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Abstract 

Advances in Methods and Evaluations for Distributional Semantic Models using Computational 

Lexicons  

By Meera Satya Hahn 

Word embedding has drastically changed the field of natural language processing and has 

become the norm for distributional semantic models. Previous methods for generating word 

embeddings did not take advantage of the semantic information in sentence structures. In this 

work we create a new approach to word embedding that leverages structural data from sentences 

to produce higher quality word embeddings. We also introduce a framework to evaluate word 

embeddings from any part of speech. We use this framework to assess the quality of word 

embeddings produced with different semantic contexts and show that sentence structure is rich 

with semantic information. Our evaluations show that our new word embeddings far out preform 

the original word embeddings in all parts of speech. Furthermore we examine the task of 

sentiment analysis in order to demonstrate the superiority of our system’s word embeddings.  
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Chapter 1

Introduction

Natural language processing relies upon the ability to accurately represent words. Recently

traditional token representations of words have given way to dense vector representations of

words. These word vectors, also called word embeddings, have been a breakthrough innovation

in the field of natural language processing (NLP). The purpose of word embeddings is to

quantify the semantics of a word in a vector format, that can then be used computationally

in an algorithm. The majority of tasks in NLP now use word embeddings as features because

of enhanced performance and accuracy. Even larger applications, such as search engines, use

word embeddings in their algorithms because it allows them to return better results to users.

A shortcoming of current word embeddings is that they have only been robustly evaluated

on nouns. While we can assume from the proven success of the embeddings in many tasks

that the general architecture of the embedding process has created a sound semantic model

overall, we are eager to test the quality of embeddings of all parts of speech.

The small set of verb embedding tests that exist, show that verb embeddings do not carry

nearly the same amount of semantic richness that noun embeddings do. Without proper

evaluations it is hard to test if this is true for all verbs. Additionally, it creates the question

of which other parts of speech are also failing to generate good embeddings. In this work

we create new evaluation methods for all parts of speech. We also create higher quality
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embeddings for all parts of speech by modifying the current word embedding process. By

doing this, we will be able to further increase the accuracy of the tasks these distributional

semantic models are used in.

Both previous methods of word representation and the current most popular method of

word embedding were created based on the distributional hypothesis [23]. The hypothesis

states that words in similar contexts have similar meanings. For example, bodies of text

that contain words about food such as banana and pasta usually contain these words in the

context of the action of eating. Word representations seek to encode this type of semantic

similarity in the words vector representation, with the goal that words about food will lie near

each other in the vector space. The distributional hypothesis postulates that by examining

and comparing the di↵erent contexts in which words are used, a model of semantic similarity

and di↵erence can be built.

One purpose of this work is to understand and choose how to formulate these di↵erent

contexts. There is previous work on improving the generation of word embeddings, however

most techniques have not experimented with leveraging the structural features of language

to choose context words. We examine if the way that the current word embedding model

chooses context words is best for certain parts of speech over others. We find that changing

the contextual information used in the embedding process, to include structural information,

helps to capture more of a word’s semantic meaning. The structural components of natural

language that we use are dependency relations and predicate structures. We examine how to

extract context words from these di↵erent structural components. Additionally, we divide

up words by parts of speech and examine how the embeddings perform under a variety of

contexts.
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To further demonstrate the usefulness of word embeddings and to prove the superiority

of the structure based embeddings we created, we use the word embeddings in a sentiment

analysis task. We create a sentiment analysis system that uses convolutional neural networks.

The inputs to the network are the word embeddings of the words in the sentence being

classified. We show that using our word embeddings, as input to this network, allow the

system to achieve high levels of accuracy.

1.1 Thesis Statement

By exploiting structural sentence information we are able to reach the goal of creating high

quality word embeddings. Through creating a novel evaluation framework, for embeddings of

all parts of speech, we are able to holistically assess the quality of word embeddings produced

over di↵erent semantic contexts. Additionally, we prove the usefulness of structure based

embeddings through using them in a core natural language processing task.
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Chapter 2

Background

There have been multiple methods of creating representations of words. The most

commonly used today is Word2Vec and this is the method upon which we base our system.

This section starts by defining the di↵erent components of natural language we will be using.

The section then describes the distributional semantic theory and delves into the architecture

of previous systems.

2.1 Natural Language Structures

2.1.1 Parts of Speech

A focus of this work is to study how embeddings from di↵erent parts of speech preform and

how this di↵ers based on how the context of a word is defined during the embedding process.

Examining how parts of speech function in relation to other words in a sentence is crucial to

this study. Words are assigned to a part of speech category based on the syntactic function of

the word. The main parts of speech studied in this work are listed below with their syntactic

function:

• Noun: words to name people, places or things

• Verb: words that name an action or state of being of the subject
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• Adjective: words that describe nouns

• Adverb: words that describe adjectives, verbs or adverbs

We examine verbs the closest because verbs are the most important part of speech. A

sentence cannot exist without a verb and verbs are often the predicate of a sentence. A

predicate is the part of the sentence that describes the actions or state of the subject. Despite

verbs being highly significant there are not many verbs; there are under 4,000 verbs used in

the English language. For example the WordNet corpus [16] is approximately 76% nouns and

only 7% verbs. Since verbs are extremely important lexical items it is very important that

they are accurately represented in NLP tasks. Improving the representation of verbs can lead

to dramatic improvements of NLP tasks. For this reason we extensively examine verbs in

this work.

2.1.2 Dependency Structure

In a sentence there exists a dependency relation for each word. Essentially, each word in

a sentence is a lexical item that is linked to other lexical items by a dependency, which

places one term as dependent on another. Dependencies can be either syntactic or semantic

relations. Semantic relations are harder to identify but are extremely informative. Each word

can only depend on one other word but multiple words can depend on the same word. These

dependency relations are one type of information that can be extracted from a sentence to

form features. The dependency relations within a sentence form an acyclic, fully connected

tree where each node is a word of the sentence and the edges are relations. Creating these

dependency trees is a core task of Natural Language Processing called dependency parsing.
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The task of dependency parsing seeks to identify the dependency relations between words

in a single sentence [10]. Dependency parsing is a di�cult task in NLP but it has been

mostly solved with parsers that reach into the 90th percentile of accuracy. An example of a

dependency tree for the sentence “I threw a green ball across the yard to him” is shown in

Figure 2.1.

Figure 2.1: The Dependency Tree of Example Sentence
Shows the directed dependency relations between the words in the sentence

Dependency trees are extremely informative because they give information about how

words fit together and act in accordance with one another. They also can give information

about which words are the most important in the sentence via how many other words are

reliant on a particular word. The head of a sentence is arguably the most important word

in the sentence while leaf nodes are less important. Additionally, dependency trees give

information about which words are most important to a particular word. The graphical

distance between two words in a dependency tree can give insight into how important the

words are to each other. It is important to note that graphical distance within the dependency

tree will often not be the same as topical distance within the sentence. In the above sentence

the topical distance between “threw” and “yard” is 6, however the graphical distance is only



7

1. This shows that it is disadvantageous to exclusively look at topical distance. Another

thing to note is that verbs are often the head of the sentence. This further supports the point

that verbs are an extremely important part of speech.

2.1.3 Predicate Argument Structure

As stated above, a predicate is the part of the sentence that describes the actions or state of

the subject [5]. Predicates are particularly important because they govern the arguments in

a sentence. In the sentence “the glacier melted” the word “melted” is the predicate. In the

sentence “I threw a green ball across the yard to him” the word “threw” is the predicate.

Predicates of a sentence are typically verbs but they can also be other parts of speech.

Additionally, predicates are often the head of a dependency tree.

An argument is a participant of the predicate and helps complete the meaning of the

predicate. There are di↵erent types of relationships between an argument and its predicate.

These types are defined by thematic role labels. A list of the di↵erent types of thematic role

labels and when they are used is listed in Appendix B.

Since there is not a universal set of thematic roles, labels called semantic roles have been

created and are defined in respect to verb sense and are given numbers rather than names.

The types of semantic roles are listed as follows with a definition of what they represent:

• ARG0: agent

• ARG1: patient, theme

• ARG2: instrument, benefactive, attribute

• ARG3: starting point
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• ARG4: ending point

• ARGA: external causer

Predicates in general can be thought of as a function to which there is inputs and outputs. The

task of semantic role labeling extracts the variables of this function and creates a predicate

structure. These semantic role labels and predicate structure give information about how

words in a sentence are related to each other and how they act together to form a cohesive

meaning. An example of semantic role labeling on the sentence “I threw a green ball across

the yard to him” is shown in Figure 2.2 where “threw” is the predicate of the sentence.

Figure 2.2: Predicate Argument Structure
Shows the dependency parsed tree of the sentence

and highlights the predicate and labeled semantic arguments

2.2 Lexicon Databases

In this work we use two popular lexical databases to create our evaluation framework.
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2.2.1 WordNet

The first is called WordNet and is a large and popular English lexical database that contains

the majority of words in the English language and covers all parts of speech [16]. The words

in this database are grouped into groups called synsets, each of which has a unique concept.

The synsets are supposed to capture both lexical and semantic relations. The synsets create

a network of words from which it is possible to then measure relations between individual

words in the database. Additionally, WordNet distinguishes between senses of a word. Two

words with the same form but di↵erent senses can be grouped di↵erently within the database.

2.2.2 VerbNet

VerbNet is a database that categorizes all verbs into a set of classes that the database defines.

The classes are called verb classes and each verb class is named after the verb that best

represents all the verbs in its class. For each verb class, the database defines the thematic

roles that can be used for verbs in the class. Additionally, the database defines a set of

semantic restrictions on all verbs in the verb class. Essentially semantic restrictions limit the

subtypes of roles, within a thematic role, that can be used. The breakdown of information

for the verb class Adopt-93, as it is stored in VerbNet, is shown in Table 2.1.

Table 2.1: Attributes of Verb Class Adopt-93
Members assume adopt take over take on take
Themantic Roles Agent Theme
Semantic Restrictions animate organization
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2.3 Distributional Semantics

Distributional semantics is the study and measurement of the semantics of lexical items such

as words. Distributional semantic models aim to capture and represent the semantics of these

lexical items. Producing these models is a di�cult task because the models need to contain

the deeper meanings of the lexical items that they are representing. The impact of a rich

semantic model is large because it can be used in a variety of other NLP tasks. Humans rely

on their understanding of entities, ideas and concepts in the real world to create and analyze

text. Distributional semantic models use large corpora of text to generate similar semantic

understanding of entities, ideas and concepts that are represented by a singular lexical item

such as a word. In this work, we mostly experiment with semantic models of words but also

examine how they can be used to form a model for a larger body of text such as a sentence.

Previously in NLP, many tasks were achieved using a distributional semantic model

consisting of a tokenized representation of words in sentences. Treating words as tokens

is straightforward and robust enough for most simple tasks. Many models will base their

labelling o↵ of statistical measures such as prior likelihood and conditional probability. The

success of this approach is, to a degree, dependant on the sheer amount of data available to

train this simple model. The heavy use of these token based models is partially a result of

the observation that simple models trained on enormous datasets generally outperform more

complicated models trained on less data.

Token representation, however, does not contain much semantic information about the

actual language. Each token is simply an index in a corpus. All relationships between words,

besides location relations, are almost entirely ignored in this kind of analysis. Using this
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representation we might be able to discover that “rose” is a noun, but we could not find out

that it is very similar to the word “da↵odil”. This type of information is important in more

complicated tasks that rely on the sentiments of language, such as question answering and

sentiment analysis.

Recently the traditional token representations of words have given way to a new distri-

butional semantic model consisting of dense vector representations of words. These word

vectors are also called word embeddings. The shortcoming of current models is that they

only have generated high quality vectors for nouns but not for other parts of speech. In this

work we seek to improve the quality of vectors for other parts of speech and analyze the

shortcomings of current approaches on di↵erent parts of speech.

The premise of distributional semantics is that valuable information can be found in the

way that words co-occur. The hypothesis from Harris [23] states that words that are used in

similar contexts have similar semantic and functional meaning. Therefore the way in which a

particular model defines the context of a word highly impacts the way the word is processed.

It is very relevant then to define what type of context a model is looking at.

2.4 Related Work

2.4.1 Skip Gram and Continuous Bag of Words

The most heavily used model of distributional semantics, creates dense vectors called word

embeddings. Word embedding is a process of mapping words into high dimensional vectors.

This mapping allows for reasoning and manipulation of words. This model performs very

well in a variety of tasks and, perhaps more interestingly, allows for logical operations
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through vector manipulation and arithmetic. As Mikolov et al. observed, if the vectorized

representation of the word “king” subtracts the vector for “man” and then adds the vector

for “woman”, the vector most similar to the resulting vector is for the word “queen”.

In other words: “king” - “man” + “woman” = “queen”.

The current state-of-the-art word embeddings are created by Mikolov’s skip-gram architecture

using a negative sampling model. This model provides a very e�cient model for generating

high-quality embeddings, and is implemented in the Word2Vec package [21].

The skip-gram and continuous-bag-of-words (CBOW) models are built around a neural

network with a single hidden layer. For both of these models the context is defined by the

preceding and succeeding words around the original word. CBOW takes a context and tries

to predict the token that belongs to it. For example, input may be w(i-2), w(i-1), w(i+1) and

w(i+2) where the desired output will be w(i) this is shown in Figure 2.4. On the other hand,

skip gram takes a single token w(i) and predicts the context w(i-n), ... , w(i-1), w(i+1), ... ,

w(i+n) this is shown in Figure 2.3. In simple terms skip gram is predicting the context of a

word given the word itself and CBOW is predicting a word given the context of the word

[21]. In the continuous-bag-of-words model “the order of the words in the history does not

influence the projected [vector]” [21]. This discount of word order as a feature in addition

to lack of dependency structure can be attributed to problems with finding semantically

meaningful representations of verbs.

For each prediction during training, the skip-gram architecture has to update every

vocab element in a very large vector. This is a computationally exhaustive procedure. To

combat this problem, Mikolov uses a process called negative sampling. Negative sampling
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Figure 2.3: (on left) Skip-Gram

Figure 2.4: (on right) Continuous Bag Of Words

then randomly samples only a few of the incorrect possibilities for context words from the

entire vocab and forces only the output of these possibilities to zero. The negative sampling

approach only applies sampling to incorrect possibilities. For all of the correct context words

the architecture forces the probability of the label to one.[20]

2.4.2 Dependency Based Word Embeddings

The skip-gram implementation by [20] defines context as the tokens before and after a given

word. The general architecture of skip-gram, which involves predicting the context of a word

given the word itself, can be abstracted to use di↵erent definitions of what constitutes the

context of a word. Levy and Goldberg take this approach by substituting the bag-of-words

context for a dependency based context. They define the dependency based context for a

word, W, as the head, H, of W and the syntactic dependency label. They call the syntactic

dependency label a modifier (e.g. nsubj and dobj). For any relation containing a preposition,
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the head is then automatically connected to the object of the preposition by a dependency

arc, which has the preposition as the dependency label.

An advantage of this approach over a bag of words based skip gram (BOW-SG) model

is that it includes words in the context that would otherwise be too far from the word to

be included. Take the sentence “Jerry Smith drove home with his car.” A window is used

to determine what tokens compose the vector for each word. If a window of size 2 is used,

the vector for the word drove is built with the information from tokens “Jerry,” “Smith,”

“home,” and “with.” The BOW-SG model would fail to include the important and meaningful

relationship between “drove” and “car.” In this same example, a dependency structure would

link “drove” to “with” and “with” to “car,” thus including this structure would build more

information into the word embeddings.

A shortcoming of this approach [14] is that the context for a word includes only the head

of that word W and the dependents of the word W. The paper does not test approaches using

additional structural information such as dependency tree siblings or children of the word

W. The paper, in which Levy and Goldberg describe their approach for dependency based

contexts, does not show any experimentation with including varying amounts of dependency

structure information [14].

Additionally, Levy and Goldberg center their evaluations on top of analogy tests that

contain almost only nouns. Since Word2Vec [20] already produced semantically relevant

word embeddings, the significance of Levy and Goldbergs work was to show that dependency

based noun embeddings di↵er in terms of functional and topical similarity from topographical

based noun embeddings. The paper specifically delves into the di↵erences between measures

of similarity (functional) and relatedness (topical). The findings of the experiments show
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that dependency based contexts place words in a vector space where words are closest to

functionally similar words.

The paper fails to look heavily into verbs, which is unfortunate since the semantics of

verbs are highly based on functionality. In this work we seek to show that di↵erent types of

dependency based and structural based contexts can be used during the word embedding

process to capture semantic functionality and that this constitutes a better word embedding.
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Chapter 3

Approach

Our word embedding system is based o↵ the Word2Vec [21] architecture. To implement

our distributional semantic model, we modified the vector space model of EmoryNLP in nlp4j

[9]. The vector space model in EmoryNLP is a Java implementation of both the Skip Gram

and Continuous Bag of Words architectures of Word2Vec.

3.1 System Overview

We first ran through the entire corpus and did tokenization, dependency parsing, semantic role

labeling, and part of speech tagging. The corpus that we used included the entire New York

Times corpus, which contains over 1.8 million articles that were written between 1987 and

2007. The corpus also included the Wikipedia data dump, which contains all the Wikipedia

entries and over three billion words. Word embedding requires a lot of training data to

capture the full depth and generalizability of each word. It is also important to have corpus

because it allows the system to create a model with a larger vocabulary. Having a large model

vocab is important because in tasks such as sentiment analysis, which is performed later in

this work, when a word used in the task does not have a vector in the model, a vector is

randomly initialized. The Wikipedia dump and the New York Times gave us enough training
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data to produce meaningful embeddings. The corpus gives us a total of 6,406,418,032 words

and 1,531,163 unique word types.

After doing the initial cleaning and parsing of the data, we used the Emory NLP API of

readers and objects to read and store all the dependency, Part of Speech (POS) and Semantic

Role Label (SRL) information for each word in the corpus. In all experiments the reader

used 12 threads.

In our experiments we focused only on the Skip Gram architecture. During the creation of

the word embeddings, the algorithm traverses each word W in each sentence of the training

data. For each word, its corresponding vector was fed into the one layer neural network. The

output of the network is C number of vectors, where C is the number of context words. Each

one of the output vectors corresponds to one of the context words. Essentially, the network

predicts all context words for the word W.

By changing the context window we expected to see changes in how words were distributed

through the resulting vector space. We hoped that certain contexts would do a better job at

creating word embeddings that mapped words, that are considered semantically similar in

English, close together. We ran a series of experiments where we changed how the algorithm

picked the context words. We ran the following experiments where the context window was

composed of:

1. DEP1: the first order dependencies of W

2. DEP1H: the first order dependencies of W and the dependency head of W

3. DEP12: the first and second order dependencies of W
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4. DEP12H: the first and second order dependencies of W and the dependency head of

W

5. DEP1SIB1: the first order dependencies of W, the rightmost sibling of W and the

leftmost sibling of W

6. DEP1ALLSIB: the first order dependencies of W, all siblings of W

7. DEP1SRLH: the first order dependencies of W, the semantic head of W

8. DEP1SRLARG: the first order dependencies of W, all the semantic arguments of W

To make it easier to cite each of these experiments we have given a shortened name to each

of these experiments which is listed next to the experiment description.

For example, let us use the sentence “I threw a green ball across the yard to him” The

dependency parsed version of the sentence is shown in Figure 2.1. To create the word

embedding for the word “threw” using the skip gram architecture and various experiments is

shown in Figure 3.1. Additionally, Figure 3.2 shows a diagram of the system architecture in

the DEP1H experiment.

Figure 3.1: Example of Selection of Context Words
Shows the context words that would be selected

for the word “threw” given the three listed experiments
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Figure 3.2: Diagram of Skip-Gram based System Architecture for the DEP1H experiment

It is important to note that in some of these experiments, some words may have few or no

context words. For example, for experiment DEP1, if a word is a leaf node in a dependency

tree then there will be no 1st order dependencies and thus have no context words. In section

4.1.5 we explore the size of the context window for all parts of speech during all experiments

and examine how this a↵ects performance of the produced vectors.

We chose the context experiments by specifically thinking of how sentences can be

mapped to tree structures. We hoped that using the tree data would produce more semantic

information than looking at the sentence linearly, as the original Word2Vec algorithm does.

For all our experiments we held the following variables constant. Our algorithm discards

all words that appear less than 5 times in the corpus. Our algorithm runs for a maximum of

5 training iterations negative subsample size of 5. The initial learning rate, alpha, is set to

.025. At each training iteration, alpha was adjusted by the following formula that we defined

in our algorithm.
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alpha = .025 ⇤max(.0001, 1� Wg

i ⇤Wt + 1
) (3.1)

where Wg is the number of words traversed so far over all threads, Wt is the number of words

in the vocab and i is the number of iterations gone through.
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Chapter 4

Experiments

We used multiple lexical databases and methodologies to test the strength of the word

embeddings from our various experiments. We used multiple methods to evaluate the strength

of embeddings within one experiment and analyzed sources within the lexical databases to

give insight into why certain words consistently produced better embeddings than others.

The section both goes over the methodology of our evaluations and results of our evaluations.

Additionally, the section critically analyzes and draws conclusions from the results.

4.1 WordNet Evaluations

4.1.1 WordNet Similarity

WordNet is a large and popular English lexical database that contains the majority of words

in the English language and covers all parts of speech [16]. The words in this database are

grouped into synsets sets, each of which has a unique concept. The synsets are supposed

to capture both lexical and semantic relations. The synsets create a network of words from

which it is possible to then measure relations between individual words in the database.

Additionally WordNet distinguishes between senses of a word and the same word form with

di↵erent senses can be grouped di↵erently within the database.
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There are multiple di↵erent algorithms to measure the semantic similarity between a pair

of words in WordNet. Since WordNet can be represented as a graph, these approaches treat

the words as nodes of the network. In this work we limit our evaluations to three popular

measures of word semantic similarity based on WordNet. We use the LCH, WUP, and LIN

methodologies. In our experiments we utilized the WS4j API which contains implementations

of these three measurement methodologies [7].

LCH was developed by Leacock and Chodorow [3]. The measurement of similarity between

two words is based on the length of the shortest path between the two synsets containing the

words. This method limits attention to IS-A links and “scales the path length by the overall

depth D of the taxonomy” [7]. WUP was developed by Wu and Palmer and it calculates

the measurement of relatedness based on the depth of the two synsets and the depth of the

LCS [24]. LIN was developed by Lin and it is based on another methodology by Jiang and

Conrath who use the notion of information content [4] and the equation is as follows:

(2)LCLCS

ICsynset1 + ICsynset2
(4.1)

“where IC(x) is the information content of x. One can observe, then, that the relatedness

value will be greater-than or equal-to zero and less-than or equal-to one” [7].

4.1.2 Evaluation Methodology

We created lists for each of the most common words for adjectives, adverbs, nouns, and verbs.

To obtain these lists we traversed the entirety of the corpus and looked at the POS tag of

each word. We created a map for each POS. The map held words of that POS, mapped to

the number of times they were seen in the corpus. We filled out these maps while traversing
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the corpus. After filling out these maps, we sorted each map in order of the number of times

a word was seen. After sorting we saved only the top 5000 most seen words for each POS.

When manually looking through these lists we found that some data cleaning was necessary.

We did the cleaning by checking that each word in each list also existed in WordNet and

removing those that did not. After doing this there was no need for further data cleaning.

The final word counts for each POS list are as follows.

1. Adjectives: 4682

2. Adverbs: 4665

3. Nouns: 4827

4. Verbs: 2904

5. Combined Pos: 3966

For each POS list, we used each of the three WordNet similarity measurements to create

confusion matrices, where the values of the matrix at a given index corresponded to the

WordNet similarity between the word of that column and the word of that row. We then

normalized the values of the matrix. This process resulted in a similarity matrix for each

POS list and for each WordNet similarity measurement. An example of what one of these

matrices would look like is shown in Figure 4.1, where WS(x,y) is the word similarity between

x and y. Also note that in this figure WS(x,y) produces the same value as WS(y,x).

Then we took the embeddings produced by each context structure experiment, and used

them to make a similarity confusion matrix for each POS list. The values of the matrices at a



24

Figure 4.1: WordNet Similarity Matrix Example

given index corresponded to the cosine similarity between the word vector of that column and

the word vector of that row. We then normalized the values within each matrix. This process

resulted in a similarity matrix for each POS list and for each context structure experiment.

We then wanted to compare the word similarity matrices for the context structure

experiment (CSE) and the WordNet similarity (WS) matrices. There are multiple avenues of

comparison and we originally tried doing a sum squared error between each CSE matrix and

each WS matrix, where we used the WS matrix as the correct matrix, with respect to which,

we calculated the error. We decided that using sum squared error was not a good comparison

for the matrices because the measurements of cosine similarity and WordNet similarity were

too di↵erent. Ranking correlation was a much more informative and significant comparison

for the matrices. Rank correlation is the measurement between rankings of the same variable,

where a ranking is the assignment of the labels, 1st, 2nd, nth, to each observation of the same

variable. The rank correlation coe�cient is a measurement of the similarity between two

sets of rankings. We created a similarity ranking for each word, where all the other words

were ranked in terms of similarity to that word. We created these similarity rankings for

each word in each similarity matrix. We then used the rank correlation coe�cient across the
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rankings of the matrices we are comparing.

4.1.3 Ranking Correlation

We measured ranking correlation between two matrices by going through the matrices one

row at a time. In the matrices a row represents a single word, with all other words in the

vocab ranked in order of similarity to this word. We took the calculated similarity score and

sorted the words from most similar word to least similar word. We then looked at the ranking

order of the words for both matrices and performed the ranking correlation metric. Since

we could only do ranking correlation for one row of the matrix at a time, we computed the

average of the ranking correlations for each row and used that as the total ranking correlation

of the matrix. Ranking correlation for an individual word lies between -1 and 1, with 1 being

the best possible score and identical ranks. A ranking correlation can be negative when two

lists of ranks are inverses of each other.

We used two popular rank correlation methods called Kendalls Rank Correlation and

Spearmans Rank Correlation. Spearmans Rank Correlation does not make any assumptions

about the distribution of the data and is best used on ordinal data. Spearmans is similar to the

Pearson Correlation but Pearson is best used on interval data. Spearmans is a nonparametric

measure of the degree of association between variables. The following formula is used to

compute Spearmans coe�cient:

p = 1� 6
P

d2i
n(n2 � 1)

(4.2)

where p is the ranking correlation coe�cient, di is the di↵erence between the ranks of

corresponding values Xi and Yi and n is the number of values in each data set, in other words

the length of each ranking vector.
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Kendalls rank correlation is a nonparametric measure of the degree of dependence between

two variables. The following formula is used to compute Kendalls coe�cient:

p =
nc � nd

1
2n(n� 1)

(4.3)

where p is Kendalls coe�cient, nc is the number of concordant (ordered the same) pairs, nd

is number of discordant (ordered di↵erently) pairs, and n is the number of values in each

data set.

The results of the ranking correlations between all matrices are shown in Table 4.1 and

Table 4.2.

EmoryW2V DEP1 DEP1H DEP12 DEP12H DEP1SIB1 DEP1ALLSIB DEP1SRLH DEP1SRLARG
noun
WUP 0.002334838 0.010145907 0.012681005 0.006229027 0.007760952 0.005079918 0.016878502 0.009249868 0.007892326
LIN 0.006554193 0.025176051 0.029649062 0.012859081 0.016696788 0.009607266 0.037541368 0.022278363 0.01993255
LCH 0.001532491 0.008705386 0.011343738 0.005387621 0.006800848 0.004102623 0.015702324 0.007809994 0.006755566
adjective
WUP -0.046465126 -0.02293298 -0.01940994 -0.029841536 -0.028420201 -0.025816303 -0.009760687 -0.024603745 -0.028982142
LIN -0.046098203 -0.023445878 -0.01978931 -0.030520022 -0.028762131 -0.027061267 -0.010249259 -0.025255805 -0.029877578
LCH -0.046383838 -0.022820065 -0.019406427 -0.029916208 -0.028306369 -0.025751875 -0.009716675 -0.024526921 -0.028958502
adverb
WUP 4.41685E-05 -0.004179959 0.023550489 9.3957E-05 0.001904147 -0.008183823 0.008146122 -0.004590632 -0.005176605
LIN 6.72539E-05 -0.013162973 0.010427748 -0.009443542 -0.007668107 -0.017257574 -0.000512881 -0.013634445 -0.014237758
LCH 6.81363E-05 -0.004345601 0.023456104 -1.86201E-05 0.001856518 -0.00824885 0.008029164 -0.004658949 -0.00528443
verbs
WUP 0.019678145 0.051107308 0.040254008 0.037253208 0.038379081 0.044502025 0.050229722 0.050152014 0.04937911
LIN 0.029770669 0.141635079 0.102302894 0.095378533 0.098343152 0.116092163 0.136537524 0.137088719 0.135258667
LCH 0.010619012 0.060383828 0.040477652 0.039515171 0.041584723 0.048461369 0.06048967 0.058247727 0.056743657
average
WUP -0.024407975 0.034140275 0.057075562 0.013734655 0.019623979 0.015581817 0.065493658 0.030207505 0.023112689
LIN -0.009706087 0.130202279 0.122590394 0.06827405 0.078609701 0.081380587 0.163316752 0.120476833 0.111075881
LCH -0.034164199 0.041923548 0.055871067 0.014967964 0.021935719 0.018563268 0.074504483 0.036871851 0.02925629

Table 4.1: WordNet Kendalls Rank Correlation Evaluation

4.1.4 Result Analysis

Looking at Table 4.1 and Table 4.2, we can examine which types of embeddings did the

best for each part of speech. One immediate observation we can make is over the di↵erences

between using Kendalls and Spearmans ranking correlation. We can clearly see that the two

ranking correlations give di↵erent numerical results for all the matrix comparisons. We can

also observe that despite this, the two ranking correlations for a given POS, both result in
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EmoryW2V DEP1 DEP1H DEP12 DEP12H DEP1SIB1 DEP1ALLSIB DEP1SRLH DEP1SRLARG
noun
WUP 0.003500179 0.015202139 0.018994869 0.009336212 0.011630819 0.007593662 0.025264565 0.014073054 0.011828739
LIN 0.009819439 0.037716979 0.044371939 0.019286759 0.025028944 0.014357013 0.056090768 0.033412487 0.029887544
LCH 0.002296253 0.013039684 0.016992504 0.008076199 0.010191908 0.006128364 0.023505933 0.011708138 0.010126313
adjective
WUP -0.067973988 -0.034368459 -0.028998413 -0.044726111 -0.042579685 -0.038717989 -0.014694022 -0.036852231 -0.043374756
LIN -0.067428383 -0.035132217 -0.029565836 -0.045744568 -0.0430913 -0.040587587 -0.015433643 -0.037823345 -0.044704883
LCH -0.067852962 -0.034199658 -0.028991893 -0.044837713 -0.0424098 -0.038619187 -0.014624742 -0.036736509 -0.043338843
adverb
WUP 6.61286E-05 0.000348218 0.040333253 0.001958177 0.004626927 -0.011431714 0.012864709 -0.000295248 -0.001492765
LIN 0.000101503 -0.012987871 0.020949891 -0.012231952 -0.009625922 -0.024946393 -1.81205E-05 -0.013722069 -0.014950668
LCH 0.00010265 0.000101119 0.040190271 0.001787143 0.004555178 -0.011532233 0.012689293 -0.000400886 -0.001653277
verbs
WUP 0.029523469 0.076321812 0.06017965 0.055704124 0.057367533 0.06648196 0.07494362 0.074898687 0.073755821
LIN 0.044955052 0.208826391 0.151376644 0.141371602 0.145571268 0.17145278 0.200471304 0.202337597 0.199745552
LCH 0.015980665 0.090133676 0.060479238 0.059060928 0.062129506 0.072327784 0.090148846 0.086955049 0.084731097
average
WUP -0.034848836 0.05750371 0.09050936 0.022272402 0.031045593 0.02392592 0.098378872 0.051824262 0.040717038
LIN -0.01255239 0.198423282 0.187132638 0.102681841 0.117882989 0.120275813 0.241110309 0.184204669 0.169977545
LCH -0.049473393 0.069074821 0.08867012 0.024086557 0.034466792 0.028304727 0.11171933 0.061525792 0.04986529

Table 4.2: WordNet Spearmans Rank Correlation Evaluation

the same context embedding matrix having the best ranking correlation against the WordNet

matrices. Additionally, we can see that the type of context embedding matrix that gets the

best ranking correlation score for a given POS, is constant across the di↵erent WordNet

matrices. Since using di↵erent metrics yields the same results, we can be extremely confident

in our conclusions of which experiments created the best embeddings for each POS. We

can conclude that for all parts of speech using a topical contextual window, as the original

Word2Vec [21] architecture does, never produces the best embeddings.

Our evaluations of WordNet comparison clearly show that using di↵erent context words

creates better embeddings for certain POS. This shows that di↵erent parts of speech rely on

di↵erent semantic information. These results can be attributed to the fact that certain parts

of speech have less first order dependents than others and that certain parts of speech do

not typically have semantic role arguments. We explore the size of the context window for

di↵erent parts of speech and speculate how this a↵ects the produced embedding in section

4.1.5.

Verb embeddings performed best with the first order dependents as the context words,
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experiment DEP1. Increasing the context window to include the second order dependents

decreased the success of the embeddings. This is probably due to having too many context

words and therefore too much information. In future work a direction to explore is running

an experiment that includes both the first and second order dependents in the context

window, but weights the first order dependents with a higher weight than the second order

dependents. While the verb embeddings performed the best with the first order dependents,

the DEPALLSIB, DEP1SRLH, and DEP1SRLARG experiments also got good results.

The experiments that placed the semantic role arguments in the context windows only

performed well for verbs. This was expected because usually only verbs are predicates and

thus only they will have semantic role arguments. This means that verbs are the only part of

speech gaining more information from these types context windows. Since words of multiple

parts of speech are being trained together, having less informative word vectors for certain

parts of speech will also a↵ect verbs even if verbs are able to pick good context words.

The experiments that placed the semantic heads in the context windows performed better

overall than the experiments that placed the semantic role arguments in the context windows.

We think this is because there are more words that have a semantic head than a set of

semantic arguments. This is logical since usually only verbs can have semantic arguments

whereas all parts of speech can have semantic heads. This creates better embeddings overall

because having more informative vectors for all parts of speech increases individual parts of

speech vectors.
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4.1.5 Context Window Size Evaluation

To help interpret the results, we decided to go through the entire corpus and get the average

context window for each part of speech. We found the following results in Table 4.3. We

can confirm that none of the adjectives, adverbs and nouns in our corpus have semantic role

arguments. We know this because for experiment DEP1SRLARG, for those parts of speech,

the size of the context window is the same as in the DEP1 experiment. Thus only verbs have

an advantageous context window in the DEP1SRLARG experiment.

POS Adj. Adverb Noun Verb
DEP1 0.28507 0.12623 1.35436 3.00587
DEP1H 1.28507 1.12623 2.29998 4.00587
DEP12 0.44210 0.19603 1.69356 4.12976
DEP12H 1.44210 1.19603 2.69356 5.12976
DEP1SIB1 1.49963 1.42452 1.60495 3.94874
DEP1ALLSIB 2.12562 3.10883 2.18363 5.28594
DEP1SRLARG 0.28507 0.12623 1.35436 3.00587

Table 4.3: Average Context Window Sizes

4.2 VerbNet Evaluations

4.2.1 Evaluation Methodology

One of our evaluations utilized an English database called VerbNet [11]. VerbNet is a verb

lexicon that organizes verbs into hierarchical classes and clusters. For each defined verb class

in VerbNet, the thematic roles that correspond to semantic role labels are listed as well as

syntactic and semantic frames.

The classes in VerbNet form a baseline of how to group verbs. In our experiments we

utilized the JVerbNet API which has implementations in Java to easily access the VerbNet

Database [11]. Using the VerbNet classes we wanted to see if certain classes on average
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contained verbs for which our word embedding algorithm was creating better vectors. To do

this we went through each verb class and got the average ranking correlation of each verb

in that class. Then we sorted the verb classes by average ranking correlation. We used the

LIN [4] correlation metric because in our WordNet evaluation method the LIN correlation

metric gave the best results. We additionally ran the same evaluation with WUP [24] and

LCH [3] correlation metrics and found extremely similar results so the tables for those are

not included.

There were a total of 265 verb classes tested. We did this evaluation for both the

EmoryNLP Word2Vec embeddings and the DEP1 structure embeddings. We choose to look

at the DEP1 embeddings over the embeddings produced by the other experiments because,

from the WordNet evaluations, we found that DEP1 embeddings were the best for verbs.

The bottom 10 and top 10 classes for both DEP1 and EmoryNLP Word2Vec are listed in

order with their average ranking correlation in Table 4.5 and Table 4.4.

Bottom Classes Name Rank Top Classes Name Rank
267 light emission-43.1 -0.0151 522 succeed-74 0.1311
268 stalk-35.3 -0.0077 523 relate-86.2 0.1335
269 appeal-31.4 -0.0075 524 dedicate-79 0.1395
270 ferret-35.6 -0.0073 525 learn-14 0.1401
271 animal sounds-38 -0.0064 526 exist-47.1 0.1402
272 wink-40.3.1 -0.0029 527 continue-55.3 0.1498
273 captain-29.8 -0.0028 528 declare-29.4 0.1503
274 entity specific modes being-47.2 -0.0027 529 empathize-88.2 0.1563
275 bulge-47.5.3 -0.0026 530 involve-107 0.1573
276 weather-57 -0.0021 531 consider-29.9 0.1642

Table 4.4: Verb Rankings DEP1

The tables show that certain verb classes that are in the top and bottom of average ranking

correlations of DEP1 also appear in the top and bottom of average ranking correlations of
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Bottom Classes Name Rank Top Classes Name Rank
exhale-40.1.3 -0.1473 exist-47.1 0.2397
waltz-51.5 -0.1312 continue-55.3 0.2406
ferret-35.6 -0.0988 dedicate-79 0.2407
funnel-9.3 -0.0936 succeed-74 0.2464
wink-40.3.1 -0.0926 accept-77 0.255
change bodily state-40.8.4 -0.0911 involve-107 0.2742
spank-18.3 -0.0858 adopt-93 0.2776
curtsey-40.3.3 -0.0819 learn-14 0.282
snooze-40.4 -0.0815 relate-86.2 0.2947
drive-11.5 -0.0805 cooperate-73 0.299

Table 4.5: Verb Rankings EmoryNLP Word2Vec

Emory Word2Vec. This made us curious to see if there was anything similar between the verb

classes that consistently had better or worse embeddings across di↵erent context windows.

Since VerbNet gives information on thematic roles of each verb class we thought we would

first investigate to see if there were any patterns of thematic roles. Thematic roles are a set

of categories that groups verbs in terms of the predicate structures of the verbs. A list of the

types of thematic roles is in Appendix B. Verbs can have multiple thematic roles.

We used the TF-IDF measure on thematic roles for each verb class. TF-IDF stands

for term frequency and inverse document frequency. It is a statistical measurement that is

usually used to measure how important a token or term is to a document in a collection of

documents or corpus. In this case the terms we were measuring were the thematic role labels.

To get the term frequency for the thematic role labels, we went through each verb class

and kept a count on the number of thematic roles seen. Additionally, we weighted the count

of the thematic role by the verb class’s average ranking correlation. The product of this

was a map that mapped each thematic role label to a weighted count that represented term

frequency. To get the document frequency we simply counted the number of verb classes



32

that the thematic role appeared in. Using the term frequency and document frequency

we calculated TF-IDF and sorted the thematic role labels from highest to lowest TF-IDF

score. Having a higher score means that thematic role label is more important and is highly

correlated to the verb classes that consistently have better embeddings. The results for both

the Emory Word2Vec and DEP1 embeddings are in Table A.1 in the appendix.

In VerbNet the thematic role labels that are attributed to each verb class, are assigned a

set of semantic restrictions. These restrictions constrain the types of thematic roles allowed

by the arguments [11]. The same thematic role can have di↵erent sets of semantic restrictions

for two di↵erent verb classes. For example both verb class wink-40.3.1 and the verb class

consider-29.9 have the thematic role of Agent. However, the set of semantic restrictions on

Agent for consider-29.9 is animate and organization. Whereas the set of semantic restrictions

on Agent for wink-40.3.1 is recipient and concrete.

We did the same measure of TF-IDF on the semantic restrictions as we did for thematic

role labels and the results are listed in Table A.2 in the appendix.

4.2.2 Result Analysis

It was very interesting to find that certain verb class consistently create better verb embeddings

and that this does not change between di↵erent types of context windows. For this reason

we wanted to look into the attributes of each verb classes such as their thematic roles and

semantic restrictions to see if this gave any insight into why certain verb classes might do

better. Using TF-IDF on both thematic roles and semantic restrictions allowed us to evaluate

the importance of these attributes.

The results of TF-IDF for thematic roles in table A.1 show clearly that certain thematic
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roles are better than others and that this corresponds to the average verb ranking for a

verb class. However, none of the thematic roles have an especially better or worse ranking.

Plotting the values of this table, shown in Figure 4.2 in sorted order, shows a fairly linear

trend with no thematic roles clustered around a particular value of TF-IDF.

Figure 4.2: DEP1 Thematic Roles TF-IDF
X Axis: the thematic role id number

Y Axis: the TF-IDF score

The results of TF-IDF for semantic restrictions in table A.2 also show clearly that certain

semantic restrictions are better than others. However unlike the thematic roles, certain

semantic restriction are especially better than others. Plotting the values of the TF-IDF of

the semantic restrictions, in sorted order, shows a fairly linear trend for the first 21 semantic

restrictions. However, the top 8 semantic restrictions follow an exponential trend. This graph

is shown in Figure 4.3. The plot for Emory W2V follows this same pattern and can be seen

in Figure A.1 in the appendix. The top 6 restrictions are the same for both Emory W2V and

DEP1, although they are in a di↵erent order. From this we can conclude that these verbs

with these semantic restrictions are strongly correlated to have better embeddings.
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Figure 4.3: DEP1 Semantic Restrictions TF-IDF
X Axis: the semantic restriction id number

Y Axis: the TF-IDF score

4.3 Extrinsic Evaluations on Sentiment Analysis

Word embeddings are useful because they are used as features in NLP tasks. In order to

highlight their usefulness and to show that our systems embeddings are useful and can

outperform the previous Word2Vec embeddings, we used the embeddings in a sentiment

analysis task. In this case we use the word vectors as direct input to a sentiment analysis system

composed of a convolutional neural network. This system aims to create a representation of

the sentiment of a sentence using the word embeddings. This takes our work on distributional
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semantics from the word level and raises it to the sentence level.

4.3.1 Background on Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of neural network that has one or more

convolutional layers. Each of the convolutional layers of a CNN are usually followed by a

subsampling layer and a CNN usually ends with one or more fully connected layers. CNNs

have been traditionally used in the field of Computer Vision where the input to the network

is an image. CNNs are recently gaining traction in the field of Natural Language Processing

and have been used in semantic parsing and other tasks [13]. In this work, a CNN is applied

to the word vectors contained in a sentence and produces a classification of sentiment for

that sentence.

The weights between each convolutional layer of a CNN contains a set of filters, also

known as kernels. Each kernel performs some convolution over a vector or matrix, in other

words, each filter is convolved with the input. A convolution takes the set of values in the

filter and computes the dot product between it and a window over the input. The filter is

applied to all windows over the input. A basis term is usually added to the result and then

that sum is usually multiplied by a nonlinear function resulting in feature Fi. A feature map

F is the set of features Fi which are the results of the above operations over all windows of

the input, where i denotes the window. If there are multiple filters then there will be multiple

feature maps for the convolutional layer. Backpropagation is used to calculate the gradient

on the filters of the convolutional layers and update the weights.

Subsampling layers always follow convolutional layers and are usually in the form of max,

min or mean pooling. This type of layer does not do learning itself but is a way to reduce
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the feature space and to capture only the important features. Max pooling is when for each

feature map F in the set of feature maps for a convolutional layer, only the maximum feature

Fi is extracted and saved for further use. Mean pooling is similar but it takes the mean of all

features instead of taking just the max. The smaller feature space creates the max pooling

layer which is then passed to the fully connected layer.

Fully connected layers are composed of nodes that are connected to all the activation

nodes in the previous layer. The CNN used in this work employs dropout regularization

between the max pooling layer and the fully connected layer. For each training sample,

dropout selects, by a defined probability p, which activation nodes to use and does not

activate all the neurons [13]. The idea of dropout is that during a training sample it drops

out some of the neurons, instead of using them all. Essentially dropout is used to stop the

model from overfitting. During testing the network does not use dropout but will change the

weights by a factor of the probability p [1]. Other types of regularization to reduce overfitting

include L2 regularization which is usually the most common form of regularization.

4.3.2 System Overview

In this work a Convolutional Neural Network is used for sentiment analysis and classification.

The input to the Convolutional Neural Network is the word embeddings for the words in the

sentence that is being classified and the output is the sentiment class for the sentence. The

network contains one convolutional layer with multiple filters, a max pooling layer following

the convolutional layer, and one fully connected layer that is the last layer in the network.

The size of the fully connected layer is based on the type of sentiment classification being

done. Since the classification is binary into negative and positive sentiment, the layer has
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a size of two. The convolutional layer is fed the word vectors concatenated to form a two

dimensional matrix. The output of the convolutional layer is multiple vectors, where each

vector represents the feature map of a di↵erent kernel. The vectors are then combined into

one vector by doing max pooling, which takes the max value from each feature map vector

and puts that value in the new max pooling vector. The vector then is passed to a fully

connected layer, during which, dropout regularization is used to reduce overfitting. An image

of the architecture is shown in Figure 4.4.

Figure 4.4: Convolutional Neural Network Architecture
Shows the architecture of the CNN used in our system

We used the Theano framework [6] [8], which is a python based framework to create the

neural network. We based our convolutional neural network system o↵ the work from Yoon

Kim [22]. For our sentiment analysis testing and training data we used Rotten Tomatoes

movie reviews [15] [18] that we retrieved from the Kaggle Sentiment Analysis Challenge. The

dataset originally had 5 categories, but for simplicity, we modified the dataset to only contain

two categories of sentiment: positive and negative. There were 34345 negative sentences and

42133 positive sentences in the combined training and test data. We ran the both the Emory
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W2V embeddings and all the structure based embeddings, that we created, through the CNN

sentiment analysis system and found the results shown in Table 4.6 and a bar chart of the

accuracy for the embeddings is shown in the appendix in Figure A.2.

Accuracy
Emory W2V 0.8624373
DEP1 0.8814250
DEP1H 0.8867580
DEP12 0.8927635
DEP12H 0.8969352
DEP1SIB1 0.8910444
DEP1ALLSIB 0.8896382
DEP1SRLARG 0.8925598
DEP1SRLH 0.8997660

Table 4.6: Sentiment Analysis Accuracy

4.3.3 Result Analysis

From the accuracy scores of the sentiment analysis data, which is percentage of the number

of correctly classified sentences, we can tell that the structure based embeddings clearly

outperform the Emory W2V embeddings. This further establishes the point that structural

based dependency embeddings are higher quality than the Emory W2V embeddings. In

future work we would like to modify the system to run the 5 categories of sentiment that the

dataset originally contained.
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Chapter 5

Conclusions and Future Work

From the experiments done in this work we can see that there is clear di↵erences across

embeddings for di↵erent parts of speech. The distributional semantic theory that states that

words are most similar to words that occur is similar contexts holds true. This work shows

that the type of context chosen is extremely important when creating semantic representations

of words. It also shows that the best context will actually vary depending on the part of

speech of the word. In this process we created a sound method of evaluating and testing new

word embeddings according to di↵erent parts of speech. These novel evaluation methods

will be useful for future work on improving word embeddings. Additionally these evaluation

methods allow us to examine the previously unexplored vector space of word embeddings.

The work also shows that choosing contexts based on deeper sentence structures, such as

predicate structures and dependency structures, can yield better results then the original

Word2Vec approach. In particular the evaluations of this work show that on average

dependency structures are the best contextual map for semantics of words.

We also looked into subcategories within verbs. Within verbs we found that certain verb

classes have a consistent trend of producing better embeddings. We were able to examine the

attributes of all the verb classes and pick out that the attribute of semantic restrictions were

a particularly good indicator of verb classes that tend to have better embeddings.
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Moving forward this work can serve as a basis for examining di↵erent semantic contexts.

Additionally this work can be useful for people who are working on di↵erent tasks that require

certain parts of speech and they want to choose which embeddings to use. Future work would

include creating an ensemble of the best vectors for each POS and running tests on that.

Additionally it would be interesting to look at other subclasses within POS other than verbs.
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Appendix A

Tables of Evaluation Results

Figure A.1: W2V TF-IDF for Semantic Restrictions
X Axis: the semantic restriction id number

Y Axis: the TF-IDF score

Figure A.2: Accuracy Bar Chart for Sentiment Analysis Task
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DEP1 Emory W2V
Thematic Role TF-IDF Thematic Role TF-IDF
Location 0.107608684 Location 0.00876584
Destination 0.119610453 Destination 0.015258412
Patient 0.121426347 Patient 0.023213425
Result 0.122216405 Result 0.023778535
Instrument 0.129138923 Co-Patient 0.028328186
Value 0.131041313 Stimulus 0.03067366
Co-Patient 0.138650809 Initial Location 0.032537165
Initial Location 0.139321081 Instrument 0.032933738
Stimulus 0.140313702 Experiencer 0.035102587
Experiencer 0.141058461 Value 0.036818516
Trajectory 0.14588342 Extent 0.049864347
Agent 0.163313632 Pivot 0.050109701
Recipient 0.169545778 Agent 0.0580058
Product 0.170471465 Trajectory 0.059337197
Theme 0.172300911 Theme 0.063239456
Beneficiary 0.18038376 Recipient 0.068819099
Asset 0.187020566 Beneficiary 0.076501249
Pivot 0.194013264 Product 0.082942314
Time 0.194370835 Asset 0.088934328
Topic 0.196312019 Co-Agent 0.093085029
Material 0.198571887 Topic 0.096823725
Co-Agent 0.204286617 Material 0.098663215
Source 0.212100147 Time 0.099959924
Attribute 0.23705281 Source 0.10859664
Co-Theme 0.239254579 Attribute 0.116194637
Predicate 0.23961796 Co-Theme 0.128215774
Goal 0.242490007 Goal 0.130279908
Cause 0.261291256 Reflexive 0.138160557
Reflexive 0.262164058 Predicate 0.14018803
Extent 0.26936512 Cause 0.15957498

Table A.1: Thematic Roles TF-IDF
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DEP1 Emory W2V
Semantic Rest. TF-IDF Semantic Rest. TF-IDF
animal 0.008069752 vehicle -0.080535869
vehicle 0.038133761 animal -0.05344451
force 0.049097646 substance -0.044058901
refl 0.053354841 nonrigid -0.035023411
body part 0.061043103 solid -0.032667689
nonrigid 0.064034098 force -0.030145113
elongated 0.083371791 refl -0.028468917
pointy 0.089672872 pointy -0.013972301
substance 0.096195728 elongated -0.012872145
comestible 0.103069985 body part -0.01196419
int control 0.104793193 human 0.004031331
solid 0.109090853 plural 0.013075965
human 0.116119565 concrete 0.014488045
region 0.128640466 int control 0.015938813
garment 0.130111673 region 0.017543195
machine 0.131590587 sound 0.019419068
communication 0.13172907 comestible 0.020619526
plural 0.132661374 location 0.025539132
location 0.13659233 machine 0.0311451
sound 0.137749398 communication 0.033841472
concrete 0.141796994 garment 0.037053907
currency 0.165268205 scalar 0.049864347
animate 0.226286459 currency 0.060949444
scalar 0.26936512 animate 0.082169937
time 0.302649297 organization 0.147867269
organization 0.303410729 time 0.20643542
abstract 0.467810365 abstract 0.271332069

Table A.2: Semantic Restrictions TF-IDF



44

Appendix B

Semantic Roles and Their Functions

• Actor: used for some communication classes when both arguments can be considered

symmetrical (pseudo-agents).

• Agent: generally a human or an animate subject. Used mostly as a volitional agent,

but also used in VerbNet for internally controlled subjects such as forces and machines.

• Asset: used for the Sum of Money Alternation

• Attribute: attribute of Patient/Theme refers to a quality of something that is being

changed

• Beneficiary: the entity that benefits from some action Generally introduced by the

preposition ‘for’, or double object variant in the benefactive alternation.

• Cause: used mostly by classes involving Psychological Verbs and Verbs Involving the

Body.

• Location, Destination, Source: used for spatial locations.

• Destination: end point of the motion, or direction towards which the motion is directed.

• Source: start point of the motion. Usually introduced by a source prepositional phrase

(mostly headed by ‘from’ or ‘out of’)
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• Location: underspecified destination, source, or place, in general introduced by a

locative or path prepositional phrase.

• Experiencer: used for a participant that is aware or experiencing something.

• Extent: to specify the range or degree of change

• Instrument: used for objects (or forces) that come in contact with an object and cause

some change in them. Generally introduced by a ‘with’ prepositional phrase.

• Material and Product: used by classes from Verbs of Creation and Transformation that

allow for the Material/Product Alternation.

• Material: start point of transformation.

• Product: end result of transformation.

• Patient: used for participants that are undergoing a process or that have been a↵ected

in some way.

• Predicate: used for classes with a predicative complement.

• Recipient: target of the transfer

• Stimulus: used by Verbs of Perception for events or objects that elicit some response

from an experiencer. This role usually imposes no restrictions.

• Theme: used for participants in a location or undergoing a change of location

• Time: class to express time.
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• Topic: topic of communication verbs to handle theme/topic of the conversation or

transfer of message.
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