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Abstract

Agreement Methods for Complex Outcomes in Biomedical Studies

By Tian Dai

In biomedical studies, researchers are often interested in evaluating the similarity of
measurements produced by different methods on the same subjects. Given the importance
of agreement studies, there has been extensive literature on measuring agreement for
standard outcomes. However, very limited work has been done to assess agreement for
complex biomedical outcomes. In this dissertation, we propose novel agreement methods
for two complex outcomes often encountered in biomedical studies, survival data and high
dimensional neuroimaging data.

The first objective of this dissertation is to study the local agreement pattern between
two survival outcomes. Most classical agreement methods have been focused on global
summary statistics, which cannot be used to describe various local agreement patterns.
In this work, we propose a new agreement measure based on bivariate hazard functions
to characterize the local agreement pattern between two correlated survival outcomes.
The proposed measure naturally accommodates censored observations, fully captures the
dependence structure between bivariate survival times and provides detailed information
on how the strength of agreement evolves over time.

Next, we investigate statistical methods for assessing the reproducibility of neu-
roimaging data in multi-site studies. Considering the special features of imaging data,
such as high dimensionality, we propose a two-stage network-based method to effectively
and efficiently assess the similarity between the same subject’s brain images acquired
at different sites. In the first stage, we reduce the dimensionality of imaging data by
extracting active functional networks under experimental conditions and estimating the
corresponding temporal dynamics. In the second stage, we propose functional agreement
indices to measure the agreement between the same subject’s network-specific temporal
dynamics estimated from brain images acquired across different sites.

Imaging-based brain connectivity measures based on resting-state fMRI data have be-
come an important tool for investigating the pathophysiology, progression and treatment
response of psychiatric disorders. In the last part of this dissertation, we propose a pre-
diction method based on Bayesian hierarchical model that uses individual’s earlier scans,
coupled with relevant baseline characteristics, to predict the individual’s future functional
connectivity. The proposed prediction method could provide a useful tool to predict the
changes in individual patient’s brain connectivity with the progression of disease. It can
also be used to predict a patient’s brain connectivity after a specified treatment regimen
which could potentially help guide individualized treatment plan. Another utility of the
proposed method is that it could be applied to test-retest reproducibility imaging data to
develop a more reliable estimator for individual functional connectivity.
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1.1 Motivation

In biomedical studies, researchers are often interested in evaluating the similarity of

measurements produced by different raters or methods on the same subjects. For example,

an outcome may be measured by a gold standard approach and an approximate method

and it is of interest to decide whether the approximate method can act as a reasonable

replacement for the gold standard (Laurent, 1998). In these cases, we need to assess the

agreement between the correlated measurements. Given the importance of agreement

studies in biomedical sciences, there has been extensive literature on measuring agreement

for categorical and continuous outcomes (Cohen, 1960; Lin, 1989 etc.). However, very

limited work has been done to assess agreement for complex biomedical outcomes. In my

dissertation, we have proposed novel agreement methods for two types of biomedical data.

In the first project, our goal is to assess agreement between correlated survival times with

censored observations. In the second project, we are interested in measuring agreement

for high dimensional neuroimaging data with replicated scans. In the third project, we

propose a prediction method for brain functional connectivity in resting-state fMRI data.

As will be elaborated later, considerable statistical challenges are involved in developing

agreement methods that can appropriately address the data complications in biomedical

studies.

The objective of our first project is to study the local agreement pattern between two

continuous measurements subject to censoring (i.e. survival outcomes). Survival outcomes

are frequently observed in biomedical studies and it may be of interest to assess the

agreement between survival times measured on the same subjects using different methods.

For example, in depression studies (Musselman et al., 2001), the time of onset of clinical

depression is measured using both clinician-administered Hamilton depression rating

scale (HAM-D) and a patient self-report dimensional instrument (Carroll-D). Evaluating

agreement between the disease onset times based on the different instruments is useful in

assessing whether the less time-consuming and easier to use patient self-report instrument
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could be adopted as a reasonable replacement for the clinician-administered instrument. It

is clear that the data setting considered here is more challenging than the typical case of

complete observations of continuous measurements because the outcomes can be censored.

Furthermore, as the measurements are observed over time, it is of interest to study how

local agreement pattern changes over time.

The motivation for our second project is an increasing trend of conducting multi-site

neuroimaging studies. The multi-site imaging studies have become popular due to a number

of significant advantages (Friedman et al., 2006; Friedman and Glover, 2006). First of all,

multi-site studies provide larger sample sizes and hence more statistical power for detecting

the effect of interest when the effect size is relatively small in imaging studies. Secondly,

they increase the generalizability of research conclusions by recruiting subjects from diverse

geographic and demographic backgrounds. Additionally, they provide the capability to

study rare psychiatric diseases. For example, the Functional Biomedical Informatics

Research Network (fBIRN) has recently conducted a multi-site study sponsored by the

NCCR/NIH to study regional brain dysfunction related to the progression and treatment

of schizophrenia. Ideally, merging data across sites requires the interchangeability of data

from different sites and is reasonable only if site differences in fMRI data can be minimized.

However, one major challenge arises when combining data in multi-site imaging studies

is that even the same subject’ brain images can vary considerably across MRI sites since

they are acquired using different scanners and protocols. Thus, it is crucial to effectively

measure the reproducibility of brain images acquired from various sites before conducting

any further analysis in order to draw reliable conclusions in multi-site studies. If the

agreement between sites is low, sources causing the discrepancy need to be identified and

addressed.

To assure the success of large-scale studies in the fBIRN project, researchers have

conducted a pilot traveling-subject study prior to all other studies to evaluate the

reproducibility of fMRI images acquired at different imaging sites. Fig 1.1 demonstrates a
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general data structure for traveling-subject fMRI studies. In this fBIRN traveling-subject

Figure 1.1: Data Structure of the Traveling Subjects Study

study, five healthy, English-speaking males in their 20s were imaged on two consecutive

days on 10 different scanners located in nine geographically diverse sites within the United

States. For each subject, a group of images, including T1 weighted scans, two cognitive

fMRI tasks (auditory oddball (AO) and Serial Item Recognition Paradigm (SIRP) tasks),

two calibration scans (breath hold (BH) and sensory motor (SM) tasks) and a resting state

scan, were acquired during each visit under the identical tasks protocols across sites. Each

site was instructed to design their own optimal imaging protocol. Therefore, scanning

parameters, such as scanner vendor, field strength, k-space trajectory, echo time, head coil

type, might vary across sites and introduced between-site variability. This study provides an

excellent dataset to evaluate statistical tools for assessing reproducibility of fMRI images in

multi-site studies (Zou et al., 2005; Friedman and Glover, 2006; Friedman et al., 2006, 2008).

Network-oriented analysis of fMRI, especially rs-fMRI, has revealed important as-

sociations between abnormal neural functional connectivity and brain disorders such as

schizophrenia, major depression and Alzheimer’s disease. Imaging-based brain connectivity

measures have become important tools for investigating the pathophysiology, progression

and treatment response of psychiatric disorders. Recent studies have begun to investigate

the possibility of using functional neuroimaging to predict disease progression and guide

treatment selection for individual patients. In the third project, we are interested in

developing a prediction method based on Bayesian hierarchical model that uses individual’s



6

earlier scans, coupled with relevant baseline characteristics, to predict the individual’s

future functional connectivity. The proposed prediction method is very general and can

accommodate various study designs in the neuroimaging studies by modeling with different

design matrices and distributional assumptions. In Chapter 4, we illustrate the practical

utilities of the proposed prediction method using two real imaging studies– a longitudinal

imaging study (ADNI2) and a test-retest reproducibility study (Kirby21).

In this dissertation, we develop new agreement methods, pursuing the advantages de-

scribed above while appropriately handling the data complexities presented in real studies.

In the next section, we present an outline of this dissertation.

1.2 Outline

In Chapter 2, we present a novel local agreement index for correlated bivariate continuous

survival times based on the hazard functions. For estimation of the proposed agreement

measure, we develop a non-parametric approach which does not impose any assump-

tions on marginal survival distributions or the dependence structure between the two

survival times. Hence, the local agreement pattern reflected by our proposed measure

is not restricted by specific dependence structures. We use kernel methods (Fermanian,

1997) to estimate the hazard function. Since survival outcomes are inherently bounded

in the positive region, we propose to improve the estimation accuracy by adopting

appropriate boundary kernel correction. The proposed estimators for the agreement

measure have desirable asymptotic properties such as strong consistency and asymptotic

normality. We perform simulation studies to evaluate the performance of the estimation

method. We use a prostate cancer study to demonstrate the practical utility of our method.

In Chapter 3, we propose a two-stage network-based agreement framework to assess the

agreement/reproducibility between images across sites. Our agreement method can effec-

tively and efficiently characterize the similarity between functional networks extracted from



7

high dimensional neuroimaging data acquired at different sites. We present our method

for task-related functional magnetic resonance imaging (task-fMRI), which is the most

commonly used imaging modality. We develop nonparametric estimation methods for the

proposed indices and establish their asymptotic properties. We evaluate the accuracy of the

proposed estimation procedure via simulation studies. The proposed methods are applied

to the fBIRN Traveling-Subject study to investigate site effect in multi-site imaging studies.

In Chapter 4, we present a general framework for predicting individual future resting-

state functional connectivity (RSFC) based on his/her baseline rs-fMRI and relevant

clinical and demographic characteristics, such as disease stage or treatment group. We

illustrate the model specification for two types of imaging studies – longitudinal imaging

studies which investigate disease progression and treatment-related changes in functional

connectivity and test-retest studies which aim to investigate and improve the reliability of

RSFC. To evaluate the accuracy of the proposed method, we conduct simulations studies

using K-fold cross-validation approach. We illustrate the application of the proposed

method using two real imaging datasets: a longitudinal ADNI2 data and a test-retest

Kirby21 data. In both simulation studies and real data applications, we show that the

proposed method provides a more reliable prediction over the alternative methods.

In Chapter 5, we provide a summary of our completed work and plans for future work.
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Chapter 2

Agreement Methods for Survival

Outcomes.
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2.1 Introduction

In biomedical studies, researchers are often interested in assessing agreement on measure-

ments taken on the same subjects using different methods or by different raters. There has

been extensive literature on assessing agreement and making appropriate inference (Cohen,

1960, 1968; Fleiss, 1971; Kraemer, 1980; Agresti et al., 1995; Lin, 1989, 2000; Barnhart

et al., 2007). For continuous data, various measures including both scaled measures,

such as concordance correlation coefficient (CCC) (Lin, 1989) and coefficient of individual

agreement (Barnhart et al., 2007), and unscaled ones, such as total deviation index (Lin,

2000), have been proposed. For categorical data, the kappa coefficient and its extensions

(Cohen, 1960, 1968; Fleiss, 1971; Kraemer, 1980; Agresti et al., 1995) have been widely used.

All of the aforementioned methods take the strategy of quantifying the agreement of

interest by a global summary measure. While being simple, they have been criticized for

their limitations in fully capture agreement information (Tanner and Young, 1985; Darroch

and McCloud, 1986). For example, with two categorical scales, Agresti (1989) showed

that when a simple quasi-symmetry model holds for the contingency table, the kappa

contains all relevant information about the structure of the agreement. However, when the

quasi-symmetry model fails, various agreement patterns can produce the same kappa value

and the kappa coefficient alone is not capable of distinguishing different agreement patterns.

Given the limitation of kappa coefficient, Tanner and Young (1985), Agresti (1988, 1992)

and others have promoted studying the structure of agreement instead of summarizing

agreement into a single measure. To this end, they proposed alternative approaches based

on log-linear modeling. For continuous data, researchers (Borg et al, 1995; Schild et al.,

2000) have argued to use descriptive tools such as a scatter plot of two continuous readings

with the 45 degree line as the concordance line or Bland and Altman (1986) plot of the

difference against the average of paired measurements with the horizontal line of zero as

the reference. These plots can be informative, in particular in visualizing the local patterns

of agreement, and help capture the changes of measurement concordance along with the
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magnitude of measurements. However, they are purely descriptive methods and cannot

provide inference regarding agreement. A formal tool for assessing local agreement pattern

would be desirable, but has been lacking in literature.

The objective of this chapter is to study the local agreement pattern between two

continuous measurements subject to censoring (i.e. survival outcomes). Survival outcomes

are frequently observed in biomedical studies and it may be of interest to assess the

agreement between survival times measured on the same subjects using different methods.

For example, in depression studies (Musselman et al., 2001), the time of onset of clinical

depression is measured using both clinician-administered Hamilton depression rating

scale (HAM-D) and a patient self-report dimensional instrument (Carroll-D). Evaluating

agreement between the disease onset times based on the different instruments is useful in

assessing whether the less time-consuming and easier to use patient self-report instrument

could be adopted as a reasonable replacement for the clinician-administered instrument. It

is clear that the data setting considered here is more challenging than the typical case of

complete observations of continuous measurements because the outcomes can be censored.

Furthermore, as the measurements are observed over time, it is of interest to study how

local agreement pattern changes over time.

Most existing agreement measures with censored survival data have been focused on

global measures (Liu et al., 2005; Guo and Manatunga, 2007, 2010; Guo et al., 2013)

and cannot be used to characterize local agreement patterns. The descriptive tools for

agreement patterns, such as scatter plot and Bland and Altman plot, are not applicable

for survival data due to the presence of censoring. Recently, Zeng et al. (2015) proposed a

time-dependent agreement method to assess temporal pattern of agreement between two

time-to-event endpoints. Their approach is likelihood-based and thus requires parametric

distribution assumptions and also relies on the assumption that the two event times have

a positive probability of being identical.
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In this chapter, we propose a local agreement measure for survival data to describe

the local agreement pattern by considering the bivariate hazard function with an

adjustment made to the expected chance agreement alone. It is sensible to consider

hazard functions in this setting, due to its interpretability and analytical simplifications

related to censoring. An appealing feature of our proposed local agreement measure

is that it has a nice connection with the local kappa coefficient developed for assess-

ing local agreement between two discrete survival times (Guo and Manatunga, 2005).

Specifically, the proposed agreement measure can be viewed as an extension of the

unscaled local kappa coefficient for continuous survival times. Our approach taken here

is conceptually different from the modeling approaches suggested by Tanner and Young

(1985), Agresti (1988, 1992), and Zeng et al. (2015), since we do not fit a series of models

specified under specific types of dependence structures for describing the agreement pattern.

For estimation of the proposed agreement measure, we develop a non-parametric ap-

proach which does not impose any assumptions on marginal survival distributions or the

dependence structure between the two survival times. Hence, the local agreement pattern

reflected by our proposed measure is not restricted by specific dependence structures. We

use kernel methods (Fermanian, 1997) to estimate the hazard functions. Since survival out-

comes are inherently bounded in the positive region, we propose to improve the estimation

accuracy by adopting appropriate boundary kernel correction. The proposed estimators for

the agreement measure have desirable asymptotic properties such as strong consistency and

asymptotic normality. We perform simulation studies to evaluate the performance of the

estimation method. We use a prostate cancer study to demonstrate the practical utility of

our method.
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2.2 Methods

2.2.1 Proposed local agreement pattern measure ϕ(t1, t2)

In this section, we first present the proposed local agreement pattern measure and discuss

its properties. To set notations, let T1 and T2 denote a pair of continuous survival times

of the same individual based on different raters or methods. The joint survival function of

the correlated survival times (T1, T2) is denoted as S(t1, t2) = Pr(T1 ≥ t1, T2 ≥ t2). To

motivate our local agreement measure, consider a local contingency table for the conditional

survival status of T1 and T2 at time (t1 + ∆t1, t2 + ∆t2) given that T1 ≥ t1 and T2 ≥ t1,

where (t1, t2) is any time point within the support of the bivariate survival function, and

∆t1 and ∆t2 represent small time intervals around t1 and t2 respectively. Given T1 ≥ t1 and

T2 ≥ t2, the joint survival status of T1 and T2 within the rectangular region [t1, t1 + ∆t1)×

[t2, t2 + ∆t2) can be described with a 2×2 table with the four cells representing all possible

situations: T1 ≥ t1 + ∆t1, T2 ≥ t2 + ∆t2; T1 ∈ [t1, t1 + ∆t1) , T2 ≥ t2 + ∆t2; T1 ≥ t1 +

∆t1, T2 ∈ [t2, t2 + ∆t2); and T1 ∈ [t1, t1 + ∆t1) , T2 ∈ [t2, t2 + ∆t2). The corresponding cell

probabilities are defined as follows:

P00(t1, t2) = Pr (T1 ≥ t1 + ∆t1, T2 ≥ t2 + ∆t2 | T1 ≥ t1, T2 ≥ t2)

=
S(t1 + ∆t1, t2 + ∆t2)

S(t1, t2)
,

P10(t1, t2) = Pr (T1 ∈ [t1, t1 + ∆t1) , T2 ≥ t2 + ∆t2 | T1 ≥ t1, T2 ≥ t2)

=
S(t1, t2 + ∆t2)− S(t1 + ∆t1, t2 + ∆t2)

S(t1, t2)
,

P01(t1, t2) = Pr (T1 ≥ t1 + ∆t1, T2 ∈ [t2, t2 + ∆t2) , | T1 ≥ t1, T2 ≥ t2)

=
S(t1 + ∆t1, t2)− S(t1 + ∆t1, t2 + ∆t2)

S(t1, t2)
,

P11(t1, t2) = Pr (T1 ∈ [t1, t1 + ∆t1) , T2 ∈ [t2, t2 + ∆t2) , | T1 ≥ t1, T2 ≥ t2)

=
S(t1, t2)− S(t1 + ∆t1, t2)− S(t1, t2 + ∆t2) + S(t1 + ∆t1, t2 + ∆t2)

S(t1, t2)
.

We define the following measure k(t1 + ∆t1, t2 + ∆t2) to capture the chance-

corrected local agreement between the two survival times within the rectangular
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region [t1, t1 + ∆t1)× [t2, t2 + ∆t2) as,

k(t1 + ∆t1, t2 + ∆t2)

= P00(t1, t2) + P11(t1, t2)− P1+(t1, t2)P+1(t1, t2)− P0+(t1, t2)P+0(t1, t2),

(2.1)

where P0+(t1, t2) = P00(t1, t2) + P01(t1, t2), P+0(t1, t2) = P00(t1, t2) + P10(t1, t2),

P1+(t1, t2) = P11(t1, t2) + P10(t1, t2), P+1(t1, t2) = P11(t1, t2) + P01(t1, t2) are the

marginal probabilities in the 2×2 table. From (2.1), we note that k(t1 +∆t1, t2 +∆t2)

is closely related to a local Kappa coefficient proposed by Guo and Manatunga (2005)

for measuring local agreement between discrete survival times. Specifically, the

observed local agreement probability for the two survival outcomes in the 2× 2 table

is P00(t1, t2) + P11(t1, t2). The expected agreement probability when the two survival

outcomes are locally independent is P1+(t1, t2)P+1(t1, t2) + P0+(t1, t2)P+0(t1, t2).

Therefore, k(t1 + ∆t1, t2 + ∆t2) is the unscaled version of the local Kappa coefficient

(Guo and Manatunga, 2005) defined based on the 2 × 2 table representing the local

region [t1, t1 + ∆t1)× [t2, t2 + ∆t2).

Motivated by (2.1), we propose a local agreement measure ϕ (t1, t2) by taking the

limit of the regional chance-corrected agreement function k(t1 + ∆t1, t2 + ∆t2) as the

region area goes to 0. Specifically, ϕ (t1, t2) is defined as follows,

ϕ (t1, t2) =
1

2
lim

∆t1,∆t2→0

k(t1 + ∆t1, t2 + ∆t2)

∆t1∆t2
= λ11 (t1, t2)− λ10 (t1, t2)λ01 (t1, t2) ,

(2.2)
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where λ11,λ10 and λ01 are bivariate hazard functions defined as,

λ11 (t1, t2) = lim
∆t1,∆t2→0

Pr (T1 ∈ [t1, t1 + ∆t1) , T2 ∈ [t2, t2 + ∆t2) | T1 ≥ t1, T2 ≥ t2)

∆t1∆t2
,

λ10 (t1, t2) = lim
∆t1→0

Pr (T1 ∈ [t1, t1 + ∆t1) | T1 ≥ t1, T2 ≥ t2)

∆t1
, and

λ01 (t1, t2) = lim
∆t2→0

Pr (T2 ∈ [t2, t2 + ∆t2) | T1 ≥ t1, T2 ≥ t2)

∆t2
.

According to Equations (2.1) and (2.2), when there is no local agreement beyond

expected by chance, our agreement measure ϕ (t1, t2) equals 0. When the two survival

outcomes have stronger agreement than expected by chance at (t1, t2), ϕ(t1, t2) has a

positive value, with larger value indicating stronger local agreement. When the local

agreement is weaker than the expected by chance, ϕ(t1, t2) becomes negative. Since

ϕ (t1, t2) is defined based on the bivariate hazard functions which are not bounded

above, ϕ (t1, t2) is not restricted within a fixed range, which means it belongs to the

category of unscaled agreement measures.

2.2.2 Properties of ϕ(t1, t2) as a local agreement pattern mea-

sure

The proposed local agreement pattern measure ϕ(t1, t2) has a connection with the

cross ratio (Clayton, 1978; Oakes, 1982, 1986, 1989), a commonly used local depen-

dence measure for continuous bivariate survival times. For any (t1, t2) within the

support of the bivariate survival function, the cross ratio θ(t1, t2) is defined as,

θ(t1, t2) =
S(t1, t2) d2

dt1dt2
S(t1, t2)

d
dt1
S(t1, t2) d

dt2
S(t1, t2)

, (2.3)

where θ(t1, t2) equals 1 when there is local independence between the two survival

outcomes and is great than 1 when there is positive local dependence, with a higher



17

value indicating stronger positive dependence. From the definitions, we can show that

ϕ(t1, t2) = λ10(t1, t2)λ01(t1, t2)(θ(t1, t2)− 1). (2.4)

Equation (2.4) suggests that the local agreement pattern measure ϕ(t1, t2)

changes in the same direction as the local dependence measure θ(t1, t2). That is,

as the dependence between T1 and T2 increases, the local agreement increases.

Also, ϕ(t1, t2) becomes zero when there is local independence between the two

survival times. Another insight from Equation (2.4) is that when θ(t1, t2) and

λ10(t1,t2)+λ01(t1,t2)
2

are fixed, ϕ(t1, t2) increases as the absolute difference between

λ10(t1, t2) and λ01(t1, t2) decreases. In other words, given constant strength of

local dependence and average conditional marginal hazards, our local agreement

measure increases when the conditional marginal hazards of T1 and T2 become

more similar. This result shows that ϕ(t1, t2) not only reflects the local dependence

between the bivariate survival outcomes but also captures the homogeneity in the

local marginal hazards of the two survival processes. This is a desirable feature

for an agreement measure as described in Lin (1989) and Guo and Manatunga (2005).

To illustrate graphically, how the pattern of this local agreement measure captures

both the strength of dependence and the marginal homogeneity of bivariate survival

times, we first generate three random samples of bivariate survival times with the

sample size of 500 from the Clayton model with the same marginal survival functions

but with different cross ratios, which reflect different degrees of dependence. Next, we

introduce 50% censoring to the bivariate survival times. In Fig 2.1(a) and 2.1(b), we

plot the bivariate survival times with complete data and censored data, respectively.

In Fig 2.1(a), when the two survival times have homogeneous marginal distributions,

they are mostly distributed along the 45 degree line with more concentration along
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this line when there is higher strength of dependence. However, when the survival

times are subject to censoring (Fig 2.1(b)), this pattern is less obvious and it becomes

harder to infer the strength of dependence between the two survival outcomes based

on the scatter plot of the observed survival times. In Fig 2.1(c), we present the

heatmaps representing the local agreement measure ϕ(t1, t2) on the two dimensional

time plane. The heatmaps of ϕ(t1, t2) clearly demonstrate different patterns of the

local agreement measure for survival times with different strengths of dependence.

Specially, when the two survival times have the same marginal distributions and

the highest dependence, the ϕ(t1, t2) has the highest values along the 45 degree

line, i.e. t1 = t2, and decreases fast as moving away from the 45 degree line, i.e. as

|t1 − t2| increases. When the two survival times are less dependent, ϕ(t1, t2) is less

elevated on the 45 degree line and decreases much slower as (t1, t2) moving away

from the 45 degree line. As a comparison, we also present heatmaps of the cross ra-

tio in Fig 2.1(d), which remains constant across the whole time space in each scenario.

To demonstrate how the pattern of the ϕ(t1, t2) can capture the marginal

heterogeneity between two survival times, we generate three samples of bivariate

survival times with the sample size of 500 from the Clayton model with the same

cross ratio but with different marginal survival functions. Similarly, we introduce

50% censoring to the bivariate survival times. In Fig 2.2(a), with heterogeneous

marginal distributions, the bivariate survival times are shifted away from the 45

degree line. This pattern, however, is not obvious from the scatter plots with censored

observations in Fig 2.2(b). Fig 2.2(c) shows that the pattern of ϕ(t1, t2) clearly

captures this type of disagreement between the survival times with the highest local

agreement area moving away from the 45 degree line as the two marginal survival

functions become different. In comparison, the cross ratio in Fig 2.2(d) does not

reflect the difference in the marginal distributions. Furthermore, we note that the
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two different types of disagreement, i.e. marginal heterogeneity or low dependence,

are not distinguishable when using global agreement measures such as Lin’s CCC.

Another appealing feature of the proposed local agreement measure is that it can

fully capture the dependence structure between the correlated survival times. As

shown in the Proposition 1 of Appendix A1, the survival function S(t1, t2) is jointly

determined by the marginal survival functions S1(t1), S2(t2) and an integrable local

agreement pattern measure function ϕ(t1, t2) within the finite region τττ .

2.2.3 Estimation and inference for ϕ(t1, t2)

We develop a nonparametric estimation method for the proposed local agreement

pattern measure in the presence of censoring via kernel smoothing techniques. Let

(Ti1, Ti2) (i = 1, · · · , n) be independent and identically distributed pairs of survival

times observed from n independent subjects, which are subject to bivariate censoring

by a pair of independent random variables ~Ci = (C1i, C2i). The observed data consist

of random vectors
(
T̃i1, T̃i2, δi1, δi2

)
(i = 1, · · · , n), where T̃ij = min (Tij, Cij) and

δij = I (Tij ≤ Cij) for j = 1, 2. We propose to estimate ϕ (t1, t2) by plugging in kernel

estimators of the hazard functions. That is, the proposed estimator is given by

ϕ̂(t1, t2) = λ̂11 (t1, t2)− λ̂10 (t1, t2) λ̂01 (t1, t2) , (2.5)

where

λ̂10(t1, t2) =

∫ t1

0

1

h
K1(

v1 − t1
h

)dΛ̂10(dv1, t2),

λ̂01(t1, t2) =

∫ t2

0

1

h
K1(

v2 − t2
h

)dΛ̂01(t1, dv2), and

λ̂11(t1, t2) =

∫ t1

0

∫ t2

0

1

h2
K2(

v1 − t1
h

,
v2 − t2
h

)dΛ̂11(dv1, dv2).
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Here, ~̂Λ =
(

Λ̂10, Λ̂01, Λ̂11

)T
are the empirical estimators of the corresponding

cumulative hazard functions ~Λ = (Λ10,Λ01,Λ11)T (Dabrowska, 1988), K1 is a

one-dimensional kernel function which has support on [−1, 1] with integral one and

has bounded variation and bounded first derivative, K2 is a two-dimensional kernel

function with similar properties, and h is the smoothing parameter, which also

known as the bandwidth. In Section 2.2.4, we will present more details on the choice

of kernel functions and bandwidths.

Next, we establish the asymptotic properties of the proposed estimator. To

facilitate the following derivation, we first define an alternative formulation for

the proposed agreement pattern measure and its estimator. Denote ~λ (·) =

(λ10 (·) , λ01 (·) , λ11 (·))T . Let λ̃0 be the collection of bivariate hazard functions ~λ

on R2. We define the functional g : λ̃0 7→ R as follows:

g
(
~λ
(
~t
))

= ~e3
T~λ
(
~t
)
− ~e1

T~λ
(
~t
)
~e2
T~λ
(
~t
)
, (2.6)

where ~t = (t1, t2), ~e1 = (1, 0, 0)T , ~e2 = (0, 1, 0)T , ~e3 = (0, 0, 1)T . It is straightforward

to show the proposed local agreement pattern measure ϕ
(
~t
)

can be expressed as a

function of the bivariate hazard functions ~λ (·) via g(·), i.e.

ϕ
(
~t
)

= g
(
~λ
(
~t
))
. (2.7)

Our proposed estimator in (2.5) can be equivalently expressed as

ϕ̂
(
~t
)

= g
(
~̂λ
(
~t
))
, (2.8)

where ~̂λ =
(
λ̂10 (·) , λ̂01 (·) , λ̂11 (·)

)T
are the kernel estimators of the hazard functions.

In the following, we provide the asymptotic properties of ϕ̂.
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Theorem 2.2.1. Consider a region τττ = (0, τ1)×(0, τ2) where (τ1, τ2) is in the support

of the observed event times. Assuming the bivariate hazard function estimator ~̂λ is

uniformly strongly consistent within τττ . For any ~t = (t1, t2) ∈ τττ , the proposed estimator

ϕ̂
(
~t
)

has the following asymptotic properties as n→∞,

(i) The estimator ϕ̂
(
~t
)

is strongly consistent, i.e.,
∣∣ϕ̂ (~t)− ϕ (~t)∣∣→ 0 with probability

1.

(ii) The proposed estimator ϕ̂
(
~t
)

has the following weak convergence result,

rn
{
ϕ̂
(
~t
)
− ϕ

(
~t
)} d→ g′~λ

(
~W
(
~t
))
,

where rn = (nh2)
1/2

, ~W (·) is a multivariate zero-mean Gaussian process with the

covariance function defined in equation (2.10) of Fermanian (1997), and g′~λ is the

Hadamard derivative of g at ~λ defined as

g′~λ

(
~W
)

= ~e3
T ~W − ~e1

T ~W · ~e2
T~λ− ~e2

T ~W · ~e1
T~λ.

Here, g′~λ

(
~W
(
~t
))

follows a zero-mean normal distribution.

(iii) By randomly sampling with replacement from the observed data
(
T̃i1, T̃i2, δi1, δi2

)
(i = 1, · · · , n), a bootstrap estimator ϕ#

(
~t
)

can be obtained based on the bootstrap

samples. Then rn
{
ϕ#
(
~t
)
− ϕ̂

(
~t
)}

, given the observed data, weakly converges to the

same limiting distribution as rn
{
ϕ̂
(
~t
)
− ϕ

(
~t
)}

in probability.

We prove Theorem 2.2.1 based on the Hadamard differentiability of functional

g and the functional delta method. The detailed proof of this theorem is provided

in Appendix A2. Due to the complexity of the covariance function of ~̂λ, an explicit

expression for the asymptotic variance of ϕ̂(t1, t2) is analytically too complicated.

Theorem 2.2.1(iii) suggests an alternative approach for estimating the variance of

ϕ̂(t1, t2) via a bootstrap procedure.
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2.2.4 Choice of the kernel functions and bandwidths for es-

timating the hazard functions

In this section, we provide some discussions on the specifications of the ker-

nel functions and bandwidths for improving the performance of the proposed

nonparametric estimator. We use the Epanechnikov kernels for estimating the

hazard functions because they have been shown to be the most efficient kernel

functions in minimizing the mean integrated squared error (Wang and Jones,

1995) and they also provide computational advantages over other kernel functions.

For estimating λ10(t1, t2) and λ01(t1, t2), we adopt the univariate Epanechnikov

kernel defined as K1(u) = 3/4(1 − u2)I[u2 ≤ 1]. For estimating λ11(t1, t2), we ap-

ply the bivariate product Epanechnikov kernel defined as K2(u1, u2) = K1(u1)K1(u2).

One important consideration in kernel hazard rate estimation is that the hazard

functions have bounded support. In univariate hazard rate estimation, boundary bias

occurs when the support of the kernel function at a time point within the interval [0, h)

exceeds the available range of the observed data, and thus leads to increased bias.

For bivariate survival data, boundary effects are observed when either T1, T2 is close

to zero. To reduce the boundary effects in hazard rate estimation, Müller and Wang

(1994) proposed a class of boundary kernel functions which have shown numerical

benefits in terms of smaller asymptotic mean squared error when estimating near

the boundaries than other boundary kernels (Gasser and Müller, 1979, Keiding and

Andersen, 1989, Gray, 1990). Specifically, for estimating univariate hazard function

in the boundary region BL = {t : 0 ≤ t < h}, they proposed the following boundary

kernel,

K1,t(u) =
12

(1 + q)4
(u+ 1)

[
u(1− 2q) + (3q2 − 2q + 1)/2

]
,

where q = t/h and u ∈ [−1, q]. In this paper, we extend Müller and Wang
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(1994)’s univariate boundary kernel to the bivariate case. For boundary regions

BL,I = [t1, t2 : 0 ≤ t1 < h, t2 ≥ h], BI,L = [t1, t2 : t1 > h, 0 ≤ t2 ≤ h], and BL,L =

[t1, t2 : 0 ≤ t1 < h, t2 ≥ h], the proposed bivariate boundary kernel is formulated as

K2,t1,1(u1, u2) = K1,t1(u1)K1(u2), (t1, t2) ∈ BL,I

K2,1,t2(u1, u2) = K1(u1)K1,t2(u2), (t1, t2) ∈ BI,L

K2,t1,t2(u1, u2) = K1,t1(u1)K1,t2(u2), (t1, t2) ∈ BL,L

where q1 = t1/h, q2 = t2/h, u1 ∈ [−1,min(1, q1)] and u2 ∈ [−1,min(1, q2)].

Another consideration in our kernel estimation is the selection of bandwidths for

estimating the bivariate hazard functions. Various bandwidth selection methods have

been proposed in the literature for multivariate kernel density estimation (Wang and

Jones, 1993, 1994, 1995; Duong and Hazelton, 2003, 2005; Duong, 2007), but very

few have been proposed for multivariate hazard rate estimation. Fermanian (1997)

proposed an asymptotically optimal plug-in bandwidth for estimating multivariate

hazard functions. However, this bandwidth method typically requires a very large

sample size and hence is not applicable in many studies with small to moderate sample

sizes (less than several thousands). According to Fermanian (1997), a practical choice

of bandwidth is to use Silverman’s rule or Scott’s rule (Silverman, 1986; Scott, 1992).

In the simulation studies and data application, we choose the bandwidths for kernel

hazard rate estimation based on Scott’s rule (Scott, 1992) given by h = n−1/(4+d)σ̂,

where d is the number of dimensions of the hazard function and σ̂ is the standard

error estimator of the censored survival times (Steven, 2013).



24

2.3 Simulation Studies

We conducted simulation studies to assess the performance of the proposed estima-

tion and inference procedure of the new local agreement pattern measure. In each

simulation, we generated bivariate survival times (T1, T2) from the Clayton model

(Clayton, 1978) with a sample size of 500. We considered two sets of simulation stud-

ies with different setups for marginal distributions. In the first setup, we assumed

T1 and T2 had identical marginal distributions which were standard exponential. In

the second setup, the two survival times had different marginal distributions where

T1 and T2 had exponential distributions with the means equal to 1 and 1.5, respec-

tively. We specified a cross ratio of 3 in the Clayton model which indicated moderate

dependence between bivariate survival times. The survival times generated from the

Clayton model were subject to independent right censoring by two independent and

exponentially distributed censoring variables. We considered three censoring rates of

17%, 33% and 50%, representing light, medium and heavy censoring, respectively.

Table 2.1 summarizes the results based on 500 simulation runs under various

simulation scenarios. We selected nine time points (t1, t2) on the two dimensional

plane where the values of tj(j = 1, 2) were chosen as the 10th, 30th and 50th

percentiles of the standard exponential distribution. For each pair of time points, we

presented the true value for the local agreement measure ϕ(t1, t2), empirical mean

and empirical standard error for ϕ̂(t1, t2), along with the average standard error

estimate. We also presented coverage probability for the 95% confidence intervals

based on the 200 bootstrap samples. The proposed nonparametric estimator for local

agreement pattern measure demonstrated reasonable accuracy with the bias being

less than 10% at most time points. The empirical standard error of the proposed

estimator decreased as the censoring proportion decreased. The bootstrap standard

error was close to the Monte Carlo standard error and the coverage probability
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of the estimated 95% confidence intervals was close to the nominal level in most cases.

To further illustrate the performance of the proposed estimator, we plotted the

estimated local agreement pattern measures along with the true values over the two-

dimensional time plane for identical (Fig 3a) and different (Fig 3b) marginal distribu-

tions. Specifically, the top panels of Figure 3a and 3b present the surfaces of the true

local agreement pattern measure on the two-dimensional time plane. In the bottom

panels, we first fixed T1 at various values and then plotted the true and estimated

profiles of ϕ across T2 ranging from 0.05 to 1.45 (which was approximately 5% to 75%

quantile of the standard exponential distribution). We also plotted the 95% point-

wise Monte Carlo confidence intervals based on the empirical variance of ϕ̂. Then

we fixed T2 and plotted the profiles of ϕ across T1. Results from Figure 3a and 3b

suggest that the proposed estimator provided fairly accurate estimation of the local

agreement pattern measures across various time points in the two-dimensional time

plane. The bias was in general small with the largest bias observed in the boundary

region when either T1 or T2 was very close to 0. The Monte Carlo confidence bands

for ϕ provided a nice coverage of the profile of the local agreement measure. The

confidence bands tended to be wider near the boundary regions as expected. The

confidence bands for our local agreement measure were much narrower and tighter in

the boundary regions as compared to the confidence bands previously developed for

other local dependence measures (Hu et al., 2011).

2.4 Data Example

We illustrate the application of the proposed local agreement pattern measure

using the data from a prostate cancer study. Prostate cancer is the most common

cancer among US men. Various kinds of treatments are available for this disease
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and it is of interest to compare the efficacy of different treatments (Critz et al.,

1995, 1996; Jung et al., 2011). One major difficulty for comparing the efficacy

across treatments is the lack of a standard definition of disease-free state after

treatments. It’s well known that post-treatment disease status is reflected in the level

of prostate specific antigen (PSA) with higher-level PSA indicating cancer relapse.

However, there is a lack of consensus regarding the exact pattern of PSA level that

defines disease recurrence and physicians have been applying different definitions

that have been traditionally used for specific treatments to define the disease-free

state. The relapse-free survival rates are then obtained for different treatments

based on the corresponding definitions and then used as important guidance for

treatment selection. Since the relapse-free survival rates are derived based on

different definitions of disease-free state, the potential discrepancies between the

definitions may cause misleading conclusions on treatment efficacy. For example,

radical prostatectomy and irradiation are two commonly used treatments for curing

prostate cancer (Critz et al., 1995). Different definitions have been proposed for both

treatments. For radical prostatectomy, post-treatment disease freedom is defined by

reaching and maintaining an undetectable PSA nadir ranging between 0.2 ng/ml and

0.5 ng/ml (Critz et al., 1996). For irradiation, disease freedom is represented by a

non-rising PSA with the increasing PSA defined as three consecutive PSA increases

measured 6 months apart, according to the American Society of Therapeutic

Radiation Oncology (ASTRO) consensus criteria (1997). There has been a debate

on the relative effectiveness of the two treatments. Some researchers claim that two

treatments have equivalent efficacy while others argued that radical prostatectomy

is a better treatment than irradiation since it has a higher curing rate (Critz et al.,

1996). In order to accurately understand and compare the relapse-free survival rates

between the two treatments, it is important to first assess the agreement between

the two disease-free definitions. In particular, we are interested in finding out how
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the agreement between the two definitions evolves along the time after the treatments.

In a clinical study, 1369 men received simultaneous radiotherapy for prostate

cancer followed by an external beam radiation. The disease-free status was evaluated

frequently after radiation treatment. The relapse-free time was defined as the time

from the end of the irradiation till the prostate cancer relapse based on two different

definitions. T1 was the observed relapse-free time with disease recurrence defined

as post-treatment PSA level exceeding the nadir of 0.2 ng/ml. T2 was defined

based on ASTRO definition and represented the midpoint between the time when

the lowest PSA was achieved after irradiation and the time when the first of three

consecutive rises in the PSA level occurred. The relapse-free times for a patient

were subject to independence censoring due to the end of the follow-up on this

patient. Among the 1369 patients, 159 subjects were diagnosed with prostate cancer

recurrence according to both definitions and 64 had relapses based on only one of

the definitions, indicating approximate 80% of censoring. Figure 2.4 presents the

distribution of patients’ observed relapse-free times measured by the two definitions.

The plot shows that the observed relapse-free times ranged from less than 1 year to

13.5 years and almost all of the observed cancer relapses happened within 8 years

after the irradiation. Figure 2.4 also shows that most observed survival times were

on the 45 degree line. For the remaining subjects, the observed relapse-free time by

the ASTRO definition tended to be longer than that by the nadir definition.

We applied the proposed measure ϕ to evaluate the local agreement pattern be-

tween T1 and T2 within 7.5 years after the irradiation. The estimated local agreement

pattern measures are presented in Figure 2.5. On the top panel, we display the lo-

cal agreement measure surface within the time space of [0, 7.5] × [0, 7.5]. From the

surface plot, we can see that within the first 4 years, the local agreement was high-
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est along the 45 degree line and decreased dramatically when moving away from the

45 degree line, indicating there was strong agreement between the two relapse-free

survival times. For year 4 and on, the highest local agreement region moved slightly

away from the 45 degree line towards T2 > T1 area. This suggest that if a patient

remained disease-free longer than 4 years after irradiation, he was more likely to have

a disease relapse diagnosed earlier by the nadir definition. On the bottom panel, we

present the estimated local agreement pattern measures on the 45 degree line within

7.5 years and the corresponding 95% bootstrap pointwise confidence bands based on

1000 bootstrap samples. It shows that the local agreement pattern measure on the 45

degree line was highest around year 2 after the irradiation, suggesting the nadir and

ASTRO definitions agreed best for cancer recurrences that happened around year 2

after the treatment. The local agreement decreased after year 2 indicating more dis-

agreement between the two definitions for recurrences that happened beyond 2 years

after the irradiation. This result was supported by our observations from Figure 2.4

which shows that more bivariate survival outcomes were observed off the 45 degree

line after year 2.

2.5 Remarks

In this paper, we propose a new framework for describing local agreement pattern

between correlated survival outcomes. This new framework has three appealing

features. First, it accommodates censored observations in time-to-event data.

Second, it reveals how the local agreement pattern changes over time. Lastly,

the local measure, as a function, fully captures the dependence structure between

bivariate survival times.

The proposed local agreement pattern measure is not bounded by a fixed range
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due to the nature of hazard functions being unbounded. As done with many other

unbounded descriptive measures, such as cross ratio (Clayton, 1978) and local depen-

dence function (Holland and Wang, 1987), the proposed measure can be interpreted

with respect to the relative scale over the two-dimensional time space within the re-

gion of interest. It helps to address the nature of agreement when the relationship of

two survival times is time dependent and can potentially be used for modeling such

local relationship.

2.6 Appendix

Appendix A1. Proposition 1

In the following proposition, we show that ϕ(t1, t2) fully captures the dependence

structure between correlated survival times by demonstrating how the survival func-

tion S(t1, t2) is jointly determined by the marginal survival functions S1(t1), S2(t2)

and an integrable local agreement pattern measure function ϕ(t1, t2) within the finite

region τττ .

Proposition 1. Let S1(t) = S(t, 0), S2(t) = S(0, t), and τττ = (0, τ1) × (0, τ2), where

τ1 = sup{t : S1(t) > 0} and τ2 = sup{t : S2(t) > 0}, we have

S(t1, t2) = S1(t1)S2(t2) exp

{∫ t1

0

∫ t2

0

ϕ(u1, u2)du1du2

}
.

Proof. First, we show that ϕ(t1, t2) equals to the second-order mixed partial derivative
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of the log-transformed joint survival function, which follows from

ϕ(t1, t2) = λ11(t1, t2)− λ10(t1, t2)λ01(t1, t2)

=
f(t1, t2)

S(t1, t2)
−
{
d

dt1
logS(t1, t2)

}{
d

dt2
logS(t1, t2)

}
=

d2

dt1dt2
logS(t1, t2).

Then, we have

logS(t1, t2) = [logS(t1, t2)− logS(t1, 0)− logS(0, t2) + logS(0, 0)] + logS(t1, 0) + logS(0, t2)

=

∫ t1

0

∫ t2

0

ϕ(u1, u2)du1du2 + logS1(t1) + logS2(t2),

or equivalently,

S(t1, t2) = S1(t1)S2(t2) exp

{∫ t1

0

∫ t2

0

ϕ(u1, u2)du1du2

}
.

Appendix A2. Proof of Theorem 2.2.1

Proof. Let Dg be a collection of bivariate and single hazard rate functions on R2.

For all converging sequences tn → 0, and ~dn → ~d ∈ D0 ⊂ Dg with ~dn ∈ Dg and

~λ+ tn~dn ∈ Dg, we can prove that

lim
n→∞

g
(
~λ+ tn~dn

)
− g

(
~λ
)

tn
= ~e3

T ~d− ~e1
T ~d · ~e2

T~λ− ~e1
T~λ · ~e2

T ~d. (2.9)

From (2.9), g is Hadamard differentiable at ~λ (van der Vaart and Wellner, 1996) with

the derivative of

g′~λ

(
~d
)

= ~e3
T ~d− ~e1

T ~d · ~e2
T~λ− ~e1

T~λ · ~e2
T ~d.
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The result of ϕ̂
(
~t
)

= g
(
~̂λ
(
~t
)) P→ ϕ

(
~t
)

= g
(
~λ
(
~t
))

follows from the continuity of the

Hadamard differentiable function g and the consistency of ~̂λ. Thus, the statement

(i) of Theorem 2.2.1 is proven.

It has shown that rn

{
~̂λ
(
~t
)
− ~λ

(
~t
)}

weakly converges to a zero-mean Gaussian

process W
(
~t
)

(Fermanian, 1997) as the positive sequence rn →∞. Specifically, Fer-

manian (1997) has showed that in τττ , the kernel estimators λ̂10, λ̂01, λ̂11 are uniformly

strongly consistent and have weak convergence results under some regularity condi-

tions of the bandwidths. That is, for any ~t ∈ τττ , if λ10, λ01 and λ11 are C2 in the

neighborhood of ~t and if there exists ε > 0, such that the bandwidth sequence {hn}

satisfies hnlog2n → 0, nh
(1+ε)
n → ∞ as n → ∞, we have the following asymptotic

properties for ~̂λ as below,


√
nhn

{
λ̂10(~t)− λ10(~t)

}
→ W10(~t)

√
nhn

{
λ̂01(~t)− λ01(~t)

}
→ W01(~t)√

nh2
n

{
λ̂11(~t)− λ11(~t)

}
→ W11(~t)

⇔
√
nh2

n

{
~̂λ(~t)− ~λ(~t)

}
→ ~W (~t)

where ~W (·) = (
√
hnW10(·),

√
hnW01(·),W11(·))T . The asymptotic covariance

of the Gaussian process W10, W01, W11 is defined in Equation (2.10) in Fer-

manian (1997). The function g is proved to be Hadamard differentiable.

Then, the following statement is true according to functional delta method,

rn
{
ϕ̂
(
~t
)
− ϕ

(
~t
)}

= rn

{
g
(
~̂λ
(
~t
))
− g

(
~λ
(
~t
))}

weakly converges to g′~λ

(
W
(
~t
))

.

Thus, the statement (ii) is true.

To show the asymptotic result for the bootstrap estimator in (iii), define ϕ#
(
~t
)

as

the nonparametric estimator of the local agreement pattern measure based on a boot-

strap sample
(
T̃#
i1 , T̃

#
i2 , δ

#
i1, δ

#
i2

)
(i = 1, · · · , n) randomly selected with replacement

from the observed data. Due to the Hadamard differentiability of the function g and



33

the functional delta method for bootstrapping, rn
{
ϕ#
(
~t
)
− ϕ̂

(
~t
)}

conditional on the

observed data weakly converges to the same limiting distribution as rn
{
ϕ̂
(
~t
)
− ϕ

(
~t
)}

in probability.
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Figure 2.1: Clayton models with the same marginal exponential distributions for
T1 and T2 but different dependence levels. The dependence between T1 and T2
decreases from left to right with cross ratio taking the values, 6, 4.3 and 3. From
upper panel to lower panel, the figures represent the scatterplots with complete data,
scatterplots with censored data, local agreement pattern measure heatmaps, and cross
ratio heatmaps, respectively.
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Figure 2.2: Clayton models when the marginal distribution of T2 changes while the
marginal distribution of T1 and the association between T1 and T2 are fixed. The
marginal distribution of T2 becomes more different from the distribution of T1 from
left to right with rate parameter of T2 distribution taking values of 1, 0.6 and 0.3,
respectively. From upper panel to lower panel, the figures represent the scatterplots
with complete data, scatterplots with doubly censored data, local agreement pattern
measure heatmaps, and cross ratio heatmaps, respectively.
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Figure 3a: Local agreement pattern measure for the Clayton model with identical
marginal distributions. The surface plot in the top panel is the true local agreement
pattern measure on the 2-D time space. Line curves in the bottom panels correspond
to the lines in the surface plot when fixing one of the two survival times. Dot curves
are the estimated local agreement pattern measures and the corresponding empirical
pointwise 95% confidence bands.



37

T1

0.0

0.5

1.0

1.5

T2

0.0

0.5

1.0

1.5

local agreement pattern measure

0.5

1.0

1.5

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

T2

Lo
ca

l A
gr

ee
m

en
t P

at
te

rn
 M

ea
su

re

T1= 0.1

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

T2

Lo
ca

l A
gr

ee
m

en
t P

at
te

rn
 M

ea
su

re

T1= 0.4

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

T2

Lo
ca

l A
gr

ee
m

en
t P

at
te

rn
 M

ea
su

re

T1= 0.7

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

T2

Lo
ca

l A
gr

ee
m

en
t P

at
te

rn
 M

ea
su

re

T1= 1

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

T2

Lo
ca

l A
gr

ee
m

en
t P

at
te

rn
 M

ea
su

re

T1= 1.3

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

T1

Lo
ca

l A
gr

ee
m

en
t P

at
te

rn
 M

ea
su

re

T2= 0.1

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

T1

Lo
ca

l A
gr

ee
m

en
t P

at
te

rn
 M

ea
su

re

T2= 0.4

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

T1

Lo
ca

l A
gr

ee
m

en
t P

at
te

rn
 M

ea
su

re

T2= 0.7

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

T1

Lo
ca

l A
gr

ee
m

en
t P

at
te

rn
 M

ea
su

re

T2= 1

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

T1

Lo
ca

l A
gr

ee
m

en
t P

at
te

rn
 M

ea
su

re

T2= 1.3

Figure 3b: Local agreement pattern measure for the Clayton model with different
marginal distributions. The surface plot in the top panel is the true local agreement
pattern measure on the 2-D time space. Line curves in the bottom panels correspond
to the lines in the surface plot when fixing one of the two survival times. Dot curves
are the estimated local agreement pattern measures and the corresponding empirical
pointwise 95% confidence bands.
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Figure 2.4: Prostate cancer relapse-free survival times after irradiation based on the
two definitions of disease-free state. Red dots represent subjects with both survival
times observed. The orange plus signs are corresponding to patients that did not
experience disease relapse during the study according to both definitions. The blue
arrow signs stand for patients that had been diagnosed with disease relapse with only
one definition in the study.
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Figure 2.5: Estimated local agreement pattern measure surface (top) and diagonal-
line curve with 95% bootstrap pointwise confidence bands (bottom).
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Chapter 3

Agreement Methods for High

Dimensional Neuroimaging Data
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3.1 Introduction

Recently in the brain imaging community, there is an increasing trend of conducting

multi-site studies. For example, the Functional Biomedical Informatics Research

Network (fBIRN) has recently conducted a multi-site study sponsored by the NC-

CR/NIH to study regional brain dysfunction related to the progression and treatment

of schizophrenia. Ideally, merging data across sites requires the interchangeability of

data from different sites and is reasonable only if site differences in fMRI data can be

minimized. However, one major challenge arises when combining data in multi-site

imaging studies is that even the same subject’ brain images can vary considerably

across MRI sites since they are acquired using different scanners and protocols.

Thus, it is crucial to effectively measure the reproducibility of brain images acquired

from various sites before conducting any further analysis in order to draw reliable

conclusions in multi-site studies. To assure the success of large-scale studies in the

fBIRN project, researchers have conducted a pilot traveling-subject study prior to

all other studies to evaluate the reproducibility of fMRI images acquired at different

imaging sites. If the agreement between sites is low, sources causing the discrepancy

need to be identified and addressed.

Agreement methodology provides a well-suited framework to address the needs

for reproducibility assessment in multi-site imaging studies. Friedman et al. (2008)

assessed the between-site reproducibility of brain images from the fBIRN Traveling

Subject study by measuring the intra correlation coefficients (ICC) based on two

summary statistics estimated from six regions of interest(ROI): percent signal

change and contrast-to-noise ratio. By using scalar summary statistics, they directly

applied existing statistical methods to assess the reliability for fMRI data. One

major disadvantage of their approach was that they assessed the reliability only

based on median- or maximum-based summary measures from selected regions
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which represented very limited information from the observed images. Therefore,

their conclusions could only be made with respect to these specific measures of

brain activation. There were no clear justifications that the reproducibility in these

measures could be generalized to the reproducibility in other features of fMRI

images, such as reaction time. In addition, by using scalar summary statistics, their

approach left out a lot of important information from the observed images, which

would eventually result in the lost of statistical power for small-sample-sized studies.

Li and Chow (2005) proposed the concordance correlation coefficient for image

data. Their approach was only applicable to measure the agreement between two

single brain images. However, in fMRI study, we often have time series of brain im-

ages. Additionally, Li and Chow’s (2005) approach for assessing agreement for image

data used the whole brain images. As we know, a brain contains many functional

networks. Observed brain imaging data represents the combination of signals from

various underlying functional networks such as resting-state functional networks

that control our physiological, sensory and cognitive activities and task-related

networks that regulate our responses to experimental tasks. In the task-based brain

imaging study, we are often interested in specific functional networks and their

signals that correspond to experimental tasks. In these kinds of studies, it would be

more efficient to only focus on those functional networks of interest and to elimi-

nate the impacts of resting-state functional connectivity as well as background noises.

In the motivating data example, subjects were instructed to perform sensorimotor

tasks for four replicated scans during each visit while their fMRI images were being

acquired. In this case, we have four replications of time series of brain images for

each subject at each site. In the literature, many agreement methods have been

developed for assessing the agreement using replicated measurements. For example,
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Barnhart et al. (2005, 2007) extended the classical CCC and proposed total-CCC

and inter-CCC to accommodate data with replications. Barnhart et. al. (2007)

introduced a new agreement measure for replicated data, i.e., coefficient of individual

agreement (CIA), based on the concept of individual agreement. These agreement

methods were all developed for standard scalar measurements and have very limited

applications to the high dimensional and complex imaging outcomes.

Although the aforementioned statistical methods are all designed to quantify

the agreement with replicated measurements, there are some underlying differences

among them. Lin’s CCC was originally designed to assess the agreement between

continuous outcomes with single measurement and has later been modified to accom-

modate for replicated measurements. CIA differs from the CCC in its relationship

with the within-subject variability (σWj) and the between-subject variability (σBj).

CCC-type of measures use the independence model as the benchmark. Alternatively,

CIA compares differences between measurements from different observers to the dif-

ferences of replicated measurements of the same observer. Therefore, the estimation

of CIA requires replications for the estimation of within-rater variability. Afore-

mentioned agreement methods were all developed for standard scalar measurements

and have very limited applications to the high dimensional and complex imaging

outcomes.

In this chapter, we want to propose an agreement/reproducibility method that

is suitable for high-dimensional brain imaging data. Specifically, we develop a

functional-network-based agreement framework to assess the agreement between

replicated images from different imaging sites. There are several reasons to consider

a network-based agreement method. First of all, constructing a voxel-wise agreement

measure is not efficient given the noisy imaging data, and does not summarize the
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agreement very well. Secondly, hundreds of thousands of voxels in the brain can

be grouped into some brain functional networks. Voxels in the same functional

networks usually demonstrate similar temporal dynamics across the study period.

These functional networks are often what researchers are interested in and studied

in fMRI studies. The proposed network-based method can help us reduce the high

dimensionality of imaging data and measure the agreement using the most relevant

information from fMRI images. Our approach is consisted of two stages. In the

first stage, we decompose the observed brain images into several functional networks

and extract the temporal dynamics of these functional networks using blind source

separation methods. This stage reduces the dimensionality of the data and extracts

useful information from the noisy imaging data. In the second stage, we focus

on comparing the temporal dynamics of the estimated functional networks across

imaging sites. To takes full advantages of the informations contained in the replicated

scans acquired at each site, we propose new agreement measures to assess how com-

parable these network-specific temporal dynamics are based on the replicated images.

The remainder of this chapter is organized as follows. In the method section, we

first present the two-stage network-based agreement framework for replicated imaging

data. We present our method for task-related functional magnetic resonance imaging

(task-fMRI), which is the most commonly used imaging modality. We develop non-

parametric estimation methods for the proposed indices and establish their asymp-

totic properties. We evaluate the accuracy of the proposed estimation procedure via

simulation studies. The proposed method is applied to the fBIRN Traveling-Subject

study to investigate site effect in multi-site imaging studies.
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3.2 Method

In this section, we propose an efficient network-based agreement method for replicated

task-fMRI data acquired from different imaging sites. The proposed method requires

two-stage estimation. In the first stage, we propose to estimate the underlying brain

functional networks based on the observed brain images using a blind source separa-

tion method. In the second stage, we propose a new agreement measure to assess the

agreement between the temporal dynamics of the estimated brain functional networks

across sites. The details are presented as follows.

3.2.1 Two-stage agreement methods for task-fMRI data

In the first stage, we propose to apply a group independent component analysis

model (ICA) (Calhoun et al. 2001; Guo and Pagnoni, 2008; Guo et al., 2011) to

identify and characterize the brain functional networks. Let Yijk be a T × V data

matrix representing the observed fMRI data for subject i from the kth scan at the

jth site. Let Y = [Y′111, · · · ,Y′11K ,Y
′
121, · · · ,Y′NJK ]

′
be the NJKT × V temporal-

concatenated group data matrix across scans, sites and subjects. The group ICA

model is defined as

Y = AS + E,

where S is a q×V signal matrix with each row of S presents a common spatial map of a

brain functional network, A is a NJKT ×q mixing matrix with each column contains

subject-site-scan-specific temporal information and E is the NJKT × V Gaussian

noise term. We denote the lth column of A as al = [a111l, · · · , aNJKl]′, where aijkl =

[aijkl(1), · · · , aijkl(T )] , (i = 1, · · · , N ; l = 1, · · · , q; j = 1, · · · , J ; k = 1, · · · , K), rep-

resents the temporal responses of the lth functional network for subject i from scan

kth at site j. The ICA decomposes the observed fMRI data as a linear combination

of q source signals where the lth column of A and lth row of S characterize
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the spatial-temporal processes related to the lth source signal (l = 1, · · · , q). In

fMRI data, statistical independence are usually assumed among the spatial maps

(Beckmann and Smith, 2005; Calhoun et al., 2001; Guo and Pagnoni, 2008; Guo et

al., 2011), which are represented by the rows of S in the ICA model.

In the second stage, we propose to assess the pairwise agreement for network-

specific temporal responses measured on the same subjects but from two different

imaging sites. Specifically, we extend the definition of scalar coefficient of individual

agreement (CIA) to assess agreement for image data with replicated scans and denote

the extended CIA definition as functional CIA (fCIA). The proposed agreement

measure is defined based on a functional disagreement function G(U, V ) for two mea-

surements U and V obtained on the same subject by two methods, which must satisfy

(a) G(U, V ) ≥ 0, and (b) G(U, V ) increases as the disagreement between U and V in-

creases for any U(·) and V (·) measured at t ∈ Γ, where Γ is a finite closed real interval.

Consider that we measure the agreement separately for each functional network in

the second stage, we thus omit the functional network index l for the network-specific

temporal responses when introducing the proposed measures. Let aj (·) represent

the random network-specific temporal response estimated from a random scan at

site j and aijk (·) be the estimated network-specific temporal response for subject i

acquired in kth replicated scan at site j. The disagreements for a particular subject

i are defined as

Gi(a1, a2) = E

[∫
Γ

(ai1k(t)− ai2k′(t))
2dt|i

]
,

Gi(a1, a
′
1) = E

[∫
Γ

(ai1k(t)− ai1k′(t))
2dt|i, k 6= k′

]
,

Gi(a2, a
′
2) = E

[∫
Γ

(ai2k(t)− ai2k′(t))
2dt|i, k 6= k′

]
.
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And the overall disagreement functions are defined as

G(a1, a2) = E [Gi(a1, a2)] ,

G(a1, a
′
1) = E [Gi(a1, a

′
1)] ,

G(a2, a
′
2) = E [Gi(a2, a

′
2)] .

The between-site disagreement G(a1, a2) represents the expected squared difference

of temporal responses for the same subjects between two imaging sites. In addition,

the within-site disagreement G(aj, a
′
j) represents the expected squared difference of

temporal responses between any pair of replicated scans for the same subjects at site j.

Motivated by CIA for scalar measurements (Barnhart et al., 2007), we propose a

functional CIA (fCIA) for image data with replicated scans, which is specified as the

ratio of the average within-site disagreement to between-site disagreement:

ψfc =
G(a1, a

′
1) +G(a2, a

′
2)

2G(a1, a2)
.

In the definition of fCIA, we adapt the form of original CIA for scalar measurements

(Barnhart et al., 2007) and extend it to accommodate for high-dimensional image

data. Similarly as the original CIA measure, the ψfc is expected to lie between 0 to

1 and we claim satisfactory individual agreement with high value of ψfc (Barnhart

et al. 2007c). The recommendations for claiming good and excellent individual

agreement is ψfc greater than 0.445 and 0.8, respectively (Barnhart et al. 2007;

Haber and Barnhart, 2007).

Motivated by total CCC for replicated scalar measurements (Barnhart et al. 2005,

2007), we extend Lin’s CCC to acommondate high-dimensional fMRI data with repli-

cated scans. The proposed functional total CCC (fTCCC) for replicated image data
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is defined as

ρfc = 1− G(a1, a2)

G(a1, a2)a1⊥a2

.

The ρfc ranges from −1 to 1 as Lin’s CCC and higher value represents better

agreement. As most agreement measures, ψfc and ρfc decrease as the location

shift |E(a1) − E(a2)| and scale shift |σ(a1) − σ(a2)| between the same subjects’

images from two sites increase and increase as the correlation ρ(a1, a2) increases.

One major difference between ψfc and ρfc lies in their relationships with respect

to the magnitude of within- and between-subject variabilities. The ψfc increases

as the within-subject between-scan variability increases or as the between-subject

within-site variability decreases, while ρfc changes in the opposite direction. Other

major differences between ψfc and ρfc are the use of the different benchmark models

as well as the interpretations for the extreme values. For fTCCC, the squared

distance between two temporal responses is scaled by the independence model.

Therefore, the ρfc equals 0 if and only if the correlation between two imaging sites

equals 0. When ρfc equals 1, we declare perfect agreement and suggest any pair

of the temporal responses estimated from the same subjects and the two sites are

identical. On the other hand, the fCIA measures the between-site disagreement

relative to the within-site disagreement and we claim perfect individual agreement

as long as the degree of between-site disagreement is equivalent to the degree of

within-site disagreement.

The proposed fCIA and fTCCC share similar spirits as the functional extension

for CCC (Li and Chow, 2005) in that, all these measures evaluate the scaled squared

distance between the functional measures of two brain images acquired from the same

subjects. To distinguish between the proposed measures and the functional CCC, we
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note that the proposed measures evaluate the similarity between two fMRI images

using summary temporal responses extracted from the most representative regions of

the brain (i.e., functional networks) corresponding to the experimental task. These

features of image data that we are comparing using fCIA and fTCCC have high

signal-to-noise ratio, and reveal the most relevant image quality in an image study.

Alternatively, functional CCC measures the voxel-level differences between the two

images and averages across all voxels in the brain, which is inefficient for the noisy

brain images.

3.2.2 Estimation and Inference

For estimation, we reorganized the proposed agreement measures as follows,

ψfc =
C1 + C2

B1 +B2 +D − 2A
,

ρfc =
2A

B1 +B2 +D
,

which consist of six components, i.e.,

A = E

∫
[E(ai1k(ν)|i)− E(a1(ν))][E(ai2k(ν)|i)− E(a2(ν))]dν,

B1 = E

∫
[ai1k(ν)− E(a1(ν))]2dν, B2 = E

∫
[ai2k(ν)− E(a2(ν))]2dν,

C1 = E

∫
[ai1k(ν)− E(ai1k(ν)|i)]2dν, C2 = E

∫
[ai2k(ν)− E(ai2k(ν)|i)]2dν,

D = E

∫
[E(a1(ν))− E(a2(ν))]2dν,

These components can be viewed as the covariance or variance structure for time

series data. The corresponding estimators for the above components A,Bj, Cj and D
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(j = 1, 2) are defined as follows,

AN =
1

N

N∑
i=1

T∑
t=1

[
āKi1(νt)− āNK1 (νt)

] [
āKi2(νt)− āNK2 (νt)

]
∆νt,

BjN =
1

NK

K∑
k=1

N∑
i=1

T∑
t=1

[
aijk(νt)− āNKj (νt)

]2
∆νt, (j = 1, 2)

CjN =
1

NK

K∑
k=1

N∑
i=1

T∑
t=1

[
aijk(νt)− āKij (νt)

]2
∆νt, (j = 1, 2)

DN =
T∑
t=1

[
āNK1 (νt)− āNK2 (νt)

]2
∆νt,

where āKij (νt) = 1
K

∑K
k=1 aijk(νt) and āNKj (νt) = 1

NK

∑K
k=1

∑N
i=1 aijk(νt) are the sam-

ple means of aijk(νt). We propose the following sample estimators for ψfc and ρfc by

plugging the above estimators.

ψ̂fc =
C1N + C2N

B1N +B2N +DN − 2AN
,

ρ̂fc =
2AN

B1N +B2N +DN

.

In the following theorem, we establish the asymptotic properties of the proposed

estimators. The proof is provided in the Appendix 3.6.

Theorem 3.1. Suppose {(ai1k(νt),ai2k(νt)), i = 1, · · · , N, k = 1, · · · , K, t = 1, · · · , T}

is a collection of random samples of the paired network-specific temporal responses

for subject i in the kth scan from sites j = 1, 2. If Conditions 1(A)-1(C) given in

Appendix 3.6 hold, then

(i) ψ̂fc is a consistent estimator for ψfc. The limiting distribution of
√
N(ψ̂fc−ψfc)

as N → ∞, is a zero mean normal distribution with variance σ2
ψfc

= HT
ψfc

ΣHψfc
,
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where Σ is given in the Appendix and

Hψfc
=



2C1 + 2C2

−C1 − C2

−C1 − C2

B1 +B2 +D − 2A

B1 +B2 +D − 2A

−C1 − C2


(B1 +B2 +D − 2A)2

.

(ii) ρ̂fc is a consistent estimator for ρfc. The limiting distribution of
√
N(ρ̂fc−ρfc)

as N →∞, is a zero mean normal distribution with variance σ2
ρfc

= HT
ρfc

ΣHρfc, where

Hρfc =
(2B1 + 2B2 + 2D,−2A,−2A, 0, 0,−2A)T

(B1 +B2 +D)2
.

According to Theorem 3.1, the standard errors of the proposed estimator ψ̂fc and

ρ̂fc can be estimated by

SE(ψ̂fc) = σ̂2
ψfc
/
√
N − 3,

SE(ρ̂fc) = σ̂2
ρfc
/
√
N − 3,

where σ̂2
ψfc

= ĤT
ψfc

Σ̂Ĥψfc
, σ̂2

ρfc
= ĤT

ρfc
Σ̂Ĥρfc and Σ̂, Ĥψfc

and Ĥρfc are the corre-

sponding sample counterparts. Here, N − 3 is used instead of N − 2 for small sample

estimation (Li and Chow, 2005). Furthermore, the asymptotic confidence intervals

for ψfc and ρfc can be constructed as

ψ̂fc ± tN−3(1− α/2)SE(ψ̂fc),

ρ̂fc ± tN−3(1− α/2)SE(ρ̂fc).
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3.3 fBIRN Data Example

In this section, we applied the proposed agreement method to the fBIRN traveling-

subject study, which was conducted in 2003 as the pilot study of fBIRN multi-site

studies.

3.3.1 Preprocessing procedure

In this paper, we focused on the fMRI data acquired while subjects were performing

sensorimotor (SM) tasks from the four imaging sites using 3T/4T scanners. The SM

tasks employed a block design, with each block taking 10 TRs (30 sec) beginning

with 5 TRs of (15 sec) of sensorimotor activity and followed by 5 TRs (15 sec) of

rest. Each scan was consisted of eight complete on/off cycles and an initial 5-TR rest

period for a total time of 85 TRs (255 sec). During the active phase, subjects were

instructed to tap their fingers bilaterally as soon as they observed the signals given by

simultaneous tone presentation and checkboard flash. The subjects were instructed to

perform finger tapping in an alternating pattern as index, middle, ring, little, little,

ring, middle, index, and repeated. In each imaging site, the same procedure was

repeated for four times for each subject. Images were preprocessed according to the

recommended procedure from the fBIRN website.

3.3.2 First Stage

We used GIFT software (GIFTv2.0a) to perform first-stage group ICA analysis and

extracted 20 important components representing 20 potential brain functional net-

works. Four important ICs were identified out of these 20 by matching their locations

with known functional networks according to Laird et al. (2011) and Smith et al.

(2009). The identified ICs also overlapped with all six regions of interest (ROIs)

identified in Friedman et al. (2008). Specifically, IC1 covered left and right motor
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cortices and bilateral supplementary motor area (MN), IC2 was mainly consisted of

left and right auditory cortices (AN). IC3 and IC4 were related to primary (VN1) and

secondary (VN2) bilateral visual cortices, respectively (Figure 3.1). Figures 3.2-3.5

present the average time courses across scans corresponding to four ICs by site and

subject. Most of the time series in these figures demonstrate nice and clear periodic

patterns which were expected from the block task design. However, some time series

appeared to be more variable than the others, for example, time series corresponding

to the activities in the VN2 network at site 2. This maybe resulted from some mal-

practice in the imaging acquiring process and hence reduced the reliability in combine

the data across sites.

3.3.3 Second Stage

In the second stage, we assessed the pairwise agreement among the four imaging sites

using the proposed fCIA and fTCCC for the temporal responses corresponding to the

four extracted functional networks (Tables 3.1). The estimated fCIA ranged between

0.5 to 0.75 indicating good individual agreement between the network-specific

temporal dynamics. On the other hand, the estimated fTCCC was very small,

indicating there was low agreement or no beyond chance agreement between the

network-specific temporal dynamics. For VN2 network, Table 2 suggested that the

agreement between site 2 and the others were consistently lower.

To test for the site effects on fMRI imaging reproducibility, permutation tests

(Williamson et al, 2007) were carried out using the proposed measures (Table 3.2).

The test hypothesis was specified as the average agreement between the site of in-

terest and the other sites was equivalent to the average agreement among the other

sites. Specifically, denote ψfc(j1, j2), j1, j2 = 1, 2, 3, 4 as the proposed fCIA between

the network-specific temporal responses of fMRI images acquired in site j1 and j2.
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Assuming site 1 is the site of interest, the test hypothesis was that

H0 :
ψfc(1, 2) + ψfc(1, 3) + ψfc(1, 4)

3
=
ψfc(2, 3) + ψfc(2, 4) + ψfc(3, 4)

3
.

The test hypothesis for ρfc was constructed along the same line. Site indices were

permuted to generate the permutation datasets. For this data, there were in total

4*4*4*4=256 permutes resulting in the smallest possible p value of 0.004. In Table

3.2, all the p values were greater than 0.05 suggesting no differences were statistically

significant for all four brain networks among all four sites. The small sample size of

this data was likely to result in the lack of statistical power to detect the site effect.

Despite none of the p values were lower than the 0.05 cut-point, site 1 and site 2 were

shown to have marginally significant lower average agreement as compared to other

sites for AN and VN2 networks, respectively (p value=0.082 and 0.081) using the

proposed fCIA measure. These results were consistent with our previous findings.
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Figure 3.1: Four identified ICs from group ICA analysis on the first stage.

Motor Network (MN) 

	
Auditory Network (AN) 

	
Primary Visual Network (VN1) 

	
Secondary Visual Network (VN2) 
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Figure 3.2: Average temporal responses of Motor Network (MN) across scan by site
and subject.

Figure 3.3: Average temporal responses of Auditory Network (AN) across scan by
site and subject.
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Figure 3.4: Average temporal responses of Primary Visual Network (VN1) across
scan by site and subject.

Figure 3.5: Average temporal responses of Secondary Visual Network (VN2) across
scan by site and subject.
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Table 3.1: Measuring agreement of the network-specific temporal responses between
every pair of the four imaging sites using the proposed agreement indices ψfc and ρfc.

Motor(MN) Auditory(AN)
Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

Site 1 ψfc 0.732 0.708 0.741 0.684 0.670 0.708
ρfc 0.050 0.046 0.062 0.028 0.056 0.068

Site 2 ψfc 0.708 0.729 0.732 0.731
ρfc 0.052 0.049 0.074 0.044

Site 3 ψfc 0.723 0.736
ρfc 0.072 0.089

Site 4 ψfc
ρfc

Primary Visual(VN1) Secondary Visual(VN2)
Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

Site 1 ψfc 0.674 0.648 0.643 0.619 0.611 0.653
ρfc -0.023 -0.007 0.015 0.067 -0.011 0.043

Site 2 ψfc 0.649 0.632 0.548 0.528
ρfc 0.058 0.029 0.013 0.028

Site 3 ψfc 0.660 0.682
ρfc 0.076 0.102

Site 4 ψfc
ρfc
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3.4 Simulation Studies

In this section, we performed simulation studies to evaluate the performance of the

proposed two-stage estimation method and the inference procedure.

Given the sample size of the fBIRN dataset is fairly small (N=5), we performed

Monte Carlo simulations for small (N=5) and moderate (N=20) sample sizes. We

simulated three scans of 4-D fMRI data for each subject at each site assuming there

were three independent components (IC) representing different brain functional

networks. For each IC, we generated a 3D spatial map with 4 slices, where each slice

consists of 25× 25 voxels. These spatial maps were generated as linear combinations

of the Gaussian random variability with a standard deviation of 0.5 at each voxel

and the source signals that followed a distribution of N(4, 0.5) at activated voxels.

Figure 3.6 presents a set of the simulated IC spatial maps from one simulation run.

After creating the group spatial maps, we then simulated temporal responses

that corresponded to these ICs l = 1, 2, 3 using the following procedure. To

set notations, we denoted subject index i = 1, · · · , N , site index j = 1, 2, scan

index k = 1, 2, 3, signal index l = 1, 2, 3, and time index ν1, · · · , νT . First, we

generated the mean temporal responses for subject i and signal l at two sites

(E ′(ai1kl(t)|i, l), E ′(ai2kl(t)|i, l))′ jointly from Z-dependent gaussian processes with

zero mean, unit variance and correlation of σa1la2l
(t), for which we set Z=20 and

{ν1, · · · , νT} be 50 equally spaced time points over a period of time [0, 1]. Second,

we sampled the between-scan random variability eijkl(t) from another zero-mean

Z-dependent gaussian process with covariance σ2
ajKl

(t), j = 1, 2, l = 1, 2, 3. Third, we

simulated the site-subject-scan-specific temporal response for spatial signal l = 1, 2, 3

as ai1kl(t) = E(ai1kl(t)|i, l) + ei1kl(t) and ai2kl(t) = E(ai2kl(t)|i, l) + ei2kl(t), for

i = 1, · · · , N , k = 1, 2, 3. Parameters for simulating the temporal responses for the
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three ICs were specified to create different levels of agreement as shown below:

IC 1: σa11a21(t) = 0.5, σ2
a1K1

(t) = 2, σ2
a2K1

(t) = 1→ ψfc = 0.75, ρfc = 0.2.

IC 2: σa12a22(t) = 0.7, σ2
a1K2

(t) = 2, σ2
a2K2

(t) = 1→ ψfc = 0.833, ρfc = 0.28.

IC 3: σa13a23(t) = 0.7, σ2
a1K3

(t) = 2, σ2
a2K3

(t) = 4→ ψfc = 0.857, ρfc = 0.125.

Finally, 4-D fMRI data was simulated by adding a Gaussian background noise with

a standard deviation of 1 to the mixed spatial sources based on the simulated group

spatial maps and temporal responses.

The two-stage estimation method and the inference procedure were implemented

for the simulated fMRI data. Given that there was no ordering algorithm for the

ICs using group ICA method, we indexed the estimated ICs based on the highest

spatial correlation between the estimated IC maps and the true spatial maps. At

the second stage, we assessed the agreement on the matched temporal responses for

each IC using the proposed agreement indices.

Simulation results based on 200 simulated data sets were summarized in Table

3.3. Under all simulation settings, the proposed estimators provided accurate

estimation for both agreement indices. The mean standard deviation estimates based

on the proposed inference procedure were very close to the empirical standard errors

for both agreement indices. Furthermore, the coverage probabilities of the 95%

confidence intervals were close to the nominal level. The simulation results implied

that the proposed estimators and the corresponding inference procedure performed

well for small to moderate small sizes.
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Table 3.3: Simulation results of the two-stage estimation method and the inference
procedure for ψfc and ρfc. Bias, empirical standard deviation, mean of estimated
standard deviation and coverage probability of the 95% confidence interval are pre-
sented along with true values of the proposed agreement indices for three spatial
signals (ICs) with sample sizes of 5 and 20.

N Index Truth Bias EmpSE MeanSD Cov Prob(%)
IC 1

5 ψfc 0.750 0.003 0.098 0.116 98.5
ρfc 0.200 -0.039 0.091 0.092 99.0

20 ψfc 0.750 0.005 0.045 0.048 92.5
ρfc 0.200 -0.008 0.046 0.045 94.5

IC 2
5 ψfc 0.833 0.011 0.086 0.115 98.0

ρfc 0.280 -0.036 0.086 0.094 96.0

20 ψfc 0.833 0.003 0.049 0.048 94.5
ρfc 0.280 -0.017 0.043 0.043 90.5

IC 3
5 ψfc 0.857 0.014 0.094 0.117 96.5

ρfc 0.125 -0.018 0.067 0.077 98.0

20 ψfc 0.857 0.000 0.047 0.049 93.5
ρfc 0.125 -0.005 0.042 0.038 94.5
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3.5 Remarks

In this paper, we propose a two-stage network-based agreement method for assess-

ing the reproducibility of the same subjects’ high dimensional brain imaging data

acquired at different sites. We develop nonparametric estimation methods for the

proposed indices and prove them to be consistent and asymptotically normal by the-

oretical derivation and simulation studies. The proposed methods are illustrated via

fBIRN Phase I Traveling Subject study to investigate site effects in multi-site imaging

studies. Nonparametric permutation test based on the fCIA index reveals some po-

tential site effect between site 1, 2 and the other sites, which is consistent with visual

examination of the data, while the fTCCC fails to detect the abnormality. Since our

agreement method measures network-specific agreement, we are able to identify that

the inconsistency of site 1 in task-fMRI data mostly comes from auditory network and

the discrepancy in fMRI images at site 2 is mainly found in secondary visual network.

Further examination into the task protocols and image acquiring procedure need be

performed correspondingly to ensure better between-site agreement in the subsequent

studies. Furthermore, the proposed agreement measures could potentially be used as

an objective function for calibration purpose. Although detailed procedures will need

further investigation.

3.6 Appendix

In this section, we present detailed proofs of Theorem 3.1. First, we present the

regularity conditions.

Definition 3.6.1. Let 0 = ν0 < · · · < νT = 1 be any partition P of [0,1], and f(ν)

be a real function defined on [0,1]. f is called a function of bounded variation if the

variation VP =
∑T

t=1 |f(νt+1) − f(νt)| has an upper bound, which is independent of

the choice of P. The least upper bound of VP is called the total variation of f and
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is denoted by V (f).

For any function of bounded variation, it has been shown that (Hua and Wang,

1996)

|
∫ 1

0

f(ν)dν −
T∑
t=1

f(νt)∆νt| ≤ V (f) max
06t6T−1

|νt+1 − νt|.

Let A1 and A2 denote the space consisting of paths ai1k(·) and ai2k(·), i =

1, · · · , N ; k = 1, · · · , K. We further define

B1 = {ai1k(·)ai2k(·) : ai1k(·) ∈ A1 and ai2k(·) ∈ A2}

B2 =
{
a2
i1k(·) : ai1k(·) ∈ A1

}
B3 =

{
a2
i2k(·) : ai2k(·) ∈ A2

}
Condition 1. (A) For F = A1,A2,B1,B2,B3,

sup
f∈F

V (f) <∞ a.s.

(B) There exists a constant ∆ such that

max
06t6T−1

|νt+1 − νt| 6
∆

T

and
√
N/T → 0 as N →∞.

(C) E
[∫

a2
i1k (ν) dν

]2
< ∞, E

[∫
a2
i2k(ν)dν

]2
< ∞ and E

[∫
āKi1(ν)āKi2 (ν) dν

]2
< ∞,

where āKij = 1
K

∑K
k=1 aijk.

To prove Theorem 3.1, we need the following lemma.
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Lemma 3.6.1. Under the above condition 1(A)-1(C), we have

1

N

N∑
i=1

T∑
t=1

āKi1(νt)ā
K
i2(νt)∆νt =

1

N

N∑
i=1

∫
āKi1(ν)āKi2(ν)dν +Op(

1

T
) (3.1)

T∑
t=1

āNK1 (νt)ā
NK
2 (νt)∆νt =

∫
āNK1 (ν)āNK2 (ν)dν +Op(

1

T
) (3.2)

1

NK

K∑
k=1

N∑
i=1

T∑
t=1

a2
ijk (νt) ∆νt =

1

NK

K∑
k=1

N∑
i=1

∫
a2
ijk(ν)dν +Op(

1

T
) (3.3)

T∑
t=1

[
āNKj (νt)

]2
∆νt =

∫ [
āNKj (ν)

]2
dν +Op(

1

T
) (3.4)

1

N

N∑
i=1

T∑
t=1

[
āKij (νt)

]2
∆νt =

1

N

N∑
i=1

∫ [
āKij (ν)

]2
dν +Op(

1

T
) (3.5)

Proof. By condition 1(B), it follows that

| 1
N

N∑
i=1

T∑
t=1

āKi1(νt)ā
K
i2(νt)∆νt −

1

N

N∑
i=1

∫
āKi1(ν)āKi2(ν)dν|

6
1

N

N∑
i=1

|
T∑
t=1

āKi1(νt)ā
K
i2(νt)∆νt −

∫
āKi1(ν)āKi2(ν)dν|

6
1

N

N∑
i=1

V (āKi1 āKi2) max
06t6T−1

|νt+1 − νt|

6
1

N

N∑
i=1

V (ai1kai2k) max
06t6T−1

|νt+1 − νt|

6 sup
f∈F

V (f)
∆

T

So equation (3.1) follows. Similarly, we can show that equations (3.2)-(3.5) also

hold.

Proof of Theorem 3.1
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Proof. Using Lemma 3.6.1, we show

AN =
1

N

N∑
i=1

T∑
t=1

[
āKi1(νt)− āNK

1 (νt)
] [
āKi2(νt)− āNK

2 (νt)
]

∆νt

=
1

N

N∑
i=1

T∑
t=1

āKi1(νt)ā
K
i2(νt)∆νt −

T∑
t=1

āNK
1 (νt)ā

NK
2 (νt)∆νt

=
1

N

N∑
i=1

∫
āKi1(ν)āKi2(ν)dν −

∫
āNK
1 (ν)āNK

2 (ν)dνt +Op(
1

T
)

=
1

N

N∑
i=1

∫ [
āKi1(ν)− E(ai1k(ν)|i)

] [
āKi2(ν)− E(ai2k(ν)|i)

]
dνt

+
1

N

N∑
i=1

∫
[E(ai1k(ν)|i)− E(a1(ν))] [E(ai2k(ν)|i)− E(a2(ν))] dνt

+
1

N

N∑
i=1

∫ [
āKi1(ν)− E(ai1k(ν)|i)

]
[E(ai2k(ν)|i)− E(a2(ν))] dνt

+
1

N

N∑
i=1

∫ [
āKi2(ν)− E(ai2k(ν)|i)

]
[E(ai2k(ν)|i)− E(a2(ν))] dνt

−
∫

[āNK
1 (ν)− E(a1(ν))][āNK

2 (ν)− E(a2(ν))]dνt +OP (
1

T
)

=
1

N

N∑
i=1

∫
[E(ai1k(ν)|i)− E(a1(ν))] [E(ai2k(ν)|i)− E(a2(ν))] dνt

+
1

NK

N∑
i=1

K∑
k=1

∫
[ai2k(ν)− E(ai2k(ν)|i)] [E(ai1k(ν)|i)− E(a1(ν))] dνt

+
1

NK

N∑
i=1

K∑
k=1

∫
[ai1k(ν)− E(ai1k(ν)|i)] [E(ai2k(ν)|i)− E(a2(ν))] dνt +Op(

1

NK
) +Op(

1

T
),

which tends to E
∫

[E(ai1k(ν)|i)−E(a1(ν))][E(ai2k(ν)|i)−E(a2(ν))]dν in probability

by the week law of large numbers and T →∞.
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Similarly, for BjN , CjN and DN , j = 1, 2, we have

BjN =
1

NK

K∑
k=1

N∑
i=1

T∑
t=1

[
aijk(νt)− āNK

j (νt)
]2

∆νt

=
1

NK

K∑
k=1

N∑
i=1

T∑
t=1

a2ijk (νt) ∆νt −
T∑

t=1

[
āNK
j (νt)

]2
∆νt

=
1

NK

K∑
k=1

N∑
i=1

∫
a2ijk (ν) dν −

∫ [
āNK
j (ν)

]2
dν +Op(

1

T
)

=
1

NK

K∑
k=1

N∑
i=1

∫
[aijk(ν)− E (aj(ν))]

2
dν −

∫ [
āNK
j (ν)− E (aj(ν))

]2
dν +Op(

1

T
)

=
1

NK

K∑
k=1

N∑
i=1

∫
[aijk(ν)− E (aj(ν))]

2
dν +Op(

1

NK
) +Op(

1

T
).

CjN =
1

NK

K∑
k=1

N∑
i=1

T∑
t=1

[
aijk(νt)− āKij (νt)

]2
∆νt, (j = 1, 2)

=
1

NK

K∑
k=1

N∑
i=1

T∑
t=1

a2ijk(νt)∆νt −
1

N

N∑
i=1

T∑
t=1

[
āKij (νt)

]2
∆νt

=
1

NK

K∑
k=1

N∑
i=1

∫
a2ijk(ν)dν − 1

N

N∑
i=1

∫ [
āKij (ν)

]2
dν +Op(

1

T
)

=
1

NK

K∑
k=1

N∑
i=1

∫ [
aijk(ν)− āKij (ν)

]2
dν +Op(

1

T
)

=
1

NK

K∑
k=1

N∑
i=1

∫ [
aijk(ν)− E(aijk(ν)|i) + E(aijk(ν)|i)− āKij (ν)

]2
dν +Op(

1

T
)

=
1

NK

K∑
k=1

N∑
i=1

∫
[aijk(ν)− E(aijk(ν)|i)]2 dν − 1

N

N∑
i=1

∫ [
E(aijk(ν)|i)− āKij (ν)

]2
dν +Op(

1

T
)

=
1

NK

K∑
k=1

N∑
i=1

∫
[aijk(ν)− E(aijk(ν)|i)]2 dν +Op(

1

N
) +Op(

1

T
)
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DN =

T∑
t=1

[
āNK
1 (νt)− āNK

2 (νt)
]2

∆νt

=

T∑
t=1

[[
āNK
1 (νt)

]2
+
[
āNK
2 (νt)

]2 − 2āNK
1 (νt)ā

NK
2 (νt)

]
∆νt

=

∫ [[
āNK
1 (ν)

]2
+
[
āNK
2 (ν)

]2 − 2āNK
1 (ν)āNK

2 (ν)
]
dν +Op(

1

T
)

=

∫ [[
āNK
1 (ν)− E(a1(ν)) + E(a1(ν))

]2
+
[
āNK
2 (ν)− E(a2(ν)) + E(a2(ν))

]2]
dν

− 2

∫ [
āNK
1 (ν)− E(a1(ν))

] [
āNK
2 (ν)− E(a2(ν))

]
dν

− 2

∫ [[
āNK
1 (ν)− E(a1(ν))

]
E(a2(ν)) + E (a1(ν)) āNK

2 (ν)
]
dν +Op(

1

T
)

=

∫
E2(a1(ν))dν +

∫
2E(a1(ν))

[
āNK
1 (ν)− E(a1(ν))

]
dν +Op(

1

NK
)

+

∫
E2(a2(ν))dν +

∫
2E(a2(ν))

[
āNK
2 (ν)− E(a2(ν))

]
dν +Op(

1

NK
) +Op(

1

NK
)

− 2

∫ {[
āNK
1 (ν)− E(a1(ν))

]
E(a2(ν)) + E (a1(ν)) āNK

2 (ν)
}
dν +Op(

1

T
)

Define VN = (AN , B1N , B2N , C1N , C2N , DN)T and V = (A,B1, B2, C1, C2, D)T . Based

on condition (B), the multivariate central limit theorem and the Slutsky theorem,
√
N(VN −V ) has an asymptotic normal distribution with mean zero and the variance

Σ =

cov





∫
[E(ai1k|i)− E(a1)] [E(ai2k|i)− E(a2)] +

[
āKi2 − E(ai2k|i)

]
[E(ai1k|i)− E(a1)]

+
[
āKi1 − E(ai1k|i)

]
[E(ai2k|i)− E(a2)] dν∫

[a1k − E(a1)]2 dν∫
[a2k − E(a2)]2 dν∫

[a1k − E(ai1k|i)]2 dν∫
[a2k − E(ai2k|i)]2 dν∫

{E(a1)2 + E(a2)2 − 2E(a1)ā2 + 2 [ā1(ν)− E(a1)]E(a1)

+2 [ā2 − E(a2)− ā1 + E(a1)]E(a2)}dν





.

Define hψfc
(v1, v2, v3, v4, v5, v6) = (v4 + v5)/(v2 + v3 + v6 − 2v1) and

hρfc(v1, v2, v3, v4, v5, v6) = 2v1/(v2 + v3 + v6). Thus, ψ̂fc = hψfc
(V ′N), ρ̂fc = hρfc(V

′
N).
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Theorem 3.1 holds based on the functional delta method.
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Figure 3.6: Simulated IC spatial maps from one simulation run. Each column repre-
sents a simulated IC map, which consists of 4 slices and each slice consists of 25× 25
voxels. The highlighted region in the each figure corresponds to the location of a
source signal representing a functional network in the brain.
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Chapter 4

Predicting Brain Functional

Connectivity in Resting-state

fMRI Data Using a Bayesian

Hierarchical Model
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4.1 Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) has become a

popular brain imaging technique to investigate intrinsic neural functional connection

among spatially disjoint brain regions. One of the simple and most commonly

used approaches for analyzing rs-fMRI in neuroimaging community is to perform

correlation-type analysis between fMRI blood-oxygen-level dependent (BOLD)

signals obtained from pairs of brain locations or regions (Biswal et al., 1995; Grecius

et al., 2003; Fox et al., 2005, Fransson and Marrelec, 2008). These analyses produce

subject-specific functional connectivity estimates that could provide useful informa-

tion for exploring brain’s functional organization and guiding brain parcellation for

network analyses.

Functional connectivity has also shown great promises for studying pathophysi-

ology of the development and progression of psychiatric diseases and their responses

to treatments (Biswal et al., 1995; Greicius et al., 2003; Fox et al., 2005; Smith et

al., 2009 among many others). Numerous studies identify distinct patterns of func-

tional connectivity in brain networks among subjects with psychiatric disorders as

compared to a healthy comparison population that support a neuropathophysiology

of cognitive/behavioral problems associated with these disorders (Wang et al., 2007;

Woodward and Cascio, 2015). Studies report mental disorders such as Alzheimer’s

disease affect brain functional connections across time with the disease progression

(Damoiseaux et al., 2011; Yao et al. 2014). Furthermore, several studies have found

significant pre- to post- treatment changes in brain connectivity following psychiatric

treatments (Gay et al., 2014; Sarpal et al., 2015). These collective findings strongly

implicate alterations in functional connectivity in the pathophysiology of psychiatric

disorders and their responses to medical treatment. This provides motivation for

the potential utility of forecasting disease-progression-related and treatment-related



75

brain functional connectivity reflected in fMRI.

There has been some work aimed to link baseline or pre-treatment brain

connectivity to disease progression or the eventual clinical response to treatment

(Damoiseaux et al., 2011; Yao et al. 2014). In a related manner, several authors

(Brody et al., 1999; Goldapple et al., 2004; Kennedy et al., 2001; Lee et al., 2005;

Mayberg et al., 2000, 2001; Moresco et al., 2000) establish associations between

treatment response and pre- to post-treatment changes in brain activity. Important

insights can be gained for disease progression or treatment response by evaluating

baseline and follow-up scans or evaluating pre- and post-treatment scans. However,

in clinical practice, these insights are offset due to the unavailability of follow-up

scans or post-treatment scans at the time that a clinician makes treatment decision

for a particular patient. This pragmatic shortcoming suggests the utility of devel-

oping a statistical framework to predict disease-related or treatment-related brain

alterations, which could then be combined with baseline scans and patients’ relevant

risk factors to help inform clinical decision-making.

In this chapter, we present a general framework for predicting individual’s future

resting-state functional connectivity (RSFC) based on his/her baseline rs-fMRI and

relevant clinical and demographic characteristics, such as disease stage or treatment

group. The proposed prediction method provides a useful tool to predict the changes

in an individual’s brain connectivity with the progression of the disease or normal

aging. It can also be applied to predict a patient’s brain connectivity after a

specified treatment regimen as the first step to potentially help guide individualized

treatment plan. The proposed predictive model could potentially have important

clinical applications by helping implement early intervention based on predicted

disease progression trajectory to prevent severe outcomes from mental illnesses.
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The method can also help guide the development of a more effective individualized

treatment plan by taking into account both the population-level effects as well as

a patient’s distinctive neural connectivity characteristics. Another utility of the

proposed method is to provide a more reliable estimator for individual RSFC than

the noisy subject-specific estimator in test-retest rs-fMRI data. A reliable RSFC

estimate can provide important information about the properties of brain networks

and is the basis for many complex network-related analyses. For example, Shou et

al. (2014) and Mejia et al. (2015) have shown that by improving the reliability of

RSFC estimates, one can improve the reproducibility of individual brain parcellation,

which is generated from the RSFC.

The remainder of this chapter is organized as follows. In the method section, we

first present a general modeling and prediction framework for RSFC, and then illus-

trate the model specification for two types of imaging studies – longitudinal imaging

studies which investigate disease progression and treatment-related changes in func-

tional connectivity and test-retest studies which aim to investigate and improve the

reliability of RSFC. To evaluate the accuracy of the proposed method, we conduct

simulation studies using K-fold cross-validation approach. We illustrate the applica-

tion of the proposed method using two real imaging datasets: a longitudinal ADNI2

data and a test-retest Kirby21 data. In both simulation studies and real data appli-

cations, we show that the proposed method provides a more reliable prediction over

the alternative methods.

4.2 Method

We derive our predictive framework for brain functional connectivity map using a

Bayesian hierarchical model (BHM), which is constructed using subjects’ multiple
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connectivity maps estimated at several time points over the study period. The first

level of the proposed model models subject-specific connectivity measured at multi-

ple scanning sessions associated with session-specific information, such as the timing

of scans or different treatment periods in terms of subject-specific effects, and the

second level models subject-specific effects in terms of population parameters. An

expectation-maximization (EM) algorithm is developed to estimate the parameters

in the model. The prediction algorithm is derived based on the estimated model. The

proposed method is applicable to various study designs, such as test-retest studies

and longitudinal studies. We start with presenting a general model structure and

later we will provide detailed examples of using the proposed model for specific study

designs.

4.2.1 Bayesian Hierarchical Model (BHM)

Let i = 1, · · · , N index subjects, v = 1, · · · , V index voxels, k = 1, · · · , K index

scanning sessions. For any voxel pair (v, v′), we denote the observed connec-

tivity estimated using subject i’s brain images from scanning sessions 1, · · · , K

as ri(v, v
′) = (ri1(v, v′), · · · , riK(v, v′))T . The K × q matrix X

(1)
i (v, v′) contains

session-specific information such as the timing of scans, and usually takes the same

value across all voxel pairs.

The first-stage of BHM models individual’s connectivity for a voxel pair (v, v′)

and is specified as follows

Level 1 : ri(v, v
′) = X

(1)
i (v, v′)Ri(v, v

′) + εεε
(1)
i (v, v′), (4.1)

where Ri(v, v
′) is the q× 1 vector of subject-specific effects of interest corresponding

to X
(1)
i (v, v′), such as the true unobserved connectivity. We assume that the random
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error εεε
(1)
i (v, v′) = (ε

(1)
i1 (v, v′), · · · , ε(1)

iK(v, v′))T follows a zero-mean multivariate normal

distribution N(0,ΣΣΣ(1)(v, v′)). We also assume that Ri(v, v
′) and εεε

(1)
i (v, v′) are

independent for all subjects. Since the connectivity maps for each subject i are

measured from independent scanning sessions and the subject-specific parameter

Ri(v, v) already accounts for the correlations among within-subject images, it is

reasonable to assume that scan-specific random errors in the first-stage model are

independent. The random error εεε
(1)
i (v, v′) in Equation (4.1) reflects the deviation

of the estimated connectivity using individual’s brain images from the true un-

derlying connectivity, thus can also be considered as measurement errors, which

mainly depend on scanner quality, the length of each scanning sessions, and other

scanning conditions. If subjects’ images are acquired under similar conditions

(ex. following the same protocols), we can assume the variability of the random

errors is the same across multiple sessions and specify the covariance matrix as

ΣΣΣ(1)(v, v′) = λ(1)(v, v)IIIK , where λ(1) is the covariance hyper-parameter and IIIK is

the identity matrix of order K. In a more complex setting when the scanning

protocol is subject to change during a longitudinal study, we may accommodate

these changes by specifying different variabilities in pre- and post-change periods,

i.e. ΣΣΣ(1)(v, v′) = λ
(1)
1 (v, v)

IIIK1 000

000 000

 + λ
(1)
2 (v, v)

000 000

000 IIIK2

, where K1(> 1) and

K2(> 1) are the numbers of sessions before and after the change. We note that the

specification of the covariance structures in the model only reflects the assumptions

of sphericity/non-sphericity in repeated measures, the individual effects at different

scanning times are modeled through individual parameters Ri(v, v
′).

At the second stage, we focus on modeling the subject-specific effects with respect

to population parameters of interest, such as disease status, treatment assignment or

other relevant patient characteristics (e.g., gender, age). Therefore, the second-stage
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model is specified as follows

Level 2 : Ri(v, v
′) = X

(2)
i (v, v′)βββ(v, v′) + εεε

(2)
i (v, v′), (4.2)

where X
(2)
i (v, v′) contains subject-specific covariates associated with brain functional

connectivity and βββ(v, v′) represents the population effects of interest corresponding

to X
(2)
i (v, v′). The random error εεε

(2)
i (v, v′) represents the deviation of subject-specific

effects from population mean X
(2)
i (v, v′)βββ(v, v′) and is assumed to follow a zero-mean

multivariate normal distribution with the covariance matrix ΣΣΣ(2)(v, v′). The specifica-

tion of ΣΣΣ(2)(v, v′) depends on the individual effects that we are interested in modeling

and we will illustrate it in the following examples.

4.2.2 Prediction Algorithm

Based on the proposed Bayesian hierarchical model, we develop prediction algorithm

for predicting individual future brain connectivity. The proposed algorithm not

only uses the same subject’s brain connectivity information estimated from earlier

scans, but also ”borrows” strength from a larger population of subjects who share

similar characteristics, such as subjects with the same disease status or in the same

treatment group.

Let K1 be the number of scanning sessions in which brain images have been

collected from a subject whose brain connectivity is of interest for prediction and

K2 denote the number of sessions to be predicted. For this subject i, connectivity

of a voxel pair (v, v′) across all scanning sessions can be expressed as a vector

ri(v, v
′) = (rTi1(v, v′), rTi2(v, v′))T , where ri1(v, v′) is a K1 × 1 vector representing the

observed connectivity and ri2(v, v′) is a K2 × 1 vector representing the connectivity

we are interested in predicting.
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Based on the proposed two-stage hierarchical model, we derive the following

marginal distribution for functional connectivity across all sessions,

rrri(v, v
′) ∼ N(µµµ?i (v, v

′),ΣΣΣ?
i (v, v

′)),

where µµµ?i (v, v
′) = XXX

(1)
i X

(2)
i βββ(v, v′) and ΣΣΣ?

i (v, v
′) = ΣΣΣ(1)(v, v′) + XXX

(1)
i ΣΣΣ(2)(v, v′)XXX

(1)T
i .

The marginal covariance matrix ΣΣΣ?(v, v′) is the sum of the error covariance matrix

ΣΣΣ(1)(v, v′) from the first-stage model and the error covariance matrix ΣΣΣ(2)(v, v′) from

the second-stage model projected onto the measurement space by the first-stage

design matrix XXX
(1)
i . Therefore, ΣΣΣ?

i (v, v
′) represents the total variability of rrri(v, v

′)

from two levels of the hierarchical model.

Based on the joint marginal distribution of rrri1(v, v′) and rrri2(v, v′), we derive the

predictive distribution of rrri2(v, v′) given the earlier measurement rrri1(v, v′),

[rrri2(v, v′)|rrri1(v, v′)] ∼ N(µµµ2.1(v, v′),ΣΣΣ2.1(v, v′)),

with the conditional mean

µµµ2.1(v, v′) = µµµ?i2(v, v′) + ΣΣΣ?
12(v, v′)ΣΣΣ?−1

11 (v, v′)[rrri1(v, v′)− µµµ?i1(v, v′)] (4.3)

and the conditional covariance matrix

ΣΣΣ2.1(v, v′) = ΣΣΣ?
22(v, v′)−ΣΣΣ?

21(v, v′)ΣΣΣ?−1
11 (v, v′)ΣΣΣ?

12(v, v′), (4.4)

where µµµ?i1(v, v′) and µµµ?i2(v, v′) are the subvectors of µµµ?i (v, v
′) that correspond to the

means of rrri1(v, v′) and rrri2(v, v′) and ΣΣΣ?
11(v, v′), ΣΣΣ?

22(v, v′), ΣΣΣ?
12(v, v′) and ΣΣΣ?

21(v, v′)
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are the submatrices of ΣΣΣ?(v, v′) that correspond to the variances and covariances of

rrri1(v, v′) and rrri2(v, v′).

By plugging in the ML estimator of the variance parameters λ̂λλ(v, v′) and the pos-

terior mean of population mean parameters β̂ββ(v, v′) calculated by the EM algorithm

into Equations (4.3) and (4.4), we obtain the estimated conditional mean µ̂µµ2.1(v, v′)

and conditional variance Σ̂ΣΣ2.1(v, v′). The connectivity rrri2(v, v′) are predicted by the

expectation of the estimated conditional distribution, i.e.,

r̂Bi2(v, v′) = µ̂µµ2.1(v, v′) = µ̂µµ?i2(v, v′) + Σ̂ΣΣ
?

12(v, v′)Σ̂ΣΣ
?−1

11 (v, v′)[rrri1(v, v′)− µ̂µµ?i1(v, v′)] (4.5)

Additionally, we can construct the 100(1−α)% prediction interval for rrri2(v, v′) based

on the estimated conditional variance Σ̂ΣΣ2.1(v, v′).

From Equation (4.5), one can see that the predicted value of subject i’s future

connectivity consists of two components. The first component is the expected

population mean of connectivity during K2 sessions estimated from subjects who

share similar characteristics as subject i. And the second component is added to for

subject-specific adjustment based on the deviation of the same subject’s previous

connectivity estimate from the population mean of earlier connectivity. The amount

of adjustment is jointly determined by the variability of earlier connectivity estimates

and the association between earlier and later connectivity estimates. Specifically,

when the within-subject variability is lower and the correlation between previous and

future connectivity is higher, it is more reliable to use individual’s previous images

to adjust for the subject-specific prediction.

In the following, we will illustrate how to construct the hierarchical model for var-
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ious study designs. Specifically, we consider two popular designs in imaging studies,

which are longitudinal studies and test-retest studies.

4.2.3 Model Specification for Longitudinal Studies

In longitudinal imaging studies, subjects are scanned in multiple sessions over a con-

siderate amount of time. Functional connectivity of certain brain regions may decrease

over time as disease progresses or increase as a subject becomes more familiar with

the experimental tasks. The goal of longitudinal imaging studies is to assess these

changes in the neural networks as a result of disease progression or learning activities.

Therefore in the hierarchical model, we model the subject-specific effects and popula-

tion effects in terms of baseline connectivity and connectivity change rate. We denote

the connectivity between voxel pair (v, v′) estimated for subject i at scanning times

TK = (t1, · · · , tK)T as ri(v, v
′) = (ri1(v, v′), · · · , riK(v, v′))T . Assuming connectivity

changes at a constant rate over time and the baseline measurement is measured at

t1 = 0, we construct the hierarchical model as below,

Level 1 :


ri1(v, v′)

...

riK(v, v′)

 =


1 t1
...

...

1 tK


RiB(v, v′)

Ri∆(v, v′)

+ εεε
(1)
i (v, v′),

Level 2 :

RiB(v, v′)

Ri∆(v, v′)

 =

XiB 0

0 Xi∆


RB(v, v′)

R∆(v, v′)

+

ε(2)
iB (v, v′)

ε
(2)
i∆ (v, v′)

 ,
where XiB and Xi∆ contain subject-specific covariates that may influence the baseline

and change rate of functional connectivity, respectively. In this hierarchical model for

longitudinal studies, the first-stage models subject-scan-specific brain connectivity

in terms of subject-specific baseline and change rate (RiB(v, v′), Ri∆(v, v′))T and

the second-stage models the subject-specific effects with respect to population
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parameters. The random error εεε
(1)
i (v, v′) = (ε

(1)
i1 (v, v′), · · · , ε(1)

iK(v, v′))T represents the

deviation of the observed connectivity from the predicted connectivity based on the

linear model with the subject-specific baseline and slope parameters. We assume

{ε(1)
ik (v, v′), i = 1, · · · , N ; k = 1, · · · , K} to be independent across all subjects and

all sessions, i.e., εεε
(1)
i (v, v′) ∼ N(0,ΣΣΣ(1)(v, v′)) with ΣΣΣ(1)(v, v′) = λ(1)(v, v′)IK . The

random error (ε
(2)
iB (v, v′), ε

(2)
i∆ (v, v′))T represents the deviation of the subject-specific

baseline and slope from the population means of baseline connectivity and connec-

tivity change and is assumed to follow a zero-mean multivariate normal distribution

with the covariance matrix ΣΣΣ(2)(v, v′) = (λ
(2)
B (v, v′), λ

(2)
∆ (v, v′))III2, where λ

(2)
B (v, v′) and

λ
(2)
∆ (v, v′) are the variabilities of subject-specific baseline and change rate, respectively.

4.2.4 Model Specification for Test-retest Studies

In test-retest studies, subjects are scanned for multiple sessions within a short study

period. These types of studies often combine the information collected from multiple

scanning sessions to improve the reliability of the connectivity estimates. Let Ri(v, v
′)

be the true underlying connectivity between a voxel pair (v, v′) for subject i and let

rik(v, v
′) be the observed connectivity from session k. The classical measurement

error model (Carroll et al., 2006) is specified as,

rik(v, v
′) = Ri(v, v

′) + εik(v, v
′),

where εik(v, v
′) is the measurement error for subject i during session k at voxel pair

(v, v′), which can be affected by the length of time during a scanning session or the

quality of scanners. As mentioned earlier, the main goal of conducting test-retest

studies is to obtain a more stable estimate of functional connectivity by measuring

the same underlying metric in multiple sessions. Specifically, by taking the aver-
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age of measurements collected from the same subject during multiple sessions, we

can reduce the variability of the connectivity estimate as compared to using a single

measurement. In the case when we don’t have multiple scans for a subject, the pro-

posed prediction method helps to improve the subject-specific connectivity estimate

by ”borrowing” strength from a larger group of subjects over the raw estimate using

only the individual’s images. The hierarchical model is constructed as follows with

the first-level model representing the measurement error model:

Level 1 : ri(v, v
′) = 1KRi(v, v

′) + εεε
(1)
i (v, v′),

Level 2 : Ri(v, v
′) = Xiβββ(v, v′) + ε

(2)
i (v, v′),

where the subject-specific covariate matrix XXX i contains relevant patient characteris-

tics such as medical or family history that may influence the functional connectivity

in the brain and 1K is an all-ones vector of length K. We assume that the measure-

ment error εεε
(1)
i (v, v′) is independently and identically distributed with a zero-mean

multivariate Gaussian distribution with covariance matrix ΣΣΣ(1)(v, v′) = λ(1)(v, v′)IIIK .

The second-level model assumes that Ri(v, v
′) are independently drawn from a

population distribution with a mean of Xiβββ(v, v′), where Xi contains subject-specific

information, such as age, gender or disease status, which may affect functional

connectivity between the voxel pairs. The random error ε
(2)
i (v, v′) represents

between-subject variability and we assume ε
(2)
i (v, v′) follows zero-mean normal

distribution with a variance of λ(2)(v, v′).
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4.2.5 Connections and Differences with a Shrinkage Estima-

tor in Test-retest Studies

In this section, we will show the connections and differences of our proposed BHM

predictor with a recently proposed shrinkage estimator (Shou et al., 2014; Mejia et

al., 2015) for predicting future brain connectivity in test-retest imaging studies.

Consider a simple test-retest study with two scanning sessions (K = 2), in which

researchers are interested in predicting future connectivity matrices for a group of

subjects based on their first brain scans as well as information collected from the

other subjects in the study. We define γB(v, v′) = λ(2)(v,v′)

λ(1)(v,v′)+λ(2)(v,v′)
, which is often

known as the intraclass correlation coefficient (ICC) and represents the relationship of

between-subject variance λ(2)(v, v′) and within-subject variance λ(1)(v, v′). The BHM

predictor of second-session connectivity based on the hierarchical model proposed for

test-retest studies in Equation (4.5) can be written as,

r̂Bi2(v, v′) = γ̂B(v, v′)ri1(v, v′) +
(
1− γ̂B(v, v′)

)
XXX iβ̂ββ(v, v′). (4.6)

Equation 4.6 shows that the BHM predictor is basically a weighted average of the

same subject’s first-session connectivity estimate and the population mean associated

with covariates Xi. The weight γB(v, v′) ranges between 0 and 1 and represents the

relative weight assigned to subject-level estimate compared to population mean. In

many literatures, this kind of estimator is known as the ”shrinkage estimator”, and

the weight γB(v, v′) is referred to as the shrinkage factor. As the within-subject

variance λλλ(1)(v, v′) to between-subject variance λλλ(2)(v, v′) decreases, ICC increases,

which means subject-level information is more reliable, more weight is assigned to the

subject-level estimate ri1(v, v′). On the contrary, as the within- to between-subject

variance ratio increases, ICC decreases, which means subject-level information is less
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reliable and we should benefit more by ”borrowing” information from the population.

The weight γB(v, v′) in BHM predictor is estimated by plugging in the model-based

variance estimates λ̂λλ
B

(v, v′), i.e., γ̂B(v, v′) = λ̂(2)B(v,v′)

λ̂(1)B(v,v′)+λ̂(2)B(v,v′)
.

Shou et al. (2014) and Mejia et al. (2015) recently proposed a shrinkage estimator

for predicting future functional connectivity in test-retest studies, i.e.,

r̂Si2(v, v) = γ̂S(v, v′)ri1(v, v) + (1− γ̂S(v, v′))r̄1(v, v′), (4.7)

where r̄1(v, v′) is the sample mean of first-session estimate of connectivity for

voxel pair (v, v′) and γS(v, v′) is a shrinkage factor for voxel pair (v, v′) that

takes any value in [0, 1]. Shou (2014) and Mejia (2015) proposed several methods

for estimating γS(v, v′) based on the moment variance estimators λ̂λλ
S
(v, v′), i.e.,

γ̂S(v, v′) = λ̂(2)S(v,v′)

λ̂(1)S(v,v′)+λ̂(2)S(v,v′)
. Numerical studies conducted in their papers have

showed different performances across various shrinkage factor estimators in terms of

the degree of shrinkage as well as prediction mean square error between the observed

and predicted connectivities.

It is obvious that under this simple test-retest setting, the BHM predictor r̂Bi2(v, v′)

is closely related to the shrinkage estimator r̂Si2(v, v′), as both are defined as a weighted

sum of subject-level estimate and population mean. The main differences lie in the

calculation of shrinkage factor as well as the population mean. Shou’s shrinkage factor

is estimated empirically and separately from the population mean, while for BHM

predictor, the shrinkage factor is estimated simultaneously with the sample mean in

the EM iterations. For the estimation of population mean, Shou’s method only uses

the first-session data while in our proposed method, population mean is estimated

using all available data from both sessions in the training dataset. Moreover, the
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proposed BHM method utilizes covariate information to improve the population mean

estimation, which is especially beneficial when there is large between-group difference

and small between-subject variability within groups as will be shown in the following

simulation studies.

4.3 Simulation Studies

We conducted simulation studies to evaluate the prediction performance of the

proposed method under two settings. In the longitudinal setup, we compared

the proposed predictor with a raw estimator and a General Linear Model(GLM)

predictor. GLM predictor is derived based on the marginal model of the hierarchical

structure with fixed covariate effects. In the test-retest setting, a mean estimator

and a shrinkage estimator were also included for method comparison. Since all the

methods are performed at voxel-pair level, our simulation studies were carried out

for single voxel pairs, the results can be generalized to most connectivity metrics,

such as voxel-by-voxel, node-by-node or seed-based correlation measure. Simulations

were performed for 100 times with a sample size of 100 for each scenario. To compare

the prediction accuracy of different methods, k-fold cross-validation was employed.

Specifically, we split the data into K(= 5) subsets. In each iteration, one subset was

used as the testing dataset, while the other subsets were combined as the training

dataset. For BHM and GLM, we first fit the model using the training dataset, and

used the estimated model to perform predictions for subjects in the testing dataset.

For the other estimators, we adopted similar strategies in Shou et al. (2014) and

Mejia et al. (2015) by using the first measurement of the same subject’s data as

the raw estimator, using the average first measurement in the training dataset as

the mean estimator, and using the first two measurements of the training dataset

to calculate the shrinkage factor and performing shrinkage with the raw and mean
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estimators. Same procedure was repeated so that all the data were used as the

testing dataset for once. We measured the prediction error using average prediction

mean square error (PMSE) between the true underlying connectivity and predicted

connectivity.

In the first setup, we simulated longitudinal data with three consecutive connec-

tivity measurements for each subject. We assumed that, for subject i, the baseline

connectivity was RiB and that the functional connectivity changed over time with

a constant rate of Ri∆. We considered two covariate groups with the same baseline

connectivity but different change rates. Subjects were randomly sampled from either

group with equal probability. Given these assumptions, the fisher-transformed con-

nectivity parameters in terms of baseline connectivity and change rate for subject i

were generated as follows,

z(RiB)

z(Ri∆)

 =

1 I1(i) 0

1 0 1− I1(i)



z(βB)

z(β∆1)

z(β∆2)

+

ε(2)
iB

ε
(2)
i∆

 ,
ε(2)

iB

ε
(2)
i∆

 ∼ N

0

0

 ,
λ(2)

B 0

0 λ
(2)
∆


 ,

where I1(i) was the indicator function of group assignment, which equals 1 if subject

i belongs to group 1 and equals 0 if the subject belongs to group 2, βB was the

population baseline of brain connectivity, and β∆1 and β∆2 were the mean change rates

for group 1 and group 2, and z(·) represents Fisher transformation. We assumed the

between-subject variances of baseline connectivity λ
(2)
B and connectivity change rate

λ
(2)
∆ to be fixed at 0.03 and 0.01, respectively. The fisher-transformed connectivity

z(rik) estimated at three time points t1, t2, t3 was simulated by adding the within-
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subject variance εεε
(1)
i = (ε

(1)
i1 , ε

(1)
i2 , ε

(1)
i3 )T , i.e.,


z(ri1)

z(ri2)

z(ri3)

 =


1 0

1 t2

1 t3


z(RiB)

z(Ri∆)

+


ε
(1)
i1

ε
(1)
i2

ε
(1)
i3

 ,

ε
(1)
i1

ε
(1)
i2

ε
(1)
i3

 ∼ N



0

0

0

 ,

λ(1) 0 0

0 λ(1) 0

0 0 λ(1)


 ,

where the within-subject variance λ(1) was chosen so that the variance ratio of

between-subject variance and total variance at baseline, i.e. λ
(2)
B /(λ(1) + λ

(2)
B ), varied

from 0.1 to 0.9. The simulated connectivity data was then back-transformed to the

original scale and ranged between [−1, 1]. Method evaluation was performed under

the original scale.

Figure 4.1 presents the average PMSEs of the three connectivity predictors

against the baseline variance ratio. From left to right, (β∆1, β∆2) were specified

as (0.2,−0.2), (0.1,−0.1), (0, 0), sequentially, representing large, small to no group

difference between the connectivity change rates. For all three scenarios, the baseline

connectivity βB was 0.3 for both groups. Simulation results showed that the average

PMSE of the BHM predictor was always the smallest as compared to GLM predictor

and raw estimator. The mean PMSE of BHM and raw predictors decreased as the

baseline variance ratio increased. The average PMSE of GLM predictor was very

robust to the change in baseline variance ratio when fixing the other parameters.

When large between-group difference was presented in the data, both BHM and

GLM predictors had smaller PMSE compared to the raw estimator, since both

BHM and GLM toke into account of this group information for prediction purpose.

In addition, we presented the true connectivity distributions measured in three

consecutive sessions with the predicted data distributions for session 3 connectivity

by different methods in Figure 4.2 under the large between-group difference scenario.

We specified a moderate within-subject variance of 0.03, which corresponded to a
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baseline variance ratio of 0.5. Figure 4.2 shows that the box plot of the predicted

data distribution by BHM predictor best resembled the true data distribution from

the 3rd session. The GLM predictor also differentiated the population means of the

two groups. However, since GLM predictor didn’t account for individual variability

in the prediction, the predicted distribution was homogenous across subjects from

the same covariate group. The predicted distribution by the raw estimator didn’t

demonstrate any heterogeneity between the two groups, given the raw estimator

was calculated based on the homogeneous baseline data and didn’t account for

longitudinal changes in the connectivity.

In the second setup, we simulated data with two scan-rescan connectivity mea-

surements for each subject. Assume rik was the simulated connectivity for subject

i(i = 1, · · · , N) at session k(k = 1, 2) with an underlying connectivity denoted as

Ri, which was subject-specific and had the same value across two imaging sessions.

We assumed that there were two covariate groups with different mean connectivities.

Group assignment was simulated from a Bernoulli distribution with a probability of

0.5. Random variability among subjects i = 1, · · · , N was assumed to be the same

across groups and was introduced by adding a Gaussian noise ε
(2)
i to the Fisher-

transformed group means:

z(Ri) =

[
I(i) 1− I(i)

]z(β1)

z(β2)

+ ε
(2)
i , ε

(2)
i ∼ N(0, λ(2)),

where β1 and β2 were the population means for group 1 and group 2, respectively. The

session-specific connectivity rik was simulated by including the within-subject variance ε
(1)
i

as follows,

z(rik) = z(Ri) + ε
(1)
i , ε

(1)
i ∼ N(0, λ(1)).
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Figure 4.1: Effects of variance ratio on the average prediction mean square error
(PMSE) for predicting future brain connectivity in longitudinal studies by BHM,
GLM and raw estimator. We consider three scenarios: (a) large between-group dif-
ference in connectivity change rates: (−0.2, 0.2); (b) small difference: (−0.1, 0.1); (c)
no difference: (0.0, 0.0).
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Figure 4.2: Consistency between the predicted connectivity distributions with the
simulated data distributions in longitudinal studies with large between-group differ-
ence for connectivity change rate.
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We specified the between-subject variance λ(2) as 0.03, and let the within-subject

variance λ(1) vary so that the variance ratio of between-subject variance and total

variance changed from 0.1 to 0.9.

In Figure 4.3, we plot the average PMSEs between the true connectivity Ri

and the predicted connectivity calculated by five different methods against the

variance ratio. The results were presented for three scenarios with decreasing group

differences from left to right with a constant group mean β2 = 0.2 and a varying

group mean β1 = 0.6, 0.4, 0.2. As shown in Figure 4.3, the average PMSE of the

proposed BHM predictor was always the smallest as compared to the other methods.

As the variance ratio increased, the average PMSEs of BHM, shrinkage and raw

predictors decreased, and difference among these three methods also decreased. On

the other hand, the average PMSEs of GLM and mean predictors were relatively

stable and did not change much as the variance ratio changed. When there was larger

difference between two group means, the benefits of BHM and GLM predictors were

more obvious, since these two methods took into accounts of the group effects. When

there was no between-group difference, the results between BHM and shrinkage

method are very close, hence it is hard to distinguish the two curves in the figure.

Similarly, the results between GLM and mean method are very close, hence the cor-

responding curves appear to overlay. Figure 4.4 presents the simulated distributions

of connectivity at two time points by group when there is large group difference and

λ(2)/(λ(1) + λ(2)) = 0.5. In the paralleled figure, we show the distributions of the

predicted values for connectivity measured at session 2 using different predictors.

The distribution of predicted values from BHM method best resembled that of the

simulated data in terms of group mean and variance. GLM predictor successfully

differentiated the population means for different groups. However, since GLM

predictor didn’t account for individual variability, the predicted distribution was
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Figure 4.3: Effects of variance ratio on the average prediction mean square error
(PMSE) for predicting brain connectivity in test-retest studies by BHM, GLM, raw,
mean and shrinkage estimator. We consider three scenarios: (a) large between-group
difference in mean connectivity: (0.2, 0.6); (b) small difference: (0.2, 0.4); (c) no
difference: (0.2, 0.2).
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Figure 4.4: Consistency between the predicted connectivity distributions with the
simulated data distributions in test-retest studies with large between-group difference.
The horizontal reference lines correspond to the population means of connectivity for
each group.

much more concentrated than the true distribution. Raw estimator also captured

the difference in group means but was more variable than the true distribution

because of the within-subject variability. Pooled mean predictor performed the

worst by ignoring the large between-group difference. The group means of shrinkage

estimator didn’t align well with the true distribution since the shrinkage method

shrank the mean towards the mean estimator. The variability of shrinkage estimator

fell between that of raw and mean estimators.
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4.4 Data Applications

4.4.1 Application to a Longitudinal ADNI2 Study

We applied the Bayesian hierarchical prediction approach to the Alzheimer’s Disease

Neuroimaging Initiative 2 (ADNI2) data. The purpose of ADNI2 project is to

examine how the brain imaging and other biomarkers can be used to measure the

progression of mild cognitive impairment(MCI) and Alzheimer’s Disease(AD). Image

acquisition parameters are described in details on http://www.adni-info.org.

In short, T1-weighted high-resolution anatomical image (MPRAGE) and a series

of resting state functional images were acquired with a 3.0 Tesla Siemens scanner

during longitudinal visits.

In this analysis, eighty subjects with complete T1 and rs-fMRI images at screening,

6 months and 1 year published on ADNI website (http://www.adni.loni.usc.edu)

before April 30, 2015 were included and have quality assured based on Mayo clinic

quality control documentation (version 02-02-2015) and visual examination. Among

these 80 subjects, 23 were normal, 47 had MCI, and 10 were diagnosed with AD at

baseline. No significant age or gender differences were found across disease status

groups (Age: one-way ANOVA, p = 0.2985; Gender: chi-square test, p=0.3134).

For the preprocessing procedure, the anatomical image was first registered

to the mean of the corrected functional images and then spatially warped to

the MNI standard brain space by using the segmentation routine of SPM5

(http://fil.ion.ucl.ac.uk/spm/software/spm5). The estimated warping pa-

rameters were subsequently applied to the slice and motion corrected functional

images, which were finally smoothed with an 8 mm isotropic Gaussian kernel.

Time series were detrended by regressing out a Legendre polynomial of order two,
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demeaned and whitened.

We adopted the 264-node cortical parcellation system defined by Power et al.

(2011), where each node is a 10 mm diameter sphere in MNI space. Compared

to the full voxel-level analysis or 90 AAL regions segmentation, such parcellation

has been shown to achieve a balance between spatial localization and dimension

reduction (Power et al., 2011). Our connectivity analysis considered 258 of the

264 nodes that were within the boundary of data gray matter mask. To examine

the prediction performance for the within- and between-network connectivity, we

performed functional parcellation using these 258 nodes and classified them into

nine resting state networks (RSNs) described by Smith et al. (2009). Network

membership of each node was determined based on the largest value among

RSN z-statistic maps at the core of that node. We excluded 44 nodes from the

final analysis considering the largest values at these nodes were below a chosen

threshold (z > 3) and excluded the cerebellum network which contained only 6 nodes.

To construct the connectivity maps, we performed singular value decomposition

(SVD) on the times series for all the voxels within each node to extract the

representative time series of that node. A 216 × 216 symmetric connectivity matrix

was constructed for each subject by calculating Pearson correlation between the

summary time series extracted from each node.

We built the hierarchical model by assuming a constant change rate of connectivity

over time and potential group effects in both baseline connectivity and connectivity
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change rate. The hierarchical model was specified as follows:

Level 1 :


ri0(v, v′)

ri1(v, v′)

ri2(v, v′)

 =


1 0

1 ti1

1 ti2


RiB(v, v′)

Ri∆(v, v′)

+


ε
(1)
i0 (v, v′)

ε
(1)
i1 (v, v′)

ε
(1)
i2 (v, v′)

 ,

Level 2 :

RiB(v, v′)

Ri∆(v, v′)

 =

IiN IiM IiA 0 0 0

0 0 0 IiN IiM IiA





RBN
(v, v′)

RBM
(v, v′)

RBA
(v, v′)

R∆N
(v, v′)

R∆M
(v, v′)

R∆A
(v, v′)


+

ε(2)
iB (v, v′)

ε
(2)
i∆ (v, v′)

 ,

where ε
(1)
ik (v, v′) followed a zero-mean normal distribution with the variance of

λ(1)(v, v′) for all k and (ε
(2)
iB (v, v′), ε

(2)
i∆ (v, v′))T followed a zero-mean bivariate normal

distribution with the covariance matrix ΣΣΣ(2)(v, v′) = (λ
(2)
B (v, v′), λ

(2)
∆ (v, v′))III2. The

interval between measurements were the same for all subjects in this study. All

subjects were scanned at baseline, 6 months and 1 year, i.e., ti0 = 0, ti1 = 0.5, ti2 = 1.

The BHM-based average baseline connectivity estimates across all 23220 unique

node-pairs were 0.0290, 0.0259, 0.0266 for normal, MCI, and AD patients, respec-

tively. And the average model-based connectivity change rates over one year were

0.0008, -0.0002, -0.0043, indicating a decreasing trend of functional connectivity in

the brain for more advanced disease stages. In addition, BHM provided variance

estimates for both within-subject variability and between-subject variability. The

average within-subject variance across all voxel pair λ̂(1) was 0.0373. The average

between-subject variance for baseline connectivity λ̂
(2)
B and connectivity change rate

λ̂
(2)
∆ across all voxel pairs were 0.0136 and 0.0043, respectively. The results showed

that within-subject variability was higher than between-subject variability.
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Figure 4.5 illustrates the population effects on baseline connectivity estimated

by BHM. Specifically, subfigures (a)-(c) present the estimated baseline connectivity

maps in three status groups (NC: normal control; MCI: mild cognitive impaired;

AD: Alzheimer’s disease). Each point on the map corresponds to an edge connecting

two nodes with red color indicating positive connectivity and blue color indicating

negative connectivity. These connectivity maps demonstrate some similarities

across three status groups. For example, we observed that most edges that connect

nodes from the same functional network were positive. Edges connecting nodes

among the three visual networks, between auditory and sensorimotor networks, and

between default mode network and some part of executive control network were also

positive. Most of the other inter-network connectivities were negative or showed

weak correlation. To compare the edgewise baseline connectivity between two disease

groups (MCI and AD) and the control group, we present the standardized mean

differences (as measured by Cohen’s d) in subfigures (d)-(g), and threshold their

absolute values by 0.5 to identify group differences with at least medium effect

size. The results are presented separately for positive and negative connectivities

with brown color indicating stronger connectivity and green color indicating weaker

connectivity in the disease group as compared with the control group. The figures

show that connectivity within auditory network, between auditory and sensorimotor

networks, between default mode and two frontoparietal networks, between medial

visual and occipital pole visual networks were weaker in both disease groups, while

connectivity within sensorimotor, executive control network and all three visual

networks were stronger. In addition, the figures also show amplified connectivity

between lateral visual network with auditory and executive control networks.

Figure 4.6 demonstrates the BHM model-based group effects on connectivity
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change rate from baseline to one-year in the study. Subfigures (a)-(c) present the

thresholded posterior probability maps for an absolute change rate greater than 0.2

by disease status. The results show that very few edges had large changes in NC and

MCI subjects, while in AD group, some large alternations were observed for intra-

and inter- lateral visual, auditory, executive control connectivity. To further illustrate

the changing edges, we selected 50 edges with the largest posterior probabilities in

AD group, and present their connectivity at baseline and one year in subfigures (d)

and (e). Red lines connecting two nodes represent positive connectivity between the

nodes, and blue lines represent negative connectivity. The widths of the lines reflect

the magnitude in connectivity as estimated by BHM. For example, connectivity

edges between some nodes in sensorimotor network and auditory network, default

mode and auditory network decreased over the year, while connectivity between left

and right frontoparietal nodes increased.

Figure 4.7 presents the prediction accuracy for BHM, GLM and raw estimator

with prediction mean square error (PMSE) between the observed and predicted

connectivity using 5-fold cross validation. Based on subfigures 4.7(a)-4.7(c), BHM

performed the best across all voxel pairs with an average PMSE of 0.045(±0.011).

GLM predictor, which used group mean for prediction, also outperformed the raw

estimator. Edges within and among executive control, frontoparietal left and right,

and visual networks were the least predictable as compared to other edges. Individual

connectivities within default mode, sensorimotor and auditory networks were the

most predictable. Additionally, we compared the individual prediction accuracy

by plotting the average PMSE across all node-pairs for each method in subfigures

4.7(d)-4.7(f). BHM predictor outperformed GLM predictor for most subjects (71/80)

and outperformed raw predictor for all subjects.
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Figure 4.5: Population effects and group differences of baseline edgewise connec-
tivity matrices estimated based on the bayesian hierarchical model (BHM). Sub-
figures (a)-(c) present the symmetric 216 × 216 baseline connectivity matrices
(as measured by Pearson correlations and correspond to population parameters
[RBN(v, v), RBM(v, v), RBA(v, v)]′ in the BHM model) for normal controls, mild cog-
nitive impaired and Alzheimer patients. Edges are grouped by their module member-
ship, with red edges indicate positive connectivity and blue edges indicate negative
connectivity. In subfigures (d)-(g), we present the standardized mean difference ma-
trices (as measured by Cohen’s d and thresholded by 0.5) for baseline connectivity
between NC and two patient groups. The sign of each edge is determined by the sign
of group average, and positive and negative edges are presented separately.
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Figure 4.6: Population effects of connectivity change rate by disease status based on
the bayesian hierarchical model (BHM). Subfigures (a)-(c) present the symmetric 216
× 216 thresholded posterior probability maps for absolute connectivity change over
1 year by disease status based on BHM for the ADNI2 data. Each point on the maps
represents an edge between two nodes in the brain and edges are grouped by their
module membership. Dark blue indicates a large posterior probability (probability
greater than 0.7) of absolute change rate in connectivity per year greater than 0.2,
i.e., Pr[R∆J > 0.2 or R∆J < −0.2] > 0.7, J = N,M,A. Several edges among
nodes from EC, FPR, FPL, Aud and Lat Vis networks are identified to have higher
posterior probabilities of a large change rate in AD group, while very few edges in
NC and MCI are likely to change. In subfigures (d) and (e), we present the baseline
and one-year connectivities for 50 edges with the largest posterior probabilities of a
greater-than-0.2 absolute connectivity change rate in AD group. Red edges indicate
positive connectivity and blue edges indicate negative connectivity. The size of the
edges reflects the strength of connectivity.
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Figure 4.7: Comparison of prediction mean square error (PMSE) for predicting first-
year functional connectivity in ADNI2 study using different prediction methods.
Subfigures (a)-(c) present the average PMSE matrices across all subjects using the
bayesian hierarchical model, general linear model, and raw estimator, respectively.
Darker color represents larger PMSE, and lighter color represents smaller PMSE. In
subfigures (d)-(f), we compare the performances of different prediction methods for
each individual using average PMSEs across all node-pairs. Individual results are
presented separately for normal controls, subjects with mild cognitive impairment
and Alzheimer’s disease.
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Figure 4.8: A symmetric 216 × 216 matrix showing coverage probabilities of the
95% prediction intervals for predicting first-year functional connectivity based on the
Bayesian hierarchical model for the ADNI2 study. Each point on the map represents a
node-pair with nodes defined based on the 264-node system and grouped by module
membership. Across all node-pairs, 94.1% (with a standard error of 2.2%) of the
observed connectivity measurements fall within the 95% prediction intervals.

4.4.2 Application to a Test-retest Kirby21 Study

We reanalyzed the Kirby 21 dataset (Landman et al., 2011) to demonstrate the

utility of the proposed method in test-retest reliability studies. The data set contains

two 7-minute scan-rescan resting-state fMRI images for 21 healthy adults. Imaging

data was preprocessed using similar procedure as implemented for ADNI2 dataset,

and details were omitted here. Given no significant covariates were reported for

the 21 healthy adults, the hierarchical model was constructed as the example in

section 2.3.2 with no covariate effects. General linear model was specified as the

corresponding marginal model for BHM.

To evaluate the reliability of the connectivity predicts, we employed a K-fold

(K=7) cross validation approach. The reliability of connectivity predictors in

this study was measured by prediction mean square error (PMSE) between the

observed connectivity from the second scan and the predicted connectivity based

on previous connectivity estimates. Figure 4.9 compares the prediction accuracy of
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BHM, GLM, raw, mean and shrinkage methods. Consistent with simulation results,

BHM predictor and shrinkage estimator were the best among five methods for this

test-retest dataset, with very similar PMSE across all edges. GLM predictor and

mean estimator were the second best predictors with similar prediction accuracy

(as measured by PMSE). We note that for healthy subjects, reliability of the

functional connectivity estimates were very comparable across all voxel pairs, except

for connectivity between some medial visual nodes and occipital pole visual and

lateral visual nodes. In addition, we present the coverage probability map of the

95% prediction intervals based on BHM in Figure4.10. The map shows that, across

all node-pairs, 92.3% of the observed connectivity measures fall within the 95%

prediction intervals.

4.5 Remarks

In this paper, we present a general Bayesian hierarchical model for forecasting

individual future functional connectivity based on the individual’s earlier fMRI scans

and relevant clinical and demographical characteristics. The utility of the proposed

approach is demonstrated for both longitudinal and test-retest imaging studies.

Through simulation studies and a longitudinal imaging study, we show that the

proposed method provides improved prediction results for future RSFC compared

to noisy individual estimates by modeling the longitudinal changes in RSFC. The

proposed predictive model has many potential clinical applications. For example,

it can help implement early intervention based on the predicted RSFC trajectory

to prevent severe outcomes from mental illnesses. It can also provide guidance for

developing a more effective individualized treatment plan by taking into account

both the group-level effects as well as the patient’s unique neural connectivity features.
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Figure 4.9: Average prediction mean square error (PMSE) matrices for predicting
functional connectivity across all subjects in Kirby21 study using bayesian hierarchical
model, shrinkage estimator, general linear model, mean estimator and raw estimator,
respectively. Darker color represents larger PMSE, and lighter color represents smaller
PMSE.

Figure 4.10: A symmetric 220 × 220 matrix showing coverage probabilities of the
95% prediction intervals for predicting first-year functional connectivity based on the
Bayesian hierarchical model for the Kirby21 study. Each point on the map represents
a node-pair with nodes defined based on the 264-node system and grouped by module
membership. Across all node-pairs, 92.3% (with a standard error of 4.7%) of the
observed connectivity measurements fall within the 95% prediction intervals.
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For test-retest imaging studies, the proposed method can provide a more reliable

estimator for individual RSFC than alternative methods. We show that there is a nice

connection between our predictor of RSFC and the recently developed shrinkage esti-

mator (Shou et al. 2014; Mejia et al. 2015). Both methods are essentially a weighting

procedure that ”borrow”s strength from a larger population to improve individual

estimates. Compared with the shrinkage estimator, the proposed method based on

Bayesian hierarchical model offers a number of methodological advances. First, our

proposed method can account for covariate effects and thus can potentially provide

more accurate estimates of RSFC for heterogeneous population, e.g., when the study

cohort consists of both patients and healthy controls. Second, the proposed predictor

provides a unified and model-based approach for determining the weighting factor

which controls the relative contribution from the population-level and individual-

level effects. Thirdly, we develop an inference procedure for the proposed predictor

which allows for hypothesis testing and confidence interval construction for the RSFC.

In the data examples, we applied the prediction algorithm using a node-by-node

connectivity map with nodes defined by a 264-node system (Power et al., 2014) and

grouped by functional network membership (Smith et al., 2009). The advantage of

using such a parcellation is that the node-level connectivity map achieves a balance

between node localization and dimension reduction as compared to full voxel-by-

voxel distance matrix. In addition, the grouping of the nodes allows us to examine

the reliability and predictability of intra- and inter- network connectivity. Although

we illustrated our method using node-based connectivity maps, the proposed method

can be directly applied to any connectivity metrics, such as partial correlation or

seed-based correlation maps, as long as the normality assumption is satisfied.
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4.6 Appendix

This appendix describes an EM algorithm for the proposed Bayesian hierarchical

model in Section 4.2.

For a given voxel pair, the two-stage model for all N subjects can be collapsed

into the following representation:

rrr = WWWθθθ + εεε(1)

where rrr = [rrrT1 , · · · , rrrTN ]T is the connectivity from all N subjects. The covariate

matrix WWW = [XXX(1),XXX(1)XXX(2)], where XXX(j) = diag(XXX
(j)
1 , · · · ,XXX(j)

N ) for j = 1, 2. The

parameter θθθ = [εεε(2)T ,βββT ]T with εεε(2) = [εεε
(2)T
1 , · · · , εεε(2)T

N ]T and εεε(1) = [εεε
(1)T
1 , · · · , εεε(1)T

N ]T .

The parameter θ contains the population-level parameters, and the error terms in the

secondary-level of the model are treated as parameters in Bayesian framework because

they serve as priors for the subject-specific parameters on the first-level model. Based

on the model specification, θθθ is assumed to follow Gaussian distributions with the

mean ηθηθηθ = E(θθθ) = [000T , ηβηβηβ
T ]T and the covariance ΣθΣθΣθ = cov(θθθ) =

ΣΣΣ(2) 000

000 ΣβΣβΣβ

 . The

likelihood and priors under the Gaussian distribution assumptions are

p(YYY |θθθ) ∝ exp{−1

2
(YYY −WWWθθθ)TΣΣΣ(1)−1(YYY −WWWθθθ)},

p(θθθ) ∝ exp{−1

2
(θθθ − ηθηθηθ)TΣΣΣ−1

θθθ (θθθ − ηθηθηθ)},

which lead to a Gaussian posterior density for θθθ,

p(θθθ|YYY ) ∝ exp{−1

2
(θθθ − ηθ|Yηθ|Yηθ|Y )TΣΣΣ−1

θ|Yθ|Yθ|Y (θθθ − ηθ|Yηθ|Yηθ|Y )},

where ΣΣΣθ|Yθ|Yθ|Y = (WWW TΣΣΣ(1)−1WWW + ΣΣΣ−1
θθθ )−1 and ηηηθ|Yθ|Yθ|Y = ΣΣΣθ|Yθ|Yθ|Y (WWW TΣΣΣ(1)−1YYY + ΣΣΣ−1

θθθ ηθηθηθ).
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If we adopt the empirical Bayesian scheme with ΣβΣβΣβ = ∞, ΣθΣθΣθ
−1ηθηθηθ = 0 which

means we do not need to specify the prior mean of βββ since they do not influence the

posterior. Therefore, we only need to update the hyper-parameters λλλ = [λλλ(1)T ,λλλ(2)T ]T

in the error covariance matrices ΣΣΣ(1) and ΣΣΣ(2). To estimate the parameters and

hyper-parameters in the above equations, we use the EM algorithm.

E Step

At the E step, we obtain the conditional distribution of the parameter θθθ given

the observed data YYY and the current estimates of the hyper-parameters of the

covariance components λλλ(m), i.e., p(θθθ|λλλ(m),YYY ). Based on the model specification, the

conditional distribution is Gaussian distribution with the mean and covariance of

ΣΣΣ
(m)

θ|Yθ|Yθ|Y = (WWW TΣ̂ΣΣ
(1)−1

WWW + Σ̂ΣΣ
−1

θθθ )−1 and ηηη
(m)

θ|Yθ|Yθ|Y = ΣΣΣ
(m)

θ|Yθ|Yθ|Y (WWW TΣ̂ΣΣ
(1)−1

YYY + Σ̂ΣΣ
−1

θθθ ηθηθηθ), where Σ̂ΣΣ
(1)

and Σ̂ΣΣθθθ are based on λλλ(m).

M Step

At the M step, we use the estimated conditional distribution of θθθ given YYY from

the E-step to update the maximum likelihood (ML) estimates for the covariance

hyperparameters λλλ while keeping the parameters fixed. Specifically, we find the λλλ(m+1)

such that the log-likelihood F = lnp(YYY |λλλ) is maximized. This can be done using a

Fisher-scoring iteration: λλλ← λλλ+ (∂
2F
∂λλλ2

)−1 ∂F
∂λλλ
.
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Chapter 5

Summary and Future Work
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Assessing agreement for measurements obtained from the same subjects by

different methods has been an important topic in biomedical studies. Standard

agreement methods are often challenged by the complexities in biomedical data.

The main objective of our research is to explore novel agreement methods that

accommodate two complex outcomes often encountered in biomedical studies, i.e.,

survival data and high dimensional neuroimaging data, to uncover the agreement

structures in these data and to develop statistical methods that can improve the

reproducibility of the data.

Our first proposed method is a local agreement pattern measure for correlated

continuous survival times based on bivariate hazard functions. The proposed

agreement index is shown to have several advantages over existing methods: (1) It

easily accommodates for censored observations. (2) It fully captures the dependence

structure between correlated survival outcomes. (3) It reveals how the strength of

agreement changes along the time. We propose a nonparametric estimation method

and show the desired asymptotic properties of the estimator. Our simulation studies

show satisfactory performances of the proposed estimator and inference procedure.

An application to the prostate cancer data is used to demonstrate the practical

utilities of our proposals.

Our second proposed method is for assessing the reproducibility of the same

subjects’ high dimensional brain imaging data acquired at different imaging sites,

which is a very important task to ensure the data quality in multi-site imaging

studies. Specifically, we propose a two-stage network-based agreement method

that first decomposes the whole brain into several functional networks, then iden-

tifies the important functional networks associated with the experimental tasks,

and finally measures the agreement between imaging sites using our proposed
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agreement indices with the identified network-specific temporal responses. We

develop nonparametric estimation methods for the proposed indices, fCIA and

fTCCC, and prove the consistency and asymptotical normality of the proposed

estimators. The proposed methods are illustrated via fBIRN Phase I Traveling

Subject study to investigate site effects in multi-site imaging studies. Nonparametric

permutation test based on the fCIA index reveals some potential site effect between

site 1, 2 and the other sites, which is consistent with visual examination of the

data, while the fTCCC fails to detect the abnormality. Since our agreement

method measures network-specific agreement, we are able to identify that the

inconsistency of site 1 in task-fMRI data mostly comes from auditory network and

the discrepancy in fMRI images at site 2 is mainly found in secondary visual network.

One of the future goals is to look into the task protocols and scanning procedures

from these study sites with the goals of uncovering the scientific logistics behind

data inconsistency. If found, revalidation and calibration should be made in order

to ensure the interchangeability of data acquired from different imaging sites for the

subsequent studies. One potential direction for future research is to develop imaging

calibration tools by using the proposed indices as the objective functions. In this

work, we develop our reproducibility method for task-fMRI data by taking advan-

tages of the expected periodic pattern of the network-specific temporal responses

corresponding to the experimental-task time series. For networks that are associated

with resting-state functions, such as cognitive and emotional activities, we do not

expect dominant periodic changes in their temporal responses. Therefore, different

approaches should be considered for these resting-state networks. For example, Zou

et al. (2004) evaluates the image segmentation quality based on a spatial overlap

index, Dice similarity coefficient. Another potential direction for our future research

is to investigate the reproducibility of individual parcellation for the same subjects
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when their brain images are acquired from different imaging sites using resting-state

fMRI data.

The third proposed method in this dissertation is a general Bayesian hierarchical

model for forecasting individual’s future resting-state functional connectivity (RSFC)

based on the individual’s earlier fMRI scans and relevant clinical and demographical

characteristics. The utility of the proposed approach is demonstrated for both

longitudinal and test-retest reproducibility imaging studies. Through simulation

studies and a longitudinal imaging study, we show that the proposed method

provides improved prediction results for future RSFC compared to noisy individual

estimates by modeling the longitudinal changes in RSFC. The proposed prediction

method could provide a useful tool to predict the changes in individual patient’s

brain connectivity with the progression of the disease. It can also be used to predict

a patient’s brain connectivity after a specified treatment regimen which could

potentially help guide individualized treatment plan. Another utility of the proposed

method, as demonstrated through the simulation studies and a test-retest data

application, is that it could be applied to test-retest imaging data to develop a more

reliable estimator for individual functional connectivity. In both data examples, we

applied the proposed method using a node-by-node Pearson correlation map with

nodes defined by a 264-node system (Power et al., 2014) and grouped by functional

network membership (Smith et al., 2009). We note that the proposed method is not

restricted to this specific connectivity measure and can be directly applied to any

connectivity metrics, such as partial correlation or seed-based correlation maps, as

long as the normality assumption is satisfied.

In the future, we plan to apply the proposed prediction method using the

partial correlation map as the connectivity measure which has been shown to be an
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effective method for minimizing the effects of global artifacts and artificial negative

correlations, while accurately identifying the intrinsic functional networks (Chen

et al, 2013). We expect our proposed prediction method will perform better using

the partial correlation metric than the traditional Pearson correlation considering

some artificial effects are removed from the imaging data. We also plan to apply the

proposed method to the ADNI2 data when more data has been collected. Currently,

to include as many subjects as possible for model estimation, we only utilize

three longitudinal scans for each subject. We hope with more subjects and longer

follow-up, the proposed method will provide better insights on the relationships

between longitudinal alternation of the brain functional connectivity and psychiatric

disorders, such as mild cognitive impairment and Alzheimer’s disease, and further

improve the prediction accuracy.
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