our study decision had several limitations related to sample size and length of our 

experimental session. Our sample size was small; a bigger sample size might show more varied 

learning types. It is possible that our sample did not represent the population well; a larger 

sample size would have more model-based learning components. Furthermore, other studies that 

used the boundary-landmark task implemented four blocks on each participant, but this study 
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could only do 3 blocks due to time constraints. It is possible that boundary-based learning 

emerges in later trial, after more experience.  

Many participants reported that they felt fatigue while they were doing the task, since 

they had to perform three different tasks with multiple trials. Expanding this study into multiple 

test sessions would allow for increased length of individual tasks and decreased fatigue. 

Additionally, some participants reported that they felt nausea while they were doing the 

boundary-landmark task, due to an unfamiliar movement in the virtual reality environment. It is 

possible that these factors affected their performance level.  

It is also possible that stress level would have affected our participants’ decision making 

behavior. Some studies observed increase in habitual behavior following acute stress (Schwabe 

& Wolf, 2009; Schwabe & Wolf, 2011). More recent study done by Radenbach et al. (2015) used 

similar two-stage sequential decision task and showed that physiological stress response were 

associated with model-based behavioral control; cortisol-reactivity and model-based control 

were negatively correlated. We did not measure a stress level of each participant, but considering 

that many of our participants reported fatigue and many repeated trials with three different tasks, 

it is plausible that their increased stress level hinder them from demonstrating model-based 

learning behavior.  

Future directions.  

Future work with this data would include fitting the data into computational models. 

Previous studies that involved the two-stage task did a computational modeling to see whether 

participants exhibited more of model-based or model-free learning behaviors (Culbreth et al., 

2016; Daw et al., 2005; Daw et al., 2011; Gläcier et al., 2010; Voon et al., 2015).  
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A model should have a parameter reflecting model-based and model-free weight (Daw et 

al., 2011). Fitting a computational model with a single parameter that captures relative reliance 

on model-based and model-free strategies would allow for direct comparisons between relative 

model-based and model-free w parameter and boundary-landmark influence from the spatial 

navigation task. SARSA Temporal Difference learning model is the most frequently used model 

for model-free behavior analysis. SARSA TD learning model follows this equation: 

𝑄 𝑠, 𝑎 = 		𝑄 𝑠, 𝑎 + 𝛼 𝑟′ + 𝛾𝑄 𝑠\, 𝑎′ − 𝑄 𝑠, 𝑎  

where 𝑠 and 𝑠′ refers to the current and next state, 𝑎 and 𝑎′ refers to the current and next action, 

and r is reward. In other words, 𝑄(𝑠, 𝑎) means the optimal strategy to maximize the expected 

value. For model-based learning, most of the modeling studies are based on the Bellman 

equation: 

𝑄 𝑠^, 𝑎^ = 	𝐸`\[𝑟 + 𝛾max	 𝑄(𝑠, 𝑎)|𝑠, 𝑎] 

which means the optimal strategy to maximize the expected value (Daw et al., 2011; Gillan et al., 

2011).  

Future work could also implement neuroimaging to directly determine whether neural 

activation in one task is associated with neural activation in the other task. We would use 

functional MRI scanning to compare the neural correlates between two tasks, within subjects. 

We would expect that dorsolateral striatal activation will be correlated with model-free learning. 

Implementing fMRI methods would provide more convincing data concerning whether two 

learning behaviors are based on a similar system.  

Future work could also utilize multiple measures of decision-making and spatial learning. 

The two-stage task is not the only task that could examine model-free or model-based 

reinforcement learning behavior, as mentioned in the introduction. However, most of the studies 
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that used other tasks were done with rats, using maze and lever-pressing task. Future work could 

focus on creating human analogs of these tasks to fully examine behavior.  

Finally, our study was completed with normal population, but we expect to see studies 

with participants from different clinical population. The boundary-landmark task has not yet 

been tested with specific clinical populations, although spatial working memory and location 

learning were frequently studied with different clinical populations and showed some significant 

difference from normal population.  

Conclusion 

The present study has significance in that it is the first within-subject study to directly 

compare behavioral performances between the two-stage task and the boundary-landmark task. 

We tried to establish a connection between two different domains (spatial cognition and reward 

structure environment) and their internal representations, endeavoring to quantify and 

operationally prove the abstract idea that internal cognitive representation of physical 

environment and reward environment would be similar, and there would be a domain-general 

system. We could not find significant correlation between model-based learning indicators and 

boundary-based learning indicators and nor between model-free learning indicators and 

landmark-based learning indicators. However, our study suggests that increased reliance on 

model-free decision-making would be associated with better performance in spatial-learning 

task. Further studies with modified the boundary-landmark task and computational modeling are 

expected.  
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A. 

 

 

 

B.  

 

Figure 1. Task design of the two-stage task. (A) On every trial, two choices (blue boxes) are 
presented in the first-stage, and participants are asked to choose one. Each choice leads to one of 
two second-stage choices (green or pink boxes) with 70% of probability to one set of choices 
(common transition), and 30% of probability to the other set of choices (rare transition). Reward 
probability is random. (B) Timeline of a single trial.  
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A.  B.  

Figure 2. Model predictions for the two-stage task. (A) Model-free reinforcement learning 
choice strategy. Regardless of transition type, a first-stage choice that was previously rewarded 
will be repeated. (B) Model-based reinforcement learning choice strategy. An interaction 
between transition type and reward is expected. After RR trial, model-based learners would 
change the value of the first-stage option that they did not choose. Adapted from “Model-Based 
Influences on Humans’ Choices and Striatal Prediction Errors,” by Daw, Gershman, Seymour, 
Dayan, and Dolan, 2011, Neuron, 69, p. 1206. Copyright 2011 by Elsevier.  
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Figure 3. Results from the two-stage task. Averaged across subjects. Error bars are standard 
errors of the mean. 
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Table 1.  

Result from 2-stage-task: Stay probability after each condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Common transition  Rare transition 

    

 M SD  M SD 

Rewarded 0.6929 0.1578  0.6794 0.1473 

Unrewarded 0.6124 0.1335  0.6018 0.1561 
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Table 2.  

Results of the Logistic Regression Investigating the Influence of Previous Outcome and Previous 
Transition Type on First-Stage Response Repetition in 2-stage-task.  

 

 

 

 

 

Note. Standard errors are given in parentheses. * indicates p-value less than 0.01 

 

 

 

 

 

 

 

 

 

Predictor Estimate (SE) z-value p-value 

(Intercept) 0.478 (0.136) 3.522 0.0004 * 

Reward 0.361 (0.135) 2.674 0.0075 * 

Transition 0.019 (0.093) 0.205 0.8374 

Reward X Transition 0.103 (0.145) 0.709 0.4780 
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A.  

 

B.  

Figure 4. Boundary-Landmark Task. (A) Replace phase and feedback phase in virtual arena of 
the boundary-landmark task. (B) Trial structure. Adapted from “Parallel striatal and hippocampal 
systems for landmarks and boundaries in spatial memory,” by Doeller, King, and Burgess, 2008, 
Proceedings of the National Academy of Sciences, 105 (15) p. 5916. Copyright 2008 by The 
National Academy of Sciences of the USA. 
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Figure 5. Scene-face attention task. Adapted from “Domain-specific development of face 
memory but not face perception,” by Weigelt, Koldewyn, Dilks, Balas, Mckone, and Kanwisher, 
2013, Developmental Science, 17(1), 47–58. Copyright by John Wiley & Sons Ltd. Reproduced 
with permission. 
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Table 3.  

Boundary-Landmark Task and Two-Stage Task Correlation Result 
 Landmark error Boundary error Average error Influence 

Rewarded  -0.406 (0.040)* -0.529 (0.005)** -0.529 (0.005)** 0.351 (0.079) 

Unrewarded  -0.212 (0.299) -0.350 (0.080) -0.329 (0.100) 0.221 (0.278) 

Common  -0.387(0.051) -0.518 (0.007)** -0.514 (0.007)** 0.321 (0.110) 

Rare -0.207 (0.310) -0.307 (0.127) -0.296(0.141) 0.222 (0.275) 

Common 
Rewarded 
(CR) 

-0.426 (0.030)* -0.561 (0.003)** -0.559(0.003)** 0.349 (0.081) 

Rare  
Rewarded 
(RR) 

-0.314 (0.119) -0.383 (0.054)* -0.390 (0.049)* 0.298 (0.139) 

Common 
Unrewarded 
(CU) 

-0.289 (0.152) -0.409(0.038)* -0.400(0.043)* 0.268 (0.186) 

Rare 
Unrewarded 
(RU) 

-0.005 (0.980) -0.162(0.430) -0.119(0.563) 0.084 (0.682) 

Rewarded 
Difference  
(CR – RR) 

-0.211 (0.300) -0.322 (0.109) -0.309 (0.125) 0.112 (0.585) 

Unrewarded 
Difference 
(RU –  CU) 

0.402 (0.042)* 0.312 (0.121) 0.370 (0.063) -0.240 (0.237) 

Reward Beta -0.371 (0.062) -0.318 (0.114) -0.363 (0.068) 0.279 (0.168) 

Reward X 
Transition 
Interaction 
Beta 

0.065(0.754) -0.086 (0.677) -0.039 (0.850) -0.061 (0.769) 
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Note. p-values are given in parentheses. Bolded values without * indicates marginal significance 
(p-value between 0.05 and 0.1). * indicates p-value less than 0.05. ** indicates p-value less than 
0.01.  

Appendix A. Instruction for the two-stage task 
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